
Use-case driven Self-Management Framework
Reza Haydarlou, Michel Oey Intelligent Interactive Distributed Systems Group

 Benno Overeinder, Frances Brazier Department of Computer Science
{rezahay,michel,bjo,frances}@cs.vu.nl Vrije Universiteit Amsterdam

Supported by:

1. Overview 2. Self-Management Model

The model is based on the feedback loop created by IBM
1. Sensors in the managed unit are triggered
2. Autonomic manager analyses sensored values and determines a diagnosis
3. Autonomic manager makes a remedy plan
4. Effectors implement the adaptation instructions

http://www.iids.org

Self-Management feed-back loop

Approach
Let systems manage themselves:

define a self-management model
make use-cases the unit of management
recognise a hierarchy of levels among use-cases

Problem
Systems are becoming more and more complex:

composed of a variety of components
operating in large-scale distributed heterogeneous environments
require more human skills to install, configure, and maintain

3. Use-Case as Unit of Management
A use-case (behaviour) is a description of a process in which a system:

1. receives a request
2. executes the request in one or more structural elements
3. produces a response

What is the unit of management?
Structural elements – Sub-systems, components, classes, methods
Behavioural elements – Use-cases

4. Hierarchy of Levels
The self-management framework distinguishes a hierarchy of levels in the
structure and the behaviour of a system on the basis of use-case descriptions.

1. Runnable level: view of System Administrators
2. Component level: view of Functional Analysts
3. Class level: view of System Developers

Runnable
Level
Use-cases

SE1 SE2 SE3

BE1

SE1 SE2 SE3

BE2

Component
Level
Use-cases SE4 SE5 SE6

BE3

SE4 SE5 SE6

BE4

Class
Level
Use-cases

SE7 SE8 SE9

BE5 BE6

SE7 SE8 SE9

Pa
ym

en
t

Trade entry

Update shares

User authentication

Trading System

Advantages of multi-levels
 Domain knowledge is acquired from domain experts, each at his/her own level

 Levels divide the problem space into subspaces, each with its own characteristics:
 Runnable level: broken connections, incorrect startup sequence, etc.
 Component level: incompatible component versions, etc.
 Class level: incorrect parameters, uninitialised class members, etc.

 Ability to 'zoom in' on particular areas during the analysis of a problem

Choosing the use-case as the unit of management, solves the following problems:

 Acquiring domain knowledge is known to be difficult.
 Use-cases are familiar to developers -- the domain experts -- who provide the self-management knowledge.

 What information from the system is necessary for self-management and where to get it?
 Use-cases guide which structural elements to monitor and where to place sensors.

 Correct behaviour of structural elements depends on context. How is this dealt with?
 A use-case provides the context that determines correct behaviour of structural elements

 Each structural element can participate in multiple use-case realisations
 Analysis of sensored values from monitored structural elements depends on the active use-case

