
Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 13–25

ISSN 1896-7094
c© 2007 PIPS

A Common Base for Building Secure Mobile Agent
Middleware Systems

Guido J. van ’t Noordende⋆, Benno J. Overeinder⋆⋆, Reinier J. Timmer,
Frances M. T. Brazier, and Andrew S. Tanenbaum

Department of Computer Science, Vrije Universiteit Amsterdam,
Amsterdam, The Netherlands

{guido,bjo,rjtimmer,frances,ast}@cs.vu.nl

Abstract. The Agent Operating System (AOS) provides the basic functional-
ity needed for secure and reliable mobile agent platforms: support for secure
communication, secure agent storage and migration, and minimal primitives for
agent life-cycle management. Designed as a layer between local operating sys-
tems and higher level agent platform middleware, it supports interoperability be-
tween agent platforms and between different implementations of AOS itself. AOS
has been tested on interoperability, both with regard to different higher-layer mid-
dleware platforms and interoperability between two implementations of AOS in
C++ and Java.

1 Introduction

Multi-agent system applications often rely on agent platforms (agent middleware sys-
tems) for agent life-cycle management, communication, possibly migration, and secu-
rity [7, 1, 8]. Most (mobile) multi-agent systems to date aremonolithic systems, where
all functionality is integrated in a single code-base, often implemented in Java. Even
if systems have a more or less modular design (e.g., JADE [1]), they are generally not
designed for interoperability with other systems, or easily allow for integration of com-
ponents written in different languages. Some solutions andspecifications for interop-
erability exist (e.g., FIPA), however these specificationsoften define only higher-level
functionality such as interagent communication protocols, and do not define low-level
protocols for agent migration or setting up (secure) connections between middleware
systems.

The system described in this paper, called Agent Operating System (AOS), is in-
tended to facilitate designing mobile agent middleware systems in a more modular way,
by providing a common, language-neutral base for layering multi-agent middleware
systems upon. AOS offers a well-defined interface that provides primitives for secure
packaging and migration of agents written in various languages, and for the establish-
ment of secure channels between different mobile agent middleware components.

This paper proposes a multilevel architecture for agent middleware: a common min-
imal AOS layer, and higher level middleware layers for platform specific functionality.

⋆ Current address: Informatics Institute, University of Amsterdam, The Netherlands
⋆⋆ Current address: NLnet Labs, Amsterdam, The Netherlands

13

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15452783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

14 Guido J. van ’t Noordende et al.

The common minimal base, the “kernel” to higher level middleware systems, is the
main focus of this paper. The requirements and design considerations for the AOS ker-
nel are identified in Section 2. Section 3 presents the architectural design of AOS and
evaluates the design with respect to the requirements. Section 4 evaluates two imple-
mentations of the AOS kernel: one in C and one in Java. Relatedwork is discussed in
Section 5, and the paper concludes with a summary in Section 6.

2 Design Requirements and Motivation

Most mobile agent middleware systems are designed to support specific agent models
and programming environments. These systems share functionality. AOS has been de-
signed to provide a minimal common base which provides this shared functionality to
mobile agent middleware systems. By design, AOS supports interoperability, facilitat-
ing open and extensible design of agent middleware, and enabling interaction and/or
integration with (existing) middleware services.

The commonalities found between agent middleware systems can be broadly clas-
sified as: (i) mobile agent (code and data) storage and transport, (ii) primitives for agent
life-cycle management, and (iii) secure communication between middleware processes
(irrespective of what is actually stored in an agent or beingcommunicated). In addition,
all current multi-agent systems require security mechanisms that allow for, e.g., authen-
tication and authorization of remote processes, and for integrity verification of migrated
agents and content.

2.1 Requirements

To realize a common base for implementing secure and modularmobile agent middle-
ware, the following requirements for the AOS kernel are defined:

– AOS should be a common layer for a broad range of agent middleware systems.
– The AOS design and specification should be language and operating system neutral,

so that it can be implemented in any programming language andported to any
operating system. All these implementations should be ableto interoperate.

– AOS should be minimal, in that it should only provides the minimal set of primi-
tives required for building (secure) mobile agent middleware. Minimality ensures
that the AOS code base becomes manageable and can be implemented in a robust
and secure way. This implies that some mechanisms have to be implemented by
the agent middleware itself, which is inherent to the idea that such mechanisms are
middleware specific. In short, AOS should be “lean and mean”,and provide only
the basics needed for implementing (secure) mobile agent middleware.

– AOS should be reasonably efficient, within the expected performance boundaries
of (secure) agent middleware. In particular, it should not add significant overhead
compared to a distributed mobile agent system written from scratch, assuming that
such a system is built with comparable (security) requirements in mind.

– AOS should not impose design limitations or a specific model on the mobile agent
middleware designer. For example, it should not require thedesigner to adopt a spe-
cific deployment or security model (e.g., using a specific public key infrastructure).

A Common Base for Building Secure Mobile Agent Middleware Systems 15

– The AOS should be a stand-alone component which can be compiled and used
without administrative privileges on a hosting machine.

– AOS should be usable by different mobile agent middleware systems concurrently,
although stand-alone (non-shared) usage should also be possible.

2.2 Motivation of Design Requirements

The requirements outlined above have several important implications for the design
and implementation of a minimal kernel. This section describes the rationale for the
requirements and discusses some of the consequences.

Making AOS language-neutral is an important requirement toprovide a support
layer for agent middleware. Most current agent middleware systems have been imple-
mented in Java, and consequently support Java as a programming language for agent
development. However, this may not always be the most obvious programming lan-
guage for agent development; C++ or Python may be preferablefor the task at hand,
maybe for code reusability, for interoperability, or for performance reasons.

The minimality and reasonable efficiency constraints have implications for interac-
tions with the underlying system and management of resources. AOS only support local
interactions, i.e., local processing accessing local resources, which should not block or
interfere with other (local) operations. The only non-local interaction is communica-
tion. Restricting AOS to managing local resources only, avoids having the kernel wait
for remote services to answer before it can complete a task. Management tasks spanning
more than one machine are the responsibility of the higher-level middleware systems.

Security is very important in mobile agent systems, both from the perspective of
the agent as well as of the host. As mobile agents move to foreign hosts (which may
not always be trusted or trustworthy), their data and code should be protected from
tampering. Mechanisms must be provided for timely agent tampering detection, and for
authentication of remote agent middleware (see Section 3.2).

From a host’s perspective, mechanisms are needed to protecthosts from malicious
or erroneously programmed agents. Sandboxing (for interpreted executables) or jail-
ing (for binary executables) [9], two examples of mechanisms that allow for protection
of a host from malicious agents, require interaction with higher-level middleware sys-
tems in which life-cycle management is regulated. AOS provides mechanisms for agent
code and data management, which provide the basis for implementing agent life-cycle
management in the middleware layer.

The requirement that AOS should be usable by multiple mobileagent systems at
the same time allows for AOS to provide an access point to multiple mobile agent
middleware systems behind a firewall, among other things. The number of TCP ports
for incoming connections should therefore be minimal. Sharing one AOS instance on a
host requires an authentication mechanism for agent middleware to allow separation of
operation. This mechanism is discussed in Section 3.

3 Architecture of the AOS Kernel

This section discusses the architecture and design of the AOS kernel.

16 Guido J. van ’t Noordende et al.

3.1 Architectural Model of AOS

The intended use of AOS is to provide a common base to a range ofspecificMobile
Agent Middleware (MAM)systems. This common base can be seen as a kernel com-
ponent in a layered middleware system design. Higher-levelagent middleware systems
use AOS for agent code and state management, agent migration, and communication.
Higher-level MAMs extend the basic common AOS layer with agent middleware spe-
cific components and possibly one or more services, e.g., foragent life-cycle manage-
ment, middleware management, and agent naming and locationservices. The general
architectural model is shown in Fig. 1.

MAM
service

MAM agent
serverserver

MAM agent

Agent Agent Agent

(network)

Agent Operating System (AOS)

Operating System (OS)

Fig. 1. Example of a layered agent middleware architecture using AOS. This example system
consists of two agent server processes and one service (e.g., a naming service) running on the
same machine. MAM processes communicate with other local orremote MAM components us-
ing AOS. Agents communicate with their runtime environment(e.g., agent server), and do not
normally access AOS directly.

AOS provides a means for middleware processes to securely authenticate services
and other MAM components in a system, to communicate with these components and
services, and to migrate agents to other locations in a secure way. AOS has two external
entries for receiving agents and for incoming connections to middleware processes that
use AOS. How authentication, communication, and agent transport are implemented
internally in AOS is described later in this section.

MAM components (distinct processes from an architectural point of view, see Fig. 1),
are responsible for the agent runtime environment. Agents are executed by a MAM
component, which provides a runtime environment (API) to them with MAM specific
functionality. The MAM components use AOS internally when they communicate with
each other, when an agent’s state needs to be altered, or whenit needs to be migrated to
another AOS kernel. Note that services do not host agents (see Section 3.2).

AOS has a specification that clearly describes the methods (API) provided by AOS
to higher-level middleware systems, including arguments and semantics. The AOS ker-
nel effectively hides differences in the underlying operating system with regard to com-
munication interfaces and file system access from the processes that use AOS. MAM

A Common Base for Building Secure Mobile Agent Middleware Systems 17

components invoke AOS API methods using RPC calls. Different RPC interfaces have
been implemented, for Sun RPC, Java-RMI and XML/RPC. This allows the MAM
processes to be implemented in a different language than AOS, even within the same
MAM. AOS allows for multiple so-called dispatchers that implement different RPC
implementations, to be used simultaneously such that any component can use an RPC
interface of its choice.1

3.2 AOS Concepts and Primitives

The AOS API provides primitives for agent transport (shipping/receiving ACs), and
communication (creating endpoints and connecting/accepting connections). In addition,
the API contains calls allowing for safe sharing of AOS between different MAM com-
ponents. The agent transport mechanism provides integrityprotection of agent code
and (meta-) data, and the communication methods include a simple but highly effec-
tive authentication model (see Section 3.3). Note that the API contains no primitives
for process management. This is because different mobile agent middleware systems
have very different methods for managing agent processes. For example, some agent
systems use a thread-based model, where agents run as a thread in an agent server pro-
cess, whereas in other systems each agent runs as an independent process. As a result,
it is hard to attain a single, simple model for agent process management, and process
management is therefore left to the mobile agent middleware.

Agent Containers Agent code, data, and meta-data (e.g., owner information, time
of creation, permissions, etc.) are stored in AOS in a data structure called theAgent
Container (AC). The AC is, in fact, an archive with a table of contents, immutable
segments (e.g., code), and mutable segments (e.g., state and auxiliary data). Primitives
for creation of AC and segments, and reading/writing segments are part of the API.

In addition, afinalizecall is used to synchronize any new content of the AC to disk
(to allow for recovery if AOS crashes and is restarted2), and to generate checksums in
a secureTable of Contents (ToC)of the AC’s segments. The secure ToC is used for
integrity verification of an AC when it is received by anotherAOS kernel. Finalize must
be called before an agent can be migrated to another AOS.

Communication Endpoints Communication-related calls include creation and dele-
tion of communication endpoints (similar to Unix sockets).Connect, accept, send, re-
ceive, and select calls exist which allow for setting up and using secure, reliable, or-
dered communication channels to these endpoints. Connections between the same pair
of AOS kernels, with the same security properties (i.e., cryptographiccipher suites),
are multiplexed over a single AOS “base channel” internallyto AOS. This allows for

1 In particular, it is straightforward for a Java-based middleware to use Java-RMI, whereas a
C-based middleware implementation can more straightforwardly use Sun RPC.

2 The API defines error codes that allow for detection of an AOS restart, and contains a call for
re-initializing AOS resources after such an event was detected by the middleware.

18 Guido J. van ’t Noordende et al.

a reduction of connection setup times by amortizing expensive initial secure connec-
tion setup times over multiple connections, compared to setting up new secure connec-
tions for each connection. The method for setting up secure connections is discussed
in Section 3.3. Agent transport makes use of the same internal AOS connection imple-
mentation, allowing for safe (integrity and confidentiality protected) transport of agent
containers.

Secure Sharing of AOS Secure sharing of a single AOS instance and its resources
by different unrelated agent middleware on the same host is enabled by the concept
of a role. A role is a set of resources associated with a cryptographically protected
authentication token (called acookie), which is used by an agent middleware to invoke
methods on AOS. AOS creates this cookie securely, and also creates an internal data
structure that describes the resources associated with this cookie. We refer to this cookie
and its associated resources as a role.

During start-up of AOS, aninit role is generated, that is allowed to invoke any
method on the AOS API. The init role is used by aninit processthat controls usage of
AOS (think of init process in Unix). Given the init role, the init process can generate
other roles, which are calledchild roles. Generally, these roles allow users to create
additional subroles for components within the same agent middleware.3 For example,
a service may only be allowed to use communication related calls, and agent servers
may only be allowed to access the ACs of the agents they manage. Assigning a new
role to each MAM component allows for compartmentalizationof an agent middleware
system. This avoids that a single compromised MAM componentcan compromise the
state of another MAM component that uses the same AOS instance, e.g., by destroying
AOS kernel objects such as ACs.

Roles determine ownership of resources in AOS. Resources include agent contain-
ers, communication channels, and child roles. When a role isdeleted (using an AOS
call), all resources associated with this role are deleted,including subroles and their
resources. In principle, roles are persistent such that role information and resources
(in particular, ACs) can be recovered after an AOS crash or system reboot. AOS imple-
ments resource protection by imposing limits on the number of resources (and subroles)
owned by a role.

3.3 Authentication Model

AOS comes with a simple but highly effective authenticationmodel based on public
key cryptography, that is used when connections are set up and agents are shipped to
other AOS kernels. The authentication model is based on the concept ofSelf-certifying
Identifiers (ScIDs)[5]. A ScID is a SHA-1 hash of the public key of an AOS kernel,
where the AOS kernel has access to the associated private key.

Each endpoint created by an AOS kernel, both for AC transportand for communica-
tion, is described by a data structure that contains a ScID inaddition to the AOS kernel’s
endpoint information (i.e., IPv4/v6 address and port). This data structure is used by a

3 Each user may obtain its own initial role by requesting it from the init process, or through some
other way; the way in which an init process functions precisely is not currently specified.

A Common Base for Building Secure Mobile Agent Middleware Systems 19

MAM component to set up a connection or to ship an AC to anotherMAM component
using AOS, where AOS internally verifies that its peer AOS kernel has the private key
corresponding to the ScID in the AOS contact record. A standard authentication proto-
col (i.e., TLS/SSL) is used for authentication and key-exchange, as part of setting up an
efficient, secure, encrypted channel to the peer AOS. The MAMcomponent can specify
the cryptographic cipher suite for the channel at connection setup time. The advantage
of ScIDs over, e.g., X.509 based authentication models, is that no PKI infrastructures
are required to bind keys to identities, as ScIDs are used as the name of the entity (AOS
kernel), and are coupled directly to its key as described above.

3.4 End-to-End Authentication and Secure Communication

When AOS is shared between multiple MAM systems, each MAM should be able to
authenticate its peer MAM end-to-end, to ensure it is not connected to another MAM
that uses AOS at the same time. To this purpose, the AOS endpoint data structure ex-
plained above can be included in aMiddleware Contact Record (MCR), in addition to
information that can be used to securely identify (authenticate) the middleware running
on top of AOS. This MCR can be used by the MAM to set up a secure, end-to-end au-
thenticated connection to another MAM, using an encrypted transport set up using the
AOS contact information in the MCR. An MCR can contain a Self-certifying ID (ScID)
of the peer middleware process, so that it can be authenticated using the mechanism out-
lined in Section 3.3. Another approach is to use a simple namein the MCR which can
be combined with a PKI to securely authenticate a remote middleware process. AOS
does not force any particular authentication model upon themiddleware.

To securely use AOS channels as the basis for an end-to-end authenticated channel,
both middleware processes must, after authenticating eachother, exchange authenti-
cated messages to each other that contain the AOS endpoint information of their own
(trusted) AOS kernel. This is required, because if this check does not take place, an im-
postor AOS kernel may sit between the endpoint AOS kernels asa man-in-the-middle,
which could decrypt and read all information passed over thechannel—as generally
only MAM authentication information is known at the time when a connection is made.
After such information is exchanged, both parties are certain that they communicate
through the remote AOS kernel that is actually used by their peer. Only in this case,
can the confidentiality of the underlying AOS channel be trusted, allowing the middle-
ware processes to let AOS take care of encryption of the connection itself without the
middleware processes having to encrypt the connection end-to-end.

3.5 Secure Agent Migration

AOS provides mechanisms for shipping an AC to another AOS kernel. AOS signs a
secureTable of Contents (ToC)of the AC, which is used by the receiving AOS ker-
nel for integrity protection. The ToC data structure is available to the MAM layer. The
MAM layer has to implement a secure agent transport protocol(ATP) on top of the AOS
mechanism for shipping an AC to allow for additional, middleware specific authentica-
tion and control over agent transport. For example, specificcode segments may have to
be present in an AC as a prerequisite for starting it up in a specific MAM process. Other

20 Guido J. van ’t Noordende et al.

extensions to the basic ATP provided by AOS are the construction of secure audit trails,
describing all changes made to the AC during the agent’s itinerary [8, 10]. Different se-
curity mechanisms at the MAM layer can be conceived (see, e.g., [10]); AOS provides
all the necessary hooks to construct such mechanisms effectively.

4 Performance

For a central component such as AOS, which is intended to be used for all interpro-
cess communication, mobile agent code/data management andmigration operations,
performance is highly important. This section presents theapproach in which two AOS
kernels were implemented and used in our department, and discusses performance of
these AOS kernels. Measurements of performance of agent middleware that runs on
top of AOS is not provided in this section; since these aspects are middleware imple-
mentation specific, it is chosen to focus on the overhead of functionality of AOS itself,
which is most likely to impact the performance and scalability of the agent middleware
system that uses AOS. In particular, communication throughput and scalability have
been tested, and AC shipment related overhead and scalability in terms of concurrently
shipped ACs.

Independently, two versions of AOS have been implemented, one in Java and one
in C++, based on a precise specification of the AOS interface and the internal protocols
used by AOS.4 These AOS kernels have been thoroughly tested on interoperability.
Both the Java and the C++ kernel are used to construct two different agent middleware
systems in our group, Mansion [10] (written in C) and AgentScape [6] (written in Java).
These two mobile agent systems are quite different in their design and implementation
decisions; even so, AOS has shown to be a solid basis for theirconstruction.

This section evaluates the performance of the Java and C++ AOS kernels. Although
the tests are limited to AOS operations, the aspects measured are expected to most
influence the performance of a mobile agent middleware system built using AOS.

All tests were run on a dedicated 1 GHz dual Pentium-III machine with 1GB mem-
ory, running Linux on an ext3 filesystem and using a Fast Ethernet (100 Mbit/s) local
area network. Tests with the Java kernel used the Sun Java 1.5standard compiler and
Java HotSpot server virtual machine version 1.5. The cryptographic libraries used in the
Java AOS kernel are from Bouncy Castle.5

The tests were run with modified AOS kernels that included microsecond timers,
and were executed 5 to 10 times in a row, with averages shown inthis section. For all
tests that use AOS-to-AOS communication, the connection was configured to use 128
bits AES encryption with SHA-1 message authentication.6

4.1 AOS-to-AOS Communication Cost

AOS uses an internal protocol to multiplex communication channels over a single inter-
nal encrypted “base channel.” Figure 2 shows the performance and scalability of AOS

4 The AOS specification can be requested from the authors.
5 http://www.bouncycastle.org
6 AES provides a reasonable trade-off between security and efficiency, compared to e.g., 3DES.

A Common Base for Building Secure Mobile Agent Middleware Systems 21

for communication, for 1 to 16 threads communicating concurrently over AOS. In this
experiment, each thread sends 25 MB over an AES encrypted base channel to a server
process running on a different AOS kernel.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 1 2 4 8 16

T
hr

ou
gh

pu
t (

kb
/s

ec
)

#Threads

Mux transfer, 50 mb, total throughput

c/AES
java/AES

Fig. 2. Total throughput for multiplexed communication over a shared AOS-to-AOS connection.

As shown in Fig. 2, the C++ kernel has a substantially higher throughput than the
Java kernel, which is due to the fact that the OpenSSL libraryimplemented in C is faster
than the pure Java Bouncy Castle SSL implementation used in the Java kernel.7 Both
kernels apply locking strategies to make sure that only a single thread can write payload
on the base channel. The figure shows that the total throughput stays roughly the same
for both kernels, irrespective of the number of threads thatsimultaneously send payload
over the wire, although some variation exists which remainsunexplained. Although the
per-thread throughput decreases linearly with the number of threads for obvious reasons
(i.e., sharing and overall saturation of the underlying connection), the AOS kernels and
the internal protocol used for multiplexing do not adversely influence scalability.

4.2 Finalize Costs

Prior to shipping an AC, an AC must be finalized to ensure that the AC’s table of content
is generated, and that all segments are stored safely in a zipfile synchronized to disk.
Finalize is a call that constructs a secure Table of Content of the AC and signs it, prior
to shipping it to another AOS kernel. In addition, finalize syncs the AC to disk for crash
recovery reasons.

Table 1 shows a microbenchmark of the finalize costs of agent containers of 500 KB,
1 MB and 5 MB containing random data. These sizes are typical for many agents used
in our own agent middleware system. ToC checksumming and signing cause little over-
head, even for large ACs, and this increases linearly with the size of the AC. This is
because the checksum (SHA-1 hash) generation has to take place over every byte of all

7 Performance measures with an unencrypted (NULL) SSL channel show that Java performance
in the unencrypted case comes close to the performance of theC++ kernel in the same scenario.

22 Guido J. van ’t Noordende et al.

Table 1.Finalize micro benchmarks (in milliseconds) for resp. the C++ kernel and the Java kernel.

C++ Java
500kb1mb 5mb 500kb1mb 5mb

checksum 9 19 98 36 74 70
sign 51 52 70 5 16 51
zip 133 248 1356 145 303 1449

sync 166 238 922 179 401 1623
total 359 558 2446 442 878 3854

segments. Creating a zip file and synchronizing it to disk cause substantial overhead,
because zipping requires that each segment is copied into the zip file, possibly after
compression. Synchronizing the resulting zip file to disk isalso rather expensive. Final-
ize times scale roughly linearly with the AC sizes for both the Java and the C kernel,
although finalize takes substantially longer on the Java kernel than on the C kernel.

As mobile agents may migrate often during their lifetime, ACfinalize and transfer
cost can increase the time for an agent to achieve its task considerably, and influences
scalability of the mobile agent middleware as a whole, whichis confirmed by expe-
riences with our own agent middleware systems. A straightforward optimization for
performance, is to have AOS ship segment files to another AOS kernel directly, without
zipping the files first, in an FTP-like manner. Another possible optimization is to let go
of the crash recovery assurance by means of the fsync system call.

4.3 AC Shipment Cost

AC shipment is composed of aship_ac primitive combined with await_ac prim-
itive at the receiving end, which returns after shipment is completed. Ship_ac takes a
finalized agent container, and ships it over an SSL connection as described above. After
receipt of the AC, the receiving AOS kernel extracts the agent’s zip file containing the
agent’s segments, and verifies the checksums in and the signature over its ToC. Only
after this verification, wait_ac returns. After an acknowledgement is received for all
shipped ACs, the timer is stopped. The ship_ac cost measuredthus includes both the
on-the-wire time and the extract/verify cost at the receiving end.

The total ship_ac costs including AC extraction and verification were measured for
AC sizes of 500 KB, 1 MB, and 5 MB containing identical segments of 5 KB random
binary data. The cost of extracting and verifying an AC afterit is received depends
primarily on the size of the AC. The times for ZIP extraction (default compression
ratio) and signature and checksum verification in the C++ kernel are 0.064, 0.127, and
0.734 sec. for 500 KB, 1 MB, and 5 MB, respectively. Extraction and verification in the
Java kernel takes substantially longer, namely 0.597, 1.033, and 3.472 sec., respectively.
Of these times, about 80–90% is spent on unzipping the AC.

Figure 3 shows the results for both the C++ kernel and the Javakernel for 1, 2, 4,
8 and 16 ship_ac calls at the same time. The figures show that AOS ship_ac calls scale
roughly linearly with concurrent use. The figures also show that the time needed to ship
an AC is more for the Java kernel than for the C++ kernel. This can be attributed in

A Common Base for Building Secure Mobile Agent Middleware Systems 23

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16

T
ot

al
 ti

m
es

 (
se

c)

#Threads

1m Java
500k Java

1m C++
500k C++

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12 14 16

T
ot

al
 ti

m
es

 (
se

c)

#Threads

5m Java
5m C++

Fig. 3. Elapsed time to ship 1–16 Agent Containers of 500 KB resp. 1 MB(left), and 5 MB for
both the Java and the C++ kernel.

part to the fact that cryptography (for encrypting the connection) and AC extraction and
verification take longer in Java than in C++.

5 Related Work

Comparison of AOS with other related work should be done withthe design require-
ments of AOS in mind. As AOS is not an agent middleware itself,but rather a middle-
ware building block, comparing AOS with full functional middleware can only be done
partially by considering the leading design requirements.

The FIPA standard specification includes a series of documents describing the func-
tionality and operation of agent middleware. FIPA compliant agent middleware can
interoperate which each other, e.g., agents can exchange messages, interact with, and
reason about agents on other middleware. One of the most widely used FIPA compliant
agent middleware is JADE [1]. The latest middleware design (version 3.5 as of today)
is modular in design and many parties (universities and companies) have contributed to
JADE. The middleware is implemented in Java and supports a Java API for agent devel-
opment. It is a complete self-relying system, with integrated location and yellow pages
services. This is different from the AOS perspective to agent middleware, where ser-
vices can be arbitrary location or yellow pages services such as DNS or LDAP servers.

Ajanta [4] is designed to include a number of security primitives and architec-
ture features to protect both the host and the agent from malicious actions. It includes
amongst others a similar concept as the agent container in AOS, allowing for an audit
trail mechanism resembling the one outlined in this paper and in [10]. However, Ajanta
is completely Java-based and is not designed to incorporateor interact with other soft-
ware components or services.

The Tacoma [3] project focuses on operating system support for mobile agents. In
that respect, it has many similar design goals as AOS by providing abstractions for, in
particular, data storage and agent mobility. Although it also provides a simple container
abstraction, called a “briefcase”, only very simple protection mechanisms were imple-
mented. Tacoma supports multiple programming languages for agents, in particular C
and Tcl/Tk.

24 Guido J. van ’t Noordende et al.

The MadKit agent platform architecture [2] aims to provide ageneric multi-agent
platform. The architecture is based on a minimalist agent kernel decoupled from specific
agency models. Although there are similarities with the design goals of the architecture
model with AOS, the design and implementation is quite different. The aim of MadKit is
to allow a developer to implement its own agent architectures. Basic services like mes-
sage passing, migration, monitoring, or management, are provided by platform agents.
MadKit comes with a set of “containers”, realizing different execution environments
for running an application. Alternatively, AOS aims to provide a layer for constructing
different agent middleware, and is not directly used by agents.

6 Summary

This paper discusses the design requirements, implementation, and performance of the
AOS kernel. AOS is a portable middleware building block specifically aimed at con-
structing mobile agent middleware systems. It can be used bydifferent MAM pro-
cesses, possibly of different users, independently, whereeach such process may be
implemented in a different language. Programming languageflexibility is facilitated
by the use of different RPC dispatchers, each providing a method invocation interface
suitable for a specific language. The AOS design allows for secure sharing of a single
AOS kernel between different middleware processes: it provides effective software fault
isolation and safety by separating resources created by different middleware processes.

AOS provides a minimal set of primitives that are general to mobile agent systems,
in particular for agent code and data storage, agent transport, and for communication
between mobile agent middleware components. AOS provides basic security services
which can be used by higher-level middleware layers to construct more elaborate se-
curity, such as authentication mechanisms and secure agenttransport and auditing of
mobile agents. AOS does not impose a specific model on the agent middleware.

Two implementations of AOS have been built and tested for interoperability. Per-
formance measurements of the AOS kernel were shown in this paper, which show that
AOS performs reasonably well, with noticeable differencesbetween the Java and the
C++ kernel. The C++ kernel outperforms the Java kernel for most tests, primarily due
to the fact that C is more efficient than Java for tasks such as cryptography,which is used
throughout the AOS kernel. On the other hand, Java provides better portability, and the
Java kernel has been used to run the AgentScape mobile agent platform on Linux, So-
laris, Mac OS X, and Windows systems. The C++ kernel is currently only available for
Linux and Solaris platforms. Both implementations of AOS were shown to scale well
with respect to concurrent usage by middleware systems for communication and trans-
port of Agent Containers, which is important when using AOS to construct large-scale
distributed mobile agent systems.

Acknowledgements

A number of colleagues have contributed ideas and helped to code parts of the AOS
kernel. The authors would like to acknowledge Etienne Posthumus, Patrick Verkaik,
Arno Bakker, David Mobach, and Michel Oey. Maarten van Steenand Niek Wijngaards

A Common Base for Building Secure Mobile Agent Middleware Systems 25

are acknowledged for early contributions to this work. Thisresearch is supported by the
NLnet Foundation,http://www.nlnet.nl

References

1. F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with a FIPA-
compliant agent framework.Software – Practice and Experience, 31(2):103–128, 2001.

2. Olivier Gutknecht and Jacques Ferber. The MADKIT agent platform architecture. InPro-
ceedings of the International Workshop on Infrastructure for Multi-Agent Systems, pages
48–55, Montreal, Canada, June 2000.

3. D. Johansen, R. van Renesse, and F.B. Schneider. Operating systems support for mobile
agents. InProceedings of the 5th Workshop on Hot Topics in Operating Systems, pages
42–45, Orcas Island, WA, May 1995.

4. N. Karnik and A. Tripathi. Security in the Ajanta mobile agent system.Software – Practice
and Experience, 31(4):301–329, April 2001.

5. D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating key management
from file system security. InProceedings of the 17th ACM Symposium on Operating Systems
Principles, pages 124–139, 1999.

6. N. J. E. Wijngaards; B. J. Overeinder; M. van Steen; F.M.T.Brazier. Supporting Internet-
Scale Multi-Agent Systems.Data and Knowledge Engineering 41(2-3), 2002. pp. 229-245.

7. N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth, G. A. Hill, R. Jeffers, T. S. Mitrovich,
B. R. Pouliot, and D. S. Smith. NOMADS: Toward a strong and safe mobile agent system. In
Proceedings of the Fourth International Conference on Autonomous Agents, pages 163–164,
Barcelona, Spain, June 2000.

8. Anand R. Tripathi, Tanvir Ahmed, and Neeran M. Karnik. Experiences and future challenges
in mobile agent programming.Microprocessor and Microsystems, 25(2):121–129, April
2001.

9. G. J. van ’t Noordende, A. Balogh, R. Hofman, F. M. T. Brazier, and A. S. Tanenbaum.
A secure jailing system for confining untrusted applications. International Conference on
Security and Cryptography (SECRYPT), Barcelona, Spain, July 28-31 2007.

10. Guido J. van ’t Noordende, Frances M. T. Brazier, and Andrew S. Tanenbaum. Security in a
mobile agent system. InProceedings of the First IEEE Symposium on Multi-Agent Security
and Survivability, pages 35–45, Philadelphia, PA, August 2004.

