
A SECURE JAILING SYSTEM FOR CONFINING UNTRUSTED
APPLICATIONS

Guido van ’t Noordende,́Adám Balogh*, Rutger Hofman, Frances M. T. Brazier and Andrew S. Tanenbaum
Department of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

{guido,rutger,frances,ast}@cs.vu.nl

*Department of Algorithms and their Applications, Eötvös Loŕand University, Budapest, Hungary
bas@elte.hu

Keywords: System Call Interception, Application Confinement, Jailing.

Abstract: System call interception based jailing is a well-known method for confining (sandboxing) untrusted binary
applications. Existing systems that are implemented using standard UNIX debugging mechanisms are ren-
dered insecure by several race conditions. This paper gives an overview of the most important threats to
jailing systems, and presents novel mechanisms for implementing jailing securely on standard UNIX systems.
We implemented these solutions on Linux, and achieve competitive performance compared to existing jailing
systems. Performance results are provided for this implementation, andfor an implementation that uses a
special-purpose extension to the Linux kernel designed to improve performance of the jailing system.

1 INTRODUCTION

Operating systems currently do not provide suffi-
ciently fine-grained protection mechanisms for pro-
tecting a user against the programs that he or she
executes. The UNIX protection model is based on
a discretionary access control model, where all pro-
grams executed by a user inherit the user’s permis-
sions with regard to accessing resources, such as
files. To safely execute untrusted programs on UNIX
systems, system-call interception based jailing sys-
tems can be used which protect the system and the
user’s resources, and which allow a user to config-
ure network addresses with which a jailed program
is allowed to communicate. System-call interception
based jailing systems (Goldberg et al., 1996; Alexan-
drov et al., 1999; Jain and Sekar, 2000; Provos, 2003;
Garfinkel et al., 2004) are based on a kernel-level trac-
ing mechanism (e.g.,ptrace) that allows a trusted
jailer to intercept all system calls of its child pro-
cess(es), and accept, deny, or modify arguments of
the system calls made by an untrusted process before
the kernel proceeds with executing the system call.
All jailing systems make use of a policy file which
describes which parts of the local file system may be
accessed, and which network addresses are reachable
by the jailed processes.

A number of jailing systems require modifications
to the operating system to function securely. Jailing
systems which are implemented in user-mode, using
the ptrace() or /proc debugging facilities offered on
standard UNIX, also exist. However, existing sys-
tems suffer from several race conditions, which al-
low an attacker to bypass the jailer’s control mecha-
nisms (Garfinkel, 2003). This paper describes novel
solutions to these race condition problems. These
solutions allows complex programs, including multi-
threaded programs that make use of IPC mechanisms
and signals, to be jailed effectively. The jailing sys-
tem presented in this paper provides sufficient control
to allow for effective confinement of untrusted pro-
grams using standard system call tracing mechanisms
available on most UNIX systems.

2 TERMINOLOGY

This paper uses the following terminology:

• The jailer is a trusted process that monitors an
untrusted application and enforces a policy on the
user’s behalf.

• A prisoner is an untrusted application that is be-
ing monitored by a jailer and is forced to adhere

414

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15452816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Jailer Prisoner

Operating System

3/5 12/4

Figure 1: General positioning of a system call interception
system showing a jailer and a traced prisoner. When a pris-
oner makes a system call (step 1), the operating system sus-
pends the invoking thread and reflects the system call to the
jailer (step 2). The jailer inspects the system call’s argu-
ments and decides if it allows the system call or not. It
informs the operating system of its decision (step 3), which
results in the system call being continued or an error being
returned to the prisoner. Step 4 and 5 repeat step 2 and 3
after the system call has been made, so that the jailer can
inspect the result of the system call before returning control
to the prisoner.

to a predefined jailing policy.

• The tracer is the interface offered by the oper-
ating system for debugging / tracing an applica-
tion. Every major UNIX system to date provides
one or more tracing interfaces, such as ptrace() or
System-V’s /proc interface.

The basic idea of system call interception is
demonstrated in figure 1. Most if not all current UNIX
systems provide some form of debugging support that
allows for catching and inspecting the system calls
that an application makes and its arguments. Linux
provides theptrace() system call tracing interface,
which is rudimentary but still often used (e.g., by
gdb). We used this interface to implement our jail-
ing system. Since ptrace is about the most primitive
tracing interface possible, it demonstrates the mini-
mal requirements for implementing a user-level jail-
ing system well.

When a ptraced process makes a system call, this
call is trapped by the operating system and reflected to
the parent process, which can then inspect the child’s
register set and system call arguments. Based on this,
the parent (jailer) can decide whether to let the sys-
tem call proceed or whether it should return an error
without being executed. Ptrace allows the jailer to
change the value of registers that contain the system
call’s arguments, before letting the kernel execute the
call. Ptrace intercepts every system call just before
it is executed by the kernel, and right after executing
it. Only after the jailer agrees to let the process con-
tinue on both the pre and post system call event, the
prisoner thread is resumed.

3 THREATS AND
VULNERABILITIES

Figure 1 illustrates a significant problem in all sys-
tem call interception based jailing systems that sup-
port multithreaded applications or processes that use
shared memory. When the operating system suspends
the invoking thread and reflects the system call to the
jailer (step 2), the jailer has to make a decision on
whether to allow the system call based on its argu-
ments. These arguments often contain a pointer to
a string (e.g., a filename) in the prisoner’s address
space, which must be derefenced and checked by the
jailer. Between the time that an invocation was made
(step 1/2) and the decision has been passed back to
the operating system (step 3), a different thread of
the prisoner could have modified the argument in the
original thread’s address space. In this case, the sys-
tem call would end up using the modified system call
argument rather than the argument checked by the
jailer. This race condition is called aTime of Check
to Time of Use (TOCTOU)race, and it is a realistic
threat for all jailing systems that intend to support
multithreaded programs or programs that use shared
memory. This threat applies to all system calls that
take an argument residing in the prisoner’s address
space, such as a filename or an IP address.

Several solutions for the shared memory TOC-
TOU race have been proposed (Garfinkel, 2003;
Garfinkel et al., 2004; Provos, 2003; Goldberg et al.,
1996). The most secure among current approaches is
to let the kernel create a safe copy of the arguments
before reflecting that to a user-level policy enforce-
ment module (Provos, 2003).

TOCTOU race conditions are harder to solve for
systems that rely on existing tracing mechanisms such
as ptrace() or /proc, which provide no protection of
the arguments of a system call at the time of inspec-
tion. The approach closest to solving the shared mem-
ory race is described in (Jain and Sekar, 2000). This
solution is based on relocating a system call’s argu-
ment to a random location on the caller’s stack be-
fore checking it, so that another thread in the child’s
address space is unlikely to find and replace this ar-
gument. However, it is certainly not impossible for
another thread to find such a relocated argument and
replace it1. Other jailing systems simply completely
disallow thread creation, or suspend all threads of a
jailed process while a system call is being evaluated2.

1Winning this race is not as far-fetched as it may seem,
since the prisoner knows the argument which it originally
specified itself and can tell another thread to search for it in
its address space.

2http://www.subterfugue.org

A SECURE JAILING SYSTEM FOR CONFINING UNTRUSTED APPLICATIONS

415



Both approaches significantly limit the applicability
of such systems for executing modern thread-based
applications.

Certain file system race conditions have also
been documented for system call interception sys-
tems (Garfinkel, 2003). These race conditions are
again caused by a lack of atomicity of argument
checking and system call invocation. Between the
time that a system call’s filename argument is veri-
fied by the jailer and the time that the system call is
executed in the kernel, another prisoner thread (or a
different process running in the jail) may have sub-
stituted a part of the underlying filesystem path for a
symbolic link to a directory outside the paths that are
allowed by the policy3. Intermittent changes to the
current working directory can evoke similar race con-
ditions.

A weakness of most existing jailing systems is
that the only way they can handle system calls au-
tomatically is to either always allow or deny them al-
together, or to conditionally allow or deny the sys-
tem call by comparing its argument with, for exam-
ple, a set of filenames or network addresses in a user-
provided policy file. Another solution is to make a
callback to the user (Provos, 2003). However, it is a
hard task for a user to understand the meaning of the
arguments of every system call of the UNIX API and
the potential side-effects of allowing the call. For ex-
ample, some IPC calls or the kill system call take ar-
guments which indicate some kernel object of which
a user cannot easily determine whether access to it
should be allowed or not. This approach is also not
feasible when a large number of jailed processes are
running simultaneously on a system.

4 THE JAILING MODEL

To address the issues outlined above, our system pro-
vides a clearjailing model, which distinguishes an ap-
plication’s allowed actionswithin a jail from actions
that influence the worldoutsidethe jail. A jail always
starts with a single program, but this program may
(modulo policy)fork or execve other programs or
create new threads4. Child processes run under the
same policy as their parent (fig. 2).

3For example, the prisoner may invoke open with
/tmp/user/temp/passwd in the allowed path /tmp/user/temp,
and substitute the temp component for a symbolic link to
/etc, hoping that the system call will result in /etc/passwd to
be opened.

4Multiple processes may run in a jail, for example a set
of processes executed by a shell script which communicate
via pipes.

process

first jailed

program

Jailer

JAIL

process

child

process

child

process

child

Figure 2: A jail’s process hierarchy. The jailer starts the
first jailed process in its own jail, and controls this jail by
enforcing the jailing model and the jail’s policy. A jailed
process can create child processes (using fork and execve).
These processes are now in the same jail as their parent and
execute under the same policy as their parent. All processes
within a jail can communicate with each other using UNIX
IPC primitives (e.g., using pipes or shared memory primi-
tives like shmem or mmap) or signals, or by writing files in
their jailing directory. Communication with processes out-
side the jail is controlled by the jailer’s policy.

Within a jail, the jailer allows almost the full
UNIX API, including IPC mechanisms such as shared
memory (but no root privileged calls) to be used by
all processes within the same jail. Actions which may
influence the outside world, such as accessing the file
system or connecting to a network endpoint, are only
allowed when allowed by the jailer’s policy file. The
importance of this model is that it allows the jailer for
most system calls to automatically determine whether
they are allowed or not, even when these system calls
take arguments which are determined at runtime (see
sec. 3). The jailer keeps track of which communi-
cation endpoints or IPC channels were created inside
the jail, and only allows access to internal endpoints5

or IPC channels. The jailer makes sure that a pris-
oner cannot set up connections to arbitrary processes
outside the jail. Jailed programs can send signals, but
only to processes running in the same jail.

The jail concept is quite suitable to describe
whether a set of processes may communicate with
each other or not: processes within a single jail may
freely communicate with each other, but communica-
tion with the outside world is not allowed unless ex-
plicitly permitted by policy. Because the jailer allows
most UNIX calls to be used freely within a jail, it al-
lows for execution of the majority of programs, even
modern multithreaded and multiprocess applications,
within the confinement rules of the jail.

A jailed process is by default started up in a (nor-

5The jailer also controls who may connect to a commu-
nication endpoint created in a jail, to prevent external pro-
cesses to initiate a connection to a jailed process.

SECRYPT 2007 - International Conference on Security and Cryptography

416



mally empty) scratch directory, which is read-write
accessible and not shared with other jailed processes.
Each jail has a simple policy using which the user can
define which parts of the local file system a jailed pro-
gram may access. Examples are /usr/bin and /usr/lib,
which contain files that may be used by programs6.
Any part of the file system may be marked read-only
or read-write accessible. The policy also allows for
’mounting’, and for change-rooting parts of the local
file system into the prisoner’s jailing directory. This
avoids that parts of the local file system have to be
copied to the prisoner’s jailing directory. More de-
tails on the policy file are given in (van ’t Noordende
et al., 2006). Except for the policy file, specific es-
capes from the default confinement model and the
policy file can be specified on the jailer’s comman-
dline. Examples are IPC escapes, using which a user
can specify TCP addresses or UNIX domain sockets
which are reachable from a jail. In our experience,
it is generally not necessary to override the default
policy, as most applications and the libraries they use
simply run as expected within a jail7.

5 WINNING THE SHARED
MEMORY RACE

The most important implementation issue to solve is
how to secure the arguments of a system call in view
of the shared memory race conditions outlined in sec-
tion 3.

The basic idea implemented in our system is
shown in figure 3. When a new prisoner process is ex-
ecuted, it is provided with a region of shared memory
which is shared between the prisoner and the jailer.
The prisoner has read-only access to this region; the
jailer can write into it. We call this shared mem-
ory regionShared Read-Only memory, or ShRO in
short. The shared memory is set up in the prisoner’s
address space using a library preloading technique.
The preload library uses mmap() to read-only map
the memory region in the prisoner’s address space.
The preload library also contains some code which is
required for certain post-system call processing tasks
which are explained in section 8. Preloading avoids
patching the prisoner binary.

6The jailing model allows a prisoner to execute pro-
grams from, e.g., /bin/, such as sh, perl, sed, or awk, given
that policy allows.

7Libc turns out to make many calls which are denied,
e.g., to files in /etc. However, libc turns out to be quite
resilient to denied system calls, and most programs run as
expected in a jail.

Preloaded
executable 
library

R/O memory
Preloaded

in prisoner’s 
prisoner
shared with 
to memory
R/W access

addr. space

process’

ress space
normal ad−

Jailer’s
address
space

Prisoner 

Figure 3: The Shared Read-Only (ShRO) memory solution
for avoiding user-level multithreading and shared memory
race conditions. The shared memory region is mapped in
transparently at prisoner startup time. The prisoner pro-
gram itself is unmodified and normally not even aware of
the preloaded ShRO memory region and library in its ad-
dress space.

Once a system call is made, the jailer fetches the
arguments from the kernel using standard ptrace calls
(sec 2). The argument can be a filename or an IP ad-
dress, for example. The jailer makes a safe copy of
the arguments in ShRO and adjusts the argument reg-
isters (which are stored in the Linux kernel) to point
to the copied arguments. Then the jailer does a policy
check using the safe copy of the arguments in ShRO,
and informs the kernel of its decision to let the system
call proceed or not. If the system call is to proceed,
the kernel uses the safe argument copies to execute
the system call. No prisoner thread can modify the
registers or the safe copy of the arguments in ShRO.

The ShRO solution alone is not sufficient to pre-
vent all race conditions. For example, there is a win-
dow of oppertunity for a malicious program to sub-
stitute a file in its read-write accessible jailing direc-
tory (which has its canonical filename stored safely in
ShRO) for a symlink to a file in a directory which is
normally not accessible, between the time where the
filename is stored in ShRO, and the time that the sys-
tem call is executed. We prevent this byserializingall
system calls that modify an object in a read-writeable
path in the jail while an open call is in progress.
Serializing is implemented by a readers/writers lock
around the open and modify/create/write-type system
calls. This provides an effective solution to the shared
file system TOCTOU race outlined in section 3.

6 JAILER ARCHITECTURE

The architectural design of our jailer separates
generic functionality (i.e., policy enforcement) from
platform-specific functionality. The jailer is split into
two layers. The lowest layer is called theinterception

A SECURE JAILING SYSTEM FOR CONFINING UNTRUSTED APPLICATIONS

417



layer 

Shared 

memory 

manager

Operating System

trace event syscall

Jailer process

Prisoner

process

Interception 

Policy layer 

ShRO memory region

shared with prisoner

Figure 4: The jailer’s internal architecture. The jailer con-
sists of an operating-system specific interception layer and
a portable policy layer. Both layers use a portable shared
memory manager module which manages the ShRO mem-
ory region(s) of the prisoner process(es) in the jail. The
interception layer drives the jailer by handling trace events
from the operating system and by calling the memory man-
ager and policy layer accordingly. The interception layer
also takes care of resuming the prisoner’s calling thread af-
ter policy evalutation is done, using an OS tracing primitive.

layer. This layer interfaces with the underlying sys-
tem call tracing interface, e.g., ptrace() or /proc. We
have currently implemented two interception layers,
one that uses ptrace() and one that uses a specially-
built in-kernel system call interception interface in
Linux, called kernel jailer. Above the interception
layer lies thepolicy layer, which enforces the jailing
policy. Both layers can access ashared memory man-
ager module, which manages the ShRO memory re-
gion. It has an interface which allows the interception
layer and the policy layer to allocate memory to write
system call arguments or stack frames into when re-
quired. The jailer architecture is shown in fig. 4.

The interception layer handles the tracer-specific
mechanism for attaching to a prisoner process, and
it sets up the shared memory between the prisoner
and the jailer. There is no time when prisoner code
runs uncontrolled. The first prisoner is created by
having the jailer fork, and the forked child attaches
to the jailer before it exec’s the prisoner code. Af-
ter the attach, the child lets the ELF dynamic loader
(ld.so) execute our jailing preload library (sec. 5).
The preloaded library sets up the ShRO region, and
connects to the jailer using a UNIX domain socket.
Preloading takes place in a mini jail environment,
in which the prisoner is only allowed to make those
system calls necessary to initialize the preload li-
brary. The way in which the ShRO region is set up is
completely controlled by the jailer, which checks the
correctness of the system calls and arguments made
during the preload phase. The prisoner’s own code
(main) is invoked only after preloading and ShRO
setup is complete.

The interception layer handles copying of the sys-

tem call arguments to ShRO, after which it passes
control to the policy layer. The policy layer decides
whether to allow or deny the system call depending on
the arguments. The policy layer also expands sym-
bolic links in filename arguments, such that it uses
an absolute pathname for comparison with the pol-
icy. If the system call is to be denied, this is speci-
fied by returning a negative error code (correspond-
ing to errno) from the policy layer. Then, control is
returned to the interceptor layer to let the system call
proceed. How the arguments are fetched8 from the
prisoner’s address space, and how registers are modi-
fied are platform-specific issues which are hidden in-
side the interceptor layer.

7 IMPLEMENTATION

We implemented a user-level jailer under Linux using
the architecture outlined above. For the interception
layer, we used a modified version of the open-source
program strace9. Strace is a program that is used to
display all system calls that a process makes, e.g.
for debugging purposes. Strace provides interfacing
with a number of tracing systems (such as ptrace and
/proc), and it provides mechanisms for system call
normalisation for different platforms. This helped our
implementation effort and will probably make porting
the jailer to other platforms simpler.

A second interception layer has been implemented
which makes use of a modified Linux kernel. The
modification is calledkernel jailer, and consists of
an extra tracing system call. The kernel jailer dif-
fers from ptrace in that it allows for efficiently fetch-
ing system call arguments (registers and dereferenced
arguments such as file names) from a prisoner’s ad-
dress space, and in that it caches the policy evalu-
ation results for certain system calls. This prevents
repeated upcalls to the user-level jailing process for
system calls which are always allowed or always de-
nied. Thekernel jailerautomatically jails all children
of a traced process. System call events are exchanged
between the kernel jailer and the user-level jailer us-
ing a System-V message queue. Except for very short
arguments, this is more efficient than ptrace, which
can only read one word at a time from a traced pro-
cess’s address space. Similar to ptrace, the kernel

8Ptrace is rather inefficient at reading data from a pris-
oner, as it allows only one word to be read at a time. How-
ever, most operating systems provide more efficient mecha-
nisms (e.g., Linux has a /proc/mem device) for reading from
a child process’s address space, which can be used by the
interception layer.

9http://www.liacs.nl/˜wichert/strace/

SECRYPT 2007 - International Conference on Security and Cryptography

418



jailer allows for updating system call argument reg-
isters in the Linux kernel. We wrote a new interceptor
layer for integrating the kernel jailer; other than that,
nothing was changed to the user-level jailing system’s
code. Because the kernel does not have to implement
a mechanism for securing system call arguments as
most other jailing systems must do, adding the kernel
tracer adds only about 390 lines of code to the Linux
kernel.

A number of implementation issues had to be re-
solved in the ptrace() based interception layer, which
are not unique to our system. For example, ptrace
does not always guarantee that forked children of a
prisoner are automatically traced (whichis the case
in the kernel jailer). Linux allows setting a flag on
the Linux variant of fork, clone(), which determines
whether the child is also traced. The interception
layer simply sets this flag for each clone call by a
prisoner. For other systems we can use a solution de-
scribed in (Jain and Sekar, 2000), which consists of
placing a breakpoint just after fork(). This gives the
jailer the time to attach to the forked process using
a ptrace primitive, after which the jailer removes the
breakpoint and the child can continue execution10.

A new ShRO region must be preloaded at the time
that an execve() is done. We do this by modifying
the arguments of the execve() call such that the loader
forces preload of the ShRO environment. When a pro-
cess creates a thread (i.e., calls clone on Linux), this
thread shares the ShRO region with all other threads
of this process, so no further work is required; this
also applies tofork. The jailer makes sure that ShRO
is safe in view of concurrent access by multiple pris-
oner threads within a single jail.

The policy layer is called by the interception layer
using a very simple interface. The policy layer pro-
vides asyscallpre and asyscallpostmethod, which
are called at the system call entry point, and at
the time that the system call returns, respectively.
Whether syscallpre or syscallpost is called depends
on earlier results of calling the policy layer, depend-
ing on the call that was made. For example, the
syscallpre method may return a code which indicates
that the policy layer is only interested in post-system
call notification for this particular system call on fu-
ture events.

No policy decisions are hardwired in the intercep-
tor layer: the first time a prisoner makes a particu-

10Note that this is a potentially vulnerable solution, as
care must be taken that no process in the same jailer can
access the part of the prisoner’s address space where the
breakpoint resides (e.g., using mmap()), and remove it pre-
maturely. This can be mediated by suspending other pris-
oners during execution of a fork. Fortunately, we can avoid
this issue in the Linux implementation.

lar system call, the call is always passed to the pol-
icy layer in the user-level process which makes a de-
cision. The policy layer in some cases decides that
a system call is always allowed or always denied.
It notifies the interception layer of this by returning
an appropriate return value to the interception layer.
The ptrace() based interception layer stores this return
value in its internalaction table, such that if the same
system call is made again, the system call is imme-
diately allowed or denied. Similarly, the kernel jailer
maintains an action table in the kernel, to avoid mak-
ing upcalls (i.e., expensive context switches) to the
user-level jailer process for system calls which are al-
ways allowed or denied. This improves efficiency sig-
nificantly. For example, read or write calls are almost
always safe, as they use a file descriptor that was re-
turned earlier by a succesful verifiedopen or similar
system call, e.g.,connect or accept.

When a system call is denied, the policy layer re-
turns this decision and a normalized error code (er-
rno) to the interception layer. Ptrace, unfortunately,
does not provide a straightforward mechanism for
denying a system call. Therefore, the ptrace() inter-
ceptor substitues a harmless getpid() call for the orig-
inal call, and replaces this call’s return value with the
errorcode specified by the policy layer.

8 POST-SYSTEM CALL POLICY
EVALUATION

The ShRO region provides an efficient security mea-
sure for arguments that are specified by a prisoner be-
fore making a system call. However, there are a few
system calls for which a potentially policy sensitive
argument is known onlyafter the system call has been
made. This applies in particular to TCPaccept calls
and UDPrecv/recvmsg/recvfrom primitives: the
peer address is only known to the kernel afteraccept
or recvfrom took place. The problem here is that the
result of the call is written into the caller’s address
space by the kernel, and between the time that the re-
sult (e.g.,peeraddr) is returned and the jailer checks
this, another thread of the prisoner could have mod-
ified the returned value to make it it pass the jailer’s
policy check. Worse, in the case of accept the new
socket may already be used by another thread of the
prisoner, before the jailer even looked at the peeraddr,
because the operating system has already created the
file descriptor as the result of executing the call11.

11Keeping the invoking thread from resuming until
checking is done is not feasible either, as the file descrip-
tor can be easily guessed and used by another thread.

A SECURE JAILING SYSTEM FOR CONFINING UNTRUSTED APPLICATIONS

419



To handle this issue we use thedelegationmech-
anism first introduced in the Ostia system (Garfinkel
et al., 2004), where every sensitive call (such asopen
oraccept) is executed by the jailer instead of the pris-
oner. As the jailer is the process that executes the
system call, it can be sure that the prisoner has no
possibility of using the file descriptor before a peer’s
address has been verified. Most sensitive system calls
return a file descriptor. The jailer can pass this file de-
scriptor to the prisoner over a UNIX domain socket,
after which the prisoner can use it in the normal way.
Ostia makes use of a loadable kernel module to fa-
cilitate file descriptor passing from the jailer to the
prisoner. This solution is not usable in our system,
as our jailer program must run on unmodified UNIX
systems without system administrator intervention.

Post-system call processing is required for a few
more system calls. The jailer may need to mod-
ify the directory names returned byreaddir() and
getcwd() to make them consistent with a modified
file system view (sec. 4) defined in the jailer’s policy.

In our jailer, post-system call processing is im-
plemented using atrampolineconstruction. When a
post-system call routine has to be invoked by the pris-
oner after a system call has been made, the jailer sets
the return address (program counter) of the invoking
prisoner thread to the address of a dispatcher routine
in the preloaded executable library. When the jailer
tells the kernel to proceed with execution of the call,
the operating system will resume the calling thread at
the modified return address after executing the system
call. As a result, the dispatcher routine is run, which
calls an appropriate handler routine. This is used to
modify the string returned by getcwd(), for exam-
ple. The dispatcher routine then returns to the original
prisoner’s return address. The dispatcher routine con-
tains 20 lines of assembly language to handle certain
architecture specific things, such as saving/restoring
registers according to the i386 convention. For the
rest, all the jailer code is written in C.

The trampoline construction is also invoked for
delegated calls. Theaccept() call is invoked by
the jailer, which checks the peer’s address after the
call was made12. After that, the jailer passes the file
descriptor to the prisoner. To implement this trans-
parently, the jailer lets the prisoner invoke a harm-
less getpid() call, followed by a trampoline instruction
that reads the file descriptor from the UNIX domain
socket. recvmsg() on a UDP socket also requires

12In order for accept() delegation to be implementable,
listen must also be post-processed, such that the jailer ob-
tains a copy of the allocated file descriptor (via a UNIX do-
main socket) so that it can later do anaccept() on this file
descriptor.

handling in the jailer, but only if the policy specifies
a limited set of peers that may send datagrams to the
prisoner.

9 PERFORMANCE

In this section we show performance results for both
jailing systems that we implemented, the ptrace()-
based jailer and the kernel jailer. We use micro-
benchmarks to investigate and analyse the overhead
of some representative system calls, and present the
performance of three applications whose performance
is dominated by system calls, so they represent a ”bad
case” for jailers.

All experiments were conducted on an Athlon 64
3200+ with a Linux 2.6.13.2 kernel, compiled with
our kernel jailing patches. We present benchmark
measurements for the ptrace() jailer and the kernel
jailer. For comparison we present the same bench-
marks run outside the jail, and run under control of
strace, modified to intercept all system calls but to
generate no tracing output. This latter comparison
exactly shows the overhead incurred by the ptrace()
mechanism, and the time spent in the jailer can be de-
duced from it.

We also evaluate the effects of the optimizations
offered by the kernel jailer.

9.1 Microbenchmarks

Table 1 presents the performance of microbench-
marks that each invoke one system call in a tight loop.
The time presented is the average time for one system
call. Measurements are presented for unjailed bench-
marks, benchmarks run under the control ofstrace
with output disabled, and under control of our ptrace
and kernel jailers.

Geteuid is a system call that takes no argument
and is always allowed by the jailer. This benchmark
shows that the impact of ptrace() intervention is con-
siderable in comparison to system call times; the over-
head is dominated by context switching between the
benchmark process, the kernel and the jailer. This
benchmark does not require any argument fetching
or rewriting, or nontrivial policy logic by the jailer;
accordingly, the extra time added by the jailing part
is small, 1µs. Because this system call is always al-
lowed, the kernel jailer immediately allows it without
consulting the user-space policy engine. Its perfor-
mance is therefore comparable to the unjailed case.

Stat takes a filename ”junk” as an argument and
returns this file’s status. It requires securing of the
filename in ShRO and updating the register for this

SECRYPT 2007 - International Conference on Security and Cryptography

420



Table 1: Microbenchmarks of selected system calls. Time
is in µs per system call

Syscall Unjailed Ptrace Ptrace Kernel calls in
jail jail loop

geteuid 0.07 5.1 6.2 0.08 100000
stat 0.85 7.2 14.0 14.3 10000
getcwd 0.51 6.4 12.7 9.5 10000
accept 91 169 537 466 1000
connect 98 178 508 466 1000

argument in the kernel. The jailer keeps track of the
prisoner’s current directory, and uses this to convert
the relative pathname to an absolute pathname. The
ptrace jailer requires twoptrace system calls to re-
trieve the 5-byte file name from the prisoner, where
the kernel jailer requires amsgsnd and amsgrcv call.
However, the latter calls are each more expensive than
a ptrace system call. The contribution to the over-
head of various parts of the jailer is analysed below.

Getcwd returns the prisoner’s current working di-
rectory. It requires a rewrite of the returned direc-
tory name in the prisoner’s address space using a post-
syscall processing routine when the prisoner runs in a
change-rooted directory. In this case, only the post-
syscall routine is called, but no rewriting is neces-
sary. The ptrace jailer requires sevenptrace system
calls to retrieve the directory name, whereas the ker-
nel jailer requires only one pair of system calls. This
difference makes the kernel jailer substantially faster.

Accept andconnect show that these calls are ex-
pensive even outside a jail. For these benchmarks,
a client and a server program were run on the same
machine, one in a jail and one free. Each connec-
tion setup therefore already requires some process
switches between benchmark processes.Accept uses
delegation, so the resulting descriptor is returned to
the prisoner over a Unix domain socket.Connect
requires freezing the argument in ShRO. Both in the
ptrace and the kernel jailer, accept causes more over-
head than connect, compared to the unjailed case. The
delegation mechanism (section 8) requires the use of
different threads in the jailer. For the ptrace jailer, the
difference between accept and connect is larger than
with the kernel jailer. We attribute this difference to
threading peculiarities of the ptrace mechanism.

Table 2 shows a breakdown of the various parts
of the jailer code for astat system call, measured
by nanosecond timers inserted into the jailer code.
As we find from thegeteuid call, bookkeeping in
the jailer costs 1.1µs. Reading the file name from
the prisoner address space is implemented by read-
ing a word at a time with theptrace system call,
and this is the largest of the jailer costs; for the ker-

Table 2: Breakdown of the time spent by the jailer forstat
(in µs, averaged over 10000 runs.)

jailer ptrace kernel
intercept bookkeeping 1.1 1.1
read syscall args 1.02 2.35
canonicalize args 0.86 0.81
check pathname 0.52 0.54
update kernel registers 0.27 0.58
microtimers, various 0.69 0.54
total jailer costs 4.46 5.93
basic tracer overhead 6.35 unknown
system call 0.85 0.85
kernel extra 2.34 unknown
total time 14.0 14.3

nel jailer, an even more expensive pair of System-V
IPC msgsnd/msgrcv calls is done. Calculation of
the canonical path name and checking this against the
policy paths is also a noticeable contribution. Another
ptrace or kernel jailer system call is involved in copy-
ing the pointer that points to the immutable copy of
the file name (in ShRO) into the prisoner’s register set.
For the ptrace jailer, the time spent in the jailer should
equal the difference between a jailed system call and
an unjailed, ptraced system call. However, 2.34µs re-
main unexplained. We found that this difference must
be attributed to kernel peculiarities.

9.2 Macrobenchmarks

To measure the overall performance of the jailing sys-
tem, we ran three macrobenchmarks which empha-
size different aspects of the jailing system. All mac-
robenchmarks are nontrivial for a jailing system, as
they do a large number of system calls compared to
the time used for doing computations, as shown in ta-
ble 3. Many applications will require far fewer system
calls than the benchmarks presented here.

The first macrobenchmark is a configure shell
script for the strace source code tree. This script exe-
cutes a number of programs which try out availability
of required functionality on the operating system. It
presents a worst-case scenario for the jailing system:
execve calls imply preloading and setting up a new
ShRO region for the new process.

The second macrobenchmark is a build of this
jailer system itself using make. To find out de-
pendencies and compile accordingly, make and its
spawned subprocesses must open many files and gen-
erate many new files. This benchmark is dominated
less by system call time than the configure script.

The third macrobenchmark is a Java build system
(ant) which compiles a large Java source tree, con-

A SECURE JAILING SYSTEM FOR CONFINING UNTRUSTED APPLICATIONS

421



Table 3: Results of an strace configure script, a make build, and a build ofa large Java source tree using ant. Times in seconds,
between brackets the percentages overhead imposed by jailing.

Unjailed Ptrace Ptrace jail Kernel jail
system user total total total jailer upcalls total jailer upcalls

configure 2.2 3.4 6.7 9.14 (36%) 14.3 (113%) 367,320 11.7 (75%) 147,947
make build 3.5 10 14.6 19.0 (30%) 27.4 (88%) 598,770 24.0 (64%) 264,815
ant build 1.2 15.5 16.7 22.4 (34%) 24.5 (47%) 669,557 18.1 (8%) 62,562

sisting of 1005 Java source files of a total length of
181073 lines (5554227 bytes). These are are com-
piled to Java bytecode using the IBM 1.4 Java com-
piler and virtual machine. Ant is a multithreaded Java
program. Considerable time is spent both in compil-
ing the source code and in reading and writing files.

What these benchmarks show is that it is possible
to run nontrivial, multithreaded or multiprocess ap-
plications within a jail with reasonable performance.
The measured applications make a large number of
system calls. Despite that, the overhead imposed by
the ptrace-based jailer is no more than 113%. The
columns “jailer upcalls” in table 3 show the number of
times that the user-level jailer process is consulted for
a policy decision. With configure and make, the ker-
nel jailer is capable of deciding the system call verdict
immediately from its action table, without dispatch-
ing to the jailer process, for about half the number of
system calls made by the prisoner. As a result, the
jailing overhead drops to 75% for make for the ker-
nel jailer. A significant part of the jailing overhead in
these cases, although more so for configure than for
make, is caused by the expensiveexecve call.

The Ant Java build system incurs significantly less
ptrace jailer overhead (47%), and most of this is con-
sumed by ptrace: Ant does relatively few expensive
system calls. With the kernel jailer, the user-level
jailing program is only consulted for one tenth of all
system calls. The majority of system calls that is im-
mediately allowed is for manipulation of thread sig-
nal masks, which Java appears to do very frequently.
This leads to a significant performance gain for the
kernel jailer. In conformance with the relative time
spent in user mode and system mode, the total over-
head for jailing Ant is much smaller than for the other
two benchmarks, in both jailing systems.

For the many applications that spend the major-
ity of their time in user mode, we expect that per-
formance will be better than the performance of the
above benchmark tests. Indeed, we verified with
some applications (e.g., gzip of large files, results not
shown) that jailing overhead drops to nearly zero for
both jailers if the application spends only a tiny frac-
tion of its time in system mode.

10 RELATED WORK

There exist a number of system call interception based
jailing systems which depend on operating system
modifications (Garfinkel et al., 2004; Peterson et al.,
2002). These solutions have obvious deployment
drawbacks. Systrace (Provos, 2003) is an exception in
that it is deployed in several open-source BSD UNIX
systems. Systrace requires manual policy generation
for each program, which limits its usability for con-
fining previously unknown programs automatically.
Another class of jailing systems were built that run
on unmodified UNIX systems using standard debug-
ging support such as ptrace() or /proc (Goldberg et al.,
1996; Jain and Sekar, 2000; Alexandrov et al., 1999;
Liang et al., 2003). However, these systems suffered
from a number of race conditions that rendered these
systems insecure for the majority of modern multi-
threaded applications (Garfinkel, 2003). Our system
is the first that solves these issues securely in user
mode.

An alternative to system-call level jailing is
language-based sandboxing such as provided by, for
example, Java or Safe-Tcl (Ousterhout et al., 1997).
Compared to language-based systems, system call in-
terception based jailing has the important advantage
of being language-independent. Also, getting a lan-
guage’s security model right is far from easy (Back
and Hsieh, 1999; Wallach et al., 1997). Jailing can
effectively safeguard users from vulnerabilities in any
language’s security enforcement mechanism.

Various operating system level techniques or new
oprating systems have been proposed to achieve better
security, flexibility, or software fault isolation for dif-
ferent concurrently executing applications. Notable
examples are (Ghormley et al., 1998; Engler et al.,
1995; Mazìeres and Kaashoek, 1997; Efstathopoulos
et al., 2005). Several of these designs could increase
security or software fault isolation. Contrary to these
approaches, we aim at supporting secure confinement
on top of existing, standard UNIX platforms.

Virtual machine approaches such as FreeBSD
jail (Kamp and Watson, 2000), VMware or Xen
(Dragovic et al., 2003) can also be used to confine ap-
plications. However, virtual machines are relatively

SECRYPT 2007 - International Conference on Security and Cryptography

422



heavy-weight, which makes them unsuitable for iso-
lating a very large number of concurrently executing
programs individually.

11 CONCLUSION

The jailing system presented in this paper provides
a simple but effective jailing model that allows users
to run untrusted programs securely. Our solution is
the first that presents an effective and secure solution
for alleviating shared memory and file system race
conditions, without requiring kernel support for se-
curing system call arguments. This solution is based
on copying sensitive system call arguments to a user-
level shared memory region to which the prisoner has
read-only access, before allowing the system call to
continue. This solution is in principle portable to any
(POSIX compliant) UNIX system, given that it has
rudimentary system call tracing support such as the
ptrace() or /proc system call tracing interfaces.

By differentiating between resources created in-
side and outside the jail, our jailing system has a
clear model for deciding which system calls to ac-
cept or deny, even when a system call takes a runtime-
determined kernel object as an argument. Actions that
influence the outside world are guarded by a simple,
user-defined policy. Policy modification, in particu-
lar to adapt the policy to the local system’s directory
structure, is straightforward, and generally required
only once. We have found that we can safely exe-
cute many programs (also nontrivial, multithreaded
programs that make a large number of system calls,
or programs executed from a script) in our jailing sys-
tem using the default policy. The overhead of our jail-
ing system is acceptable, although this depends on the
type of system calls made by a prisoner. Performance
is competitive compared to existing user-mode jailing
systems.

REFERENCES

Alexandrov, A., Kmiec, P., and Schauser, K. (1999). Consh:
Confined execution environment for internet com-
putations. http://www.cs.ucsb.edu/˜berto/papers/99-
usenix-consh.ps.

Back, G. and Hsieh, W. (1999). Drawing the red line in
java. Workshop on Hot Topics in Operating Systems
(HotOS VII). pp. 116-121.

Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,
Pratt, I., Warfield, A., Barham, P., and Neugebauer., R.
(2003). Xen and the art of virtualization.Proc. ACM
Symposium on Operating Systems Principles (SOSP).

Efstathopoulos, P., Krohn, M., VanDeBogart, S., Frey, C.,
Ziegler, D., Kohler, E., Mazìeres, D., Kaashoek, F.,
and Morris, R. (2005). Labels and event processes in
the asbestos operating system.Proc. 20th Symposium
on Operating Systems Principles (SOSP), Brighton,
United Kingdom.

Engler, D., Kaashoek, M., and O’Toole Jr., J. (1995).
Exokernel: an operating system architecture for
application-specific resource management.Proc. Fif-
teenth ACM Symposium on Operating Systems Princi-
ples (SOSP). pp. 251-266.

Garfinkel, T. (2003). Traps and pitfalls: Practical problems
in system call interception based security tools.Proc.
Symposium on Network and Distributed System Secu-
rity (NDSS). pp. 163-176.

Garfinkel, T., Pfaff, B., and Rosenblum, M. (2004). Ostia:
A delegating architecture for secure system call inter-
position.Proc. ISOC Network and Distributed System
Security Symposium (NDSS).

Ghormley, D., Rodrigues, S., Petrou, D., and Anderson., T.
(1998). Slic: An extensibility system for commodity
operating systems.USENIX 1998 Annual Technical
Conference.

Goldberg, I., Wagner, D., Thomas, R., and Brewer, E.
(1996). A secure environment for untrusted helper
applications - confining the wily hacker.Proc. 6th
Usenix Security Symposium. San Jose, CA, USA.

Jain, K. and Sekar, R. (2000). User-level infrastructure
for system call interposition: A platform for intrusion
detection and confinement.ISOC Network and Dis-
tributed System Security Symposium (NDSS). pp. 19-
34.

Kamp, P. and Watson, R. (2000). Jails: Confining the om-
nipotent root.Proc. 2nd Intl. SANE Conference.

Liang, Z., Venkatakrishnan, V., and Sekar, R. (2003). Iso-
lated program execution: An application transpar-
ent approach for executing untrusted programs.19th
Annual Computer Security Applications Conference
(ACSAC), Las Vegas, Nevada.

Mazières, D. and Kaashoek, M. (1997). Secure applica-
tions need flexible operating systems.Workshop on
Hot Topics in Operating Systems (HotOS).

Ousterhout, J., Levy, J., and Welch., B. (1997). The safe-
tcl security model. Sun Microsystems Laboratories
Technical Report TR-97-60.

Peterson, D., Bishop, M., and Pandey, R. (2002). A flexible
containment mechanism for executing untrusted code.
Usenix Security Symposium.

Provos, N. (2003). Improving host security with system call
policies.Proc. 12th USENIX Security Symposium. pp.
257-272.

van ’t Noordende, G., Balogh, A., Hofman, R., Brazier, F.,
and Tanenbaum, A. (2006). A secure and portable jail-
ing system.Technical report IR-CS-025, Vrije Univer-
siteit.

Wallach, D., Balfanz, D., Dean, D., and Felten, E. (1997).
Extensible security architectures for java.16th ACM
Symposium on Operating Systems Principles. pp. 116-
128.

A SECURE JAILING SYSTEM FOR CONFINING UNTRUSTED APPLICATIONS

423


