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ABSTRACT
In this work we examine a peer-to-peer agent continuous
double auction. We compare agents trading using peer-to-
peer communications with agents using the same trading
strategy in an auction that makes use of a centralized auc-
tioneer to disseminate information. We present simulation
data for these two auctions running with 2,500 to 160,000
agents. We find that the peer-to-peer auction is able to
display price convergence behavior similar to that of the
centralized auction. Further, the data shows that the peer-
to-peer system has a constant cost in the number of mes-
sage rounds needed to find the market equilibrium price as
the number of traders is increased, in contrast to the lin-
ear cost incurred by the central auctioneer. Considering
the above message costs, the peer-to-peer system outper-
formed the simple central auction by at least 100 times in
our simulations. We further calculate that for a distributed
hierarchical set of auctioneers, for which the message rounds
cost of finding equilibrium are reduced to logarithmic in the
number of traders, the peer-to-peer system will still pro-
duce better performance for systems with more than 5,000
traders.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems

General Terms
Experimentation, Theory

Keywords
auctions, bidding agents, scalability, self-organizing systems,
multi-agent simulation

1. INTRODUCTION & RELATED WORK
The auction mechanism, by which self-interested traders

are able to settle on a fair price for a commodity, is a key
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demonstration of the concept of autonomous agents working
together without outside control. Moreover the simplicity
and robustness of agent auction algorithms make them well
suited to a variety of applications; e-commerce naturally,
but also more general resource allocation problems [9] [10].
However while an auction demonstrates distributed determi-
nation of prices, auctions are most often implemented using
a central auctioneer and thus overall are not fully distributed
systems. This central auctioneer distributes global informa-
tion about current prices and deals made among traders. In
an agent system running on a single machine or a well con-
nected network, such high quality information is certainly
worth the cost of maintaining a central source. However,
as agent systems move to run on less reliable networks the
communications cost of maintaining a central auctioneer
could become prohibitive, limiting the number of auction
participants. In this paper we investigate the abilities of
a peer-to-peer auction, created by adapting a peer-to-peer
matchmaking procedure which we have shown to be effec-
tive when agents search for one of a number of randomly
placed acceptable partners [4] [5] . We take a simple agent
bidding algorithm that has been shown to work well given
information about the best bids and offers in an auction and
run it with information from only a limited neighborhood of
other agents. While the lower quality of this information
means that such peer-to-peer traders take more time to find
a solution, we find that they never the less are able to con-
verge to the equilibrium price for the market. Moreover, the
cost savings in terms of messages to any particular entity in
the system are significant. While the number of messages
processed by a central auctioneer grows linearly with the
number of agents, we find in simulations that the maximum
messages to any entity in our peer-to-peer system remains
approximately constant both in the message rounds needed
to reach equilibrium and the message rounds needed to con-
tinue making subsequent deals.

Auction mechanisms are widely studied, from economics
where the efficiency of different markets is measured, to
game theory where the abilities of market mechanisms to
stand up to malicious agents are compared, and finally in
computer science where agents are used to buy or sell goods
under varying circumstances [3] [7]. Agent market research
is based on the core theory that markets produce an effi-
cient allocation of resources even when using agent traders
in place of human traders. Economic theory states that
there is a computable equilibrium price for a given com-
modity market based on the best price at which each trader
in that market is willing to buy or sell. This equilibrium
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price is the price at which the largest number of trades will
be made within the market. Remarkably, human markets
settle on this equilibrium price after a time, in spite of the
fact that none of the traders in the market know the other
traders’ best prices. This paper is based on a line of research
that explores the question: what is the minimal intelligence
required in market participants to create an efficient market?
Gode and Sunder first asked this question in [2] where they
compared “zero intelligence” agents that bid randomly be-
tween lower and upper bounds to experiments with human
traders done by Smith [8]. They concluded that the market
mechanism itself, and not the intelligence of the traders, was
sufficient for the market to settle at equilibrium price. Cliff
and Bruten [1] later investigated this question further and
showed that such zero intelligence agents only work given
certain supply and demand curves. They created “zero in-
telligence plus” agents that use a simple learning algorithm
to make use of past information and showed that it worked
in the circumstances where Gode and Sunder’s zero intelli-
gence traders failed. Priest and Van Tol [6] later extended
this work from an auction mechanism where only one agent
bids at a time to a more realistic scenario where all agents
bid simultaneously.

This paper introduces peer-to-peer auctioning and com-
pares the central auction and simple learning agents used in
[6] with such a peer-to-peer auction using the same agents.
This peer-to-peer auction is created by adapting a peer-to-
peer matchmaking procedure that we analyzed in [4] and [5].
In that work we were concerned with removing the central
brokerage or yellow pages entity from the distributed agents
matchmaking problem. We found that this was possible
provided that there were a number of acceptable matches
for each task and, based on this, that the chance of two
randomly picked tasks matching was high enough. A sim-
ilar problem exists within agent auctions, which in general
make use of a central auctioneer. We thus extend the ques-
tion over the minimum agent abilities for an efficient auction
to include the issue of the minimum communication require-
ments among those agents. In this paper we experimentally
measure the number of bidding rounds and number of mes-
sage rounds required to reach convergence in two forms of
auctions, a peer-to-peer auction and a traditional auction
centralized around an auctioneer, as a function of the num-
ber of trading agents, N . We find that:

• The peer-to-peer auction displays price convergence.

• In bidding rounds, the rate of convergence is inde-
pendent of N in both auctions and approximately two
times faster in the centralized auction.

• The number of messages per bidding round to and
from any entity in the peer-to-peer auction is constant,
while an auctioneer must handle a number of messages
each bidding round that grows linearly with N .

• Considering message round costs, in simulations with
2,500 to 160,000 agents the peer-to-peer auction is
at least 100 times more efficient than the centralized
auction. Compared with a distributed auctioneer the
peer-to-peer system is more efficient for auctions with
more than 5000 agents.

In the following sections we will define our peer-to-peer
auction and the centralized auction we compare it to, and

then measure their performance through simulations. In
section 2 we summarize the basic micro-economic model of
a market and then describe the exact procedures used in
the central and peer-to-peer auction simulations we will be
comparing. As we are primarily interested in communica-
tions costs we include an analysis of the number of message
rounds per bidding round each procedure requires. In sec-
tion 3 we explain our choice of parameters for comparison
and present and analyze our simulation results. Section 4
concludes with some final remarks.

2. EXPERIMENTAL SETUP
Markets consists of a number of traders; sellers who have

an item that they wish to sell and buyers who have some
money to buy items. In this work we consider a simpli-
fied theoretical market with only one commodity good be-
ing traded. This means that all items for sale are identical
and thus avoids the question of one item being intrinsically
more valuable than another. Traders are modelled as hav-
ing a reservation price, a minimum price they are willing
to sell items at, or a maximum price they are willing to
pay for items. The reservation prices of all traders in the
market put together create supply and demand curves, as
shown in figure 1. The supply curve shows the number of
items sellers are willing to sell at each price, the demand
curve analogously shows how many items buyers are willing
to buy at each price. The intersection of the two curves is
at the equilibrium price, P0, and equilibrium quantity, Q0.
This equilibrium point is the price and quantity at which
the maximum number of items will be exchanged. In theory
markets will naturally tend towards trading at this point.
If the market price is above equilibrium there will be more
sellers competing to trade with fewer buyers thus bringing
the price down. Vice versa, if the price is below equilib-
rium there will be more buyers wanting to buy then items
for sale, driving the price up. Thus, a measure of the effec-
tiveness of a market mechanism is how close to equilibrium
trades take place. Also, since markets with no prior history
will most likely start making trades off equilibrium, a second
important measure is how quickly equilibrium is reached. In
this work we consider agents trading in a continuous double
auction. In auctions market prices are determined through
bidding rounds in which buyers and sellers shout the cur-
rent price that they are willing to exchange an item at. If
these prices overlap the traders involved make a deal, oth-
erwise the traders need to update the price they are willing
to shout in the next round. In a continuous double auction
both buyers and sellers announce their current asking prices,
and shouts remain valid until updated by a new shout in a
later round.

In our experiments we create software agents that act as
traders in simulated auctions. Each agent represents a single
buyer or seller with a fixed reservation price and a single item
to buy or sell. Agents update their asking prices according
a simple learning algorithm, and once they have made a
trade will re-enter the system with probability Pr at each
bidding round. We compare these agents trading in two
different auction setups, a basic centralized auction and a
peer-to-peer auction. Our aim is to determine how effective
a peer-to-peer auction might be in reaching equilibrium, and
to compare the communication costs of finding trades in the
two different setups.



Figure 1: Example supply and demand graph

2.1 Central Auction & Bidding Algorithm
We use a modified version of the centralized auction and

the agent bidding update algorithm presented in [6] as our
basis point for comparison to our peer-to-peer auction. In
this auction bidding takes place in rounds in which each
trader that has resources available sends its current asking
price to a central auctioneer. This auctioneer determines if
there are overlapping bids, and if so pairs up trading buyers
and sellers. The buyer with the highest bid is paired to
the seller with the lowest offer, second highest bid to second
lowest offer and so on until there is no more overlap. Trades
are made at the average of the paired buyer’s and seller’s
asking prices. The auctioneer then broadcasts the best bid
and offer to all the agents in the market. This information
is used by the agents to determine what price to shout in
the next round. Agents who have traded have their good
or money replaced with constant probability Pr each round
after having made a trade.

If you consider each agent and the auctioneer to be sepa-
rate entities, each able to send or receive one message at a
time, the serial communication costs of this centralized pro-
cedure are high. During a bidding round traders first send
bids to the auctioneer. These must be received and pro-
cessed, giving a cost of up to N message rounds, where N
is the number of traders. The auctioneer must then send a
message to each trader in turn with the current market infor-
mation and that trader’s deal status. As traders continue to
update their prices, even when they have no resources, this
cost is always N messages. Thus we have a total cost of up
to 2N message rounds per bidding round. By distributing
the auctioneer this can be reduced to O(ln N), however as
this involves other complications we will leave this analy-
sis until section 3.3 and for now consider the simpler single
auctioneer.

The bidding update algorithm is a heuristic update rule,
with a simple learning element, designed to demonstrate
that even very simple agents can be used to create effective
markets. Agents are buyers or sellers, each with a single
fixed parameter, their reservation price R0, and a variable
current asking price p(t), where p(0) is a random value be-
tween the reservation price and a minimum for buyers, or
a maximum value for sellers. Each round agents are given
the minimum selling price shouted, Smin, and maximum
buying price shouted, Bmax. They use this to determine a
target price, τ(t), to update p(t) towards using the following
heuristic:

τ(t) =

8>><>>:
�

Bmax + δ, if Smin > Bmax

Smin − δ, if Smin ≤ Bmax
for buyers�

Smin − δ, if Smin > Bmax

Bmax + δ, if Smin ≤ Bmax
for sellers,

where δ = r1p(t) + r2 and r1 and r2 are uniformly dis-
tributed random variables taken independently from the in-
tervals (0, R1] and (0, R2] respectively. The parameters R1

and R2 are used to define a small amount of random vari-
ation designed to model differences among traders. Agents
use the target price to determine their next shout price fol-
lowing the learning rule:

p(t + 1) =

�
max{p(t) + Γ(t + 1), R0}, for sellers
min{p(t) + Γ(t + 1), R0}, for buyers,

where

Γ(t + 1) = γΓ(t) + (1− γ)β(τ(t)− p(t)), and

Γ(0) = 0.

This uses two variables, the learning rate, 0 ≤ β ≤ 1 which
determines to what extent the new price is based on the
target price for this round, and the momentum, 0 ≤ γ ≤ 1,
which determines to what extent the current change in price
should be the same as that in the last round.

2.2 Peer-to-Peer Auction
In [4] and [5] we consider agents connected by a ran-

dom peer-to-peer communications network which searched
for partners for tasks by forming small groups that locally
modified their network connections. The aim of this work
was to discover under what conditions matchmaking could
occur in a multi-agent system without a pre-defined direc-
tory structure. We found that given random connections
and a high enough percentage of redundant tasks, matches
could indeed be found in such a system. In this work we rea-
son that finding trading partners in a market is similar to
matchmaking and thus adapt the distributed matchmaking
procedure to create a distributed auction. In this section
we will describe in detail the resulting peer-to-peer agent
auction procedure. Figure 2 diagrams a possible configura-
tion of some agents within this system to help illustrate the
terms we introduce.

As in the centralized auction, our peer-to-peer auction is
made up of agents representing individual traders each with
a single good to buy or sell, and a fixed reservation price. In
the initial setup these traders are each paired with a neighbor
agent, chosen at random among all the other agents. Addi-
tionally seed basic clusters, sets of k cooperating agents, are
created, also at random. This setup provides agents with
an initial neighborhood in which to search for trading part-
ners. As the auction proceeds the basic clusters combine
to form larger compound clusters, expanding their agents’
search spaces. The randomness of the initial setup is as-
sumed to come from, for instance, the placement of agents
on computers in a network, and from the assumption that
reservation prices are based on so many factors that they
are likely to have a random distribution.

From the initial setup bidding rounds, or turns, proceed
as follows. Agents first exchange their current asking price
with their neighbor. If the asking prices overlap a trade is



Figure 2: A snapshot of peer-to-peer trading agents

made at the average of the two prices. Agents then update
their asking price according to the update algorithm used in
the centralized auction, described in section 2.1. However,
in place of using the system best bid and offer, as this is
no longer provided, agents simply use the last seen bid and
offer, or their own price if it is better than one of these.
We experimented with agents remembering the last m bids
and offers seen, however we found that this merely slowed
convergence, the memory in the bidding algorithm appeared
to be enough to produce satisfactory convergence.

Agents trade independently, however they cooperate in
groups, called clusters, in their search for trading partners.
Within each cluster a single agent is assigned as the cluster
center. This cluster center keeps a map of the agents in
the cluster; including a list of unmatched agents, those who
have an item to buy or sell, matched agents, those who have
traded, and linked agents, those who have traded and formed
a connection joining two clusters. Each turn, after updates
have been made, the cluster center tells each unmatched
agent the address of another unmatched agent to pass its
current unwanted neighbor on to, thus shuffling the agents’
neighbors. This gives each unmatched agent a new partner
to exchange offers with on the following round. In this way
agents find themselves bidding against all of the cluster’s
neighbors.

We further provide a grouping mechanism by which the
bidding neighborhoods of agents are enlarged. When two
agents make a trade they have a chance of forming a link
that joins their two clusters. When this happens the clus-
ters involved are combined into a single larger cluster, with
the cluster center of the larger initial cluster becoming the
new cluster center. Thus for the next bidding round the
neighbors of all the unmatched agents in this larger cluster
are shuffled. To prevent clusters from becoming too large
and ungainly we give them a maximum size restriction of s
basic clusters. Once clusters have reached this size trades
continue to be made but no new links are formed. Experi-
ments in [5] showed that without this size restriction all the
basic clusters in the system would eventually group into a
single large cluster, making the cluster center equivalent to
the central auctioneer that we wish to avoid.

To limit the number of operations a cluster is involved in
we stipulate that each cluster can only form one new link per

turn. This requires coordination among clusters to prevent
a cluster from receiving two or more simultaneous requests
to form links with others. We achieve this by having each
cluster designate one of its matched (but unlinked) agents,
chosen at random each turn, as being able to form a link.
When two neighboring matched agents are both designated
by their respective clusters simultaneously the link is agreed
and they inform their clusters that they should merge.

Agents that have traded are considered to be out of the
trading game for some amount of time, as they no longer
have money or an item to sell. Thus, once formed, links
persist for some amount of time. However, links are not
permanent. Each bidding round, agents that have traded
have their item or money replaced with probability Pr. For
simplicity we assume that both the buyer and seller agent
involved in a trade receive new resources at the same time.
Since these agents are now ready to trade again any link be-
tween them is broken. The cluster center updates its cluster
map and if this was the last link between two parts of the
cluster a new center is assigned and the cluster is split. Thus
over time clusters are created and broken down again and
their set of neighbors changes.

In the experiments in this paper we are interested in mea-
suring the communications cost of this procedure. Thus
we need to break down the bidding rounds just described
into the sequence of messages agents must process. The
procedure is thought of as occurring among agents resid-
ing in many machines on a network, and thus cluster and
agent computations can take place in parallel. However it
is difficult to simulate all of the complications of a truly
asynchronous network. For this reason we make some sim-
plifying assumptions to keep our experiments manageable.
We assume messages always arrive in zero time, thus avoid
the issue of lost or delayed messages and allowing us to as-
sume that if a message has been sent it has been acted upon.
In addition we define a turn in our simulation as a period
in which all clusters perform the sequence described above
once, simultaneously. This gives us an easy time period for
taking measurements and making comparisons to the cen-
tral auction. It however avoids issues of clusters moving at
different speeds; instead we simulate all clusters moving at
the speed of the slowest cluster. Thus we do not consider
that smaller clusters actually could make more moves in this



time period, or clusters having to wait for replies from slower
ones.

Given these assumptions, a bidding round for a cluster can
be split into four phases; shuffle, exchange, reply and update.
In the following paragraphs we shall describe these and cal-
culate the number of messages rounds that each phase must
involve. When counting the message costs for these phases
we assume that all agents can send messages in parallel, but
that individual agents must process messages on at a time.
To maximize the message parallelism for operations that in-
volve communications from a center to all cluster agents or
vice versa we use the basic cluster centers as middlemen
between agents and their cluster centers.

In the shuffle phase the cluster center sends a message to
each of its unmatched agents informing them which other
unmatched agent in the cluster to pass its unwanted neigh-
bor on to. It also selects a matched but unlinked agent at
random and sends it the message that it is designated as
being able to form a link this turn. At most this phase in-
volves a message from the cluster center agent to each of the
other agents in the cluster. This will cost s− 1 messages to
each of the other basic cluster centers, informing them of the
messages to pass on to their agents, and then k−1 messages
within each of the basic clusters as the basic cluster centers
inform each of the other basic cluster agents. Thus the total
maximum message count is s + k − 2.

In the exchange phase each unmatched agent in a cluster
simultaneously first disconnects from its neighbor by send-
ing a disconnect messages, then sends the address of this
old neighbor to the cluster agent designated by the cluster
center in the shuffle phase. This receiving agent then sends
a connect message to what is now its new neighbor and the
new neighbor sends an acknowledgement back. It is how-
ever possible for two clusters to be moving at the same time,
and thus an agent can receive a disconnect message from its
neighbor before this phase begins. In this case the agent
has no neighbor’s address to pass on, instead it must wait
while its old neighbor passes on its address. It will then re-
ceive a connect message which it can pass on to its receiving
agent and the receiving agent can send the acknowledgement
to the new neighbor. For our simple trading application’s
purposes the connect message can also include a bid from
the sending agent and the acknowledgement can include a
return bid. From these bids each agent can separately de-
termine if a trade has been made. As in the centralized
market we have trades take place at the average of the two
bids involved. Also during this phase any matched agent
that has been designated as being able to form a link can
send a message with this fact to its neighbor. If it receives
such a message as well each agent knows that a link should
be created. The maximum number of sequential messages
in this phase is 4.

In the reply phase each agent that has changed state must
inform the cluster center of this fact. Thus agents that have
traded, agents that have formed a link, and agents that have
received new resources must all send a message to the cluster
center. This can be done by each agent sending a message to
its basic cluster center, costing up to k − 1 messages simul-
taneously in each basic cluster and then the basic clusters
combining their information into a message to the cluster
center, costing a further s − 1 messages. The maximum
total message count for this phase is thus k + s− 2.

Finally, in the update phase the cluster center must con-

sider all these reply messages and rearrange the cluster ac-
cordingly. Agents that have trades are moved to the matched
list. We then form a new link, if one was agreed. The link
setup messages can contain the size of the cluster, and thus
we can specify that the largest cluster will create the link.
For two clusters of the same size the cluster of the selling
agent creates the link. To do this, the smaller cluster’s cen-
ter sends a message to the larger cluster’s center containing
its map. The larger cluster’s center can then calculate the
map for the new combine cluster, and send a message to
each of its new basic clusters informing them of their new
cluster center. There will be at most ds/2e of these, minus
one for the previous cluster center who already knows of
the changes. In a second stage, agents that have received
new resources must be moved back into the unmatched list.
If any agents who were involved in a link have received a
new resource, that link must be broken. The cluster cen-
ter can again calculate the new map, and if the cluster is
split by breaking these links can inform the involved basic
clusters, designating one per new cluster as the new cluster
center and giving it its new map. In the worst case this
will leave the cluster center in a lone basic cluster, giving a
maximum message cost of k−1. Finally, when recalculating
the map any matched agents that are both members of the
same resulting final cluster can be updated to linked agents
without extra cost. The total maximum cost of this phase
is ds/2e + k − 1. Our maximum message round cost for a
bidding round is: d5s/2e+ 3k − 1.

3. EXPERIMENTAL RESULTS
In this section we present results from simulations of the

peer-to-peer and centralized auctions. We consider for both
the number of bidding rounds and number of message rounds
they require to settle at market equilibrium, and later to
make subsequent deals. First however we look more closely
at details of the peer-to-peer auction to determine that it
does in fact settle to an equilibrium involving all the agents
in the system. We then discuss our choice of the parameters
to use when comparing the two systems. Finally we present
this comparison, analyzing how the two systems behave as
the number of agents is varied.

3.1 Peer-to-peer Basics
Before comparing our peer-to-peer procedure to the cen-

tralized one we must establish that it produces correct mar-
ket behavior. As described in section 1, market trade prices
should converge over time to a theoretical equilibrium price
P0. In all of our experiments we assign each agent a random
reservation price between 100 and 200, creating approxi-
mately the supply and demand curves shown in Figure 1.
Agents are also given initial shouts at random, for sellers
from the interval [R0, 299], and for buyers from the interval
[1, R0], where R0 is the reservation price for that particu-
lar agent. We create approximately equal numbers of each
agent type by assigning each agent to be a buyer or seller
at random with a 50% chance of each. Pr, the new re-
source arrival rate is set to 0.1. Figure 3 shows the series
of trade prices produced in a peer-to-peer trail with 2,500
agents. We see that these indeed start out widely scattered
and over time converge within 1.3 units of the equilibrium
price of 149.6. Smith in [8] introduced a way of apprais-
ing how close a set of n trade prices pi are to equilibrium,



α = 100 ∗
�q�Pn

i=1 (pi − P0)
2� /n

�
/P0, a measure of the

standard deviation of trade prices from the equilibrium trade
price. Graphing α over time gives us a quantification of how
quickly an auction converges to equilibrium, and how closely
it matches that equilibrium after convergence. In the fol-
lowing experiments we calculate α for the trades that have
occurred every round in our peer-to-peer market and every
two rounds in the centralized market. In Smith’s experi-
ments with humans α settled at between 0.6 and 13.2, Thus
we consider an alpha value of 1 or 2 to be reasonably low. In
Priest and Van Tol’s experiments in [6] agents were shown
to converge to an alpha of about 1. We will consider two
characteristics of the alpha curves when comparing the two
auction types, first the number of bidding rounds it takes to
reach a particular alpha value, and second the average value
of alpha that the market eventually stabilizes on.

Figure 3: Sample run trade prices

Figure 4 shows the α curve produced by the trade price
data in Figure 3. We see that in this run the auction con-
verges to an alpha of 1 in 170 bidding rounds and it even-
tually converges to an average alpha of .17. We believe this
shows acceptable market convergence behavior for the peer-
to-peer agents. We must, however, further consider to what
extent each agent is participating in the market. For in-
stance, if only half the agents who can trade are trading
the random distribution of reservation prices would still re-
sult in the same equilibrium price. Figure 5 shows for a
longer run the number of trades made by each seller agent,
with agents ordered by reservation price. We see that all of
the sellers with a reservation price below P0 do trade. Each
make between 30 and 58 trades, independent of how far their
reservation price is from P0. More importantly we see that
all traders that should be able to do trade, while there is
a steep reduction in the number of trades for sellers with a
reservation price near P0, dropping to no trades being made
by most agents with R0 above P0. Data for the buyers looks
similar to that for the sellers.

We also need to inspect the distribution of agents’ trading
partners. It is possible that agents repeatedly trade with the
same partners, so that the system forms fixed clusters rather
than changing organization over time. Figures 6 and 7 show
trade partner data for a sample buyer in a trail in which it
made 2,706 trades. Figure 6 shows how many trades it made
with each of the sellers, ordered by the sellers’ reservation
prices. We see that the sample buyer traded with almost
all of the sellers with a reservation price below P0. Figure
7 shows the distribution of the number of times the buyer
traded with each partner for sellers with a reservation price
below P0. We see that only slightly more than 2% of pos-

Figure 4: Sample alpha curve

Figure 5: Number of trades per seller

sible partners were not traded with. For a completely even
distribution the buyer agent should have traded with each
seller 4.26 times. Indeed we see that the distribution centers
near this point. Looking at other agents in the system we
find similar trade partner distributions.

Figure 6: Trades between a buyer and each seller.

3.2 Parameter Choice
Having established that the peer-to-peer auction produces

acceptable price convergence and that all agents participate
roughly equally, we can now compare the peer-to-peer auc-
tion’s performance to that of the centralized auction. In do-
ing so however we must consider that performance in both
auctions depends upon the parameters used. In each we
must consider parameters for the agents’ price learning al-
gorithm and for the peer-to-peer auction we must look at
the cluster size limitations as well. Indeed, changes in the
parameters lead to tradeoffs among different performance
characteristics. Moreover, each market performs well with
different parameter sets for the bidding update procedure.



Figure 7: Distribution of buyer’s trades

Figure 8: Average α curves, varying cluster sizes

Thus in the following section we discuss our choice of the
parameters to use in our comparison experiments.

Agents’ reservation prices, buyer or seller status, and ini-
tial shouts are assigned at random in both auctions, as de-
scribed in section 3.1. Both auctions have a further parame-
ter, Pr, the rate at which new resources arrive. Further, the
peer-to-peer auction also contains s, the maximum cluster
size and k,the number of agents in a basic cluster. For both
auctions the new resource arrival rate, Pr, is set at 0.1, a
value taken from experiments in [4] which was shown to work
well for the matchmaking procedure. The number of agents
in a basic cluster, k, and the maximum cluster size, s, deter-
mine how many message rounds are needed in a cluster each
bidding round. For this reason we would like to keep them
both small. However, experiments in [5] and [4] show that
s and k also affect how quickly clusters form since they de-
termine how many potential partners each agent has. The
more quickly clusters form, the more partners agents see,
and the faster trade price convergence occurs. Furthermore,
if s or k are too small compared to the chance of two agents
being able to trade clusters won’t form at all. For oper-
ations that involve messages between a cluster center and
cluster agents it is most efficient to set s and k to the same
value. Thus we ran experiments with the (s, k) pairs, (3,3),
(4,4), (5,5), (6,6) and (7,7). Figure 8 shows the α curves for
the average of 25 trials at each of these sizes. We see that
the convergence rate is improved by increasing (s, k), but
that that this improvement lessens as the values increase.
Examining the number of messages rounds until α reaches
1 we find that at the point s = 5, k = 5 the increase in
convergence rate no longer makes up for the greater number
of message rounds per bidding round. Thus in the following
experiments we use the values s = 5, k = 5.

For both auctions the agent bid update algorithm has the
following parameters, all of which affect the rate at which an

agent changes its asking price: Momentum (γ), the extent
to which price changes are based on previous price changes,
learning rate (β), how quickly an agent moves towards its
current target price, R1, the upper limit of a fudge based
on current price and R2, upper limit of a fixed fudge to en-
sure that prices always move a bit. Of these we found that
the momentum made the most difference to performance.
Momentum determines how willing an agent is to change
its price more or less than it did the turn before. With de-
pendable information, as in the central auction, momentum
can be low, as the agents can be fairly sure that their target
price represents the market as a whole. On the other hand
in the peer-to-peer model agents are given very low quality
information and thus need a high momentum, meaning that
they base their price changes more on the history of target
prices than on just the current one. Based on this analysis,
and some exploration done by hand, we choose values for
the momentum in the two auctions; γ = 0.05 for the cen-
tralized auction, and γ = 0.9 for the peer-to-peer auction.
From this point we used more hand tuning and a genetic
algorithm search to determine good values for the other bid
update parameters. Our aim in determining these param-
eters was to obtain the fastest possible dependable conver-
gence while keeping the α values after convergence below
1. These two goals are often at odds, agents that change
prices quickly will converge more quickly, but are also more
likely to jump to prices further from equilibrium once con-
vergence has occurred. For instance, increasing the learning
rate, which determines how much agents are willing to jump
each turn towards their opponent’s price, decreases the time
to convergence. However, if the learning rate is set too high,
values for α vary greatly after convergence. Similarly with
R1 and R2, which create some randomness that is used to
keep the market moving. High values for R1 and R2 lead to
faster convergence, but again lowering their values creates a
more stable end solution. We confirmed that the values used
in [6] produce good behavior in the centralized auction, and
thus use the same values in our comparison experiments:
γ = 0.05, β = 0.3, R1 = 0.2, R2 = 0.2. We found that the
high momentum used in the peer-to-peer auction resulted in
a fairly unstable alpha after convergence, and to counteract
this effect we lowered values of the learning rate, R1 and R2.
The resulting parameters for the peer-to-peer auction were
thus: γ = 0.9, β = 0.25, R1 = 0.001, R2 = 0.02.

3.3 Comparison of the Two Auctions
We now investigate how the behavior in the peer-to-peer

and centralized auctions changes as we increase the number
of agents participating. For each market type we ran 100
trials with 2,500, 5,000, 10,000, 20,000, 40,000, 80,000 and
160,000 agents using the parameters chosen in section 3.2. A
summary of the data from these trials is given in Table 1. In
the following sections we consider more closely the number
of bidding rounds it took the auctions to reach equilibrium,
the number of message rounds this involved, and after equi-
librium is established, how many message rounds are needed
to make each subsequent deal.

Figure 9 shows the average α curves for the centralized
and peer-to-peer auctions with 2,500, 10,000 and 40,000
agents. We find that the centralized auction converges roughly
two times faster. We also find that as the number of agents
is increased the rate of convergence in both markets remains
approximately the same. The last three columns of Table 1



centralized system data

bid. rounds to alpha=2.12 message rounds to alpha=2.12 bid. rounds/agent deal mes. rounds/agent deal end alpha value
number of agents min avg max min avg max avg avg min avg max

2,500 36 53.72 88 167326 246513.18 399055 19.53 88343 0.05 0.40 2.02
5,000 38 54.38 76 351416 498646.49 687750 19.65 177974 0.03 0.34 1.16
10,000 42 55.00 66 776057 1009479.68 1205547 19.87 360268 0.03 0.31 1.18
20,000 46 55.74 68 1696591 2046734.75 2482085 20.02 726712 0.02 0.33 0.95
40,000 48 55.12 70 3537399 4048187.55 5107476 20.15 1464140 0.01 0.29 0.72
80,000 50 55.16 64 7360688 8104125.25 9389452 20.27 2947772 0.02 0.30 0.63
160,000 52 55.77 60 15305138 16404413.02 17636285 20.37 5929863 0.05 0.29 0.53

peer-to-peer system data

2,500 102 127.16 224 1529 2038.64 3983 22.30 447.01 0.05 0.39 1.62
5,000 97 117.77 147 1486 1914.06 2516 22.30 461.31 0.07 0.31 1.02
10,000 100 109.08 130 1565 1788.13 2226 22.29 473.60 0.08 0.22 0.62
20,000 95 105.02 120 1529 1747.39 2056 22.34 485.12 0.08 0.20 0.52
40,000 95 101.60 113 1565 1711.23 1968 22.29 494.10 0.09 0.15 0.40
80,000 96 100.75 109 1628 1729.18 1922 22.64 509.66 0.11 0.17 0.37
160,000 97 101.17 105 1679 1770.83 1868 22.62 517.15 0.11 0.16 0.25

hierarchical centralized system estimations

2,500 1531.29 2285.03 3743.16 830.67
5,000 1759.56 2518.03 3519.12 910.04
10,000 2103.05 2753.99 3304.79 994.77
20,000 2476.68 3001.09 3661.18 1077.67
40,000 2765.25 3175.42 4032.65 1160.79
80,000 3068.88 3385.59 3928.17 1244.01
160,000 3387.59 3633.14 3908.76 1327.23

Table 1: experimental data summary

show minimum, average and maximum α values after con-
vergence, averaged over the last 100 bidding rounds of each
trial. We find that trials with more agents are more exact; as
more agents are added the spread of end alpha values, and
more importantly the maximum end alpha value decreases.
This causes complications when picking an α value at which
to measure the time to convergence. Over all the trials the
highest α after convergence was 2.12 and thus we choose to
measure convergence as the number of rounds taken to reach
an α of 2.12. This is high for the trials with many agents but
makes the points with fewer agents easier to read. Using an
α of 1 as we did earlier gives similar results but makes inter-
preting points with fewer agents less clear-cut. From Table
1 columns 2 to 4 we can see that the number of bidding
rounds to α=2.12 remains almost constant as the number of
agents increases at an average of about 100 bidding rounds
in the peer-to-peer auction and about 55 bidding rounds in
the centralized auction. In the peer-to-peer case the average
number of bidding rounds decreases a little as the maximum
value drops towards the minimum.

Figure 9: Average α curves, varying system sizes

For an auction running over a network it is likely that
communications costs will make a large contribution to the
actual time taken by the bidding rounds graphed in figure
9. Thus we also consider the number of message rounds
that occur within the auctions up to our convergence point.
For the centralized auction we count the message rounds
required by the auctioneer each trading round as discussed
in section 2.1. For the peer-to-peer auction we count the
maximum number of message rounds required by any clus-
ter in a trading round, as discussed in section 2.2. We sum
these for the bidding rounds up to and including the first

trading round where alpha is below 2.12, giving the results
in columns 5 to 7 of Table 1. We see that the number of
message rounds required to reach equilibrium in the central-
ized auction increases linearly with the number of agents,
as the auctioneer has to deal with increasingly more bids.
In the peer-to-peer auction, on the other hand, it remains
pretty much constant since the maximum size of the clus-
ters does not change. For the large system sizes tested in our
experiments the peer-to-peer auction always outperformed
the centralized auction on this measure. Extrapolating from
the data the two systems should be equal on this measure
at around 165 agents.

Finally, Table 1 columns 8 and 9 also presents data on the
time agents must wait between each deal they make. This
becomes more important than the cost of converging in long
running auctions where the supply and demand curves do
not change quickly. The data shown was determined by
counting the message rounds and deals during the last 100
bidding rounds, averaged over 100 trials. We estimated that
half the agents in each trial, those with a reservation price
that allowed them to trade, were making these deals. Col-
umn 8 shows that for both the peer-to-peer and centralized
auction the average number of bidding rounds it takes an
agent to make a deal remains approximately constant. Col-
umn 9 however shows that when considering the message
rounds the time cost of trades in the centralized auction
increases linearly. For the peer-to-peer auction we expect a
constant cost, however we also see a small increase. There is
a maximum of 26 message rounds per bidding rounds given
our values of s = 5, k = 5. This is a maximum value,
however, most cluster’s bidding rounds take less time. The
increase in message rounds in column 9 occurs because the
average number of message rounds per trading round in-
creases from about 20 to 23 as the number of clusters is
increased. However, provided that the number of bidding
rounds per agent deal remains constant at about 23 the
number of message rounds per agent deal will be capped
at 598.

Our experiments considered a simple centralized auction-
eer, however, in a large system the benefits of distributing
this auctioneer outweigh the costs. Such a distributed cen-
tral auctioneer could be realized, for instance, by creating a
hierarchical tree of auctioneer nodes in place of a single node
that must handle all messages. In this case the leaf nodes
receive messages from the trader agents, combine them, and



send them to the next level, and so forth up to the root,
with the reverse procedure for return messages. The opti-
mal branching factor for such a tree is e. Each bidding round
in the auction involves a message from all the trader agents
to the auctioneer, and one in return from the auctioneer to
each trader agent. Thus in Table 1 columns 5, 6, 7 and
9. We estimate the message rounds per trading round with
such a parallel structure as 2e ln(N) and multiply this by
the number of bidding rounds measured in our simulations
of the simple centralized system . Figure 10 compares the re-
sulting message round to α = 2.12 costs to the peer-to-peer
auction. We see a great improvement over the simple single
central auctioneer, the distributed auctioneer produces only
a logarithmic increase in costs, however we find the peer-
to-peer auction still outperforms the centralized version for
auctions with more than around 15,000 agents. We further
find in Table 1 column 9 that the message rounds per deal
after equilibrium also increases logarithmically with a dis-
tributed auctioneer. However it this measure still remains
higher than in the peer-to-peer system.

Figure 10: Message rounds to alpha=2.12

We did not measure memory and processing costs in our
experiments but we can argue that for any individual entity
the comparisons between the peer-to-peer and centralized
auctions are similar to those of the message costs. In the
centralized auction the auctioneer incurs both high memory
and high processing costs, while in the peer-to-peer auction
these are distributed among all the agents. The central auc-
tioneer stores bids and offers from all traders each round,
costing O(N) memory. Further to calculate deals it needs
to sort the lists of bids and offers, costing O(N log N) time,
to find the best ones. As for messages creating a hierarchical
auctioneer reduces this sorting cost to O(log N). Meanwhile,
in the peer-to-peer auction the limitations on the basic clus-
ter and clusters sizes keep memory and processing require-
ments per turn at the cluster centers, the agents that do
most of the work, constant.

4. CONCLUSION
In this paper we made use of the fact that in a large mar-

ket agents have many potential trading partners to create
a peer-to-peer auction. We showed that in spite of the fact
that trader agents each know only a limited amount of local
information, such an auction is able to exhibit market price
convergence. Through experiments with a particular agent
bidding algorithm and an example supply and demand curve
we showed that this peer-to-peer auction has a constant cost
in the number of bidding rounds it takes to find equilibrium
from a random starting point. While this cost was about

two times higher than for a comparison centralized auction
where an auctioneer was used to distribute global informa-
tion, we showed that the cost of reaching equilibrium in
terms of message rounds was far better in the peer-to-peer
case. For the peer-to-peer auction this message rounds cost
remains constant as the number of agents increases while for
the centralized case it increases linearly. Even when com-
pared with a distributed hierarchical auctioneer, the peer-
to-peer auction showed better performance for systems with
5000 or more agents. The exact numbers presented in this
paper depend a great deal upon the bidding strategy of the
agents that we choose for our simulations. However, the dif-
ference in structure between the peer-to-peer auction and
the auction with a centralized auctioneer creates a funda-
mental difference in the growth rates of the costs of com-
munications which should not change as agents’ individual
strategies change.

5. REFERENCES
[1] Cliff, D., Bruten, J.: Zero is not enough: On the Lower

Limit of Agent Intelligence for Continuous Double
Auction Markets. Technical Reoprt HPL-97-141,
Hewlett-Packard Laboratories. (1997)

[2] Gode, D., Sunder, S.: Allocative Efficiency of Markets
with Zero-Intelligence Traders: Market as a Partial
Substitute for Individual Rationality. The Journal of
Political Economy, 101:1 (1993) 119-137, 67–79

[3] LeBaron, B.: Agent Based Computational Finance:
Suggested Readings and Early Research. Journal of
Economic Dynamics and Control 24:5-7 (2000),
679–702.

[4] Ogston, E.,Vassiliadis, S.: Local Distributed Agent
Matchmaking. Proceedings of the 9th International
Conference on Cooperative Information Systems .
(2001) 67–79

[5] Ogston, E.,Vassiliadis, S.: Matchmaking Among
Minimal Agents Without a Facilitator. Proceedings of
the 5th International Conference on Autonomous
Agents.(2001) 608–615

[6] Preist, C., Van Tol, M.: Adaptive Agents in a
Persistent Shout Double Auction. Proceedings of the
1st International Conference on the Internet,
Computing and Economics. ACM Press (1998) 11–17

[7] Rasmusson, L., Janson, S.: Agents, Self-Interest and
Electronic Markets. The Knowledge Engineering
Review. 14:2 (1999)143–150

[8] Smith, V.: An Experimental Study of Competitive
Market Behavior. The Journal of Political Economy,
70:2 (1962) 111–137

[9] Vulkan, N., Jennings, N.: Efficient Mechanisms for the
Supply of Services in Multi-Agent Environments.
International Journal of Decision Support Systems,
28:1-2(2000) 5–19

[10] Wellman, M., Walsh, E., Wurman, P., MacKie-Mason,
J.: Auction Protocols for Decentralized Scheduling.
Games and Economic Behavior 35:1-2 (2001) 271–303


