
AgentScape: Middleware, Resource Management, and
Services

F.M.T. Brazier, D.G.A. Mobach, B.J. Overeinder
S. van Splunter, M. van Steen and N.J.E. Wijngaards

Intelligent Interactive Distributed Systems Group and Computer Systems Group

Department of Computer Science, Vrije Universiteit Amsterdam

http://www.iids.org/

Abstract
The AgentScape project is geared to support large-
scale distributed systems at three levels: middle-
ware, services, and applications. This extended ab-
stract presents the basic AgentScape architecture,
resource management, and one specific service for
code mobility in more detail.

1 Introduction
The AgentScape project aims to support large-scale
distributed systems. The project encompasses three
well-defined research areas: (i) the AgentScape
middleware, (ii) services in AgentScape, and (iii)
applications designed and implemented in the
AgentScape environment.

Large-scale distributed systems are often hetero-
geneous systems: heterogeneous with respect to the
host architecture (Sun SPARC, Intel x86/i64), the
supported operating system (Solaris, Linux, Win-
dows NT), and the communication infrastructure
(bandwidth and latency). The major challenge in
the AgentScape project is to realize a scalable, se-
cure, and fault tolerant system, that supports multi-
ple distributed applications, heterogeneity, and mul-
tiple qualities of services.

AgentScape specifically deals with large-scale
distributed systems on which, mobile,autonomous
processes run. The mobile, autonomous processes
are called agents, the passive, possibly distributed,
entities are called objects. An important character-
istic of agents, which distinguishes them from tradi-
tional processes, is autonomy: agents are in control
of their own behaviour. From a management point-
of-view, this has implications for the management of
these mobile autonomous processes.

This extended abstract presents the middleware,
resource management, and one specific service for
code mobility in more detail.

2 AgentScape Operating System
The AgentScape operating system (AOS) provides a
platform with which mobile, autonomous processes
(agents) can be managed. It is, in fact, a virtual
machine distributed over a wide-area network con-

sisting of heterogeneous hosts. AOS kernels host
agents, objects, and provides service access (see
Fig. 1). All calls are filtered by the middleware and
appropriate calls are dispatched to the underlying
operating system, services, etc.

A location in the distributed system is a set of
hosts run by a single administrative entity. Each
host runs aminimal AOS kernel, and zero or
more agent servers, objects servers, and service ac-
cess providers. An agent server hosts agents, an
object server hosts objects, and a service access
provider makes external services accessible within
AgentScape. A location is implemented by the dis-
tributed AOS kernels, the agent servers, the object
servers, and service access providers.

The current architecture for this system is a mid-
dleware layer, on top of which agent applications
and agent platforms can be developed (see Fig. 1).
The current prototype implements the basic func-
tionality required.

Object
Server

Agent
Server

Agent
Server

AgentScape OS Kernel

R
es

ou
rc

e

agent
container

management

M
an

ag
em

en
t

S
er

vi
ce

s

D
ire

ct
or

y

security

module module

comm.

module

bind protocol location
services

migration
module

module

life cycle

table

agent/process

AgentScape

API

Figure 1: AgentScape middleware architecture.

3 Resource Management
AgentScape’s resource management system, based
on the OSI management model, needs to be able to
to regulate agents without interfering with their au-
tonomy.

The OSI management model defines five func-
tional management areas: performance, secu-
rity, fault-tolerance, accounting, and configuration.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15452823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


These areas can also be applied to the management
of multi-agent systems such as AgentScape:

• Performance management: managing the re-
source usage of agents on hosts within a multi-
agent system.

• Security management: ensuring security of
both agents and hosts in a multi-agent system.

• Fault-tolerance management: ensuring the
availability of agents and objects within a
multi-agent system, as well as the multi-agent
system as a whole.

• Account management: maintaining administra-
tive information about the agents within a sys-
tem.

• Configuration management: managing the con-
figuration of agents and objects that are under
management control.

The management system in the AOS needs to cre-
ate, delete, migrate, etc., agents. An agent life-cycle
model forms the basis for the definition of these op-
erations on agents by defining states of the agent and
transitions between these states. The central state in
the life-cycle model is the suspended state, in which
the agent is inactive and can be manipulated. This is
in contrast to other life cycle models for agents, in
which the active state of an agent is the central state.

4 Services
One specific AgentScape service extends the ba-
sic mobility of agents to true heterogeneous envi-
ronments, i.e., different operating systems, differ-
ent agent platforms, and different programming lan-
guages. The service that makes this possible is
called the Agent Factory of which a number of pro-
totypes have been implemented.

Mobile code is often not optimized for a wide va-
riety of heterogeneous hosts (including differences
in operating systems, hardware configuration, and
available resources). Rewriting mobile code for each
host encountered in the network, is not a feasible
solution, requiring too much effort from system ad-
ministrators and developers.

The Agent Factory service automatically adapts
mobile code to a specific host: a form of generative
mobility. In this approach, the mobile code need not
be sent to another host, but a blueprint of the mobile
code’s functionality is sent, together with informa-
tion needed to resume work. At each host, a service
is available which inspects a blueprint and gener-
ates the corresponding program code. The program
code generation process uses libraries of “building
blocks” to reconfigure agents.

An additional advantage of regenerating mobile
code, is that the risk of malicious behaviour (or ac-
quiring viruses en route) is reduced by regenerating
the mobile code, e.g., using trusted libraries of build-
ing blocks. The data (state) of the mobile code may
also be inspected, if required.

About the Authors
Frances Brazier is a full professor in the Intelli-
gent Interactive Distributed Systems group at the
Vrije Universiteit Amsterdam. Benno Overeinder
and Niek Wijngaards are assistant professors in this
group which focuses on the interdisciplinary area be-
tween Computer Systems and Artificial Intelligence.
Sander van Splunter and David Mobach are PhD stu-
dents in the same group. Maarten van Steen is a
full professor in the Computer Systems group at the
same university. The authors are grateful to Andy
Tanenbaum and Etienne Posthumus for their signifi-
cant contributions to this research and Stichting NL-
net for their financial support.

More Information
[1] F.M.T. Brazier, B.J. Overeinder, M. van Steen,

and N.J.E. Wijngaards. Agent factory: Gen-
erative migration of mobile agents in heteroge-
neous environments. InProceedings of the 2002
ACM Symposium on Applied Computing (SAC
2002), pages 101–106, Madrid, Spain, March
2002.

[2] F.M.T. Brazier, M. van Steen, and N.J.E. Wijn-
gaards. On MAS scalability. InProceedings
of the Second International Workshop on Infras-
tructures for Agents, MAS, and Scalable MAS,
pages 121–126, Montreal, Canada, May 2001.

[3] M. van Steen, P. Homburg, and A. S. Tanen-
baum. Globe: A wide-area distributed system.
IEEE Concurrency, 7(1):70–78, January–March
1999.

[4] N.J.E. Wijngaards, B.J. Overeinder, M. van
Steen, and F.M.T. Brazier. Supporting Internet-
scale multi-agent systems.Data and Knowledge
Engineering, 2002. in press.


