
A Self-Healing Approach for Object-Oriented Applications

A.R. Haydarlou, B.J. Overeinder, and F.M.T. Brazier
Department of Computer Science, Vrije Universiteit Amsterdam

de Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{rezahay,bjo,frances}@cs.vu.nl

Abstract

In this paper, we present our approach and architecture
for fault diagnosis and self-healing of interpreted object-
oriented applications. By combining aspect-oriented pro-
gramming, program analysis, artificial intelligence, and
machine learning techniques, we advocate that our ap-
proach can heal a significant number of failures of real in-
terpreted object-oriented applications.

1. Introduction

Today’s increasingly complex systems, composed of a
variety of components, operating in large-scale distributed
heterogeneous environments, require more and more human
skills to install, configure, tune, and maintain. Determining
the root cause of software runtime failures in such complex
systems is hindered by the lack of appropriate diagnostic
feedback, where often system logs are the only information
available. Automated support is clearly beneficial.

Ideally such complex systems would be able to recog-
nize and solve a large portion of these errors on their own.
To this purpose, these systems would need (1) to be self-
aware, (2) to know when and where an error state occurs,
(3) to have adequate knowledge to stabilize themselves, (4)
to be able to analyze the problem situation, (5) to make heal-
ing plans, (6) to suggest various solutions to the system ad-
ministrator, and (7) to heal themselves without human inter-
vention.

Autonomic computing [8] has been proposed as a way to
reduce the cost and complexity of systems, to control their
manageability and to achieve the above desired situation.
Self-management is central to autonomic computing and en-
compasses four self-* tasks: (1) self-configuring, (2) self-
healing, (3) self-optimizing, and (4) self-protecting. Self-
management assumes two subsystems: (1) the managed sys-
tem, the application, containing the business functionality,
and (2) the autonomic manager, which monitors the situa-
tion and performs the self-* tasks. In this paper, the terms

managed system and application are used interchangeably.
Self-healing is the self-task addressed in this paper.

The approach presented in this paper combines a number
of techniques to successfully diagnose failures and to en-
able self-healing. The main techniques used are (1) aspect-
oriented programming [5], (2) static and dynamic program
analysis and model checking [6], and (3) artificial intelli-
gence and machine learning [7]. Aspect-oriented program-
ming is used to instrument two types of sensors (regarding
failure and application model information) in the applica-
tion compiled code. The program analysis techniques utilize
the sensor information to determine the root cause of appli-
cation failures. Finally, artificial intelligence and machine
learning techniques use the result of the analysis phase to
make healing plans, predict the impact of healing actions,
or generate suggestions for healing.

The logs of a number of complex systems in a finan-
cial enterprise provided insight in the problems that occur
on a daily basis. These logs were spread throughout differ-
ent files in different formats on different machines, making
it time consuming and difficult for skilled personnel to lo-
calize program failure, analyze the cause(s), and to come
up with a solution. A significant part of the logs was re-
lated to a small set of most frequently occurring failures
(exceptions), such as ClassNotFound, NullPointer, Class-
Cast, Naming, FileNotFound. This paper demonstrates how
a significant number of such application failures can be au-
tomatically diagnosed and healed using our approach.

The remainder of this paper is organized as follows. Sec-
tions 2 and 3 present our approach and architecture. Sec-
tion 4 describes our experiment showing how code is auto-
matically instrumented. Finally, Section 5 presents related
work and discussion, and lays out future work.

2. Approach

The ultimate goal in self-healing systems is to equip cur-
rent (legacy) interpreted object-oriented distributed appli-
cations with a technique with which they can determine by
themselves the root cause of their software runtime failures

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15452817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


and make plans or suggestions for healing these failures. To
reach this goal, the following design criteria are considered:

1. No application source code is required.

2. Performance overhead should be acceptable.

3. Only software runtime failures that are not caught by
the application are handled.

4. For those failures that can not be healed, the cause
should be diagnosed.

5. All healing actions should be reported to system ad-
ministrators.

As stated above, the scope of this paper is self-healing
of distributed interpreted object-oriented systems. To make
this kind of applications self-aware, the following sensor
types are instrumented at the strategic positions in the ap-
plication that report different information:

Failure info sensor A sensor of this type is passive and is
activated when the application experiences a failure. It
retrieves information about the failure context (such as
failure type, stack trace, and failure place).

Model info sensor A sensor of this type is active and re-
trieves information that is needed to keep the auto-
nomic manager’s model of the application alive and
up-to-date. The application model is based on two ab-
stractions: (1) abstraction of the static structure of the
application, and (2) abstraction of traces of the states
of the running application.

As a result of exploration of real application logs, both
types of sensors are instrumented at the following positions
in the application:

Application content Sensors are instrumented in all strate-
gic components (objects) of the application. These
components together implement the business logic and
the functionality of the application.

Application boundary Sensors are instrumented at the
boundary of the application where interactions with
other applications (systems) take place. The follow-
ing interaction points are identified: (1) user interac-
tion: a point where a user can provide input to the ap-
plication and expects output from the application, (2)
operating system interaction: a point where an inter-
action with an OS service takes place, like an I/O in-
teraction, (3) middleware services interaction: a point
where a middleware service is used, like a naming-
service, and (4) data source interaction: a point where
an application receives its required data from other
systems. For the time being, three data source interac-
tion points are distinguished: database interaction is a
point where a database connection is set up and queries
are sent to the database; web services interaction is a

Instinctive
Planner

Analyzer

Reflexive
Planner

Plan
Executor

Pl
an

 R
ep

.
C

om
pl

ex

Planner
Cognitive

M
od

el
R

ep
os

ito
ry

R
ep

os
ito

ry
Si

m
pl

e 
Pl

an

SPI = Simple Plan Info, CPI = Complex Plan Info, AI = Analysis Info
API = Admin Policy Info, ANI = Admin Negotiation Info, PEI = Plan Execution Info

FI = Failure Info, MI = Model Info, HI = Healer Info

Sys Admin
Interface Mgr

FI

FI

HI

MI

AI

PEI MI

ANI
API

CPI

SPI

CPI

AI

Managed
System

Figure 1. Conceptual self-healing architecture.

point where the application interacts with other appli-
cations using web services; and legacy back-end inter-
action is a point where a legacy system is approached
through some proprietary protocol.

3. Architecture

Figure 1 shows our self-healing architecture. It contains
two feedback loops starting from and ending at the managed
system (see the thick arrow lines in Fig. 1). The first feed-
back loop deals with simple situations and performs very
quickly. The second feedback loop deals with complex sit-
uations, which should be analyzed, and prepares complex
healing plans. The following sections describe the man-
aged system and the modules which compose the autonomic
manger and their role in the architecture.

3.1. Managed System

Aspect-oriented programming (AOP) is a new program-
ming technique that allows developers to clearly separate
cross-cutting concerns (i.e., behavior that cuts across the
typical modules). AOP introduces aspects, which encapsu-
late behaviors that affect multiple modules. Aspects can be
inserted, changed and removed easily. We consider failure
info and model info sensors as aspects and use low-level



AOP techniques to instrument these aspects in the applica-
tion compiled code (class file and no Java source file—code
which is ready to be executed). The result of the instrumen-
tation is the managed system.

We are especially interested in monitoring event tran-
sitions, like method call, state change, branch selection
(model info) and exception occurrence (failure info) at dif-
ferent application points.

The model information (MI) is captured by the Model
Manager and stored remotely in the Model Repository.
When some runtime failure at one of the instrumentation
points occurs, the failure info sensor collects failure context
information (FI) (such as component name, method name,
method formal and actual parameters, stack trace and line
number) and triggers the Reflexive Planner.

3.2. Reflexive Planner

Some of the most frequently occurring failures, like
ClassNotFound Exception, have a clear and simple cause
and there is no need to perform an analysis step. This type
of failure can be healed very quickly using the Reflexive
Planner which runs in the same process space as the man-
aged system and plays a central role in the first feedback
loop.

The Reflexive Planner is responsible for a pool of spe-
cialized reflexive planners which continuously listen to the
incoming FIs and handle them utilizing simple plans (SPIs)
hosted in Simple Plan Repository which is filled by system
administrators.

If a reflexive planner succeeds, it generates healing info
(HI) and sends HI to a Failure Healer and reports its action to
the Sys Admin Interface Mgr. Otherwise it triggers remotely
the Analyzer by routing FI.

3.3. Analyzer

For complex failures the second feedback loop is trig-
gered to determine the root cause of these failures. The Ana-
lyzer is responsible for a pool of specialized analyzers which
continuously listen to the incoming FIs. Analyzers combine
model (MI) and failure (FI) information using static and dy-
namic program analysis techniques to determine the root
cause of failures. As each failure is associated with a spe-
cific pre-defined exception type, analyzers are able to base
their analysis on the semantics of the exception type.

As a result, analyzers generate analysis info (AI) and
send it to the Instinctive Planner. The analysis info contains
the following information: location of the root cause (in
terms of file, method, statement, interaction point) and con-
text of the root cause (method call-path and current state).

3.4. Instinctive Planner

Most of frequently occurring failures, like NullPoint-
erException, all have different causes. The instinctive plan-
ner may have known plans to heal them. The Instinctive
Planner is responsible for a pool of specialized instinctive
planners which continuously listen to the incoming AIs and
handle them using complex plans (CPIs) hosted in Complex
Plan Repository. Complex plans are applied on known sit-
uations and specified by system administrators or Cognitive
Planner.

If an instinctive planner succeeds, it generates a plan ex-
ecution info (PEI) and sends PEI to the Plan Executor. Oth-
erwise instinctive planner triggers the Cognitive Planner by
routing AI.

3.5. Cognitive Planner

The Cognitive Planner is the brain of the autonomic man-
ager and is activated when instinctive planners encounter
unknown situations. It utilizes artificial intelligence and ma-
chine learning techniques to produce new plans (CPI), given
the current situation (AI) and system administrators policy.

If the generated new plans need to be confirmed, it pro-
vides a list of healing suggestions and negotiates them with
the system administrators. Finally the new generated rules
are stored in Complex Plan Repository.

3.6. Plan Executor

The Plan Executor is responsible for a pool of specialized
plan executors which continuously listen to the incoming
PEIs. Each plan executor has specific knowledge to trans-
late the incoming healing plan to the execution implemen-
tation details.

Application failures, similar to diseases, have a symp-
tom and a root cause. A distinction is made between com-
ponents containing the failure symptom (symptom compo-
nent) and components containing the failure root cause (root
cause component). Note that they may physically be the
same component.

Plan executors perform two important tasks: (1) stabiliz-
ing the panic situation arisen from the failure occurrence,
and (2) repairing the failure root cause.

To stabilize the situation, they construct a clone of the
symptom component and replace the method body of the
symptom method with a new body. The new method body
contains all code that has not yet been executed due to the
failure. The Failure Healers are then remotely instructed to
dynamically load the cloned component, initialize it with
the last state of the symptom component and call the symp-
tom method (with the new body) again.



In parallel, the code of the root cause component is re-
paired if possible. After restarting the application, the re-
paired code is executed. This process, in fact, simulates the
way a developer debugs his/her code. The failure point be-
comes a breakpoint and the execution continues after cor-
recting the failure code.

4. Experiments

A prototype of the architecture presented has been
implemented in Java. Although fault diagnosis and self-
healing operations can be deployed at different levels (see
also Section 5), in the prototype it is used at the compo-
nent and code level. In the prototype presented in this sec-
tion, fault diagnosis is at component and code level, and
self-healing repair operations are at code level. To test the
applicability of our approach, we have applied the proto-
type to a small Java application, with two classes Foo1 and
Foo2 (Fig. 2(a)).

We have injected a wrong code line in one of the methods
of the application (Fig. 2(a), class Foo1, line 3), which will
cause a NullPointerException in another method (Fig. 2(a),
class Foo2, line 4). Normally, NullPointerException causes
the application to crash if it is not caught by the code. (This
type of exception occurs frequently in practice). For sim-
plicity, variablefsb in class Foo1, line 3, is initialized with
null, but in practice the value is read from persistent stor-
age (file, database, etc.). So, it is not an obvious program-
ming fault, as the value is not known on beforehand.

Javassist [4] has been used to instrument Java try/catch
block at every interesting method body in the class files
(compiled code) of the application. By the execution of
the instrumented application the NullPointerException is
caught and the context information about the failure is re-
ported to the autonomic manager (Fig. 2(b), lines 9–13).

Based on the information about the symptom of the fail-
ure, the autonomic manager analyzes the problem and de-
termines its root cause (Fig. 2(a), class Foo2, line 4). After-
wards a clone of Foo2 is constructed with a new body for
the bar2 method (Fig. 2(c), line 3–5), and finally the ex-
ecution is resumed. In fact, we stabilize the panic situation
arisen due to the failure.

In addition, the root cause in the original code is repaired
properly (Fig. 2(d), line 3). The repair rule is determined
by the event (diagnosed root cause) and the healing opera-
tion is derived from objectives given by the system admin-
istrator. The original class is then replaced with the repaired
one, which will be executed the next time if the applica-
tion is restarted.

1 public class Foo1 {
2 public void bar1() {
3 StringBuffer fsb = null;
4 Foo2 foo2 = new Foo2();
5 foo2.bar2(fsb);
6 }
7 }

1 public class Foo2 {
2 public void bar2(Stringbuffer asb) {
3 System.out.println("before crash");
4 asb.toString();
5 System.out.println("after crash");
6 }
7 }

(a)

1 public class Foo2 {
2 public void bar2(Stringbuffer asb) {
3 try {
4 System.out.println("before crash");
5 asb.toString();
6 System.out.println("after crash");
7 }
8 catch (Throwable t) {
9 FailureInfo fi = new FailureInfo();

10 fi.setExceptionClass(t);
11 fi.setActualMethodArgs(asb);
12 fi.setFormalMethodArgs(...);
13 FailureReporter.report(fi);
14 FailureHealer.heal();
15 return;
16 }
17 }
18 }

(b)

1 public class Foo2 {
2 public void bar2(Stringbuffer asb) {
3 asb = new StringBuffer();
4 asb.toString();
5 System.out.println("after crash");
6 }
7 }

(c)

1 public class Foo1 {
2 public void bar1() {
3 StringBuffer fsb = new StringBuffer();
4 Foo2 foo2 = new Foo2();
5 foo2.bar2(fsb);
6 }
7 }

(d)

Figure 2. Example of code instrumentation.

5. Related and Future Work

Our proposed architecture resembles the ABLE Auto-
nomic Agent [1] architecture. The main differences be-
tween the two architectures is that in our approach (1)
the role of system administrator and analyzer are explic-
itly modeled, and (2) the cognitive planner and the instinc-
tive planner are related to each other.



TRAP [10] uses AOP and behavioral reflection to pro-
vide runtime adaptation to the existing object-oriented ap-
plications without modifying their source code. In our ap-
proach AOP is used to extract failure and model informa-
tion from the managed system.

Design by contract (DBC) [9] is a method for developing
software in which software modules guarantee certain prop-
erties when they request services from each other. DBC is
mainly used to warn developers about contract violations. In
future work these violations will be used as historical data
to help predict the behavior of the managed system and to
make healing plans.

Bowring et al. [2] show how to use machine learning to
automatically classify and predict software behavior based
on execution data. They instrument programs to profile
event transitions (like method calls, branches) based on test
plans and represent the execution profiles as Markov mod-
els. From the Markov models (training set), they train clas-
sifiers to predict the behavior of unseen program executions.

Brun and Ernst [3] use dynamic invariant detection to
generate program properties. They use support vector ma-
chine and decision tree learning tools to classify the prop-
erties and find fault-revealing properties. The training set is
a set of programs with known errors and corrected versions
of those programs.

Tschudin and Yamamoto [11] present an approach to
create robust code for communication software which con-
tinues to operate despite parts of the implementation being
knocked out. In their metabolic approach, implementation
elements are able to continue to operate and can recover by
themselves for restoring full services again.

Our cognitive planner can benefit from these approaches
to derive more precise healing actions. Self-healing at code
level is very complex, as the system has to derive the in-
tended behavior of the application. If that cannot be de-
termined, interaction with the system administrator is re-
quired. For self-healing at component, service, host, or loca-
tion (host aggregation) level, at which functionality and op-
erational semantics are defined, the automated healing pro-
cess can potentially be applied to a larger extent.

We are currently working on an ontological frame-
work based on OWL and OWL-S to represent the knowl-
edge regarding managed system’s healthy situation. The
framework will provide mechanisms to system administra-
tors in order to express the managed system’s high-level
healthy objectives, and actions to be taken when the health-
conditions are violated. The high-level objectives need to
be coupled with low-level observations and operations, i.e.,
the high-level healthy objectives need to be asserted by
low-level observations (such as root cause diagnosis) from
hosts, services, components, or application code. The self-
managing tasks have a level attribute determining the level
for the healing operation (OWL-S grounding details on the

interoperation between the levels).
Other research currently on the agenda are: (1) to use

program analysis to determine the root cause of problems
and to study the side effects of system stabilization and sys-
tem healing actions, (2) to use practical explorations to de-
termine the domain of reflexive, instinctive and cognitive
planners, (3) to use machine learning to predict the root
cause of multi-causal failures and to generate healing sug-
gestions, and (4) to use agents to implement the modules of
the autonomic manager.

Acknowledgements

This research is supported by the NLnet Founda-
tion, http://www.nlnet.nl and Fortis Bank Netherlands,
http://www.fortisbank.nl.

References

[1] J. Bigus, D. Schlosnagle, J. Pilgrim, W. Mills, and Diao.
ABLE: A toolkit for building multiagent autonomic systems.
IBM Systems Journal, 41(3):350–371, 2002.

[2] J. F. Bowring, J. M. Rehg, and M. J. Harrold. Active learning
for automatic classification of software behavior. In Proceed-
ings of the 2004 ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 195–205, Boston, MA,
July 2004.

[3] Y. Brun and M. D. Ernst. Finding latent code errors via ma-
chine learning over program executions. In Proceedings of
the 26th International Conference on Software Engineering
(ICSE’04), pages 480–490, Edinburgh, Scotland, May 2004.

[4] S. Chiba. Javassist: Java bytecode engineering made simple.
Java Developer’s Journal, 9(1), 2004.

[5] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented
programming: Introduction. Communications of the ACM,
44(10):29–32, Oct. 2001.

[6] M. Ernst, J. Cockrell, and W. G. D. Notkin. Dynamically dis-
covering likely program invariants to support program evolu-
tion. IEEE Transactions on Software Engineering, 27(2):99–
123, Feb. 2001.

[7] B. Finkbeiner, S. Sankaranarayanan, and H. Sipma. Collect-
ing statistics over runtime executions. Electronic Notes in
Theoretical Computer Science, 70(4):1–19, Dec. 2002.

[8] J. Kephart and D. Chess. The vision of autonomic comput-
ing. Computer, 36(1):41–50, Jan. 2003.

[9] G. T. Leavens and Y. Cheon. Design by contract with JML.
http://jmlspecs.org, 2004. In draft paper.

[10] S. M. Sadjadi, P. McKinley, R. Stirewalt, and B. Cheng.
TRAP: Transparent reflective aspect programming. Techni-
cal Report MSU-CSE-03-31, Department of Computer Sci-
ence, Michigan State University, East Lansing, MI, Nov.
2003.

[11] C. Tschudin and L. Yamamoto. A metabolic approach to
protocol resilience. In Proceedings of the First Workshop on
Autonomic Communication (WAC 2004), Lecture Notes in
Computer Science. Springer, Berlin, Germany, Oct. 2004.


