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1 Introduction

Endogenous threats are an essential constituent of bargaining problems, as emphasized in

Nash (1953) at the dawn of modern bargaining theory. This paper develops a general ne-

gotiation model that incorporates endogenous threats into the alternating-o¤er bargaining

model of Rubinstein (1982). The early studies on this type of model, such as Fernandez

and Glazer (1991), Haller (1991), Haller and Holden (1990) and Bolt (1995), formally intro-

duce the union�s decision to strike in contract negotiations. Busch and Wen (1995, 2001),

Houba (1997), and Slantchev (2003) allow for more general forms of endogenous threats,

modeled as a normal-form game, called the disagreement game, to be played between o¤ers

and countero¤ers.1 Despite of the fact that this class of games has complete information,

it generally admits multiple equilibria, including ine¢ cient ones with delayed agreements or

even no agreement at all. The set of the equilibrium payo¤s is fully characterized by the

so-called extreme equilibria that yield the lowest and highest equilibrium payo¤s to each

player. The backward induction technique of Shaked and Sutton (1984) is commonly used

to derive these extreme equilibrium payo¤s in this class of models.

The model studied in this paper allows for a generic disagreement game in normal form

and a general set of possible agreements that might not even be convex. Despite of our

well-understanding of this model under common time preferences, we cannot directly adopt

the technique of Shaked and Sutton (1984) when players have di¤erent time preferences.

Characterizing extreme equilibrium payo¤s requires the Pareto frontier of equilibrium pay-

o¤s. Under common time preferences and a convex set of possible agreements, all possible

payo¤s are bounded by the bargaining frontier so that the Pareto frontier of equilibrium pay-

o¤s must be a subset of the given bargaining frontier. In other words, any Pareto e¢ cient

equilibrium must be achieved by immediate agreement. Consequently, making unacceptable

proposals would not be e¤ective in obtaining extreme equilibria.

When players have di¤erent time preferences, however, it is possible to have equilibrium

1See also surveys by Muthoo (1999) and Houba and Bolt (2002).

1



payo¤s above the bargaining frontier even when all disagreement payo¤s are bounded by

the bargaining frontier. Players may receive payo¤s above the bargaining frontier through

intertemporal trade when they have di¤erent time preferences. It has been realized in other

dynamic problems that Pareto improvement is possible through intertemporal trade among

agents with di¤erent time preferences, see e.g., Ramsey (1928), Bewley (1972) and, more

recently, Lehrer and Pauzner (1999). In repeated games, Lehrer and Pauzner (1999) demon-

strate that many equilibrium payo¤s are outside the conventionally de�ned set of feasible

payo¤s. The same phenomenon happens in the negotiation model when players have di¤er-

ent time preferences. As a result, the Pareto frontier of equilibrium payo¤s is no longer a

subset of the bargaining frontier. Therefore, we must incorporate the possibility of making

unacceptable proposals in the analysis of the extreme equilibria.2

Unlike in a repeated game where the Pareto frontier of equilibrium payo¤s is determined

by the given stage game, such a frontier in a negotiation game depends on the extreme

equilibrium payo¤s, which in turn depend on the Pareto frontier of equilibrium payo¤s. Due

to this interdependency of extreme equilibrium payo¤s and the Pareto frontier of equilibrium

payo¤s, it is not trivial to extend the technique of Shaked and Sutton (1984) in this general

setup. We show that the lowest equilibrium payo¤ to the proposing player is the most

crucial extreme equilibrium payo¤ since it determines not only the other extreme equilibrium

payo¤s but also the Pareto frontier of equilibrium payo¤s. The lowest equilibrium payo¤ to

the proposing player is characterized by the least �xed point of a minimax problem when

players are su¢ ciently patient. Except for some special cases, an analytical solution to the

proposing player�s least equilibrium payo¤ is not available in general due to the complicated

nature of the problem.

Our analysis con�rms Fudenberg and Tirole (1991) who show that including unacceptable

proposals into the analysis would not change the insights obtained by Rubinstein (1982).

Excluding the possibility of making unacceptable proposals may have serious consequences in

2Unacceptable proposals are also necessary in studying the stochastic bargaining model of Merlo and
Wilson (1995), which is di¤erent from the negotiation model studied in this paper.
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a negotiation model with a non-degenerate disagreement game. This issue �rst surfaced when

Bolt (1995) demonstrated that the strategy pro�le supporting the �rm�s worst equilibrium in

Fernandez and Glazer (1991) fails to be an equilibrium when the �rm is less patient than the

union. Our analysis in this paper identi�es the root of this problem in general and resolves

some issues left open in the literature.

This paper is organized as follows. In Section 2, we present a general negotiation model

with a generic disagreement game and a generic set of possible agreements. The analysis is

partitioned into three subsections. In Section 3.1, we derive a set of necessary and su¢ cient

conditions for extreme equilibrium payo¤s. In order to solve the extreme equilibrium payo¤s,

we need to know the Pareto frontier of continuation payo¤s, which is studied in Section 3.2.

In Section 3.3, we derive the worst equilibrium to the proposing player. All our results can

be related to the literature, as we discuss in Section 3.4. In Section 4 we apply our results

to the special case with a common interest disagreement game to illustrate our �ndings and

resolve some open questions.

2 The Model

Two players, called 1 and 2, negotiate for an agreement in the presence of a disagreement

game. In any period before an agreement is reached, one player makes a proposal and the

other player decides whether to accept the proposal. If the proposal is accepted, then the

negotiations end with the accepted proposal as the agreement. Otherwise, the players play

the disagreement game once before the negotiations proceed to the following period.

More speci�cally, there are in�nitely many periods and two players alternate in making

proposals. Let B � f(x1; x2) 2 R2 : x1 + x2 � 1g be the non-empty, closed, and strictly

comprehensive set of possible agreements in terms of average present values to the two

players. The Pareto frontier of B is referred to as the bargaining frontier. For convenience, let

�i : R! R be the continuous and strictly decreasing function that describes the bargaining

frontier; (x1; x2) 2 B is on the bargaining frontier if and only if xi = �
i(xj) for i; j = 1; 2,
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and i 6= j. The disagreement game is given in normal form: G = hA1; A2; d1 (�) ; d2 (�)i,

where Ai is the set of player i�s disagreement actions that is assumed to be non-empty and

compact, and di (�) : A! R is player i�s disagreement payo¤ function that is assumed to be

continuous, where A = A1�A2 is the set of disagreement outcomes. We assume that G has

at least one Nash equilibrium. Without loss of generality, every player�s minimax value in

G is normalized to 0. Lastly, assume that every disagreement outcome is weakly dominated

by some agreement; d(a) 2 B for all a 2 A.

A generic outcome path, denoted by � =
�
a1; a2; � � � ; aT ; x

�
for T � 0, consists of all

disagreement outcomes (at 2 A in period t for t � T ) before the agreement x 2 B is reached

in period T + 1. Such an outcome path speci�es an immediate agreement with T = 0,

and perpetual disagreement with T = 1. Player i�s intertemporal time preference on the

set of all possible outcome paths is represented by his average discounted payo¤s from the

disagreement game before the agreement and the agreement itself afterward:

v(�) = (1� �i)
TX
t=1

�t�1i di
�
at
�
+ �Ti xi; (1)

where �i 2 (0; 1) is player i�s discount factor per period.

The negotiation model described so-far is a well-de�ned noncooperative game of complete

information. A history is a complete description of how the game has been played up to

a period. A player�s strategy speci�es one appropriate action for every �nite history. For

technical convenience, we allow for publicly correlated strategies where players can coordinate

their continuation play based on public coordination devices. Every strategy pro�le induces

a unique distribution on outcome paths and players evaluate their strategies based on their

expected average discounted payo¤s. The equilibrium concept applied throughout this paper

is subgame perfect equilibrium (SPE).

Many important and in�uential studies in the literature are special cases of this general

negotiation model. For example, one may interpret the models of Rubinstein (1982), Herrero

(1989), and van Damme (1991) having a degenerate disagreement game. Fernandez and

Glazer (1991) study the case of a speci�c common interest disagreement game and a linear
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bargaining frontier, while Haller (1991) and Haller and Holden (1990) further impose a

common discount factor. With a general disagreement game and a common discount factor,

Busch and Wen (1995, 2001) analyze the case with a linear bargaining frontier, while Houba

(1997) generalizes the analysis to a concave and piecewise-linear bargaining frontier. More

recently, Slantchev (2003) studies this model with a general common interest disagreement

game and a linear bargaining frontier. One important message from these studies is that this

negotiation model generally admits multiple SPEs, including ine¢ cient delay despite of the

fact that the players are completely informed. What is less clear is a full characterization

of the set of SPE payo¤s. More importantly, we must reexamine the backward induction

method used in �nding the extreme SPE payo¤s in this model, in particular, when the two

players have di¤erent time preferences.

3 The Set of SPE Payo¤s

Given a Nash equilibrium in the disagreement game, the negotiation model has a stationary

SPE that speci�es the Nash equilibrium in every disagreement game. Standard arguments

apply to the establish existence of such a stationary SPE, which we omit. The existence of a

Nash equilibrium in the disagreement game ensures that set of SPE payo¤s in the negotiation

model is non-empty. The key to characterize the set of SPE payo¤s is then to derive each

player�s lowest and highest SPE payo¤s, referred to as extreme SPE payo¤s. We �rst provide

a set of necessary and su¢ cient conditions for these extreme SPE payo¤s in Section 3.1. In

applying these conditions to derive the extreme SPE payo¤s in one period, we need to know

the Pareto frontier of SPE payo¤s in the following period. We then focus on these e¤ective

continuation payo¤s in Section 3.2. It turns out that the Pareto frontier of SPE payo¤s

depends on both the discount factors and the extreme SPE payo¤s. As shown in Section

3.3, this inter-dependency between the extreme SPE payo¤s and the Pareto frontier of SPE

payo¤s requires a new set of techniques to analyze the negotiation model with di¤erent time

preferences. Our analysis is su¢ cient to characterize the extreme SPE payo¤s, and hence
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the set of SPE payo¤s in any negotiation game. Finally, we will tie our results to the existing

literature on the negotiation model in Section 3.4.

3.1 Extreme SPE Payo¤s

Let Ei, for i = 1 and 2, be the non-empty set of SPE payo¤s in any period in which player i

makes a proposal to player j for j 6= i. For simplicity, we suppress all the other parameters

that Ei may depend on, such as the discount factors. Given the model setup, Ei is a bounded

subset of R2+. Applying the technique of self-generating payo¤s for a repeated game by Abreu

et al. (1986, 1990), and for a bargaining game by Shaked and Sutton (1984) and Binmore

(1987),3 we can prove that Ei is also compact and convex.4 Given the compactness of Ei,

for l = i and j, player l�s lowest and highest SPE payo¤s when player i proposes are

mi
l = min

v2Ei
vl and M i

l = max
v2Ei

vl: (2)

In any period in which player i proposes, after player j rejects player i�s proposal, the

players have to play a disagreement outcome a 2 A in the current period and a continuation

SPE with payo¤ vector v = (vi; vj) 2 Ej in the following period when player j proposes.

Playing a 2 A in the current period and v 2 Ej in the following period is a SPE if and only

if, for l = i and j,

(1� �l)dl(a) + �lvl � (1� �l)gl(a) + �lmj
l , (3)

where gl(a) = maxa0l2Al dl(a
0
l; a�l). Inequality (3) states that player l�s payo¤ from complying

is at least what he could obtain by deviating from a 2 A in the current period followed by

his lowest SPE in the following period. Obviously, any Nash equilibrium of G satis�es (3)

for all discount factors and all continuation payo¤s. By incorporating the possibility of

unacceptable proposals explicitly in the backward induction technique of Shaked and Sutton

(1984), we obtain the following result:

3See e.g., Mailath and Samuelson (2006) and van Damme (1991) for more comprehensive treatments of
self-generating sets of SPE payo¤s.

4Upon request, a detailed proof is available from the authors.
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Proposition 1 For all (�i; �j) 2 (0; 1)2, we have

mi
i = min

a2A;v2Ej
max

�
(1� �i)di(a) + �ivi;
�i ((1� �j) dj(a) + �jvj) ;

s.t. (3), (4)

M i
i = max

a2A;v2Ej
max

�
(1� �i)di(a) + �ivi;
�i ((1� �j) dj(a) + �jvj) ;

s.t. (3), (5)

mi
j = min

a2A;v2Ej
(1� �j)dj(a) + �jvj; s.t. (3), (6)

M i
j = max

a2A;v2Ej
(1� �j)dj(a) + �jvj; s.t. (3). (7)

Proof. In any period in which player i proposes, player j may either accept or reject

player i�s proposal. A strategy pro�le also requires how the game will be played after player j

rejects every possible proposal by player i, which generally depends on the rejected proposal.

More speci�cally, a SPE must specify a proposal x̂ = (x̂i; x̂j) 2 B by player i, and for all

x 2 B, player j�s response to x and a continuation SPE that consists of a(x) 2 A and

v(x) 2 Ej after player j rejects x. Denote player i�s payo¤ from such a general SPE as

v�i =

�
(1� �i)di(a(x̂)) + �ivi(x̂); if player j rejects x̂;
x̂i; if player j accepts x̂:

(8)

First, consider any sequence of proposals fxng1n=1 � B such that xni = �
i
�
xnj
�
> v�i for all

n � 1 and limn!1 x
n
i = v

�
i . For v

�
i to be player i�s SPE payo¤, player j must reject x

n and

player i must receive no more than v�i after player j rejects x
n for all n � 1 (otherwise, player

i would have an incentive to propose xn instead). In other words, for all n � 1, we have

(1� �i)di(a(xn)) + �ivi(xn) � v�i and xnj � (1� �j)dj(a(xn)) + �jvj(xn). (9)

Since A is compact by assumption, sequence fa(xn)g1n=1 � A has a convergent subsequence,

say (without loss of generality) limn!1 a(x
n) = �a 2 A. The compactness of Ej then implies

that fv(xn)g1n=1 � Ej also has a convergent subsequence, say (without loss of generality)

limn!1 v(x
n) = �v. Since (a(xn); v(xn)) satis�es (3) for all n � 1, so does (�a; �v) due to the

continuity of d(�). As n!1, the two inequalities in (9) become

(1� �i)di(�a) + �i�vi � v�i and x�j � (1� �j)dj(�a) + �j�vj.
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Note that �i
�
x�j
�
= v�i due to the continuity of �

i (�) and xni = �i
�
xnj
�
> v�i for all n � 1.

By the monotonicity of �i (�), we obtain

v�i � max
�
(1� �i)di(�a) + �i�vi; �i ((1� �j) dj (�a) + �j�vj)

	
;

which is bounded from below by the right-hand side of (4). Let (â; v̂) be a solution to the

optimization problem (4). Consider the following strategy pro�le �̂:

� player i proposes x̂ where x̂i = max
�
(1� �i)di(â) + �iv̂i;
�i (1� (1� �j)dj(â)� �j v̂j) ;

� player j accepts x if and only if xj � (1� �j)dj(â) + �j v̂j; and

� the continuation SPE is (a(x); v(x)) = (â; v̂) after player j rejects x for all x 2 B:

Strategy pro�le �̂ constitutes a SPE, from which player i receives exactly (4). Hence, (4)

characterizes player i�s lowest SPE payo¤mi
i.

Second, accepting x̂ is a best response for player j if and only if x̂j � (1� �j)dj(a(x̂)) +

�jvj(x̂). Together with (8), we have

v�i �
�
(1� �i)di(a(x̂)) + �ivi(x̂); if player j rejects x̂;
�i ((1� �j)dj(a(x̂)) + �jvj(x̂)) ; if player j accepts x̂;

which is bounded from above by the right-hand side of (5). The strategy pro�le �̂ above

with (â; v̂) being a solution to the optimization problem in (5) supports player i�s highest

SPE payo¤M i
i .

Third, player j certainly rejects any x 2 B such that xj is less than the right-hand side

of (6), because player i cannot receive less than his lowest continuation payo¤ after rejecting

any proposal. Therefore, player j�s SPE payo¤s are bounded from below by the right-hand

side of (6). Furthermore, player j receives exactly the right-hand side of (6) in the SPE �̂

above with (â; v̂) being a solution to the optimization problem in (6).

Lastly, since player j certainly accepts any x 2 B such that xj is greater than the right-

hand side of (7), player i will never propose x 2 B such that xj is more than player j�s highest

continuation payo¤. In other words, x̂j must be less than or equal to the right-hand side of
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(7). Whether player j accepts x̂ or not, player j cannot obtain more than the right-hand

side of (7). Again, player j receives exactly the right-hand side of (7) in the SPE �̂ above

with (â; v̂) being a solution to the optimization problem in (7).

Note that (4) and (5) are signi�cantly di¤erent from what we know from the current

literature. The �rst component in these two bounds represents what the proposing player

receives from making an unacceptable proposal. The possibility of making unacceptable

proposals has often been overlooked, which could a¤ect �nal conclusions as we have seen in

the current literature. Proposition 1 revises what has been commonly used by including the

possibility of making unacceptable proposals into the analysis.

Although the objective functions in (4)� (7) are well-de�ned and continuous, A is com-

pact, we know nothing about Ej at this stage other than its non-emptiness, compactness,

and convexity. In order to fully understand the issues involved, we have to discuss e¤ective

continuation SPE payo¤s in solving these extreme SPE payo¤s. We next show that the

most e¤ective continuation SPE payo¤s in solving (4)� (7) are those that are on the Pareto

frontier of Ej. Accordingly, denote the Pareto frontier of Ej as

'j(vi) = max
v02Ej

v0j s.t. v0i � vi and 'i(vj) = max
v02Ej

v0i s.t. v0j � vj: (10)

Since Ej is a non-empty, compact, and convex subset of R2+, both 'i(�) and 'j(�) are contin-

uous and non-increasing. Given Proposition 1, the following conditions on the responding

player j�s extreme SPE payo¤s are immediate:

Proposition 2 For all (�i; �j) 2 (0; 1)2, we have

mi
j � �jm

j
j; (11)

M i
j � max

a2A

�
(1� �j)dj(a) + �j'j

�
1� �i
�i

[gi(a)� di(a)] + �imi
i

��
: (12)

Proof. Substituting (3) into (6), we have

mi
j � min

a2A

�
(1� �j)gi(a) + �jmj

j

�
= (1� �j)min

a2A
max
a0i

di(a
0
i; aj) + �jm

j
j;
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which is (11) since player j�s minimax value in G is normalized to be zero. For l = j, (3)

and (10) imply that

vj � 'j(vi) � 'j
�
1� �i
�i

[gi(a)� di(a)] +mj
i

�
: (13)

Substituting (13) into (7), we obtain (12).

For su¢ ciently large (�i; �j) 2 (0; 1)2, Proposition 2 implicitly describes how the players

behave in the responding player�s worst and best SPEs. In player j�s worst SPE, if player j

rejects any proposal, he will receive his minimax value of 0 when playing G in the current

period followed by his lowest SPE payo¤mj
j in the following period. In player j�s best SPE,

on the other hand, if player j rejects any proposal, he will receive his highest continuation

payo¤, taking into account that player i must be compensated in the following period after

complying in the disagreement game. In fact, when the players are su¢ ciently patient, (11)

and (12) hold with equalities for the responding player�s lowest and highest SPE payo¤s.

These results generalize those of Busch and Wen (1995).

We now turn to the proposing player�s extreme SPE payo¤s.

Proposition 3 For all (�i; �j) 2 (0; 1)2, we have

mi
i � min

a2A
max

(
(1� �i)gi(a) + �2imi

i;

�i
�
(1� �j)dj(a) + �j'j

�
1��i
�i
[gi(a)� di(a)] + �imi

i

��
;

(14)

M i
i � max

(
maxa2A

h
(1� �i)di(a) + �i'i

�
1��j
�j
[gi(a)� dj(a)] +mj

j

�i
;

�i(�jm
j
j):

(15)

Proof. Substituting (3) and (13) into (4) yields

mi
i � min

a2A
max

(
(1� �i)gi(a) + �imj

i ;

�i
�
(1� �j)dj(a) + �j'j

�
1��i
�i
[gi(a)� di(a)] +mj

i

��
;

which implies (14) due to mj
i � �imi

i by Proposition 2. For l = i, (3) and (10) imply that

vi � 'i (vj) � 'i
�
1� �j
�j

[gj(a)� dj(a)] +mj
j

�
:

10



Substituting the last inequality and (3) into (7) yields

M i
i � max

(
maxa2A

h
(1� �i)di(a) + �i'i

�
1��j
�j
[gj(a)� dj(a)] +mj

j

�i
;

maxa2A �
i
�
(1� �j)gj(a) + �jmj

j

�
;

which is equivalent to (15) due to the monotonicity of �i(�) and the normalization of player

j�s minimax value in G.

Propositions 2 and 3 imply that proposing player�s lowest SPE is essential to determine

the other extreme SPE payo¤s. In order to solve mi
i from (14), we need to know the Pareto

frontier of Ej, which contains the e¤ective continuation payo¤s.

3.2 E¤ective Continuation Payo¤s

First, we discuss how Ej is determined by the players�lowest SPE payo¤s. Whenever player

j proposes, � =
�
a1; a2; � � � ; aT ; x

�
can be supported as a SPE outcome path if and only if

for all t � T + 1,

(1� �l)
TX
s=t

�s�tl dl(a
s) + �T+1�tl xl �

�
mi
l; if t is even,

mj
l ; if t is odd,

for l = i and j; (16)

and for all t � T ,

(1� �l)
TX
s=t

�s�tl dl(a
s) + �T+1�tl xl � (1� �l)gl(at) +

�
�lm

j
l ; if t is even,

�lm
i
l; if t is odd.

(17)

For t = T +1, (16) implies that no matter who proposes the �nal agreement x 2 B, it needs

to be a SPE agreement in period T + 1. Condition (17) states that if player l deviates from

at in period t � T , then this player will be punished by his lowest SPE payo¤, either mi
l

or mj
l , in the following period. With publicly correlated strategies, E

j is the convex hull

of fv(�) : (16) and (17)g, where v(�) is de�ned in (1). Note that for T = 0, (16) and (17)

imply that for any xi 2
�
mj
i ; �

i(mj
j)
�
immediate agreement on

�
xi; �

j (xi)
�
belongs to Ej.5

Hence, 'j(vi) � �j(vi) for all (�i; �j) 2 (0; 1)2 and vi 2
�
mj
i ; �

i(mj
j)
�
.

Due to Proposition 2, when the discount factors are su¢ ciently large, we can rewrite

(16) and (17) in terms of mi
i and m

j
j only. Consequently, the set E

j depends on mi
i and

5This generalizes the range of SPE payo¤s with immediate agreement in Haller and Holden (1990).

11



mj
j only. For i = 1 and 2, substituting E

j (j 6= i) in terms of mi
i and m

j
j into (4) provides

two equations, one for m1
1 and one for m

2
2. The solution m

i
i from such an implicit equation

system can be supported as player i�s (lowest) SPE payo¤ for i = 1 and 2 when the discount

factors are su¢ ciently large.

In Proposition 3, we show that only the Pareto frontier of Ej is e¤ective in solvingmi
i from

(14). In the rest of this subsection, we provide speci�c structures on the continuation paths

that achieve the Pareto frontier of Ej, which requires the insights in Lehrer and Pauzner

(1999) derived for repeated game with di¤erent time preferences. The key issue is that

there may be many SPE payo¤s in the negotiation model that can be above the bargaining

frontier. Lehrer and Pauzner (1999) investigate in great detail the Pareto frontier of SPE

payo¤s in a repeated game under di¤erent time preferences. There are many obstacles in

directly applying their results to a negotiation game. SPE payo¤s in a repeated game are

bounded from below by players�stage-game minimax payo¤s that are invariant with respect

to the discount factors and time periods. In a negotiation game, however, players�lowest

SPE payo¤s depend on the discount factors and also on who proposes. A typical outcome

path in a negotiation game ends with an agreement that ceases any future payo¤ variation.

In a repeated game, it may not be possible to have a SPE in which a player receives exactly

his minimax payo¤, so it is often su¢ cient to provide a SPE where a player�s payo¤ is

su¢ ciently close to his minimax value. In a negotiation game, however, we need the SPE

where a player receives exactly his lowest SPE payo¤. In order to derive the Pareto frontier

of Ej, we have to modify Lehrer and Pauzner�s technique for these di¤erences between a

repeated game and a negotiation game.

According to Lehrer and Pauzner (1999), in order to characterize the Pareto frontier of

Ej in the direction of � = (�i; �j) 2 �, where � � R2+ denotes the unit simplex, we need to

solve the following optimization problem:

max
�

� � v(�), subject to (16) and (17). (18)

In other words, (18) provides the payo¤ vectors on the Pareto frontier Ej in the direction of

12
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Figure 1: The curve of payo¤ vectors v� for all � 2 �.

� 2 �. When G is a �nite game, Ej is a polygon in R2+ and (18) provides us all the vertices

in the direction of � 2 �. Note that under (16) and (17), we can write (18) as

max
T�0

TX
t=1

max
yt

�
�i(1� �i)�t�1i yti + �j(1� �j)�t�1j ytj

�
;

where yt = d(at) 2 d(A) for all t � T and yT = x 2 B \ Ej at t = T + 1. In the rest of this

subsection, we will solely focus on �i < �j, while similar arguments apply for �i > �j.

When �i < �j, for all � = (�i; �j) 2 �, the weight ratio

�j(1� �j)�t�1j

�i(1� �i)�t�1i

is monotonically increasing with respect to t � 0. Therefore, in any potential solution to

(18) with T > 0, we must have

di(a
t) � di(at+1) > xi and dj(a

t) � dj
�
at+1

�
< xj = �

j (xi) ; (19)

whenever it is possible under (16) and (17). Given �i < �j, the weight ratio will be greater

than one for su¢ ciently large t. This implies that the two players must reach an agreement

within �nite periods in any potential solution to (18). These arguments narrow down the

potential solutions to (18). Given (19), sequential rationality (16) simpli�es to xi � mi
i if

T is even, and xi � mj
i if T is odd. For all t � T , d(at) should be as close as possible to

13



-

6

vi

vj

0 1

1
@
@
@
@
@
@
@
@
@
@
@

q

mj
i

q

q
rmj

j

q

~x

(a) ~x is Pareto e¢ cient

-

6

vi

vj

0 1

1
@
@
@
@
@
@
@
@
@
@
@

r

mj
i

q

q
mj
j

q
~x
q

(b) ~x is not Pareto e¢ cient

Figure 2: The Pareto frontier of Ej where ~x = (�i(mj
j);m

j
j).

the Pareto frontier of d(A), provided that (16) and (17) hold. As in a repeated game, player

j�s per-period payo¤ during the early phase of such an outcome path could be lower than

his minimax value. Since player j�s payo¤ increases over time, his average payo¤ from the

entire path will not be less than his lowest SPE payo¤. Let v�, for all � 2 �, denote the

payo¤ vector resulting from a solution to (18) under (19). Figure 1 illustrates the curve of

payo¤ vectors v� for all � 2 � under a linear bargaining frontier. Similar as in Lehrer and

Pauzner (1999), this curve is continuous in all d (at) and the �nal agreement that is either

(mi
i; �

j(mi
i)) or (�im

i
i; �

j(�im
i
i)).

Figure 1 does not fully specify the Pareto frontier ofEj, because the outcome path � = (~x)

with an immediate agreement on ~xj = mj
j and ~xi = �i(mj

j) (with T = 0) may also solve

(18), in particular when �j=�i is su¢ ciently close to 0. With publicly correlated strategies,

the Pareto frontier of Ej is completely characterized by ~x and v� for all � 2 �. Figure 2

illustrates the two possible cases. Given mj
j, E

j (as a correspondence of mi
i) is convex-valued

and continuous with respect to mi
i. Moreover, the function '

j, which is implicitly a function

of mi
i and m

j
j, is also continuous in both m

i
i and m

j
j.

To summarize, whenever time preferences are su¢ ciently di¤erent, the Pareto frontier of

14



Ej is generally above the bargaining frontier.6 This will a¤ect how mi
i is determined. As

we have shown above, the Pareto frontier of Ej is rather complicated, which prevents us

from obtaining a closed-form solution for mi
i. Nevertheless, our analysis provides a general

technique on how to solve the players�lowest SPE payo¤s, and, hence, how to characterize

the set of SPE payo¤s in the negotiation model when �i 6= �j. In the next section, we will

demonstrate how this technique works for a common interest disagreement game and a linear

bargaining frontier.

3.3 Proposing Player�s Lowest SPE Payo¤

In the previous subsections, we have established that mi
i and m

j
j are the key in �nding the

other extreme SPE payo¤s. Note that condition (14) depends on mi
i directly and on m

i
i and

mj
j indirectly. In this subsection, we will show how to solve m

i
i as the least �xed-point to

(14) and provide an important range for its value. Figure 2 suggests that we need to analyze

two distinct cases.

Case 1: �i < �j

Instead of solving mi
i and m

j
j simultaneously from the implicit equation system implied

by (14), we can �rst �nd mi
i independently of m

j
j when �i and �j are su¢ ciently large.

Condition (14) can be rewritten as mi
i � �(mi

i), where

�(mi
i) = min

a2A
max

(
(1� �i)gi(a) + �2imi

i;

�i
�
(1� �j)dj(a) + �j'j

�
�im

i
i +

1��i
�i
[gi(a)� di(a)]

��
:

(20)

Since 'j
�
�im

i
i +

1��i
�i
[gi(a)� di(a)]

�
is continuous with respect to a 2 A,mi

i and (indirectly)

mj
j, (20) is a well-de�ned and continuous function of m

i
i. To solve (20) when �i is su¢ ciently

close to 1, we only need to know 'j (vi) for vi su¢ ciently close to �imi
i, i.e.,

vi 2
�
�im

i
i; �im

i
i +

1� �i
�i

max
a2A

[gi(a)� di(a)]
�
:

6Similar as in Lehrer and Pauzner (1999), for every �i < 1 and �j approximately equal to 1, we have that
v� is almost rectangular in Figure 1.
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As we have shown in Section 3.2 for the case of �i < �j, 'j(�) in this part of its domain is

independent of mj
j for su¢ ciently large (�i; �j).

7

In order to present our next main proposition, we need additional notation. For every

a 2 A, de�ne

F (xi; a) = �
i

�
(1� �j)dj(a) + �j�j

�
�ixi +

1� �i
�i

[gi(a)� di(a)]
��

; (21)

which is a monotonic increasing and continuous function of xi. Given a 2 A, F (xi; a) has,

at least, a �xed-point over the following interval:

[xi(a); xi(a)] �
�
min

�
�i(dj(a));

gi(a)� di(a)
�i

�
;max

�
�i(dj(a));

gi(a)� di(a)
�i

��
:

Because both �i(�) and �j(�) are monotonically decreasing functions, we have

F (xi(a); a) � �i
�
(1� �j)dj(a) + �j�j (xi(a))

�
� �i (dj(a)) � xi(a);

F (xi(a); a) � �i
�
(1� �j)dj(a) + �j�j (xi(a))

�
� �i (dj(a)) � xi(a):

The last two inequalities and the monotonicity of function F (�; a) imply that F (�; a) maps

from [xi(a); xi(a)] into itself. By Brouwer�s �xed point theorem, F (�; a) has a least �xed-

point in [xi(a); xi(a)]. In many cases, such as when the bargaining frontier is linear, F (�; a)

has a unique �xed-point for all a 2 A. However, this may not the case in general. Let

Xi(a) = fxi 2 [xi(a); xi(a)] : F (xi; a) = xig denote the set of all �xed-points of (21). Since

F (�; a) is continuous, Xi(a) is a closed subset of a compact interval, hence it is compact.

Now de�ne

m̂i
i = min

a2A
max

�
gi(a)
1+�i

; min
xi2Xi(a)

xi

�
: (22)

Our next proposition identi�es the least �xed-point of � (�) in the re�ned interval of [0; m̂i
i]

as a lower bound on mi
i.

Proposition 4 For su¢ ciently large (�i; �j) 2 (0; 1)2 and �i < �j, mi
i is bounded from below

by the least �xed-point of �(�) in [0; m̂i
i].

7In fact, this part of 'j(�) is the curve of vectors v� in Figure 1, which is independent of mj
j .
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Proof. Since both �i (�) and 'j (�) are continuous and monotonically decreasing, �(�) is

a well-de�ned, continuous and monotonically increasing function of mi
i. First, observe from

(20) that �(0) � mina2A [(1� �i)gi(a)] = 0. Since �j (vi) � �j (vi) for all vi 2 [0; �i (0)], (20)

implies that

�(mi
i) � min

a2A
max

�
(1� �i)gi(a) + �2imi

i;
F (mi

i; a):
(23)

Let â 2 A be a solution to (22) and x̂i(â) = minxi2Xi(â) xi. There are two possibilities:

either m̂i
i =

gi(â)
1+�i

� F (x̂i(â); â) = x̂i(â) or m̂i
i = F (m̂

i
i; â) �

gi(â)
1+�i

:

Evaluate (23) at m̂i
i, we have

�(m̂i
i) � max

�
(1� �i)gi(â) + �2i m̂i

i

F (m̂i
i; â)

� m̂i
i:

To summarize, we have shown that �(0) � 0 and �(m̂i
i) � m̂i

i. Due to its monotonicity, �(�)

must map from [0; m̂i
i] into itself. Brouwer�s �xed point theorem then asserts that �(�) has

at least one �xed-point in [0; m̂i
i]. Since any value m

i
i that is less than the least �xed point

of �(�) violates mi
i � �(mi

i), m
i
i must be bounded from below by the least �xed-point of �(�)

in [0; m̂i
i].

Our next proposition asserts that when the discount factors are su¢ ciently close to 1, the

least �xed-point of �(�) can be supported as a SPE payo¤ of player i. Therefore, proposing

player i�s lowest SPE payo¤mi
i indeed coincides with the least �xed-point of �(�). Since the

proof is rather long, we defer it to the Appendix.

Proposition 5 There exists a �̂ 2 (0; 1) such that for all �j > �i � �̂, there is a SPE in

which player i receives the least �xed-point of �(�).

Case 2: �i > �j

First, we solve mj
j independently as we described in Case 1 by switching i and j. Once

the value of mj
j is given, '

j
�
�im

i
i +

1��i
�i
[gi(a)� di(a)]

�
is a continuous function of a 2 A
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and mi
i only. This allows us to establish similar results for m

i
i as in Proposition 4 and 5

for this case, which we omit. The proofs of Propositions 4 and 5 do not rely on the fact

that �i < �j, except by requiring that mi
i be the only unknown variable in the part of '

j(�)

we need. Similar to the case of �i < �j, mi
i is the least �xed-point of (20) for large enough

(�i; �j) 2 (0; 1)2. This ends our discussion on Case 2.

3.4 Discussion and Related Literature

We have provided a complete procedure for deriving the proposing player�s lowest SPE payo¤

for su¢ ciently large discount factors. We are then able to characterize all other extreme SPE

payo¤s and, hence the set of SPE payo¤s in the negotiation model when the discount factors

are su¢ ciently large. The Pareto frontier of SPE payo¤s is rather complicated under di¤erent

time preferences, which makes it impossible to obtain a closed-form solution to the proposing

player�s lowest SPE payo¤. Although our discussions in the rest of this section refer to Case

1 in Section 3.3, they apply to both cases.

Proposition 4 provides an upper bound on the proposing player�s lowest SPE payo¤,

namely m̂i
i given by (22). The value of m̂

i
i is directly related to studies on this issue in

the existing literature. It combines and balances two sets of reasonings that have been

identi�ed. The �rst term in (22) closely resembles player i�s no-concession payo¤ in Bolt

(1995), resulted from receiving alternately gi(a) (from making unacceptable proposals) and

0 (from being minimaxed after rejecting any proposal). The second term in (22) extends to

what has been identi�ed by Busch and Wen (1995) and Houba (1997) for two subclasses of

the current model where both players always make acceptable proposals in player i�s worst

SPE.

There are situations where m̂i
i is in fact player i�s lowest SPE payo¤. When the frontier

of SPE payo¤s is a subset of the bargaining frontier, such as when the two players have a

common discount factor and B is convex, it can be veri�ed that m̂i
i is the least �xed point

of �(�). This result generalizes Haller (1991), Haller and Holden (1990), Busch and Wen

18



(1995) and Houba (1997) to an arbitrary convex set B. Note however that common time

preferences alone are not su¢ cient to warrant this conclusion, we also need B to be convex.

We can take this insight one step further. In player i�s worst SPE, if we never need

any SPE whose payo¤ vector is above the bargaining frontier, m̂i
i will be player i�s lowest

SPE payo¤. Suppose that â 2 A is a solution to (20) at the least �xed point of �(�) and

gi(â) = di(â). Then the only e¤ective continuation payo¤ in solving (20) is 'j(�imi
i), which

is always equal to �j(�imi
i) when �i � �j. When �i > �j, it is also likely the case that

'j(�im
i
i) = �

j(�im
i
i). Consequently, m̂

i
i is the least �xed point of �(�), and hence player i�s

lowest SPE payo¤. Although requiring gi(â) = di(â) might seem of limited interest, it is

trivial if player i has only one disagreement action, such as the �rm in the wage bargaining

model analyzed by Fernandez and Glazer (1991), Haller (1991), Haller and Holden (1990)

and Bolt (1995).

In the case of a linear bargaining frontier �j(xi) = 1 � xi as in most of the current

literature, F (�; a) is a contraction mapping, hence has a unique �xed-point for all a 2 A.

Accordingly, (22) simpli�es to

m̂i
i = min

a2A
max

�
gi (a)

1 + �i
;
1� �j
1� �i�j

�
1� dj (a) +

�j
�i

1� �i
1� �j

[gi (a)� di (a)]
��
; (24)

where the second term is the expression identi�ed by Muthoo (1999) when only acceptable

proposals are considered. Furthermore, when �i = �j = �, together with the assumption

that d(a) 2 B for all a 2 A, mi
i = m̂i

i can be further simpli�ed to what Busch and Wen

(1995) obtain, 1
1+�

mina2A [1� di (a)� dj (a) + gi (a)]. Despite of the fact that m̂i
i is player

i�s lowest SPE payo¤ in all these instances we have discussed, player i�s lowest SPE payo¤ is

strictly less than m̂i
i in general, such as in the class of negotiation games we study in Section

4.

Our study strengthens the �ndings by Rubinstein (1982), Fudenberg and Tirole (1991),

Herrero (1989), van Damme (1991), and many others in the standard alternating-o¤er bar-

gaining model, which can be considered as a special case of our model with a degenerate

disagreement game such that gi(a) = di(a) = 0 for all a 2 A. In this case, even if there are
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multiple SPEs, the frontier of SPE payo¤s must coincide with the bargaining frontier, and

hence mi
i = m̂i

i. Since 0 � �2ixi � xi < �i
�
�j�

j (�ixi)
�
for all x < mi

i, which is the least

�xed-point of �(�), (20) reduces to

�(mi
i) = max

�
�2im

i
i; �

i
�
�j�

j
�
�im

i
i

��	
= �i

�
�j�

j
�
�im

i
i

��
:

This result theoretically underpins the commonly held wisdom for the standard alternating-

o¤er bargaining model; it is without loss of generality to assume that only acceptable pro-

posals support the extreme SPE payo¤s, which is also formally examined by Fudenberg and

Tirole (1991) in this simple case.

4 Common Interest Disagreement Games

In this section, we focus on an important class of negotiation games that contains the mod-

els studied in Fernandez and Glazer (1991), Haller and Holden (1990), Bolt (1995), and

Slantchev (2003). The set of possible agreements is assumed to be B = f(x1; x2) 2 R2 :

x1 + x2 � 1g. The disagreement game is a common interest game where there exists a

unique Pareto dominant disagreement outcome.8 Formally, there is an a� 2 A such that

d(a�) � d(a) for all a 2 A. Without loss of too much generality, we assume that d(a�) is on

the bargaining frontier, i.e., d1(a�) + d2(a�) = 1. Note that a� 2 A is a Nash equilibrium in

G, and also a serious candidate to (24). In fact, the value of the objective function in (24)

at a� 2 A,

xi(a
�) � max

�
1

1 + �i
di (a

�) ;
1� �j
1� �i�j

[1� dj (a�)]
�
;

can be supported as a player i�s SPE payo¤ when the discount factors are su¢ ciently large.

The proof of the following proposition is similar to but much simpler than that of Proposition

5. It is straightforward to verify the following SPE. The strategy pro�le speci�es a� after

player i�s proposal is rejected and player i�s minimax outcome in G after player i rejects any

8Common interest games are studied in other dynamic settings, see, e.g., Farrel and Saloner (1985) and
Takahashi (2005).
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proposal. Player i demands xi(a�) whenever player i proposes, and player j accepts player

i�s demand xi(a�) if and only if �i � �j. Accordingly, we have

Proposition 6 For su¢ ciently large (�i; �j) 2 (0; 1)2, there is a SPE where player i receives

xi(a
�) and player j receives no less than 1� xi(a�) in a period when player i proposes.

With the linear bargaining frontier and the common interest disagreement game, most

results in Section 3 can be further re�ned. First, (7) implies that for all (�i; �j) 2 (0; 1)2,

M i
j � (1� �j)max

a2A
dj(a) + �j max

v2Ej
vj = (1� �j)dj(a�) + �jM j

j : (25)

For su¢ ciently large (�i; �j) 2 (0; 1)2, (25) implies that in player j�s best SPE, if player

j rejects any proposal, player j will receive his highest disagreement payo¤ dj(a�) in the

current period followed by his highest SPE payo¤ M j
j in the following period. Our next

proposition characterizes the proposing player�s highest SPE payo¤.

Proposition 7 For su¢ ciently large (�i; �j) 2 (0; 1)2, we have

M i
i � 1�mi

j: (26)

Proof. In this class of negotiation games, (5) becomes

M i
i = max

�
maxa;v [(1� �i)di(a) + �ivi] ; s.t. (3),
maxa;v [1� (1� �j)dj(a)� �jvj] ; s.t. (3),

� max

�
(1� �i)maxa2A di(a) + �imaxv2Ej vi;
1�mina;v [(1� �j)dj(a)� �jvj] ; s.t. (3),

� max
�
(1� �i)di(a�) + �iM j

i ; 1�mi
j

	
:

For su¢ ciently large (�i; �j) 2 (0; 1)2, however, it cannot be the case that

1�mi
j � (1� �i)di(a�) + �iM

j
i :

Suppose not, thenM i
i � (1��i)di(a�)+�iM

j
i and (25) would imply thatM

i
i � di(a�), which

contradicts the fact that M i
i � 1 � xj(a�) > di(a

�) by Proposition 6. Consequently, (26)

must prevail.
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Proposition 7 implies that Case (b) in Figure 2 is impossible when the disagreement game

is a common interest game. (11), (25), and (26) provide three of the four conditions for the

extreme SPE payo¤s. With common interest disagreement games, these three conditions are

relatively simple because they are not a¤ected by the complications of the Pareto frontier of

SPE payo¤s. In this class of negotiation games, we are able to further re�ne Proposition 4:

Proposition 8 For su¢ ciently large (�i; �j) 2 (0; 1)2, we have

mi
i =

1� �j
1� �i�j

[1� dj (a�)]; if �i � �j;

mi
i 2

�
1� �j
1� �i�j

[1� dj (a�)];
1

1 + �i
di (a

�)

�
; if �i < �j:

Proof. Since dj(a) � dj(a
�) for all a 2 A and vj � M j

j for all v 2 Ej, (26) and (11)

imply that M j
j � 1� �imi

i. From (4), we have

mi
i � min

a2A;v2Ej
1� (1� �j)dj(a)� �jvj; s.t. (3),

� 1� (1� �j)dj(a�)� �jM j
j

� 1� (1� �j)dj(a�)� �j(1� �imi
i)

= (1� �j) [1� dj(a�)] + �j�imi
i;

) mi
i �

1� �j
1� �i�j

[1� dj (a�)] :

Together with Proposition 6, i.e., mi
i � xi(a�), we conclude this proof.

When �i � �j, we pin down the value of mi
i at xi(a

�). Therefore, the SPE of Propositions

6 is indeed player i�s worst SPE when �i � �j. This conclusion con�rms the �ndings in the

literature if and only if the proposing player is at least as patient as the responding player.

When �i < �j, Proposition 8 con�nes the value of mi
i between the two bounds that have

been studied. Solvingmi
i from (14) requires the Pareto frontier of E

j, that must be generated

from the following type of paths:

�T = (a�; : : : ; a�| {z }
T

; x�); for all T � 0; (27)
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Figure 3: The payo¤ vectors v(�T ) for T � 8:

where x�i = m
j
i for even T and x

�
i = m

i
i for odd T . With Proposition 8, it is straightforward

to verify that for any even T � 0,

vi(�
T ) < vi(�

T+1) � vi(�T+2) < di(a�); (28)

vj(�
T ) > vj(�

T+2) < vj(�
T+1) < dj(a

�): (29)

(28) and (29) can be best illustrated by Figure 3, where v(�T ) is represented by solid dots

for even T � 8 and open dots for odd T < 8. It implies that for any even T � 0, v(�T+1) is

dominated by some convex combination of v(�T ) and v(�T+2). Intuitively speaking, if the

continuation path were associated with an odd T , then player i would make a proposal along

such a continuation, from which player i could exploit his advantage of being the proposer.

Consequently, such a continuation can never be e¤ective in solving (4). For all even T , any

convex combination of v(�T ) and v(�T+2) can be achieved by a publicly correlated strategy

between �T and �T+2.

For su¢ ciently large �i < �j, when vi is su¢ ciently close to �imi
i,

'j(vi) = min
T22N

�
vj(�

T ) +
vj(�

T+2)� vj(�T )
vi(�T+2)� vi(�T )

�
vi � vi(�T )

��
; (30)
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which is a concave, decreasing and piecewise-linear function of vi. Substituting (30) into

(20), one can solve the least �xed point of mi
i = �(m

i
i).

We now present an example to demonstrate how to solve mi
i when �i < �j. Consider a

negotiation game with the following 2� 2 disagreement game for " � 0:

Player 1 n Player 2 L R
U 0:5; 0:5 �"; 0:5
D 0:5; 0 0; �1

where a� = (U;L). For simplicity, we consider pure actions only. Note that in this example,

(22) yields

m̂1
1 = min

�
1

1 + �1

1

2
;
1� �2
1� �1�2

�
1

2
+
�2
�1

1� �1
1� �2

"

��
:

Contrary to what the current literature suggests, m̂1
1 is not player 1�s lowest SPE payo¤ in

this example when �2 is signi�cantly higher than �1. Finding m1
1 in this example is still a

daunting task. First, we need to solve the least �xed-point of �(�) for each linear segment

of '2(�) as in the �rst linear segment demonstrated below. Then, we need to identify the

minimum of these �xed-points for all linear segments of '2(�).

We now demonstrate a SPE where the continuation payo¤s are on the �rst linear segment

of the Pareto frontier '2(�), i.e., continuations involve at most two periods of delay in reaching

an agreement. Consider the following strategy pro�le:

� In an odd period, player 1 demands

x�1 =
1� �2
1� �1�2

�
1

2
+
�2
�1

1 + �2
1 + �1

"

�
(31)

and player 2 will reject if and only if player 1 demands more than x�1.

If player 1 demands more than x�1 and player 2 rejects, then (U;R) will be played.

� In an even period, if player 1 deviates from U in the last (odd) period, player 2 will

o¤er �1x�1 and player 1 will accept.
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� Otherwise, with probability 1 � p, player 2 will o¤er �1x�1 in the current even period,

and with probability p, (U;L) will be played for two periods, followed by player 2�s

o¤er �1x�1. Player 1 accepts in both cases. In this equilibrium,

p =
1

�1(1� �1)
� "

0:5� �1x�1
: (32)

� In an even period, if player 1 rejects �1x�1 (that should be accepted), then (D;R) will

be played once followed by player 1�s demand x�1.

� If player 2 deviates from the strategies described above, then continuation will switch

immediately to the stationary SPE from which player 1 receives 0.5.

To verify that the above strategy pro�le constitutes a SPE, �rst note that player 1 has

no incentive to deviate from (U;R) if his payo¤ from deviation is the same as what player 1

receives if he does not:

�21x
�
1 = (1� �1) � (�") + �1

�
(1� p)�1x�1 + p

�
0:5(1� �21) + �31x�1

��
: (33)

One can show that (33) holds for p as given by (32). Next, player 1 should demand x�1 rather

than making an unacceptable proposal,

x�1 � (1� �1) � (�") + �1
�
(1� p)�1x�1 + p

�
0:5(1� �21) + �31x�1

��
= �21x

�
1;

which follows from (33). Lastly, player 1 cannot demand more than x�1 since 1�x�1 is exactly

equal to player 2�s continuation payo¤ after rejecting any demand higher than x�1:

1� x�1 = 0:5(1� �2) + �2[(1� p)(1� �1x�1) + p
�
0:5(1� �22) + �22(1� �1x�1)

�
]: (34)

In fact, (33) and (34) yield x�1 and p as given by (31) and (32), respectively.

For �1 = 0:8 and " = 0:15, Figure 4 shows x�1 < m̂
1
1 for all �2 2 (0:877; 1). When the di¤er-

ence between the players�time preferences is not signi�cant enough such as �2 2 (0:8; 0:877),

it would be too costly to compensate player 1 during the delay in the continuation. When
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Figure 4: Plot of x�1 with respect to �2 2 (�1; 1) for �1 = 0:8 and " = 0:15.

this happens, the SPE of Proposition 6 is likely to be player 1�s worst SPE. However, such

incidence diminishes as the value of " decreases.

Appendix: Proof of Proposition 5

Without loss of generality, assume that when �i � �0 and �j � �0 for some �0 2 (0; 1),

there exists a SPE from which player j�s payo¤ is less than �j (m̂i
i) � " for some " > 0,

i.e., mj
j � �j (m̂i

i) � ". Let mi
i be the least �xed-point of �(�), which generally depends on

(�i; �j) 2 (0; 1)2. For su¢ ciently large �00 and �j > �i � �00, we have 'j(vi) depends only on

mi
i for all vi 2

h
�im

i
i; �im

i
i +

1��i
�i
maxa2A [gi(a)� di(a)]

i
and

'j
�
�im

i
i +

1� �i
�i

max
a2A

[gi(a)� di(a)]
�
� mj

j +
"

2
: (35)

From the de�nition of 'j(�), (vi; 'j(vi)) is a SPE payo¤ vector for all

vi 2
�
�im

i
i; �im

i
i +

1� �i
�i

max
a2A

[gi(a)� di(a)]
�

as long as �j > �i � maxf�0; �00g and mi
i can be supported as player i�s SPE payo¤. Choose

�̂ � maxf�0; �00g su¢ ciently large so that 1��̂
�̂
maxa2A [gj(a)� dj(a)] � "

2
. In other words, if
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�j � �̂ then player j will not deviate in the disagreement game as long as player j�s average

loss in the continuation payo¤s is no less than "
2
.

For all �j > �i � �̂, let mi
i be the least �xed-point of �(�) and ~a 2 A be the corresponding

solution to (20). We have the following two cases to examine:

Case 1: mi
i = (1� �i)gi(~a) + �2imi

i:

Consider the following strategy pro�le: Player i makes an unacceptable o¤er (such as de-

mands mi
i or more). Player j rejects if and only if player i o¤ers less than

(1� �j)dj(~a) + �j'j
�
�im

i
i +

1� �i
�i

[gi(~a)� di(~a)]
�
� �j

�
mi
i

�
;

followed by ~a once. If player i deviates from ~a, player j will o¤er �imi
i and player i will accept

in the following period. Otherwise, the continuation SPE in the following period will be on

the Pareto frontier of Ej from which player i will receive �imi
i+

1��i
�i
[gi(~a)� di(~a)]. If player

j deviates from what is described above, player j will be punished by the SPE provided at

the beginning of this proof from which his payo¤ will not be higher than �j (m̂i
i)� ".

We now verify sequential rationality. It is clear from the construction that no one deviates

in the proposing and responding stages. For example, player i has to o¤er at least

(1� �j)dj(~a) + �j'j
�
�im

i
i +

1� �i
�i

[gi(~a)� di(~a)]
�

in order to induce player j to accept, from which player i receives at most mi
i. Player i will

not deviate from ~a because

(1� �i)gi(~a) + �i
�
�im

i
i

�
= (1� �i)di(~a) + �i

�
�im

i
i +

1� �i
�i

[gi(~a)� di(~a)]
�
:

Case 2: mi
i = �

i
�
(1� �j)dj(~a) + �j'j

�
�im

i
i +

1��i
�i
[gi(~a)� di(~a)]

��
:

Consider the following strategy pro�le: Player i demands mi
i. Player j rejects if and only if

player i demands more than mi
i. If player i demands more and player j rejects (which should

not occur), the two players will play ~a, and the continuations are the same as those in Case

1 for the corresponding histories.
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Similar to Case 1, no one will deviate after player i demands more than mi
i and player j

rejects. If player i demands more than mi
i at the beginning, player j will reject, and player

i will receive

(1� �i)di(~a) + �i
�
�im

i
i +

1� �i
�i

[gi(~a)� di(~a)]
�
� mi

i:

Therefore, player i will demand mi
i, which will be accepted by player j. In summary, no one

has an incentive to deviate when player i is supposed to demand mi
i.

We have shown that in either case, there is an equilibrium where player i receives mi
i,

the least �xed-point of �(�), when making a proposal. �
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