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Abstract

One of the main issues in economics is the trade-off between marginalism and egalitarian-

ism. In the context of cooperative games this trade-off can be framed as one of choosing

to allocate according to the Shapley value or the equal division solution. In this paper we

provide tools that make it possible to study this trade-off in a consistent way by providing

three types of results on egalitarian Shapley values being convex combinations of the Shap-

ley value and the equal division solution. First, we show that all these solutions satisfy

the same reduced game consistency . Second, we characterize this class of solutions using

monotonicity properties. Finally, we provide a non-cooperative implementation for these

solutions which only differ in the probability of breakdown at a certain stage of the game.

Keywords: Shapley value, Equal division solution, Egalitarian Shapley value, Reduced
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1 Introduction

One of the main issues in economics is the trade-off between marginalism and egalitar-

ianism. In this paper we consider this issue in the context of cooperative games with

transferable utility. For these games the trade-off between marginalism and egalitarianism

can be seen as the trade-off between allocating according to the Shapley value or the equal

division solution. Both solutions consider situations where eventually the ‘grand coaliton’

consisting of all players forms. The Shapley value (Shapley (1953)) assigns to every player

its expected marginal contribution to this coalition assuming that all possible orders of

entrance of the players occur with equal probability. Here, the marginal contribution of

a player to a coalition is the increase in transferable utility when this player joins the

coalition. The marginalist characteristic of the Shapley value is most clearly formulated by

Young (1985) who characterized it as the unique solution that is efficient, symmetric and

strongly monotonic. This strong monotonicity states that the payoffs of a player do not

decrease if its marginal contributions to coalitions do not decrease. Since symmetry (i.e.

equal treatment of equals) is usually considered a desirable property, and under complete

information also efficiency is widely accepted, this result says that the Shapley value is

the only solution in which the utility payoff of a player is fully determined by its marginal

contributions to the transferable utility of coalitions1.

On the other hand, the equal division solution which allocates the worth of the grand

coalition equally among all players, can be seen as the most egalitarian solution for such

games. The trade-off between marginalism and egalitarianism can be made by considering

convex combinations of the Shapley value and the equal division solution. This class of

solutions is introduced by Joosten (1996) and are called egalitarian Shapley values . In order

to consider these solutions as making a trade-off between marginalism and egalitarianism

we need to provide results that not only show the difference between these solutions, but

also their similarities. We do this by providing three types of results that are very common

in game theory: consistency, monotonicity and implementation.

First, we show that all these solutions satisfy the reduced game consistency that is

used by Sobolev (1973) to characterize the Shapley value. In these reduced games, after a

particular player leaves the game with its payoff, the remaining coalitions assume with a

probability that is proportional to their cardinality that the leaving player cooperates with

them or not. Reduced game consistency requires that players respect the recommendations

made by the solution in the sense that the solution assigns to the players in the reduced

game the same payoffs as it assigns to those players in the original game. However, the

1As already noticed by Young (1985) it is sufficient to weaken strong monotonicity to marginalism

stating that the payoff of a player in two games is equal if all its marginal contributions are equal in both

games.
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egalitarian Shapley values differ with respect to the standardness for two-player games that

they satisfy. The usual standardness for two-player games which is satisfied by the Shapley

value states that in a two player game every player earns its own worth plus half of what

remains of the worth of the two-player (‘grand’) coalition (see, e.g. Hart and Mas-Colell

(1988, 1989)). Egalitarian standardness states that in two player games the worth of the

grand coalition is split equally among the two players. For general egalitarian Shapley

values the ‘sharing of the surplus’ depends on the weights put on the Shapley value and

equal division solution. Since all these solutions share the same reduced game consistency,

the difference thus boils down to the allocation that is applied in two-player games.

The second characterization is based on monotonicity properties. Above we already

refered to the characterization of the Shapley value by efficiency, symmetry and strong

monotonicity (or marginalism) in Young (1985). Since all egalitarian Shapley values sat-

isfy efficiency and symmetry, this implies that the Shapley value is the unique egalitarian

Shapley value that is strongly monotonic. However, it turns out that all egalitarian Shapley

values satisfy the weaker property which states that the payoff of a player does not de-

crease if its marginal contributions do not decrease and, moreover, the worth of the ‘grand

coalition’ does not decrease. This is a considerable weakening of the strong monotonicity

property. Since the worth of the ‘grand coalition’ is what is to be allocated by any efficient

solution, strong monotonicity requires that the payoff of a player does not decrease if its

marginal contributions do not decrease irrespective of what is to be allocated, which is a

very strong requirement. However, if the worth to be allocated is not decreasing then this

requirement on the payoffs seems reasonable for a marginalistic solution. We show that

the class of egalitarian Shapley values is characterized by this weak monotonicity together

with the well-known properties of efficiency, linearity and local monotonicity.

Whereas the above two characterizations of the egalitarian Shapley values give a

cooperative foundation (on a variable, respectively, fixed player set), our third result pro-

vides a non-cooperative foundation by implementing the egalitarian Shapley values as the

unique subgame perfect equilibrium outcome in an extensive form bidding mechanism.

This bidding mechanism generalizes the one for the Shapley value given in Pérez-Castrillo

and Wettstein (2001), differing only in an additional possibility of breakdown of the nego-

tiations. The bidding mechanism of Pérez-Castrillo and Wettstein (2001) starts with all

players and proceeds in various rounds that each have four stages. In the first stage all

players that are still ‘in the game’ make bids to all other bidders showing their willing-

ness to become the proposer. A player with the highest ‘net bid’ becomes the proposer.

In stage 2 the proposer makes (additional) payoff offers to the other players. In stage 3

these other players either accept or reject the proposal. Finally, in stage 4 payoffs or the

continuation of the game is determined. If all others accept the proposal then they all get
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their offers and the proposer earns what remains. If at least one of them rejects then the

proposer leaves the game with its stand-alone payoff and the others continue the bidding

game without the proposer, starting again at stage 1 (of the next round). The bidding

game thus ends when either all remaining players accept the proposal or the last player

leaves the game. Our bidding mechanism only differs from that of Pérez-Castrillo and

Wettstein (2001) in the sense that at the end of the first round, after the offer is rejected

there is an additional possibility that the negotiations breakdown and all players earn zero

payoff. The probability of breakdown is determined by the weights put on the Shapley

value and equal division solution.

The paper is organized as follows. Section 2 discusses some preliminaries on cooperative

games with transferable utility and solutions. In Section 3 we provide the characterization

using standardness and reduced game consistency. In Section 4 we provide a characteriza-

tion of the class of egalitarian Shapley values using monotonicity properties. In Section 5

we provide an implementation of the egalitarian Shapley values. Finally, Section 6 contains

some concluding remarks.

2 Preliminaries

A situation in which a finite set of players can obtain certain payoffs by cooperation can

be described by a cooperative game with transferable utility, or simply a TU-game, being

a pair (N, v), where N ⊂ IN is a finite set of players and v: 2N → R is a characteristic

function on N such that v(∅) = 0. For any coalition S ⊆ N , v(S) is called the worth of

coalition S. This is the transferable utility that the members of coalition S can obtain by

agreeing to cooperate. We denote the class of all TU-games by G. A TU-game (N, v) is

monotone if v(S) ≤ v(T ) whenever S ⊆ T ⊆ N . The unanimity game of coalition T ⊆ N ,

T 
= ∅, on N is the monotone game (N, uT ) given by uT (S) = 1 if T ⊆ S, and uT (S) = 0

otherwise. In the sequel we denote n = |N | for the number of players in N . For generic

coalitions S ⊆ N we denote s = |S|.

A payoff vector of game (N, v) is an n-dimensional real vector x ∈ IRn which rep-

resents a distribution of the payoffs that can be earned by cooperation over the individual

players. A (point-valued) solution for TU-games is a function ψ which assigns a payoff

vector ψ(N, v) ∈ Rn to every TU-game (N, v) ∈ G such that ψi({i}, v) = v({i}) for all

i ∈ IN. Two well-known solutions are the Shapley value and the equal division solution.

The Shapley value (Shapley (1953)) is the solution that assigns to every TU-game (N, v)
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the payoff vector

Shi(N, v) =
∑

S⊆N

i∈S

(n− s)!(s− 1)!

n!
(v(S)− v(S \ {i})) for all i ∈ N.

The equal division solution is the solution that distributes the worth v(N) of the ‘grand

coalition’ equally among all players and thus assigns to every TU-game (N, v) the payoff

vector

EDi(N, v) =
v(N)

n
for all i ∈ N.

Joosten (1996) introduced a new class of solutions that are obtained as convex combinations

of the Shapley value and the equal division solution. For every α ∈ [0, 1], he defines the

α-egalitarian Shapley value ϕα as the solution given by

ϕα(N, v) = αSh(N, v) + (1− α)ED(N, v).

By Φ = {ϕα | α ∈ [0, 1]} we denote the class of all α-egalitarian Shapley values and refer to

a generic solution in this class as an egalitarian Shapley value. Some well-known properties

of solutions for TU-games are the following. Solution ψ

• is efficient2 if
∑

i∈N ψi(N, v) = v(N) for all (N, v) ∈ G.

• is linear if ψ(N, av + bw) = aψ(N, v) + bψ(N,w) for all (N, v), (N,w) ∈ G, where

av + bw is given by (av + bw)(S) = av(S) + bw(S) for all S ⊆ N .

• is symmetric if ψi(N, v) = ψj(N, v) for all (N, v) ∈ G and i, j ∈ N such that v(S ∪

{i}) = v(S ∪ {j}) for all S ⊆ N \ {i, j}.

• satisfies local monotonicity if ψi(N, v) ≥ ψj(N, v) for all (N, v) ∈ G and i, j ∈ N such

that v(S ∪ {i}) ≥ v(S ∪ {j}) for all S ⊆ N \ {i, j}.

• satisfies strong monotonicity if ψi(N, v) ≥ ψi(N,w) for every pair of games (N, v), (N,w)

and i ∈ N such that v(S ∪ {i})− v(S) ≥ w(S ∪ {i})− w(S) for all S ⊆ N \ {i}.

• satisfies α-standardness for two-player games , α ∈ [0, 1], if for every (N, v) ∈ G with

N = {i, j}, i 
= j, it holds that ψi(N, v) = α
2
(v({i})− v({j})) + 1

2
v(N).

Specific choices of α ∈ [0, 1] give different versions of standardness for two-player games

as encountered in the literature. Taking α = 1 yields standardness for two-player games

as considered in, e.g. Hart and Mas-Colell (1988,1989): ψi(N, v) = 1
2
v({i}) − 1

2
v({j}) +

2Efficient solutions are often called values.
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1
2
v(N) = v({i}) + 1

2
(v(N) − v({i}) − v({j})) with N = {i, j}. Taking α = 0, yields

egalitarian standardness for two-player games : ψi(N, v) = 1
2
v(N) for i ∈ N .

It is known that the Shapley value satisfies standardness and the equal division

solution satisfies egalitarian standardness for two-player games. Joosten (1996) showed that

for α ∈ [0, 1], the α-egalitarian Shapley value ϕα satisfies the corresponding α-standardness

for two-player games.

3 Consistency

In the literature various reduced game properties are discussed. Suppose that one player

leaves a game with some payoff. Reduced games describe what games are played between

the remaining players, i.e. what is earned by coalitions of the remaining players after one

player has left the game. The worths of coalitions in the reduced games usually depend

on (i) the worths that these coalitions could earn on their own in the original game, (ii)

what these coalitions could earn with the leaving player and (iii) the payoff with which

the leaving player left the game. One of the oldest reduced games is the following that

is introduced by Sobolev (1973). Consider a game (N, v), a payoff vector x ∈ IRn, and

a player j ∈ N . Suppose player j leaves the game with its payoff xj . In the reduced

game between the remaining players the coalition N \ {j}, being the ‘grand coalition’ in

the reduced game, earns the worth of N minus the payoff xj. Clearly, this is what is

left to be allocated among the players in N \ {j} after player j has left the game with

payoff xj. In Sobolev’s reduced game any coalition S ⊆ N \ {j} either has (or thinks it

has) the cooperation of the leaving player j but must pay for j’s payoff and thus earns

v(S∪{j})−xj , or is on its own and earns its own worth v(S). The probability with which

a coalition S has the cooperation of j depends on the cardinality of S. More precisely, with

probability s
n−1 coalition S ⊂ N \ {j} has j’s cooperation and thus earns v(S ∪ {j})− xj ,

and with probability 1− s
n−1

= n−1−s
n−1

coalition S ⊂ N \ {j} is on its own and earns v(S).

Definition 3.1 Given game (N, v) ∈ G, player j ∈ N , and efficient payoff vector x ∈ RN ,

the reduced game with respect to j and x is the game (N \ {j}, vx) given by

vx(S) =
s

n− 1
(v(S ∪ {j})− xj) +

n− 1− s

n− 1
v(S) for all S ⊆ N \ {j}.

Note that indeed vx(N \{j}) = v(N)−xj. Consistency with respect to a particular reduced

game means that given a game (N, v), if x is a solution payoff vector for (N, v), then for

every player j ∈ N , the payoff vector xN\{j} with payoffs for the players in N \ {j}, must

be a solution payoff vector of the reduced game (N \ {j}, vx). It is a kind of internal

consistency requirement to guarantee that players respect the recommendations made by
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the solution. In the following we refer to consistency with respect to the reduced game

defined in Definition 3.1 just as consistency3.

Definition 3.2 Let ψ be a solution on G. Solution ψ satisfies consistency on G if

and only if for every (N, v) ∈ G with n ≥ 2, j ∈ N , and x = ψ(N, v) it holds that

ψi(N \ {j}, vx) = ψi(N, v) for all i ∈ N \ {j}.

Sobolev (1973) showed that the Shapley value is the unique solution that satisfies this

consistency and is standard for two-player games. Surprisingly, also the equal division

solution satisfies this consistency. We can even state the following more general result for

all egalitarian Shapley values.

Proposition 3.3 Every egalitarian Shapley value ϕα, α ∈ [0, 1], satisfies consistency.

Proof

Take j ∈ N , S ⊆ N \{j} and any efficient payoff vector z. Recall that n = |N | and s = |S|.

First, for a reduced game (N \ {j}, vz), for any i ∈ N \ {j} and S ⊆ N \ {i, j}, it follows

that

vz(S ∪ {i})− vz(S) =
s+ 1

n− 1
(v(S ∪ {i, j})− zj) +

n− s− 2

n− 1
v(S ∪ {i})

−
s

n− 1
(v(S ∪ {j})− zj)−

n− s− 1

n− 1
v(S)

=
s+ 1

n− 1
(v(S ∪ {i, j})− v(S ∪ {j})) +

1

n− 1
(v(S ∪ {j})− zj)

+
n− s− 1

n− 1
(v(S ∪ {i})− v(S))−

1

n− 1
v(S ∪ {i})

=
s+ 1

n− 1
(v(S ∪ {i, j})− v(S ∪ {j})) +

n− s− 1

n− 1
(v(S ∪ {i})− v(S))

+
1

n− 1
(v(S ∪ {j})− v(S ∪ {i}))−

1

n− 1
zj .

Then, for all i, j ∈ N, i 
= j, the Shapley value for player i in the reduced game with

respect to j and z can be written as

Shi(N \ {j}, v
z) =

∑

S⊆N\{i,j}

s!(n− s− 2)!

(n− 1)!
(vz(S ∪ {i})− vz(S))

3We only consider the class G of all TU-games. If one considers subclasses C ⊂ G, then in the definition

of consistency one should aditionally require that the reduced games (N \ {j}, vx) also belong to C.
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=
∑

S⊆N\{i,j}

s!(n− s− 2)!

(n− 1)!
·
s+ 1

n− 1
(v(S ∪ {i, j})− v(S ∪ {j}))

+
∑

S⊆N\{i,j}

s!(n− s− 2)!

(n− 1)!
·
n− s− 1

n− 1
(v(S ∪ {i})− v(S))

+
∑

S⊆N\{i,j}

s!(n− s− 2)!

(n− 1)!
·

1

n− 1
(v(S ∪ {j})− v(S ∪ {i}))

−
∑

S⊆N\{i,j}

s!(n− s− 2)!

(n− 1)!
·

1

n− 1
zj

=
1

n− 1




∑

S⊆N\{i,j}

(s+ 1)!(n− s− 2)!

(n− 1)!
(v(S ∪ {i, j})− v(S ∪ {j}))

+
∑

S⊆N\{i,j}

s!(n− s− 1)!

(n− 1)!
(v(S ∪ {i})− v(S))

+
∑

S⊆N\{i,j}

s!(n− s− 2)!

(n− 1)!
(v(S ∪ {j})− v(S ∪ {i}))− zj





=
1

n− 1

(
∑

S⊆N,S∋j

s!(n− s− 1)!

(n− 1)!
(v(S ∪ {i})− v(S))

+
∑

S⊆N,S∋/ j

s!(n− s− 1)!

(n− 1)!
(v(S ∪ {i})− v(S))





+
∑

S⊆N\{i,j}

s!(n− s− 2)!

(n− 1)!
(v(S ∪ {j})− v(S ∪ {i}))− zj



 (3.1)

=
1

n− 1



Shi(N, v) +
∑

S⊆N\{i,j}

s!(n− s− 2)!

(n− 1)!
(v(S ∪ {j})− v(S ∪ {i}))− zj



 .

Take y = Sh(N, v). By Sobolev (1973) we have Shi(N, v) = Shi(N \ {j}, vy) for all i, j ∈

N, i 
= j. Thus, with (3.1) it follows that

Shi(N, v)+
yj

n− 1
=

1

n− 1



Shi(N, v) +
∑

S⊆N\{i,j}

s!(n− s− 2)!

(n− 1)!
(v(S ∪ {j})− v(S ∪ {i}))



 . (3.2)

Let x = ϕα(N, v). By applying (3.1) and (3.2) to x, we have, for any i, j ∈ N, i 
= j,

ϕαi (N \ {j}, v
x) = αShi(N \ {j}, v

x) + (1− α)
vx(N \ {j})

n− 1
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=
α

n− 1



Shi(N, v) +
∑

S⊆N\{i,j}

s!(n− s− 2)!

(n− 1)!
(v(S ∪ {j})− v(S ∪ {i}))− xj





+(1− α)
v(N)− xj
n− 1

= α

(
Shi(N, v) +

yj

n− 1
−

xj

n− 1

)
+ (1− α)

v(N)− xj
n− 1

= αShi(N, v) + α
yj

n− 1
−

xj

n− 1
+ (1− α)

v(N)

n− 1

= αShi(N, v) + α
yj

n− 1
−
αyj + (1− α)v(N)

n

n− 1
+ (1− α)

v(N)

n− 1

= αShi(N, v) + (1− α)
v(N)

n
= ϕαi (N, v),

where the first equality follows by definition of ϕα, the second equality follows from (3.1)

and the third equality follows from (3.2). �

Sobolev (1973) characterized the Shapley value as the unique solution that satisfies con-

sistency and standardness for two-player games. Since in Proposition 3.3 we showed that

all egalitarian Shapley values satisfy the same consistency, the Shapley value is the unique

egalitarian Shapley value satisfying standardness for two-player games. However, the α-

egalitarian Shapley value satisfies the corresponding α-standardness for two-player games.

For any α ∈ [0, 1] these two axioms characterize the corresponding egalitarian Shapley

value.

Theorem 3.4 Take any α ∈ [0, 1]. A solution ψ satisfies consistency and α-standardness

for two-player games if and only if ψ = ϕα.

Proof

Since it is straightforward that ϕα satisfies α-standardness for two-player games, by Propo-

sition 3.3 we are left to show uniqueness. Suppose that solution ψ satisfies the two prop-

erties of the theorem. We will show that ψ(N, v) = ϕα(N, v) for any game (N, v) ∈ G. For

n = 1 by definition of a solution we have ψi({i}, v) = v({i}) for all i ∈ IN. For n = 2,

α-standardness of ψ and ϕα implies that they are equal. Proceeding by induction, suppose

that ψ(N ′, v′) = ϕα(N ′, v′) whenever 2 ≤ |N ′| < n.
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Let x = ψ(N, v) and y = ϕα(N, v). Take any i, j ∈ N, i 
= j, and consider the two reduced

games (N \ {j}, vx), (N \ {j}, vy). Then,

xi − yi = ψi(N, v)− ϕ
α
i (N, v)

= ψi(N \ {j}, v
x)− ϕαi (N \ {j}, v

y)

= ϕαi (N \ {j}, v
x)− ϕαi (N \ {j}, v

y)

= α (Shi(N \ {j}, v
x)− Shi(N \ {j}, v

y))

+(1− α) (EDi(N \ {j}, v
x)−EDi(N \ {j}, v

y))

= α

(
−

(xj − yj)

n− 1

)
+ (1− α)

yj − xj
n− 1

=

(
yj − xj
n− 1

)
,

where the second equality follows since both solutions ψ and ϕα satisfy consistency, the

third equality follows by the induction hypothesis, the fourth equality follows by definition

of ϕα and the fifth equality follows from (3.1). Thus, for all i, j ∈ N, i 
= j, we have

xi − yi =
yj − xj
n− 1

.

Since n ≥ 3, it must hold that xi − yi = 0 for all i ∈ N , and thus ψ(N, v) = ϕα(N, v). �

As a corollary we obtain an axiomatization of the class of egalitarian Shapley values with

axioms that do not depend on α. We say that a solution ψ satisfies weak standardness for

two-player games if there exists an α ∈ [0, 1] such that for every (N, v) ∈ G with n = 2, ψ

satisfies α-standardness for two-player games.

Corollary 3.5 A solution ψ satisfies consistency and weak standardness for two-player

games if and only if ψ is an egalitarian Shapley value.

Note that, although the egalitarian Shapley values satisfy Sobolev’s reduced game consis-

tency for any game with at least two players, from the proof above it follows that for the

axiomatization it is sufficient to require this consistency only for games with at least three

players since the specific standardness property sets the payoffs in two player games.

Note that the reduced game of Sobolev (1973) is not the only reduced game with

respect to which the Shapley value is consistent. For example, the Shapley value satisfies
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consistency with respect to the reduced game of Hart and Mas-Colell (1988, 1989). How-

ever, the equal division solution is not Hart and Mas-Colell consistent. Joosten (1996)

characterized the α-egalitarian Shapley value using α-standardness for two-player games

and an adapted version of Hart and Mas-Colell’s reduced game consistency where the re-

duced game depends on the parameter α. The main disadvantage of that characterization

therefore is that the parameter α appears both in the standardness and in the reduced

game property. Also the interpretation of the parameter α in the reduced game is prob-

lematic. However, we have shown here that all α-egalitarian Shapley values have the same

reduced game consistency property in common when considering Sobolev (1973)’s reduced

game.

Uniqueness of a solution satisfying α-standardness for two-player games and consis-

tency also follows from Yanovskaya and Driessen (2002) who show uniqueness of a solution

satisfying α-standardness for two-player games and a general reduced game consistency

where, similar to the above mentioned generalization of Hart and Mas-Colell’s reduced

game, parameters also enter the reduced game4. Thus, every solution in their class is char-

acterized by a different reduced game consistency. However, our main purpose here has

been to show that all egalitarian Shapley values satisfy the same reduced game consistency.

4 Monotonicity

Several mononoticity properties of solutions have been discussed in the literature. For

example, Young (1985) showed that the Shapley value is characterized by efficiency, sym-

metry and strong monotonicity5. Since all egalitarian Shapley values are efficient and sym-

metric, the Shapley value thus is the only egalitarian Shapley value that satisfies strong

monotonicity. However, it turns out that all egalitarian Shapley values satisfy the weaker

monotonicity property which requires that the payoff of a player does not decrease if the

worth of the ‘grand coalition’ as well as all his marginal contributions do not decrease.

Axiom 4.1 (Weak monotonicity) A solution ψ satisfies weak monotonicity if ψi(N, v) ≥

ψi(N,w) whenever v(N) ≥ w(N) and v(S)− v(S \ {i}) ≥ w(S)−w(S \ {i}) for all S ⊆ N

with i ∈ S.

Note that this is a considerable weakening of the strong monotonicity property. Since the

worth of the ‘grand coalition’ is what is to be allocated by any efficient solution requiring

4We gave the explicit proof of uniqueness in Theorem 3.4 since this is much shorter with the explicit

reduced game that we consider here.
5In van den Brink (2006) it is shown that the equal division solution is characterized by efficiency,

symmetry and coalitional monotonicity , where this last property states that the payoff of a player does

not decrease if the worths of all coalitions it is a member of do not decrease.
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that the payoff of a player does not decrease if its marginal contributions do not decrease

irrespective of what is to be allocated is a very strong requirement. However, if the worth

to be allocated is not decreasing then this requirement on the payoffs seem reasonable for

a marginalistic solution.

It turns out that the class of egalitarian Shapley values is characterized by efficiency,

linearity, local monotonicity and this weak monotonicity6.

Theorem 4.2 A solution ψ satisfies efficiency, linearity, local monotonicity and weak

monotonicity if and only if it is an egalitarian Shapley value.

Since the proof for games with at least three players is different from that for games with

at most two players, we prove this result in two lemmas. Let G3 and G2 be the class of

games with at least three, respectively with two, players.

Lemma 4.3 A solution ψ on G3 satisfies efficiency, linearity, local monotonicity and weak

monotonicity if and only if it is an egalitarian Shapley value.

Proof

It is straightforward to verify that all egalitarian Shapley values satisfy these four properties

on G3. Now, suppose that solution ψ satisfies these properties on G3. If (N, v) is a null

game given by v(S) = 0 for all S ⊆ N , then efficiency and local monotonicity imply that

ψi(N, v) = 0 for all i ∈ N . (Note that local monotonicity implies symmetry.)

Next, we consider unamimity games (N, uT ) ∈ G3, T ⊆ N, T 
= ∅. We prove uniqueness

for unanimity games (N, uT ) by induction on |T |. First, suppose that |T | = 1. Local

monotonicity implies that there is a c∗ ∈ IR such that ψj(N, uT ) = c∗ for all j ∈ N \ T .

For i ∈ T , local monotonicity further implies that ψi(N, uT ) ≥ c∗. So, for i ∈ T we

can write ψi(N,uT ) = c∗ + α for some α ≥ 0. For i ∈ T , efficiency then implies that

ψi(N,uT ) = 1− (n− 1)c∗, and thus α = 1− (n− 1)c∗− c∗ = 1−nc∗. We obtain c∗ = 1−α
n

,

and thus

ψi(N,uT ) =

{
c∗ + α = 1−α

n
+ α if i ∈ T

c∗ = 1−α
n

if i ∈ N \ T,
(4.3)

with α ≥ 0. Weak monotonicity and the fact that all players in a null game earn zero

payoff, implies that ψj(N, uT ) ≥ 0 for all j ∈ N \T , and thus α ≤ 1. Since EDi(N,uT ) = 1
n

6Note that this is different from weak monotonicity in Malawski (2005) which is some kind of non-

negativity property stating that in any monotone TU-game all players earn a non-negative payoff. He

characterizes a class of solutions that contains the egalitarian Shapley values by efficiency, linearity, local

monotonicity and this non-negativity. However, not all solutions in his class satisfy Sobolev’s reduced

game consistency.

11



for all i ∈ N , Shi(N, uT ) = 1 for i ∈ T , and Shi(N, uT ) = 0 for i ∈ N \ T , with (4.3) we

have ψ(N, uT ) = (1− α)ED(N,uT ) + αSh(N, uT ) = ϕα(N, uT ), α ∈ [0, 1].

Next we show that the weight put on the Shapley value is the same α for all singleton

unanimity games. Consider T ⊂ N , T 
= T and |T | = |T | = 1. Let T = {t}, T = {t}

and j ∈ N \ {t, t}. (Note that such a j exists since n ≥ 3.) Similar as above for (N, uT ),

it follows that ψ(N,uT ) = ϕα(N,uT ) for some α ∈ [0, 1]. Since weak monotonicity implies

that ψj(N, uT ) = ψj(N,uT ), we then have that ϕαj (N, uT ) = ϕαj (N, uT ). Since Shj(N, uT ) =

Shj(N, uT ) = 0 and EDj(N, uT ) = EDj(N,uT ) = 1
n
, it must hold that α = α.

Now, consider (N, uT ), 2 ≤ |T | < n. Proceeding by induction assume that we determined

ψ(N, uT ′) = ϕα(N, uT ′) for some α ∈ [0, 1] whenever |T ′| < |T |. If j ∈ N \ T then weak

monotonicity implies that ψj(N, uT ) = ψj(N, uT\{i}) for any i ∈ T . With the induction

hypothesis it then follows that ψj(N, uT ) = ϕαj (N,uT\{i}) = 1−α
n

= ϕαj (N, uT ). With

efficiency it then follows that
∑

i∈T ψi(N, uT ) = 1−
∑

j∈N\T ψj(N, uT ) = 1− (n− |T |)1−α
n

.

Since local monotonicity implies symmetry it then follows that ψi(N,uT ) =
1−(n−|T |) 1−α

n

|T |
=

1−α
n

+ α
|T | = (1 − α)EDi(N, uT ) + αShi(N,uT ) = ϕαi (N, uT ) for i ∈ T . Thus, ψ(N, uT ) =

ϕα(N, uT ).

For the unanimity game (N, uN ), local monotonicity and efficiency imply that ψi(N, v) = 1
n

for all i ∈ N .

For arbitrary (N, v) ∈ G3, uniqueness follows from linearity of ψ and the fact that v =
∑

T⊆N

T =∅
∆v(T )uT for every (N, v) ∈ G, with ∆v(T ) =

∑
H⊆T (−1)|T |−|H|v(H) the Harsanyi

dividend of coalition T ⊆ N, T 
= ∅ (see Harsanyi (1959)). �

In proving that the payoff of player t ∈ N in the unanimity game (N,u{t}) is equal to

the payoff of player t ∈ N in the unanimity game (N,u{t}), in the proof of Lemma 4.3

we needed to compare these payoffs with those of another player i ∈ N \ {t, t}. Therefore

we need at least three players to apply this proof. Although we cannot apply this proof

for two player games, also on that class the four axioms of Lemma 4.3 characterize the

egalitarian Shapley values.

Lemma 4.4 A solution ψ on G2 satisfies efficiency, linearity, local monotonicity and weak

monotonicity if and only if it is an egalitarian Shapley value.

Proof

It is straightforward to verify that all egalitarian Shapley values satisfy efficiency, linearity,

local monotonicity and weak monotonicity on G2. To prove uniqueness, let (N, v) ∈ G2.

If v is a null game then efficiency and local monotonicity again imply that ψi({i, j}, v) =
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ψj({i, j}, v) = 0. For two-player unanimity games ({i, j}, uT ), i 
= j, we distinguish the

following two cases. (i) If T = {i, j} then efficiency and local monotonicity imply that

ψi({i, j}, u{i,j}) = ψj({i, j}, u{i,j}) = 1
2
. (ii) Consider the case that |T | = 1. Let α =

2ψi({i, j}, u{j}) − 1, i.e. α is defined such that ψi({i, j}, u{j}) = 1−α
2

= ϕαi ({i, j}, u{j}).

Then by efficiency we have ψj({i, j}, u{j}) = 1− ψi({i, j}, u{j}) = 1−
(
1−α
2

)
= α + 1−α

2
=

ϕαj ({i, j}, u{j}). Similar as in the proof of Lemma 4.3, local monotonicity implies that α ≥ 0

and weak monotonicity and the nulll game case imply that α ≤ 1. In van den Brink and

Funaki (2004) it is shown that on G2 any solution that satisfies efficiency, linearity, local

monotonicity and weak monotonicity also satisfies anonymity7. But then ψi({i, j}, u{i}) =

ψj({i, j}, u{j}) and ψi({i, j}, u{j}) = ψj({i, j}, u{i}). Thus, ψ({i, j}, uT ) = ϕα({i, j}, uT )

for |T | = 1. The proof of uniqueness for any two player unanimity game then follows from

linearity. �

Since for one-player games ({i}, v) the payoff ψi({i}, v) = v({i}) follows by definition of a

solution, Lemmas 4.3 and 4.4 yield the main result of this section as stated in Theorem

4.2. Note that, similar to Corollary 3.5, Theorem 4.2 characterizes the class of egalitarian

Shapley values using axioms that do not depend on the parameter α. Logical independence

of the axioms of Theorem 4.2 is shown by the following alternative solutions:

1. The solution ψ given by ψi(N, v) = 0 for all i ∈ N and (N, v) ∈ G satisfies the axioms

of Theorem 4.2 except efficiency.

2. The normalized Banzhaf value β given by βi(N, v) = βi(N,v)∑
j∈N βj(N,v)

v(N) with βi(N, v) =
∑

S⊆N

i∈S

1
2n−1

(v(S) − v(S \ {i})), i ∈ N , satisfies the axioms of Theorem 4.2 except

linearity8.

3. For N ⊂ IN, let n(N) be the lowest labeled player in N , i.e. i ≥ n(N) for all

i ∈ N . Then the solution ψ given by ψn(N)(N, v) = v(N), and ψi(N, v) = 0 for all

i ∈ N \ {n(N)} satisfies the axioms of Theorem 4.2 except local monotonicity.

4. The CIS-value given by CISi(N, v) = v({i}) +
v(N)−

∑
j∈N v({j})

n
for all i ∈ N (see

Driessen and Funaki (1991)) satisfies the axioms of Theorem 4.2 except weak monotonic-

ity.

We end this section by remarking that in the proof of Theorem 4.2 weak monotonicity is

used for two purposes. First, it is used to show that a player who is a null player in two

7A solution ψ satisfies anonymity on C ⊂ G if for every permutation π : N → N it holds that ψi(N, v) =

ψπ(i)(N,πv) for every (N,v) ∈ C such that (N,πv) ∈ C , where the permuted game (N,πv) is defined by

πv(S) = v(∪i∈S{π(i)}) for all S ⊆ N .
8An axiomatization of this solution is given in van den Brink and van der Laan (1998).
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distinct unanimity games gets the same payoff in both games. This is also established by

the null player constant property which states that the payoff of null players is always the

same for games that have the same worth of the ‘grand coalition’, i.e. a solution ψ on

GN satisfies the null player constant property if ψi(N, v) = ψi(N,w) whenever i ∈ N is a

null player in (N, v) and (N,w) with v(N) = w(N). Second, weak monotonicity is used to

show that null players in a unanimity game earn a nonnegative payoff. This also follows

from nonegativity which states that players in monotone games earn a nonnegative payoff.

Therefore, in Theorem 4.2 weak monotonicity can be replaced by the null player constant

property and nonnegativity9.

5 Implementation

In the previous two sections we characterized the egalitarian Shapley values from a cooper-

ative viewpoint. Next we study these solutions from a non-cooperative perspective. In the

literature various implementations of the Shapley value can be found, see e.g. Gul (1989),

Hart and Mas-Colell (1996) and Pérez-Castrillo and Wettstein (2001). In this section we

adapt the last mechanism and obtain a two-level bidding mechanism implementing any

egalitarian Shapley value as the unique subgame perfect equilibrium outcome10.

This bidding mechanism is defined recursively as follows. When there is only one

player, say i, in the game, this player simply gets its stand-alone payoff, v({i}). Given the

rules of the mechanism for games with at most k − 1 < n players, the bidding game for a

set of k players proceeds in rounds. Dependent upon the strategies of the corresponding

players, the bidding game may have up to n rounds, each consisting of four stages. Let Nt

be the player set of the game with which the bidding game of each round t ∈ {1, ..., n} will

start.

Round 1 : N1 = N . Goto Stage 1.

Stage 1: Each player i ∈ N makes bids bij ∈ R for every j 
= i. For each i ∈ N , let

Bi =
∑

j =i

(
bij − b

j
i

)
be the net bid of player i measuring its ‘relative’ willingness

to be the proposer. Let i∗1 be the player with the highest net bid in this round.

(In case of a non-unique maximizer we choose any of these maximal bidders to

be the ‘winner’ with equal probability.) Once the winner i∗1 has been determined,

player i∗1 pays every other player j ∈ N\{i∗1} its offered bid b
i∗
1

j . The ‘winner’ i∗1
becomes the proposer in the next stage. Goto Stage 2.

9Note that the null player constant property is weaker than weak monotonicity but nonegativity is not.
10A general approach to bidding mechanisms implementing solutions for cooperative games is discussed

in Ju and Wettstein (2006).
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Stage 2: Player i∗1 proposes an offer y
i∗
1

j ∈ R to every player j 
= i∗1. (This offer is

additional to the bids paid at stage 1.) Goto Stage 3.

Stage 3: The players other than i∗1, sequentially, either accept or reject the offer. If

at least one player rejects it, then the offer is rejected. Otherwise, the offer is

accepted. Goto Stage 4.

Stage 4: If the offer is accepted, then each player j ∈ N\{i∗1} receives y
i∗
1

j and player

i∗1 obtains v(N)−
∑

j =i∗
1

y
i∗
1

j . Hence, in this case the final payoff to player j 
= i∗1

is y
i∗
1

j + b
i∗
1

j , while player i∗1 receives v(N)−
∑

j =i∗
1

(y
i∗
1

j + b
i∗
1

j ). Stop.

If the offer is rejected then with probability α ∈ [0, 1] player i∗1 leaves the game

and obtains her stand-alone payoff v({i∗1}), while the players in N\{i∗1} proceed

to round 2 to bargain over v(N\{i∗1}). With probability (1 − α) ∈ [0, 1] the

game breaks down and all players, including the proposer i∗1, get zero payoffs at

this stage (and thus only the bids of stage 1 are transferred, i.e. the payoff to

player j 
= i∗1 is b
i∗
1

j and the payoff to the proposer i∗1 is −
∑

j =i∗
1

b
i∗
1

j .). Stop.

In the following rounds, the stages 1, 2 and 3 are the same as in round 1 but with the

reduced player set where the proposer in the previous round has left. However, at stage 4

of the following rounds there is no possibility of breakdown. To be complete we describe

the following rounds.

Round t, t ∈ {2, ..., n− 1} : Nt = Nt−1\{i∗t−1}. Goto Stage 1.

Stage 1: Each player i ∈ Nt makes bids bij ∈ R for every j 
= i. For each i ∈ Nt, let

Bi =
∑

j∈Nt\{i}

(
bij − b

j
i

)
, be the net bid of player i. Let i∗t be the player with the

highest net bid of round t. (In case of a non-unique maximizer we choose any

of these maximal bidders to be the ‘winner’ with equal probability.) Once the

winner i∗t has been determined, player i∗t pays every other player j ∈ Nt\{i∗t},

its offered bid b
i∗t
j . The ‘winner’ i∗t becomes the proposer in the next stage. Goto

Stage 2.

Stage 2: Player i∗t proposes an offer y
i∗t
j ∈ R to every player j ∈ Nt \ {i∗t}. (This

offer is additional to the bids paid at stage 1.) Goto Stage 3.

Stage 3: The players other than i∗t , sequentially, either accept or reject the offer. If

at least one player rejects it, then the offer is rejected. Otherwise, the offer is

accepted. Goto Stage 4.

Stage 4: If the offer is accepted, then each player j ∈ Nt\{i
∗
t} receives y

i∗t
j and

player i∗t obtains v(Nt) −
∑

j∈Nt\{i∗t }
y
i∗t
j at this stage. Hence, in this case the
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final payoff to player j ∈ Nt \ {i
∗
t} is y

i∗t
j + b

i∗t
j +

∑t−1
k=1 b

i∗
k

j , while player i∗t receives

v(Nt)−
∑

j∈Nt\{i∗t }
(y
i∗t
j + b

i∗t
j ) +

∑t−1
k=1 b

i∗
k

i∗t
. Stop.

If the offer is rejected then player i∗t leaves the game and obtains its stand-alone

payoff v({i∗t}), while the players in Nt\{i∗t} proceed to round t + 1 to bargain

over v(Nt\{i∗t}).

Round n : Nn = Nn−1\{i∗n−1}. Apparently, Nn is a singleton coalition so that it is a

one-player game in this round. The game immediately stops such that player i ∈ Nn

gets its stand-alone payoff v(Nn). So, its final payoff is v(Nn) +
∑n−1

k=1 b
i∗
k

i .

Note that this bidding mechanism is the same as that of Pérez-Castrillo and Wettstein

(2001), except for the possibility of breakdown after the offer is rejected in the first round,

and thus for the specific value α = 1 it is exactly the same as their mechanism. If the

game continues after this first rejection then this possibility of breakdown does not occur

anymore, and the whole game can only be stopped by acceptance of all relevant players in

a certain round or rejection in a two-player bidding subgame.

Given the characteristic function v, we can calculate the final payoffs of the players

who are assumed to be risk neutral in the mechanism. In case of rejection in the first round,

the expected final gain of proposer i∗1 is αv({i∗}) −
∑

j =i∗ b
i∗

j , whereas every other player

j 
= i∗1 finally obtains bi
∗

j plus the expected payoff due to the contingent (with probability

α) outcome of the mechanism continuing with player set N\{i∗1}. In case of acceptance of

the proposal in the first round, the final gain of i∗1 is v(N)−
∑

j =i∗
1

(b
i∗
1

j + y
i∗
1

j ), whereas the

final gain of every player j 
= i∗1 is b
i∗
1

j + y
i∗
1

j .

Next we generalize the result of Pérez-Castrillo and Wettstein (2001) who showed

that for α = 1 this bidding mechanism implements the Shapley value for zero-monotonic

games. A TU-game (N, v) is zero-monotonic if v(S) ≥ v(S\{i})+v({i}) for all S ⊆ N and

all i ∈ S. It turns out that for any zero-monotonic game such that the ‘grand coalition’

earns a nonnegative worth, the given bidding mechanism implements the α-egalitarian

Shapley values as subgame perfect equilibrium (SPE) outcomes. For T ⊂ N the restricted

game (T, vT ) ∈ G is given by vT (S) = v(S) for all S ⊆ T .

Theorem 5.1 Let α ∈ [0, 1] be the probability that the bidding continues after rejection

in the first round, and let v ∈ G be a zero monotonic game with v(N) ≥ 0. Then the

outcome in any subgame perfect equilibrium of the bidding mechanism coincides with the

payoff vector ϕα(N, v).

Proof

Let (N, v) be a zero-monotonic with v(N) ≥ 0, and let α ∈ [0, 1]. We first show that the

α-egalitarian Shapley value payoff ϕα(N, v) is indeed an SPE outcome. We do this in three

steps.
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1. We first explicitly construct an SPE that yields the α-egalitarian Shapley value ϕα(N, v)

as an SPE outcome. Consider the following strategy adopted by a player i ∈ N .

Round 1:

At stage 1, player i ∈ N announces bij = α(Shj(N, v) − Shj(N\{i}, vN\{i})) + (1 − α)v(N)
n

for every j 
= i.

At stage 2, if i is chosen as the proposer, i offers yij = αShj(N\{i}, vN\{i}) to every j 
= i.

At stage 3, if j 
= i is the proposer, i accepts any offer that is greater than or equal to

αShi(N\{j}, vN\{j}) and rejects any offer strictly smaller than αShi(N\{j}, vN\{j}).
11

At stage 1 of any round t, t ∈ {2, . . . , n − 1}, player i ∈ Nt (i.e. i was not proposer in

any of the previous rounds) announces bij = Shj(Nt, vNt) − Shj(Nt\{i}, vNt\{i}) for every

j ∈ Nt \ {i}. (Clearly, players in N \ Nt do not have to choose an action in round t and

henceforth.)

At stage 2, if i is chosen as the proposer, i offers yij = Shj(Nt\{i}, vNt\{i}) to every j ∈

Nt \ {i}.

At stage 3, if j ∈ Nt \ {i} is the proposer, then i accepts any offer that is greater than or

equal to Shi(Nt\{j}, vNt\{j}) and rejects any offer strictly smaller than Shi(Nt\{j}, vNt\{j}).

Round n: If i ∈ Nn is in this round, i will be the only player and gets its stand-alone payoff

v({i}).

2. This profile of strategies of all players in N yields acceptance in round 1. Since b
i∗
1

j +y
i∗
1

j =

α(Shj(N, v)− Shj(N\{i∗1}, vN\{i∗1})) + (1− α)v(N)
n

+ αShj(N\{i∗1}, vN\{i∗1}) = αShj(N, v) +

(1 − α)v(N)
n

= ϕαj (N, v) for all j ∈ N\{i∗1}, any player who is not the proposer obtains

its α-egalitarian Shapley value payoff. Moreover, given that following the strategies the

grand coalition is formed, the proposer also obtains her α-egalitarian Shapley value payoff

ϕαi∗
1

(N, v) = v(N)−
∑

j∈N\{i∗
1

ϕαj (N, v).

3. To check that the above strategies constitute an SPE, first recall Theorem 1 in Pérez-

Castrillo and Wettstein (2001), which implies that the subgame perfect equilibrium out-

come of each subgame starting from round 2 (irrespective of the proposer, its bids and

proposals in round 1) is the Shapley value payoff vector of the corresponding game. Then

we further apply backward induction to verify that the given strategy profile yields sub-

game perfectness at the stages of round 1. Note that at stage 4 no actions by players are

11Note that at stages 2 and 3 the non-proposers, respectively, the proposer do not have an action. The

same holds for the following rounds. At stage 4 no player (besides ‘nature’ in round 1) has an action but

only payoffs are transferred.
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chosen, but only payoffs are paid and (possibly) nature chooses whether the game contin-

ues or breaks down. Given the SPE outcome from round 2, if non-proposer j 
= i∗1 chooses

according to the given strategy profile in stage 3 then (after all preceding non-proposers

accept the offer of the proposer) j accepts any offer from proposer i∗1 if and only if the offer

is greater or equal to αShj(N\{i∗1}, vN\{i∗1}) which is its expected payoff after rejection,

showing that the given strategy profile yields an SPE in the subgame that starts when

non-proposer j 
= i∗1 has to choose to accept or reject the offer at stage 3. By v(N) ≥ 0

and zero-monotonicity of v, v(N)−αv(N \ {i∗1}) ≥ α(v(N)− v(N \ {i∗1})) ≥ αv({i
∗
1}), and

thus the proposer prefers acceptance paying the minimal offers for the non-proposers to

accept at stage 3, so y
i∗
1

j will be as just determined for stage 3.

To verify that the bids at stage 1 complete an SPE, note that all net bids are equal

to zero because for all i, j ∈ N the balanced contributions property of the Shapley value

(see Myerson (1980))12 implies that

b
j
i = α(Shi(N, v)− Shi(N\{j}, vN\{j})) + (1− α)

v(N)

n

= α(Shj(N, v)− Shj(N\{i}, vN\{i})) + (1− α)
v(N)

n
= bij.

Therefore, according to this strategy profile at stage 1 all players are chosen as the proposer

with equal probability. Consider player j ∈ N . Decreasing (at least one of) its bids, j

will be chosen as proposer with probability zero. Which other player will be the proposer

depends on the way j decreases its bids. But given that all other players do not change

strategies, i.e. making bids and offers according to the above strategies, player j would

still obtain its α-egalitarian Shapley value payoff. Hence, j cannot increase its payoff

by decreasing its bids. In order to further elaborate this, one can readily check that a

decreasing bid of j will not be part of an equilibrium because it will induce some (the players

whom j makes decreased bids to) of the others to decrease the bids without changing the

level of their net bids. If j increases (at least one of) its bids, then j will be the proposer

with probability one. But since the continuation of the game from round 2 (with this

proposer) does not change, the earnings of j in the subgame that is ‘entered’ does not

change. But j’s bid increased and therefore j’s total payoff decreases. So, no player can

increase its payoff by changing its bid, showing that the given strategy profile is an SPE.

Thus, we have shown that the α-egalitarian Shapley value payoff vector is indeed

an SPE outcome.

To prove that any SPE yields the α-egalitarian Shapley value as outcome, note that it

follows along the same lines as in Pérez-Castrillo and Wettstein (2001) that for any player,

12This balanced contributions property states that Shi(N, v) − Shi(N\{j}, vN\{j})) = Shj(N, v) −

Shj(N\{i}, vN\{i})) for all (N,v) ∈ G and i, j ∈ N .
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his or her final payoffs are the same regardless of the identity of the proposer. Next we

only have to show that in any SPE the final payoff received by each player coincides with

his or her α-egalitarian Shapley value payoff. Note that if i is the proposer in round 1, her

final payoff will be v(N) − αv(N\{i}) −
∑

j =i b
i
j whereas if j 
= i is the proposer, i will

obtain final payoff αShi(N\{j}, vN\{j}) + b
j
i . Hence, since all net bids are zero and thus

all players are proposer with equal probability (which follows similar as in Pérez-Castrillo

and Wettstein (2001)), using a recursive formula of the Shapley value given in Maschler

and Owen (1989)13, the expected payoff of player i equals

1

n

(

v(N)− αv(N\{i})−
∑

j =i

bij +
∑

j =i

(
αShi(N\{j}, vN\{j}) + bji

)
)

(5.4)

=
1

n

(

v(N)− αv(N\{i}) +
∑

j =i

αShi(N\{j}, vN\{j})

)

= αShi(N, v) + (1− α)
v(N)

n
= ϕαi (N, v).

�

It can be seen from the proof of Theorem 5.1 that the condition of a nonnegative worth

for the ‘grand coalition’ and zero-monotonicity of the game (N, v) can be weakened to

α-zero-monotonic, α ∈ [0, 1], meaning that v(N) ≥ α (v(N\{i}) + v({i})) for all i ∈ N ,

and v(S) ≥ v(S\{i}) + v({i}) for all S ⊂ N , S 
= N , and all i ∈ S.

Further, note that (5.4) at the end of the proof above yields a recursive formula for

all egalitarian Shapley values that is constructed as follows:

ϕαi (N, v) =
1

n

∑

j =i

ϕαi (N\{j}, vN\{j})

+
1

n

(
v(N)− αv(N\{i})− (1− α)

∑
j =i v(N\{j})

n− 1

)
, for all i ∈ N.

Taking α = 1 yields the recursive formula of the Shapley value given in Maschler and Owen

(1989).

6 Concluding remarks

In this paper we formulated the trade-off between marginalism and egalitarianism in co-

operative games by considering convex combinations of the Shapley value and the equal

13This recursive formula is Shi(N, v) =
1
n

(
v(N)− v(N\{i}) +

∑
j �=i Shi(N\{j}, vN\{j})

)
for all i ∈ N .
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division solution. We provided three main characterizations of these egalitarian Shapley

values. We first showed that all these solutions satisfy the same reduced game consistency

that is introduced by Sobolev (1973). Second we showed that all egalitarian Shapley val-

ues satisfy weak monotonicity (which is a weaker version of strong monotonicity), and that

together with efficiency, linearity and local monotonicity this weak monotonicity character-

izes the class of egalitarian Shapley values. Finally, we showed that all egalitarian Shapley

values have a similar strategic implementation as the unique subgame perfect equilibrium

outcome in an extensive form bidding mechanism which is an adaptation of the one for

the Shapley value given in Pérez-Castrillo and Wettstein (2001), and only differs in the

probability of breakdown at a certain stage of the negotiations. Since these solutions have

these important types of properties in common we consider the egalitarian Shapley values

as an important concept to make the trade-off between marginalism and egalitarianism.

Malawski (2005) obtains the egalitarian Shapley values by a procedure where for

every order of entrance to the ‘grand coalition’ player i ∈ N gets a share α in its marginal

contribution and the predecessors of i equally share the remainder of i’s marginal contribu-

tion. Taking the average over all orders of entrance yields the corresponding α-egalitarian

Shapley value as expected payoffs. In a similar spirit, Ju, Borm and Ruys (2007) allocate

for every order of entrance the surplus v(S)− v(S \ {i})− v({i}) instead of the marginal

contribution among the entrant i and its predecessor, and assign the worth v({i}) fully to

player i. This yields the convex combinations of the Shapley value and the CIS-value (see

the fourth example at the end of Section 4), the so-called generalized consensus values,

as expected payoffs. All generalized consensus values satisfy standardness for two-player

games but, except fot the Shapley value, do not satisfy Sobolev (1973)’s reduced game

consistency. Finding a reduced game consistency for the generalized consensus values is a

plan for future research.

In van den Brink and Funaki (2004) a class of equal surplus sharing solutions is

studied that includes the equal division solution, the CIS-value, the ENSC-value (i.e. the

dual of the CIS-value) and all their convex combinations. Further generalizations of the

egalitarian Shapley values and generalized consensus values consider convex combinations

of any of these equal surplus sharing solutions with the Shapley value (or even the more

general semi-values, see Dubey, Neyman and Weber (1981)).
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Pérez-Castrillo, D. and D. Wettstein (2001) “Bidding for the surplus: a non-cooperative

approach to the Shapley value”, Journal of Economic Theory 100, 274-294.

Sobolev, A.I (1973) “The Functional Equations that Give the Payoffs of the Players in an

N-Person Game”, in: Advaces in Game Theory (ed. E. Vilkas), Izdat. “Mintis”,

Vilnius, pp.151-153 (in Russion).

Shapley, L.S. (1953) “A Value for n-Person Games”, in: Annals of Mathematics Studies 28

(Contributions to the Theory of Games Vol.2) (eds. H.W. Kuhn and A.W. Tucker),

Princeton University Press, pp.307-317.

Yanovskaya, E., and T.S.H. Driessen (2002) “Note On linear consistency of anonymous

values for TU-games”, International Journal of Game Theory , 30, 601-609. .

Young, H.P. (1985), “Monotonic solutions of cooperative games”, International Journal of

Game Theory , 14, 65-72.

22


