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Abstract

In this paper we use Monte Carlo simulation to stigate the impact of effect size heterogeneity on
the results of a meta-analysis. Specifically, wdrads the small sample behaviour of the OLS, the
fixed effects regression and the mixed effects restamators under three alternative scenarios-of ef
fect size heterogeneity. We distinguish heterodgniai effect size variance, heterogeneity due to a
varying true underlying effect across primary ségdiand heterogeneity due to a non-systematic im-
pact of omitted variable bias in primary studiesr @sults show that the mixed effects estimatdo is
be preferred to the other two estimators in th& fivo situations. However, in the presence of oamd
effect size variation due to a non-systematic impdomitted variable bias, using the mixed effects
estimator may be suboptimal. We also address tpadtrof sample size and show that meta-analysis
sample size is far more effective in reducing mestmator variance and increasing the power of hy-
pothesis testing than primary study sample size.
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1. Background

Meta-analysis is a form of research synthesis iichvpreviously documented empirical results
are combined or re-analysed in order to increasepthwer of statistical hypothesis testing.
Some proponents maintain that meta-analysis cavidveed asquantitativeliterature review
(Stanley, 2001), while others assert that metayaigatan be used to pinpoint aspects critical to
the future development of theory (Goldfarb, 1996sénthal and DiMatteo, 2001). The method
was originally developed and applied in experimemtadicine, but soon extended to other aca-
demic areas. Meta-analysis is currently also ggimgiround in economics. Important contribu-
tions in this field are, among others, Smith andhty(1995), Card and Krueger (1995), Gorg
and Strobl (2001), Bateman and Jones (2003) andha&baumer and Winter-Ebmer (2005).
Although there has been a wide increase in itsiegtpdn, meta-analysis is still surrounded with
various methodical difficulties. For example, iroBomics, data constraints as well as the desire
to be ‘different’ lead to varying sets of contrariables across studies, inducing omitted vari-
able bias in at least a subset of the existing eoapistudies. Moreover, since the true data gen-
erating process is most likely unknown, differeffee size measures are reported in primary
studies and these are pooled in a meta-analysiglsam Koetse et al. (2005) Monte Carlo ex-
periments are used in order to investigate theemprences of these two particular problems.

In this study we provide a more general analysis @m to analyse the impact of effect
size heterogeneity on the results of a meta-arsal$giecifically, we investigate heterogeneity in
effect size variance, heterogeneity due to randariation of the true underlying effect across
primary studies, and heterogeneity due to a notestic impact of omitted variable bias
across primary studies. The first problem leadsntwerent heteroskedasticity in the meta-
analysis sample, with potential consequences faa+@stimator efficiency. The differences be-
tween the latter two issues is subtle and will Iseubsed in detail in the next section. We ad-
dress the small sample behaviour of three estimatoder these three situations. We first use a

simple OLS estimator, which does not in any waytrfor effect size heterogeneity. The sec-



ond estimator is the fixed effects regression estimwhich incorporates heterogeneity in effect
size variance by weighting the meta-analysis dath tie standard error of the estimates. The
third and final estimator is the mixed effects mstior, which not only incorporates heterogene-
ity in effect size variance, but also accountspotential random variation of the true underlying
effect by estimating the variance of the underlyprgulation. We use the bias, mean squared
error and size and power as indicators of estingadiormance.

The remainder of this paper is organised as falowhe next section discusses three
sources of effect size heterogeneity in more deSattion 3 describes the experimental design,
while in Section 4 we present and discuss in détailsimulation results. Furthermore, in Sec-
tion 5 we systematically increase the sample sfzboth the primary studies and the meta-
analyses, which gives us the opportunity to draierences on the asymptotic properties of the

estimators. Section 6 concludes.
2. Sources and characteristics of effect size heterogeneity

Heterogeneity in effect size precision and randamation in the true underlying effect across
primary studies may have substantial consequerncebd results of a meta-analysis. To illus-
trate the potential problems, [& be the estimate of the true effect sizefrom primary study

s. This estimate is generally assumed to be norndgdlyibuted, such that:
Ts ~N (95'02'5) ' (1)

wherea? is generally referred to as the within-study vac@nwithin-study variance generally

varies across primary studies, causing heteroskeityasn a meta-analysis sample. Important
sources of heterogeneity in within-study varianoe differences in the sample sizes used in
primary studies and differences in model specificet and data type. Ultimately, the conse-
guences of heterogeneity in within-study varianoetiee results of a meta-analysis are poten-
tially serious. Crucial is the fact that, assumangtandard OLS estimation, effect sizes with a

higher variance get as much weight as effect sigtsa lower variance. Therefore, OLS is not



efficient, i.e., does not attain the minimum estimdavariance, and the variance estimator is bi-
ased. The optimal way to correct for this problentoi weight the effect sizes with their respec-
tive variances. Since the actual effect size vagan unknown in practice, meta-analyses com-
monly use the effect size variance estimated bytheary model, which is a good approxima-
tion unless sample sizes in primary studies arepmianally small (see Hedges, 1994, p. 287).
A second problem is related to the characteristi¢se true underlying effect siZy . After the
systematiovariation in effect sizes is controlled for by linting dummy variables in the meta-
model specification, basically two assumptions loa mature of the remainingpn-systematic
effect size variation exist. An often used assuampis that effect size variation is due solely to
sampling error in the underlying primary studiesd ahat the true effect siz@, is constant
across primary studies, i.6, = 0. An alternative assumption is that the remainingaim is
partly due to a random variation of the true unded effect size across primary studies, such

that:
0, ~N(8,7%), )

wheret? represents the variance of the underlying popuiatienerally referred to as the be-
tween-study variance. Third, a difficulty assodateith non-systematic variation in a meta-
analysis sample is that it is unclear a priori Wketit is due to random variation of the true ef-
fect across primary studies, or due to a non-syaienmpact of misspecifications in primary
studies. For instance, it is very likely that thashin effect sizes due to omitted variables in pri
mary studies is different for every primary studyis means that part of the omitted variable
bias is systematic and may be picked up by a duwemiable, and that part of the bias in the
meta-analysis sample is random. The difference detwandom variation due to omitted vari-
able bias and random variation due to a randomingyue underlying effect is not the fact
that the source of the random variation is differém fact, after controlling for the systematic
part of the effect size variation, the result irithsituations is a random effect size distribution

around zero. The difference lies in the fact tlzaidom variation of the true underlying effect



causes randomness of each effect size in the matgs&s sample, whereas random variation
due to omitted variable bias only causes randomoksffect sizes from misspecified primary
studies. Since this may have serious consequencekef optimal weight structure of a meta-
estimator, our goal is to investigate whether e sources of random effect size variation have

different consequences for the results of a mesdyais.
3. Experimental design

The data generation process (DGP) of our simulagixercises follows closely the DGP of

Koetse et al. (2005), and consists of four stepaegating the primary data; estimating the pri-
mary models; performing the meta-analyses usingtienated effect sizes and characteristics
of the primary studies as inputs; analysing thellssaaple performance of the meta-estimators.

These four steps are discussed in detail bélow.
3.1 Generating the primary data
The true underlying primary model is an unrestddB®bb-Douglas function of the form:
y=¢& X 2 &, (3)

wherey is a stochastic variat&, andz are exogenous variables, B, andp, are parameters,
ande is an error term. In our modeB, is the parameter of interest, i.e., the true uyiteglef-
fect. We draw B, randomly from a normal distribution with megnand between-study vari-
ancet?, and setu equal to 1 and 0 in order to analyse the casesawithwithout true effect.
We set botto and B, equal to 1, while the error termis normally distributed with mean 0 and
varianceo”. Furthermore, the sample size of the primary maiéiked at 500 and the number
of replications for each primary study combinatisrb,000. The variablg is generated, once,

according to:

! The computer programs used for the analyses inpdyier are written in Gauss 8.0, and are available
upon request from the authors.



x=e’, (4)

whered is drawn from a uniform (0,1) distribution. In orde be able to induce omitted vari-

able bias in a primary study we relat® z by generating according to:
z=xX¢é, (5)

whereA is a parameter ang is an error term drawn from a uniform (0,1) disttion (, 9
ande are independent). Note that the potential biasdadun the estimate @, whenzis ex-
cluded from the primary model does not only inceeadth the correlation coefficient, but also
with the variance of (see Koetse et al., 2005). Obviously, whenO0, the correlation between
x andz is zero, implying that the bias ffy whenz is excluded from the primary model is zero
as well. However, when we increase the valua dfoth the correlation betweerandz and the
variance ofz are increased, thereby invariantly increasingoilas in the estimate @,. In fact,
the bias is proportional th.

The main issues analysed in this paper revolverar@ffect size heterogeneity. First, we
increase heterogeneity in within-study variancethi@error term in primary studies. This error
term is normally distributed with mean 0 and vac&a?, which we vary systematically be-
tween 1 and 10 with increments of 1. Second, wesdtigate the cases where the true effect
size3, is both fixed and random across primary studieshénformer caseg, is fixed and con-
stant within each meta-analysis, so we set betwaaty variancea? = 0. In the random effect
case we set? >0. Note that in this cas# is fixed within a meta-analysis, implying not that
B, is fixed, but that the distribution from which theie underlying effect is drawn is identical
for each effect size within a single meta-analy§igerefore, in order to investigate the impact
of between-study variance on the results of a raptaysis, we vary® systematically across
(not within) meta-analyses, varying its value betw® and 2 with increments of 0.2. The
third issue deals with effect size heterogeneity ttua non-systematic impact of omitted vari-
ables across primary studies. We implement thigidy systematically varying, the parame-

ter that determines the amount of bias due to ethitarriables in a primary study. Specifically,



we drawA from a normal distribution with mean 1 and varianée The latter takes on a value
of 0 when the effect of omitted variables is purgygtematic, and a value of 4 when part of the
impact of omitted variables is random. Further ifletan the DGP’s that are used to analyse the

three issues described above are given in theareiesuibsections in Section 4.
3.2 Estimating the primary models

Our approach is different from other Monte-Carlodéés in meta-analysis (see, e.g., Oswald
and Johnson, 1998; Sanchez-Meca and Marin-Martk®%7, 1998; Bijmolt and Pieters, 2001;
Field, 2001; Kuhnert and Bohning, 2007) in thatexglicitly incorporate the stage of tipei-
mary data analysisBesides the fact that this allows us to expiidititroduce omitted variable
bias in primary studies, we may also introducereronis effect size operationalisations and as-
sess their impact on the results of a meta-analggscifically, we use the data generated by the
model in equation (3) to estimate a log-linear nhoddich is mathematically equivalent to the

model in (3), and an alternative linear mot&he log-linear model is given by:
In(y)=&+[§0In(x)+f31|n(z)+§. (6)

We estimate this model by OLS, which produﬁesﬁ0 andfi1 as estimates ad, 3, andp,, re-
spectively. The parameter of interest is the doldmeelasticity ofin(y) onIn(x), given by
n= fio. This elasticity is correctly estimated given data generating process; by construction,
it is constant across the entire primary data®™e. standard error of the elasticity is simply the
standard error ofio. In order to induce omitted variable bias we wee primary model specifi-
cations, i.e., the correctly specified primary mddesquation (6) and a misspecified version of
this model from which Irg) is excluded as an explanatory variable. Therlattedel induces
omitted variable bias iﬁo whenA # 0. An alternative elasticity estimate is obtainedelstimat-

ing the linear primary model specification, whigads looks as:

2 Of course, the choice of the true underlying masleather arbitrary, i.e., we also could have emoshe
linear model as the true underlying model. Howewer,see no reason why the results presented later o
in this paper would change when our choice of tnogerlying model would have been different.



y=a"+Box+plz+&" @)

Using OLS to estimate this model produces fig andf&lD as estimates af, (3, andf,, respec-
tively. In this linear model we estimate the ingitally non-linear relationship betwegnx and

z, and compute a point-elasticity at the sample mean say primary studym, as

N :@Em(imlyn). In reality the estimation of different effect simeeasures may occur fre-
quently, simply because the true underlying moslelriknown and researchers may assume an
erroneous model specification. The argument fongughe ratio of mean values as the evalua-
tion point is that most primary studies that estama point-elasticity do this at the sample
mean® To calculate the standard error of this elastioity use the Delta method (see Greene,
2000, p. 359-360), which in this case means that foimary study m we
havesef,, )= se[EEm )X ¥, )As before, in order to induce omitted variablesshige use the
model specification in equation (7) and a spedificafrom whichz is excluded as an explana-

tory variable. The latter model induces omittedalale bias irfig whenA #0.
3.3 Specification of the meta-estimators

The primary aim in this paper is to compare the Iss@mple performance of three meta-
estimators under the three regimes of effect siterhgeneity introduced in subsection 3.1. The
elasticities produced by the primary model estioratiare used as the dependent variable in our
meta-analyses. The amount of primary study misfipation in a meta-analysis sample is set at
a moderate level; both the proportion of point-&téges and the proportion of effect sizes from
studies with omitted variables bias in the metahais is fixed at 50%. We furthermore per-
form separate analyses fpr=0 and p=1. Within these restrictions the elasticities are-ra
domly sampled from the 5,000 primary study repiaad. Finally, the meta-analysis sample

size is 50 and the number of meta-analysis reicats equal to 10,000. Our first and simplest

3 A common alternative is to use the median of thta @nx andy, but, given the fact that the choice for
the point of evaluation in the data is arbitraryateertain extent, other points in the data-sewalid as
well.



model is a meta-regression model with dummy vaeslih order to correct for primary study

misspecifications. This model is given by:
N, =8+ 5D +8,DY +E, ®

wheren, is a vector of elasticitie)?® is a dummy variable equal to one if the elasticty
point-elasticity,D;" is a dummy variable equal to one if the primarydgtis estimated without
z among the explanatory variables, aﬁﬁd 81 and8§ are the estimated parameters. The model
is estimated by OLS, witﬁ?, an estimate of the true underlying effget FurthermoreéslD
and8§ are the estimated parameters on the dummy varitidéshould pick up the systematic
impact of point-elasticities and omitted variablash

We subsequently test the performance of the fiXéetts regression estimator and the
mixed effects estimator, which are used to accdantinherent heteroskedasticity in meta-
analysis. The way in which these estimators acctamthis is by weighting the meta-analysis
data with a measure of effect size precision, dlealimeasure being the within-study variance.
However, since the true within-study variances wm&nown, the estimated variances of the
primary study effect sizes are generally used fis purpose. The fixed effects regression

model is given by (see Sutton et al., 2000a):
N, /w, =8 (1 w) + 87 D%/ w) +85( DY/ w) + &2/ w, 9)

wherewy is the weight of the effect size from stuslygiven by the standard error of the elastic-
ity. The transformed model is estimated by OLSdping Sg as an estimate of the true under-
lying effect u, andSl2 and8§ as parameter estimates on the dummy variablese Siecestima-

tor is slightly different from the standard fixeffexts regression estimator in meta-analysis, a
moadification of the resulting standard errors isassary (see Hedges, 1994). The correct stan-
dard errors are given tge’= sed/msr where se is the standard error of the estimated meta-
effect given by the computer program, amdr is the mean squared residual of the meta-

analysis (see Hedges, 1994, p. 296).



The third meta-model is the mixed effects model. Thedifice between this model and
the fixed effects regression model is that the lattarmass that the true underlying effect size is
a fixed effect, whereas the mixed effects model assuma¢dtte true effect size varies between
primary studies and is drawn from a population of effect sidhs meanu and between-study
variancet®. The mixed effects model makes an explicit distinction betvwehin-study vari-
ance and between-study variance, which has obvious conseqdendbs model’'s weight
structure. Since the between-study variarfcis unknown it has to be estimated by the model.
For this purpose we use a maximum likelihood estimator (seenSet al., 2000; Brockwell and

Gordon, 2001). The log-likelihood is given by:

LogL = —O.Si[(ns -5 -5°DP* —SgDS"")Z/(fZ - wi) +In (f 24 W§):| , (10)

s=1

whered?, &, & andi’ are the estimated parameters. The variable of int&estan estimate
of the mearu of the underlying population of true effect sizes, ahi an estimate of the ef-
fect size population varianag. Observe that the model in equation (10) reduces to the model

in equation (9) when® =0.*
3.4 Assessing small sample performance

The parameters of interest are the true underlying edfeety and the meta-estimate%, 83
and 83. The central issue is now how well the meta-estimatamever the value of the popula-
tion effect sizeu, in terms of both size and statistical significance, irpttesence of effect size
heterogeneity. Effect size heterogeneity may affect tetasestimates on several dimensions.
We therefore use three different performance indicators totigatsthe impact. First, the bias
(BIAS) of the estimates measures the difference betweeavitimge value of the estimates

andp. Though the impact of misspecifications on the effect sizes merage out, in which

* In this paper we induce systematic variation ia tinderlying effect size due to omitted variablasbi
and different elasticity measures. We thereforetheéixed effect regression modahd themixed effects
model These models’ counterparts, i.e., models thatirage that there is no systematic variation, are
generally referred to as tfized effects modeind theandom effects modelespectively.



case estimator bias is equal to zero, the variance @stiteators may still be substantial. We
therefore also use the mean squared error (MSE) of theatstias a performance indicator.
This second indicator combines the bias and the variance oftthmatess, and measures the
average distance of the estimate to the true parameterthie smaller the MSE, the closer the
estimate will be to the true parameter, on average. Titeahd final indicator is the proportion

of statistically significant results (SIG) of the metstimators. Formally, fo%é these indicators

are given by:
BIAS(3}) = E(55 -8, 2%2(810—p)r , (11)
MSE(3}) = E(8} —p)2 . BlAs(Esg)2 + va(3}) :éi(&g—p)z , (12)
r=1 r
siG() :%ZZ' (It >t - (13)

wherer = 1, 2, ...,Rindexes the meta-analyses replicatidirs.equation (13) is an indicator
function equal to one if the absolutgalue of the meta-estimate is greater than a prefggci
critical t-value, denoted by, , and 0 otherwise. We apply two-sided significance testsyesi
5% significance level. Whep =0 andH,: p =0, we are interested in the probability of a Type
| error, i.e., the probability that an estimator erronBorejectsH,. Therefore, whep =0, SIG
corresponds to the proportion of Type | errors. From now on weefdr to this as the size of
the statistical test on the meta-estimates. Alterngtivehenp =1, and under the same null-
hypothesis, we are interested in the probability of a Typertr, i.e., the probability that the
statistical test on the meta-estimate erroneously &segp When p =1, SIG corresponds to (1
— probability of a Type Il error), or the power of the istatal test. Since erroneously rejecting
the null-hypothesis requires a considerably larger confidencevahttran erroneously accept-

ing the null-hypothesis, the two indicators are not recipraeadlpovide different types of in-

®The performance indicators fﬁﬁ and 83 are obtained by replacinﬁ; by Sé and 83 in equations (11),
(12) and (13).
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formation on statistical significance. This is tim@st important reason why we distinguish be-
tween a zergu =0) and a non-zer@u =1) true underlying effect size. However, the two tests
are clearly related, since decreasing standardsesimultaneously cause a decrease in size and

an increase in poweteteris paribus
4. Simulation results

In this section we analyse the performance of lineet meta-estimators under various forms of
effect size heterogeneity. In subsection 4.1 wedyaaahe impact of increasing degrees of het-
eroskedasticity in the meta-analysis sample. Weesddthe consequences of increasing be-
tween-study variance in subsection 4.2, while sciime 4.3 investigates the impact of non-

systematic effects of omitted variables in primstydies.
4.1 Increasing heterogeneity in within-study variance

In this subsection we analyse the impact of inénggprimary study error variance and of in-
creasing the heterogeneity of primary study ereosiance (heteroskedasticity) on the results of
a meta-analysis. In the experimental design we waly the primary study error variance and
keep constant all other parameters. Specificalgtwben-study variancé =0 and omitted
variable bias is constant across primary studiesAi=1 andu® =0, in which case the mixed
effects estimator should reduce to the fixed e$feegression estimator. Our design us such that
primary study estimator variance is comparablectaa practice. Primary studies are estimated
with an error variance ranging from 1 to 10, witlkrements of 1. For these error variance val-
ues, correctly specified primary studies displagrageR? values ranging from 0.38 to 0.06, re-
spectively. In our opinion the$® values are reasonable compared to the values faumdny
areas of economic research.

In the figures below the vertical axis represe¢hésbias and mean squared error of the es-
timators and the size or power of the statistieaid on the meta-estimates. Along the horizontal

axis we measure the degree of heteroskedasticiéydidtinguish between ten cases. The first
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case is the case with no heteroskedasticity; Btefkizes in the meta-analysis are drawn from
primary studies with error variance 1. From theoselccase up to the tenth case we systemati-
cally increase the average error variance andelyee@ of heteroskedasticity, by systematically
increasing the proportion of effect sizes drawmirstudies with a higher error variance by
10%. In Table 1 we present the resulting propostioheffect sizes drawn from studies with a
prespecified error variance for each of the teregablote that for each case both the average

effect size variance and the degree of heteroskeitaare higher than in the previous cases.

<<< Insert Table 1 >>>

In Figure 1 we present the performance of the thstienators on the three indicators for the ten
cases, representing, simultaneously, an increai@geee of heterogeneity in within-study vari-
ance and an increasing average error variancefiXé effects regression and the mixed ef-
fects estimator produce identical result, with almifference in the size of the statistical tests
on the meta-estimates. Apparently, the mixed effewddel correctly estimates a zero between-
study variance, in which case it reduces to thedfigffects regression estimator. Considering
the fact that the horizontal axis also representserease in the average error variance of pri-
mary studies, the figure shows that increasingceeze variance has no systematic impact on
the bias of the meta-estimate, which is in linehwhieory. It also systematically increases the
variance of all three estimators, which is cleahtfoom the increase in the mean squared error
and from the decrease in power. The increase &ufeffects regression and mixed effects vari-
ance is limited, however.

Most interesting is that under increasing hetezdsakticity the variance of OLS deterio-
rates rapidlyvis-a-visthe variance of the fixed effects regression dednhixed effects estima-

tor. However, judging by the size, this is morentitampensated by the fact that OLS produces

12



wider confidence intervalé The power, on the other hand, is not affected. idoing the stan-
dard errors of effect sizes in a meta-analysislpdes the use of fixed effects regression and
mixed effects models. In conclusion, since OLSighly inefficient under effect size heteroge-
neity, not having the standard errors of effecésiin a meta-analysis may have serious conse-

quences.

<<< Insert Figure 1 >>>

4.2 Increasing between-study variance

In this subsection we introduce a random effea sizd systematically increase the variance of
the random effect size population. Specifically, mwerease between-study variancefrom 0
to 2 with increments of 0.2. With respect to heskealasticity we replicate the situation in the
tenth case in the previous subsection, i.e., maxirhateroskedasticity and average error vari-
ance. Values of other variables and parametersimemnahanged. The results of increasing be-
tween-study variance are presented in Figure 2.vEnical axis again measures the bias and
mean squared error of the estimators and the sipewer of the statistical tests on the meta-
estimates. The horizontal axis measures the alesedliie of the between-study variance.
Increasing between-study variance has no systenmapiact on the bias while estimator
variance increases substantially, judged by theease in mean squared error and decrease in
power for each of the three estimators. Althoughfiked effects model uses erroneous weights
when between-study variance is larger than zemeffects of this weight structure on estima-
tor variance are not clear priori (see Koetse, 2006, p. 65). Our results clearlyvstiat the
variance of the fixed effects regression estimatoreasewis-a-visthe mixed effects estimator
variance. Note also that the size associated WélOLS and mixed effects estimators is around
its nominal level, and that the increase in sizoeisted with the fixed effects regression model

is a result of the increase in the mean squareat arrd the narrow confidence intervals pro-

® See also Higgins and Thompson (2004) for an aisabfsType | error rates omon-relevanttudy char-
acteristics under various sources of effect sizerbgeneity.
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duced by this estimator. The fact that the powsbpeiated with the mixed effects model dete-
rioratesvis-a-visits fixed effects counterpart, is a direct restilthe fact that the latter estimator
produces substantially narrower confidence intsrualder increasing between-study variance.
A somewhat surprising result at first sight istttkee mean squared error of and the size
associated with the OLS estimator slowly convergeheir mixed effects counterparts. Al-
though this may seem strange, the result followesctly from a comparison of the weight struc-
tures used in the estimators. When between-studginge increases, its magnitude relative to
within-study variance increases as well. As a cqusece, within-study variance becomes less
and less important in the weight structure of threh effects model. The central point is now
that between-study variance is equal for each efiee in the meta-analysis, implying that, un-
der increasing between-study variance, the weighttsire of the mixed effects model tends
towards a structure in which each effect size getequal weight. Since the OLS estimator
gives each effect size an equal weight by definjtibe estimates produced by the two estima-
tors converge under increasing between-study vegiafAlso the size associated with OLS is
smaller than its mixed effects counterpart. Sitngerhean squared error of the OLS estimator is
higher in all circumstances, this implies that Od@hfidence intervals are substantially wider

than mixed effects confidence intervals.

<<< Insert Figure 2 >>>

4.3 Non-systematic impact of omitted variable bias

As discussed in Section 2, effect size variatioy b®caused by other factors than pure random
variation of the true effect across primary studlgp till now we have assumed that the bias
due to omitted variables, if present, is constanbss primary studies. The necessary conditions
for this assumption to hold in reality are impldalsiat least. In this subsection we therefore al-
ter this assumption. For each primary-study repboawe draw A, the parameter that deter-

mines the amount of bias due to omitted variabigeimary studies, from a normal distribution
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with mean 1 and variance®, which we fix at 4. This means that part of theitted variable
bias is systematic, which should be picked up lBydammy variableD®, and that part of the
bias in the meta-analysis sample is random. THerdiice between random effect size hetero-
geneity due to omitted variable bias and the raneétfect size heterogeneity introduced in the
previous subsection is not due to the fact thasthaces of random effect size variation are dif-
ferent. In fact, after controlling for the systeingtart of the effect size variation, the result in
both situations is a random effect size distriouttwound zerd.The difference lies in the fact
that random variation of the true underlying effeatises randomness of each effect size in the
meta-analysis sample, whereas random variationa@wenitted variable bias only causes ran-
domness of effect sizes from misspecified primandies. Potential differences between the
two sources of random effect size variation sholédefore show when we vary the proportion
of effect sizes with omitted variable bias in thetasanalysis sampfewe systematically in-
crease this proportion from 0.05 to 0.95 with imeceats of 0.1. We induce maximum het-
eroskedasticity, set between-study variarfce 0, and meta-analysis sample size is 150 for
purposes of presentation (results are identicakfoaller and larger sample sizes). Values of
other variables and parameters remain unchangedl/tRare shown in Figure 3.

The bias of the OLS and mixed estimators is affiéaightly when the true underlying
effect is equal to one, and OLS variance is sulistnhigher than the variance of the other
two estimators. For relatively small proportionseffiect sizes with omitted variable bias in the
meta-analysis sample, the mixed effects varianctightly below the fixed effects regression
variance. However, when the proportion of biasddcefsizes increases above the 50% level,

the variance of the mixed effects estimator starimcrease relative to its fixed effects regres-

" The systematic part of the variation under randdiect size heterogeneity due to omitted varialie b
is picked up byD®’, while under random variation of the true undewyieffect it is picked up by the
constant in the meta-model.

& Note that the results and patterns identifiechim previous subsection do not change when we ary t
proportion of effect sizes with omitted variablasi Therefore, if the patterns found in this sutiseare
dependent on this proportion, we can concludetti@two sources of random effect size variationehav
different consequences for the small sample pedaoa of the three meta-estimators.
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sion counterpart. Under this regime of effect $izéerogeneity, the mixed effects estimator er-
roneously assigns the estimated between-studynearito all estimates, and effect sizes from
correctly specified primary models get a weight tkaoo low. Finally, the size associated with

the fixed effects model is still substantially abdtie nominal level, whereas the power is again
superior to the power associated with the OLS anadneffects estimators, which decreases
rapidly at high proportions of effect sizes with itied variable bias in the meta-analysis sam-
ple. The latter can only be partly attributed tarereasing estimator variance, implying that the
estimated variance of both OLS and mixed effectsiisstantially upwards biased in these situa-
tions. Given the fact that the source of randoreatfize variation is not known empirical ap-

plications, our findings show that, under circumsts that are not uncommon in reality, using

the mixed effects estimator may not be optimal.

<<< Insert Figure 3 >>>

5. Impact of samplesize

Since both primary study sample size and meta-aisabample size may go to infinity, there
are two types of asymptotics to meta-estimators kdges and Olkin, 1985). Although the to-
tal sample size, i.e., the sum of all primary stadygnple sizes, may remain unchanged, primary
study and meta-analysis sample size may haveat#lerent effects on the results of a meta-
analysis. In this section we therefore analyse fastanator performance under increasing pri-
mary study and meta-analysis sample size.

First, we systematically increase the sample @izbe primary studies from 100 to 1000,
with increments of 100, and fix the meta-analysisigle size at 25. Second, we increase meta-
analysis sample size systematically from 25 to 2&€h increments of 25, and keep primary
study sample size fixed at 100. We thus can distgligbetween ten cases with varying primary

study and meta-analysis sample size, but with aalagumber of total underlying observations
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in each cas&This way we can clearly observe the differentiapact of meta-analysis sample
size and primary study sample size on the restiisneeta-analysis. For simplicity we only pre-
sent results for the mixed effects estimator, stheepatterns for the three meta-estimators are
identical. All primary studies have an error vadarf 5, i.e., there is no heteroskedasticity, and
between-study variance’® is equal to 2. We keep the impact of omitted \@eiebias fixed
across primary studies\(=1 and v> =0) and the proportion of effect sizes with omitteativ
able bias and point-elasticities in the meta-anmglyample is 0.5 in both cases. Results are pre-
sented in Figure 4.

The figure convincingly shows that increasing siaenple size of a meta-analysis is far
more effective in reducing the variance of thereatdrs and narrowing down the confidence
intervals. The reason for this result is that diéeies of effect sizes from their true underlying
value are more and more averaged out when the easizgl of the meta-analysis increases. Al-
though these deviations also decrease when thelesamp in a primary study increases, they
are averaged out to a far lesser extent when theleasize of the meta-analysis remains rela-
tively small. Of course, these results do not implgt the sample size of primary studies does
not matter for the outcome of a meta-analysisdoés (especially at very small sample sizes).
However, the results do show that relatively langgta-analyses with underlying primary stud-
ies with a relatively small number of observatians more efficient and produce narrower con-
fidence intervals than relatively small meta-anedysvith underlying studies with a relatively

small number of observations.

<<< Insert Figure 4 >>>

° For instance, in the first case, primary study lensize is 100 and meta-analysis sample size is 25
both situations, resulting in 2,500 underlying aladons. In the second to tenth case primary study
sample size increases with 100 under increasimggpyi study sample size, while meta-analysis sample
size increases with 25 under increasing meta-aisadgsnple size. Therefore, with each case the numbe
of total underlying observations increases witl0R,6nder both regimes.
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6. Discussion and conclusions

This paper uses Monte-Carlo simulation to investighe impact of effect size heterogeneity o

the results of a meta-analysis. Specifically, wdrass the performance of the OLS, the fixed

effects regression and the mixed effects meta-asirs under three sources of effect size het-
erogeneity, i.e., heterogeneity in effect sizearace, heterogeneity due to a varying true under-
lying effect across primary studies, and heterogidele to a non-systematic impact of omitted

variable bias across primary studies.

Our results show that increasing heterogeneitgfiect size variance has a detrimental
effect on the performance of the OLS estimator canexb to the other two estimators. Although
the bias is not systematically affected, espectiidyvariance of the OLS estimator deteriorates
vis-a-visthe variance of the other two estimators. Thisgoatthanges considerably when we
allow the true underlying effect to vary randombyr@ss primary studies. Increasing the vari-
ance of the population of random effect sizes imses the variance of all three estimator, but
especially the variance of the fixed effects estimawhich deteriorates rapidlis-a-visthe
variance of the other two estimators. Fixed effat$® has a downward biased variance estima-
tor and produces too narrow confidence intervatss Teads to a size that is way off and only a
slightly larger power. Alternatively, when randonffeet size variation is due to a non-
systematic impact of omitted variable bias, the edixeffects variance increases vis-a-vis its
fixed effects regression counterpart for increagingportions of misspecification. In addition,
although the size of test on the fixed effectsesgion estimate is still above the nominal level,
the power of the test on the mixed effects estirdateases rapidly for very high proportions
of misspecification. Since the source of randonedafkize variation is unknown in reality, our
findings show that using the mixed effects estimatcempirical applications of meta-analysis
is not uncontested.

Finally, meta-analysis sample size is far moreactiffe in reducing meta-estimator vari-
ance than primary study sample size. We show tret éor relatively small increases in meta-

analysis sample size, the quality of the outcoma afeta-analysis is substantially improved,
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even when effect size heterogeneity is high. Theiat factor here is that random effect size
deviations from the true underlying effect are aged out more and more under increasing
meta-analysis sample size. Therefore, althoughvéineus types of effect size heterogeneity
may have substantial detrimental effects on thellssample performance of meta-estimators,
effect size deviations from the true underlyingeeffaverage out at sample sizes that are com-

mon in practice.
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Table 1: Proportion of effect sizes from primamydses with a pre-specified error variance in ten di
ferent cases

Value of error variance

Case 1 2 3 4 5 6 7 8 9 10
1 100% -- -- -- -- - -- -- -- --
2 90% 10% -- -- -- - -- -- -- --
3 80% 10% 10% -- -- -- - -- -- --
4 70% 10% 10% 10% -- -- -- -- -- --
5 60% 10% 10% 10% 10% -- -- -- -- --
6 50% 10% 10% 10% 10% 10% -- -- -- --
7 40% 10% 10% 10% 10% 10% 10% -- -- --
8 30% 10% 10% 10% 10% 10% 10% 10% -- --
9 20% 10% 10% 10% 10% 10% 10% 10% 10% --
10 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%
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Figure 1: BIAS (top), MSE (middle), and SIG (botfofar the case where the fixed population effect
sizep =0 (left) andp =1 (right), against the degree of heteroskedastinithé meta-sample along the
horizontal axis t* =0 and v” =0). The different lines pertain to the OLS (whiteuacp), the fixed
effects regression (black square) and the mixezteffestimator (white triangle).
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Figure 2: BIAS (top), MSE (middle), and SIG (bot{pfor the case where the mean random effect
size u =0 (left) andp =1 (right), against between-study variancealong the horizontal axis in abso-
lute values (no heteroskedasticity anti=0). The different lines pertain to the OLS (whiteuatg),

the fixed effects regression (black square) andrtixed effects estimator (white triangle).
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sizep =0 (left) andp =1 (right), against an increasing proportion of effeizes with omitted variable
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Figure 4: BIAS (top), MSE (middle), and SIG (botfpfor the case where the fixed population effect
sizep =0 (left) andu =1 (right), against the total number of underlying @bstions (no heteroske-
dasticity andt® = 2). The different lines pertain to the mixed effegssimator under increasing pri-
mary study sample size (white square) and the nmeffettts estimator under increasing meta-analysis
sample size (black square). See main text for éurdletails.
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