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Introduction

The background of this thesis is the formalisation and verification of mathematical
reasoning, with or without the aid of a computer. This thesis presents a represen-
tation of mathematical structures as contexts in such a formalisation. The study
on representation of mathematical structures as contexts has led to a broader study
and formalisation of contexts.

Mathematics and mathematical logic

Mathematics is the science of expressing and studying the relationships between
quantities, magnitudes and more general abstract concepts. It also embraces logical
reasoning based on definitions, axioms, assumptions and rules for combining and
transforming primitive notions into more complex objects, relations and theorems.

When conducting a particular mathematical argument, one assumes a comfort-
able level of abstraction. A comfortable level of abstraction depends on the contents
and aim of the mathematical argument, on the expertise of the mathematician per-
forming the argument and on the expertise of his audience. It is established by the
choice of a collection of primitive notions, possibly from some generally accepted
primitive notions, and by the choice of a granulation degree of the reasoning steps.
The contents and the aim of an argument determine mainly the primitive notions,
while the expertise of the parties involved determines the granulation degree of the
reasoning steps.

The day–to–day mathematical practice is a human activity. Since to err is also
human, mathematical proofs are prone to contain errors.

The credibility of a mathematical argument can be enhanced by recognising
patterns of logical reasoning as independent from the contents of the argument and
by verifying that these reasoning steps are applications of some sound logical rules.
Here, a collection of logical rules are called sound if no contradiction follows from
the rules.

Ultimately, one can formalise mathematical arguments as follows. First, a lan-
guage of mathematical statements is agreed upon. This language formally represents
natural language sentences in an unambiguous way. Next, a collection of logical ax-
ioms (statements known to be true) and rules are singled out and verified to be
sound. When isolating logical axioms and rules, one preferably chooses a minimal
collection, from which other necessary statements can be derived. Finally, a math-

i
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ematical argument is translated into the formal language and it is verified that the
logical steps in the argument are performed in accordance with the logical axioms
and rules.

Formalisation of mathematical reasoning has been studied as early as in ancient
Greece. In this thesis we will focus on the Brouwer–Heyting–Kolmogorov construc-
tive interpretation of mathematical arguments (see for example [TD88]).

Formalisation of mathematical logic in type theories

Type theories provide a framework for formalisation of mathematical reasoning.
More precisely, in type theories a deductive method of reasoning can be formalised,
in which an argument is considered true if at each stage of the argument the current
statement follows logically from the statements that preceded it.

Technically, type theories deal with terms, types and a typing relation which
relates them. If a term M and a type τ are related by the typing relation, which is
denoted by M : τ , then we say that M is of type τ . The typing relation is generated
from a collection of typing rules.

In type theory, mathematical statements can be represented as types and their
proofs can be represented as terms. By understanding types as mathematical state-
ments and terms as proofs, the typing relation M : τ establishes when M represents
a proof of τ . In this perspective on type theories, the typing rules represent elemen-
tary logical reasoning steps. This correspondence between logic and type theories
is called the propositions–as–types principle. It is justified by what is called the
Curry–Howard–de Bruijn isomorphism.

In this thesis we concentrate on the type theories based on lambda calculus,
which are called typed lambda calculi. There exist many typed lambda calculi,
which correspond to different logics. We shall concentrate on Barendregt’s lambda
cube (see [Bar92]), which presents eight different typed lambda calculi in a uniform
way. It may be noted that some logics can be coded into other, possibly weaker,
logics; we shall not consider such codings in this thesis.

In order to give a flavour of how mathematical reasoning can be formalised
within a certain typed lambda calculus, we treat here an example in the simply
typed lambda calculus λ→. The simply typed lambda calculus λ→ may be employed
to formalise the first-order (constructive1) propositional logic with one logical con-
nective, namely the implication →.

The types of λ→ are built from propositional variables P,Q,R, . . . and by forming
implications τ → σ. The implication τ → σ is interpreted as the formalisation of
the natural language statement saying ‘if τ then σ,’ or equivalently ‘τ implies σ.’
In general, the types formed depend on the typed lambda calculus used which
corresponds to different logics.

In λ→, terms are formed as in typed lambda calculi, from variables x, y, . . .,
and by forming abstractions λx:τ.M and applications MN . We will explain the
interpretation of terms together with the typing rules. Here, λx:τ is a binder which

1Typically, in constructive logic one cannot derive that ‘P or not P ’ is true.
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(var) Γ � x : τ if (x : τ) ∈ Γ

(abs)
Γ ∪ {x : τ} � M : σ

Γ � (λx:τ.M) : τ → σ

(app)
Γ � M : τ → σ Γ � N : τ

Γ � MN : σ

Figure 1: The typing rules for λ→

binds the free occurrences of the variable x of type τ in M . This binding behaviour
is comparable to the binding behaviour of the binder ∀x ∈ IN in for example ∀x ∈
IN.x ≥ 0 or of the binder

∫
dx in for example

∫
xdx . In general, a specific typed

lambda calculus may extend this general syntax of terms.
The typing relation M : τ is generated by the typing rules displayed in Figure 1.

In the figure, Γ denotes a set of assumptions.
The typing rules are interpreted as follows. The axiom (var) states that if τ

is among the assumptions, then τ is true. The proof of τ is the same as in the
assumption, that is x. The rule (abs) formalises the reasoning step saying that if
assuming τ , the statement σ can be derived, then τ → σ. The proof of τ → σ
is a recipe, a function, λx:τ.M , which takes the proof of τ as an argument and
transforms it into a proof of σ. The rule (app) formalises what is called modus
ponens, saying that if τ → σ and if τ , then σ. The proof of σ is the application of
the proof of τ → σ to the proof of τ .

By using the typing rules, statements and their proofs can be derived. A deriva-
tion is technically a ‘tree’ of statements where each statement is either an axiom or
it follows from the statements immediately above it by some rule.

Example. The following derivation can be built with Γ = {p : P, a1 : P→Q, a2 :
Q→R}:

Γ ∪ {a3 : P→R} � a3 : P→R Γ ∪ {a3 : P→R} � p : P
Γ ∪ {a3 : P→R} � a3p : R

Γ � (λa3:P→R.a3p) : (P→R)→R.

This derivation of a typing statement represents the following mathematical
argument. The elements of Γ represent the assumptions: we assume that P , P→Q
and Q→R are true, or more precisely, we assume that there are proofs p, a1 and a2

of respectively P , P→Q and Q→R. The type (P→R)→R represents the statement
saying if P implies R, then R. The term λa3:P→R.a3p represents the proof of the
statement and it shows how the proof of R can be constructed from the proofs p,
a1, and a2.
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There is also a computational aspect in typed lambda calculi. The principle of
computation is called β-reduction and it is generated by

(λx:τ.M)N →β M [[x := N ]] (β)

where M [[x := N ]] denotes the result of substituting N for x in M . Its interpretation
depends on the interpretation of the terms involved. In the line of the example
above given for the simply typed lambda calculus, such computation steps arise
from the detours in a proof. Detours correspond to introducing abbreviations in
informal mathematics, which contributes to the structure and understanding of an
argument.

We show this by an example.

Example. In the example above, we can in fact also deduce the ‘transitivity lemma’
saying that, if P implies Q and if Q implies R, then P implies R. That is, there is
a derivation ending in

Γ � (λp′:P.a2 (a1p
′)) : P→R.

This lemma can be used in the proof λa3:P→R.a3p of the previous example instead
of the additional assumption a3 : P→R. The usage of the lemma corresponds to
applying the proof of (P→R)→R to the proof of P→R, as is shown in this last
fragment of the derivation:

Γ � (λa3:P→R.a3p) : (P→R)→R Γ � (λp′:P.a2 (a1p
′)) : P→R

Γ � (λa3:P→R.a3p)(λp′:P.a2 (a1p
′)) : R.

The term (λa3:P→R.a3p)(λp′:P.a2 (a1p
′)) computes to (λp′:P.a2 (a1p

′))p, which
in turn computes to a2 (a1p), which represents a direct proof of R from Γ.

An additional technical advantage of introducing detours, which is here not
clearly visible due to the simplicity of the example, is that proofs in general become
smaller in size: if N is large, and if x is used in M many times, then a proof
(λx:τ.M)N with a detour is smaller than a more direct proof M [[x := N ]]. Hence,
in a proof (λx:τ.M)N , the application–abstraction construction (λx:τ. )N can be
understood as an abbreviation mechanism, where x abbreviates N in M .

Formalisation of mathematics in type theories

The ideal of formalisation of mathematics is to bring formal reasoning as close as
possible to the informal mathematical practice.

From the point of view of mathematical logic, the expressive power of the simply
typed lambda calculus is rather limited. An average mathematical argument uses
a more expressive logic than propositional logic. Choosing a suitable typed lambda
calculus, which corresponds to a proper logic is one of the methods to accomplish
this ideal.

Furthermore, mathematics is not only logic. Again, an average mathematical
argument deals not only with primitive notions such as proposition variables but
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also with diverse and complex structures such as lists and algebras. Moreover, when
conducting an argument a mathematician employs definitions, additional global
axioms, etc.

We name a few methods for enhancing the formal exposition of mathematics.
By considering also sets A,B, . . . functions and predicates can be represented

too. Then, for example, the term λx:A.λy:B.x of type A→(B→A) represents a
function, R of type A→A→Prop represents a binary relation over the set A and ref
of type ∀x : A.Rxx represents the property that R is reflexive.

By adding new global axioms or principles one can capture, for example, clas-
sical2 logic, or reason with inductive types (see for example [CPM90, PPM90]). In
the presence of inductive types, one can also define objects by induction, perform
proofs by induction on their structure and define functions by recursion based on
objects that are inductively defined.

By refining the notion of computation in the logical framework one can support
definitions (see [SP94]), or capture stepwise computation of substitutions. The
latter yields calculi with explicit substitutions (see for example [Blo99]), which
are in particular interesting for implementing typed lambda calculi, because in
implementations substitution is indeed computed stepwise.

In any case, the logical rules of an extended or refined typed lambda calculus,
should of course be sound.

In general, formalised mathematical arguments tend to grow in length and metic-
ulous details, but they gain in structure and credibility.

Automated reasoning

The nature of verifying the reasoning steps of an argument as represented in a typed
lambda calculus suggests that the verification can be performed mechanically. The
advent of computers has given the formalisation of mathematics an impulse by
providing a perfect mechanical verifier of tediously rigorous expositions of proofs.

In 1966 N.G. de Bruijn started the Automath project with the goal of designing
‘a language for expressing a very large parts of mathematics, in such a way that
the correctness of the mathematical contents is guaranteed as long as the rules of
grammar are obeyed’ (see [Bru70]), and ultimately, with the goal of implementing
a program to verify mathematical texts written in this language by computer. The
project resulted in a family of languages and the implementations of some of them.

Today, there is a vast range of tools for automated reasoning. They support
verification, assistance in finding proofs or even, in some simpler cases, finding
proofs automatically. These systems are not only tools based on type theories,
but they also implement other mathematics formalisation techniques. We name
but a few tools: Coq (see [Coq]), HOL (see for example [HOL]), Isabelle (see for
example [Isa]), LEGO (see [LEG]), Mizar (see for example [Miz]), Nuprl (see [Nup]),
PVS (see [PVS]), and Yarrow (see [Yar]).

2Typically, in classical logic one can derive that ‘P or not P ’ is true.
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Contexts

Contexts play a role not only in lambda calculus but also in many other systems
of expressions and expression transformation, like for example in programming lan-
guages, and in linguistics. In general, contexts are expressions with special places,
called holes, where other expressions may be placed. For example, in the lambda
calculus, (λx:τ. [])z where [] denotes a hole, is a context. The operation of literally
replacing the holes of a context by expressions is called hole filling and it is usually
denoted by [ ]. For example, filling the term xz into the hole of the context above
results in the term (λx:τ. xz)z. In formal systems with binders, such as lambda cal-
culus, a distinctive feature of hole filling is variable capturing: some free variables of
the expression placed into a hole of a context may become bound by the binders of
the context. In the example, the free variable x of the term xz has become bound
by the binder λx of the context. On this point, hole filling differs from substitution,
where variable capturing is avoided. For example, if [] were considered as a variable,
the substitution of xz for [] in (λx:τ. [])z would result in (λx′:τ. xz)z, where λx has
been renamed to avoid capturing of x in xz.

In many formal systems, the standard transformations which are defined on
expressions, are not defined on contexts. That implies that contexts are treated
merely as a notation, which hinders any formal reasoning about or with contexts.

Formalisation of contexts is motivated in different realms of research as diverse
as proof checking, programming languages, operational semantics and natural lan-
guages. For instance, contexts are formalised with the purpose of optimisation of
interactive proof checking (see [Mag96]), representing incomplete proofs and sup-
porting incremental proof development (see [Muñ97, GJ02]), developing program-
ming languages (see [HO98, SSB99, LF96]), dealing with contexts in operational
semantics (see [San98, Mas99]), and modelling binding mechanisms in natural lan-
guage (see [KKM99]).

In this thesis, we consider one application of contexts in particular, namely the
application of contexts in representation of mathematical structures, which can in
turn be employed in proof checking.

Formalisation of mathematical structures as contexts

An essential part in mathematics are structures collecting sets, relations, functions
and assumptions. Examples of such structures are algebras and relations. Algebras
collect sets and operations on them satisfying certain properties, and relations con-
sist of sets, a relation on the sets and its properties. Such mathematical structures
can be represented as contexts in a typed lambda calculus.

For example, a reflexive binary relation, which consists of a set, a binary relation
and the assumption that the relation is reflexive, can be represented by

λS:Set.λR:S→S→Prop. λr:(∀x:S.Rxx). [].

Let us call this context re ref . Then, an argument on reflexive relations, say a piece
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of mathematical text text , can be performed within this context, via hole filling:

re ref [text ].

In text the identifiers S,R, r can then be used.
The idea to represent such structures as contexts is due to N.G. de Bruijn. Con-

texts representing mathematical structures were called segments, because of the
particular structure of the contexts (which is a bit more general than the example
above suggests). Some work on formalisation of this idea has been done by H. Bal-
sters (see [Bal86, Bal87]), I. Zandleven and N.G. de Bruijn (see [Bru91]), but these
formalisms are not sufficient for direct representation of mathematical structures,
which requires lambda calculi with dependent types.

Subtyping

In informal mathematics, a mathematician often makes larger reasoning steps than
the reasoning steps of formal mathematics. One of such steps involves reasoning
about structures A and B for which one may say that ‘every A is a B’. Consider
the example of reflexive relations and equivalence relations. One may say that an
equivalence relation E is also a reflexive relation because E is also a binary relation
over a set and its properties imply reflexivity. Then each lemma about a reflexive
relation can be applied to an equivalence relation. This kind of reasoning is said to
involve subtyping. In the present setting, a direct application of such a lemma is
not possible; one has to reproduce the proof for an equivalence relation explicitly.

With mathematical structures represented as contexts, we believe that reasoning
with subtyping can be formalised internally.

Contributions of this thesis

The main contributions of this thesis are:

- a framework for formalisations of contexts;

- a definition of a notion of context for the systems of the lambda cube;

- a formalisation of mathematical structures in a lambda calculus with depen-
dent types; and,

- an idea of how subtyping could be defined on the representations of mathe-
matical structures.

We design two context formalisms, namely the context calculus and the context
cube. The latter is a collection of eight context calculi which are related to the
systems of Barendregt’s lambda cube with contexts. Both the context calculus
and the context cube employ basically the same approach to the formalisation of
contexts, but they differ in their expressivity.

In the context calculus the emphasis is placed on illustrating the flexibility of
our approach to the formalisation of contexts. In the context calculus, one can
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represent different notions of context and different notions of context formalisation.
We will show how contexts with many holes and segments can be represented,
and how functions ranging over contexts can be allowed or omitted in a context
formalisation. In the context calculus, the expressivity related to the type system
will be limited and the holes will be allowed to occur only in terms.

In the context cube the emphasis is put on the expressive power of our approach
to context formalisation. The context cube includes type systems which correspond
to logics expressive enough for encoding mathematical structures.

Both context formalisms are extensions of lambda calculus, which can be trans-
lated back into lambda calculus. Hence, the context formalisms can be conceived
as a comfortable level of abstraction within the lambda calculus for dealing with
contexts.

With a powerful logical framework at our disposal, we implement the idea of
N.G. de Bruijn, and represent mathematical algebras as contexts. Once mathemat-
ical algebras are represented they can be freely manipulated. One can define bigger
structures, functions ranging over mathematical structures and theorems involving
mathematical structures. That is, one can reason about mathematical structures
in a formal mathematical framework as in informal mathematics. The fact that
the context cube can be translated into the lambda cube, implies that this formal-
isation of mathematical structures can be used in the existing tools for automated
reasoning that are based on the lambda cube or type theories.

Overview

This thesis is organised as follows. The heart of the thesis is Chapter 2, which
presents an introduction to contexts in lambda calculus, motivates formalisation of
contexts, and gently introduces our approach to formalisation of contexts. Chap-
ters 3, 4, 5 and 6 present the implementations of our approach. Chapters 3, 4 and
5 present the context calculus and its applications. Chapter 6 presents the context
cube and its applications. Chapter 7 indicates a possible extension of our approach
with subtyping.

We discuss the chapters separately.
Chapter 1 is a preliminary chapter about rewriting. Rewriting plays an impor-

tant role in this thesis because rewriting techniques will be used to model compu-
tation with contexts. This chapter is an introduction to different rewrite systems,
properties of rewrite systems and results. It covers abstract rewriting, which pro-
vides the basics of the rewriting theory for this thesis; lambda calculus, whose
contexts we will formalise; and higher-order rewriting, which provides results that
will be used throughout the thesis. Moreover, this chapter conveys the terminology
and notation of the thesis.

Chapter 2 is an introduction to the contexts of lambda calculus. This chapter
collects the notions of lambda context that are encountered in the literature on
rewriting. Here, formalisation of contexts in general is explained, discussed and
motivated. Also, different existing formalisations of contexts are considered and
compared. This chapter also explains our approach to formalisation of lambda
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contexts in the context calculus and the context cube.
Chapter 3 contains the definition of the context calculus and investigates the

properties of rewriting in the context calculus. It discusses the techniques used in
the formalisation of contexts and shows that this approach can be used also in other
rewrite systems, with or without binders.

Chapters 4 and 5 present four examples of applications of the context calculus.
These examples are defined via typing, which guards the formation of expressions.
The examples illustrate different modes of formalisation and different notions of
context which can be captured by the context calculus. In particular these examples
formalise the following:

- the untyped lambda calculus with contexts: this application repairs the short-
comings of the näıve way of reasoning with contexts in the lambda calculus,
and defines β-reduction also on (representations of) contexts;

- the simply typed lambda calculus with contexts: this application includes
functions ranging over contexts;

- the untyped lambda calculus with contexts where also functions ranging over
contexts are defined; and

- the simply typed lambda calculus with de Bruijn’s segments.

In all these examples, it is proved that the stepwise computation related to contexts
is strongly normalising (i.e. each context-related computation yields a result) and
confluent (which guarantees that results of computations are unique).

In Chapter 6 our approach to formalisation of contexts is extended to the lambda
calculi with dependent types. The lambda calculi with dependent types have greater
expressive power than for example the simply typed lambda calculus, but dependent
types introduce more technical complexities. In this chapter we present the context
cube, which is a collection of eight systems corresponding to the eight systems
of Barendregt’s lambda cube with contexts. It is shown that the context cube
can be used for representation of mathematical structures in a uniform way. In
these systems, the stepwise computation is strongly normalising and confluent. The
importance of the context cube lies in its application in proof checking, and in the
fact that it indirectly defines a notion of context for the lambda cube.

Chapter 7 concludes this thesis by setting out two ideas for future work. The
first idea concerns improving the communication mechanism between contexts and
expressions to be put into their holes by adding labels. The second idea outlines
how a notion of subtyping on representations of mathematical structures can be
defined by using labels.

Chapters 3, 4 and 5 are based on the work presented in [BV01] and [BV99];
Chapter 6 is based on [BV02].



x



Chapter 1

Introduction to rewriting

In this thesis we focus on computation with contexts. We will formalise this type of
computation by using rewrite systems, which provide a standard method for mod-
elling computation. In this chapter an introduction to rewrite systems is provided.

This chapter is a preliminary one. It collects definitions and well-known results
that will be used throughout the thesis. This chapter contains no original material,
except for a more general definition (Definition 1.1.14) of a subsystem of an abstract
reduction system than the standard one (cf. [Klo92]).

In a rewrite system objects involved in computation are represented and a step-
wise computation is modelled by rewrite steps between representations of objects.
The exact form of object representations and the degree of the computation gran-
ulation depend on the aspects of computation that one aims to model and on the
properties of computation that one intends to study. While the computation as-
pects of interest may vary considerably, the desirable properties of computation are
in many cases the same. These include the properties of the existence and unique-
ness of results, which are the most natural requirements for computation: starting
from a given object, some or every computation has a result, and if there is a result,
then it is unique.

This chapter is organised as follows. Section 1.1 is about abstract rewriting,
which models computation as a relation between objects whose structure is consid-
ered abstract. In this section general notions, terminology and properties regarding
computation are given. Section 1.2 is about lambda calculus, which is an example of
a rewrite system where one studies how computation changes the structure of an ob-
ject, in order to get more grip on the properties that the rewrite system has. In this
section, terminology is more specific and local tests are formulated that imply the
desirable properties mentioned above. Section 1.2.1 deals with the untyped lambda
calculus and Sections 1.2.2 and 1.2.3 deal with typed lambda calculi, where the
structure of terms is restricted by typing. Section 1.3 considers higher-order rewrite
systems, a framework for arbitrary term rewrite systems, in which the structure of
objects and of rewrite steps can be presented in a uniform way. Last but not least,
Section 1.4 lists some notational abbreviations and conventions that will be used

1
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throughout the thesis.

1.1 Abstract rewriting

The material and notation presented in this section is based on and, for the most
part, agrees with [Klo92]. For more information on abstract rewriting, see also
[Bog95].

Abstract reduction systems model computation by abstracting from the object
structure and by concentrating on interaction of computation steps. When compu-
tation steps are associated with computations of different nature, the computation
steps may be indexed.

Let I be a countably infinite set of indices.

Definition 1.1.1 (Abstract reduction system (ARS)) An abstract reduction
system is a structure A = 〈A, (→ı)ı∈I〉 consisting of a set of objects A, and a
collection of binary relations →ı on A, indexed by a set I. For ı ∈ I, the relations
→ı are called rewrite or reduction relations. We will often refer to the relation →ı

as the ı-rewrite relation.

The next definition involves relations between objects of an ARS. In fact, the
definition formulates a couple of binary relations on a set, and as such it could have
been given in a more general form than in the context of abstract rewriting. We
prefer the definition in the form as given, because it is all we will need throughout
the thesis.

Definition 1.1.2 Let A = 〈A, (→ı)ı∈I〉 be an ARS.

i) The identity relation, denoted by ≡, on the elements of A is defined by

≡ = {(a, a) | a ∈ A}.

ii) Let ı,  ∈ I. The union of →ı and →, denoted by →ı, is the binary relation
on A defined by

→ı = {(a, b) ∈ A×A | (a, b) ∈ →ı or (a, b) ∈ →}.

iii) Let ı ∈ I. The inverse of →ı, denoted by ←ı, is the binary relation on A
defined by

←ı = {(b, a) ∈ A×A | (a, b) ∈ →ı}.

iv) Let ı,  ∈ I. The sequential composition of →ı and →, denoted by →ı;→,
is the binary relation on A defined by

→ı;→ = {(a, c) ∈ A×A | ∃b ∈ A such that (a, b) ∈ →ı and (b, c) ∈ →}.
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v) Let ı ∈ I. The n-fold composition of→ı, denoted by→n
ı , is the binary relation

on A defined inductively by

→0
ı = ≡

→n+1
ı = →n

ı ;→ı for n ≥ 0.

Notation. If I is a singleton, then the indices are left out.

The next definition is about different closures of a rewrite relation. In this
definition, given a property P of a relation, the rewrite relation is extended in such
a way that the extension satisfies the property P and that it is minimal with respect
to the ordering on sets.

Definition 1.1.3 Let A = 〈A,→〉 be an ARS.

i) The reflexive closure of →, denoted by →≡, is the smallest extension of →
such that →≡ is reflexive.

ii) The symmetric closure of →, denoted by ↔, is the smallest extension of →
such that ↔ is symmetric.

iii) The transitive closure of →, denoted by →+, is the smallest extension of →
such that →+ is transitive.

iv) The reflexive–transitive closure of→, denoted by→→, is the smallest extension
of → such that →→ is both reflexive and transitive.

v) The equivalence closure of →, also called the convertibility relation generated
by → and denoted by =, is defined as the reflexive–transitive closure of the
symmetric closure of →.

vi) In an analogous way, the same kind of closures are defined for ←, the inverse
of →. The closures are also denoted in an analogous way; in particular, the
reflexive–transitive closure of ← is denoted by ←←.

Notation. The rewrite relations are traditionally used in infix notation. For
example, instead of (a, b) ∈ →ı we write a→ı b.

We list some rewriting terminology in an ARS A = 〈A, (→ı)ı∈I〉.
Let a→ı b. We call this an (ı-)rewrite step. In this rewrite step a is a (ı-)redex

and b is a one-step (ı-)reduct of a.
Let a0 →ı . . . →ı an where n ≥ 0. We call a0, . . . , an an (ı-)rewrite sequence

from a0 to an. We also say that a0 reduces or rewrites to an and that a0 is an
(ı-)reduct of a0. An empty rewrite sequence is denoted by ε.

One can prove that a→→ı b if and only if there is an (ı-)rewrite sequence from
a to b. We will write r : a→→ı b to denote a specific rewrite sequence from a to b.
However, we will often confuse a→→ b and a rewrite sequence from a to b.
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Figure 1.1: Properties of an ARS

Let a0 ↔ı a1 ↔ı . . . ↔ı an with n ≥ 0. We call a0, . . . an an (ı-)conversion
and say that the two objects a0 and an are (ı-)convertible.

One can prove that a =ı b if and only if there is an (ı-)conversion between a0

and an.
We will often confuse a = b and a conversion between a and b. Let a ∈ A. We

call a an (ı-)normal form if there is no b ∈ A such that a→ı b. We say that a has a
normal form if there is an object a′ ∈ A such that a→→ a′ and a′ is a normal form.

Let a→→ b and a′→→ b′ be a pair of rewrite sequences. We call a→→ b and a′→→ b′

diverging (or coinitial) if the sequences start at the same object, that is, if a ≡ a′.
We call a→→ b and a′→→ b′ converging (or cofinal) if the sequences end in the same
object, that is, if b ≡ b′.

We give an overview of properties of rewrite relations, grouped into three def-
initions. Definition 1.1.4 deals with the interaction of individual rewrite relations.
Definition 1.1.5 deals with properties related to existence of a common reduct of
convertible objects. Definition 1.1.6 deals with normal forms. Some of the proper-
ties are illustrated in Figure 1.1.

Definition 1.1.4 Let A = 〈A, (→ı)ı∈I〉 be an ARS.

i) For ı,  ∈ I, the relation ı commutes weakly with  if and only if for all
a, b, c ∈ A there is d ∈ A such that if b←ı a→ c then b→→ d←←ı c (see
Figure 1.1(a)).

ii) For ı,  ∈ I, the relation ı commutes with  if and only if→→ı commutes weakly
with →→ (see Figure 1.1(b)).

Definition 1.1.5 Let A = 〈A,→〉 be an ARS.
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i) The rewrite relation → is weakly confluent (notation WCR(→)) if and only
if → is weakly self-commuting, that is, if and only if for all a, b, c ∈ A there is
d ∈ A such that b← a→ c implies b→→ d←← c (see Figure 1.1(c)).

ii) The rewrite relation → is confluent (notation CON(→)) if and only if → is
self-commuting, that is, if and only if for all a, b, c ∈ A there is d ∈ A such
that b←← a→→ c implies b→→ d←← c (see Figure 1.1(d)).

iii) The rewrite relation → has the Church–Rosser property (notation CR(→)) if
and only if each pair of convertible objects has a common reduct; that is, if
and only if for all a, b ∈ A there is d ∈ A such that if a = b then a→→ d←← b
(see Figure 1.1(e)).

Definition 1.1.6 Let A = 〈A,→〉 be an ARS.

i) The rewrite relation → has the unique normal form property (notation
UN(→)) if and only if convertible normal forms are identical; that is, if and
only if for all a, b ∈ A if a = b and a and b are normal forms then a ≡ b.

ii) The rewrite relation → is weakly normalising (notation WN(→)) if and only
if each object of A has a normal form.

iii) The rewrite relation → is strongly normalising (notation SN(→)) if and only
if there are no infinite rewrite sequences a0 → a1 → a2 → . . . (∞) in A.

A rewrite relation that is both confluent and strongly normalising is called com-
plete.

If the rewrite relation → of A = 〈A,→〉 has the property P , we also say that A
has the property P .

The unique normal form property and the normalisation properties are natural
requirements for a computation. If a rewrite relation has the unique normal form
property and the strong normalisation property, then it behaves like a function. The
rest of the properties are interesting because of what they entail (like for example
the confluence property), and/or because they are formulated in terms of a local test
(like for example the weak confluence property). We formulate some well-known
results in a couple of lemmas.

Lemma 1.1.7 Let A = 〈A,→〉 be an ARS. Then, if SN(→) then WN(→).

Lemma 1.1.8 Let A = 〈A,→〉 be an ARS. If CON(→) then UN(→).

Notation. If a rewrite relation → has the unique normal form property, then we
will denote the normal form of object a with respect to → by a↓.

Lemma 1.1.9 Let A = 〈A,→〉 be an ARS. Then, CR(→) if and only if CON(→).
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Lemma 1.1.10 (Hindley–Rosen) Let A = 〈A, (→ı)ı∈I〉 be an ARS such that→ı

commutes with → for every ı,  ∈ I. Then the union →=
⋃
ı∈I→ı is confluent.

Lemma 1.1.11 (Newman) Let A = 〈A,→〉 be an ARS. If WCR(→) and SN(→)
then CR(→).

We mention a corollary of the Hindley–Rosen lemma.

Corollary 1.1.12 Let A = 〈A, (→ı)ı∈I〉 be an ARS such that →ı commutes with
→ for every ı,  ∈ I. Let J1, J2 ⊆ I, let →1 =

⋃
ı∈J1
→ı and let →2 =

⋃
ı∈J2
→ı.

Let B = 〈A,→1,→2〉. Then →1 commutes with →2.

Throughout this thesis, we will be interested in substructures of rewrite systems.
These substructures will be of two kinds: (full) sub-ARSs, which are a standard
notion in rewriting, and a new notion of indexed sub-ARSs, which we introduce
here. An indexed sub-ARS is a generalised notion of a sub-ARS: the notion of sub-
ARS is defined on ARSs with one rewrite relation whereas the notion of indexed
sub-ARS is defined on ARSs with many (indexed) rewrite relations.

Definition 1.1.13 (Sub-ARS) Let A = 〈A,→〉 and B = 〈B,�〉 be two ARSs.
Then B is a sub-ARS of A, denoted by B ⊆ A, if the following holds:

i) B ⊆ A,

ii) � is the restriction of → to B, that is, ∀b, b′ ∈ B (b� b′ ⇔ b→ b′).

iii) B is closed under →, that is, ∀b ∈ B if b→ a then a ∈ B.

Definition 1.1.14 (Indexed sub-ARS) Suppose J ⊆ I. Let A = 〈A, (→ı)ı∈I〉
and B = 〈B, (�ı)ı∈J〉 be two ARSs. Then B is an indexed sub-ARS of A, denoted
by B � A, if the following holds:

i) B ⊆ A,

ii) for each ı ∈ J it holds that �ı is the restriction of →ı to B, that is, ∀b, b′ ∈
B (b�ı b

′ ⇔ b→ı b
′).

iii) for each ı ∈ J it holds that B is closed under →ı, that is, ∀b ∈ B if b→ı a
then a ∈ B.

We compare the two notions of subsystem. The notions of (full) sub-ARS and
indexed sub-ARS coincide on ARSs with only one rewrite relation. That is, if the
indices may be dropped, then B ⊆ A if and only if B � A. The indices may be
ignored if both J and I are singletons, or if I = J and we are not interested in
indices.

Otherwise, the two notions can be compared by considering A and B as unions
of ARS with only one rewrite relation. That is, let Aı = 〈A,→ı〉 for ı ∈ I and let



1.1. ABSTRACT REWRITING 7

Bı = 〈B,�ı〉 for ı ∈ J ; then the two notions can be compared by considering A
and B as A =

⋃
ı∈I Aı and B =

⋃
ı∈J Bı. Informally, B � A if and only if B is a

subset of the sub-ARSs of A. This is stated by the next lemma.

Lemma 1.1.15 Let A = 〈A, (→ı)ı∈I〉 and B = 〈B, (�ı)ı∈J〉 be two ARSs with
J ⊆ I. Let Aı = 〈A,→ı〉 for each ı ∈ I and let Bı = 〈B,�ı〉 for each ı ∈ J . Then,
B � A if and only if Bı ⊆ Aı for each ı ∈ J .

The properties of B follow from the properties of its components Bı and the
properties of their interaction. In turn, the properties of the components Bı may
follow from the properties of Aı’s. The properties WCR, CR, CON, UN, SN, and
WN are ‘preserved downwards’ with respect to ⊆ on the components of the unions,
that is, if Aı has one of these properties, Bı has it too, for ı ∈ J . Furthermore,
if B � A and if each pair of rewrite relations commute with each other in A,
then so do the pairs of rewrite relations in B. This ‘downward preservation’ of the
commutation property of the pairs of rewrite relations is stated by the following
lemma.

Lemma 1.1.16 Let J ⊆ I. Let A = 〈A, (→ı)ı∈I〉 be an ARS such that →ı com-
mutes with → for every ı,  ∈ I. Let B = 〈B, (�ı)ı∈J〉 be an indexed sub-ARS of
A. Then, �ı commutes with � for every ı,  ∈ J .

Proof: Let ı,  ∈ J , b ∈ B, and let b�ı . . . �ı b
′ and b� . . . � b

′′ be two diverging
rewrite sequences in B. Because �ı and � are the restrictions of →ı and → to
B respectively, these rewrite sequences are also rewrite sequences of A, that is,
b→→ı b

′ and b→→ b
′′. Because in A, the rewrite relations →ı and → commute,

there is d ∈ A such that b′ →→ d and b′′ →→ı d. Because these converging rewrite
sequences start at elements of B, and B is closed under →ı and →, all elements
in the converging rewrite sequences, including d, are elements of B. Because �ı

and � are the restrictions of→ı and→ to B, respectively, the converging rewrite
sequences are in B, that is, b′ � d and b′′ �ı d. QED

Example 1.1.17 In the next section, a natural example of ARSs B and A with
B � A will be given: the lambda calculi λ and λη, for which it holds λ � λη. The
confluence of the rewriting generated by→βη (Theorem 1.2.21) is proved by showing
that →β and →η are confluent and that →β commutes with →η (Theorems 1.2.18
and 1.2.19 and Lemma 1.2.20).

Example 1.1.18 This example shows that an indexed sub-ARS B of a confluent
ARS A may not be confluent itself. Consider the ARSs (see Figure 1.2):

A = 〈A = {a, b, c, d},→ı = {(a, b), (a, c), (c, d)},→ = {(b, d)}〉
B = 〈B = {a, b, c, d},�ı = {(a, b), (a, c), (c, d)}〉.

Then B � A. By ignoring the indices, A is confluent, but B is not. The non-
confluence of B follows from the non-confluence of →ı in A.
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Figure 1.2: B � A, A is confluent, B is not confluent

Remark 1.1.19 The notion of indexed sub-ARS is introduced here as a short-cut
to some results that we will need. We introduce here the notion of indexed sub-
ARS because in Chapters 4 and 5 we will consider such substructures of the context
calculus λc:

- we will restrict the set of λc-terms by typing,

- we will consider a subset of rewrite relations of λc on the well-typed terms.
Some rewrite relations of the context calculus λc do not apply to well-typed
terms: these rewrite relations will be left out of the definitions. Also, in
λcλ, we will consider only the strong normalisation of→c, which excludes the
β-rewrite relation.

The notion of indexed sub-ARS is a short-cut because by Lemmas 1.1.15 and 1.1.16
we could have used the notion of sub-ARS instead, and studied the rewrite relations
and their interaction separately.

1.2 Lambda calculus

Lambda calculus is a rewrite system that formalises the notion of computable func-
tion. It is an example of a rewrite system with binders.

In this section we describe the untyped lambda calculus and a number of typed
lambda calculi. In the untyped lambda calculus, expressions, called λ-terms, are
freely formed, whereas in a typed lambda calculus the formation of λ-terms (and
types) is guarded by a set of typing rules. There are two styles in typing λ-terms:
typing by explicitly annotating variables with their type (also called typing à la
Church) and typing by type assignment (also called typing à la Curry).

This section is organised as follows. In Section 1.2.1, the untyped version of
lambda calculus is described. In Sections 1.2.2 and 1.2.3 examples of typed lambda
calculi will be considered. In Section 1.2.2 the system λ→ is presented in both à la
Church and à la Curry typing styles. Also, in this section, some terminology and
notions will be introduced that are common to all typed lambda calculi which we
consider here. In Section 1.2.3, Barendregt’s lambda cube is presented, which is
typed à la Church.

For more on lambda calculi, the reader is referred to [HS86] and [Bar84]; for
more on typed lambda calculi, see [Bar92].
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1.2.1 Untyped lambda calculus

We adopt for the most part the notions and notations as employed in [Bar84]. The
results and their proofs can be found at the same reference.

Let V be a countably infinite set of variables. Typical elements of V will be
denoted by x, y, z, x′, x1, . . .

Definition 1.2.1 (λ-terms) The terms of λ-calculus, or λ-terms for short, are
inductively defined by

M ::= x | (MM) | (λx.M).

The set of λ-terms is denoted by Λ. A λ-term of the form MM is called an
application; a λ-term of the form λx.M is called an abstraction, where the symbol
λ is called the abstractor.

Informally, we will also call λx an x-abstractor, and in an abstraction λx.M we
will call M the body of the abstraction.

Notation. The outermost parentheses will be left out. Application associates
to the left, so we write MM1 . . .Mn instead of ((MM1) . . .Mn). Consecutive
abstractions (λx1. . . . (λxn.M)) will be abbreviated by λx1, . . . , xn.M . If no
confusion can arise, λ-terms are called terms for short. If not explicitly stated
otherwise, arbitrary terms will be denoted by M,N,M1 . . ..

Definition 1.2.2 (Subterms)

i) Let M be a λ-term. The set of subterms of M , denoted by Sub(M), is defined
inductively by

Sub(x) = {x}
Sub(M1M2) = Sub(M1) ∪ Sub(M2) ∪ {M1M2}
Sub(λx.M ′) = Sub(M ′) ∪ {λx.M ′}.

ii) Let M,N be two λ-terms. The term M is a subterm of N if M ∈ Sub(N). If
in addition M �≡ N , then M is called a proper subterm of N .

Definition 1.2.3 (Free variables in a λ-term) Let M be a λ-term.

i) The set of free variables of M , denoted by FVar(M), is defined inductively
by

FVar(x) = {x}
FVar(M1M2) = FVar(M1) ∪ FVar(M2)
FVar(λx.M ′) = FVar(M ′) \ {x}.
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ii) The λ-term M is called closed if FVar(M) = ∅.

A variable x may occur free or bound in a λ-term M . An occurrence of x in M
is bound if it is in a subterm of M of the form λx.N ; otherwise it is free.

Definition 1.2.4 (Variable capturing) Variable capturing is a side-effect of a
transformation by which a free variable occurrence becomes bound.

Definition 1.2.5 (λ-contexts)

i) A λ-context is a λ-term with some holes, denoted by [], in it. That is, a
λ-context is defined by

C ::= x | [] | CC | λx.C.

If C has n holes, we also call it an n-context. If C ≡ [] then we call C trivial.

ii) Let C be an n-context and let M1, . . . ,Mn be n λ-terms where n ≥ 0. Then
C[M1, . . . ,Mn] denotes the result of filling the ith hole by Mi, for 1 ≤ i ≤ n.
More precisely, if the occurrences of [] in C are numbered from left to right,
viz. []1, . . . , []n, then ( 	M abbreviates M1, . . . ,Mn)

x[ 	M ] ≡ x

[]i[ 	M ] ≡ Mi for 1 ≤ i ≤ n

(C1C2)[ 	M ] ≡ (C1[ 	M ])(C2[ 	M ])
(λx.C ′)[ 	M ] ≡ λx.C ′[ 	M ].

This operation is called hole filling.

iii) Let C be an n-context and let D1, . . . , Dn be n λ-contexts with n ≥ 0 where
Di has ki holes, for 1 ≤ i ≤ n. Then C[D1, . . . , Dn] denotes the result of
filling the ith hole by Di, for 1 ≤ i ≤ n. More precisely, if the occurrences of
[] in C are numbered from left to right, viz. []1, . . . , []n, then ( 	D abbreviates
D1, . . . , Dn)

x[ 	D] ≡ x

[]i[ 	D] ≡ Di for 1 ≤ i ≤ n

(C1C2)[ 	D] ≡ (C1[ 	D])(C2[ 	D])
(λx.C ′)[ 	D] ≡ λx.C ′[ 	D].

This operation is called composition, and it results in a
∑

1≤i≤nki-context.

Remark 1.2.6 Note that after the hole filling (and composition), variable captur-
ing may occur: some free variables of M1, . . . ,Mn (or D1, . . . , Dn respectively) may
become bound by the binders of C. Note also that hole filling results in a term,
while composition results in a context.
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Notation. Arbitrary λ-contexts will be denoted by C,D,C1, . . ..

Terms of λ-calculus are considered to be equal up to renaming of bound variables.
For example, the term λx.xz is considered to be equal to λy. yz. Usually this
renaming is defined stepwise and it is called α-reduction. The resulting equivalence
is called α-conversion and it is often denoted by =, where the label α has been
dropped. We do not give the definition of α-reduction here; see for example [Bar84].

Remark 1.2.7 This remark concerns the use of ≡ (identity) and = (α-conversion)
between terms, (meta-)contexts, and later, types and (pseudo-)expressions in lambda
calculi and context calculi in the remainder of this thesis.

Let a and b denote two terms, (meta-)contexts, types or (pseudo)-expressions.
In general, we will write a ≡ b if the equality between a and b does not involve
α-conversion. We will write a = b if the equality between a and b may involve
α-conversion, provided of course that α-conversion is defined for a and b.

More precisely, we use ≡ and = as follows.

i) If a and b are two terms or two (pseudo-)expressions, then a ≡ b denotes
the equality between a and b which does not involve α-conversion, and a = b
denotes the equality between a and b where α-conversion is allowed.

ii) If a and b are two (meta-)contexts, then we use only the equality ≡, without
α-conversion, because α-conversion is not defined on (meta-)contexts. We do
so in order to stress the absence of α-conversion.

iii) If a and b are two types (in a certain calculus), then we prefer to use = to
denote the equality between a and b. If α-conversion is defined on types in the
calculus in question, we use ≡ only in the cases where the equality between a
and b does not involve α-conversion.

Definition 1.2.8 (Substitution) Let M and M1, . . . ,Mn be n + 1 λ-terms, and
let x1, . . . , xn be n distinct variables, for n ≥ 0. The result of substitution of
M1, . . . ,Mn for (the free occurrences of) x1, . . . , xn in M , denoted by
M [[x1 := M1, . . . , xn := Mn]], or by M [[	x := 	M ]] for short, is defined by induction to
M as

x[[	x := 	M ]] =
{
Mi : if x ≡ xi for certain i with 1 ≤ i ≤ n
x : otherwise

(M1M2)[[	x := 	M ]] = (M1[[	x := 	M ]])(M2[[	x := 	M ]])
(λx.M ′)[[	x := 	M ]] = λx. (M ′[[	x := 	M ]]).

In the last case, in order to avoid unintended variable capturing, it is assumed that
bound variables x of M are renamed before applying the substitution if necessary,
that is, if x ∈ FVar( 	M).

Remark 1.2.9 Variable capturing can be intended, as in (λx. [])[x] ≡ λx.x, or
unintended, as in (λx. y)[[y := x]] �= λx.x. Unintended variable capturing is also
called confusion of bound variables (cf. Section 3D2 in [CF58]).
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Variable convention. We assume bound variables are renamed whenever neces-
sary to avoid unintended variable capturing.

Remark 1.2.10 Without loss of generality, we can assume that in λ-terms there
are no ‘overshadowed’ binders, like the leftmost λx in λx.λx.x. In a λ-term, such
overshadowed binders can be renamed into a fresh variable. In the example, the
leftmost λx can be renamed into λy by α-conversion, so, λx.λx.x=α λy.λx.x.

The fact that ‘overshadowed’ binders occur in the lambda calculus with name-
carrying notation can be seen as an imperfection of the notation. If one considers
bound variables as pointers to the binders by which they are bound, then the way
of avoiding ‘overshadowed’ binders as described above is natural.

An analogous renaming of ‘overshadowed’ binders in λ-contexts will be allowed
in our applications of λ-contexts: an ‘overshadowed’ binder λx of a context C may
be renamed as λy if and only if y does not occur free in the λ-terms or λ-contexts
that will (eventually) be put into the holes of C.

However, if one also considers applications where ‘overshadowing’ plays a role,
as for example in object-oriented programming languages, such renaming is not
allowed. In object-oriented programming languages overshadowing is encountered
as method overriding. An example of method overriding in the λ-calculus format is
the following. Consider two contexts C and D, both containing only one hole, and
a term P . Let x occur free in P and let the hole of C be in the scope of the binder
λx. Here C represents a class in which the method x is defined, D its subclass and
P a program using the method x. Let M ≡ C[D[P ]] be a closed term. If the hole
of D is in the scope of the binder λx, then x of P is bound by that binder of D; we
say the method x of C is overridden by the method x of D. Otherwise, x of P is
bound by the binder λx of C.

Definition 1.2.11 (Rewriting relations) The lambda calculus is defined on λ-
terms with rewrite relations induced by the following rewrite rule schemas.

(λx.M)N →M [[x := N ]] (β)
λx.M x→M if x �∈ FVar(M) (η)

Remark 1.2.12 When we say that ‘a rewrite relation →ı is induced by a rewrite
rule schema (ı) : L→ R’, we mean that the relation →ı is the compatible closure
of the scheme (ı) (cf. Definition 3.1.5. in [Bar84]). Alternatively, we could say the
relation →ı is generated by (ı) : C[L]→ C[R] where C is a context (see Lemma
3.1.9. in [Bar84]).

Remark 1.2.13 Sometimes, a restricted inverse relation of the one generated by
the rewrite rule (η) is used. This relation is generated by the rewrite rule schema:

M → λx.M x (η)

where η is not allowed to create a β-redex and x �∈ FVar(M). The effect of this
relation is that in a typed version, in η-normal forms, all functional symbols (i.e.
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functions and variables of a functional type) are provided with the right number of
arguments. For example,

λf (a→a)→(b→b)→c. f (λxa. x)
→η λf (a→a)→(b→b)→c. λyb→b. f (λxa. x)y
→η λf (a→a)→(b→b)→c. λyb→b. f (λxa. x)(λzb. yz).

Remark 1.2.14 Often we will consider only the rewrite rule (β) on λ-terms. If
the rewrite rule (η) is included in a lambda calculus, we will explicitly denote it in
the name of the calculus; for example λη.

Remark 1.2.15 The rewrite relations and substitution are defined only on the set
of λ-terms; they are not defined on λ-contexts.

Remark 1.2.16 Lambda terms with the rule (β) implement an abbreviation mech-
anism in the following sense. Consider a redex (λx.M)N . By the rule (β), this
redex is equal to M [[x := N ]]. An alternative reading of this substitution is ‘let
x := N in M ’. In other words, x can be seen as an abbreviation for N in M . Such
an abbreviation mechanism is especially profitable if N is big and if x occurs in M
many times.

This is a rather primitive notion of an abbreviation mechanism, where all free
occurrences of x in M are replaced at the same time by the β-step. For a more
advanced notion, see [SP94]. There, lambda calculus (actually, PTSs) has been
extended with a definition mechanism, where definition unfolding is explicit and it
is performed per free occurrence of x in M .

We introduce some rewriting terminology and list some well-known results. The
terminology builds upon the rewriting terminology as given for ARSs. The results
and their proofs can be found in [Bar84].

Let C[(λx.M)N ]→β C[M [[x := N ]]]. Then the subterm (λx.M)N is called a
β-redex, and M [[x := N ]] is called its contractum. We say that C[(λx.M)N ] has
a redex, and that it β-reduces to C[M [[x := N ]]]; the term C[M [[x := N ]]] is called
its one-step β-reduct. If in the rewrite step the context C is a trivial one, then the
rewrite step is called a contraction.

Lemma 1.2.17 (Substitution lemma) Let M,N,P be λ-terms, and let x, y be
variables such that x �∈ FVar(P ) and x �≡ y. Then

M [[x := N ]] [[y := P ]] = M [[y := P ]] [[x := N [[y := P ]]]].

Theorem 1.2.18 The rewriting generated by →β is confluent.

Theorem 1.2.19 The rewriting generated by →η is confluent.

Lemma 1.2.20 The rewrite relations →β and →η commute with each other.
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Theorem 1.2.21 The rewriting generated by →βη is confluent.

Remark 1.2.22 The untyped lambda calculus is not WN, because→β is not WN.
Consider the λ-term Ω ≡ (λx.xx)(λx.xx). Then Ω →β Ω. Since Ω is its only
β-reduct, this term has no β-normal form. Because the untyped lambda calculus is
not WN, it is also not SN.

In this thesis we will consider λ-trees as an alternative notation for λ-terms.

Definition 1.2.23 (λ-trees) Let M be a λ-term. Then the corresponding λ-tree
Tree(M) is defined inductively as follows: the λ-trees of x, M1M2 and λx.M ′ are
respectively,

·x

Tree(M1) Tree(M2) Tree(M ′)

λx

Definition 1.2.24 (Root, leaf, path, spine) The notions of root, leaf and path
are defined as usually on trees. The path from the root of a λ-tree to its leftmost
leaf is called the spine of the λ-tree.

With each λ-term, a set of positions is associated. Positions are elements of
{0, 1}∗. The empty sequence over {0, 1}∗ is denoted by ε. Two positions can be
compared as strings, by the prefix ordering. The (proper) prefix ordering is denoted
by ≺ and its reflexive closure by �.

Definition 1.2.25 (Positions of a λ-term) Let M be a λ-term. The set of po-
sitions in M , denoted by Pos(M), is defined as

Pos(x) = {ε}
Pos(M1M2) = {ε} ∪ {0ϕ | ϕ ∈ Pos(M1)} ∪ {1ϕ | ϕ ∈ Pos(M2)}
Pos(λx.M ′) = {ε} ∪ {0ϕ | ϕ ∈ Pos(M ′)}.

A position in a λ-term M uniquely defines a subterm of M .

Definition 1.2.26 Let M be a λ-term, and let ϕ ∈ Pos(M). Then M |ϕ is defined
as

M |ε ≡ M
(M0M1)|0ϕ ≡ M0|ϕ
(M0M1)|1ϕ ≡ M1|ϕ
(λx.M)|0ϕ ≡ M |ϕ.

Definition 1.2.27 (Descendants of positions) Let M →β N be a β-step in
which the redex occurrence at the position ϕ is contracted. Let ψ ∈ Pos(M). The
descendants of ψ in N over the rewrite step M →β N , denoted by Des(M,ϕ,ψ),
are defined as
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- if ϕ �� ψ then Des(M,ϕ,ψ) = {ψ};

- if ψ = ϕ00ψ′ then Des(M,ϕ,ψ) = {ϕψ′};

- if ψ = ϕ1ψ′ then Des(M,ϕ,ψ) = {ϕϕ′ψ′ | ϕ′ ∈ X} where X = {ϕ′ ∈
Pos(M) |M |ϕ′ ≡ x}

- otherwise, Des(M,ϕ,ψ) = ∅.

Descendants of a subterm P in M are traced by the position of P in M , that
is, if P ≡ M |ψ and if M →β N be a β-step in which the redex occurrence at
the position ϕ is contracted, then the descendants of P are the terms N |ψ′ where
ψ′ ∈ Des(M,ϕ,ψ).

In an extension of the untyped lambda calculus or a typed lambda calculus, the
property of preservation of strong normalisation is often considered, in addition to
normalisation properties of Definition 1.1.6. We formulate here this property.

Definition 1.2.28 Let λ∗ be an extension of (the untyped or a typed) lambda
calculus. The rewriting of λ∗ has the property of preservation of strong normalisa-
tion if λ-terms which are strongly normalising with respect to the rewriting of the
lambda calculus are strongly normalising with respect to the rewriting of λ∗.

Remark 1.2.29 Sometimes a set C of variables is fixed. The elements of C are
then considered to be bound externally; that is, they are not considered free, they
are not bound nor substituted in a λ-term, and, in a typed system, they have a
fixed type. The elements of C are called constants or function symbols, and the set
C is also called an alphabet or signature.

1.2.2 The simply typed lambda calculus λ→

In this section the simply typed lambda calculus λ→ is presented in two versions,
à la Church and à la Curry. The section starts with definitions that are common
to both versions. Moreover, this section introduces some notions, notations and
terminology which are common to all typed lambda calculi that we consider.

Definition 1.2.30 (Types) The simple types τ are defined over the set VT of type
variables using the function constructor →, that is, if a ∈ VT , then

τ ::= a | τ → τ,

where → associates to the right. The set of types is denoted by Typ(λ→).

Remark 1.2.31 Type variables are often called base types.
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Definition 1.2.32 (Type substitution) Let a ∈ VT and let τ and σ be types.
Then the result of substituting τ for a in σ, denoted by σ[[a := τ ]], is defined induc-
tively:

b[[a := τ ]] =
{
τ if a = b
b otherwise

(σ1 → σ2)[[a := τ ]] = (σ1[[a := τ ]])→ (σ2[[a := τ ]]).

The (pseudo-)terms of typed lambda calculi are λ-terms, or λ-terms where the
variable in an abstraction is annotated with its type. (Term) substitution is defined
as in the untyped λ-calculus; we will not give the definition here. A (pseudo-)term
is called well-typed (with respect to a particular typed lambda calculus) if it can
be typed by the typing rules. Let Ter(λ→) denote the set of well-typed λ-terms.

Both systems λ→ à la Curry and à la Church deal with statements, declarations
and bases. A statement is of the form M : σ with M ∈ Λ, and σ ∈ Typ(λ→).
A declaration is a statement of the form x : σ where x ∈ V. A basis is a set of
declarations with distinct variables {x1 : σ1, . . . , xn : σn}. If Γ = {x1 : σ1, . . . , xn :
σn} then the domain of Γ, denoted by dom(Γ) is {x1, . . . , xn}.

Remark 1.2.33 Bases are also called contexts. We avoid this terminology for
obvious reasons.

Notation. We will often write x1 : σ1, . . . , xn : σn instead of {x1 : σ1, . . . , xn : σn}.
Also, we will write Γ, x : σ for Γ ∪ {x : σ}.

Definition 1.2.34 (Basis substitution) Let Γ be a basis, and let [[a := τ ]] be a
type substitution. Then

Γ[[a := τ ]] = {(x : σ[[a := τ ]]) | (x : σ) ∈ Γ}.

In both systems, the main rewrite relation is generated by the rewrite schema
(β). If also the rewrite schema (η) or (η) is used, it is explicitly noted, like in λ→η
or λ→η (see also Remark 1.2.14).

The system λ→-Church

The terms of λ→-Church are λ-terms decorated with types.

Definition 1.2.35 (Terms of λ→-Church) The terms of λ→-Church are induc-
tively defined by

M ::= x | (MM) | (λxτ .M).

Definition 1.2.36 (Typing in λ→ à la Church) A term M ∈ Λ is typable by τ
from the basis Γ, denoted by Γ � M : τ , if Γ � M : τ can be derived using the
typing rules displayed in Figure 1.3.
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(var)
(x : τ) ∈ Γ

Γ � x : τ

(abs)
Γ, x : τ � M : τ ′

Γ � (λxτ .M) : τ → τ ′

(app)
Γ � M : τ → τ ′ Γ � N : τ

Γ � MN : τ ′

Figure 1.3: Typing rules for λ→ à la Church

Remark 1.2.37 The notion of derivation is here as described in [Bar92] on pages
36–38. The same notion of derivation, with different sets of typing rules, will be
employed in other typed lambda calculi.

Remark 1.2.38 In fact, the ‘rule’ (var) is an axiom, because its assumption, that
is, (x : τ) ∈ Γ does not involve a derivation. We present it as a rule and refer to all
(var), (abs) and (app) as rules, for brevity. We will do the same in λ→ à la Curry
and later, in the typing systems of the context calculus.

If Γ � M : τ then we say Γ yields M in τ . Also, if τ is a type and if there are
a basis Γ and a term M such that Γ � M : τ , then we say that τ is inhabited (by
M).

Remark 1.2.39 If one considers also λ→-Church with function symbols C, then
all f ∈ C are considered to have a fixed type, and are typed by the rule (var).
Alternatively, one could add a new rule

(const)
(f : τ) ∈ C
Γ � f : τ

to type the function symbols.

Contexts in λ→ are defined in an analogous way as in the untyped λ-calculus,
except that the holes are annotated with their types and replacement of holes pre-
serves types of holes.

Definition 1.2.40 (Contexts in λ→-Church)
Let []τ , []σ, . . . for τ, σ ∈ Typ(λ→) denote typed holes.

i) A context is a well-typed term with some holes in it. In the typing rules, a
hole []τ is treated as a free variable of type τ .
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ii) Let Γ, []τ1 : τ1, . . . , []
τn : τn � C : τ be a context with n holes. Let Γ � Mi : τi

for 1 ≤ i ≤ n. Then the term C[M1, . . . ,Mn] denotes the result of filling the
ith hole by Mi, for 1 ≤ i ≤ n. This operation is called hole filling.

iii) Let Γ, []τ1 : τ1, . . . , []
τn : τn � C : τ be a context with n holes. Let Γ � Di : τi

let ki be the number of holes in Di, for 1 ≤ i ≤ n. Then C[D1, . . . , Dn]
denotes the result of filling the ith hole by Di, for 1 ≤ i ≤ n. This operation
is called composition, and it results in a context with

∑
1≤i≤nki holes.

Remark 1.2.41 The operations of hole filling and composition are well-defined
because replacement of holes preserves typing, that is, if Γ, []τ1 : τ1, . . . , []

τn : τn �
C : τ and Γ � Mi : τi for 1 ≤ i ≤ n then Γ � C[M1, . . . ,Mn] : τ . This can be
shown analogously to the Substitution lemma below.

Some results in λ→ à la Church are listed.

Lemma 1.2.42 (Generation lemma)

i) If Γ � x : σ then (x : σ) ∈ Γ.

ii) If Γ � MN : τ then there is σ such that Γ � M : σ → τ and Γ � N : σ.

iii) If Γ � (λxσ1 .M) : τ then there is σ2 such that Γ, x : σ1 � M : σ2 and τ =
σ1 → σ2.

The set of terms of λ→ à la Church is closed under substitution for type variables
and under substitution for term variables: this is stated by the next lemma.

Lemma 1.2.43 (Substitution lemma)

i) If Γ � M : τ then Γ [[a := σ]] �M [[a := σ]] : τ [[a := σ]] .

ii) Suppose Γ, x : σ � M : τ and Γ � N : σ. Then Γ � M [[x := N ]] : τ .

By the next lemma, the set of well-typed terms is closed under β-rewriting.

Lemma 1.2.44 (Subject reduction lemma) Suppose M→→βM
′. Then, if Γ �

M : τ then Γ � M ′ : τ.

By the next lemma, the set of well-typed terms is closed under η-rewriting
and η-rewriting, or, in other words, the set of well-typed terms is closed under
η-conversion.

Lemma 1.2.45 (Subject reduction lemma for η and η) Suppose M→→ηM
′

or M →→η M
′. Then, if Γ � M : τ then Γ � M ′ : τ.

The well-typed terms are uniquely typed, and the typing is preserved under
β-conversion.
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Lemma 1.2.46

i) Suppose Γ � M : τ and Γ � M : τ ′. Then τ = τ ′.

ii) Suppose Γ � M : τ and Γ � M ′ : τ ′ and M =β M
′. Then τ = τ ′.

Theorem 1.2.47 The rewriting generated by →β is confluent.

Theorem 1.2.48 The rewriting generated by →βη is confluent.

Theorem 1.2.49 The rewriting generated by →βη is confluent.

Theorem 1.2.50 The rewriting generated by →β is strongly normalising.

Proof: The proof is originally due to W.W. Tait [Tai67] (see also, for example
Appendix 2 in [HS86]). The proof proceeds via a computability predicate on terms.
QED

Lemma 1.2.51 The rewriting generated by →η is strongly normalising.

The set of η-normal forms is closed under substitution and β-reduction.

Lemma 1.2.52

i) Let M,N be λ-terms in η-normal form, and let x be a variable. Let x and N
be of the same type. Then M [[x := N ]] is again in η-normal form.

ii) The rewriting generated by →β preserves η-normal forms.

The system λ→-Curry

The terms of λ→-Curry are the λ-terms as defined by Definition 1.2.1.

Definition 1.2.53 (Typing in λ→ à la Curry) A term M ∈ Λ is typable by τ
from the basis Γ, denoted by Γ � M : τ , if Γ � M : τ can be derived using the
typing rules displayed in Figure 1.4.

Lemma 1.2.54 (Generation lemma)

i) If Γ � x : σ then (x : σ) ∈ Γ.

ii) If Γ � MN : τ then there is σ such that Γ � M : σ → τ and Γ � N : σ.

iii) If Γ � (λx.M) : τ then there are σ1, σ2 such that Γ, x : σ1 � M : σ2 and τ =
σ1 → σ2.
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(var)
(x : τ) ∈ Γ

Γ � x : τ

(abs)
Γ, x : τ � M : τ ′

Γ � (λx.M) : τ → τ ′

(app)
Γ � M : τ → τ ′ Γ � N : τ

Γ � MN : τ ′

Figure 1.4: Typing rules for λ→ à la Curry

The set of terms of λ→ à la Curry is closed under substitution and β-rewriting.
The closure under substitution regards to both substitution for type variables and
term variables. These properties are stated in the next two lemmas.

Lemma 1.2.55 (Substitution lemma)

i) If Γ � M : τ then Γ [[a := σ]] �M : τ [[a := σ]] .

ii) Suppose Γ, x : σ � M : τ and Γ � N : σ. Then Γ � M [[x := N ]] : τ .

Lemma 1.2.56 (Subject reduction lemma) Suppose M→→βM
′. Then, if Γ �

M : τ then Γ � M ′ : τ.

The rewriting generated by →β is complete in λ→ à la Curry.

Theorem 1.2.57 The rewriting generated by →β is confluent.

Theorem 1.2.58 The rewriting generated by →β is strongly normalising.

1.2.3 The lambda cube

The lambda cube, or the λ-cube for short, presents eight systems of typed lambda
calculi in a uniform way. The uniform presentation has been generalised in Pure
Type Systems (PTSs), which we will not study here. The systems of the λ-cube are
typed à la Church.

For more information on the λ-cube, see [Bar92]; PTSs are described in for
example [Ber88, Ter89, Bar92]. For the most part, our notions and notations agree
with [Bar92]. See also Section 6.1.

The systems of the λ-cube are parametrised by the sorts of dependencies that
may occur between terms and types. In order to control the dependencies, the
set S = {∗,�} of sorts is introduced. The dependencies between terms and types
are then denoted by pairs over S. A pair (s1, s2) denotes the dependency of the
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expressions of sort s2 on the expressions of sort s1. Hence, each system of the
λ-cube is parametrised by a set R of pairs over S, which denote the dependencies
which are allowed in that particular system.

Because terms and types may depend on each other, they are defined simulta-
neously as one syntactic category, called pseudo-expressions.

Definition 1.2.59 (Pseudo-expressions) The pseudo-expressions of the λ-cube
are defined by

A ::= x | s | (Πx : A.A) | (λx : A.A) | (AA)

where s ∈ S.

Notation. As usual, standard abbreviations regarding brackets apply, including
the association to the left in a sequence of applications ((AB1) . . .)Bn. Consecutive
abstractions Πx1 : A1. . . .Πxn : An.B and λx1 : A1. . . . λxn : An.B are abbrevi-
ated by Π	x : 	A.B and λ	x : 	A.B, respectively. Furthermore, if x �∈ FVar(B), we
write A → B instead of Πx : A.B. Note that the variables in abstractions are
annotated by their types in a different way than in λ→-Church: λx : A.B and
Πx : A.B in the λ-cube, versus λxτ .M in λ→-Church. However, we will sometimes
also in the λ-cube write the type as a superscript, for the sake of readability.

As usual, we consider the pseudo-expressions to be equal up to the α-conversion.
The notions of subterm and free variables are defined analogously to the same notion
in the untyped lambda calculus. The notion of meta-contexts is not defined in the
λ-cube.

Definition 1.2.60 (Substitution) Let A and 	B be n+ 1 pseudo-expressions and
let 	x be n distinct variables. The result A[[	x := 	B]] of substituting Bi for the free
occurrences of xi in A (1 ≤ i ≤ n) is defined by induction to A as

x[[	x := 	B]] =
{
Bi : if x ≡ xi for certain i with 1 ≤ i ≤ n
x : otherwise

s[[	x := 	B]] = s

(Πx : A1.A2)[[	x := 	B]] = Πx : (A1[[	x := 	B]]). (A2[[	x := 	B]])
(λx : A1.A2)[[	x := 	B]] = λx : (A1[[	x := 	B]]). (A2[[	x := 	B]])
(A1A2)[[	x := 	B]] = (A1[[	x := 	B]])(A2[[	x := 	B]]).

Definition 1.2.61 (Rewriting in the λ-cube) On the pseudo-expressions of the
λ-cube, the β-rewrite relation is generated by

(λx : A.B)C → B [[x := C]] . (β)

Definition 1.2.62 (The underlying calculus of the λ-cube) The calculus ob-
tained from pseudo-expressions of the λ-cube equipped with the β-rewrite relation
is called the underlying calculus of the λ-cube.
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Lemma 1.2.63 Rewriting in the underlying calculus of the λ-cube is confluent.

Proof: The proof can be given via higher-order rewriting (see 1.3). One shows
that the underlying calculus of the λ-cube is an orthogonal rewrite system. Then
by Theorem 1.3.20, it is also confluent. QED

Lemma 1.2.64 (Substitution lemma for pseudo-expressions) Let A,B and
C be pseudo-expressions, let x �∈ FVar(C) and let x �= y. Then,

A [[x := B]] [[y := C]] = A [[y := C]] [[x := B[[y := C]]]].

Some terminology regarding typing is listed. A statement is of the form A : B
where A and B are pseudo-expressions. A declaration is a statement of the form
x : A. A pseudo-basis is a finite ordered sequence of declarations with distinct
variables. The empty basis is denoted by ∅. If Γ = {x1 : A1, . . . , xn : An} then the
domain of Γ, denoted by dom(Γ), is {x1, . . . , xn}.

The typing rules of the λ-cube are given in Figure 1.5. The typing rules are
divided into two groups:

i) the general axioms and rules, valid for all systems of the λ-cube.

ii) the specific rules, distinguishing between the eight systems; these are the Π-
introduction rules parametrised by the allowed dependencies R.

In the typing rules, A,B,C, a, b, . . . denote arbitrary pseudo-expressions, x, y,
z, X, Y , . . . denote arbitrary variables, and s, s1, s2 ∈ S.

Definition 1.2.65 (Typing in the λ-cube) Let A and B be two pseudo-expres-
sions and let Γ be a pseudo-basis. Then, A : B can be derived from the pseudo-basis
Γ, denoted by Γ � A : B, if Γ � A : B can be derived using the typing rules displayed
in Figure 1.5.

Definition 1.2.66 (The λ-cube) The eight systems of the λ-cube are displayed
in Table 1.1. A system λS of the λ-cube is defined by taking the general rules and
a subset of the specific rules parametrised by R.

Notation. By Γ � A : B : C we denote Γ � A : B and Γ � B : C. Also, we will
often say A : B if there is Γ such that Γ � A : B. If x �∈ FVar(B) then Πx : A.B
is denoted as A→B. Abstractions λX : ∗ over type variables in elements of λ2
are usually denoted by ΛX, like for example in the polymorphic version of the
identity function ΛX.λx : X.x. Note that the type of X (i.e. ∗) has been dropped.
Moreover, in the type of such an element ∀X is used instead of ΠX : ∗, like for
example in (ΛX.λx : X.x) : (∀X.X→X).

Some terminology regarding pseudo-bases and pseudo-expressions involved in
typing is listed. A pseudo-basis Γ is called a (legal) basis if there are pseudo-
expressions P and Q such that Γ � P : Q. A pseudo-expression A is called a (legal)
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General axiom and rules:
(axiom) ∅ � ∗ : �

(start)
Γ � A : s

Γ, x : A � x : A
if x �∈ Γ

(weak)
Γ � A : B Γ � C : s

Γ, x : C � A : B
if x �∈ Γ

(app)
Γ � F : (Πx : A.B) Γ � a : A

Γ � F a : (B[[x := A]])

(abs)
Γ, x : A � b : B Γ � (Πx : A.B) : s

Γ � (λx : A.b) : (Πx : A.B)

(conv)
Γ � A : B Γ � B′ : s B =β B

′

Γ � A : B′

Specific rules:

(Abs)
Γ � A : s1 Γ, x : A � B : s2

Γ � (Πx : A.B) : s2
if (s1, s2) ∈ R

Figure 1.5: Typing rules for the λ-cube
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system R
λ→ (∗, ∗)
λ2 (∗, ∗) (�, ∗)
λP (∗, ∗) (∗,�)
λP2 (∗, ∗) (�, ∗) (∗,�)
λω (∗, ∗) (�,�)
λω (∗, ∗) (�, ∗) (�,�)
λPω (∗, ∗) (∗,�) (�,�)
λPω = λC (∗, ∗) (�, ∗) (∗,�) (�,�)

Table 1.1: The systems of the λ-cube

expression if there are a basis Γ and a pseuso-expression B such that Γ � A :
B or Γ � B : A. A pseudo-expression A is called a type if there are a basis Γ and
s ∈ S such that Γ � A : s. A pseudo-expression A is called an element if there are
a basis Γ, a pseudo-expression B and s ∈ S such that Γ � A : B : s.

The following results hold for each system of the λ-cube.

Lemma 1.2.67 (Free variable lemma) Let Γ = {x1 : A1, . . . , xn : An} be a
legal basis, say Γ � B : C.

i) The x1, . . . , xn are all distinct.

ii) FVar(B),FVar(C) ⊆ {x1, . . . , xn}.

iii) FVar(Ai) ⊆ {x1, . . . , xi−1} for 1 ≤ i ≤ n.

Lemma 1.2.68 (Start lemma) Let Γ be a legal basis.

i) Γ � ∗ : �.

ii) If (x : A) ∈ Γ, then Γ � x : A.

Lemma 1.2.69 If Γ � A : B, then either B ≡ � or Γ � B : s for s ∈ S.

Lemma 1.2.70 (Thinning lemma) Let Γ and Γ′ be two legal bases. Suppose
Γ ⊆ Γ′. Then, if Γ � A : B then Γ′ � A : B.

Lemma 1.2.71 (Generation lemma)

i) If Γ � s : C then s ≡ ∗ and C ≡ �.

ii) If Γ � x : C then ∃s ∈ S∃B such that C =β B, Γ � B : s and (x : B) ∈ Γ.

iii) If Γ � (Πx : A.B) : C then ∃(s1, s2) ∈ R such that Γ � A : s1, Γ, x : A � B : s2
and C ≡ s2.
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iv) If Γ � (λx : A.b) : C then ∃s ∈ S ∃B such that Γ � (Πx : A.B) : s, Γ, x :
A � b : B and C =β (Πx : A.B).

v) If Γ � (F a) : C then ∃A,B such that Γ � F : (Πx : A.B), Γ � a : A and
C =β B[[x := a]].

The set of legal expressions is closed under substitution.

Lemma 1.2.72 (Substitution lemma) Suppose Γ, x : A,Γ′ � B : C and Γ � D :
A. Then, Γ,Γ′ [[x := D]] � B[[x := D]] : C[[x := D]].

By the next lemma, the set of legal expressions is closed under β-rewriting.

Lemma 1.2.73 (Subject reduction for the λ-cube) If Γ � A : B and A→→βA
′

then Γ � A′ : B.

Proof: A proof can be found in for example [Bar92]. QED

Theorem 1.2.74 (Confluence for the λ-cube) The rewriting generated by →β

is confluent.

Theorem 1.2.75 (Strong normalisation for the λ-cube) All systems in the
λ-cube are strongly normalising.

Proof: A proof can be found in for example [GN91]. QED

Example 1.2.76 Some examples of legal expressions per level and a short analysis
of their structure are given below. One can think of these typing statements as in
λC.

- Kinds (i.e. elements of �): Some examples are listed below.

∅ � ∗ : �

X : ∗ � Πx : X.Πy : (Πz : X.∗).∗ : �

Thus, in general, kinds are of the form Π	x : 	A.∗ where Ai : ∗ or Ai : � for
1 ≤ i ≤ | 	A|. Note that ∗ is a special element of �.

Variables, λ-abstractions and applications are not a kind. In particular, that
means also that there are no β-redexes such that (λx : A.B)C : �.

Both ∗ and Π	x : 	A.∗ may be inhabited.

- Types (i.e. elements of ∗): Some examples are listed below.

X : ∗ � X : ∗
∅ � ΠX : ∗.Πx : X.X : ∗
∅ � ΠX : ∗. (λY : ∗. Y )X : ∗
Y : ∗ � (λX : ∗.Πx : X.X)Y : ∗
F : (ΠX : ∗.∗), Y : ∗ � Πx : Y.F Y : ∗
X : ∗, G : (Πx : X.∗), y : X � Gy : ∗
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Note that ∗ contains variables, Π-abstractions, and applications. Hence, ∗
contains redexes.

Types reduce to expressions of the form Π	x : 	A.B where B : ∗ and B = x 	B
with x a variable.

Last but not least, types may be inhabited.

- Elements of kinds: Elements of kinds are called constructors in λC.

A couple of examples are listed below.

F : (ΠX : ∗.∗) � F : ΠX : ∗.∗
X : ∗, G : (Πx : X.∗) � G : Πx : X.∗
X : ∗ � λx : X.ΠY : ∗. Y : Πx : X.∗
∅ � λX : ∗. λx : X.X : ΠX : ∗.Πx : X.∗
Y : ∗ � (λX : ∗. λx : X.X)Y : Πx : Y.∗

Elements of kinds may be variables, λ-abstractions and applications. Hence,
such elements may also be β-redexes.

Elements of kinds reduce to expressions of the form λ	x : 	A.Π	y : 	B.C where
C : ∗ and C = z 	C with z a variable.

In general, elements of kinds have no inhabitants. However, elements of kinds
which are provided with all arguments collapse into types. For example, the
expression (λA : ∗.A)B, which is an element of ∗, may be inhabited.

- Elements of types: Some examples are given below.

X : ∗, x : X � x : X
X : ∗, x : X,
f : X → X � f x : X
X : ∗ � λx : X.x : X→X
∅ � λX : ∗. λx : X.x : ΠX : ∗.X→X
Y : ∗ � (λX : ∗. λx : X.x)(Y→Y ) : (Y→Y )→(Y→Y )

Elements of types may be variables, λ-abstractions and applications. In el-
ements of types, Π-abstractions may occur but only in the type T in a λ-
abstraction λx : T.M or in an argument of an application (λX : ∗. λx : X.x)T .
Elements of types may be redexes.

Elements of types reduce to expressions of the form λ	x : 	A. y 	B where y is a
variable.

Elements of types have no inhabitants.

Note that � is not a subexpressions of any legal expression other than itself.
That is, � does not combine into a bigger legal expression. Also, one could prove
that in a legal expression no variable is a place-holder for � (trivial) or for elements
of � (because there are no legal variables x such that x : �).
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1.3 Higher-order rewriting

Higher-order rewrite systems provide a framework for rewrite systems with binders.
Although there is no generally accepted format of higher-order rewrite systems,
the existing higher-order rewrite systems resemble each other in the following way.
They are formed from two parts:

- a substitution calculus, which implements variable binding and substitution
machinery in a uniform way; and

- an object-language consisting of a signature and rewrite rules, which imple-
ment a particular rewrite system and its computation.

The substitution calculus is specific to a class of higher-order rewrite systems. For
example in Klop’s Combinatory Reduction Systems ([Klo80]) the substitution cal-
culus is the untyped lambda calculus with function symbols. The signature and
rewrite rules are specific to a particular rewrite system represented in a particular
higher-order format.

Different formats of higher-order rewrite systems have been studied in [Klo80,
Wol93, Kha90]. In this thesis we use a concrete class of higher-order rewrite
systems, namely the pattern rewrite systems (PRSs), which amount to Nipkow’s
Higher-Order Rewrite Systems (HRSs, [Nip91, Nip93, MN98], see also Section 3.5
in [Oos94]). The pattern rewrite systems are higher-order rewrite systems with
λ→η -Church with function symbols as the substitution calculus.

We adopt the notions and most of the notations as given in [Oos94, Oos95].
Because higher-order rewriting is not as widely known as for example abstract
rewriting and lambda calculus, we will include more explanations and examples
than in the preceding introductory sections. Furthermore, although PRSs can be
considered as rewrite systems in their own right, we consider them as a framework
for rewrite systems with binders. This helps us give more intuition about the hows
and whys in higher-order rewriting. For more background on higher-order rewriting,
the reader is referred to [Klo80, KOR93, MN98, Wol93, Oos94, Raa96].

Types, elements and meta-contexts

The substitution calculus of PRSs is λ→η -Church with function symbols. In this
section, we will refer to this calculus by λ→η for short. The types of λ→η have
already been defined in the section about typed lambda calculi; we repeat it here.

Definition 1.3.1 The types of the substitution calculus are the types as defined
in Definition 1.2.30.

In fact, because we are only interested in the applicability of an element of a
PRS, we will often use the singleton {0} for the set of type variables (or base types).

The function symbols of λ→η are related to the rewrite system which is repre-
sented in the higher-order format by a particular PRS. The function symbols are
typed a priori. The set of function symbols, denoted by C, is called a signature.
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The elements of a PRS, called preterms, are the terms of the calculus λ→η -Church
with function symbols of C. This calculus has the same elements as the calculus
λ→-Church with function symbols of C.

Definition 1.3.2 Preterms are the well-typed λ→-terms, as defined by Defini-
tion 1.2.35 (and Remark 1.2.29) and typed by Definition 1.2.36.

Notation. Arbitrary preterms will be denoted by s, t, 	s, . . .. As usual, we
consider preterms equal up to renaming of bound variables. Furthermore,
we will often drop the type of the variable in an abstraction, for the sake of
readability. In PRSs it is customary to drop the λ in abstractions. That is, we
write x. s instead of λx. s. Consecutive abstractions x. y. s are abbreviated by x, y. s.

Example 1.3.3 The running example in this section is the overused example of
the representation Hλ of lambda calculus in the PRS-format. For this example, let
the signature be the set Cλ = {abs : (0 → 0) → 0, app : 0 → 0 → 0}. Examples of
preterms of Hλ are

x
abs(x.x)
app (abs(x.x)) y
z.abs(x. zx)
app z and
abs(x. (y. y)x).

In the definition of rewrite steps, meta-contexts play an important role. The
meta-contexts used, which are here called precontexts, are the meta-contexts over
preterms.

Definition 1.3.4 A precontext D is a preterm with some holes in it, as defined by
Definition 1.2.40.

Consider now a rewrite system A and its representation in the PRS-format
HA. Among the preterms of HA are the representations of the elements of the
rewrite system A. The representation of the elements of A are typed by a base
type; one may think of this type as the term type 0. These representations can be
characterised as follows: a preterm s of HA is a representation of an element of A
if and only if

- s starts with a function symbol, and all function symbols (including the start-
ing symbol) in s have the right number of arguments (that is, the preterm s
is a η-normal form of a base type (‘term type’)),

- all variables of s are place-holders for other representations of the elements of
A (that is, all variables of s are of a base type),
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- in s, substitutions are computed, (that is, s is in β-normal form, because in a
PRS it is the β-reduction that internalises substitution computation).

Example 1.3.5 In the example above, the ‘meaningful’ preterms are the variable
x, which represents the variable x; the preterm abs(x.x), which represents the λ-
term λx.x; and the preterm app (abs(x.x)) y, which represents the λ-term (λx.x)y.

As witnessed by the definitions of rewrite relation (cf. Definitions 1.3.8 and
1.3.11), one cannot restrict attention only to such preterms. In particular, the
rewrite relation in PRSs is defined via preterms l that in general are not of base
type and may contain variables of types other than base types. However, one can
(and does) focus attention only to preterms in βη-normal form, with the benefit of
having more grip on relevant preterms.

Definition 1.3.6 Terms are preterms in βη-normal form.

Although no rewriting is allowed on meta-contexts, the notion of being in βη-
normal form can straightforwardly be extended to meta-contexts.

Definition 1.3.7 Contexts C are precontexts in βη-normal form.

Rewrite relation in a PRS

Rewriting in a PRS is generated by a set of pattern rewrite rules. We will first
define the rewrite relation(s) on terms, and then extend the definition to preterms.

Definition 1.3.8 A pattern is a term of the form 	z. f(	s) such that

- f(	s) is of a base type, and

- each zi among 	z occurs free in f(	s) and has only (η-normal forms of) pairwise
distinct variables not among 	z as arguments.

The function symbol f of the pattern 	z. f(	s) is called the head symbol of the
pattern.

Definition 1.3.9 A pattern rewrite rule (i) : l→ r is a pair of closed terms of the
same type τ , where the left-hand side l is a pattern.

Example 1.3.10 An example of a pattern rewrite rule is

z1, z2.app (abs(x. z1x)) z2 → z1, z2. z1z2 . (beta)

This rule represents the β-rewrite rule of λ-calculus.

Let s and t be terms. A rewrite step s→i t in a PRS consists of

- extracting the left-hand side l ≡ 	z. f(	s) of a rewrite rule (i) : l→ r in s,
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- literally replacing the left-hand side l by the right-hand side r ≡ 	z. r′, and

- β-reducing to normal form.

By the extraction step an internalised substitution for 	z in f(	s) is formed,
and by the β-reduction step the internalised substitution of variables 	z is applied
to r′. This amounts to defining a rewrite step as it is done in Nipkow’s HRSs:
C[(f(	s))σ]→i C[(r′)σ] where σ is a substitution ranging over the variables 	z.

If a pattern l can be extracted from a term s, that is, if there is a context C such
that C[l]→→β s, then we call l a pattern (at C) in s. Note that along the rewrite
sequence C[l]→→β s, the left-hand side l is not duplicated, because C is in βη-normal
form. In particular, the head symbol of l has precisely one descendant in s. Hence,
if (i) : l→ r is a rewrite rule and l is a pattern at C in s, then l and C uniquely
determine a redex occurrence in s.

Definition 1.3.11 Let s and t be two terms. Then s→i t if there is a rewrite rule
(i) : l→ r and a context C such that s←←β C[l] and C[r]→→β t.

In fact, in PRSs, the context C of this definition is unique (cf. Proposition 3.2.17
in [Oos94]). This is due to the fact that C is in βη-normal form.

Example 1.3.12 Consider the pattern rewrite rule (beta) given in the previous
example. An example of a rewrite step is

app (abs(x.x)) y →beta y

because

app (abs(x.x)) y ←←β (z1, z2.app (abs(x′. z1x′)) z2)(x.x)y
≡ ([](x.x)y)[z1, z2.app (abs(x. z1x)) z2]
→repl ([](x.x)y)[z1, z2. z1z2]
≡ (z1, z2. z1z2)(x.x)y
→→β y.

where →repl denotes the replacement of l by r.

Definition 1.3.13 Let s and t be two preterms. Then, s→i t if and only if there
are terms s′, t′, a rewrite rule (i) : l→ r and a context C such that s=βη s

′←←β C[l]
and C[r]→→β t

′ =βη t.

Pattern rewrite systems

Definition 1.3.14 A higher-order pattern rewrite system (PRS) is a pair (C,R)
consisting of a signature C and a set R of pattern rewrite rules.

In general, the adjective higher-order in higher-order rewrite systems pertains
to the order of variables in the rewrite rules.
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Definition 1.3.15 The order function Ord( ) on types is defined by (a ∈ BT )

Ord(a) = 1
Ord(	τ → a) = 1 +max{Ord(τi) | 1 ≤ i ≤ |	τ |}.

The order of a rewrite rule (i) : 	z. f(	s)→ r is the maximal order of the types
of the variables 	z and of the function symbols in it. The order of a PRS is the
maximal order of its rewrite rules.

Example 1.3.16 The structure Hλ = (Cλ, (beta)) is an example of a second-order
PRS. The signature Cλ was defined in Example 1.3.3 and the rewrite rule (beta) in
Example 1.3.10.

With each pattern rewrite system an (indexed) ARS can be associated in a
straightforward way. The notions of (full) sub-ARS (Definition 1.1.13) and indexed
sub-ARS (Definition 1.1.14) are then also straightforwardly carried over from ab-
stract rewriting into PRSs. We will say a PRS H is a sub-PRS (or, an indexed
sub-PRS) of H′ if the underlying ARS of H is a sub-ARS (respectively, an indexed
sub-ARS) of the underlying ARS of H′.

Orthogonal pattern rewrite systems

Orthogonality describes the property of rewrite systems that contracting a redex in
a term does not destroy other redexes that are present in the term. That is, in an
orthogonal rewrite system the redexes in a term are, loosely speaking, independent
of each other. Orthogonality implies confluence.

In the first-order rewriting, orthogonality is defined via properties of the left-
hand sides of the rewrite rules. The notion of orthogonality can be lifted from
first-order to higher-order rewriting.

Definition 1.3.17

i) A pattern 	z. f(	s) is linear if each zi occurs free exactly once in f(	s).

ii) A pattern rewrite rule (i) : l→ r is left-linear if l is a linear pattern.

iii) A PRS is called left-linear if all its rewrite rules are left-linear.

Definition 1.3.18 A critical pair is a tuple (C[r	s], r′	t) where C is a context and
C[l	s] = l′	t is a most general overlapping between two redexes of rewrite rules
(i) : l→ r and (j) : l′→ r′. If the context is the trivial one, the rewrite rules must
be different.

Definition 1.3.19 A pattern rewrite system is called orthogonal if there are no
critical pairs and if all rewrite rules are left-linear.

Theorem 1.3.20 Orthogonal PRSs are confluent.

Proofs can be found in for example [Oos94, OR93].
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Developments and descendants in linear PRSs

A development step is a simultaneous contraction of a set of redex occurrences in a
term. A condition for performing a development step is that the redex occurrences
involved are independent from each other. Development steps and this condition
are formulated in the next two definitions.

Definition 1.3.21 Let C be a context with n holes. Let (i1) : l1 → r1, . . .
(in) : ln → rn be n rewrite rules of a linear PRS. Let s and t be terms such
that s←← C[l1, . . . , ln] and C[r1, . . . , rn]→→ t. Then we say that s rewrites to t in
one development step and denote this by s−→◦ t.

In the definition above, the terms s (and t) are specific terms, defined by the
context C and the rewrite rules. A development step from an arbitrary s depends
on the existence of patterns in s that can be extracted independently from each
other.

Definition 1.3.22 A set l1, . . . , ln of patterns (at C1, . . . , Cn) in s is said to be
independent if there is a context C with n holes such that C[l1, . . . , ln]→→βs, and that
the head symbol of lk descends to the same symbol in s in both C[l1, . . . , ln]→→β s,
and Ck[lk]→→β s for each 1 ≤ k ≤ n.

As we have already mentioned, if l is a pattern at C in s, then l and C uniquely
determine a redex occurrence in s. Accordingly, a set of redex occurrences is called
independent if their patterns are independent.

In the definition above, the descendant relation along the rewrite sequences
C[l1, . . . , ln]→→β s and Ck[lk]→→β s is, of course, the descendant relation defined
for β-rewriting in untyped lambda calculus (cf. Definition 1.2.27). Furthermore,
the first condition describes the independence of patterns in s, and the second
condition requires that contexts C and Ck consider the same redex occurrence of lk
in s.

Example 1.3.23 The second condition prohibits ‘cheating’. In this example we
consider an another PRS than the running example, because the running example
behaves too nicely.

Consider the pattern rewrite rules

z. f(g(z))→ z. z (1)
z. g(z)→ z. z (2)

and let s ≡ h(f(g(a)), g(b)), where two redex occurrences are marked. Then, in-
formally speaking, the two redex occurrences are not independent, because the
contraction of the underlined redex destroys the overlined redex. That is, there is
no context C that satisfies the conditions of the definition above.

Note though, that there is a context such that C[z. f(g(z)), z. g(z)]→→β s, namely
C ≡ h([]a, []b). In this context, the other redex occurrence of the rule (2) is ex-
tracted.
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Example 1.3.24 In the term

s ≡ app (abs(x.app (abs(y. y)) x)) z

the underlined and overlined redex occurrences are independent. By contracting
these redex occurrences, s rewrites to z in one development step, that is,

s ≡ app (abs(x.app (abs(y. y)) x)) z −→◦ z.

Lemma 1.3.25 In an orthogonal PRS, every set of redex occurrences in a term s
is independent.

The descendants of a redex occurrence over a rewrite sequence are traced via the
head symbol of the pattern related to the redex occurrence. Tracing descendants in
PRSs is more difficult than in the first-order case, because the descendants of disjoint
subterms may become nested after a rewrite step. Furthermore, the definition of
a rewrite step involves β-expansion viz. s←←β C[l]. Hence, the descendant relation
in PRSs will involve tracing origins of function symbols of s in C[l] along this
expansion.

The descendant relation in PRSs is defined over a development step. Because
each rewrite step is a development step of a singleton, the definition of descendant
relation applies to rewrite steps too.

The descendant relation is defined in linear pattern rewrite systems. The prop-
erty of linear PRSs that is used in the definition of the descendant relation is that
in a rewrite sequence to a normal form C[l1, . . . , ln]→→β s, each function symbol of
C[l1, . . . , ln] has precisely one descendant in s. That is, each function symbol of s
has a (unique) origin in C[l1, . . . , ln].

The following definition and results are found in [Oos95]. We do not go into all
the details of the definition. In particular, this definition employs tracing origins
of function symbols of s over s←←β C[l1, . . . , ln]. For a precise definition of the
descendant relation over a β-expansion, see Definition 3.1.25 in [Oos94].

Definition 1.3.26 The descendant relation of a development step s −→◦ t where
s←←β C[l1, . . . , ln] and C[r1, . . . , rn]→→β t, of a set of independent redexes is the
relation composition of the descendant relations of its three components: the β-
expansion, the replacement and the β-reduction. In the replacement step from
C[l1, . . . , ln] to C[r1, . . . , rn] function symbols in the context C descend to them-
selves. Function symbols in the left-hand sides are said to be destroyed. Function
symbols in the right-hand sides are said to be created.

Example 1.3.27 We consider a rewrite step and the descendants of the underlined
and overlined redex occurrences:

s ≡ app (abs(x.app (abs(y.x)) y′)) (app (abs(z. z)) z′)

→beta app (abs(y. (app (abs(z. z)) z′))) y′

≡ t.
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Note that the two redex occurrences were disjoint in s and are nested in t. However,
in both terms the redex occurrences are independent.

Lemma 1.3.28 In an orthogonal PRS, the descendants of independent patterns are
again independent.

Lemma 1.3.29 In an orthogonal PRS, the descendants of redexes are again redexes
of the same rewrite rules.

If the descendants of a redex are again redexes, they are called residuals.

1.4 General notation and conventions

We assume bound variables are renamed whenever necessary. For example, before
doing a β-step from the λ-term (λx.λy.x)y, it is necessary to rename the bound
variable y; otherwise, an unintended binding would occur. Also in a type derivation
of the same λ-term the same bound variable y has to be renamed; otherwise the
basis {y : σ, x : τ, y : ρ}, which occurs along the derivation, would contain two
declarations of the same variable. We understand the renaming of bound variables
as a repairment of the short-comings of the notation with name-carrying variables.

If A is a calculus, then the set of terms of A will be denoted by Ter(A), unless
explicitly stated otherwise. Moreover, if A is a typed calculus, then the set of types
of A will be denoted by Typ(A).

The set of natural numbers is denoted by IN = {0, 1, 2, 3, . . .}.
A finite sequence of elements, possibly alternated by a constructor will be abbre-

viated by a vector. For example, 	a = a1, . . . , an, 	τ → τ = τ1 → (τ2 → . . .→ (τn →
τ)) and 	0→ 0 = 0→ (0→ . . . (0→ 0)). The empty sequence will be denoted by ε.
The length of the vector 	a will be denoted by |	a|.

The identity relation between notions other than terms, types, contexts and
(pseudo-)expressions, will be denoted by = (see also Definition 1.1.2 and
Remark 1.2.7).



Chapter 2

Contexts in lambda calculus

Contexts play a role in many systems of expressions and expression transformation,
like for example in lambda calculus, in programming languages, and in linguistics.
Different applications of contexts in these systems have led to different notions
of context. Although the notions of context differ, the transformations involving
contexts in these systems are common. Consequently, the problems that are encoun-
tered when formalising contexts and context-related transformations are common
too.

In the untyped and simply typed lambda calculus, a context is a term with some
holes in it. The distinctive feature of contexts is that when a term is filled into a
hole of a context, some free variables of the term may become bound by the binders
of the context. This feature is called variable capturing. The main problem in a
context formalisation is that, when β-reduction is näıvely defined on contexts, the
intended variable capturing may be lost. That is, β-reduction and filling of holes
do not commute and consequently, the formalisation is not consistent.

This chapter is an introduction to contexts as terms with holes in the untyped
and simply typed lambda calculus, to problems related to formalisation of contexts
and to solutions for these problems. Also, this chapter establishes terminology re-
lated to contexts for the rest of the thesis. It is organised as follows. Section 2.1
is an introduction to contexts and context-related operations. In this section, dif-
ferent notions of context as encountered in the literature on rewriting, and their
applications are described. Section 2.2 explains what a context formalisation com-
prises, and analyses the main problems in context formalisation. In this section, we
define the notion of communication between a context and terms to be put into its
holes. Communication is concerned with establishing intended variable capturing
and passing on the effects of earlier α-conversion and β-reduction within the con-
text to the terms filled into its holes. In Section 2.3 motivation for formalisation of
contexts is given. In Section 2.4 an overview is given of existing context formalisms
and their solution for the context-related problems is described. Section 2.5 gives
a gentle introduction to our context calculus λc. Here, the main aspects of the
context calculus λc are informally sketched. A formal description of the calculus

35
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will be given in Chapter 3.
Later, in Chapter 6 typed lambda calculi with more expressive power than the

simply typed lambda calculus, and contexts as terms and types with holes will be
considered. The additional problems with and our approach to the formalisation of
such generalised contexts will be discussed there.

2.1 Contexts in the lambda calculus

In lambda calculus contexts are commonly engaged in many arguments on the meta-
level. In this section we treat the informal notion of context in the untyped and
simply typed lambda calculus and list a few existing variations on the notions of
context.

A context over λ-terms, or a (λ-)context for short, is basically a λ-term with
some holes in it. Holes1 are usually denoted by []. For example, (λy. [])x is a
λ-context.

A hole of a λ-context may be filled by a λ-term or by a λ-context. For example,
filling the term xy into the context (λy. [])x results in the term (λy.xy)x. Fill-
ing, for example the context x(λy. []) into the context λx. [] results in the context
λx.x(λy. []). In general, the resulting objects are denoted as C[M ] and C[D] where
C and D are contexts, M is a term and where [ ] denotes the textual replacement
of the hole(s) in C by M or D.

A peculiar side effect of filling holes of a context is variable capturing: when a
term M or a context D is placed into the hole(s) of context C, some free variables
of M or D may become bound by the binders of C. For example, the variable
y, which is free in the term xy becomes bound by the binder λy of (λy. [])x in
((λy.xy)x). This variable capturing is intended: by the choice for the names of
the free variables in M and D, and the names for the binders of C one controls the
variable capturing in the result of the filling. The variable capturing distinguishes
filling of holes from substitution. Recall that substitution avoids such capturing by
renaming problematic bound variables. For example, if we consider [] as a variable
for the sake of argument, the substitution [[[] := xy]] applied to (λy. [])x results in
(λy′. xy)x, where λy has been renamed into λy′ in order not to bind the free y of
xy.

Contrary to terms, contexts are not considered modulo α-conversion (in the
name-carrying representation) nor are contexts subject to β-reduction. That means,
for example, that λx. [] �=α λy. [] and (λx.x [])y �→β y []. Furthermore, substitution
is not defined on contexts. So, for example, x [][[x := y]] �= y []. Because neither
substitution, α-conversion nor β-reduction are defined on contexts, contexts are
merely a notational convenience. That is, contexts are meta-elements of lambda
calculus.

In the literature on rewriting, several variants of this simple view on contexts as
terms with holes exist. The first possibility for variation is in the number of holes

1A hole is sometimes called an open place (cf. [Vri87]) or an open end (cf. [Bru78]), and it is
sometimes denoted by [ ] (cf. [Bar84]).
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allowed in a context: precisely one, or many, including zero. The second possibility
for variation is, in the case where many holes are allowed, in the way these holes
are treated: as copies of the same hole, which therefore must be filled with the
same term; as copies of different holes, which therefore may be filled with possibly
different terms; or as combination of both treatments by distinguishing between
holes and hole occurrences.

We list a few definitions of different notions of context as found in the literature,
and explain when a particular notion of context is needed. We will ignore the
differences in the particular version of lambda calculi (with or without function
symbols or typing, for example) because these differences are irrelevant for the
notion of context. In the definitions we adjust the notation and terminology to
correspond with ours. All these contexts are considered on the meta-level of lambda
calculus.

The definitions consist of two parts: the first part describes the structure of a
context, and the second part defines filling of holes by terms. It is in the definition
of filling that one sees how []’s are treated: as copies of the same hole or as copies
of different holes.

i) In [Klo80, Vri87] contexts are terms with a unique hole occurrence. The next
definition amounts to Definition 1.5 in [Klo80] and Definition 0.2 in [Vri87].

Definition 2.1.1 (Contexts 1)

(a) A context C is a term with one hole occurrence [].

(b) Let C be a context and M a term. Then C[M ] is the result of filling
that hole occurrence with M .

These contexts are used when one focuses on one position in the term C[M ]
and the changes that occur at that position. Such contexts are used, for exam-
ple, in the definition of the rewriting rules of lambda calculus. For example,
the β-rewrite relation is defined2 by

C[(λx.M)N ]→ C[M [[x := N ]]] (β)

where C is a context, and M and N are terms.

Another occasion where such contexts are used is in proofs by induction to
the structure of a term.

ii) In [Bar84], contexts are terms with many hole occurrences (cf. Definition
2.1.18 in [Bar84]).

Definition 2.1.2 (Contexts 2)
2In fact, this is the only way to define β-rewriting by one rule schema. Without contexts one

has to express that rewriting is a congruence, which then takes more words to describe it.



38 CHAPTER 2. CONTEXTS IN LAMBDA CALCULUS

(a) A context is a term with some holes in it. More formally:

x is a context,
[] is a context,
if C1 and C2 are contexts, then so are C1C2 and λx.C1.

(b) If C is a context and M is a term, then C[M ] denotes the result of placing
M in the holes of C.

These contexts are used when one considers many occurrences of the same
subterm M in a term N ≡ C[M ]. Such contexts are used, for example, in λI
in the proof that a term M is solvable if and only if M has a normal form.
The contexts of Definition 2.1.1 are a special case of these contexts.

iii) In [Oos94] contexts are terms with many holes which occur at most once.
The following definition can be extracted from Definition 3.(4) of the same
reference.

Definition 2.1.3 (Contexts 3)

(a) A context is a term containing holes []1, . . . , []n, where n ≥ 0.

(b) If C is a context containing []1, . . . , []n, and 	M are n terms, the term
C[ 	M ] denotes the result of replacing []i in C by Mi, for 1 ≤ i ≤ n.

These contexts are used when one focuses on simultaneous changes at a set of
positions. For example, such contexts are used in the definition of development
steps (cf. Definition 1.3.21 in [Oos94]):

C[l1, . . . , ln]−→◦ C[r1, . . . , rn]

where li → ri is a rewrite rule for 1 ≤ i ≤ n. Implicitly, the existence of such
a context C with s←←β C[l1, . . . , ln] defines the notion of independent redex
occurrences in s (cf. Definition 1.3.22, see also Examples 1.3.24 and 1.3.23).

iv) In [Ber78] contexts are terms with many holes which may occur many times.
Holes are labelled and contexts are called multiple numbered contexts. The
following definition is Definition 14.4.1 in [Bar84].

Definition 2.1.4 (Contexts 4)

(a) Multiple numbered contexts are defined as:

x is a multiple numbered context,
if i ∈ IN, then []i is a multiple numbered context,
if C1 and C2 are multiple numbered contexts, then C1C2 and λx.C1

are multiple numbered contexts.
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(b) Let C be a multiple numbered context such that the holes of C are among
[]i1 , . . . , []in with i1, . . . , in ∈ IN and i1 < . . . < in. Let 	M be n terms.
Then C[ 	M ] denotes the result of placing Mj in the hole []ij for 1 ≤ j ≤ n.

These contexts are used when tracing many positions in the term C[ 	M ] along
a rewrite sequence. For example, such contexts are used in the proof that
computation of functions that are definable in lambda calculus is sequential
rather than parallel (cf. [Ber78]). The contexts of Definitions 2.1.1 through
2.1.3 are all special cases of multiple numbered contexts.

In the simply typed lambda calculus, contexts are defined in similar ways. The
differences are that []’s have each a type, that contexts are well-typed terms with
holes with respect to the typing rules at hand, and that hole filling is required to
be type-preserving.

Remark 2.1.5 With contexts being defined as terms with holes, the definition of
filling holes by terms implicitly defines the operation of filling holes by contexts.
Although filling of holes by contexts is analogous to filling of holes by terms, some
precision is desirable, in particular when dealing with contexts according to Defini-
tion 2.1.4. For example, in Definition 2.1.4, one talks about ‘a context over holes
[]i1 , . . . , []in ’ but there is no restriction that these holes actually have to occur in the
context. For example, we may consider the context D ≡ λy. []2 as a context over
[]2 and []3. Filling this context into the context C ≡ λx. []1 results in the context
λx.λy. []2. Is this resulting context considered as a context over []2 and []3 or as a
context over []2? Whatever one chooses for the answer to this question, for the sake
of clarity an answer should be provided.

Note that the restriction that []i1 , . . . , []in have to occur in ‘a context over holes
[]i1 , . . . , []in ’ cannot be imposed. In that case, hole filling would be defined on
a context with n holes (i.e. a context which actually contains n holes) and n
terms. However, multiply numbered contexts are considered along a rewrite se-
quence C[ 	M ]→β C

′[ 	M ] →→ . . . and along a rewrite sequence a hole may disappear:
for example, ((λx. y)[]1)[z]→ y[z]. Then, y[z] would not be a valid expression, and
thus, the set of expressions would not be closed under rewriting.

2.2 Context formalisation: problems and analysis

The main goal in this thesis is to formalise contexts. A formalisation of λ-contexts
should ideally establish the following3:

- it should provide a means for representing contexts,
3The formalisation items that are listed above can be seen in any formalisation of a meta-

level notion. For example, in explicit substitution calculi (see e.g. [ACCL91]) representation of
substitutions, representation of substitution-related operations and their computation is provided,
and β-reduction is defined on (representations of) substitutions.
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- it should provide a means for representing and computing context-related
operations, and

- it should extend the standard operations and relations to (the representations
of) contexts: these transformations comprise substitution, rewrite relations
and, in the case of a typed lambda calculus, also the typing relation.

These requirements for a formalism are not independent of each other. For example,
the way α-conversion and β-reduction are defined on contexts will influence the
syntax of expressions, including the representation of contexts. Still, there is plenty
of room for variation in a context formalisation. For example, formalisms may differ
in the way context-related operations are computed: by means of meta-operations
or by means of rewrite rules; or formalisms may or may not allow contexts to be an
argument or a result of a function. However, and on this point all context formalisms
that we discuss in Section 2.4 agree, the most important part of the formalisation
of contexts are the requirements listed above, and in particular, the extension of
α-conversion and β-reduction to contexts. Hence, the requirements listed above can
be understood as minimal requirements for a context formalisation.

We address two main problems in formalisation of contexts as terms with holes
in the untyped and simply typed lambda calculus. The first problem concerns the
combination of α-conversion and β-rewriting on contexts on the one hand, and hole
filling on the other hand. The second problem concerns the preservation of the
notion of context under β-rewriting. The problems that arise from typing, and in
particular, from typing when holes are allowed in types too, will be addressed in
Chapter 6.

Non-commutation of rewriting and hole filling

The major problem4 in a näıve formalisation is that the standard rewrite relations do
not commute with the new context reductions. Confluence is lost and, consequently,
the corresponding equational theory is inconsistent. The non-commutation of β-
reduction and hole filling with terms is demonstrated by the next example, where a
representation for hole filling, hf (here seen as an operator), has been introduced,
where hole filling is computed by fill -reduction and where β-reduction has näıvely
been extended to contexts. This example will be used as the running example
throughout the thesis. We will return to this example to show how the problem
described here is solved in a particular formalism, including our context calculus.
Furthermore, a similar example of non-commutation can be given for substitution
or α-conversion instead of β-reduction.

Example 2.2.1 For the sake of this example we make the näıve formalisation of
contexts precise. We define expressions and rewrite rules. Let expressions P , which

4This problem is generally recognised in the literature on context formalisation (see Section 2.4).
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now represent both terms5 and contexts, be defined as

P ::= x | [] | λx.P | P P | hf (P, P ).

Let β-reduction be generated by the rewrite rule

(λx.P )Q→ P [[x := Q]] (β)

and filling of holes by

hf (P, Q)→ P [Q]. (fill)

Note that with expressions and hole filling defined as above, this formalism includes
contexts of Definition 2.1.2. Let C ≡ (λy. [])x and M ≡ xy. Then

hf (C, M) ≡ hf ((λy. [])x, xy)→fill (λy.xy)x →β xx

but

hf (C, M) ≡ hf ((λy. [])x, xy)→β hf ([], xy) →fill xy �= xx.

In the example, the reductions6 end in different terms because in the first re-
duction the substitution [[y := x]], which emerged from the rewrite step in context
C is applied to the term M , while in the second reduction the substitution is not
applied to the term M , but only to the hole, which ‘forgets’ it. Note that the result
of the first reduction is the intended one. Note also the subtle difference between
denoting a hole filling hf (P, Q) and its result P [Q].

The problem is that, when α-conversion and β-reduction are defined on contexts,
the interaction between a context and a term (or a context) to be put into its
holes becomes more complex than plain variable capturing. We call this interaction
between a context and a term (or a context) to be put into its holes communication.
The following informal definition is meant to stipulate the way we use the word
‘communication’.

Definition 2.2.2 (Communication) Let C be a context and M a term to be
filled into a hole of C. Communication between (reducts of) C and M comprises
establishing intended variable capturing and passing on imminent substitutions to
M that emerge from earlier α-conversion and β-reduction within the context C.

Communication between a context C and a context D which is to be put into a
hole of C is defined analogously.

Thus, in lambda calculus, where α-conversion and β-reduction are not defined
on contexts, communication boils down to establishing intended variable capturing.

5It is interesting to see that by broadening our view to both terms and contexts, terms may be
defined as contexts without holes.

6In the example we defined hole filling as a rewrite relation. Also, if we computed the hole
filling by the meta-operation P [Q], the two ‘rewrite’ sequences would still result in different terms.
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Here, the intended variable capturing is easy to establish, as we have already men-
tioned at the beginning of Section 2.1, by the choice for the names of binders of C
and for the names of free variables of M or D to be filled into the holes of C.

In lambda calculus we are not much aware of the communication because it is
implicitly solved. However, in a context formalism communication will be visibly
present. At the point of representing a (meta-)context as an expression of the for-
malism, the intended variable capturing will be fixed and it should remain preserved
under rewriting.

Thus, in a context formalism, what is needed to solve the problem of communica-
tion is a way of denoting the intended bindings, which keeps track of α-conversion or
β-reduction in the outer context and passes the effects of these reductions on to the
terms (or contexts) replacing the holes. The effects of α-conversion or β-reduction
in the outer context always result in a substitution: in the case of α-conversion,
λx.P =α λy.P [[x := y]]; and in the case of β-reduction (λx.P )Q →β P [[x := Q]].
The effects of many α- or β-steps may accumulate in one substitution [[	x := 	P ]]. In
this substitution, 	P may contain holes too. Such a substitution should pause at a
hole until a term or a context is filled into this hole. The substitution should then
be applied to the term or context filled into the hole.

For example, the second reduction of the example above can be repaired by
explicitly keeping track of these α, β-changes and applying the resulting substitution
to the term after hole filling:

hf ((λy. [])x, xy)→β hf ([][[y:=x]], xy) →fill (xy)[[y := x]] = xx.

The problem of establishing communication in a context formalism is reduced
to the encoding of this substitution.

Preservation of the notion of context within a formalism

In addition to solving the communication problem, there is also the issue of the
notion of context within a formalism. At this point we distinguish between the
notion of context on the meta-level and the notion of (representation of) context
within a formalism.

In a context formalisation, the structure of (the representation of) a context
regarding the number and treatment of holes has to be preserved under rewriting.
For example, contexts with exactly one occurrence of [] are not preserved under
rewriting, since this hole occurrence may be duplicated under β-reduction, e.g.
(λx.xx)[] →β [] []. This counterexample shows that contexts of Definitions 2.1.1
and 2.1.3 are not preserved under rewriting: in the reduct [][] there are two occur-
rences of [] (which conflicts with Definition 2.1.1(i)) which should be considered as
occurrences of the same hole and accordingly, should be filled by the same term
(which conflicts with Definition 2.1.3(ii)). One easily sees that contexts of Defini-
tion 2.1.2 and 2.1.4 are preserved under rewriting.

Note however that this does not mean that contexts of Definition 2.1.1 and 2.1.3
cannot be formalised. These contexts can be formalised, but within a formalisation
they will be represented by contexts of Definition 2.1.2 and 2.1.4, respectively.
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In our opinion the most natural notion of context on the meta-level, where
α-conversion and β-reduction are not defined on contexts, is as defined by Defini-
tion 2.1.3. Each [] in such a context is characterised by its position, by the binders
in whose scope it lies, and by its type (if typed). Because two []’s positioned at
different positions in general lie in the scope of different variables, it is the most
natural way to consider these []’s as different holes. However, when (meta-)contexts
are represented in some context formalism, where α-conversion and β-reduction are
defined on contexts, multiple numbered contexts (Definition 2.1.4) should be used,
because holes can be duplicated under rewriting.

Intermezzo 2.2.3 In this section we have shown that a näıve formalisation of con-
texts leads to an inconsistent system. There is however a special case where the
rewrite relations can näıvely be extended to contexts to form a consistent system.
This case pertains to contexts, whose structure is preserved under rewriting (Def-
inition 2.1.2 or 2.1.4) and which may be filled only by closed terms or by closed
contexts. If a term M to be put into a hole of C is closed, then there is no com-
munication between M and C. Hence, filling of holes boils down to ‘substitution’
of []’s. Using the Substitution lemma 1.2.17, it holds that C →β C

′ if and only if
C [[[] := M ]] →β C

′[[[] := M ]]:

C →β C
′

⇔ ∃D,P,Q with C ≡ D[(λx.P )Q]→β D[P [[x := Q]]] ≡ C ′

⇔ ∃D,P,Q with
C[[[] := M ]]

≡ D[(λx.P )Q][[[] := M ]]
= D [[[] := M ]] [(λx.P [[[] := M ]])Q[[[] := M ]]]

because x �∈ FVar(M)
→β D [[[] := M ]] [P [[[] := M ]] [[x := Q[[[] := M ]]]]]
= D [[[] := M ]] [P [[x := Q]]][[[] := M ]]

by the Substitution lemma and x �∈ FVar(M)
= D[P [[x := Q]]][[[] := M ]]
≡ C ′ [[[] := M ]] .

Alternatively, instead of computing the hole filling by substitution (which is
a meta-operation), one can easily define a context calculus, where the hole filling
restricted to the filling with closed terms and closed contexts is computed by a
rewrite relation:

- use hole variables h1, . . . , hn instead of []: if C is a context over n holes, then
represent the context as C[h1, . . . , hn],

- represent contexts as abstractions over hole variables λ	h.C[	h] and hole filling
as applications (λ	h.C[	h]) 	M , and

- compute hole filling by β-reduction: (λ	h.C[	h]) 	M → C[	h][[	h := 	M ]] ≡ C[ 	M ].
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Rewriting in such a system is confluent, because of the confluence property of β-
reduction.

The property that β-rewriting commutes with hole filling on such contexts is
used in the definition of rewrite steps in higher-order rewriting in [Oos94]. Recall
that on terms s and t of a PRS H, we have s→i t if and only if there are a context
C and a rewrite rule (i) : l → r such that s ←←β C[l] and t ←←β C[r]. Because l
and r are closed terms, one can be more precise about the choice for the context
C by taking the β-normal form as the representative. Here, ‘taking the β-normal
form of a context’ means that β-reduction is defined on contexts. The property
that β-rewriting commutes with hole filling on contexts and closed terms is used
in the proof of the Prism theorem in [Oos95], which in turn is used to prove that
orthogonal PRSs are confluent.

Intermezzo 2.2.4 We briefly consider (first-order) term rewrite systems (TRSs,
see for example [Klo92]) and formalisation of contexts in TRSs. Because there are
no binders in TRSs, communication between a context and terms to be put into its
holes is void. Then, rewriting can directly be extended to contexts, provided that
rewriting preserves the notion of context (the number of holes and their occurrences)
in question. Moreover, the notion of context is preserved under rewriting if the
rewrite rules are linear and non-erasing. A rewrite rule is linear if each variable
occurs at most once in the left-hand side and at most once in the right-hand side
of the rule. A rewrite rule is non-erasing if all variables that occur in the left-hand
side occur also in the right-hand side of the rule.

2.3 Motivation for formalisation of contexts

The starting point of our research has been De Bruijn’s calculus of segments, which
was proposed in the context of the family of proof checkers Automath. From a
broader perspective, the increasing interest in contexts has its motivation from many
directions, as diverse as modelling programs and program environments, operational
semantics and dealing with anaphora in natural language representation. In all these
cases there is a need for manipulating contexts on the same level as expressions.

The applications of contexts we discuss here go beyond the applications of dif-
ferent notions of context that we have discussed in Section 2.1. We give examples
of three different applications of contexts.

Examples from programming

We discuss two examples of the usage of contexts in the realm of programming.
In the field of programming, program transforming techniques have been devel-

oped with the aim of optimisation. The main idea is to transform programs written
by programmers into less structured but more efficient programs, while preserving
their meaning. An example of a program transformation is the transformation of a
recursion statement into an equivalent iteration statement (cf. [HL78]).
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In general, program transformations are expressed by means of rewrite schemes.
Such schemes are easily defined by using contexts. However, a näıve approach to
stating such schemes may lead to incorrect program transformations. The following
example is given in [PE88]: distribution of a context over an if-statement, expressed
by the scheme

C[ifB thenM elseN ]⇔ ifB then C[M ] else C[N ],

can be applied incorrectly:

let p = false in if p then 1 else 2
�⇔ if p then let p = false in 1

else let p = false in 2.

Intuitively, the first statement ‘reduces’ to 2, while the second statement ‘reduces’
to if p then 1 else 2.

When formulating rewrite schemes with context propagation one has to take
into account the bindings between the binders of C and the free variables of B, M
and N .

Thus, in program transformation one considers statements as expressions and
the surrounding code as contexts. Alternatively, one could consider programs as
expressions and environments as contexts. A relevant operation involving programs
and environments is evaluation of programs in an environment, where a similar
binding occurs between for example system calls that are defined in the environ-
ment and used in a program. In this case, environments are seen as pairs of (vari-
able/identifier, value), that is, as substitutions [[	x := 	M ]]. Such a substitution can
be represented by the context C ≡ (λ	x. []) 	M . When representing an evaluation of a
program N in an environment C, the hole filling is immediately followed by the re-
duction of the redexes in the context: ((λ	x. []) 	M)[N ]→ N [[	x := 	M ]]. Formalisation
of environments as contexts has been studied in [SSB99, SSK01, LF96].

Remark 2.3.1 One may also consider programs and procedures as expressions,
and modules as contexts. The operations involving programs, procedures and mod-
ules are execution of a program using modules, or selection of a procedure from
a module. In this case, one cannot achieve the same expressive power in lambda
calculus as in a programming language: sometimes procedures are mutually depen-
dent, and this kind of dependence cannot be expressed by lambda terms or contexts.
A formalism dealing with such procedures and modules has been studied by e.g.
J.B. Wells and R. Vestergaard in [WV00].

An example from proof checking

We give an example from type theory, where λ-contexts are used for the repre-
sentation of mathematical concepts, in the realm of proof checking. This example
illustrates the use of variables for contexts, which then also can be abstracted.
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A context that is suitable for reasoning about reflexive relations, and hence in
a way, that is suitable for representing the notion of reflexive relation, could be the
following:

λA : Set.λR : (A→ A→ Prop). λrfl : (∀x : A.Rxx). [].

Let us call this context refl . Then, an argument on reflexive relations, say a piece
of mathematical text text , can be performed within this context, via hole filling:

refl [text ].

Here, refl [text ] denotes the result of the meta-operation of hole filling. In text the
identifiers A,R, rfl can then be used. In a larger piece of text this can happen more
than once. Say in a proof term

P (refl [text1], refl [text2], refl [text3]).

An efficient representation, without the need to repeat refl , could then be given as:

(λc.P (hf (c, text1), hf (c, text2), hf (c, text3)))refl

with hf as a hole-filling operator (as opposed to the hole-filling meta-operation
whose result is denoted using [ ]) as in Example 2.2.1. Hole filling hf (c, text i) will
be computed eventually by a hole-filling rewrite rule after refl is replaced for the
context variable c. By providing such a hole-filling operator and a hole-filling rewrite
rule we have a means for denoting hole filling and postponing its computation.

This example shows that contexts can effectively be employed for representing
mathematical structures and furthermore, that for an efficient representation, also
functions ranging over contexts as well as a means for delayed computation of hole
filling is necessary. Functions over contexts implement an abbreviation mechanism
for contexts (see also Remark 1.2.16 about abbreviation mechanism for terms in
lambda calculus) and a delayed hole filling supports it.

The use of the context refl that we indicated is also a typical example of a
segment, according to N.G. de Bruijn [Bru78]. A technical treatment of segments
using our calculus λc will be given in Chapter 5.

An example from linguistics

The aim of natural language semantics is to give a method by which (a part of)
natural language can be translated into a logical formalism. Often, a type theory
is used as the logical formalism. The formalisation method is based on the com-
positionality principle: the representation of the whole text is a function of the
representations of the pieces of the text.

We illustrate how contexts can be used to represent pieces of text. We take the
following text and translate it, sentence by sentence, as contexts.

A man walks. He talks.
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Here, the pronoun he in the second sentence is ‘bound’ to the declaration a man in
the first sentence. When sentences are translated into a formalism one by one, this
binding has to be preserved. This kind of binding is called dynamic binding in the
natural language semantics.

In lambda calculus, the sentences can be represented as

S1 ≡ λxman .W (x) ∧ [] and S2 ≡ T (x) ∧ [],

where ∧ denotes a language connective. The representation of the whole text is
obtained by placing the second context S2 in the hole of the first context S1:

S1[S2] ≡ (λxman.W (x) ∧ [])[T (x) ∧ []] ≡ λxman.W (x) ∧ T (x) ∧ [].

Formalisation of such contexts is the subject of for example [KKM99].

2.4 Contexts in context

The study and formalisation of contexts has been the subject of various papers; in
this section we list a few from the problem areas mentioned in Section 2.3. At the
end of this section some related work is mentioned.

The context formalisms considered in this section agree on minimal requirements
for formalisation of contexts, which were stated at the beginning of Section 2.2.
Furthermore, these formalisms can be analysed and compared to each other by
considering the formalisation dimensions given below. These dimensions can be un-
derstood as design choices, which depend heavily on the applications of a particular
context formalism. Some dimensions are not appropriate for all formalisms.

- Is a formalism a method for context representation or a context calculus?

A formalism is a context calculus if the context-related operations are repre-
sented as rewrite relations, as opposed to as a meta-operation. This is anal-
ogous to lambda calculus, which formalises the notion of function (it might
as well be called a ‘function calculus’). In lambda calculus a function λx.M
can be applied to an argument N , viz. (λx.M)N , and its computation (rep-
resented by β-reduction) can be postponed.

Accordingly, a formalism which represents context-related operations as meta-
operation is called a method for context representation.

- How does a formalism internalise communication?

There seem to exist two main streams in tackling communication: the for-
malisms that employ an explicit substitution calculus, and the formalisms
that employ higher-order rewriting techniques. In the first kind, holes are
labelled by substitutions. In the second kind, communication uses the same
technique that is used in the definition of rewrite step in higher-order rewrit-
ing: we will return to this comparison later in Section 3.5.1.
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- What kind of transformations are defined on contexts?

The transformations considered are the context-related operations, and the
standard lambda calculus transformations, namely α-conversion and β-reduc-
tion. In some formalisms, β-reduction is conditional.

- Which properties does a formalism have?

The most natural properties considered are confluence, strong or weak normal-
isation, and the subject reduction property in typed systems. In the overview
of the literature on contexts given below, we will concentrate on the properties
that are verified for a formalism.

- Is the formalism typed or not? Does the typing include dependent types?

- Which notion of context can be represented in a formalism? Is the notion of
context fixed or not?

- Is the formalism defined over a specific signature or over an arbitrary signa-
ture?

By following these dimensions, some of the context formalisms discussed in the
remainder of this section are compared in Table 2.1. We will return to these context
formalisms and the comparison of the table for a more technical comparison in
Chapter 4 or Chapter 5. Note that not all the context formalisms discussed below
are included in the table: this is because the omitted context formalisms consider
different context-related operations and use different methods in formalisation than
those mentioned above.

We now give a brief description of a number of existing context formalisms.
In [Bru78], N.G. de Bruijn introduced a lambda calculus extended with incom-

plete terms of a special form, called segments. The purpose of segments was facili-
tating definitions and manipulation of abbreviations in Automath (see [NGdV94]).
Technically, segments can be characterised as contexts with precisely one hole at the
end of the spine7. The segment calculus included means for representing segments,
variables over segments and abstraction over segments. In [Bal86, Bal87] H. Bal-
sters gave a simply typed version of the segment calculus and proved confluence and
subject reduction. In [Bru91], N.G. de Bruijn described a typed lambda calculus
with telescopic mappings. Telescopes are segments consisting only of abstractions,
which can be used for representing mathematical structures. Telescopic mappings
are functions ranging over telescopes. The aim of the paper was not to give a cal-
culus (instead, N.G. de Bruijn refers to the segment calculus), but to set out the
main ideas on telescopes and their usage on the level of meta-language. Although
the paper is positioned in a typed lambda calculus, the ideas are applicable to any
rewrite system with binders.

With the goal of optimisation of interactive proof checking, L. Magnusson
(see [Mag96]) presented an algorithm for incomplete proofs. The algorithm is de-
signed for Martin–Löf’s type theory with explicit substitutions and it is used in

7The end of the spine of a λ-term is the leftmost leaf of that λ-term in tree notation.
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the proof editor ALF. The unfinished parts of a proof are denoted by placehold-
ers, which are assigned a type and a local context. When filling in a new part of
a proof into a placeholder, it is sufficient to check the new part. With the goal
of representing incomplete proofs and supporting incremental proof development
and higher-order unification, C. Muñoz presented in [Muñ97] a name-free explicit
substitutions calculus with dependent types and with meta-variables ranging over
the missing parts of an expression. In both formalisations, filling of the missing
parts of an expression is an operation, which ‘commutes’ with (a refined version of)
β-reduction.

With the development of programming languages in mind, M. Hashimoto and
A. Ohori (see [HO98]) proposed a typed context calculus, which is an extension of
the simply typed lambda calculus. The type system specifies the variable-capturing
nature of contexts with one hole using α-sensitive interface variables. The rela-
tions of β-reduction and hole-filling reduction are combined, under the restriction
that no β-steps are allowed within a context. With the aim of building a theory
of separate compilation and incremental programming, S.-D. Lee and D. Friedman
(see [LF96]) designed a schema for enriching lambda calculus with contexts. They
employ contexts for modelling program modules and their calculus for modelling
module linking. In their calculus the binders in contexts are treated as identifiers
whose binding scope is by compilation extended to objects filled into the holes. Com-
putation is performed by β-reduction and additional compilation rules. M. Sato,
T. Sakurai and R. Burstall (see [SSB99]) defined a simply typed lambda calculus
with first-class environments. The calculus is provided with operations for eval-
uating expressions within an environment and includes environments as function
arguments. It is basically an explicit substitution calculus with substitution vari-
ables and functions over such variables. This calculus was later used to formalise
contexts as first-class citizens in [SSK01].

For dealing with contexts in operational semantics, D. Sands (see [San98]), con-
tributing the idea to A. Pitts, proposed a representation of contexts with function
variables for holes, meta-abstractions over variables to be captured for terms to be
filled into the holes, and substitution of hole variables for hole filling. Using this rep-
resentation, the operation of hole filling is freely combined with β-reduction. With
the same motivation, I.A. Mason (see [Mas99]) extended the syntax of lambda cal-
culus with notations for holes labelled by a substitution. He introduced two notions
of variable replacement, weak and strong substitution, which differ in the behaviour
at hole labels. Weak substitution is used for α- and β-reduction, and for filling holes
with terms. Strong substitution is used for filling holes with contexts. Hole filling
is defined as an operation, which ‘commutes’ with β-reduction.

With the purpose of modelling binding mechanisms in natural language, M. Kohl-
hase, S. Kuschert and M. Müller (see [KKM99]) introduced dynamic lambda cal-
culus as an extension of the simply typed lambda calculus with declarations. In
their approach the scope of binders sometimes extends the textual scope of a sen-
tence. Declarations are α-sensitive and β-reduction is not defined on declarations.
In addition to types, expressions are provided with modality, which describes their
variable binding power.



2.5. OUR APPROACH 51

Other related work. Other contributions to the formalisation of contexts have
been made by C.L. Talcott [Tal91] and S. Kahrs [Kah93].

Related work concerns the fields of research on explicit substitution calculi (see
for example [ACCL91]), higher-order rewriting (see for example [Klo80, MN98,
Oos94, Raa96, Wol93]), higher-order syntax (see for example [DPS97]), higher-
order unification (see for example [Mil91]), and linguistics (see for example [GS91,
Kam81, Ran91, Zee89]). These fields either provide methods for solving communi-
cation problems (like for example explicit substitution calculi or higher-order rewrit-
ing), or deal with communication problems in an alternative way (like for example
linguistics).

2.5 Our approach

Although emerging from different fields of research, with different motivations, the
problem of formalising contexts and communication can be tackled uniformly. Our
context calculus λc can serve as a uniform framework for representing different kinds
of contexts. It is an extension of the lambda calculus with facilities for representing
contexts and context-related operations such as filling the holes of a context by
terms or by contexts, and establishing the (explicit) communication.

The context calculus λc is a calculus. That means that contexts can freely be
manipulated on the object level: contexts may be an argument or a result of a func-
tion; and α-conversion and β-reduction as well as filling of holes is computed within
the calculus, as opposed to computing these transformations by meta-operations.
Such a calculus, with functions ranging over contexts and a means for denoting hole
filling and delaying its computation, is necessary for applications in proof checking
(segment calculus) and in linguistics, as can be seen in the previously mentioned
work of N.G. de Bruijn, H. Balsters and M. Kohlhase et al.

Such a treatment of contexts is accomplished by giving contexts a functional
representation. That is, a context is seen as a function of (the contents of) its holes,
and accordingly, it is represented by λ-abstracting the hole variables. A functional
representation of contexts is also present in the work of M. Hashimoto and A. Ohori.

In the context calculus λc, computing communication is handled separately from
filling holes. We do so because, as can be seen from the problem analysis in Sec-
tion 2.2, formalising communication poses a challenge of its own. With commu-
nication computed separately, filling of holes by terms or contexts is reduced to
replacement of hole variables without any communication.

In the context calculus λc, communication is implemented using a technique
which allows us to control the passing of variable bindings. This regards not
only the intended variable capturing but also passing on the effects of earlier α-
conversion and β-reduction within the context. There is an analogy to techniques
developed in higher-order rewriting (see for example Aczel, J.W. Klop [Klo80],
T. Nipkow [Nip93], V. van Oostrom & F. van Raamsdonk [OR93]), and in the field
of higher-order abstract syntax (see for example F. Pfenning & C. Elliott [PE88],
J. Despeyroux, F. Pfenning & C. Schürmann [DPS97]), where variable capturing
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is accomplished by a substitution calculus. We will explain this analogy in Sec-
tion 3.5.1. Similar techniques are applied in the work of D. Sands which we have
already mentioned. Our technique gives holes as well as the expressions that are to
be filled in, a functional representation.

Indirectly, by an explicit representation of communication, we distinguish be-
tween a term to be put into a hole of a context and a term itself. From the conceptual
point of view, this distinction is natural: if a term is to be filled into a hole, the free
variables of this term that will be captured after the filling are already considered
bound. For example, no substitution for these variables is allowed. This is in con-
trast to the free variables of an arbitrary term. Analogously, we distinguish between
a context and a context to be filled into a hole of an another context. We will call
the terms and the contexts to be filled in communicating terms and communicating
contexts, respectively. Note that communication roles are fixed in advance.

In our approach we also distinguish between filling holes by terms (to be called
hole filling) and filling holes by contexts (to be called composition). Technically, the
difference between these operations is, in addition to the difference in the objects
that are placed into the holes (communicating terms vs. communicating contexts), in
the resulting object: a λ-term, in the case of hole filling; and a λ-context, in the case
of composition. In our view of a context as a function over its holes, the distinction
between hole filling and composition is comparable, up to communication, to the
distinction between a function application and a composition of functions. The
result of applying function f to a value a results in a value f(a); this value cannot
be further applied to another value. The result of ‘applying’ function f to function
g is the composition f ◦ g; this composition can in turn be applied to a value.
Although the distinction between hole filling and composition is not prominently
present in lambda calculus, it is rather natural, as witnessed by the example of
context application in linguistics.

The power of our calculus is its expressivity, which is achieved by on the one
hand a flexible syntax, and on the other hand the possibility of term-formation
restrictions within the framework. The syntax allows for a first-class treatment
of contexts by having explicit abstraction over context variables and free context
manipulation. Term-formation restrictions are implemented by typings. Via the
choice of an adequate typing different notions of context can be represented within
λc. Although λc is defined as an extension of lambda calculus, our approach to
formalisation of contexts can be applied to an arbitrary rewrite system with or
without binders. Last but not least, the calculus can directly be translated to
lambda calculus. Bearing this in mind, we perceive λc as a comfortable level of
abstraction for dealing with contexts as first-class objects.

The context calculus has been included in Table 2.1, where it can informally be
compared to other existing context formalisms. In the remainder of this section we
explain informally the main aspects of the context calculus. In Chapter 6 we will
extend the explanation of our approach to formalisation of contexts as terms and
types with holes in the typed lambda calculi of Barendregt’s lambda cube.

Contexts. A context will be considered as a function ranging over the possible
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contents of its holes. For this reason, in the context calculus hole variables h, g, k, . . .
are introduced and contexts are represented as functions over (one or many) hole
variables. The abstractor8 for hole variables is denoted by δn, where n ∈ IN is the
number of variables which δn binds.

Communication. At first sight, it seems natural to use explicit substitutions
(see for example [ACCL91], or [Blo99] where Pure type systems with explicit sub-
stitutions have been studied) for communication, by for example labelling holes
with a substitution, viz. []σ. This idea can be found, as already mentioned, in
for example the work on contexts of L. Magnusson [Mag96], C. Muñoz [Muñ97],
I.A. Mason [Mas99] and M. Sato et al. [SSB99]). In the present paper it is our
objective to reduce the whole matter of context manipulation to the very basic and
well-understood notions of λ-abstraction and β-reduction. An explicit substitution
calculus could then be used to eliminate β-reduction again, for example with the
purpose of giving an efficient implementation. At this point we think it is profitable
to separate the two issues.

So we take a basic, lambda-calculus-like approach, and solve the problem of
encoding communication by using the fact that in lambda calculus substitution
emerges as the result of a β-step: M [[x := N ]]←β(λx.M)N . Since it is convenient
to use multiple substitutions as communication may involve substitution of many
variables, we will introduce new constructors Λn . for multiple abstraction of
n variables and 〈 , . . . , 〉n for multiple (n + 1-ary) application, together with a
multiple version ( β) of the β-rule. This is illustrated by the following example.

Example 2.5.1 The second, problematic reduction in Example 2.2.1 now becomes,
in a reverse order of the steps (the hole-filling constructor hf is still auxiliary, indices
are implicit and h is a hole variable):

xx = (xy)[[y := x]]
← β (Λy.xy)〈x〉
←fill hf (h〈x〉, Λy.xy)
←β hf ((λy.h〈y〉)x, Λy.xy),

where the last term shows the new representations of the hole9 (h〈y〉) and of the
communicating term (Λy.xy).

In general, communicating terms and, in the case of composition, communicat-
ing contexts are represented as multiple abstractions over variables that will become
bound by the binders of the context where they will eventually be placed. Hence,
the functional representation of communicating terms and communicating contexts:
such terms and contexts are functions over communication. When a communicat-
ing term is placed into the hole, communication can be computed by applying a
generalised form of the β-rule (which involves a simultaneous substitution)

(Λx1, . . . , xn.U)〈V1, . . . , Vn〉 → U [[x1 := V1, . . . , xn := Vn]], ( β)
8The symbol δ is used also by M. Hashimoto and A. Ohori for abstracting hole variables, but

only as a ‘unary’ abstractor.
9The notation 〈 〉 in the representation of holes is also used by D. Sands.
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recovering the binding intention and passing the changes. In such a representation,
the representation of communication is localised to the representation of holes and
communicating terms (or contexts), and as such, it is easier to handle.

Note that the constructor 〈 , . . . , 〉n is a n + 1-ary function symbol, where
the first argument is placed in front of the brackets. Such notation emphasises the
special meaning of the first argument with respect to the other arguments: the first
argument is a hole variable or a communicating term, while the arguments between
the brackets represent a delayed communication.

Hole filling and composition. With communication localised around holes and
communicating terms and communicating contexts, hole filling and composition
reduce to (capture-avoiding) replacement of hole variables and formation of the
result.

Since we represent contexts as functions over holes (i.e. as abstractions over hole
variables), hole filling simply boils down to (multiple) β-reduction. Thus, in our
representation of Example 2.2.1 we get

(δh.λy.h〈y〉x)�Λy.xy� →fill (λy. (Λy.xy)〈y〉)x,

where � � denotes a hole-filling constructor. In general, a context representation
may be a function over many holes and consequently, hole filling may involve filling
many holes simultaneously, viz.

(δnh1, . . . , hn.U)�V1, . . . , Vn�n → U [[h1 := V1, . . . , hn := Vn]] . (fill)

Here, the number of holes (i.e. the index of δn) equals the number of arguments be-
tween the brackets (i.e. the index of � , . . . , �n). Note that the arity of � , . . . , �n
is n+ 1.

Also composition may involve filling many holes simultaneously. This explains
the need for composition operators ◦n for arbitrary n. However, the rewrite relation
of composition is more complicated than in the case of hole filling: in the formation
of the resulting contexts composition includes some shifting of abstractions. This
is explained by the following example of a binary composition.

Example 2.5.2 Let C ≡ λx. [] and D ≡ x(λy. []) be two λ-contexts. Then the
composition of the two results in the λ-context λx.x(λy. []). Note that the hole of
the result of the composition is the ‘lifted’ hole of D, which potentially binds the
variable x as well as the variable y.

In the context calculus, these λ-contexts are represented as

Cc ≡ δg.λx. g 〈x〉 and Dc ≡ δh.x(λy.h〈y〉).

Because the second context is going to be put into the hole of Cc, it is provided
with means of communication: the preamble Λx and ‘lifted’ hole h〈x, y〉 adapted
for this purpose, viz.

D′
c ≡ Λx. δh.x(λy.h〈x, y〉).
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The composition puts the second context into the hole, and moves the abstraction
δh to the beginning of Cc, so that the whole becomes an abstraction over the ‘lifted’
hole h of Dc. The composition rewrite step should result in

Cc ◦D′
c →◦ δh.λx. (Λx.x(λy.h〈x, y〉))〈x〉,

where ◦ is the composition constructor in λc. Note that by performing the en-
suing communication step this term reduces to δh.λx.x(λy.h〈x, y〉), which is a
representation of the resulting composition in lambda calculus.

The ◦-step of the example is an instance of the binary-composition rewrite rule:

(δg.U) ◦ (Λu1, . . . , un. δh.V )→ δh.U [[g := Λu1, . . . , un. V ]] (◦)

where δh is shifted to the beginning of the reduct (after the variable h has been
renamed if it occurs free in U). In the example a binary composition was used. In
general, if a context representation is a function over n holes, the composition ◦n
will involve n+1 contexts: one outer context and n contexts that are filled into the
holes of the outer context. The resulting context is a context over the holes of the
n contexts; hence, the composition will shift the hole abstractions of all n contexts
to the beginning of the reduct.

Note that the constructors � , . . . , �n and ◦n , . . . , are (n + 1)-ary function
symbols, where the first argument is placed in front of the brackets in order to
emphasise its special role: the first argument is the context whose holes are to be
filled with the arguments between the brackets.

Framework. In the context calculus the building blocks can freely be combined to
form λc-terms: variables, abstractions, applications and compositions. If a context
contains many occurrences of [], they may be given the same name, like for exam-
ple the occurrences of the hole h in the λc-term δh.λx. (h〈x〉)(h〈x〉). If a context
contains many holes, they can be represented by different hole variables, like for
example the holes h and g in δh, g. λx. (h〈x〉)(λy. g 〈x, y〉). An alternative represen-
tation is δh. δg.λx. (h〈x〉)(λy. g 〈x, y〉), where the holes should be filled sequentially.
Last but not least, the calculus may include variables over contexts and functions
ranging over contexts, witnessing the true first-class treatment of contexts.

In λc different notions of context can be represented. However, considering a
calculus with contexts of a specific form, a criterion for well-definedness of such a
calculus is of course that that specific form of contexts is preserved under transfor-
mations such as substitution, α- and β-rewriting, hole filling and composition.

Typing. The flexibility of the framework can be controlled by typing, that is, by
restricting the λc-term formation. The aim of these restrictions is to gain more
control over the form of λc-terms. Typing works in λc like typing does in lambda
calculus. In a typed lambda calculus, each variable has a type and term formation
is led by a set of typing rules. Analogously, a set of typing rules controls the λc-
term formation. By means of typing, λc-terms can be restricted to representations
of simply typed terms and contexts, λc-terms can be restricted to representations
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of contexts with only one hole, variables in abstractions can be ensured to match
their arguments, or the whole context calculus λc can be restricted to a subset of
term constructors and rewrite rules, for example. Examples of typings for λc will
be given in Chapters 4 and 5.

Parametrisation over signature. In this thesis, we focus on our approach to
formalisation of contexts in lambda calculus. However, this approach combines well
with an arbitrary rewrite system. This will be shown in Section 3.4. An arbitrary
rewrite system can be extended with hole variables, communication abstractor and
applicator Λ and 〈〉, hole-variables abstraction δ, hole-filling symbol ��, and com-
position ◦, and the rewrite rules ( β), (fill) and (◦). These rewrite rules will not
interfere with the rewrite rules of the rewrite system because of the disjoint signa-
ture. Of course, the properties of such an extension of an arbitrary rewrite system
will for the most part depend on the properties of the rewrite system itself.

Example 2.5.3 (The introductory example) We finish this chapter by sum-
ming up our solution to the non-commutation problem of Example 2.2.1. Recall
that C ≡ (λy. [])x and M ≡ xy. In λc, the hole filling C[M ] is represented by
(δg. (λy. g 〈y〉)x)�Λy.xy�. In λc, all rewrite sequences from this term end in the
same term, as illustrated below.

(δg. (λy. g 〈y〉)x)�Λy.xy� →β (δg. g 〈x〉)�Λy.xy�

↓fill ↓fill

(λy. (Λy.xy)〈y〉)x →β (Λy.xy)〈x〉

↓ β ↓ β

(λy.xy)x →β xx



Chapter 3

The context calculus λc

The context calculus λc is designed as a framework for lambda calculi with contexts.
This chapter contains the definitions of the basic notions of the context calculus λc
and the main properties of the framework. This chapter is concerned only with
the untyped version of the framework; the succeeding chapters contain examples of
syntactically typed applications.

This chapter is structured as follows.
In Section 3.1 the definition of the context calculus λc will be given. As we have

explained in the previous chapter, in addition to the lambda-calculus constructors,
in λc there are two more pairs of abstractors and applicators, namely (Λ, 〈 〉) and
(δ, ��), and, moreover, a composition constructor ◦. The pair (Λ, 〈〉) and the rewrite
rule ( β) will be used for representing and computing communication. The pair
(δ, � �) and the rewrite rule (fill) will be used for representing contexts and hole
filling. The constructor ◦ and the rewrite rule (◦) will be used for composition.
Hence, these added constructors with the rewrite rules together form the part of
the calculus that will be concerned with representing and computing context-related
operations.

In Section 3.2 two properties of rewriting in λc will be proved: the confluence
property and the commutation property of the computations generated by pairs of
possibly different rewrite relations. An experienced term rewriter can immediately
see that λc has these two properties; here we work out the proofs. The confluence
property gives the freedom to perform computation steps in an arbitrary order, and
moreover, it guarantees the uniqueness of the result (if it exists) for any two coinitial
computations. The commutation property is more specific about the independence
of the order of computations, by saying that the computations of one rewrite rela-
tion commute with computations of any other rewrite relation. In particular, this
property entails that the lambda calculus computations and context-related com-
putations can be performed independently of each other. In other words, by the
commutation property λc can be seen as a rewrite system of two independent levels:
the level of lambda calculus and the level of the context-related machinery.

Both properties are proved via higher-order pattern rewrite systems, which are a
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framework for term rewrite systems with binders. Since λc is a term rewrite system
with binders, it can very naturally be written as a pattern rewrite system. The
desired properties follow from the properties of pattern rewrite systems. Technically,
the commutation property implies the confluence property, since the latter can
be restated as the self-commutation property of the union of rewrite rules in λc.
Therefore, first the proof of the commutation property of the rewrite rules will be
presented in Section 3.2.4 and then the confluence proof in Section 3.2.5.

Section 3.3 inquires into the normalisation properties of rewriting. These include
the strong and weak normalisation properties, that is, the properties whether each or
some rewrite sequences lead to a result, respectively. In addition to these properties,
the property of preservation of strong normalisation is discussed. As it turns out,
the context calculus does not have weak and strong normalisation properties, but it
does have the property of preservation of strong normalisation with respect to the
untyped lambda calculus. However, the absence of weak or strong normalisation in
the untyped framework is not bad. These normalisation properties are disturbed by
some ‘junk’ that is present in the untyped framework. This ‘junk’ will be filtered
out by syntactic typings, and we will return to these normalisation properties in
each particular syntactic type system.

The importance of the two-level view on λc is that it indicates that the context
calculus can be parametrised over an arbitrary rewrite system, instead of being
defined as an extension of lambda calculus. That is, the term constructors Λ, 〈 〉,
δ, � � and ◦ together with the rewrite rules ( β), (fill) and (◦) can be used to deal
with contexts in an arbitrary term rewrite system with binders. Such a generalised
context calculus will be considered in Section 3.4.

In Section 3.5 the work related to the techniques employed in the context calculus
is discussed. First, the double role of higher-order rewriting in λc will be described:
one in the proof of the properties mentioned above, and the other in the way com-
munication between (representations of) λ-terms and contexts is established in λc.
Second, the context calculus, as a system that captures the substitutions that arise
from rewriting in a context, is compared to the calculi with explicit substitutions.

3.1 Definition of the context calculus λc

This section deals with the definitions of terms, substitution and rewrite rules of
λc.

Let IN = {0, 1, 2, 3, . . .} as usual, and let V be a countably infinite set of variables.

Definition 3.1.1 (λc-terms) The terms of λc-calculus, or λc-terms for short, are
inductively defined by

U ::= u | (λu.U) | (UU) |
(Λnu1, . . . , un.U) | (U 〈U, . . . , U〉n) |
(δnu1, . . . , un.U) | (U �U, . . . , U�n) | (◦n(U,U, . . . , U))

where u, u1, . . . , un ∈ V and U, . . . , U abbreviate n U ’s.
The set of λc-terms is denoted by Ter(λc).
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Notation. The variables u1, . . . , un in (Λnu1, . . . , un.U) and (δnu1, . . . , un.U) will
be abbreviated by 	u, and terms U1, . . . , Un in the expressions (U 〈U1, . . . , Un〉n),
(U �U1, . . . , Un�n) and (◦n(U,U1, . . . , Un)) will be abbreviated by 	U . In the multiple
abstraction Λn, if n = 0 then we write Λε.U . Note that the arity of 〈 〉n, � �n and
◦n is n + 1. We will omit the index n and assume that the arities of Λ, 〈 〉, δ, � �
and ◦ and the number of their arguments match. Furthermore, ◦ will be used in
‘mix-fix’ notation: ◦n(U,U, . . . , U) will be denoted by U ◦n 	U . As usual, standard
abbreviations regarding brackets apply, including association to the left. Also, as
in lambda calculus, consecutive abstractions λu1. . . . λun.U will be abbreviated
by λ	u.U . However, consecutive Λ- or δ-abstractions are not abbreviated. In
the remainder, the following convention considering typical elements will be
maintained (if not explicitly stated otherwise): i, j,m, n ∈ IN, u, u′, ui, v, w, . . . ∈ V
and U,U ′, Ui, V,W . . . ∈ Ter(λc).

The constructors λ and · (implicit applicator) are the λ-calculus constructors.
The constructors Λn . and δn . are multiple abstractors, which bind n variables
simultaneously. The constructors 〈 , . . . , 〉n, � , . . . , �n and ◦n ( , . . . , ) are
n+ 1-ary function symbols.

Example 3.1.2 A few examples of λc-terms are given. Some of these λc-terms
can be interpreted as representations of objects in lambda calculus, using the rep-
resentation methods described formally in Section 4.1. The last three λc-terms
correspond to nothing in lambda calculus.

- xy
(a representation of the λ-term M ≡ xy)

- δh. (λy.h〈y〉)x
(a representation of the λ-context C ≡ (λy. [])x)

- δk1, k2. (k1 〈〉)(λz. k2 〈z〉)
(a representation of the λ-context D ≡ [](λz. []))

- δk1. δk2. (k1 〈〉)(λz. k2 〈z〉)
(an alternative representation of the λ-context D with sequential hole abstrac-
tion)

- (δh. (λy.h〈y〉)x)�Λy.xy�
(a representation of the λ-context C to be filled with the λ-term M)

- (δh. (λy.h〈y〉)x) ◦ (Λy. δk1, k2. (k1 〈y〉)(λz. k2 〈yz〉))
(a representation of the composition of the λ-contexts C and D, with the
binary ◦ in infix notation)

- (Λx.x) ◦ y

- (δh.h〈x〉)�Λx, y. x�



60 CHAPTER 3. THE CONTEXT CALCULUS λC

- (δh.h�h�)�δh.h�h��.

As a formalism, the context calculus λc is a term rewrite system with binders.
Hence, the free and bound variables in a λc-term are defined like in any other rewrite
system with binders. Note that, while in lambda calculus α-conversion is not defined
on meta-contexts, in λc α-conversion may safely be defined on the representations
of lambda calculus meta-contexts within λc, because such representations are just
λc-terms.

Like in the case of any other rewrite system with binders, λc-terms are considered
equal up to α-conversion. Moreover, we assume that bound variables are renamed
whenever necessary.

In λc, we need multiple substitutions, which are a straightforward pointwise
extension of (single) substitutions.

Definition 3.1.3 (Substitution) For U, 	V ∈ Ter(λc) and m distinct variables 	v,
where m is also the number of terms in 	V , the result U [[	v := 	V ]] of substituting Vi
for free occurrences of vi in U (1 ≤ i ≤ m) is defined as:

u[[	v := 	V ]] =
{
Vi : if u = vi for some 1 ≤ i ≤ m
u : otherwise

(λu.U ′)[[	v := 	V ]] = λu. (U ′[[	v := 	V ]])
(U1U2)[[	v := 	V ]] = (U1[[	v := 	V ]])(U2[[	v := 	V ]])
(Λ	u.U ′)[[	v := 	V ]] = Λ	u. (U ′[[	v := 	V ]])
(U ′ 〈	U〉)[[	v := 	V ]] = (U ′[[	v := 	V ]])〈	U [[	v := 	V ]]〉
(δ	u.U ′)[[	v := 	V ]] = δ	u. (U ′[[	v := 	V ]])
(U ′ �	U�)[[	v := 	V ]] = (U ′[[	v := 	V ]])�	U [[	v := 	V ]]�
(U ′ ◦ 	U)[[	v := 	V ]] = (U ′[[	v := 	V ]]) ◦ (	U [[	v := 	V ]])

where 	U [[	v := 	V ]] is an abbreviation for (U1[[	v := 	V ]]), . . ., (Un[[	v := 	V ]]). It is as-
sumed that the bound variables u and 	u are renamed to avoid (unintended) variable
capturing.

Although the context calculus is designed to work with λ-contexts as first-class
objects, we still make use of a notion of meta-context over λc-terms (cf. Defini-
tion 2.1.3).

Definition 3.1.4 (Meta-contexts)

i) A meta-context in λc is a λc-term with some holes, denoted by [], all of which
are considered different.

ii) Let C be a meta-context with n holes and let 	U be n λc-terms. Then the
(meta-)hole filling results in the λc-term C[	U ] where the ith hole of C has
been replaced by Ui, for 1 ≤ i ≤ n. After the (meta-)hole filling, variable
capturing may occur: some free variables of 	U may become bound by the
binders of C.
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iii) Let C be a meta-context with n holes and let D1, . . . , Dn be n meta-contexts
where Di has ki holes, for 1 ≤ i ≤ n. Then the (meta-)composition results in
the meta-context C[D1, . . . , Dn] where the ith hole of C has been replaced by
Di, for 1 ≤ i ≤ n. The meta-context C[D1, . . . , Dn] contains

∑
1≤i≤nki holes.

After the (meta-)composition, variable capturing may occur.

iv) Substitution, α-conversion and β-reduction are not defined on meta-contexts.

Computation in λc is defined on two levels: the lambda calculus level and
the context-related level. Accordingly, the rewrite rule schemas (rewrite rules, for
short), which generate computation in λc, are split into two collections.

Definition 3.1.5 (Context calculus λc) The context calculus λc is defined on
terms of Ter(λc) with rewrite relations induced by two collections of rewrite rules,
the lambda calculus rewrite rules and the context rewrite rules. The two collections
of rewrite rules are given below.

i) The lambda calculus rewrite rule is:

(λu.U)V → U [[u := V ]]. (β)

ii) The context rewrite rules are:

(Λ	u.U)〈	V 〉 → U [[	u := 	V ]] ( β)
(δ	u.U)�	V � → U [[	u := 	V ]] (fill)
(δn	u.U)◦n (Λ	v1. δ	v ′

1. V1, . . . ,Λ	vn. δ	v ′
n. Vn)

→ δ	v ′
1, . . . , 	v

′
n.U [[u1 := Λ	v1. V1, . . . , un := Λ	vn. Vn]]. (◦)

As usual, it is assumed that the bound variables in the rewrite rules are renamed
to avoid variable capturing.

Notation. The rewrite relation generated by the context rewrite rules will be
denoted by →c.

Remark 3.1.6 A reader who is familiar with combinatory reduction systems
(CRSs, see [Klo80]) or higher-order rewrite systems (HRSs, see [MN98]) can see
that λc can easily be written as a CRS or a HRS. Moreover, he/she can also see
that λc is an orthogonal rewrite system. Consequently, he/she can conclude that
the context calculus λc is confluent and that each pair of rewrite relations commute
with each other.

Definition 3.1.7 (Underlying ARS of λc) The set of terms and the rewrite re-
lations of λc define the ARS

A = 〈Ter(λc),→β ,→ β ,→fill ,→◦〉.

We will call this ARS the underlying ARS of λc.
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We comment on the rewrite rules of λc. The lambda calculus rewrite rule is of
course the rewrite rule (β) of lambda calculus. The context rewrite rules implement
the context-related operations in λc: communication ( β), hole filling (fill) and
composition (◦). The rewrite rules ( β), and (fill) denote actually one rewrite
rule for each index n ∈ IN of the abstraction and application. The rewrite rule
(◦) denotes a rewrite rule for each combination of the indices involved, with only
one condition: the indices of ◦ and of the first δ have to match. This condition is
natural if one keeps in mind that a composition of λ-contexts, which is represented
by the left-hand side of this rewrite rule, involves an outer context with n holes and
n contexts to be filled into the holes of the outer context.

Example 3.1.8 Examples of the rewrite rules ( β), (fill) and (◦) are (let x, x′, y
be term variables, and other variables be hole variables):

i) (Λx, x′.U)〈V, V ′〉 → β U [[x := V, x′ := V ′]]

ii) (δε.U)� � →fill U

iii) (δg.U) ◦ (Λx, x′. δh.V ) →◦ δh.U [[g := Λx, x′. V ]]

iv) (δg.U) ◦ (Λy. δh1, h2. V ) →◦ δh1, h2.U [[g := Λy.V ]]

v) (δg1, g2.U) ◦ (Λx. δh.V , Λy. δk1, k2.W )

→◦ δh, k1, k2.U [[g1 := Λx.V , g2 := Λy.W ]].

The last example illustrates the composition of a two-hole context with two contexts,
where the hole abstractions of the latter contexts are shifted to the beginning of
the resulting context. An example of a rewrite sequence in λc is

(δh. (λy.h〈y〉)x) ◦ (Λy. δk1, k2. (k1 〈y〉)(λz. k2 〈y, z〉))
→β (δh.h〈x〉) ◦ (Λy. δk1, k2. (k1 〈y〉)(λz. k2 〈y, z〉))
→◦ δk1, k2. ((Λy. (k1 〈y〉)(λz. k2 〈y, z〉))〈x〉)
→ β δk1, k2. (k1 〈x〉)(λz. k2 〈x, z〉).

Examples of λc-terms which are not redexes include:

- (Λ2x, y. x)〈x〉1, because the indices of Λ2 and 〈 〉1 do not match, and

- (δ2h1, h2. h1 〈x〉) ◦ (Λx, y. δk. y), because the indices of ◦1 (implicit) and δ2 do
not match.

Remark 3.1.9 There is an analogy between the definition of composition of two
(representations of) functions in lambda calculus and the definition of composition
of two (representations of) contexts in λc. The analogy is based on the fact that
within λc, lambda calculus contexts are represented as functions over hole variables.
We will first consider unary functions and contexts with one hole; later we will
indicate how the analogy can be applied for functions of arbitrary arity and contexts
with many holes.
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In lambda calculus, if f and g are two unary functions, then their composition
is defined as (cf. Definition 6.2.8. in [Bar84])

“f ◦ g = λx. f (gx).”

Then, if f ≡ λy.M and g ≡ λz.N with z �∈ FVar(M),

“f ◦ g = λx. f (gx)”
≡ (λy.M) ◦ (λz.N)
= λx. (λy.M)((λz.N)x)
= λx. (λy.M)(N [[z := x]])
= λz. (λy.M)N
= λz.M [[y := N ]].

Let now F and G be representations of contexts with one hole within λc. If the
composition of F and G is to be formed, recall that G should have a communication
preamble in order to handle communication. Thus, F ≡ δh.U and G ≡ Λ	x. δk.V .
Suppose without loss of generality that k �∈ FVar(U). In analogy to the definition
of composition in lambda calculus, the first attempt to define the composition of F
and G would be

“F ◦G = δg.F �G�g��.”

However, because of the communication preamble of G, some shifting of binders is
necessary. The composition of F and G is computed as follows:

“F ◦ G = δg.F �Λ	y. (G〈	y〉)�g��”
≡ δg. (δh.U)�Λ	y. ((Λ	x. δk.V )〈	y〉)�g��
= δg. (δh.U)�Λ	y. (δk.V [[	x := 	y]])�g��
= δg. (δh.U)�Λ	y.V [[	x := 	y]] [[k := g]]�
= δg. (δh.U)�Λ	x.V [[k := g]]�
= δk. (δh.U)�Λ	x.V �
= δk.U [[h := Λ	x.V ]].

So, (δh.U) ◦ (Λ	x. δk.V ) = δk.U [[h := Λ	x.V ]] and this is precisely what the compo-
sition rule for unary contexts implements. If the contexts are functions over many
hole variables then an analogy can be given between the composition between an
n-any function f and mi-ary functions gi for 1 ≤ i ≤ n (let |	xi| = mi)

“f ◦ (g1, . . . , gn) = λ	x1, . . . , 	xn. f (g1	x1), . . . , (gn	xn)”

and the composition of contexts F ≡ δ	h.U and G1 ≡ Λ	x1. δ	k1. V1 through Gn ≡
Λ	xn. δ	kn. Vn:

“F ◦ 	G = δ	g1, . . . , 	gn. F �Λ	y1. (G1 〈	y1〉)�	g1�, . . . ,Λ	yn. (Gn 〈	yn〉)�	gn��.”

Remark 3.1.10 The set of terms of λc contains some ‘junk’, that is, terms that
are not representations of objects of lambda calculus possibly involving context-
related operations. In such superfluous λc-terms the number and the kind of argu-
ments in the context machinery do not match. Consider for example the λc-terms
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(Λx, y. x)〈x〉, (Λx.x) ◦ y and (δh.h〈x〉)�Λx, y. x�. The term (Λx, y. x)〈x〉 is mean-
ingless in lambda calculus because the communication it should represent does not
match. The term (Λx.x) ◦ y is meaningless because the form of the left argument
of ◦ does not have the form of a representation of a context nor can it assume such a
form by any substitution. The term (δh.h〈x〉)�Λx, y. x� is meaningless too, because
it reduces to the first term, which is meaningless. Such superfluous terms will be
filtered out by syntactic typing in Chapters 4 and 5.

Remark 3.1.11 The context calculus can be defined more efficiently and, ulti-
mately, translated to lambda calculus. The pairs of constructors (Λ, 〈 〉) and (δ, � �)
with the corresponding rewrite rules have the same behaviour. Also, since com-
positions are functions on contexts, they can be defined as λc-terms. In the case
of Example 2.5.2 in Chapter 2, let comp ≡ λc. δd′. δh. c�Λx. (d′ 〈x〉)�h��. Further-
more, by encoding the single abstraction and single application as special cases of
the corresponding multiple one, the only constructors that are really needed are
Λ and 〈 〉 and the rewrite rule ( β). These constructors and the rewrite rule
(hence, all constructors and rewrite rules) can in turn be translated to the lambda
calculus (using currying). This implies that the context calculus can be simulated
within the lambda calculus where the computing of hole filling, composition and
communication is performed in an algorithmic way, by rewriting groups of redexes
simultaneously. However, we believe λc puts us at a suitable level of abstraction for
working with contexts.

3.2 Commutation and confluence in λc

In this section the context calculus is proved to have two desirable properties: the
commutation property of any pair of rewrite relations and the confluence property.
Both proofs are conducted via pattern rewrite systems (PRSs), which are one of
the formats of higher-order rewriting. Pattern rewrite systems offer a framework in
which term rewrite systems with binders can uniformly be represented. A significant
amount of theory has been developed for higher-order rewriting, from which we
gratefully profit here. We choose for the format of pattern rewrite systems because
the results we need are given in this format (cf. Prism theorem in [Oos95]).

In this section three systems will be considered: the context calculus λc, the
PRS H and the system Hλc, which is a subsystem of H that corresponds to λc.
The relationship between H, Hλc and λc is depicted in Figure 3.1. This section is
organised as follows. In Section 3.2.1, the pattern rewrite system H is defined, by
translating the constructors and the rewrite rules of the context calculus into the
format of pattern rewrite systems. The pattern rewrite system H turns out to be
orthogonal: there are no critical pairs and all rewrite rules are left-linear (see Sec-
tion 1.3). In Section 3.2.2, H is restricted to a subsystem (sub-ARS, in the sense of
Definition 1.1.13), called Hλc, which is closed under rewriting. Section 3.2.3 shows
that there is a one–to–one correspondence between the terms and rewrite steps of
Hλc and the context calculus λc. In Section 3.2.4, from the properties of H and the
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Figure 3.1: The context calculus λc in a higher-order format

theory of PRSs, it is shown that in Hλc each pair of rewrite relations commutes,
hence in the context calculus too. In Section 3.2.5, it is shown that λc is also
confluent, because the commutation property entails confluence. In Section 3.5.1
we will also describe a second role of higher-order rewriting in λc: we will com-
pare the higher-order rewriting technique for dealing with bindings with the way
communication is established in λc.

Throughout this section we will briefly recall some definitions regarding PRSs.
For an introduction to pattern rewrite systems and more pointers to relevant reading
material, we refer to the preliminary Section 1.3.

Remark 3.2.1 The definition of H (3.2.3) is an example of how a term rewrite
system with binders can be written in the format of PRS. The definition of the
subset Ter(Hλc) (the alternative formulation in Proposition 3.2.9), which describes
the elements of H that represent λc-terms, is also a standard definition and can be
applied to the encoding of any term rewrite system. The definitions of both H and
Ter(Hλc) are based on the encoding method presented by V. van Oostrom and
F. van Raamsdonk in [OR93], where, in order to compare combinatory reduction
systems (CRSs) of J.W. Klop with higher-order systems (HRSs) of T. Nipkow, an
arbitrary CRS is translated into the HRS-format. Furthermore, the proof of closure
of Hλc under rewriting via a reformulation of the rewrite relation on the elements
of Hλc also has a standard form. These proofs can accordingly be adapted for a
general case HA encoding an arbitrary term rewrite system A.

Remark 3.2.2 At the beginning of this chapter we commented that the commuta-
tion property of the pairs of the rewrite relations of λc is a property by which λc can
be split into two independent levels: the level of the lambda calculus and the level
of context-related machinery. However, there is more to this property than just a
nice result: this property will be essential in the chapters to come, where we will
be working on subsystems of the framework λc. The notion of subsystem in these
chapters is associated to the notion of indexed sub-ARS (cf. Definition 1.1.14). The
notion of indexed sub-ARS is defined on ARSs with many rewrite relations, whereas
the notion of standard sub-ARS is defined on ARSs with one rewrite relation. The
notion of indexed sub-ARS allows a subsystem to include only a subset of rewrite
relations of the supersystem. The difficulty with such a notion of subsystem is that
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an indexed sub-ARS of a confluent system is not necessarily confluent, as it is the
case in the standard notion of sub-ARS (see also Example 1.1.18). More specifi-
cally, given a pair of diverging rewrite sequences in a subsystem, the existence of
a pair of converging rewrite sequences (in a supersystem) is not enough for conflu-
ence: it is also important that such a pair of converging rewrite sequences uses only
the rewrite rules of the subsystem. The commutation property of the pairs of the
rewrite relations of the framework λc ensures this is the case in any subsystem of
λc. Thus, it pays off to prove the commutation property of the pairs of the rewrite
relations in λc once, instead of proving confluence of each subsystem of λc.

3.2.1 The pattern rewrite system H
A pattern rewrite system is a higher-order rewriting system with simply typed
lambda calculus λ→η , with the rule η, as the substitution calculus. In general, the
set of types T of the calculus λ→η is defined over a set of base types using the
function constructor→. Here, we restrict the set of base types to the singleton {0}.
Furthermore, we assume there is a countably infinite set Vτ of variables of type τ
for each τ ∈ T , at our disposal. Let V→ denote the union of typed variables, i.e.
V→ =

⋃
τ∈T Vτ . Without loss of generality, we will use for V0 the set of variables

V of λc.

Notation. In order to avoid confusion between the symbol λ in λu.U of the
context calculus, and the symbol λ in λu. s of the substitution calculus of PRSs
during translations, the latter will be denoted only by the dot, for example
u. s instead of λu. s (such notation is customary in PRSs; see also notation in
Section 1.3). A repeated abstraction u. v. s will be abbreviated as u, v. s.

In general, as we have already mentioned in Chapter 1, the object language of
pattern rewrite systems is generated from a set of typed function symbols (i.e. a
signature) and a set of the rewrite rules. A rewrite rule is a pair of closed terms
(i) : l → r of the same type. In a pattern rewrite system, the left-hand side l of
each rewrite rule is a pattern. A pattern is a term of the form 	z. f(	s) such that f(	s)
is of a base type, and each zi among 	z occurs free in f(	s) and has only (η-normal
forms of) pairwise distinct variables not among 	z as arguments.

In H, the object language is based on λc: the preterms (i.e. expressions of H)
are generated from the function symbols corresponding to the constructors of the
context calculus λc, and the rewrite rules are the pattern rewrite rules obtained by,
loosely speaking, translating the rewrite rules of λc.

Definition 3.2.3 (Pattern rewrite system H)

i) The signature C of H consists of the following function symbols (n ∈ IN):
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abs : (0→ 0)→ 0
app : 0→ 0→ 0
mabsn : (	0→ 0)→ 0 with |	0| = n

mappn : 	0→ 0 with |	0| = n+ 1
habsn : (	0→ 0)→ 0 with |	0| = n

hfn : 	0→ 0 with |	0| = n+ 1
compn : 	0→ 0 with |	0| = n+ 1.

ii) The set of rewrite rules R of H consists of the following rules:

z, z′.app (abs(u. zu)) z′ → z, z′. zz′ (b)

z, 	z.mappn (mabsn(	u. z	u)) 	z → z, 	z. z	z (mb)

z, 	z.hfn (habsn(	u. z	u)) 	z →fill z, 	z. z	z (fill)

z, 	z. compn (habsn(	u. z	u)) (mabs(	v1.habs(	v ′
1. z1	v1	v

′
1))) . . .

(mabs(	vn.habs(	v ′
n. zn	vn	v

′
n)))

→ z, 	z.habs(	v ′
1, . . . , 	v

′
n. z(mabs(	v1. z1	v1	v ′

1)) . . . (mabs(	vn. zn	vn	v ′
n)))

(cmp)

with |	z| = n in (mb) and (fill).

iii) The PRS H is defined by H = (C,R).

The PRS H is a second-order PRS, because all variables z are of type 	0 → 0,
which is of the order 2.

We recall some definitions from the preliminaries (Section 1.3). Let []τ be a
special symbol for holes of type τ . A precontext C is a preterm with some holes in
it, which can be filled simultaneously by possibly different preterms or precontexts.
Terms are preterms in βη-normal form. Contexts are precontexts in βη-normal
form. The rewrite relation is defined only on terms, and it is defined as s→i t if
s←←βC[l] and C[r]→→β t where s and t are terms, (i) : l→r is a rewrite rule and C is
a context. That is, a rewrite step consists of the extraction of the left-hand side of
a rewrite rule, replacement by the corresponding right-hand side, and β-reduction.

Example 3.2.4 Let x, y, h, g, u be variables of type 0 and let z be a variable of
type 0→ 0. Examples of terms of H are:

i) app x y,

ii) habs(h.app (abs(y.mapp h y)) x),

iii) comp (habs(h.app (abs(y.mapp h y)) x))

(mabs(y.habs(k1, k2.app (mapp k1 y) (abs(z.mapp k2 yz))))),

iv) comp2 x y,

v) abs(u. zu), and
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vi) u. z.

An example of a rewrite sequence in H is

comp (habs(h.app (abs(y.mapp h y)) x))
(mabs(y.habs(k1, k2.app (mapp k1 y) (abs(z.mapp k2 yz)))))

→b comp (habs(h.mapp h x))
(mabs(y.habs(k1, k2.app (mapp k1 y) (abs(z.mapp k2 yz)))))

→cmp habs(k1, k2.mapp (mabs(y.app (mapp k1 y) (abs(z.mapp k2 y, z)))) x)
→mb habs(k1, k2.app (mapp k1 x) (abs(z.mapp k2 x, z))).

The notions of critical pair and of left-linearity can be lifted to higher-order
rewriting (see Section 1.3). A critical pair is a tuple (C[r	s], r′	t) where C[l	s] = l′	t
is a most general overlap between two redexes of rewrite rules (i) : l → r and
(i′) : l′→ r′. A rewrite rule is left-linear if each zi occurs exactly once in the left-
hand side 	z. f(	s) of the rewrite rule. A pattern rewrite system is called orthogonal
if there are no critical pairs and if all rewrite rules are left-linear.

Theorem 3.2.5 H is orthogonal.

Proof: By inspection of the rewrite rules of H we see that H is orthogonal. QED

3.2.2 The subsystem Hλc

From the context calculus point of view, H contains too many elements: as we have
seen in the example above, H contains also terms like comp2 x y, abs(u. zu) and u. z,
which are intuitively meaningless in the context calculus. In this section, we will
define the set of meaningful elements ofH as Ter(Hλc), and give two descriptions of
Ter(Hλc): one from the context calculus’ point of view (Definition 3.2.6), and one
from the point of view of higher-order rewriting (in Proposition 3.2.9). We will prove
that Hλc = 〈Ter(Hλc),RH〉 is a subsystem of H, which is therefore closed under
rewriting (Theorem 3.2.19). The crux of the proof is a reformulation of the rewrite
relation (as explained in Intermezzo 3.2.10): from the definition of a rewrite step in
H, defined via terms and contexts that are in general not a part of the subsystem,
to a formulation of a rewrite step in Hλc, via terms and contexts that are a part of
the subsystem. The new formulation of a rewrite step is stated and proved to be
equivalent to the old definition of the rewrite relation in Proposition 3.2.17.

The meaningful elements of H, in the context calculus’ viewpoint, are the ele-
ments which mimic the term formation of λc: starting from variables, elements are
built using abstractors and functors (i.e. function symbols in H) provided with the
right number of (meaningful) arguments. The following definition describes such
terms inductively.

Definition 3.2.6 (Ter(Hλc)) Let Ter(Hλc) be the smallest subset of the pre-
terms of H defined inductively as follows
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i) variables of type 0 are elements of Ter(Hλc), and

ii) if u, 	u ∈ V0 and s, t, 	s ∈ Ter(Hλc) with |	u| = |	s| = n, then abs(u. s), app s t ,
mabsn(	u. s), mappn s 	s, habsn(	u. s), hfn s 	s, compn s 	s are all elements of
Ter(Hλc).

The elements of Ter(Hλc) are indeed elements of H too, because they are well-
typed preterms generated from the same set of types and constructors and from the
restricted set of variables of H (only of type 0).

Let [] be a special symbol of type 0 for holes in Hλc. A (pre)context D over
Ter(Hλc) is defined analogously to (pre)contexts over Ter(H). Note that in Hλc
we consider only the (pre)contexts with holes of type 0, so the type annotation of
a hole may be left implicit.

Notation. The indices of the function symbols will be left out, because, due to the
well-typedness and the form of the elements of Ter(Hλc), the indices have become
superfluous: in mabsn(	u. s) and habsn(	u. s) the index n is coupled to the length of
	u, while in mappn s 	s, hfn s 	s and compn s 	s the index n is coupled to the length of 	s.

From the point of view of H, the elements of Ter(Hλc) are preterms with com-
puted substitutions (in β-normal form), in which all function symbols are provided
with the right number of arguments (of type 0 and in η-normal form), and with
variables that stand only for another element of Ter(Hλc) (i.e. no variables of type
other than 0). This gives an alternative characterisation of Ter(Hλc), which is
stated in Proposition 3.2.9. For the proof of the proposition, two technical lemmas
are needed.

Lemma 3.2.7 Let s be a βη-normal form. Then s ≡ λ	x�τ . ta	t where ta is a constant
or a variable and 	t are in βη-normal form.

Lemma 3.2.8 Let s be a βη-normal form. Then the subterms of s of a base type
are in βη-normal form.

Proposition 3.2.9 Let s be a preterm of H. Then s ∈ Ter(Hλc) if and only if s
satisfies the following conditions

(C1) s is in βη-normal form,

(C2) s is of type 0, and

(C3) all variables in s (including the variables in the binders) are of type 0.

Proof: In order to prove the ‘only if’-part of the statement, one checks that s ∈
Ter(Hλc) satisfies the conditions (C1), (C2) and (C3) by induction on the structure
of s.

In order to prove the ‘if’-part of the statement, one considers the preterms s
of H that satisfy the conditions (C1)–(C3). Such preterms s have a specific form,
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replacement

ββ

Hλc

H

Figure 3.2: Rewrite steps of Hλc

which can be described as follows. Being in βη-normal form (by (C1)), s is of the
form 	v. a(	t) where a is a variable or a function symbol and 	t are in βη-normal form
(by Lemma 3.2.7). Since s is of type 0 (by (C2)), the length of 	v is zero, implying
that the preterm s must be of the form a(	t). Only the preterms of H of this form
are considered.

Moreover, it can easily be verified that the subterms of type 0 of such an s
(as a λ-term) satisfy the conditions (C1) through (C3) too (by using Lemma 3.2.8
for (C1)). This fact forms the basis of the inductive argument in the proof which
proceeds by induction to the structure of such preterms. QED

Since the terms of H already satisfy the condition (C1) by definition, this propo-
sition can equivalently be restated as: a term s of H is an element of Ter(Hλc) if
and only if s satisfies (C2) and (C3). Hence, we will henceforth talk about terms
instead of preterms.

In the remainder of this section we show that the set Ter(Hλc) is closed under
rewriting in H, that is, if s ∈ Ter(Hλc) and s→ t then t ∈ Ter(Hλc).

The difficulty of the proof of the closure lies in the fact that the rewrite steps of
the subsystem Hλc are inherited from H, which are defined via terms and contexts
of H that are not terms or contexts of the subsystem (see Figure 3.2). Recall that,
if (i) : l→ r, is a rewrite rule, then s→i t is a rewrite step if and only if

s←←β C[l] and C[r]→→β t.

Here, l and r are no terms of Hλc and C is not a context over Hλc (note that l,
r and the hole are not of type 0). However, this definition can be reformulated
closer to the subsystem, by keeping in mind that the subsystem is an encoding of
the context calculus λc in the format of pattern rewrite systems. We will study the
definition of rewrite steps in λc using λc-terms, to find a definition of rewrite steps
in Hλc using the encodings of λc-terms.

Intermezzo 3.2.10 Recall that an ı-rewrite step in λc is defined by

C[L∗]→ı C[R∗].
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Here, L→ R is the rewrite rule (ı) of λc, C a context of λc, and L∗ and R∗ denote
instances of L and R respectively. In these instances the meta-variables are replaced
by λc-terms in such a way that variable capturing may occur.

In Hλc this rewrite step will be mimicked by s→i t with

s←←β D[l	s] and D[r	s]→→β t.

Here, s and t are encodings of C[L∗] respectively C[R∗], (i) : l→r is the rewrite rule
of Hλc associated with the rewrite rule (ı) above, D is a context over Hλc associated
with the context C of λc. Moreover, the reductions l	s →→β s and r	s →→β t are
‘internalised replacements’ of the meta-variables in L∗ and R∗. By this internalised
replacement we mean a reduction which mimics the replacement of meta-variables
together with the intended variable capturings. For example, the step in λc

λy. (Λx, x′. x)〈y, (λy′. y′)〉 → β λy. y

will be mimicked by the step in Hλc

abs(y.mapp (mabs(x, x′. x)) y (abs(y′. y′))) →mb abs(y. y)

with

abs(y.mapp (mabs(x, x′. x)) y (abs(y′. y′)))←←β

abs(y. [])[(z, z1, z2.mapp (mabs(u1, u2. zu1u2)) z1z2) (x, x′. x) y (abs(y′. y′))]

and

abs(y. [])[(z, z1, z2. zz1z2) (x, x′. x) y (abs(y′. y′))]→→β abs(y. y) .

The correspondence between the rewrite steps in λc and Hλc will be proved
in the next section; here we are only concerned with the equivalence of the two
definitions of rewrite steps originating from the elements of Hλc and the closure of
Hλc under (the new definition of) rewriting.

Because the terms of Ter(Hλc) have unusual subterm and superterm relations,
we start with two technical propositions which specify the conditions for the closure
of these two relations.

Proposition 3.2.11 If s ∈ Ter(Hλc) then all subterms of type 0 of s are terms of
Ter(Hλc) too.

Proof: Each s ∈ Ter(Hλc) satisfies the conditions (C1) through (C3), by Propo-
sition 3.2.9. Considering such an s as a λβη-term, one verifies that its subterms
of type 0 satisfy the conditions (C1) through (C3), too (by using Lemma 3.2.8 for
(C1)). By Proposition 3.2.9 again, such subterms are elements of Ter(Hλc). QED

Proposition 3.2.12 Let 	s be n terms of Ter(Hλc) and let D be a context over
Ter(H) with n holes. Then, D[	s] ∈ Ter(Hλc) if and only if D is a context over
Ter(Hλc).
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Proof: Let D be a context over Ter(H) with n holes and let 	s ∈ Ter(Hλc) with
|	s| = n.

To prove the ‘only if’-part, suppose D[	s] ∈ Ter(Hλc). In order for hole filling
to be defined on D and 	s, the type of si and of the ith hole in D must be the same
(for 1 ≤ i ≤ n). Since all si are elements of Ter(Hλc), the type of all si is 0 (by
Proposition 3.2.9). Then the type of all holes in D must be 0, too. The rest of the
proof proceeds by induction to D (a context over Ter(H)).

The ‘if’-part is proved by induction to context D over Ter(Hλc). QED

If a rewrite step is initiated from a term of Hλc of a base type, then an ‘inter-
nalised replacement’ of the meta-variables can be identified in the arguments of the
left-hand and right-hand sides of the rewrite rule used. This is proved in Proposi-
tion 3.2.15. Note also that the reduct is of the same base type, because the rewrite
relation of H preserves types.

We also need two technical lemmas in the substitution calculus.

Lemma 3.2.13 Let s be a η-normal form of some base type. If ta is a variable or
a constant of type 	τ → a where a is a base type, and ta is a subterm of s, then ta
is in a context of the form ta	t where 	t : 	τ , also in η-normal form.

Lemma 3.2.14 Let t be a βη-normal form of some base type. Let x be a variable
of the same base type. Then s[[x := t]] is in βη-normal form if and only if s is in
βη-normal form.

Proposition 3.2.15 Let t1, t2 ∈ Ter(H), both of type 0. Let (i) : l → r be a
rewrite rule. If t1→i t2 then there are a context D over H and terms 	s of H such
that l	s : 0, t1 ≡ D[(l	s)↓β ] and t2 ≡ D[(r	s)↓β ].

Proof: Let t1, t2 ∈ Ter(H), both of type 0, let (i) : l→ r be a rewrite rule, and
let t1→i t2. Then there is a context C over H such that t1←←β C[l] and C[r]→→β t2,
per definition of rewrite steps in higher-order rewriting. Due to the preservation of
types by β, and because t1 and t2 are both of type 0, so is C.

The types of l, r and the hole in C are the same. By inspection of the rewrite
rules of H, one sees that l : 	τ → 0 for τi = 	0 → 0. Thus, [] : 	τ → 0. Since C is in
βη-normal form, the hole is in a context of the form []	s : 0 with 	s : 	τ and all 	s in βη-
normal form, by Lemma 3.2.13. Let D be the context such that C ≡ D[[]	s]. Note
that D is in βη-normal form, since the type of the hole in D is 0 (by Lemma 3.2.14).

Consider the rewrite sequences D[l	s]→→β t1 and D[r	s]→→β t2. Since D is in
βη-normal form and the type of l	s and r	s is 0, these two rewrite sequences consist
of reducing l	s and r	s to their βη-normal forms, respectively. Consequently, t1 ≡
D[(l	s)↓β ] and t2 ≡ D[(r	s)↓β ].

[This proof can be generalised to any base type.] QED

The terms of the replacement part are terms of Ter(Hλc) with a prefix that
handles variable bindings. This prefix takes care of the bindings that in λc occur
by variable capturing which occurs during the replacement of the meta-variables.
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Proposition 3.2.16 Let (i) : l→ r be a rewrite rule of H. Let 	s be n terms of
H. If (l	s)↓β ∈ Ter(Hλc) then si ≡ 	xi. s

′
i with 	xi, s

′
i ∈ Ter(Hλc) for all i with

1 ≤ i ≤ n.

Proof: Let (i) : l→ r be a rewrite rule of H and let 	s be n terms of H. Suppose
(l	s)↓β ∈ Ter(Hλc). By inspection of the rewrite rules ofH, note that l ≡ 	z. l′ : 	τ →
0 with zi : τi = 	0i → 0. Then it holds that si : 	0i → 0 for 1 ≤ i ≤ |	s|. Furthermore,
since each si is in βη-normal form, si is of the form 	xi. s

′
i where s′i is in βη-normal

form and of type 0, and 	xi : 	0i. Using Proposition 3.2.9, 	xi ∈ Ter(Hλc).
It remains to be checked that each s′i contains only variables of type 0. Consider

the reduction l	s→→β (l	s)↓β and l ≡ 	z. l′ with zi : 	0i → 0. Because simply typed
λ-terms have unique β-normal forms (with β being confluent and strongly normal-
ising), it holds that ((	z. l′)	s)↓β = (l′[[	z := 	s]])↓β . Since variables other than 	z in l
are of type 0, β-reduction does not introduce any new variables (up to renaming,
which is type-preserving), and (l′[[	z := 	s]])↓β ∈ Ter(Hλc), each s′i must contain
only variables of type 0. QED

The two definitions of rewrite steps in H, originating from an element of Hλc
are equivalent.

Proposition 3.2.17 Let s, t ∈ Ter(H). Let (i) : l→ r be a rewrite rule of H.
Suppose s ∈ Ter(Hλc). Then, s→i t if and only if there is a context D of Hλc and
	s with l	s : 0, si ≡ 	xi. s

′
i and 	xi, s′i ∈ Ter(Hλc) for 1 ≤ i ≤ |	s| such that

s ≡ D[(l	s)↓β ] and t ≡ D[(r	s)↓β ].

Proof: To prove the ‘only if’-part, suppose s→i t. Since s is of a base type (being
an element of Ter(Hλc)), there is a context D over H and terms 	s of H such that
l	s : 0, s ≡ D[(l	s)↓β ] and t ≡ D[(r	s)↓β ], by Proposition 3.2.15. Since (l	s)↓β is a
subterm of type 0 of s, it is an element of Ter(Hλc) by Proposition 3.2.11. Then
D is a context over Ter(Hλc) by Proposition 3.2.12. Because (l	s)↓β ∈ Ter(Hλc),
si ≡ 	xi. s

′
i and 	xi, s′i ∈ Ter(Hλc) for 1 ≤ i ≤ |	s|, by Proposition 3.2.16.

To prove the ‘if’-part, let D be a context of Hλc and 	s with l	s : 0, si ≡ 	xi. s
′
i

and 	xi, s′i ∈ Ter(Hλc) such that

s ≡ D[(l	s)↓β ] and t ≡ D[(r	s)↓β ].

In that case, let C ≡ D[[]	s]. Then, s←← C[l] and C[r]→→ t, and hence, s→i t. QED

The next two statements finish the proof of the closure by stating that the
contractions originating from elements of Hλc are within Hλc, and consequently,
the rewrite steps originating from elements of Hλc, too.

Proposition 3.2.18 Let (i) : l → r be a rewrite rule of H. Let 	s be terms of H.
Then, if (l	s)↓β ∈ Ter(Hλc) then (r	s)↓β ∈ Ter(Hλc).

Proof: Assume (l	s)↓β ∈ Hλc. By Proposition 3.2.16, si ≡ 	xi. s
′
i with 	xi, s

′
i ∈

Ter(Hλc) for all i with 1 ≤ i ≤ |	s|. Moreover, we know that the right-hand side
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r is of the same type as l and in βη-normal form, that is, r ≡ 	z. r′ where r′ is in
βη-normal form and of type 0. We also know that (r	s)↓β = (r′[[	z := 	s]])↓β because
each term has a unique β-normal form.

Then (r	s)↓β satisfies the conditions (C1)–(C3):

(C1): Because [[	z := 	s]] preserves η-normal forms, (by Proposition 1.2.52),
r′[[	z := 	s]] is again in η-normal form. Since β-reduction preserves η-normal
forms, (by Proposition 1.2.52(ii)), (r′[[	z := 	s]])↓β is in βη-normal form. That
is, (r	s)↓β is in βη-normal form.

(C2): Since l	s is of type 0, so is r	s. Since→β is type-preserving, the type of (r	s)↓β
is 0, too.

(C3): The only variables in r	s of type other than 0 are among zi’s. These variables
will eventually be substituted by 	s in r′ along the reduction r	s→→β r	s ↓β .
Since by β-reduction no new variables can appear (although some variables
may be duplicated or renamed in a type-preserving way), all variables in
(r′[[	z := 	s]])↓β are then of type 0. QED

Theorem 3.2.19 Let s ∈ Ter(Hλc) and let (i) be a rewrite rule of H. If s→i t
then t ∈ Ter(Hλc).

Proof: We prove this statement only for the case of the rewrite sequence of length
1; the statement follows by induction to the length of the reduction.

Suppose s ∈ Ter(Hλc), (i) : l→ r and s→i t is a rewrite step in H. Then
there is a context D of Hλc and 	s with l	s : 0, si ≡ 	xi. s

′
i and 	xi, s′i ∈ Ter(Hλc) for

1 ≤ i ≤ |	s| such that

s ≡ D[(l	s)↓β ] and t ≡ D[(r	s)↓β ].

Since (l	s)↓β is a subterm of type 0 of s, it is an element of Ter(Hλc) by Propo-
sition 3.2.11. Then, by Proposition 3.2.18, (r	s)↓β is an element of Ter(Hλc). By
Proposition 3.2.12, D[(r	s)↓β ] ≡ t is also an element of Ter(Hλc). QED

Corollary 3.2.20 (Indexed sub-PRS Hλc)
The system Hλc = 〈Ter(Hλc),RH〉 is an indexed sub-PRS of H.

Proof: The underlying ARS of Hλc satisfies the conditions of the definition of an
indexed sub-ARS of the underlying ARS of H:

i) The set of terms Ter(Hλc) is a subset of the set of terms of H.

ii) The rewriting relations ofHλc are the restrictions of the same rewrite relations
of H, because the rewriting relations are generated by the same rewrite rules
RH.

iii) By Theorem 3.2.19, the set of terms Ter(Hλc) is closed under each rewrite
relation of H. QED
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Figure 3.3: Lifting and projecting

Remark 3.2.21 Whenever it will be more convenient, we will use the new defini-
tion of rewrite steps, based on Proposition 3.2.17 instead of the usual definition in
H.

3.2.3 The correspondence between λc and Hλc

The statement of this section is ‘λc is Hλc’. For the purpose of making the cor-
respondence concrete, two translation functions are defined (see Figure 3.3): lift-
ing (Definition 3.2.22), which translates λc-terms to Hλc; and projection (Defini-
tion 3.2.24), which translates the terms of Hλc to λc-terms. The translations are
each others inverse (Theorem 3.2.25), and as such they define a one–to–one corre-
spondence between the terms of λc and Hλc. Moreover, the translations preserve
the rewrite steps: if U reduces to V , then the lifting of U reduces to the lifting of
V (Theorem 3.2.30); and if s reduces to t, then the projection of s reduces to the
projection of t (Theorem 3.2.31). Such a correspondence implies that the properties
of the rewrite relations will be the same in both systems.

The definition of lifting spells out the intuition used when defining H and Hλc.

Definition 3.2.22 (Lifting Ter(λc) to Ter(Hλc))

i) Let U ∈ Ter(λc). The lifting of U to Ter(Hλc), ��U		 is defined by the
structural induction on U :
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��u		 = u
�� λu.U 		 = abs(u. ��U		)
�� U V 		 = app ��U		 ��V 		
�� Λ	u.U 		 = mabs(	u. ��U		)
�� U 〈	U〉 		 = mapp ��U		 ��	U		
�� δ	u.U 		 = habs(	u. ��U		)
�� U �	U� 		 = hf ��U		 ��	U		

�� U ◦ 	U 		 = comp ��U		 ��	U		

where the variables u, 	u on the right-hand sides are all of type 0.

ii) Lifting is straightforwardly extended to contexts where �� [] 		 = [] of type 0.

Notationally, we will make no distinction between (untyped) u of λc and (typed)
u of λ→, but assume it is clear from the surrounding text which one is meant.

Lifting is a well-defined function, that is, the lifting of an element of λc results
in a unique element of Hλc. Moreover, lifting commutes with the meta-operations
of filling holes and substitution.

Proposition 3.2.23

i) Let 	U ∈ Ter(λc) and C be a context with n holes over λc-terms. Then

��C[	U ]		 = ��C		[��	U		].

ii) Let U, 	V ∈ Ter(λc) and 	v be n distinct variables of Ter(λc). Then

��U [[	v := 	V ]] 		 = ��U		[[��	v		 := ��	V 		]].

Proof: Note that the square brackets [ ] in ��C[	U ]		 denote the meta-operation of
hole filling in λc, whereas the same brackets in ��C		[��	U		] denote the meta-operation
of hole filling in higher-order systems.

i) The proof is done by induction to the structure of the context C over λc-terms.

ii) First of all, note that ��[[	v]] := ��	V 				 is a valid higher-order substitution since
for all 1 ≤ i ≤ n, ��vi

		 = vi and ��Vi
		 are of the same type (namely, 0) and

��Vi
		 is in βη-normal form, by Proposition 3.2.9 and well-definedness of lifting.

The proof proceeds by induction to U . QED

The definition of projection of s to Ter(λc), 

s�� is given by exchanging the
left-hand and right-hand sides in the definition of lifting.

Definition 3.2.24 (Projection of Ter(Hλc) to Ter(λc))
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i) Let s ∈ Ter(Hλc). The projection of s to Ter(λc), 

s�� is defined by struc-
tural induction on s:



u�� = u



 abs(u. s) �� = λu. 

s��


 app s t �� = 

s�� 

t��


 mabs(	u. s) �� = Λ	u. 

s��


 mapp s 	s �� = 

s�� 〈

	s��〉


 habs(	u. s) �� = δ	u. 

s��


 hf s 	t �� = 

s�� �

	t���


 comp s 	s �� = 

s�� ◦ 

	s��.

ii) Projection is straightforwardly extended to contexts where 

 [] �� = [].

Projection is a well-defined function, that is, the projection of an element of Hλc
results in a unique element of λc.

The correspondence between the terms of λc and Hλc is established by the next
proposition, which states that lifting and projection are each others inverse, and as
such, they define the one–to–one correspondence.

Theorem 3.2.25

i) Let U ∈ Ter(λc). Then 


��U		

�� = U .

ii) Let s ∈ Ter(Hλc). Then ��


s��

		 = s.

Proof: The proofs are conducted by structural induction on U ∈ Ter(λc) and
s ∈ Ter(Hλc), respectively. QED

Projecting commutes with the (meta-level) hole-filling operation and substitu-
tion, as is shown in the next two propositions.

Proposition 3.2.26

i) Let 	s ∈ Ter(Hλc) and D be a context over the terms of Ter(Hλc) with n
holes. Then



D[	s]�� = 

D��[

	s��].

ii) Let s,	t ∈ Ter(Hλc) and 	v be n distinct variables of type 0. Then



s [[	v := 	t]] �� = 

s��[[

	v�� := 

	t��]].

Proof:

i) The proof uses the fact that lifing and projection are each others inverse:



D[	s]�� = 


��


D��

		 [��

	s��		]�� [Theorem 3.2.25(ii)]
= 



��


D�� [

	s��]		�� [Proposition 3.2.23(i)]

= 

D��[

	s��]. [Theorem 3.2.25(i)]
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ii) Both substitutions, [[	v := 	t]] and [[

	v�� := 

	t��]] are legal substitutions, the for-
mer in Hλc and the latter in λc. The proof uses the fact that lifting and
projection are each others inverse:



s [[	v := 	t]] �� = 


��


s��

		 [[��

	v��		 := ��


	t��

		]]�� [Theorem 3.2.25(ii)]
= 



��


s�� [[

	v�� := 

	t��]]		�� [Proposition 3.2.23(ii)]

= 

s�� [[

	v�� := 

	t��]] . [Theorem 3.2.25(i)]
QED

The contractions of λc and Hλc coincide. When comparing the contractions and
rewrite steps of λc andHλc, it is important to keep in mind that the rewrite relations
of λc and Hλc are defined differently. For the general idea, see Intermezzo 3.2.10.

When translating contractions L→ıR and (l	s)↓β →i (r	s)↓β to each other, the
form of l, r and 	s plays an important role. The arguments si will each be of the
form si ≡ 	u. ti with 	u, ti ∈ Ter(Hλc) (see Remark 3.2.21). Because β-reduction
respects types and η-normal forms, (l	s)↓β and (r	s)↓β will be elements of Ter(Hλc)
and their projections will be λc-terms.

Remark 3.2.27 The coincidence of the contractions (and later, the rewrite steps)
in λc andHλc means not only that a lifted (or, projected) contraction is again a con-
traction, but also that it is a contraction of the same instance of the corresponding
rewrite rule. For example, if

U ≡ (δh.h〈x〉)�Λx.x� →fill (Λx.x)〈x〉 ≡ V

with 1 as the (omitted) index of � �1 and δ1 in the applied instance of the rewrite
rule (fill), then

��U		 = hf (habs(h.mapp h x)) mabs(x.x)→fill mapp (mabs(x.x)) x = ��V 		

with the same (omitted) index 1 in hf1 and habs1 in the instance of the corresponding
rewrite rule (fill). In the proofs we will not be explicit about this, but the reader
should keep this in mind.

Notation. Let ı be (an instance of) a rewrite rule of λc. (The instance of) the
rewrite rule of Hλc corresponding to ı will be denoted by ��ı		. Analogously, the
rewrite rule of λc corresponding to the rewrite rule (i) of Hλc will be denoted by


i��. Moreover, we assume the correspondence between the rewrite rules of λc and
Hλc is obvious.

Proposition 3.2.28 (Lifting contractions) If L→ı R is a contraction in λc,
then ��L		 →i

��R		 is a contraction of the corresponding rewrite rule in Hλc.

Proof: See Figure 3.4. The proof is conducted by case analysis on a rewrite rule
(ı) of λc. We treat only two cases:
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Hλc
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��L��

L Rı

��ı��
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Figure 3.4: Lifting contractions

( β): Then,
��L		 ≡ �� (Λ	u.U)〈	V 〉 		

= mapp (mabs(	u. ��U		)) ��	V 		 [def. lifting]
←←β (z, 	z.mapp (mabs(	v. z	v)) 	z)

(	u. ��U		) ��	V 		 .

By replacing the left-hand side of the rewrite rule (mb) by the right-hand side,
we obtain
(z, 	z. z	z)(	u. ��U		)��	V 		

→→β
��U		[[	u := ��	V 		]] [Lemma 3.2.14]

= ��U [[	u := 	V ]] 		 [Prop. 3.2.23(ii)]
≡ ��R		.

(◦): For the sake of readability, we consider only an instance of the collection of
the composition rewrite rules where n = 1 in ◦n (and where consequently the
first argument is an abstraction over only one variable).

Then,
��L		

≡ �� (δu.U) ◦ (Λ	v. δ	v ′. V ) 		

= comp (habs(u. ��U		)) (mabs(	v.habs(	v ′. ��V 		))) [def. lifting]
←←β (z, z′. comp (habs(u′. zu′))

(mabs(	w.habs(	w ′. z′ 	w	w ′))))
(u. ��U		)(	v,	v ′. ��V 		).

By replacing the left-hand side of the rewrite rule (mb) by the right-hand side,
we obtain
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Hλc

H

λc

s1 s2

��s1�� ��s2����i��

i

Figure 3.5: Projecting contractions

(z, z′.habs(	w ′. z(mabs(	w. z′ 	w	w ′))))
(u. ��U		)(	v,	v ′. ��V 		)

→→β habs(	v ′. ��U		 [[u := mabs(	v. ��V 		)]]) [Lemma 3.2.14]
= habs(	v ′. ��U		 [[u := �� Λ	v.V 		]]) [def. lifting]
= habs(	v ′. ��U [[u := Λ	v.V ]] 		) [Prop. 3.2.23(ii)]
= �� δ	v ′.U [[u := Λ	v.V ]] 		 [def. lifting]
≡ ��R		.

QED

Proposition 3.2.29 (Projecting contractions) If s1→i s2 is a contraction in
Hλc, then 

s1�� →ı 

s2�� is a contraction of the corresponding rewrite rule in λc.

Proof: See Figure 3.5. The proof is conducted by case analysis on a rewrite rule
(i) of Hλc. We treat only two cases:

(mb): Because it is an element of Ter(Hλc), s1 is of the form
mapp (mabs(	u. t)) 	t with t,	t ∈ Ter(Hλc). In that case, s2 is of the form
t[[	u := 	t]].

Since t and 	t are also elements of Ter(Hλc), they can be projected to λc-
terms. Then the whole contraction can be directly projected to a contraction
of the rewrite rule ( β) in λc:



 mapp (mabs(	u. t)) 	t �� = (Λ	u. 

t��)〈

	t��〉 [def. projection]
→ β 

t��[[	u := 

	t��]]
= 

t [[	u := 	t]] ��. [Prop. 3.2.26(ii)]

(cmp): Like in the proof of the previous proposition, only an instance of the rewrite
rule (comp) with arity 2 is considered.
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Because it is an element of Ter(Hλc), s1 is of the form
comp (habs(u. t)) (mabs(	v.habs(	v ′. t′))) with t, t′ ∈ Ter(Hλc). In that case,
s2 is of the form habs(	v ′. t[[u := mabs(	v. t′)]]).

Since t and t′ are also elements of Ter(Hλc), they can be projected to λc-
terms. Then the whole contraction can be directly projected to a contraction
of the rewrite rule (◦) in λc:



 comp (habs(u. t)) (mabs(	v.habs(	v ′. t′))) ��

= (δu. 

t��) ◦ (Λ	v. δ	v ′. 

t
′
��) [definition of projection]

→◦ δ	v ′. 

t�� [[u := Λ	v. 

t′��]]
= δ	v ′. 

t�� [[u := 

 mabs(	v. t′) ��]] [definition of projection]
= δ	v ′. 

t [[u := mabs(	v. t′)]] �� [Proposition 3.2.26(ii)]
= 

 habs(	v ′. t[[u := mabs(	v. t′)]]) ��. [definition of projection]

QED

The one–to–one correspondence culminates in the next two theorems where it
is shown that rewrite steps and sequences can be lifted or projected between the
context calculus and the subsystem Hλc.

Theorem 3.2.30 Let U ∈ Ter(λc). If U →ı1 U1 →ı2 . . .→ın Un then ��U		→��ı1��
��U1

		→��ı2�� . . .→��ın����Un
		.

Proof: Only the case n = 1 is treated; the statement follows by induction on the
length of the rewrite sequence.
Let U ≡ C[L]→ C[R] ≡ V , where L→ı R is an ı-contraction in λc. Then

��U		 ≡ ��C[L]		

= ��C		[��L		] [Proposition 3.2.23(i)]
→��ı��

��C		[��R		] [Proposition 3.2.28]
= ��C[R]		 [Proposition 3.2.23(i)]
≡ ��V 		.

QED

Theorem 3.2.31 Let s ∈ Ter(Hλc). If s→i1 s1→i2 . . .→in sn then 

s��→��i1�� 

s1��
→��i2�� . . .→��in�� 

sn��.

Proof: Only the case n = 1 is treated; the statement follows by induction on the
length of the rewrite sequence. The case n = 1 is proven analogously to the proof
of the previous proposition, using complementary propositions.
Let s ≡ D[s′]→i D[t′] ≡ t, where s′→i t

′ is an (i)-contraction in Hλc. Then


s�� ≡ 

D[s′]��

= 

D��[

s′��] [Proposition 3.2.26(i)]
→��i�� 

D��[

t′��] [Proposition 3.2.29]

= 

D[t′]�� [Proposition 3.2.26(i)]
≡ 

t��.

QED

In conclusion, the context calculus λc is Hλc.
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3.2.4 Commutation of rewriting in λc

Recall that the commutation property of the pairs of rewrite relations states that,
if b ←←ı a →→ c then there is d such that b →→ d ←←ı c. In the context calculus
λc, the commutation property of pair of rewrite relations is a consequence of the
orthogonality property of H and the two correspondences: between H and Hλc on
the one hand, and on the other hand, between Hλc and λc. We will first show that
in H each pair of rewrite relations commutes, then that Hλc has the same property
and consequently, the context calculus λc too.

The proof that in H each pair of rewrite relations commutes relies on tracing the
descendants of redexes along a rewrite sequence and reducing them simultaneously.
More concretely, the proof focuses on tracing the descendants of redexes involved in
a pair of diverging rewrite sequences and reducing these descendants simultaneously
in the pair of converging rewrite sequences.

Tracing descendants of a set of redexes along a rewrite sequence is not a trivial
task. First, the definition of descendant relation is complex (cf. Definition 1.3.26).
The definition of rewrite steps includes β-reduction, next to the replacement of the
left-hand side of a rewrite rule by the right-hand side. Consequently, the descendant
relation over a rewrite step in higher-order rewrite systems includes the descendant
relation over β-reduction. Second, the difficulty with descendants of a set of redexes
in a higher-order term rewrite system is that the descendants of mutually disjoint
redexes (i.e. redexes situated in different subterms of a term) can become nested
(i.e. one descendant becomes a subterm of an another one) after a rewrite step, as
for example in

(λx. (λy.x)y′)((λz. z)z′)→β (λy. ((λz. z)z′))y′

in lambda calculus (see also Example 1.3.27 where an example in PRSs is given).
This is not the case in the first-order term rewrite systems.

Luckily, we work in orthogonal rewrite systems, where despite of these difficulties,
strong results hold regarding redexes and their descendants. We list some of the
well-known results, which we will need in the proof. The definitions of notions and
results mentioned below were formulated in Section 1.3.

i) Descendants of a redex are again redexes. Moreover, they are redexes of the
same rewrite rule as their antecedents.

ii) Redex occurrences in a term are independent, that is, contraction of one redex
occurrence does not disturb contraction of another redex occurrence. Then,
any set of redexes in a term can be extracted independently of each other and
reduced simultaneously.

The notion that is concerned with simultaneously reducing a set of pairwise inde-
pendent redexes is called complete development (see Definition 1.3.21). A complete
development step is denoted by s−→◦ t.

Notation. If V and U are two sets of pairwise independent redexes, then the set
V/U denotes the set of descendants of V over the complete development of U . Let
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−→−→◦ denote the reflexive–transitive closure of −→◦ . Let s−→◦ V t denote a complete
development step of the set of pairwise independent redexes V.

We formulate two definitions about rewriting in λc and the pattern rewrite
systems H and Hλc.

Definition 3.2.32 (Uniform rewriting)

i) A rewrite sequence s→→ı t will be called uniform.

ii) A complete development of a set of pairwise independent redexes of the rewrite
rule (ı) will be called a uniform complete development and it will be denoted
by −→◦ ı.

Definition 3.2.33 (Tiles)

i) A diagram d←← b←←ı a→→ c→→ı d will be called a commutation tile in both
λc and pattern rewrite systems (see Figure 3.6(a)).

ii) A diagram d←−◦ b←−◦ a−→◦ c−→◦ d will be called a cd-tile (see Figure 3.6(b)).

iii) A diagram d←−◦  b←−◦ ı a −→◦  c −→◦ ı d will be called a commutation cd-tile
(see Figure 3.6(c)).

The proof of the commutation property of rewriting in H rests on the Prism
theorem (cf. [Oos95]). This theorem offers the basis for existence of commutation
cd-tiles in H.

Theorem 3.2.34 (Prism theorem)

i) Let t ←−◦ U s−→◦ V t′ be diverging complete developments of independent re-
dexes U ⊆ V. Then t −→◦ V/U t′ and the descendant relations induced by
−→◦ U ;−→◦ V/U and −→◦ V are the same.

ii) If U ∪ V is independent, then V/U is independent.

iii) Every development step can be serialised, i.e. if s −→◦ t then there exists a
rewrite sequence s→→ t consisting of rewrite steps, inducing the same descen-
dant relation.

The next four results deal with tiles in H, Hλc and finally in λc. The first
proposition claims that in H any pair of diverging uniform complete development
steps can be finished into a commutation cd-tile (see Figure 3.6(c)). The proof uses
the orthogonality property of H and the Prism theorem.

Proposition 3.2.35 (Commutation cd-tiles in H) Let s, t, t′ be terms of H.
Suppose s −→◦ i t and s −→◦ j t

′. Then there is a term t′′ of H such that t′ −→◦ i t
′′

and t −→◦ j t
′′.
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Figure 3.6: Tiles

Proof: If s −→◦ i t and s −→◦ j t
′ then these complete developments are complete de-

velopments of certain sets of independent redexes, say U and U ′, each set containing
redexes of the rewrite rule (i) and (j), respectively. Thus, s −→◦ U t and s −→◦ U ′

t′.
Let V = U ∪ U ′. By the Prism theorem 3.2.34(i), there is a t′′ of H such that
s −→◦ V t′′, t −→◦ V/U t′′ and t′ −→◦ V/U ′

t′′. Since the redexes of U have been reduced
in the rewrite sequence s −→◦ U t, the reduction t −→◦ V/U t′′ consists of a complete
development of residuals of V \ U = U ′ \ U . Since residuals of independent redexes
of the rewrite rule (j) are again independent redexes of the same rewrite rule (by
Prism theorem 3.2.34(ii)), the reduction t −→◦ V/U t′′ is a complete development of
independent redexes of the rewrite rule (j). Thus, t −→◦ j t

′′.
Analogously for t′ −→◦ i t

′′. QED

The second proposition states that in H any pair of diverging uniform rewrite
sequences can be finished into a commutation tile. The proof uses the Prism theorem
and the fact that each rewrite step is a complete development of a singleton.

Proposition 3.2.36 (Commutation tiles in H) Let s, t, t′ ∈ Ter(H), and let
(i) and (j) be rewrite rules of H. If t←←i s→→j t

′, then there is s′ ∈ Ter(H) such
that t→→j s

′←←i t
′.

Proof: The proof is depicted in Figure 3.7. We first prove that if s→i t1 and s→→j t
′,

then there is a term s′1 of H such that t′ →→i s
′
1 and t1 →→i s

′
1. Since each rewrite

step is a complete development of a singleton, these diverging rewrite sequences can
be translated to uniform complete developments s −→◦ i t1 and s −→−→◦ j t

′. Now the
diagram can be finished by tiling with commutation cd-tiles (proved by induction
to the length of s −→−→◦ j t

′ and using Proposition 3.2.35; in the figure the application
of the induction step is denoted by (!)1). In this way we get a term s′1 of H such
that t′ −→◦ i s

′
1 and t1 −→−→◦ j s

′
1. Since complete developments can be serialised

(Theorem 3.2.34), we have t′→→i s
′
1 and t1→→j s

′
1.

Then, by induction to the length of s→→i t, there is s′ ∈ Ter(H) such that
t→→j s

′←←i t
′ (in the figure, the application of the induction step is denoted by (!)2).

QED

The third proposition says that now inHλc any pair of diverging uniform rewrite
sequences can be finished into a commutation tile. The proof relies on the fact that
Hλc is a subsystem of H, in which the same property holds.
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Figure 3.7: Proof of commutation of rewriting in H

Proposition 3.2.37 (Commutation tiles in Hλc) Let s, t, t′ ∈ Ter(Hλc) and
(i), (j) be rewrite rules of Hλc. If t←←i s→→j t

′, then there is s′ ∈ Ter(Hλc) such
that t→→j s

′←←i t
′.

Proof: Suppose t←←i s→→j t
′. Because rewrite sequences of Hλc are also rewrite

sequences ofH, there is a s′ inH such that t′→→is
′ and t→→js

′, by Proposition 3.2.36.
Because Hλc is closed under rewriting, this diagram is entirely within Hλc. QED

Finally, the fourth result states that commutation tiles exist in λc, that is, any
pair of rewrite relations in λc commutes.

Theorem 3.2.38 (Commutation tiles in λc) Let U, V, V ′ ∈ Ter(λc) and let ı
and  be two rewrite rules of λc. If V ←←ıU→→ V

′, then there is W ∈ Ter(λc) such
that V →→W ←←ı V

′.

Proof: The proof is depicted in Figure 3.8. Each pair of diverging reductions
U →→ı V1 and U →→ V2 of λc can be lifted to a pair of diverging reductions
��U		 →→��ı��

��V1
		 and ��U		 →→����

��V2
		, respectively, in Hλc, by Theorem 3.2.30.

By Proposition 3.2.37 there is a pair of converging reductions ��V1
		 →→���� t and

��V2
		→→��ı�� t in Hλc. The converging reductions can be projected back to converging

reductions from V1 and V2, i.e. V1 = 


��V1

		
�� →→ 

t�� and V2 = 



��V2
		
�� →→ı 

t��

respectively, in λc, by Theorem 3.2.31 and Theorem 3.2.25. QED

We conclude this section with a result over unions of rewrite relations in λc.

Proposition 3.2.39 Let U, V, V ′ ∈ Ter(λc). Let→1 and→2 denote two arbitrary
unions of the rewrite relations of λc. If V ←←1U→→2 V

′, then there is W ∈ Ter(λc)
such that V →→2 W ←←1 V

′.

Proof: By Theorem 3.2.38 each pair of rewrite relations in λc commute with each
other. Then the statement follows by a corollary of the Hindley–Rosen lemma,
Corollary 1.1.12. QED
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Figure 3.8: Proof of commutation of rewriting in λc
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In particular, λ-calculus rewriting commutes with context-related rewriting.
This result justifies our view of the context calculus λc as a two-level calculus,
with issues regarding the lambda calculus separated from the issues regarding the
extension.

3.2.5 Confluence of rewriting in λc

The confluence property of λc follows now easily. Recall that, the confluence prop-
erty states that any pair of diverging rewrite sequences b←← a→→ c can be prolonged
by a pair of converging rewrite sequences b →→ d ←← c. In this section we present a
proof via the commutation property of each pair of the rewrite relations in λc and
outline an alternative proof via the confluence property of H.

Theorem 3.2.40 (Confluence of λc) λc is confluent.

Proof: The theorem follows directly from the commutation property of each pair
of the rewrite relations in λc. The rewrite steps of the same rewrite rule in a pair
of diverging rewrite sequences can be grouped. Such a diverging pair of rewrite
sequences can be tiled to a diagram by commuting tiles, which exists due to the
commutation property of pairs of rewrite relations in λc. QED

An alternative proof can be given via the confluence property of H. In higher-
order rewriting, an orthogonal pattern rewrite system is confluent. Since H is or-
thogonal, it is confluent. Since Hλc is a subsystem of H, it is confluent too. Finally,
by the correspondence between Hλc and λc, λc is also confluent. In fact, Figure 3.8
can be reused for this proof, by erasing the indices of the rewrite sequences.

3.3 Normalisation in the context calculus λc

At this point of theory development, three normalisation properties are of inter-
est: the weak and strong normalisation (Definition 1.1.6), and the preservation of
strong normalisation (Definition 1.2.28). A rewrite system has the weak normali-
sation property if from each element there is a finite rewrite sequence to a normal
form, that is, to a term that cannot be rewritten any further. A rewrite system has
the strong normalisation property if there are no infinite rewrite sequences. Hence,
the strong normalisation implies the weak normalisation. A rewrite system that is
an extension of lambda calculus has the property of preservation of strong normal-
isation if every λ-term that is strongly normalising with respect to β-rewriting is
strongly normalising with respect to the rewriting of this extension. We will show
here that the context calculus is not weakly normalising; hence also not strongly
normalising. We will also show that, in a trivial way, the context calculus has the
property of the preservation of strong normalisation.

The context calculus λc, in its untyped version, does not have the weak normal-
isation property. The absence of normalisation is caused by two sorts of terms. We
discuss these terms in turn.
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The first kind of non-normalising terms comes from the untyped lambda calculus.
Recall that the context calculus is an extension of the untyped lambda calculus and
the untyped lambda calculus is not weakly normalising. Then, because the context
calculus is an extension of the untyped lambda calculus, the terms and rewrite
steps of the untyped lambda calculus can be represented within λc. Because some
untyped λ-terms do not have a (β-)normal form, their representations will not have
a a (β-)normal form in λc either. An example of such a term is the well-known
λ-term Ω, which has an infinite reduction:

Ω ≡ (λx.xx)(λx.xx)→β Ω.

Because this is the only rewrite step that can be performed starting from Ω, this
term has no normal form, that is, it is not weakly normalising.

The second kind of non-normalising terms comes from the extension. That
is, the context machinery introduces terms that are not weakly normalising with
respect to the context-related rewriting. Examples of such terms can be found by
studying the example above. For example, consider the terms Ωfill , Ω β and Ω′

β

with their infinite reductions:

Ωfill ≡ (δh.h�h�)�δh.h�h�� →fill Ωfill

Ω β ≡ (Λu.u〈u〉)〈Λu.u〈u〉〉 → β Ω β

Ω′
β
≡ (Λu, v. u〈u, v〉)〈Λu, v. u〈u, v〉, Λu, v. u〈u, v〉〉 → β Ω′

β
.

These terms and the term Ω are counterexamples of weak normalisation for a single
rule.

The non-normalising terms of the first kind can only be ruled out by introducing
types on terms (as well in the untyped lambda calculus as in its representation in
λc). However, the non-normalising terms of the second kind will in particular be
considered a nuisance, because the meta-operations on contexts in lambda calculus
do have a result, and therefore the context-related rewriting in λc should at least
be normalising.

However, the absence of weak or strong normalisation in λc at this point of
theory development does not mean a drawback. The reason is that the context
calculus in its untyped version contains superfluous elements, that is, elements
which do not represent a meaningful object of lambda calculus. The terms Ωfill ,
Ω β and Ω′

β
are examples of such elements. Such elements should be filtered out

by syntactic typing. It is then up to a particular syntactic type system to eliminate
the non-normalising terms, as well, and in particular the non-normalising terms of
the second kind.

The property of preservation of strong normalisation is trivial to check in λc.

Theorem 3.3.1 (Preservation of strong normalisation) Rewriting in λc has
the property of preservation of strong normalisation.
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Proof: Let M be an untyped λ-term. This term can directly be represented within
λc, namely as the term M itself. Because by rewriting of λc no other redexes
than β-redexes can be introduced, this term is strongly normalising if it is strongly
normalising in the untyped lambda calculus. QED

In the chapters that follow, we will return to the normalisation properties.

3.4 Context calculus for arbitrary term rewrite
systems

The technique that has been employed in λc for formalisation of meta-contexts of
lambda calculus can be applied to formalise meta-contexts of an arbitrary term
rewrite system with1 binders. That is, this technique can be parametrised over a
term rewrite system.

Here, we present the definition of a context calculus parametrised over an arbi-
trary term rewrite system, and briefly comment on its properties. The definition
is formulated in the format of higher-order rewrite systems, which are a uniform
framework for term rewrite systems with binders. In particular we use pattern
rewrite systems (PRSs, see Section 1.3). This format and the higher-order rewrit-
ing theory offer us a firm grip on the form and the properties of the context-related
part of the definition.

Recall that the context calculus λc is an extension of lambda calculus (cf. Def-
inition 3.1.5). The additional part, which is concerned with contexts, includes the
following constructors: multiple abstraction Λn, multiple application 〈 〉n, hole ab-
straction δn, hole filling � �n, and composition ◦n. Furthermore, the additional part
includes the context rewrite rules ( β), (fill) and (◦).

The syntax and the set of rewrite rules of an arbitrary term rewrite system A
can be extended to deal with contexts in the same way as the lambda calculus has
been extended to form λc.

Definition 3.4.1 (Context calculus Hc for A)
Let A be a term rewrite system with binders and let H = 〈C,R〉 be its repre-

sentation in the higher-order (PRS) format with C the signature and R the set of
rewrite rules. Then, the context calculus for A is defined as the PRS Hc = 〈Cc,Rc〉
where Cc and Rc are defined as follows.

i) The signature Cc of Hc consists of the elements of C and the following function
1For formalisation of meta-contexts of an arbitrary term rewrite system without binders, see

Intermezzo 2.2.4.
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symbols (n ∈ IN):

mabsn : (	0→ 0)→ 0 with |	0| = n

mappn : 	0→ 0 with |	0| = n+ 1
habsn : (	0→ 0)→ 0 with |	0| = n

hfn : 	0→ 0 with |	0| = n+ 1
compn : 	0→ 0 with |	0| = n+ 1.

The additional function symbols are assumed to be disjoint from the function
symbols of H.

ii) The set of rewrite rules Rc of Hc consists of the rewrite rules R and the
following rewrite rules, called the context rewrite rules:
z, 	z.mappn (mabsn(	u. z	u)) 	z → z, 	z. z	z (mb)
z, 	z.hfn (habsn(	u. z	u)) 	z → z, 	z. z	z (fill)
z, 	z. compn (habsn(	u. z	u)) (mabs(	v1.habs(	v ′

1. z1	v1	v
′
1))) . . .

(mabs(	vn.habs(	v ′
n. zn	vn	v

′
n)))

→ z, 	z.habs(	v ′
1, . . . , 	v

′
n. z(mabs(	v1. z1	v1	v ′

1)) . . . (mabs(	vn. zn	vn	v ′
n)))

(cmp)
with |	z| = n.

Remark 3.4.2 The additional function symbols and the additional rewrite rules
are ‘translations’ into the higher-order format of the context-related constructors
and rewrite rules of λc, respectively. We have already seen such a translation in the
definition of H (Definition 3.2.3) in the confluence proof of λc.

We look into some properties of rewriting in Hc.
The context rewrite rules constitute an orthogonal system, that is, these rules

are left-linear and there are no critical pairs with respect to these rules. Hence, the
rewriting with respect to the context rewrite rules is confluent.

Furthermore, the patterns of the context rewrite rules involve only the added,
context-related function symbols. With the context-related function symbols being
disjoint from the function symbols C of the term rewrite system, the context rewrite
rules do not overlap with the rewrite rules R of the term rewrite system. That is,
there are no critical pairs between the context rewrite rules and the rewrite rules R
of the term rewrite system.

The rewriting inHc is not weakly normalising, because the rewriting with respect
to the context rewrite rules is not weakly normalising. For example, the terms Ωfill

and Ω β of Section 3.3, which are counterexamples for the weak normalisation of
λc, can be translated intoHc. Because the rewriting inHc is not weakly normalising,
it is also not strongly normalising. However, as in the case of the context calculus
λc, by adding types (strong) normalisation of the context-related rewriting can be
obtained (see Chapter 4). In that case, the normalisation properties of Hc will
depend solely on the normalisation properties of the term rewrite system rules R
and on how they combine with the context rewrite rules.
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3.5 Related work

3.5.1 Double role of higher-order rewriting in λc

Higher-order rewriting plays a double role in the context calculus λc. We have
already identified one of the two roles in the confluence proof of λc, where it has
been shown that λc as a rewrite system with binders is a (second-order) pattern
rewrite system.

Here, we describe the second role of higher-order rewriting in λc. This role
concerns the representation of holes and meta-contexts within λc. We describe this
role by studying four formulations of β-reduction: two in lambda calculus, one in
the context calculus λc and one in pattern rewrite systems. We first show how
β-reduction generated by the rewrite rule schema (β) of lambda calculus can be
restated using contexts. This reformulation of β-reduction is stated via a ‘rule’,
which will be called (β[]). Next, we formulate β-reduction in the context calculus
λc by translating the ‘rule’ (β[]). The translation of this rule will be called (beta).
Finally, we show that the formulation of β-reduction using the ‘rule’ (beta) employs
similar techniques as the formulation of rewrite relations in pattern rewrite systems.

In these four formulations of β-reduction two issues will play a role: a rewrite
rule (schema) and the way of using the rule to generate the rewrite relation β.

Two formulations of β-reduction in lambda calculus We recall the rewrite
rule schema (β) of lambda calculus:

(λx.M)N →M [[x := N ]] . (β)

The rewrite relation β is generated as follows:

- We have M1→β M2 if M1 ≡ (λx.M)N and M2 ≡ M [[x := N ]] for certain λ-
terms M and N . Here and in the schema, M and N denote arbitrary λ-terms.
It is assumed that the free occurrences of the variable x in M are bound by
the binder λx of the redex. It is because of such a treatment of M and N that
they are called meta-variables and (β) is a schema: M and N in the schema
are not substituted by λ-terms, but they are literally replaced by λ-terms.

- Furthermore, it is assumed that the steps are closed under meta-contexts: if
M1→β M2 then C[M1]→β C[M2].

Note that M [[x := N ]] denotes the result of applying the substitution [[x := N ]] to
M .

An example of a β-step (with the trivial meta-context) is

(λx.xy)y →β (xy)[[x := y]] = yy.

In fact, one could consider the left-hand side and the right-hand side of the
rewrite rule schema (β) as meta-contexts with two holes

(λx. []1)[]2 → [][[x:=[]2]]
1 . (β[])

Here, the substitution [[x := []2]] remains explicitly denoted as the label of the hole
[]1. Then the rewrite relation β can be generated as follows:
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- We have M1 →β M2 if M1 ≡ (λx.M)N ≡ ((λx. []1)[]2)[M,N ] and M2 ≡
M [[x := N ]] ≡ [][[x:=[]2]]

1 [M,N ] for certain λ-terms M and N .

Note that the transformations (λx.M)N ≡ ((λx. []1)[]2)[M,N ] and
M [[x := N ]] ≡ [][[x:=[]2]]

1 [M,N ] involve extraction of the left-hand side and
the right-hand side of (β[]) from M1 and M2, respectively. The extraction
is performed by the meta-operation of hole filling. Moreover, note that the
transformation →β[] from ((λx. []1)[]2)[M,N ] to [][[x:=[]2]]

1 [M,N ] is the literal
replacement of the left-hand side by the right-hand side of (β[]).

- Furthermore, as in the case of the formulation via the schema (β), it is as-
sumed that the steps are closed under meta-contexts: if M1 →β M2 then
C[M1]→β C[M2].

For example,

(λx.xy)y ≡ ((λx. []1)[]2)[xy, y]→β[] ([]1[[x := []2]])[xy, y] ≡ (xy)[[x := y]] = yy.

Formulation of β-reduction in the context calculus In the context calculus
λc, terms and meta-context of lambda calculus can be represented. Hence, the ‘rule’
(β[]) can be translated into a ‘rule’ involving λc-terms that represent the contexts
of the left-hand side and the right-hand side of (β[]):

δh1, h2. (λx.h1 〈x〉)h2 〈〉 → δh1, h2. h1 〈h2 〈〉〉 . (beta)

Here, the explicit substitution at the first hole []1[[x := []2]] of the ‘rule’ (β[]) is inter-
nalised by the communication mechanism of λc: viz. h1 〈h2 〈〉〉 = (h1 〈x〉)[[x := h2 〈〉]].

The rewrite relation β can be generated on representations of λ-terms within λc
by using (beta) as follows:

- Let U1 and U2 be representations2 of two λ-terms within λc. Then U1→βU2 if
U1 = (δh1, h2. (λx.h1 〈x〉)h2 〈〉)�V1, V2� and U2 = (δh1, h2. h1 〈h2 〈〉〉)�V1, V2�
for certain λc-terms V1 and V2. The λc-terms V1 and V2 are representations of
certain communicating λ-terms, where the intended variable capturing is made
explicit. The transformations, denoted here by =, involve extraction of the
left-hand side and the right-hand side of (beta) from U1 and U2, respectively.
The extraction is performed by the (inverse) context-related rewrite relations.
Moreover, note that the transformation →beta in

(δh1, h2. (λx.h1 〈x〉)h2 〈〉)�V1, V2� →beta (δh1, h2. h1 〈h2 〈〉〉)�V1, V2�

is the literal replacement of the left-hand side by the right-hand side of (beta).

- Furthermore, it is assumed that the steps are closed under meta-contexts D
of λc: if U1→β U2 then D[U1]→β D[U2].

2With the translation function on λ-terms being the identity function (see Definition 4.1.9), we
could have said ‘let U1 and U2 be two λ-terms.’
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We emphasise that this is an alternative definition of the rewrite relation β in
λc. The rewrite relation β in λc (see Definition 3.1.5) is defined in the standard
way as in lambda calculus, via the rewrite rule schema (β) now over λc-terms. Note
that the definition via (beta) does not use a rewrite rule schema but a rule.

Here Λ, 〈 〉, δ and � � are a part of the context machinery, which takes care of,
among other things, intended variable capturing.

Formulation of β-reduction in PRSs We recall Examples 1.3.3 and 1.3.10,
where lambda calculus in the PRS format has been given and repeat the pattern
rewrite rule beta:

z1, z2.app (abs(x. z1x)) z2 → z1, z2. z1z2 . (beta)

Here, the abstraction . and (implicit) application · are part of the substitution
calculus, which among other things, internalises intended variable capturing. The
definition of the rewrite relation β on representations of λ-terms within this PRS is
basically the same as the definition of β using (beta).

Higher-order rewriting technique for communication in λc In this compar-
ison the role of the context-related machinery amounts to the role of the substitution
calculus in PRSs. Hence, the context-related machinery uses the same techniques
for dealing with intended bindings:

- In the definition of β-reduction, the hole variables are, as in the case of vari-
ables z1 and z2, substituted by representations of λ-terms with a ‘communica-
tion’ prefix. In contrast, in lambda calculus, M and N are literally replaced
by λ-terms, and this replacement (grafting) is a meta-operation.

- The hole variables are, like z1 and z2, functional variables.

- The hole variables are replaced by representations of communicating λ-terms,
which have a communication prefix. The communication prefix, in general
Λ	x., has the same function as the abstractor 	x. of the substitution calculus in
PRSs: together with the arguments of the hole variables, this prefix establishes
the intended bindings.

Remark 3.5.1 In fact, this usage of higher-order rewrite techniques for formalisa-
tion of communication can be extended to the usage of higher-order rewriting for
formalisation of contexts in its entirety. As indicated above, a hole of a context can
be represented as z 	N where z is understood as a hole variable and where 	N keep
track of the relevant α, β-changes in (the representation of) the context. Commu-
nicating terms can be represented as 	x.M , where 	x denotes the variables that are
intended to become bound by the binders of a context. Then, upon substituting
holes by communicating terms, communication is computed by β-reduction: viz.
(	x.M) 	N →β M [[	x := 	N ]]. Continuing this line of reasoning, a context can be rep-
resented as an abstraction over a hole variable z.P . Hole filling is then represented
by (z.P )(	x.M) and computed by β-reduction. In sum, the substitution calculus
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of a pattern rewrite system can be used for formalisation of contexts of the object
language.

This kind of context formalisation using higher-order rewrite systems can be
called deep embedding, because it uses the substitution calculus, which is the stan-
dard machinery of higher-order rewrite systems.

In contrast, our approach could be called shallow embedding, because the con-
text-related issues are on the level of the object language, and hence, independent
of the substitution calculus. We explain this in some detail. Note that the PRS Hc
can be seen as a rewrite system consisting of the following levels:

- the level of the substitution calculus, that is, the level of λ→η -Church with
function symbols ranging over Cc;

- the level of the object language, consisting of

- the level of term rewrite system; and,

- the level of context-related machinery.

Here, the distinction between the substitution calculus and the object language
is natural in higher-order rewriting, and the distinction between the level of term
rewriting and the level of context rewriting is based on disjoint syntax. In this
layered perspective on Hc, one sees that the context-related rewriting is a part of
the object language.

The definite advantage of shallow embedding is that one does not have to use
the format of higher-order rewriting, and moreover, that the context-related trans-
formations can be studied as rewrite relations, separately from the rewriting of the
substitution calculus.

Remark 3.5.2 In the format of higher-order rewrite systems, our way of for-
malising contexts can be compared to the formalisation of contexts by D. Sands
in [San98]. The similarity between the two systems is that they use the same mech-
anism for capturing communication: the higher-order rewriting style of capturing
bindings, as described above.

However, the two formalisations use different parts of the system to capture
communication. In the format of higher-order rewrite systems and in the termi-
nology of the previous remark, our approach is an example of shallow embedding
of contexts, whereas Sands’ approach is an example of deep embedding. In the
latter approach, contexts are formalised by (an adapted form of) the substitution
calculus. More precisely, the system consists of two levels: the level of the substi-
tution calculus and the level of the object language. The substitution calculus is a
lambda-calculus-like language with multiple abstraction and multiple application.
Moreover, multiple applications have a restricted form, namely, only z 	M where z
is a meta-variable and 	M are terms3. In this system, communication is represented

3This is also a natural form of applications in higher-order rewriting, where one works on βη-
normal forms. So, here, in effect, D. Sands defines normal forms of the substitution calculus. Note
that the normal forms of the substitution calculus are with respect to a multiple version of the
β-rewrite rule.
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by the substitution calculus.
There is also another difference between Sands’ system and our calculus, which

we have already indicated in Section 2.4 and Table 2.1. In Sands’ system, hole filling
and composition are represented by (meta-)substitution of variables, followed4 by a
reduction to β-normal form. Hence, in Sands’s system hole filling and composition
are meta-operations. In contrast, in our approach, hole filling and composition are
rewrite relations.

3.5.2 The calculi of explicit substitutions

In the context calculus λc, communication is formalised using the higher-order
rewriting technique for dealing with bindings, as discussed in the previous sub-
section. Using this technique, essentially the substitution σ at a hole []σ that arises
from rewriting in a context is encoded. Thus, in this sense, the context calculus en-
codes substitutions. A natural question is then how the context calculus compares
to the calculi of explicit substitutions.

Actually, this link is a bit misleading. There are two ways to compare the
context calculus and the calculi of explicit substitutions, but both ways illustrate a
different approach to substitutions. We describe and discuss these comparisons in
turn.

The first comparison is a technical one. In the context calculus, substitutions
can be represented but their computation is not formalised in a stepwise manner as
in the calculi of explicit substitutions. More precisely, a substitution [[	x := 	N ]] to
be applied to M can be represented as (Λ	x.M)〈 	N〉. It may be computed by the
rewrite rule ( β):

(Λ	x.M)〈 	N〉 →M [[	x := 	N ]] .

What is important here is that computation of this substitution is carried out by a
meta-operation, which applies [[	x := 	N ]] instantaneously to M .

This is in contrast to the calculi of explicit substitutions. There, substitutions
can be represented, and their computation is formalised in a stepwise manner: a
substitution like [[	x := 	N ]] traverses through a term M , following the structure of
M step by step.

The second comparison is a conceptual one. The context calculus encodes
the substitutions that arise from rewriting in contexts. The computation of these
substitutions are encoded in a two-step manner. Suppose [[x := N ]] is the (meta-
)substitution that arose from a rewrite step in a context and consider a hole of
the context. In the context calculus, if the hole lies in the scope of the substitu-
tion, the substitution is applied to (the representation of) the hole h〈	x〉, resulting
in h〈x1, . . . , N, . . . , xn〉. Conceptually, this is the first substitution step, and it is

4After substitution, this reduction is necessary in order to maintain the restricted form of
multiple applications, or, in other words, in order to maintain working on normal forms with
respect to the multiple version of the β-rewrite rule.
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carried out by the same meta-operation that arose from the rewrite step in the
context.

The second substitution step arises upon filling the hole by a communicating
term Λ	x.M : a communication redex is formed, which reconstructs the original sub-
stitution. Contracting this communication redex employs again a meta-operation:
the (meta-)substitution [[	x := 	N ]] is applied to M instantaneously.

Again, this is in contrast to the calculi of explicit substitutions.



Chapter 4

Applications of λc

The framework λc can be used for representing different notions of context in the
untyped and simply typed lambda calculus. A particular variation can be obtained
by fine-tuning typing. This flexibility of the framework λc will be illustrated by
four examples: three examples in this chapter and an extended example in the
next chapter. Each example represents contexts by applying the method that was
described in Section 2.5. The main differences between the examples lie in the
notion of context and the presence of variables and functions ranging over contexts.

These examples are defined via a collection of typing rules. As already explained
in Section 2.5, a particular collection of typing rules defines a set of well-typed λc-
terms, as a subset of all λc-terms. Indirectly, a particular collection of typing rules
also fixes a subset of the rewrite rules of λc, namely the subset of the rewrite rules
which are applicable to the well-typed λc-terms. In sum, a collection of typing rules
determines a subset of λc-terms and a subset of the rewrite rules of λc.

The questions that arise regarding the properties of type systems are of two
kinds. The first kind of questions is related to whether a particular typing defines
a subsystem (in the sense of Definition 1.1.14) of the framework λc, which is then
closed under rewriting. The second kind of questions is related to investigating the
properties of rewriting, in particular the confluence and normalisation properties.

This chapter is organised as follows.
In Section 4.1 the calculus λcλ is defined, which is a calculus for representing

the untyped lambda calculus with λ-contexts. In this calculus, representations of
λ-contexts can be manipulated, but there are no variables or functions ranging over
(representations of) λ-contexts. That is, the calculus λcλ does not have a fully first-
class treatment of λ-contexts. This calculus is basically lambda calculus with an
adequate notation for contexts, on which now also the β-rewrite relation is defined.
The calculus λcλ has the confluence property and the context-related rewriting is
strongly normalising.

In Section 4.2 the calculus λc→ is defined, which is a calculus over simply typed
lambda calculus with λ-contexts. This calculus includes variables and functions
ranging over contexts. It represents the most natural notion of λ-context, and it

97
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is comparable to the context calculus of Hashimoto and Ohori (see [HO98]). The
calculus λc→ is complete, that is, it has the confluence property and the strong
normalisation property.

In Section 4.3 the calculus λc
∼= is defined, which is a calculus over untyped

lambda calculus with λ-contexts as first-class citizens. This calculus is interesting for
two reasons. The first reason is that this calculus describes the minimal conditions
which guarantee the well-formedness of the context machinery. Note that λc

∼= deals
with representations of untyped λ-terms and untyped λ-contexts; the typing pertains
only to the issues dealing with representation of such terms and contexts and with
representation of context-related (meta-)operations. The second reason is that both
λcλ and λc→ can be translated into λc

∼=. This calculus is a variation of the calculus
λc→ obtained by ignoring the types (of the simply typed lambda calculus). It is also
an extension of the calculus λcλ with first-class λ-contexts. The calculus λc

∼= has
the confluence property and the rewriting dealing with communication, hole filling
and functions ranging over contexts (including composition) is strongly normalising.

In all examples, the proofs of the properties studied resemble each other. In
order to be short in the succeeding examples, we will write out the proofs of these
properties in the first example.

In Section 4.4 we summarise the relationship between the systems considered in
this chapter.

4.1 The calculus λcλ

The context calculus λcλ formalises the untyped lambda calculus with λ-contexts.
In λcλ, the untyped λ-contexts and context-related (meta-)operations can be repre-
sented. However, in λcλ there are no variables or abstractions over (representations
of) contexts. That is, the calculus λcλ formalises contexts in the way they are used
in lambda calculus, only now in λcλ the standard lambda calculus transformations
are defined on (representations of) contexts.

This section is split into seven subsections:

- Lambda objects: We will first recall the well-known definitions of λ-terms
and transformations on λ-terms, λ-contexts and context-related operations,
as given in the introduction. Using these definitions we will define the lambda
objects and the transformations we wish to represent within λc.

- Translation of lambda objects into λc: Representation of lambda objects
within λc follows the approach described in Section 2.5. We make it pre-
cise by defining a translation function from lambda objects to λc.

- The calculus λcλ: Keeping in mind the expressions we wish to represent (i.e.
lambda objects) and the way we want to represent them (i.e. translation), we
switch to the framework λc. We give a set of typing rules and a collection of
rewrite rules for λcλ. The rewrite rules are the rewrite rules of the framework
λc. Typing in λcλ pertains to controlling the context-related machinery, and
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λ-terms

(substitution,

λ-calculus:

β-rewrite relation)

α-conversion

λ-contexts

(hole filling, composition)

λcλ-calculus:

λcλ-terms

(substitution, α-conversion,

β-rewrite relation,

context-related rewrite relations)

λc-calculus

translation

Figure 4.1: Contents of Section 4.1

not to the functionality of terms as in for example the simply typed lambda
calculus. In this sense, typing in λcλ can be called syntactic typing.

- The calculus λcλ is a subsystem of the framework λc: We prove that the set
of well-typed terms of λcλ is closed under rewriting of λcλ.

- Properties of the subsystem λcλ: We show that λcλ has the confluence prop-
erty and that the context-related rewriting has the strong normalisation prop-
erty. The strong normalisation property of the context-related rewriting
is proved via a computability predicate on terms, as in Tait’s well-known
method.

- Adequacy of context representation in λcλ: The question in this subsection
is how adequate the calculus λcλ is for representing the lambda calculus con-
texts. To answer this question, we use the translation of the lambda objects
into the calculus λcλ and show that λcλ meets our goals: the specified lambda
objects can be represented within λcλ, and in λcλ the standard lambda calcu-
lus transformations are defined on (the representations of) the lambda objects.

- The introductory example: we show how the hole filling of Example 2.5.3 can
be represented within λcλ.

The relationship between the formal systems involved is sketched in Figure 4.1.
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Lambda objects

The objects of lambda calculus that will be represented within λcλ include the
untyped λ-terms and λ-contexts. The λ-terms with substitution, α-conversion and
β-rewrite relation, and different notions of λ-context have already been described
in Section 2.1. Here we repeat the definition of λ-terms and single out the notion
of λ-context we wish to represent, namely the contexts of Definition 2.1.3 (which
was also given in the preliminary chapter as Definition 1.2.5). In addition to λ-
terms and λ-contexts, lambda objects include more complex objects in which (the
meta-operations) hole filling and composition may occur. Complex lambda objects
will shortly be explained into more detail; we recall the definitions of λ-terms, λ-
contexts, hole filling and composition first.

Definition 4.1.1 (λ-terms and λ-contexts (Definitions 1.2.1 and 2.1.3))

i) The λ-terms are defined as:

M ::= x | λx.M |MN.

ii) The λ-contexts are λ-terms with holes, that is,

C ::= x | [] | λx.C | CD.

We consider each occurrence of a box [] as a different hole and assume the holes
in a λ-context to be ordered from left to right. Substitution, α-conversion and
β-rewrite relation are defined only on λ-terms as in Definitions 1.2.8 and 1.2.11.

Definition 4.1.2 (Hole filling, composition (Definition 2.1.3))

i) Hole filling involves a λ-context C with n holes and n λ-terms 	M , and results
in the λ-term C[ 	M ], which is the result of replacing the ith hole in C by Mi

(for 1 ≤ i ≤ n).

ii) Composition involves a λ-context C with n holes and n λ-contexts 	D, and
results in the λ-context C[ 	D], which is the result of replacing the ith hole in
C by Di (for 1 ≤ i ≤ n).

The choice for this notion of context, in particular, the choice for the number
of allowed []’s and the treatment of []’s has already been discussed in Section 2.2.
Many []’s are allowed because this form is invariant under β-rewriting. Because []’s
may occur in the scopes of different binders in a context, and therefore filling the
same term in different []’s may lead to different variable capturings in (the copies
of) the term, all []’s are considered as different; hence they stand for occurrences of
different holes.

In lambda calculus the result of applying both of these meta-operations is de-
noted by using the square brackets [ ]. In this section, we will formalise the well-
known informal notion of [ ], and we will distinguish between the notations for the
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meta-operations (by introducing the function symbols hf and comp) and the nota-
tions for the result of applying the meta-operations (by using [ ]). Such a distinction
enables us to postpone the evaluation of a meta-operation.

Complex lambda objects can now be obtained from λ-terms and λ-contexts by
using the function symbols hf and comp. The definition of all lambda objects
that we consider and the definition of the transformations on lambda objects are
given below. In the definition of lambda objects it is assumed that the number
of arguments 	M and 	P in respectively hf (P, 	M) and comp(P, 	P ) matches the
number of holes in the result of evaluating P . For this reason, lambda objects P
are defined together with the evaluation function P ∗, which evaluates hole filling
and composition within the lambda object P .

Definition 4.1.3 (Lambda objects) Lambda objects P and the evaluation func-
tion P ∗ are defined simultaneously as follows:

i) Terms M and contexts C as defined in Definition 4.1.1 are lambda objects,
and

M∗ = M
C∗ = C.

ii) Let P be a lambda object that evaluates to a context with n holes, i.e. P ∗ is
a context with n holes.

Let 	R be n lambda objects that evaluate to a term, i.e. R∗
i is a term for each

1 ≤ i ≤ n.

Then hf (P, 	R) is a lambda object and (hf (P, 	R))∗ = P ∗[R∗
1, . . . , R

∗
n].

iii) Let P be a lambda object that evaluates to a context with n holes, i.e. P ∗ is
a context with n holes.

Let 	P be n lambda objects that evaluate to a context, i.e. P ∗
i is a context for

each 1 ≤ i ≤ n.

Then comp(P, 	P ) is a lambda object and (comp(P, 	P ))∗ = P ∗[P ∗
1 , . . . , P

∗
n ].

Remark 4.1.4 Assuming that the number of arguments 	R and 	P in respectively
hf (P, 	R) and comp(P, 	P ) matches the number of holes in the result of evaluating
P , the lambda objects can be defined as:

R ::= M | hf (P, 	R)
P ::= C | comp(P, 	P ).

Definition 4.1.5 (Transformations on lambda objects) The substitution, α-
conversion and β-rewrite relation is defined as in Section 1.2.1 only on the λ-terms
M (see Definition 4.1.1).
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Example 4.1.6 An example of a lambda object is hf (comp(λx. [], [] []), x, y), which
evaluates to λx.xy. Another example is hf (x). Here, x is a context without holes,
which is allowed by Definition 4.1.1; hence hf has no other arguments. This lambda
object evaluates to x, i.e. (hf (x))∗ = x.

In informal lambda calculus, where there is no distinction between denoting
the meta-operation [ ] and its result, the formation of λ-terms or λ-contexts can be
combined with filling holes. For example λx.C[M ] is a λ-term, where M is a λ-term
and C a λ-context. Here, it is not clear whether λx.C[M ] is to be considered as the
result of hf ((λx. []), hf (C, M)) or hf (comp((λx. []), C), M). In contrast, with our
explicit notation using hf and comp, this ambiguity is automatically cleared up.

Notation. In the sequel P, 	P , 	R range over expressions possibly containing hf and
comp. Here P and 	P will be used for expressions which evaluate to a λ-context,
and 	R for expressions resulting in λ-terms, unless explicitly stated otherwise.

Translation of lambda objects into λc

Translation of the λ-contexts and the context-related functions to λc requires some
preprocessing, which involves meta-level (α-sensitive) observations being made ex-
plicit. For this purpose, two functions are assumed:

- Nrh(P ), which returns the number of holes in the result of evaluating P (i.e.
in P ∗); and

- Bnd(P, i), which returns the list of all variables such that the ith hole of P ∗

lies in their scope (1 ≤ i ≤ Nrh(P )); the variables are ordered by left–to–right
appearance in the term.

For instance, Nrh(comp(λx. [], [] [])) = 2 and Bnd(comp(λx. [], [] []), 1) = x. Re-
garding Bnd, we assume that there are no ‘overshadowed’ binders in a λ-context,
like the leftmost λx in λx.λx. [], but Bnd (and later, the λc-terms L�xP ) could have
been defined otherwise to deal with ‘overshadowed’ variables.

Remark 4.1.7 In a λ-context C, we can choose another name for an ‘overshad-
owed’ binder, because that binder will not capture any free variables of λ-terms or
λ-contexts that are put into the holes of C. For example, the leftmost λx can be
renamed into λy, viz. λx.λx. [] = λy.λx. [], if and only if y is not free in terms 	M

or contexts 	D to be put into the holes of this context. See also Remark 1.2.10.

The λ-terms and λ-contexts are translated to λc by the translation function
�� 		. The translation function behaves like the identity function on λ-terms while
on λ-contexts it replaces holes by ‘labelled’ hole variables and adds a preamble.
Translation of an arbitrary expression explicitly involves hole filling, composition,
communication and lifting of holes. Translation will first be illustrated by an ex-
tended example, and then defined formally.
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Example 4.1.8 We consider one λ-term M and two λ-contexts C and D, defined
below, and explain the translations of M , C, D, hf (C, M) and comp(C, D). This
example is split into two parts, the easy one dealing with the translations of M and
C; and the difficult one, dealing with the translations of hf (C, M) and comp(C, D).
The translations follow the method described in Section 2.5.

Let
M ≡ xy
C ≡ (λy. [])x
D ≡ [](λz. []).

Then,
Nrh(C) = 1, Bnd(C, 1) = y,
Nrh(D) = 2, Bnd(D, 1) = ε and Bnd(D, 2) = z.

i) Translation of λ-terms is trivial, because λ-terms are also λc-terms:

��M		 = M = xy.

Translation of a context replaces the ith hole by hi 〈	x〉 where 	x are the variables
in whose scope the ith hole lies, and adds a multiple abstraction δ	h over the
hole variables as a preamble:

��C		 = δg.C[g 〈y〉] = δg. (λy. g 〈y〉)x
��D		 = δk1, k2.D[k1 〈〉, k2 〈z〉] = δk1, k2. (k1 〈〉)(λz. k2 〈z〉).

Note that λ-contexts are also meta-contexts of λc. In the equations above, the
λc-term C[g 〈y〉] denotes the result of the meta-operation of filling the hole of
C, which is here considered as a meta-context of λc. An analogous statement
holds for D[k1 〈〉, k2 〈z〉].

ii) The translation of the hole filling hf (C, M) proceeds as follows. The hole []
of C is in the scope of the abstractor λy. Because the translation of M is to
be put into the hole of the translation of C, the communication preamble Λy
is added to the translation of M . This results in the communicating λc-term

Λy. ��M		 = Λy.xy.

The translation of the hole filling hf (C, M) is the hole filling of λc applied to
the translation of C and the communicating term:

�� hf (C, M) 		 = ��C		 �Λy. ��M		� = (δg. (λy. g 〈y〉)x)�Λy.xy�.

One may check that this term reduces to (λy.xy)x, which is the translation
of the λ-term C[M ].

The translation of the composition comp(C, D) is analogous to the translation
of the hole filling, but in addition it involves lifting of the holes of the context
D. It proceeds as follows. Because the translation of D is to be put into the
hole of the translation of C, the communication preamble Λy is added to the



104 CHAPTER 4. APPLICATIONS OF λC

translation of D. In addition, the holes of the translation of D are lifted by
the variables of the communication preamble. The lifting is done explicitly in
the λc-term LyD, which is specifically designed for D and y. This results in
the communicating λc-term

Λy.LyD
where (recall that Bnd(D, 1) = ε and Bnd(D, 2) = z)

LyD = δh1, h2.
��D		 �Λε. h1 〈y〉,Λz.h2 〈y, z〉�.

One may check that the communicating term Λy.LyD reduces in λcλ to
Λy. δh1, h2. h1 〈y〉(λz.h2 〈y, z〉), which is the translation of the λ-context D
with lifted holes and a communication preamble. The translation of the com-
position comp(C, D) is the composition of λc applied to the translation of
C and the communicating term (◦ is used in infix notation because in this
example it is binary):

�� comp(C, D) 		 = ��C		 ◦ (Λy.LyD).

One may check that this term reduces to δh1, h2. (λy.h1 〈y〉(λz.h2 〈y, z〉))x,
which is the translation of C[D].

Definition 4.1.9 (Translation of lambda objects into λc)

i) Let M be a λ-term and C a λ-context. Let Nrh(C) = n, Bnd(C, 1) = 	x1,
. . .,Bnd(C, n) = 	xn. Then

��M		 = M
��C		 = δ	h.C[h1 〈	x1〉, . . . , hn 〈	xn〉].

ii) The translation function extends to the composed objects as: if P and 	P are
expressions evaluating to λ-contexts with Nrh(P ) = n, and
Bnd(P, 1) = 	x1, . . . ,Bnd(P, n) = 	xn, and if 	R are expressions evaluating
to λ-terms, then

�� hf (P, 	R) 		 = ��P 		 �Λ	x1.
��R1

		, . . . ,Λ	xn. ��Rn		�
�� comp(P, 	P ) 		 = ��P 		 ◦ (Λ	x1.L�x1

P1
, . . . ,Λ	xn.L�xn

Pn
),

where L�xi

Pi
lifts the holes of ��Pi

		. In general, the term L�xi

Pi
is defined by: if

Nrh(Pi) = m, Bnd(Pi, 1) = 	y1, . . . ,Bnd(Pi,m) = 	ym, then

L�xi

Pi
= δ	g. ��Pi

		 �Λ	y1. g1 〈	x	y1〉, . . . ,Λ	ym. gm 〈	x	ym〉�.
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Remark 4.1.10 Note that translation involves explicit lifting of holes. An alter-
native would be to parametrise the translation of λ-contexts by the lifting variables.
We explain this into more detail. Let D be the λ-context as in Example 4.1.8 and
let D′ be the communicating λ-context

D′ = D where y will become bound after composition with C.

We could, for example, define the translation of D already parametrised by the
communication y as ��D		

y = δk1, k2.D[k1 〈y〉, k2 〈y, z〉]. The translation of D′ would
in that case only add the preamble Λy, that is, ��D′		 = Λy. ��D		

y.
We prefer the explicit lifting because in this approach the translation ��D		 is

independent from the communication with C. That is, the translation of the com-
municating λ-context D′ can be seen as a function F of the translation of D and
the translation of the communication

��D′		 = F (��D		, y) = Λy. δh1, h2.
��D		 �Λε. h1 〈y〉,Λz.h2 〈y, z〉�.

Example 4.1.11 We give an example of the translation of a lambda object with
nested meta-operations. Let M ,C and D be as in Example 4.1.8. Consider the
lambda object hf (comp(C, D), M,M). Because comp(C, D) evaluates to a context
with two holes, the hole filling hf has two additional arguments; in this example M
is filled in both holes. The translation of hf (comp(C, D), M,M) is

�� hf ((comp(C, D)), M,M) 		 = (��C		 ◦ (Λy.LyD))�Λy. ��M		,Λy, z. ��M		�.

Note that the communication preambles of the two translations of M are different.
Note also that Bnd and Nrh (by definition) operate on evaluated lambda objects.

The calculus λcλ

For the time being, we keep the lambda objects and their translation in the back-
ground, switch to the context calculus, and define a subsystem of λc that will
correspond to lambda objects as close as possible. We start with the definition of
types, continue with the type system (Definition 4.1.13) and end with the definition
of λcλ (Definition 4.1.14).

As already remarked, the typing of λcλ may be called syntactic because its
role is only to control the well-formedness of the context-related machinery of the
calculus. For example, typing ensures that in a communication redex the number of
arguments of the multiple application and the number of variables in the multiple
abstraction agree, that hole filling provides the right number of arguments etc. This
kind of typing does not restrict the formation of the terms of the untyped lambda
calculus.

Definition 4.1.12 (Types of λcλ) Let the set of base types be Vλ = {t}. Then
the types ρ ∈ Pλ are defined as

ρ ::= t | [	t]t | [	t] t× . . .× [	t]t⇒ t | [	t]([	t] t× . . .× [	t]t⇒ t),

where [ ] binds stronger than ×, and × binds stronger than ⇒.
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The new type constructors [ , . . . , ] and × . . .× ⇒ are introduced for distin-
guishing between different pairs of an abstractor and an applicator of λc, namely,
[ , . . . , ] for the pair Λ, 〈 〉, and × . . .× ⇒ for the pair δ, � �, as will become clear
in the typing rules. Both type constructors are comparable to → . . . → → in
λ→. Due to the correspondence between these new type constructors and λc-term
constructors, an intuition can be given about the types (this intuition applies also
to the calculi λc→ and λc

∼= defined later in this chapter):

- the type t will be the type of representations of λ-terms, for example

(xy) : t;

- a type of the form [	t1]t× . . .×[	tn]t⇒ t will be the type of the representations
of λ-contexts with n holes, for example

(δh1, h2. (h1 〈〉)(λz.h2 〈z〉)) : [ ] t×[t]t⇒ t;

- types of the form [	t]t and [	t]([	t1] t× . . .× [	tn]t⇒ t) will be the types of the
representations of communicating λ-terms and λ-contexts, respectively, with
the types of objects involved in communication sequenced between the square
brackets, for example

(Λy, z. xy) : [t, t]t
(Λy. δh1, h2. (h1 〈y〉)(λz.h2 〈y, z〉)) : [t]([t] t×[t, t]t⇒ t).

The typing rules use two bases: the basis Γ, which is a set of declarations of
the form x : t; and the basis Σ, which is a set of declarations of the form h : [	t]t.
The bases are split because the elements of Γ are used as true variables (i.e. place-
holders for representations of λ-terms) whereas the elements of Σ serve as markers,
in the sense that they are used for marking the beginning (abstraction) and endings
(i.e. holes) of a context. The ‘marker function’ of hole variables can be seen in the
typing rules (see Figure 4.1.13) by the positions where hole variables may (not)
occur. For example, hole variables cannot occur among x, 	x in the abstractions
λx.U and Λ	x.U , where x, 	x stand for (representations of) λ-terms.

In the typing rules, 	U : 	t denotes the pointwise typing Ui : t for 1 ≤ i ≤ |	U | =
|	t|. Furthermore, both Γ and Σ are, without loss of generality, assumed to contain
distinct variables.

Definition 4.1.13 (Type system for λcλ) A term U ∈ Ter(λc) is typable by ρ
from the bases Γ,Σ, if Γ; Σ � U : ρ can be derived using the typing rules displayed
in Figure 4.2.

The typing rules can be explained as follows. The rules (var), (abs) and (app)
are the rules that guard the well-formedness of the untyped λ-terms. In these typing
rules all terms and variables are typed by t. The rules (hvar) and (habs) are used
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(var)
(x : t) ∈ Γ

Γ;Σ � x : t

(abs)
Γ, x : t; Σ � U : t

Γ;Σ � λx.U : t

(app)
Γ;Σ � U : t Γ;Σ � V : t

Γ;Σ � U V : t

(hvar)
(h : [	t]t) ∈ Σ

Γ;Σ � h : [	t]t

(mabs)
Γ, 	x : 	t; Σ � U : t

Γ;Σ � Λ	x.U : [	t]t

(mapp)
Γ;Σ � U : [	t]t Γ;Σ � 	V : 	t

Γ;Σ � U 〈	V 〉 : t

(habs)
Γ;Σ, h1 : [	t1]t, . . . , hn : [	tn]t � U : t

Γ;Σ � δ	h.U : [	t1]t× . . .× [	tn]t⇒ t

(fill)

Γ;Σ � U : [	t1]t× . . .× [	tn]t⇒ t
Γ;Σ � Vi : [	ti]t (1 ≤ i ≤ n)

Γ;Σ � U �	V � : t

(mabsc)
Γ, 	x : 	t; Σ � U : [	t1]t× . . .× [	tn]t⇒ t

Γ;Σ � Λ	x.U : [	t]([	t1]t× . . .× [	tn]t⇒ t)

(comp)

Γ;Σ � U : [	t1]t× . . .× [	tn]t⇒ t
Γ;Σ � Vi : [	ti]([	ti,1]t× . . .× [	ti,li ]t⇒ t) (1 ≤ i ≤ n)

Γ;Σ � U ◦ 	V : [	t1,1]t× . . .× [	tn,ln ]t⇒ t

Figure 4.2: Type system for λcλ
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in forming representations of λ-contexts. The rule (habs) could also be presented
more transparently as an abstraction typing rule, by

(habs)
Γ;Σ, h1 : ρ1, . . . hn : ρn � U : t

Γ;Σ � δ	h.U : ρ1 × . . .× ρn ⇒ t.

However, we prefer the form as given in the figure, where ρi’s are fully specified
because there is only one form of type that ρi’s can assume.

The rules (mabs), (mabsc) and (mapp) are used for typing representations of
holes and λ-terms and λ-contexts to be put into holes. Note that only elements of
λcλ of type t may be involved in communication. The rules (fill) and (comp) are
used in typing when filling holes. The rule (fill) is the application counterpart of
the rule (habs), and it could be presented as

(fill)
Γ;Σ � U : ρ1 × . . .× ρn ⇒ t Γ;Σ � Vi : ρi

Γ;Σ � U �	V � : t

with the types ρ1, . . . , ρn of a specific form. The rule (comp) is a rather complicated
one, because the composition of λ-contexts, which is typed by this rule, is also
complicated. In this rule, the term U is a representation of the outer λ-context,
and Vi’s are representations of λ-contexts to be filled into the holes of the outer
λ-context. This rule requires that the communication of the ith hole of the outer λ-
context agrees with the communication of Vi (in both cases, 	ti). The type [	t1,1]t×
. . .× [	tn,ln ]t⇒ t of the result indicates a representation of a context over the holes
of V1 through Vn. We illustrate this rule by an example with concrete types. This is
an example of the composition typing rule where the two holes of the outer context
are filled by contexts with two and one holes respectively.

example
of (comp)

Γ;Σ � U : [t] t×[t, t]t⇒ t
Γ;Σ � V1 : [t]([t] t×[t, t, t]t⇒ t)
Γ;Σ � V2 : [t, t]([t]t⇒ t)

Γ;Σ � U ◦ (V1, V2) : [t] t×[t, t, t] t×[t]t⇒ t

Last but not least, note that there are no variables or abstractions over variables
of type [	t1] t × . . . [	tn]t ⇒ t, that is, context variables and functions ranging over
contexts are not typable.

Like any other example of typing, the calculus λcλ is defined on well-typed
terms and with a rewrite relation generated by a subset of the rewrite rules of the
framework λc. In a case of an arbitrary typing, the subset of rewrite rules contains
all rewrite rules of the framework λc that are applicable to well-typed terms of the
typing. In the case of λcλ, the subset of rewrite rules consists of all rewrite rules of
λc.

Definition 4.1.14 (λcλ) The terms of λcλ are the well-typed terms of λc according
to Definition 4.1.13. The rewrite rules are the rules (β), ( β), (fill) and (◦) of λc,
now restricted to λcλ-terms.
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i) The lambda calculus rewrite rule is:

(λx.U)V → U [[x := V ]]. (β)

ii) The context rewrite rules are:

(Λ	x.U)〈	V 〉 → U [[	x := 	V ]] ( β)

(δ	h.U)�	V � → U [[	h := 	V ]] (fill)

(δn	g.U) ◦ (Λ	x1. δ	h1. V1, . . . ,Λ	xn. δ	hn. Vn)

→ δ	h1, . . . ,	hn.U [[g1 := Λ	x1. V1, . . . , gn := Λ	xn. Vn]]. (◦)

Definition 4.1.15 Let the ARS Aλcλ be

Aλcλ = 〈Ter(λcλ),→β ,→ β ,→fill ,→◦〉.

We call the ARS Aλcλ the underlying ARS of the calculus λcλ.

The calculus λcλ is a subsystem of the framework λc

We show that (the underlying ARS of) the calculus λcλ is a subsystem of (the
underlying ARS of) the framework λc in the sense of Definition 1.1.14. This is
entailed by the closure property of the set of terms of λcλ under rewriting. We
prove that the set of terms of λcλ is closed under substitution and rewriting, that
is, we show that these transformations applied to well-typed terms result in a well-
typed term. The proofs of these closure properties are conducted in a standard
way (see for example [Bar92]) via the Generation, Bases thinning, Substitution and
Subject reduction lemmas. First we prove the Generation lemma, which gives the
correspondence between the structure of a λcλ-term and its type.

Lemma 4.1.16 (Generation lemma)
i) If Γ;Σ � u : ρ then (u : ρ) ∈ Γ ∪ Σ.
ii) If Γ;Σ � λx.U : ρ then ρ = t and Γ, x : t; Σ � U : t.
iii) If Γ;Σ � U V : ρ then ρ = t, Γ;Σ � U : t and Γ;Σ � V : t.
iv) If Γ;Σ � Λ	x.U : ρ then

either ρ = [	t]t and Γ, 	x : 	t; Σ � U : t,

or ρ = [	t]([	t1] t × . . . × [	tn]t ⇒ t) and Γ, 	x : 	t; Σ � U : [	t1] t × . . . ×
[	tn]t⇒ t.

v) If Γ;Σ � U 〈	U〉 : ρ then ρ = t, Γ;Σ � U : [	t]t and Γ;Σ � 	U : 	t.

vi) If Γ;Σ � δ	h.U : ρ then ρ = [	t1] t × . . . × [	tn]t ⇒ t and Γ;Σ, h1 :
[	t1]t, . . . , hn : [	tn] t � U : t.

vii) If Γ;Σ � U �	U� : ρ then ρ = t, Γ;Σ � U : [	t1] t × . . . × [	tn]t ⇒ t and
Γ;Σ � Ui : [	ti]t for 1 ≤ i ≤ n.
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viii) If Γ;Σ � U ◦ 	V : ρ then ρ = [	t1,1] t × . . . × [	tn,ln ]t ⇒ t, Γ;Σ � U :
[	t1] t× . . .× [	tn]t⇒ t, and Γ;Σ � Vi : [	ti]([	ti,1] t× . . .× [	ti,li ]t⇒ t) for
1 ≤ i ≤ n.

Proof: Suppose Γ;Σ � U : ρ. The statements follow by distinguishing the cases
of the structure of U . QED

Note though, that with the typing being a Curry-style typing (where abstractions
are not annotated with types), not all typable λc-terms do have a unique type. For
example, the λc-term δh.x is typable by the types of the form [	t]t ⇒ t for any
length of the vector 	t (including 0). The type is not unique because the variable h
does not occur in the term, so there is no indication of the arity of the hole which h
represents. At the same time, this is the only cause for the loss of type uniqueness.
(In the case of λ-abstractions and Λ-abstractions, the type of all the variables in
the abstractions is implicitly t.)

In the typing rules, the bases in the premisses are the same as the bases in the
conclusions. Often it is the case that a smaller base is used for typing a subterm in
the premisses. However, this fact does not restrain the typing derivations because
both bases may be enlarged.

Lemma 4.1.17 (Bases thinning lemma)

i) If Γ;Σ � U : ρ and Γ ⊆ Γ′ then Γ′; Σ � U : ρ.

ii) If Γ;Σ � U : ρ and Σ ⊆ Σ′ then Γ;Σ′ � U : ρ.

Proof: Both proofs are conducted by induction to the length of Γ;Σ � U : ρ. QED

The set of typable terms is closed under substitution. Even stronger, substitu-
tion preserves types, that is, if U and V are well-typed terms and if the substitution
[[	u := 	V ]] respects types (i.e. for each i with 0 ≤ i ≤ |	u| if ui := Vi then ui and Vi
are of the same type), then U [[	u := 	V ]] is of the same type as U . In the next lemma,
we use a comma instead of a semicolon as a separator between the bases, because
	u : 	ρ may belong to the basis Γ as well as to the basis Σ.

Lemma 4.1.18 (Substitution lemma) If Γ, 	u : 	ρ,Σ � U : ρ and Γ;Σ � 	V : 	ρ
then Γ;Σ � U [[	u := 	V ]] : ρ.

Proof: The proof is conducted by induction to U , using the Generation lemma.
QED

The set of typable terms is closed under the rewrite relation in λcλ. Like in the
case of the substitution closure, even a stronger property holds: rewriting preserves
types.

Lemma 4.1.19 (Subject reduction) If Γ;Σ � U : ρ and U→→V then Γ;Σ � V :
ρ.
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Proof: We sketch the proof of the statement only for U → V ; the statement follows
then by induction to the length of the reduction U →→ V .

Let Γ;Σ � U : ρ and U ≡ C[L]→r C[R] ≡ V . One first shows that if Γ′; Σ′ � L :
ρ′ then Γ′; Σ′ � R : ρ′. This is proved by case distinction on the rewrite rules and
by using the Generation lemma, Bases thinning lemma and Substitution lemma.
Then Γ;Σ � V : ρ follows by induction to C. QED

Theorem 4.1.20 (Subsystem λcλ) The underlying ARS Aλcλ of the calculus λcλ

is an indexed sub-ARS of the underlying ARS Aλc of the context calculus λc.

Proof: The ARS Aλcλ satisfies the conditions of the definition (Definition 1.1.14)
of an indexed ARS of Aλc:

i) The set of terms of λcλ is a subset of the terms of λc.

ii) Each rewrite relation of λcλ is the restriction of the same rewrite relation in λc
because the rewrite relations are generated by the same rewrite rule schemas.

iii) The set of terms of λcλ is closed under each rewrite relation of λc, by the
Subject reduction lemma 4.1.19.

QED

Properties of rewriting in λcλ

We are interested in the confluence and normalisation properties of rewriting in λcλ.
The confluence property for λcλ will be shown in a couple of sentences because it
follows easily from the confluence property of the framework λc. The confluence
property of the framework λc has been proved in Section 3.2.5 in detail. Contrary
to the confluence property, investigating the normalisation of rewriting, and partic-
ularly showing the normalisation property of restricted, context-related rewriting
in λcλ will call for hard work.

Theorem 4.1.21 The calculus λcλ is confluent.

Proof: Each pair of diverging rewrite sequences in λcλ can be tiled in λc, because
the rewriting in λc has the confluence property (Theorem 3.2.40). Because λcλ is
closed under rewriting by the Subject reduction lemma 4.2.8, the whole diagram is
within λcλ. QED

The calculus λcλ is not strongly normalising. For example, the term
(λx.xx)(λx.xx) is well-typed (by t), and as we know, this term can be endlessly
rewritten. In fact, the calculus λcλ is not even weakly normalising. For example,
the same term (λx.xx)(λx.xx) has no normal form at all. The absence of nor-
malisation properties in λcλ is not a surprise because the untyped lambda calculus
is contained in λcλ and it is well-known that the untyped lambda calculus is not
weakly, and thus also not strongly, normalising.
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Figure 4.3: λcλc � λcλ � λc

However, the rewriting related to contexts, that is, the rewriting generated by
the rules (fill), ( β) and (◦), is strongly normalising. This is also not a surprise
because the typing of contexts is in the style of simply typed lambda calculus, which
is strongly normalising.

Before going any further, let us make precise what system we are talking about.
Let the restriction of λcλ to the rewriting related to contexts be called λcλc .

Definition 4.1.22 (The calculus λcλc ) Let the calculus λcλc be defined on the
terms of λcλ with the rewrite relations generated by the context rewrite rules:
( β), (fill) and (◦).

Notation. The rewriting of λcλc will be denoted by →c (cf. the remark after the
definition of λc (Definition 3.1.5)).

Remark 4.1.23 The calculus λcλc is a subsystem of the calculus λcλ in the sense
that the underlying ARS of λcλc is an indexed sub-ARS of the underlying ARS
Aλcλ of λcλ. See Figure 4.3. One can easily check that the underlying ARS of λcλc
satisfies the definition of an indexed sub-ARS of Aλcλ (we keep in mind that the
two calculi use the same rewrite rule schemas ( β), (fill) and (◦)):

i) both ARS have the same set of objects (i.e. Ter(λcλ), which is generated
from the set of λc-terms using the typing rules);

ii) the rewrite relations of λcλc , which are generated by the rules ( β), (fill) and
(◦), are the restrictions of the same rewrite relations of Aλcλ ; and

iii) the set of objects of λcλc (i.e. Ter(λcλ)) is closed under rewriting of Aλcλ ,
that is, it is closed under rewriting with respect to → β , →fill and →◦ (by
Subject reduction lemma 4.1.19).

Back to the strong normalisation of λcλc . Our proof of strong normalisation with
respect to →c is an adaptation of the standard proof of strong normalisation for
the simply typed lambda calculus à la Church. The method of the standard proof
is due to W. Tait (see [Tai67]).
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The standard proof is conducted by induction to the term formation. Be-
cause the notion of strong normalisation is too weak for the induction, a strong-
computability predicate on terms is employed to back the proof. Strong computabil-
ity is defined by induction to types and it implies strong normalisation. The proof
consists of two steps that show the following:

i) strong computability implies strong normalisation, and

ii) each well-typed term is strongly computable.

We use Tait’s method to prove that →c is strongly normalising on λcλ-terms.
For the most part we follow the presentation given by J.R. Hindley and J.P. Seldin
(see Appendix 2 of [HS86]).

Before giving an overview of our proof, we look at some differences between
λ→-Church and λcλc .

- The calculus λcλc deals with more terms than the calculus λ→-Church. Note
that the set of λ-terms of λ→-Church is a subset of the set of λcλc -terms, in
the sense that each λ-term that can be typed in λ→-Church can also be typed
in λcλc . Moreover, the terms of λcλc contain also the constructors Λ, 〈 〉, δ,
� � and ◦. The constructors Λ and δ are variations of the constructor λ of
lambda calculus; the constructors 〈 〉 and � � are variations of the application
of lambda calculus.

- The calculus λcλc deals with more rewrite relations than the calculus λ→-
Church. The calculus contains the rewrite relations generated by the rules
( β) and (fill), which are variations of the rule β of lambda calculus, and
thus, in particular, of λ→-Church. Furthermore, the calculus contains the
rewrite relation generated by the rule (◦).

We adapt the standard proof in the following way. First, we will extend the
definition of strong computability with respect to→c to the terms of λcλc . Then, we
will adapt the proofs to the cases of new term constructors and of new rewrite rules.
The adaptation regarding the constructor ◦ and the rule (◦) will be difficult. The
adaptations regarding other constructors and rewrite rules will be trivial, because
they all represent a variation of constructors and rewrite rules of lambda calculus.

Notation. If a term U is strongly normalising with respect to →c, we say that U
is SN c.

Definition 4.1.24 (Strong computability SC c w.r.t. →c)
Strong computability with respect to →c of λcλ-terms is defined by induction

to the type of terms as follows. If a term U is strongly computable w.r.t. →c, we
say that U is SC c.

i) Let U : t. Then, U is SC c if and only if U is strongly normalising with respect
to →c.
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ii) Let U : [	t]t. Then, U is SC c if and only if for all strongly computable terms
	V with Vi : t for 1 ≤ i ≤ |	t| the term U 〈	V 〉 (of type t) is SC c.

iii) Let U : [	t1] t× . . .× [	tn]t⇒ t. Then, U is SC c if and only if for all strongly
computable terms 	V with Vi : [	ti]t for 1 ≤ i ≤ n the term U �	V � (of type t)
is SC c.

iv) If U : [	t]([	t1] t× . . .× [	tn]t⇒ t), then U = Λ	x�t.U ′. In this case, U is SC c if
and only if for all SC c terms 	V with Vi : t for 1 ≤ i ≤ |	t| the term U ′[[	x := 	V ]]
(of type [	t1] t× . . .× [	tn]t⇒ t) is SC c.

Remark 4.1.25 The style of the strong computability definition is a mixture of two
styles: the definition of strong computability presented in [HS86] on the one hand,
and the definition of strong validity of Prawitz and the definition of computability
of de Vrijer, on the other hand. In the former, a term of a functional type is SC c if
for all SC c terms V , the term U V is SC c. In the latter, a term of a functional type
with U → λx.U ′ is SC c if for all SC c terms V , the term U ′[[x := V ]] is SC c. In
the definition above, we follow the first style, except in the last clause. In the last
clause we switch to the latter style, because, by following the former style we would
obtain a term that is not typable: (Λ	x�t.U ′)〈	V 〉 where U ′ : [	t1] t× . . .× [	tn]t⇒ t.

We start with proving the claim that variables are strongly computable with
respect to →c. Indirectly, the same lemma claims that for each type ρ, there is a
term of type ρ that is strongly computable with respect to →c.

Lemma 4.1.26 Let u be a variable of type ρ. Then u is SC c.

Proof: In λcλ there are two sorts of variables: term variables of type t and hole
variables of type [	t]t.

If u : t then u is SN c. Hence, u is SC c by the definition of SC c.
Otherwise, let u : [	t]t. In addition, let 	W be SC c terms all of type t. By the

definition of SC c, all 	W are SN c. Then the term u〈 	W 〉 is also SN c. This term is
of type t, so it is SC c. Then u is also SC c, by definition. QED

Lemma 4.1.27 Let U be a term of λcλ. If U is SC c then U is SN c.

Proof: The proof is conducted by induction to the type of U , using Lemma 4.1.26.
QED

For the proof that each λcλ-term is strongly computable a rather technical
lemma is needed. This lemma states that if a reduct of a redex is strongly com-
putable, then the redex is strongly computable too. In order to prove that, we need
yet another lemma, saying that each λcλ-term of type [	t1] t × . . . × [	tn]t ⇒ t has
a head normal form with respect to →c of a special form.

Lemma 4.1.28 Let C : [	t1] t × . . . × [	tn]t ⇒ t. Then C →→c δ	h.U with hi : [	ti]t
for 1 ≤ i ≤ |	h| = n and U : t.
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Proof: By studying the typing rules, one can see that each term C of type [	t1] t
× . . .× [	tn]t⇒ t has the form

C ::= δ	k.V | C ′ ◦ (Λ	x1.C1, . . . ,Λ	xn.Cn)

where V : t and C ′, C1, . . . , Cn have the same form as C. It can be shown that such
a term C reduces by an innermost c-reduction to a term of the form δ	h.U . The
proof is conducted by induction to the number of symbols ◦ in C. The types of 	h
and U follow by the Generation lemma. QED

Lemma 4.1.29

i) Let U, 	x, 	W be terms, all of type t and with |	x| = | 	W |. Let Wi be SC c if
xi �∈ FV (U), for 1 ≤ i ≤ |	x|. If U [[	x := 	W ]] is SC c then (Λ	x.U)〈 	W 〉 is SC c.

ii) Let U : t, let 	h be n variables, and let 	W be n terms with hi and Wi of the
same type [	ti]t, for 1 ≤ i ≤ n. Let Wi be SC c if hi �∈ FV (U), for 1 ≤ i ≤ n.
If U [[	h := 	W ]] is SC c then (δ	h.U)� 	W � is SC c.

iii) Let

C : [	t1] t× . . .× [	tn]t⇒ t,
Di : [	ti,1] t× . . .× [	ti,li ]t⇒ t,
xi : 	ti,
	M = 	M1, . . . , 	Mn,
	Mi = Mi,1, . . . ,Mi,li ,
Mi,j : [	ti,j ]t, with 1 ≤ i ≤ n, 1 ≤ j ≤ li.

Let C, (Λ	x1.D1), . . ., (Λ	xn.Dn), 	M be SC c. If the term
C �Λ	x1.D1 � 	M1�, . . . ,Λ	xn.Dn � 	Mn�� is SC c then the term
(C ◦ (Λ	x1.D1, . . . ,Λ	xn.Dn))� 	M� is SC c.

Proof:

i) Let U [[	x := 	W ]] be SC c. By Lemma 4.1.27, this term is also SN c. Hence,
its subterms, U and all 	W , are also SN c. (If Wi does not occur in the term
U [[	x := 	W ]], then xi �∈ FV (U). In that case, use the extra assumption that
Wi is SC c and the same lemma.)

Suppose (Λ	x.U)〈 	W 〉 has an infinite c-reduction. Then, since U and 	W are
SN c, eventually the head redex has to be reduced:

(Λ	x.U)〈 	W 〉 →→c (Λ	x.U ′)〈 	W ′〉 → β U
′ [[	x := 	W ′]] →→c . . . (∞)

Then U [[	x := 	W ]] has an infinite reduction too:

U [[	x := 	W ]] →→c U
′ [[	x := 	W ′]] →→c . . . (∞)
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This is a contradiction with the fact that U [[	x := 	W ]] is SN c.

Then, (Λ	x.U)〈 	W 〉 is SN c. Because this term is of type t, it is SC c by the
definition of SC c.

ii) Analogously to the previous case.

iii) Let C �Λ	x1.D1 � 	M1�, . . . ,Λ	xn.Dn � 	Mn�� be SC c. Then this term is SN c, by
Lemma 4.1.27.

Note that the previous two cases needed an additional assumption that Wi’s
are SC c if they do not occur in the reduct U [[	u := 	W ]], because in this term
Wi’s occur only in the meta-level substitution. Such an assumption is not
necessary in this case, because all Di’s and Mi,j ’s occur as subterms in the
term C �Λ	x1.D1 � 	M1�, . . . ,Λ	xn.Dn � 	Mn��.
Suppose the term (C ◦ (Λ	x1.D1, . . . ,Λ	xn.Dn))� 	M1, . . . , 	Mn� has an infinite
reduction. By Lemma 4.1.27 and the assumption that C, (Λ	x1.D1), . . .,
(Λ	xn.Dn) and 	M are SC c, these terms are also SN c.

Moreover, by Lemma 4.1.28 the terms C and Di’s reduce to hole abstractions:

C →→c δ	h.N
Di →→c δ	gi.Ni for 1 ≤ i ≤ n.

Because the calculus λcλ is confluent, these are the only head normal forms
of these terms.

Then eventually, in this infinite reduction the head redex (with ◦ as the head
symbol) has to be reduced:

(C ◦ (Λ	x1.D1, . . . ,Λ	xn.Dn))� 	M1, . . . , 	Mn�
→→c ((δ	h.N) ◦ (Λ	x1. δ	g1.N1, . . . ,Λ	xn. δ	gn.Nn))� 	M ′

1, . . . ,
	M ′
n�

→◦ (δ	g1, . . . , 	gn.N [[h1 := Λ	x1.N1, . . . , hn := Λ	xn.Nn]])� 	M ′
1, . . . ,

	M ′
n�

with 	g = 	g1, . . . , 	gn �∈ FVar(N). Without loss of generality, we assume that
	gi �∈ FVar(Nj) if i �= j for 1 ≤ i, j ≤ n. At this stage of the proof we only
state the following claim, and prove it later on.

Claim: N [[h1 := Λ	x1.N1, . . . , hn := Λ	xn.Nn]] has no infinite reduc-
tions.

Then eventually, the head redex has to be reduced:

(δ	g1, . . . , 	gn.N [[h1 := Λ	x1.N1, . . . , hn := Λ	xn.Nn]])� 	M ′
1, . . . ,

	M ′
n�

→→c (δ	g1, . . . , 	gn.N ′)� 	M ′′
1 , . . . ,

	M ′′
n�

→fill N ′[[	g1 := 	M ′′
1 , . . . , 	gn := 	M ′′

n ]]
→→c . . . (∞)
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By summing up the rewrite sequences that took place in the infinite reduction,
we also have (recall that 	g �∈ FVar(N))

N [[h1 := Λ	x1.N1[[	g := 	M ]], . . . hn := Λ	xn.Nn[[	g := 	M ]]]]
= N [[h1 := Λ	x1.N1, . . . , hn := Λ	xn.Nn]] [[	g := 	M ]]
→→c N ′ [[	g := 	M ]] .

But then we also have the following infinite reduction:

C �Λ	x1.D1 � 	M1�, . . . ,Λ	xn.Dn � 	Mn��
→→c (δ	h.N)�Λ	x1. (δ	g1.N1)� 	M ′′

1 �, . . . ,Λ	xn. (δ	gn.Nn)� 	M ′′
n��

→→fill (δ	h.N)�Λ	x1.N1[[	g1 := 	M ′′
1 ]], . . . ,Λ	xn.Nn[[	gn := 	M ′′

n ]]�
→fill N [[h1 := Λ	x1.N1[[	g1 := 	M ′′

1 ]], . . . , hn := Λ	xn.Nn[[	gn := 	M ′′
n ]]]]

= N [[h1 := Λ	x1.N1, . . . , hn := Λ	xn.Nn]] [[	g := 	M ′′]]
→→c . . . (∞)

This is a contradiction with the fact that the term
C �Λ	x1.D1 � 	M1�, . . . ,Λ	xn.Dn � 	Mn�� is SN c.

In conclusion, the term (C ◦ (Λ	x1.D1, . . . ,Λ	xn.Dn))� 	M1, . . . , 	Mn� is
SN c. Because this term is of type t, it is also SC c by the definition of SC c.

Proof of the claim: We recall the assumptions of the lemma and assump-
tions made at the stage of the proof where the claim is used:

C, (Λ	xi.Di) are all SC c,
C →→c δ	h.N where C is SN c,
Di →→c δ	gi.Ni where Ni is SN c, for 1 ≤ i ≤ n.

Moreover, check that (1 ≤ i ≤ n):

C is SC c ⇔ ∀ 	K all SC c, we have C � 	K� is SN c. (1)
Λ	xi.Di is SC c ⇒ ∀ 	Xi all SC c, we have Di [[	xi := 	Xi]] is SN c. (2)

We prove that Λ	xi.Ni is SC c for 1 ≤ i ≤ n. So, let 	Xi be SC c and suppose
(Λ	xi.Ni)〈 	Xi〉 has an infinite reduction. Because 	Xi are all SC c and of type
t, the terms 	Xi are SN c by the definition of SC c. Because Ni and 	Xi are all
SN c, eventually the head redex is reduced:

(Λ	xi.Ni)〈 	Xi〉 →→c (Λ	xi.N ′
i)〈 	X ′

i〉 → β N
′
i [[	xi := 	X ′

i]] →→c . . . (∞)

Then

Di [[	xi := 	X ′
i]] →→c δ	gi.N

′
i [[	xi := 	X ′

i]] →→c . . . (∞)

This is a contradiction with (2).
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Then (Λ	xi.Ni)〈 	Xi〉 must be SN c. Then it is also SC c, by the definition of
SC c. Then Λ	xi.Ni is SC c, by the definition of SC c.

By the fact (1) we know that C �Λ	x1.N1, . . . ,Λ	xn.Nn� cannot have an infinite
reduction. One may check that

C �Λ	x1.N1, . . . ,Λ	xn.Nn�
→→c (δ	h.N)�Λ	x1.N

′
1, . . . ,Λ	xn.N

′
n�

→→c N [[h1 := Λ	x1.N
′
1, . . . , hn := Λ	xn.N ′

n]] .

Then N [[h1 := Λ	x1.N
′
1, . . . , hn := Λ	xn.N ′

n]] has no infinite reductions either.

QED

Lemma 4.1.30 Let U be a typable term. Then, U is SC c.

Proof: The proof is conducted by induction to U . In fact, for the induction step
to work, we need to prove the following strengthening of the lemma:

Let 	u be |	V | variables such that ui and Vi are of the same type for
1 ≤ i ≤ |	V |. If 	V are SC c then U [[	u := 	V ]] is SC c.

So let 	u and 	V be as required. Let W � denote W [[	u := 	V ]]. We treat four cases.

U ≡ u: with u �≡ ui for all 1 ≤ i ≤ |	u|.
Then U� = u. By Lemma 4.1.26, u is SC c.

U ≡W1W2: Then U� = W �
1 W

�
2 . By the induction hypothesis, the terms W �

1 and
W �

2 are SC c. By Lemma 4.1.27, the terms W �
1 and W �

2 are SN c. Then W �
1 W

�
2

is also SN c, because no c-redexes can be created by forming an application.
Note that W �

1 W
�
2 : t. Then by the definition of SC c, the term W �

1 W
�
2 is SC c.

U ≡ δh.W : Then U� = δ	h.W �. Let 	W be |	h| SC c terms with Wi of the same type
as hi for 1 ≤ i ≤ |	h|. Then W [[	u := 	V ]] [[	h := 	W ]] is SC c, by the induction
hypothesis. That is, W �[[	h := 	W ]] is SC c. By Lemma 4.1.29(ii), the term
(δh.W �)� 	W � is SC c. By the definition of SC c, the term δh.W � is SC c.

U ≡W ◦ 	U : Then U ≡ W ◦ (Λ	x1.W1, . . . ,Λ	xk.Wk). Moreover, this term is of
type [	t1] t× . . .× [	tn]t⇒ t for some n ∈ IN (intuitively, n is the sum of the
number of holes in 	W ).

Then U� = W � ◦ (Λ	x1.W
�
1 , . . . ,Λ	xk.W

�
k ). By the induction hypothesis, the

terms W � and Λ	xi.W �
i for 1 ≤ i ≤ k are SC c.

Let 	Z be n SC c terms with Zl : [	tl]t for 1 ≤ l ≤ n where these types are
the same as in the type of U . Without loss of generality, choose 	Z such that
{	x1, . . . , 	xk} ∩ FV (	Z) = ∅. We prove that

W � ◦ (Λ	x1.W
�
1 , . . . ,Λ	xk.W

�
k )�	Z� is SC c.
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In order to prove that, we first check that (split 	Z into 	Y1, . . . , 	Yk)

for all 1 ≤ i ≤ k, the term Λ	xi.W �
i �	Yi� is SC c.

Let 	Xi be SC c terms with Xi,j of the same type as xi,j for 1 ≤ j ≤ |	xi|.
Then by the induction hypothesis, the term Wi [[	u := 	V ]] [[	xi := 	Xi]] is SC c.
That is, the term W �

i [[	xi := 	Xi]] is SC c. Then for SC c terms 	Yi the term
(W �

i [[	xi := 	Xi]])�	Yi� is SC c, by the definition of SC c.

Note that (W �
i [[	xi := 	Xi]])�	Yi� = (W �

i �	Yi�)[[	xi := 	Xi]], by the choice of 	Yi.
Then by Lemma 4.1.29(i), the term (Λ	xi.W �

i �	Yi�)〈 	Xi〉 is SC c.

So we have that, for all SC c terms 	Xi, the term (Λ	xi.W �
i �	Yi�)〈 	Xi〉 is SC c.

By the definition of SC c, the term Λ	xi.W �
i �	Yi� is SC c. Then the term

W � �Λ	x1.W
�
1 �	Y1�, . . . ,Λ	xk.W �

k �	Yk�� is SC c because W � is SC c by the in-
duction hypothesis. Then the term W � ◦ (Λ	x1.W

�
1 , . . . ,Λ	xk.W

�
k )�	Z� is SC c

by Lemma 4.1.29(iii). Note that W �, Λ	x1.W
�
1 , . . ., Λ	xk.W �

k and 	Z are SC c,
as required by the applied lemma.

Finally, by the definition of SC c, the term W � ◦ (Λ	x1.W
�
1 , . . . ,Λ	xk.W

�
k ) is

SC c. QED

Theorem 4.1.31 (Strong normalisation of →c) The rewriting with respect to
→c in λcλ is strongly normalising.

Proof: This theorem is a corollary of Lemma 4.1.27 and Lemma 4.1.30. QED

Notation. The normal form of a λcλ-term U with respect to the context rewrite
rules will be denoted by U↓c.

Corollary 4.1.32 The rewriting with respect to →c in λcλ is complete.

Adequacy of context representation in λcλ

In the remainder of the section we address the adequacy of the λ-context represen-
tation within λcλ. Adequacy can be formulated as a couple of questions, which will
be answered by the propositions that follow. The adequacy questions are:

i) Can λ-contexts and λ-terms be represented within λcλ? Related to this ques-
tion is the question whether every λcλ-term corresponds to ‘something’ in
lambda calculus?

ii) Does the context-related rewriting (i.e. →c) in λcλ implement the context-
related meta-operations (i.e. hole filling and composition) of lambda calculus?

iii) In the calculus λcλ, does the context-related rewriting→c disturb β-rewriting?
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The basis of the correspondence between the untyped lambda calculus with con-
texts and the calculus λcλ has been provided by the definitions of lambda objects
(Definition 4.1.3) and translation of lambda objects into the framework λc (Defi-
nition 4.1.5). We will here show that this translation is actually a function from
lambda objects into the calculus λcλ. Using the translation function we will inves-
tigate some properties of representations of λ-terms and λ-contexts, and in this way
answer the adequacy questions one by one.

Translations of (expressions resulting in) λ-terms and λ-contexts are indeed ty-
pable in λcλ by specific types, as is stated in the next proposition. This assures
that translation is well-defined and moreover affirms the intuition behind the types
we gave in the subsection about the calculus λcλ. At the same time, this propo-
sition answers the first adequacy question about whether lambda objects can be
represented within λcλ.

Proposition 4.1.33 Let R and P be expressions resulting in a λ-term and a λ-
context, respectively. Then,

i) Γ � ��R		 : t for a certain basis Γ; and

ii) Γ � ��P 		 : [	t] t× . . .× [	t]t⇒ t for a certain basis Γ.

Proof: One first proves that Γ � ��M		 : t and Γ � ��C		 : [	t] t × . . . × [	t]t ⇒ t
for term M and context C as defined in Definition 4.1.1. Then, the proof of the
statement is conducted by simultaneous induction on the structure of arbitrary
lambda objects R and P . QED

From the point of view of λcλ, the c-normal forms of type t which contain
variables only of type t (i.e. variables only for representations of other λ-terms) are
representations of the untyped λ-terms. This is proved in the next proposition.

Proposition 4.1.34 If Γ � U : t, then there is M such that ��M		 = U↓c.

Proof: One first shows that U↓c does not contain hole variables or any of the
symbols ◦, ��, δ, 〈〉, Λ, as follows. In U↓c there are no free hole variables since
Σ = ∅. Second, U↓c contains none of the symbols ◦, �� or δ, because in that case
U↓c would contain a fill -redex or a ◦-redex. Moreover, there are no bound hole
variables because there are no hole binders δ in this term. Finally, U↓c contains
no 〈〉 or Λ: the subterms of the form V 〈	V 〉 are β-redexes, since V �≡ h, and the
subterms of the form Λ	x.V occur only as a subterm of a β-redex. Then U↓c is a
λ-term, so M = ��M		 = U↓c. QED

A property analogous to Proposition 4.1.34 does not hold for the representations
of λ-contexts, because in λcλ one can represent β-reducts of (the translation of) a
λ-context. For example, U ≡ δh, k.h〈k〈x〉〉 is a c-normal form of a ‘context type’
with free variables of ‘term type’, and for C ≡ (λy. [])(λx. []) we have ��C		 →→β U .
However there is no λ-context D with ��D		 = U . Moreover, subterms like h〈k〈x〉〉
and k〈x〉 have no meaning in the lambda calculus but they can be a subterm of
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something meaningful. In sum, the calculus λcλ contains λ-terms, λ-contexts and
subresults of meta-computation, that is, it contains no ‘junk’. This answers the
question related to the first adequacy question.

The next proposition claims that the two ways of computing the translation of
a complex lambda object ��P 		 result in the same λc-term. That is, first evaluating
the lambda object P to P ∗ and then translating P ∗ to λcλ results in the same
term as first translating P to λcλ and then reducing the context-related redexes.
This proposition assures that the context rewriting→c in λcλ correctly implements
the meta-operations of hole filling and composition of lambda calculus. Thus, this
proposition answers the second adequacy question.

Proposition 4.1.35 Let P be a lambda object. Then ��P ∗		 = ��P 		↓c.

Proof: The proof is conducted by induction to P . QED

The last proposition states that in λcλ hole filling and composition may freely be
combined with β-reduction. This proposition answers the third adequacy question.
Recall that in lambda calculus, β-steps may be performed in a λ-context only after
filling the holes of the λ-context with λ-terms.

Proposition 4.1.36 Let R be a lambda object that evaluates to a λ-term. Let
��R		 →→β U and ��R		 →→c V . Then there is a λcλ-term W such that U →→c W and
V →→β W .

Proof: By Proposition 3.2.39, the rewrite relations→c and→β commute with each
other. By Proposition 1.1.16, the rewriting in λcλ inherits this property from λc
because λcλ is a subsystem of λc in the sense of Definition 1.1.14. QED

The introductory example in λcλ

We close this section by showing how the problems with contexts in lambda calculus,
which were illustrated in the introductory example 2.2.1, can be solved in λcλ.

Let C ≡ (λy. [])x and M ≡ xy. Then the translation of the hole filling C[M ] is
��C[M ]		 = (δg. (λy. g 〈y〉)x)�Λy.xy�. This λc-term is well-typed in λcλ (this may
be checked directly using Proposition 4.1.33(i)):

x : t � (δg. (λy. g 〈y〉)x)�Λy.xy� : t.

In λcλ, the order of computing hole filling and performing the β-step in C is irrele-
vant:

(δg. (λy. g 〈y〉)x)�Λy.xy� →β (δg. g 〈x〉)�Λy.xy�

↓fill

↓fill

↓ β

(λy. (Λy.xy)〈y〉)x →→β, β xx.



122 CHAPTER 4. APPLICATIONS OF λC

Here, →→β, β stands for →β ;→ β or → β ;→β . This diagram is the same as in
Example 2.5.3.

4.2 The calculus λc→

The calculus λc→ given in this section describes the simply typed lambda calculus
λ→ with contexts (i) with many holes, which may occur arbitrary number of times,
(ii) where holes are filled sequentially, and (iii) including context variables and
functions ranging over (representations of) λ-contexts. By sequential filling of holes
we mean that if there are many holes in a context, the holes are filled one by one,
as opposed to filling the holes all at once as in λcλ. The representation of meta-
contexts of λ→ within λc→ follows the description given in the introduction. The
typing rules of λc→ for the most part follow the typing rules of the calculus of
M. Hashimoto and A. Ohori (cf. [HO98]).

In this section, we will first define the calculus λc→ and show that it is a sub-
system of the framework λc (in the sense of Definition 1.1.14). Then, we will show
that rewriting in λc→ is complete. Next we will briefly address the adequacy of
the context representation in λc→. Finally, we will compare λc→ to the calcu-
lus of M. Hashimoto and A. Ohori and to the calculus λcλ, and comment on the
introductory example within λc→.

The calculus λc→, a subsystem of λc

The typing of λc→ controls the functionality of terms and contexts as the typing
of the simply typed lambda calculus does. In addition, it also controls, loosely
speaking, the well-formedness and the typing of the context-related machinery.

The set of the types of λc→ is an extension of the set of the types of λ→.

Definition 4.2.1 (Types of λc→) Let V→ denote the set of base types with a ∈
V→. The τ -types (τ ∈ T→) and the ρ-types (ρ ∈ P→) are defined as

τ ::= a | τ → τ | [	τ ]τ ⇒ τ and ρ ::= τ | [	τ ]τ.

Here, → associates to the right, → binds stronger than [ ] and [ ] binds stronger
than ⇒.

Similarly to the case in λcλ, the new type constructors [ ] and ⇒ are introduced
for better correspondence with the the pairs of term constructors of λc (namely, [ ]
for the pair Λ and 〈〉, and⇒ for the pair δ and ��). The τ -types are used for typing
representations of λ-terms and λ-contexts, and the ρ-types are also used for typing
communicating objects and holes.

The typing uses two bases: the basis Γ, which is a set of declarations of the
form x : τ ; and the basis Σ, which is a set of declarations of the form h : [	τ ]τ . The
bases are split for the same reason as in λcλ: the basis Γ contains the true variables
(i.e. the place-holders for representations of λ-terms and -context), and the basis
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(var)
(x : τ) ∈ Γ

Γ;Σ � x : τ

(abs)
Γ, x : τ ; Σ � U : τ ′

Γ;Σ � (λxτ .U) : τ → τ ′

(app)
Γ;Σ � U : τ → τ ′ Γ;Σ � V : τ

Γ;Σ � U V : τ ′

(hvar)
(h : [	τ ]τ) ∈ Σ

Γ;Σ � h : [	τ ]τ

(mabs)
Γ, 	x : 	τ ; Σ � U : τ

Γ;Σ � (Λ	x�τ .U) : [	τ ]τ

(mapp)
Γ;Σ � U : [	τ ]τ Γ;Σ � 	V : 	τ

Γ;Σ � U 〈	V 〉 : τ

(habs)
Γ;Σ, h : [	τ ]τ � U : τ ′

Γ;Σ � (δh[�τ ]τ .U) : [	τ ]τ ⇒ τ ′

(fill)
Γ;Σ � U : [	τ ]τ ⇒ τ ′ Γ;Σ � V : [	τ ]τ

Γ;Σ � U �V � : τ ′

Figure 4.4: Type system for λc→

Σ contains the hole variables (i.e. the markers for the beginning (abstraction) and
endings (holes) of a context).

In the remainder, the following notation will be used: τ, σ, τ ′, 	τ . . . ∈ T→, ρ, ρ′ ∈
P→, and 	U : 	τ denotes the pointwise typing Ui : τi for 1 ≤ i ≤ |	τ |.

Definition 4.2.2 (Type system for λc→) A term U ∈ Ter(λc) is typable by ρ
from the bases Γ,Σ, if Γ; Σ � U : ρ can be derived using the typing rules displayed
in Figure 4.4. The set of well-typed λc-terms will be denoted by Ter(λc→).

We comment on the typing rules. The rules (var), (abs) and (app) are the fa-
miliar Church-style typing rules for λ→, now ranging also over (representations of)
λ-contexts. That means that by these typing rules also context variables and func-
tions ranging over contexts are typable. The rules (hvar), (habs) and (fill) are their
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respective counterparts dealing with (introducing, abstracting and filling of) hole
variables. The rules (mabs) and (mapp) are used for typing communication, where
the components (variables in the abstraction and arguments in the application) are
all of τ -types, meaning that in λc→ representations of λ-terms and λ-contexts may
be involved in communication.

Note that in the typing rules, only the ‘unary’ hole abstractor δ and the binary
hole filler � � are employed. This is because this typing captures sequential hole ab-
straction and filling. Sequential hole abstraction and filling means that if a context
has many holes, the holes are filled one by one, as for example in

(δh1. δh2.U)�V1��V2� →fill (δh2.U [[h1 := V1]])�V2� →fill U [[h1 := V1]] [[h2 := V2]],

rather than all at once, as for example in

(δh1, h2.U)�V1, V2� →fill U [[h1 := V1, h2 := V2]] .

Due to sequential hole abstraction and filling, the typing rules are closer to the
typing in simply typed lambda calculus than the typing rules of λcλ, which hopefully
makes the rules more lucid.

Figure 4.5 is an example of typing in λc→.

Definition 4.2.3 (λc→) The terms of λc→ are the well-typed terms of λc according
to Definition 4.2.2. The rewrite rules are the rules (β), ( β) and (fill) of λc, now
restricted to λc→-terms.

i) The lambda calculus rewrite rule is:

(λxτ .U)V → U [[x := V ]]. (β)

ii) The context rewrite rules are:

(Λ	x�τ .U)〈	V 〉 → U [[	x := 	V ]] ( β)
(δh[�τ ]τ .U)�V � → U [[h := V ]]. (fill)

Definition 4.2.4 Let the ARS Aλc→ be

Aλc→ = 〈Ter(λc→),→β ,→ β ,→fill〉.

We call the ARS Aλc→ the underlying ARS of the calculus λc→.

The rewrite rules of λc→ form only a subset of the rewrite rules of the framework
λc. The rewrite rules of λc→ include only one instance of the rewrite rule (fill) of
λc, namely the one with index 1, because the typing rules exclude typing of δ and
� � for any other index.

Moreover, there is no composition in λc→. This is because composition is defin-
able: for every (context) U of type [	τ ]τ ⇒ τ ′ and every (communicating context) V
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(h : [a]a) ∈ {h : [a]a} (x : a) ∈ {z : a, x : a}
z : a, x : a; h : [a]a � h : [a]a z : a, x : a; h : [a]a � x : a
z : a, x : a; h : [a]a � h〈x〉 : a
z : a; h : [a]a � λxa. h〈x〉 : a → a

· (h : [a]a) ∈ {h : [a]a} (z : a) ∈ {z : a}
· z : a; h : [a]a � h : [a]a z : a; h : [a]a � z : a
· z : a; h : [a]a � h〈z〉 : a

z : a; h : [a]a � (λxa. h〈x〉)(h〈z〉) : a

z : a � λh[a]a. (λxa. h〈x〉)(h〈z〉) : [a]a ⇒ a

Figure 4.5: An example of typing in λc→

of type [	τ ]([	σ]σ ⇒ τ) the following closed typable λc-term can act as a composition
constructor in comp U V ,

comp ≡ λc[�τ ]τ⇒τ ′
. δd[�τ ]([�σ]σ⇒τ). δg[�σ]σ. c�Λ	x�τ . (d〈	x〉)�g��

: ([	τ ]τ ⇒ τ ′)→ ([	τ ]([	σ]σ ⇒ τ)⇒ ([	σ]σ ⇒ τ ′)).

Consequently, the composition constructor, typing rule and rewrite rule are omitted.

The calculus λc→ is a subsystem of the framework λc

In order to prove that the calculus λc→ is a subsystem of the framework λc, we
show that λc→ is closed under substitution and rewriting. Note that the closure
under rewriting pertains only to the closure under the rewriting of the calculus λc→,
which is a restriction of the rewriting of the framework λc (see Definition 1.1.14).
The proofs are the standard ones, as in the case of λ→ à la Church.

As a bonus, we first prove that each λc→-term has a unique type.

Lemma 4.2.5 (Uniqueness of types) If Γ;Σ � U : ρ1 and Γ;Σ � U : ρ2 then
ρ1 = ρ2.

Proof: By induction on the length of the derivation. QED

Lemma 4.2.6 (Generation lemma)
i) If Γ;Σ � u : ρ then (u : ρ) ∈ Γ ∪ Σ.
ii) If Γ;Σ � λxρ

′
.U : ρ then ρ′ ∈ T→ and there is a τ ∈ T→ such that

ρ = ρ′ → τ and Γ, x : ρ′; Σ � U : τ .
iii) If Γ;Σ � U1U2 : ρ then there is a τ ∈ T→ such that Γ;Σ � U1 : τ → ρ

and Γ;Σ � U2 : τ .
iv) If Γ;Σ � Λ	x�ρ.U : ρ then 	ρ ∈ T→, there is a τ ∈ T→ such that ρ = [	ρ]τ

and Γ, 	x : 	ρ; Σ � U : τ .
v) If Γ;Σ � U 〈	U〉 : ρ then ρ ∈ T→ and there are 	τ ∈ T→ such that Γ;Σ � U :

[	τ ]ρ and Γ;Σ � 	U : 	τ .
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vi) If Γ;Σ � δhρ
′
.U : ρ then ρ′ = [	τ ]τ and there is a τ ′ ∈ T→ such that

ρ = [	τ ]τ ⇒ τ ′ and Γ;Σ, h : [	τ ]τ � U : τ ′.
vii) If Γ;Σ � U1 �U2� : ρ then there are 	τ , τ ∈ T→ such that Γ;Σ � U1 : [	τ ]τ ⇒ ρ

and Γ;Σ � U2 : [	τ ]τ .

Proof: Suppose Γ;Σ � U : ρ. The statements follow by distinguishing the cases
of the structure of U . QED

Lemma 4.2.7 (Substitution lemma) If Γ, 	u : 	ρ,Σ � U : ρ and Γ;Σ � 	V : 	ρ
then Γ;Σ � U [[	u := 	V ]] : ρ

Proof: The proof is conducted by induction to U , using the Generation lemma.
QED

Lemma 4.2.8 (Subject reduction) If Γ;Σ � U : ρ and U →→ V , then Γ;Σ � V :
ρ.

Proof: The heart of the argument is that in each contraction L → R the left-
hand side and the right-hand side have the same type, which is proved by using the
Generation lemma and the Substitution lemma. QED

In sum, because the calculus λc→, which is defined on a subset of λc-terms and a
subset of rewrite relations of λc, is closed under rewriting. Hence, it is a subsystem
of λc.

Theorem 4.2.9 (Subsystem λc→) The underlying ARS Aλc→ of the calculus
λc→ is an indexed sub-ARS of the underlying ARS Aλc of the context calculus
λc.

Proof: One can easily check that the ARS Aλc→ satisfies the definition (Defini-
tion 1.1.14) of an indexed sub-ARS of Aλc. QED

Properties of rewriting in λc→

Rewriting in λc→ is confluent. The confluence property of λc→ follows from a
stronger property of λc than confluence, namely the commutation property of each
pair of rewrite relations. The reason that a stronger property is needed lies in the
fact that the rewrite relation of λc→ is defined on a subset of the rewrite rules of λc.
What is needed in the proof of confluence is that in the pair of converging rewrite
sequences the same rewrite rules are used that occur in the pair of the diverging
rewrite sequences, which are the rewrite rules of λc→. This means that no other
rewrite rules are needed to finish the confluence diagram than the rewrite rules of
λc→ (see Remark 3.2.2).

Theorem 4.2.10 The calculus λc→ is confluent.
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Proof: Each pair of diverging rewrite sequences in λc→ can in λc be tiled by
the commutation tiles, because each pair of (unions of) rewrite relations in λc
commutes. In such a tiled diagram, the pair of converging rewrite sequences uses
the same rewrite rules as the pair of diverging rewrite sequences. That means that
the whole diagram is within λc→. QED

Note that actually, the calculus λc→ has the commutation property of pairs of
rewrite relations too.

Rewriting in λc→ is strongly normalising. The proof of strong normalisation can
be done via the natural translation of λc→ into λ→. Then the strong normalisation
of rewriting in λc→ follows from the strong normalisation of rewriting in λ→.

Here, Typ(λ→) denotes the types of the simply typed lambda calculus.

Definition 4.2.11 (Translation of λc→ to λ→)
i) Define ��		 : P→ → Typ(λ→) as a function that translates the types to simple

types:
�� a 		 = a
��τ → τ ′		 = ��τ 		 → ��τ ′		
��[	τ ]τ 		 = ��τ1

		 → . . .→ ��τn
		 → ��τ 		

��[	τ ]τ ⇒ τ ′		 = (��τ1		 → . . .→ ��τn
		 → ��τ 		)→ τ ′.

ii) Define ��		 : Ter(λc→)→ Ter(λ→) as
��u		 = u
�� λxτ .U 		 = λx

��τ��
. ��U		

�� U1U2
		 = ��U1

		 ��U2
		

�� Λ	x�τ .U 		 = λ	x
���τ��

. ��U		

�� U 〈	U〉 		 = ��U		 ��U1
		 . . . ��Un

		

�� δh[�τ ]τ .U 		 = λh
��[�τ ]τ��

. ��U		
�� U1 �U2� 		 = ��U1

		 ��U2
		.

iii) Let ∆ be a basis. Then ��∆		 = {(u : ��ρ		) | (u : ρ) ∈ ∆}.

Translation preserves typing.

Lemma 4.2.12 If Γ;Σ �λc→ U : ρ then ��Γ		 ∪ ��Σ		 �λ→ ��U		 : ��ρ		.

Proof: By induction to the length of Γ;Σ �λc→ U : ρ. Check the typing rules of
λc: from the translations of the premisses, the translations of the conclusions can
be derived in λ→. Then each derivation step in Γ;Σ �λc→ U : ρ can be translated
to one or more derivation steps in λ→. QED

Translation preserves rewrite steps.

Proposition 4.2.13 If Γ;Σ �λc→ U : ρ and U → V in λc→, then ��U		→→ ��V 		 in
the simply typed lambda calculus.
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Proof: In fact, the λc→-rewrite steps are translated into a positive number of
β-steps, with one exception: a β-step where the multiple abstraction and the
multiple application are empty, that is, (Λε.U)〈〉 → β U , which in translation

results in an empty β-reduction: �� (Λε.U)〈〉 		 = U = ��U		.
The proof proceeds as follows. By Lemma 4.2.12, we know that ��U		 is a λ→-

term. If U → V is an ‘empty’ β-step, then we are done. Otherwise, one shows
that, in general, a redex (other than an ‘empty’ β-redex) of λc→ translates into
a redex of λ→. Because the set of λ→-terms is closed under rewriting, we know also
that all reducts of ��U		, including ��V 		, are λ→-terms. QED

Theorem 4.2.14 (Strong normalisation) Rewriting in λc→ is strongly normal-
ising.

Proof: Let U0 ∈ Ter(λc→) and suppose r is an infinite rewrite sequence in λc→:

r : U0 → U1 → U2 → . . . (∞).

Note indeed that if U0 is a λc→-term, then so are all its reducts. Then, the trans-
lation of Ui’s to the simply typed lambda calculus results in a rewrite sequence ��r		

in the simply typed lambda calculus:

��r		 : ��U0
		→→ ��U1

		→→ ��U2
		→→ . . . (∞).

Because there are no infinite rewrite sequences in λ→, the tail of ��r		 must eventually
be empty, i.e. ��Un

		 ≡ ��Un+1
		 ≡ . . .. These steps can only be translations of

‘empty’ β-steps, i.e. Un ≡ C[(Λε.U)〈〉] → β C[U ] ≡ Un+1 . . .. However, since
λc→-terms are finite, there cannot be infinitely many such steps starting from Un.

QED

Corollary 4.2.15 Rewriting in λc→ is complete.

Adequacy of context representation in λc→

From the lambda calculus viewpoint, the λc→-terms of a τ -type with free variables
only of type τ are representations of λ-terms, λ-contexts, functions ranging over
these elements. The other λc→-terms are intermediate representations of λ-contexts
and communicating objects. A more precise correspondence between the simply
typed lambda calculus with contexts and the calculus λc→ is difficult to pinpoint
because in λc→ we deal with notions and notations that are not defined or are
inadequate in lambda calculus.

Example 4.2.16 Let U ≡ λc[a]b⇒a→b. λyb. c�Λza. y�. The term U can be seen as
a function ranging over (a representation of) a context. In the calculus λc→, the
term U (δh[a]b. λxa. h〈x〉) reduces in two steps to V ≡ λyb. λxa. (Λza. y)〈x〉. Neither
the term U nor the term V can be denoted in the simply typed lambda calculus,
due to the notational shortcomings mentioned above.
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Comparison to other context calculi

The calculus described in this section extends the work of M. Hashimoto and
A. Ohori (see [HO98], see also Section 2.4 about context calculi) in the following
sense. It includes multiple occurrences of a hole and drops their condition on the
β-rule, by which β-reduction is not allowed within (representations of) λ-contexts.
Moreover, λc→ allows composition, which is not present in their system. However,
whereas the order of arguments 	U at the holes h〈	U〉 is relevant in our calculus, in
the calculus of M. Hashimoto and A. Ohori the order is irrelevant.

The calculus λc→ can also be compared to the calculus λcλ. There are two
main differences between these calculi. The first difference lies in the fact that
λc→ is a calculus over contexts, while λcλ offers only a method of context repre-
sentation. For example, � λc→ (λc[a]a⇒b. c�Λxa. x�) : (([a]a ⇒ b) → b) where
λc[a]a⇒b. c�Λxa. x� represents a function ranging over a context, but this term is not
typable in λcλ (for any type decoration of variables in abstractions). The second dif-
ference is that λc→ deals with the simply typed lambda calculus, whereas λcλ deals
with the untyped lambda calculus. For example, � λcλ (δh.λx.xx) : ([t]t⇒ t),
whereas the λc-term δh.λx.xx is not typable in λc→ because the self-application
xx is not typable. An additional minor difference is that the holes of a context are
filled sequentially in λc→, whereas they are filled simultaneously in λcλ.

The introductory example in λc→

The introductory example 2.2.1 cannot be represented within λc→ because the
example involves λ-terms that are not typable in λ→, and consequently also not
typable in λc→. Recall that C ≡ (λy. [])x and M ≡ xy. Then, in particular,
C[M ]→β xx and the term xx is not typable in λ→, thus it is also not typable in
λc→.

4.3 The calculus λc
∼=

The calculus λc
∼= defined in this section is a context calculus for untyped lambda

calculus. This calculus supports λ-contexts with many holes, which may occur
an arbitrary number of times, and which are filled sequentially. It also supports
functions ranging over λ-contexts. Technically, it is a variation of the calculus
λc→ obtained by restricting the base types to only one constant t and imposing
the equality t → t ∼= t on types. Such typing essentially has the effect of well-
formedness rules on the untyped λ-terms and of typing rules on the contexts and
holes. As such, this calculus describes a minimal typing necessary to ensure that the
number and kind of arguments in the context machinery match. At the same time
it places no constraints upon the formation of λ-terms (see also Remark 3.1.10).
For this reasons, this kind of typing may be called syntactic, as in the case of λcλ.

This section is structured as follows. We will first define the calculus λc
∼= by

defining the type system and rewrite rules, and we will show that this calculus is
a subsystem of the framework λc. Then we will show that λc

∼= has the confluence
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property. The uniqueness of typing and strong normalisation of → are lost, as ex-
pected, due to the imposed equality on types and the presence of untyped lambda
calculus, respectively. However, we will show that the rewriting which deals with
hole filling, communication and functions ranging over contexts including composi-
tion is strongly normalising. Next, we will compare the calculus λc

∼= with λcλ and
λc→. We will show that both λcλ and λc→ can be embedded into λc

∼= in such a
way that the rewrite steps are preserved, but that λc

∼= is more expressive than λcλ

or λc→. Finally, we comment on the introductory example within λc
∼=.

Remark 4.3.1 The equality t → t ∼= t on types is not related to recursive types
as for example in λµ (cf. for example [Bar92]). This equality is a maneuver which
is incorporated in order to ignore the types on (the representations of) λ-terms.

The calculus λc
∼=

The types of λc
∼= are the same as in λc→, only now over the singleton {t}. These

types will be considered modulo equality t → t ∼= t. Such an approach to types
will have the effect of ignoring the type constructor → on (representations of) λ-
terms. Consequently, the term-abstraction and the term-application typing rules
will impose the well-formedness on (representations of) λ-terms rather than the
well-typedness as in the case of λc→.

We now give the definition of types, the definition of congruence ∼= on types
generated by t→ t ∼= t, and the definition of minimal types.

Definition 4.3.2 (Types of λc
∼=) Let the set of base types be the singleton V∼= =

{t}. The τ -types (τ ∈ T∼=) and the ρ-types (ρ ∈ P∼=) are defined as

τ ::= t | τ → τ | [	τ ]τ ⇒ τ and ρ ::= τ | [	τ ]τ.

Here, → associates to the right, → binds stronger than [ ] and [ ] binds stronger
than ⇒.

The congruence relation on types is generated by the equality t→ t ∼= t.

Definition 4.3.3 (Congruence) Let ρ, ρ′ ∈ P∼= and let τ, σ, 	τ , 	τ ′, τ ′, σ′ ∈ T∼=.
The congruence relation ∼= on types is defined by the following axiom and rules.

(axiom) t→ t ∼= t

(cong)

σ ∼= σ′ 	τ ∼= 	τ ′ τ ∼= τ ′

σ → τ ∼= σ′ → τ ′

[	τ ]σ ∼= [	τ ′]σ′

[	τ ]τ ⇒ σ ∼= [	τ ′]τ ′ ⇒ σ′

(refl) ρ ∼= ρ

(sym)
ρ ∼= ρ′

ρ′ ∼= ρ

(trans)
ρ1
∼= ρ2 ρ2

∼= ρ3

ρ1
∼= ρ3
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(var)
(x : τ) ∈ Γ

Γ;Σ � x : τ

(abs)
Γ, x : τ ; Σ � U : τ ′

Γ;Σ � (λxτ .U) : τ → τ ′

(app)
Γ;Σ � U : τ → τ ′ Γ;Σ � V : τ

Γ;Σ � U V : τ ′

(hvar)
(h : [	τ ]τ) ∈ Σ

Γ;Σ � h : [	τ ]τ

(mabs)
Γ, 	x : 	τ ; Σ � U : τ

Γ;Σ � (Λ	x �τ .U) : [	τ ]τ

(mapp)
Γ;Σ � U : [	τ ]τ Γ;Σ � 	V : 	τ

Γ;Σ � U 〈	V 〉 : τ

(habs)
Γ;Σ, h : [	τ ]τ � U : τ ′

Γ;Σ � (δh[�τ ]τ .U) : [	τ ]τ ⇒ τ ′

(fill)
Γ;Σ � U : [	τ ]τ ⇒ τ ′ Γ;Σ � V : [	τ ]τ

Γ;Σ � U �V � : τ ′

(cong)
Γ;Σ � U : ρ ρ ∼= ρ′

Γ;Σ � U : ρ′

Figure 4.6: Type system for λc
∼
=
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Example 4.3.4 Some examples and non-examples of types that are equal modulo
t→ t ∼= t are

([t, t]t⇒ t)→ t→ t ∼= ([t, t]t⇒ t)→ t
([t]t⇒ t) ∼= ([t→ t]t⇒ t→ t

t→ ([t]t⇒ t)→ t �∼= ([t]t⇒ t)→ t.

With the congruence defined on types, the types are divided into equivalence
classes. Therefore, it is convenient to have a notion of a representative of such a
class, and the best candidate for such a representative is a minimal one, that is, the
type with the minimal number of t’s.

Definition 4.3.5 (Minimal types) Let ρ ∈ P∼=. Then ρ is called minimal if for
all ρ′ ∈ P∼= with ρ ∼= ρ′, the number of t’s in ρ is less than or equal to the number
of t’s in ρ′.

If ρ is minimal, than all its subtypes are minimal. Moreover, minimal types are
unique in their equivalence classes, as is shown by the next lemma.

Lemma 4.3.6 Let ρ ∈ P∼=. Then there is a unique minimal ρ′ ∈ P∼= with ρ ∼= ρ′.

Proof: First of all, such ρ can be reduced to minimal number of symbols repeatedly
replacing t→ t by t. This procedure terminates because by each such replacement
the type has one t less. Suppose there are two minimal types ρ1 and ρ2 of U . By
induction to the sum of the number of symbols in the types one easily checks that
these must be equal ρ1 = ρ2. The heart of the argument is that, if ρ′1 ∼= ρ′2, then
the head constructors of these types must be the same, otherwise they are either
not equal modulo t→ t ∼= t or not minimal. QED

The typing rules of λc
∼= are the typing rules of λc→ plus the congruence rule,

which introduces the congruence on types.

Definition 4.3.7 (Type system for λc
∼=) A term U ∈ Ter(λc) is typable by ρ

from the bases Γ,Σ, if Γ; Σ � U : ρ can be derived using the typing rules displayed
in Figure 4.6.

Example 4.3.8 Examples of well-typed λc
∼=-terms are (recall that, without type

decorations, Ω ≡ (λx.xx)(λx.xx))

� Ω : t
� λc[t]t⇒t. λxt. c�Λyt. x� : ([t]t⇒ t)→ t
� λxt. λc[t]t⇒t. c�Λyt. x� : t→ ([t]t⇒ t)→ t
� λxt. (δh[t]t. λzt. h〈z〉)�Λyt. x� : t
� λxt. x : (t→ t)→ t
� λxt. x : t→ t
� λxt→t. x : t.
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Remark 4.3.9 There is also an alternative definition of such typing without con-
gruence. Instead of defining types and then congruence on types, the definition of
minimal types could have been used. The minimal types can be defined inductively
as:

ρ = t
ρ = τ → σ with τ, σ minimal and τ �∼= t or σ �∼= t
ρ = [	τ ]τ with 	τ and τ minimal
ρ = [	τ ]τ ⇒ σ with 	τ ,τ and σ minimal.

In addition, the typing rules (abs) and (app) need to be split to deal with λ-terms
and other terms, as shown below.

(abst)
Γ, x : t; Σ � U : t

Γ;Σ � λxt.U : t
(abs)

Γ, x : τ ; Σ � U : τ ′

Γ;Σ � λxτ .U : τ → τ ′

(appt)

Γ;Σ � U : t
Γ;Σ � V : t

Γ;Σ � U V : t
(app)

Γ;Σ � U : τ → τ ′

Γ;Σ � V : τ

Γ;Σ � U V : τ ′

In such a typing, the types in terms, as for example t in λxt. x, are minimal; this
is not the case in our definition of typing (see the last term in Example 4.3.8).
However, we prefer our definition with less typing rules.

Definition 4.3.10 (λc
∼=) The terms of λc

∼= are the well-typed terms of λc accord-
ing to Definition 4.3.7. The rewrite rules are the rules (β), ( β) and (fill) of λc,
now restricted to λc

∼=-terms.

i) The lambda calculus rewrite rule is:

(λxτ .U)V → U [[x := V ]]. (β)

ii) The context rewrite rules are:

(Λ	x�τ .U)〈	V 〉 → U [[	x := 	V ]] ( β)
(δh[�τ ]τ .U)�V � → U [[h := V ]]. (fill)

Definition 4.3.11 Let the ARS Aλc∼= be

Aλc∼= = 〈Ter(λc
∼=),→β ,→ β ,→fill〉.

We call the ARS Aλc∼= the underlying ARS of the calculus λc
∼=.
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The calculus λc
∼= is a subsystem of the framework λc.

The proof that the calculus λc
∼= is a subsystem of λc is a standard one, via the

Generation lemma, Substitution lemma and Subject reduction lemma. We only
state these lemmas; the proofs are analogous to the proof of the same lemmas in
the case of λc→. The only extra difficulty is to make distinction between ρ = ρ′

and ρ ∼= ρ′, when necessary. Furthermore, we also show that each λc
∼=-term has a

unique minimal type.

Lemma 4.3.12 (Generation lemma)
i) If Γ;Σ � u : ρ then there is ρ′ such that ρ ∼= ρ′ and (u : ρ′) ∈ Γ ∪ Σ.
ii) If Γ;Σ � λxρ

′
.U : ρ then ρ′ ∈ T∼= and there is a τ ∈ T∼= such that

ρ ∼= ρ′ → τ and Γ, x : ρ′; Σ � U : τ .
iii) If Γ;Σ � U1U2 : ρ then ρ ∈ T∼= and there is a τ ∈ T∼= such that Γ;Σ � U1 :

τ → ρ and Γ;Σ � U2 : τ .
iv) If Γ;Σ � Λ	x�ρ.U : ρ then 	ρ ∈ T∼=, there is a τ ∈ T∼= such that ρ ∼= [	ρ]τ and

Γ, 	x : 	ρ; Σ � U : τ .
v) If Γ;Σ � U 〈	U〉 : ρ then ρ ∈ T∼= and there are 	τ ∈ T∼= such that Γ;Σ � U :

[	τ ]ρ and Γ;Σ � 	U : 	τ .
vi) If Γ;Σ � δhρ

′
.U : ρ then ρ′ = [	τ ]τ and there is a τ ′ ∈ T∼= such that

ρ ∼= [	τ ]τ ⇒ τ ′ and Γ;Σ, h : [	τ ]τ � U : τ ′.
vii) If Γ;Σ � U1 �U2� : ρ then ρ ∈ T∼= and there are 	τ , τ ∈ T∼= such that

Γ;Σ � U1 : [	τ ]τ ⇒ ρ and Γ;Σ � U2 : [	τ ]τ .

Lemma 4.3.13 (Substitution lemma) If Γ, 	u : 	ρ,Σ � U : ρ and Γ;Σ � 	V : 	ρ
then Γ;Σ � U [[	u := 	V ]] : ρ

Lemma 4.3.14 (Subject reduction) If Γ;Σ � U : ρ and U→→V , then Γ;Σ � V :
ρ.

Theorem 4.3.15 (Subsystem λc
∼=) The underlying ARS Aλc∼= of the calculus

λc
∼= is an indexed sub-ARS of the underlying ARS Aλc of the context calculus λc.

Proof: One can easily check that the ARS Aλc∼= satisfies the conditions of the
definition (Definition 1.1.14) of an indexed ARS of Aλc. QED

The terms of λc
∼= do not have a unique type, because of the congruence on types

and the congruence typing rule. However, each λc
∼=-term has a unique minimal type.

Lemma 4.3.16 Let U be a λc
∼=-term. Then U has a unique minimal type.

Proof: Let U be a λc
∼=-term. That means that there is a derivation of U , say

Γ;Σ � U : ρ. By Lemma 4.3.6, there is a unique minimal ρ′ with ρ ∼= ρ′. Then, by
the congruence typing rule, Γ; Σ � U : ρ′. QED
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Properties of rewriting in λc
∼=

Rewriting in λc
∼= is confluent. The proof is the same as in the case of λc→ (see the

proof of Theorem 4.2.10), which relies on the commutation property of every pair
of the rewrite rules in λc.

Theorem 4.3.17 The calculus λc
∼= is confluent.

Rewriting in λc
∼= is not strongly, or even weakly, normalising, because the un-

typed λ-terms can be typed, including the notorious Ω. However, if the rewriting
is limited to the rewriting which involves the context machinery, it is strongly nor-
malising. We show this property into more detail. First we define the rewriting
which is related to contexts as the rewriting which is not a pure β-step.

Definition 4.3.18 (→[]) The rewrite step U → V in λc
∼= is called a

[]-rewrite step (notation U →[] V ) if it is not the case that

U ≡ C[(λxτ .M)N ]→β C[M [[x := N ]]] ≡ V

with τ ∼= t and M : t.

Let the restriction of λc
∼= to the rewriting related to contexts be called λc

∼=
[] .

Definition 4.3.19 (The calculus λc
∼=
[] ) Let the calculus λc

∼=
[] be defined on the

terms of λcλ with the rewrite relations generated by →[].

Remark 4.3.20 The set of terms Ter(λc
∼=
[] ) of the calculus λc

∼=
[] is closed under→[].

It is closed because Ter(λc
∼=
[] ) = Ter(λc

∼=) and the set Ter(λc
∼=) is closed under

rewriting of→, which includes→[]. Note that the calculus λc
∼=
[] is not a subsystem of

the calculus λc
∼= in the sense that the underlying ARS of λc

∼=
[] is not an indexed sub-

ARS of the underlying ARS Aλc∼= of λc
∼=. The calculus is not a subsystem, because

the rewrite relation →[] is not the restriction of →β to Ter(λc
∼=
[] ) = Ter(λc

∼=).
However, the fact that the calculus λc

∼=
[] is not a subsystem of λc

∼= does not disturb
the proof of strong normalisation of →[].

In fact, one could split the β-rewrite relation into two rewrite relations and then
consider λc

∼=
[] as an indexed sub-ARS of λc

∼=. Let

(λxτ .M)N →β M [[x := N ]]
(λxσ.M ′)N ′ →β[] M

′[[x := N ′]]

with τ ∼= t, M : t, and either σ �∼= t or M ′ is not of type t. Then

Aλc∼=[] = 〈Ter(λc
∼=),→β[],→ β ,→fill〉

is an indexed sub-ARS of Aλc∼= .



136 CHAPTER 4. APPLICATIONS OF λC

The proof of strong normalisation with respect to →[] proceeds as in the case of
strong normalisation with respect to →c in λcλ. This proof is also an adaptation
of Tait’s method as presented in [HS86].

For the purpose of the proof we will first define the notion of strong computability
with respect to →[]. Then we will show that it implies strong normalisation with
respect to →[] and that each λc

∼=-term is strongly computable with respect to →[].
The definition and the proofs use minimal types.

Among other properties of the λc
∼=-terms, the definition and the proofs below

rely on the following one. If U : t and U is SN [], then for all V which are SC [], it
holds that U V is SC []. The application is SC [] because no []-redexes are created
by the formation of U V ; hence, U V is SN [].

Notation. If U is strongly normalising with respect to →[], then we will say U is
SN []. Analogously, if U is strongly computable with respect to →[], we will say U
is SC []

Definition 4.3.21 (Strong computability in λc
∼=) Strong computability of

λc
∼=-terms is defined by induction to the minimal types of terms:

i) Let U : t. The term U is strongly computable with respect to →[] if and only
if U is strongly normalising with respect to →[].

ii) Let U : τ → σ with τ → σ a minimal type. Then, τ �∼= t or σ �∼= t. The term
U is SC [] if and only if for all strongly computable terms V with V : τ the
term U V (of type σ) is SC [].

iii) Let U : [	τ ]τ with [	τ ]τ a minimal type. The term U is SC [] if and only if for
all strongly computable terms 	V with Vi : τi for 1 ≤ i ≤ |	V | the term U 〈	V 〉
(of type τ) is SC [].

iv) Let U : [	τ ]τ ⇒ σ with [	τ ]τ ⇒ σ a minimal type. The term U is SC [] if and
only if for all strongly computable terms V with V : [	τ ]τ the term U �V � (of
type σ) is SC [].

Notation. For the sake of short notation, we introduce a notation for any
applicator and a notation for any type constructor. Let · denote any application,
that is, the implicit application · itself, the multiple application 〈〉 and the hole
filling � �. Let � denote any of the type constructors, →, ⇒ or [ ]. That is, instead
of τ → σ we will write τ � σ in which τ and σ have also been adapted, instead of
ρ⇒ τ we will write ρ � τ with adapted ρ and τ , and instead of [	τ ]τ we will write
τ1 � . . . � τn � τ with adapted 	τ and τ . In the rest of the section we work only
on typable terms and on minimal types.

Lemma 4.3.22 Let ρ be a minimal type.
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i) Let 	U be strongly normalising with respect to →[]. Let u · 	U : ρ. Then u · 	U
is strongly computable.

ii) Let U be a λc
∼=-term of type ρ. If U is SC [] then U is SN [].

Proof: Let 	U be SN []. Let u · 	U : ρ, with ρ a minimal type. The two statements
are proved simultaneously by induction to ρ.

ρ = t:

i) Then u · 	U is SN [], and by definition it is also SC [].

ii) If U : t is SC [], then it is SN [] by definition.

ρ = τ → σ:

i) Let W : τ be SC []. By the induction hypothesis for (ii), W is also SN [].
Then (u · 	U)W is also SC [] by the induction hypothesis of (i). Then by
definition, u · 	U is SC [].

ii) Let U : ρ be SC []. Let x : τ be a fresh variable. Then, by the induction
hypothesis for (i), x is SC []. By definition U x is SC []. By the induction
hypothesis for (ii), the term U x is SN []. Then the subterm U is SN []

too.

ρ = [	τ ]τ :

i) Let 	W : 	τ be SC []. Then, by the induction hypothesis for (ii), 	W are
also SN []. Then (u · 	U)〈 	W 〉 is SC [] by the induction hypothesis for (i).
Then by definition, u · 	U is SC [].

ii) Let U : ρ be SC []. Let 	x : 	τ be fresh variables. Then, by the induction
hypothesis for (i), 	x are SC []. Then by definition, U 〈	x〉 is SC []. By the
induction hypothesis for (ii), U 〈	x〉 is SN []. Then its subterm U must be
SN [] too.

ρ = [	τ ]τ ⇒ σ:

i) Let W : [	τ ]τ be SC []. Then, by the induction hypothesis for (ii), W is
also SN []. Then (u · 	U)�W � is SC [] by the induction hypothesis for (i).
Then by definition, u · 	U is SC [].

ii) Let U : ρ be SC []. Let h : [	τ ]τ be a fresh variable. Then, by the induction
hypothesis for (i), h is SC []. Then by definition, U �h� is SC []. By the
induction hypothesis for (ii), U �h� is SN []. Then its subterm U must be
SN [] too.

QED
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Lemma 4.3.23

i) If U [[x := V ]] is SC [], then (λxτ .U)V is SC [].

ii) If U [[	x := 	V ]] is SC [], then (Λ	x�τ .U)〈	V 〉 is SC [].

iii) If U [[h := V ]] is SC [], then (δh[�τ ]τ .U)�V � is SC [].

Proof:

i) Let U [[v := V ]] be SC []. Let U [[v := V ]] : ρ1 � . . . � ρn � t with ρ1 �

. . . � ρn � t minimal. Let 	W be SC [] with Wi : ρi for 1 ≤ i ≤ n. Then
U [[v := V ]] · 	W is SC [] and of type t. Therefore it is SN [] by definition.

Suppose ((λxτ .U)V ) · 	W has an infinite reduction: Then, since U, V, 	W are
SN [], eventually the head redex has to be reduced:

((λxτ .U)V ) · 	W →→[] ((λxτ .U ′)V ′) · 	W ′ →β U ′ [[x := V ′]] · 	W ′ →→[] . . .

Then U [[x := V ]] · 	W has an infinite reduction too:

U [[x := V ]] · 	W →→c U
′ [[x := V ′]] · 	W ′ →→c . . .

This is a contradiction with the fact that U [[x := V ]] · 	W is SN [].

Then, ((λxτ .U)V ) · 	W is SN []. Because this term is of type t, it is SC [] by
the definition of SC []. Because 	W are arbitrary SC [] terms, (λxτ .U)V is SC []

by definition.

ii) Analogously.

iii) Analogously. QED

Lemma 4.3.24 Let U be a λc
∼=-term. Then U is SC [].

Proof: The proof is conducted by induction to U . For the induction step to work,
we need to prove the following strengthening of the lemma:

Let 	u be |	V | variables such that ui and Vi are of the same type for
1 ≤ i ≤ |	V |. If 	V are SC [] then U [[	u := 	V ]] is SC [].

So let 	u and 	V be as required. Let W � denote W [[	u := 	V ]]. We treat only three
cases:

U ≡ u: with u �≡ ui for all 1 ≤ i ≤ |	u|.
Then U� = u. By Lemma 4.3.22(i), u is SC [].
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U ≡W1W2: Then U� = W �
1 W

�
2 . By the induction hypothesis, the terms W �

1 and
W �

2 are SC [].

If W1 : t and W2 : t, then U : t. Because W �
1 and W �

2 are SC [] of type t, they
are also SN [] by definition. Then W �

1 W
�
2 is also SN [] because no []-redexes

are created by the application. Because W �
1 W

�
2 is of type t it is also SC [] by

definition.

Otherwise, because W �
1 and W �

2 are SC [], so is W �
1 W

�
2 .

U ≡ δh[�τ ]τ .W : Then U� = δh[�τ ]τ .W �. Let W ′ be a SC [] terms of the same type
as h. Then W [[	u := 	V ]] [[h := W ′]] is SC [], by the induction hypothesis. That
is, W �[[h := W ′]] is SC []. By Lemma 4.3.23(iii), the term (δh[�τ ]τ .W �)�W ′� is
SC []. By the definition of SC [], the term δh[�τ ]τ .W � is SC [].

QED

Theorem 4.3.25 (Strong normalisation of →[]) The rewriting with respect to
→[] in λc

∼= is strongly normalising.

Proof: This theorem is a corollary of Lemma 4.3.22(ii) and Lemma 4.3.24. QED

Theorem 4.3.26 The rewriting with respect to →[] in λc
∼= is complete.

Proof: By Theorem 4.3.25 the rewriting with respect to →[] in λc
∼= is strongly

normalising. Furthermore, by keeping in mind that rewriting with respect to →[]

preserves types, one can easily check that the rewriting with respect to→[] is weakly
confluent. Then, by Newman’s lemma 1.1.11, the rewriting with respect to →[] is
also confluent. QED

Comparison to the calculi λcλ and λc→

We compare λc
∼= to the calculi λcλ and λc→. We do so by defining translations

of these calculi into λc
∼= in such a way that rewrite steps are preserved. Further-

more, we will show that the calculus λc
∼= is more expressive than λcλ and λc→,

because it contains representations of objects from lambda calculus which cannot
be represented in λcλ or λc→.

The calculus λcλ can be translated into λc
∼= rather straightforwardly. Transla-

tion involves linearisation of the simultaneous hole filling of λcλ and translation of
composition into a definable function on contexts.

Definition 4.3.27 (Translation of λcλ into λc
∼=)

i) The types of λcλ are translated to λc
∼= as follows:

�� t 		 = t
��[	t] t 		 = [	t]t
��[	t1] t× . . .× [	tn]t⇒ t		 = [	t1]t⇒ . . .⇒ [	tn]t⇒ t
��[	t]([	t1] t× . . .× [	tn]t⇒ t)		 = [	t]([	t1]t⇒ . . .⇒ [	tn]t⇒ t).
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ii) The terms of λcλ are translated to λc
∼= as follows:

��u		 = u
�� λx.U 		 = λxt. ��U		
�� U V 		 = ��U		 ��V 		

�� Λ	x.U 		 = Λ	x�t. ��U		

�� U 〈	V 〉 		 = ��U		 〈��	V 		〉
�� δ	h.U 		 = δh

[�t1]t
1 . . . . δh

[�tn]t
n . ��U		 if U : [	t1]t× . . .× [	tn]t⇒ t

�� U �	V � 		 = ��U		 ���V1
		� . . . ���Vn		�

�� U ◦ 	V 		 = comp ��U		 ��	V 		

where, if

U : [	t1]t× . . .× [	tn]t⇒ t
Vi : [	ti]([	ti,1]t× . . .× [	ti,li ]t⇒ t) (1 ≤ i ≤ n)

then

comp ≡ λu. δv1. . . . δvn. δh1,1. . . . δhn,ln .
u�Λ	x1. (v1 〈	x1〉)�h1,1� . . . �h1,l1�� . . .
�Λ	xn. (vn 〈	xn〉)�hn,1� . . . �hn,ln��

where the types of the abstractions, which have been left out for the sake of
readability, are

u : [	t1]t× . . .× [	tn]t⇒ t
vi : [	ti]([	ti,1]t× . . .× [	ti,li ]t⇒ t) (1 ≤ i ≤ n)
hi,j : [	ti,j ]t (1 ≤ i ≤ n, 1 ≤ j ≤ li)
	xi : 	ti (1 ≤ i ≤ n).

iii) Let ∆ be a basis. Then ��∆		 = {(u : ��ρ		) | (u : ρ) ∈ ∆}.

Translation preserves typing.

Proposition 4.3.28 If Γ;Σ � λcλU : ρ, then ��Γ		; ��Σ		 � λc∼=
��U		 : ��ρ		.

Proof: By induction to the length of the derivation Γ;Σ � λcλU : ρ. One checks
that each derivation rule of λcλ can be translated into a derivation in λc

∼=. QED

Translation preserves rewrite steps.

Proposition 4.3.29 If U → V in λcλ, then ��U		→→ ��V 		 in λc
∼=.
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Proof: By induction to U . In the base cases, check that a reduct in λcλ can be
translated to a reduct in λc

∼=. Note that the translation of one step in λcλ may lead
to many (including zero) steps in λc

∼=. For example, (δε.U)�� →fill U is translated
into an empty rewrite sequence. QED

Note that the strong normalisation of the context-related rewriting in λcλ follows
from the strong normalisation of →[] rewriting in λc

∼=.

The calculus λc
∼= is more expressive than λcλ. We have, for example,

� (λc[]t⇒t. λxt. c�Λε. x�) : (([]t⇒ t)→ t→ t).

Note that the term λc[]t⇒t. λxt. c�Λε. x� represents a function ranging over a context
and a term which fills the hole of the context by the term without any communica-
tion. However, such an object cannot be represented in λcλ because λcλ does not
support functions ranging over contexts.

Translation of λc→ into λc
∼= is given next. The properties of the translation are

proved in the similar way as in the case of the translation of λcλ into λc
∼=; we leave

the proofs out.

Definition 4.3.30 (Translation of λc→ into λc
∼=)

i) The types of λc→ are translated to λc
∼= as follows:

�� a 		 = t
��[	τ ]τ 		 = [��	τ 		]��τ 		
��[	τ ]τ ⇒ σ		 = [��	τ 		]��τ 		 ⇒ ��σ		
��[	σ]([	τ ]τ ⇒ σ)		 = [��	σ		]([��	τ 		]��τ 		 ⇒ ��σ		).

ii) The terms of λc→ are translated to λc
∼= as follows:

��u		 = u
�� λxτ .U 		 = λx

��τ��
. ��U		

�� U V 		 = ��U		 ��V 		

�� Λ	x�τ .U 		 = Λ	x
���τ��

. ��U		

�� U 〈	V 〉 		 = ��U		 〈��	V 		〉
�� δhρ.U 		 = δh

��ρ�� . ��U		
�� U �V � 		 = ��U		 ���V 		�.

iii) Let ∆ be a basis. Then ��∆		 = {(u : ��ρ		) | (u : ρ) ∈ ∆}.

Proposition 4.3.31 If Γ;Σ � λc→U : ρ, then ��Γ		; ��Σ		 � λc∼=
��U		 : ��ρ		.

Proposition 4.3.32 If U → V in λc→, then ��U		 → ��V 		 in λc
∼=.

The calculus λc
∼= is more expressive than the calculus λc→, because in λc

∼= the
terms of untyped lambda calculus can be represented, which is not the case in λc→.
For example, � λc∼= Ω : t.
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λc

λcλ λc
∼= λc→

translationtranslation

Figure 4.7: Relationship between λc and its applications

The introductory example in λc
∼=

As a final remark, the introductory example 2.2.1 can be translated into λc
∼=. The

translations and the repaired commutation diagram has the same form as in Exam-
ple 2.5.3 and in the case of λcλ, now with type decorations:

(δg[t]t. (λyt. g 〈y〉)x)�Λyt. xy� →β (δg[t]t. g 〈x〉)�Λyt. xy�

↓fill

↓fill

↓ β

(λyt. (Λyt. xy)〈y〉)x →→β, β xx.

Here, →→β, β stands for →β ;→ β or → β ;→β .

4.4 Summary of comparisons

In this section we summarise the relationship between the context calculi considered
in this chapter.

See Figure 4.7. This figure shows the relationship between the calculi λcλ,
λc→, λc

∼= and the framework λc. In the figure, the solid-line arrows denote the
subsystem-relation in the sense of Definitions 1.1.13 and 1.1.14: B → A means
that the underlying ARS of B is an (indexed) sub-ARS of the underlying ARS of
A. The �→-arrows denote translation: B �→ A. By translation we mean that
the elements of B can be translated into the elements of A. Moreover, translation
preserves rewrite steps.

We comment on the arrows:

- The calculi λcλ, λc→, and λc
∼= are all (indexed) subsystems of the frame-

work λc. By ignoring the indices, they are actually full subsystems of the
framework.
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calculus formalises contexts of functions over
contexts?

translated to

λcλ untyped λ-calculus no untyped λ-calculus

λc→ λ→ yes λ→

λc
∼= untyped λ-calculus yes untyped λ-calculus

Table 4.1: The expressivity of the context calculi

- The calculi λcλ and λc→ can be translated into the calculus λc
∼=.

See Table 4.1. The table compares the expressivity of the calculi λcλ, λc→, and
λc

∼= as context calculi, and their relationship with lambda calculi.
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Chapter 5

De Bruijn’s segments

In [Bru78], N.G. de Bruijn introduced a lambda calculus extended with contexts of a
special form, called segments. The purpose of segments was facilitating definitions
and manipulation of abbreviations in Automath (see [NGdV94]). The segment
calculus included means for representing segments, variables ranging over segments
and abstractions ranging over segments. In [Bal86, Bal87] H. Balsters gave a simply
typed version of the segment calculus and proved confluence and subject reduction.
Later, N.G. de Bruijn [Bru91] showed how telescopes, a special kind of segments,
can be considered in a more general setting.

Segments are contexts, considering the structure of segments and transforma-
tions defined on segments. Technically, segments can be characterised as contexts
with precisely one hole that is placed at a designated position. More precisely, the
hole is placed at the leftmost innermost position of a segment, that is, the hole is
the leftmost leaf in the tree representation of a segment.

De Bruijn’s segment calculus takes a special place in this thesis. De Bruijn’s
segment calculus was the starting point of our research. A slight generalisation of
these contexts has led to the framework λc.

In this chapter we concentrate on segments and the segment calculus as described
in [Bru78] and [Bal87]. This chapter is organised as follows. Section 5.1 is an
introduction to segments and de Bruijn’s segment calculus. In the formalisation of
segments and in designing a segment calculus, de Bruijn faced the same problems
as one does when formalising λ-contexts: variable capturing and the problem of
extending the β-rewrite relation to segments. However, de Bruijn solved these
problems in a way that greatly differs from our approach in λc. De Bruijn’s solution
is also explained in this section.

Section 5.2 presents the calculus λcs which is another application of the frame-
work λc, in addition to the calculi presented in Chapter 4. From the point of view
of lambda calculus, the calculus λcs is an extension of the simply typed lambda
calculus with polymorphic segments. The calculus λcs is complete, that is, it has
the confluence property and the strong normalisation property, which we will show
here. Moreover, we will compare it to the calculus of de Bruijn and the calculus λc→

145
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·

λf

λg

·

·

λx

x

xf

g

Figure 5.1: A segment of a λ-term

of Section 4.2, which also deals with simply typed lambda calculus with contexts.

5.1 De Bruijn’s segments and segment calculus

In this section we give a description of segments and de Bruijn’s segment calcu-
lus. We also give a motivation for introducing segments and a short historical
background. The notation and terminology used here are conform to the notation
in [Bru78]. Moreover, we assume the reader is familiar with name-free notation
for terms (also called de Bruijn notation, see for example [Bru72]) and an explicit
substitution calculus (see for example [ACCL91] or [Ros96]).

The subsection on details of de Bruijn’s calculus is rather technical, and it is
meant as a comment on the first six pages of [Bru78].

Segments

Segments were introduced for abbreviating segments of λ-terms. An example of
what is meant by a segment of a λ-term is given in Figure 5.1. In the figure the
λ-term λg. (λf.λx. f xx)g is depicted in tree notation. The segment (λf.λx. )g
of the λ-term is included in a box. This segment is not a λ-term, because the
‘body’ of the abstractor λx is ‘open’. Hence, the existing abbreviation mechanism
(cf. Remark 1.2.16) in λ-calculus using (term) variables cannot be employed for
segments.

In the context of the project Automath de Bruijn extended λ-calculus with a
notion of segment. A segment is, in the words of de Bruijn (see [Bru78], p.20), a
λ-tree which is open-ended at the end of the spine. The spine of a λ-tree is the path
from the root of the λ-tree down to the leftmost leaf of the λ-tree. Thus, the end of
the spine of a λ-tree is the leftmost leaf of that λ-tree (cf. ‘heart’ position in [Geu93]).
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λx

λf
g

ω

b

a

·

b) ωab

λx

λy

a) λx. λy. ωx,y c) (λf. λx.ωf,x)g

·

·

ωx,y ωf,x

Figure 5.2: Segments

By open-ended de Bruijn means that a segment is an incomplete λ-term: a segment
becomes a λ-term upon filling the open end by an arbitrary λ-term. In de Bruijn’s
calculus, the open end of a segment is explicitly denoted by ωL, where the label
L denotes the binders in whose scope the open end is. The label is necessary, as
we will see later, for establishing the communication between the segment and the
λ-terms or segments to be put into ω.

Example 5.1.1 (Segments) Examples of segments are λx.λy.ωx,y, ωab, and
(λf.λx.ωf,x)g. These segments are depicted in tree notation in Figure 5.2. The
label of ω in, for example, (λf.λx.ωf,x)g is f, x because ω lies in the scope of the
binders λf and λx.

Notation. Because tree notation is in this thesis considered as an alternative
notation, we will often confuse a λ-term or a segment and its tree representation.
Sometimes we will use both notations in one structure.

As already suggested, the open end of a segment is intended to be filled. By
filling the open end of a segment we mean literally replacing the open end ω by a λ-
term or a segment. Filling the open end by a λ-term results in a λ-term. Moreover,
the open end may also be filled by a segment to form a new, bigger segment. In
both cases, upon filling the open end, variable capturing may occur: some free
variables of the object filled into the open end may become bound by the binders of
the segment. This variable capturing is, as in the case of filling holes of a context,
intentional.

Example 5.1.2 Filling the open end of the segment (λf.λx.ωf,x)g by the λ-term
f xx results in the λ-term (λf.λx. f xx)g. In the result, the free variables f and x
of the λ-term become bound by the binders λf and λx of the segment, respectively.

Considering the structure of segments and the operations defined on segments,
segments may rightfully be called a special kind of λ-contexts. The open end acts
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as a hole. Filling the open end by a λ-term or a segment amounts to filling a hole of
a λ-context: this comparison regards both the structure of the result (a λ-term or
a segment) and the intentional variable capturing. The distinguished properties of
segments with respect to λ-contexts are the uniqueness of the open end occurrence
and its specific position.

The comparison of segments with λ-contexts entails the same problems with for-
malisation. Extending λ-calculus with segments involves the same problems regard-
ing implementation of variable capturing and the β-rewrite relation on segments,
which have been described in Section 2.2.

De Bruijn solved these problems in a way that is very different from our ap-
proach in the framework λc. The difference in the approaches comes primarily from
different aims: de Bruijn wanted a calculus which was implementation-oriented,
that is easy to implement in Automath, whereas we wanted a calculus which was
close to λ-calculus. De Bruijn’s choices in designing a segment calculus come from
his intended applications of segments. In these applications an abbreviation for
segments was desirable, and these abbreviations were used in a very specific way.
We illustrate this abbreviation mechanism by an example.

Example 5.1.3 See Figure 5.3. The figure shows two terms in tree notation. In
the tree on the left, a segment of a term has been included in a box. In the tree on
the right, that segment has been abbreviated as follows:

- a segment variable tf,x (labelled and with arity 1) has been introduced and
the segment has been replaced by this variable; the label of t consists of the
variables that are bound by the segment in the argument of t, and the label
binds the free occurrences of f and x in the argument of t;

- the abstraction λt has been introduced;

- the segment has been extended with the explicit open end ωf,x; and

- the application has been introduced with the segment as an argument.

The application–abstraction pair serves as the definition of the segment
t = (λf.λx.ωf,x)g in tf,x(f xx).

The figure in the example shows how segment variables are introduced. By
looking at the figure from left to right, the figure shows how a variable for a segment
can be introduced, coupled with the segment and used. By looking at the figure
from right to left, the figure shows how a segment variable can be substituted by a
segment.

The usage of segment variables is remarkable: whenever a segment variable oc-
curs, it is provided with an object to be put into the open end of the segment for
which this variable holds place. Hence, segment variables are never used on their
own, without this argument. Moreover, when a segment variable is substituted by
a segment, this argument is immediately placed into the open end of the segment.
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Figure 5.3: Abbreviations for segments

That is, hole filling is immediately computed upon substitution for a segment vari-
able by a segment. Note that when a segment variable is used, it is labelled by the
binders of the segment that it holds place for; in the example, the occurrence of the
segment variable is tf,x, and f and x are (the names of) the binders of the segment.
Moreover, the label matches the label L of ωL of the segment.

Such a manipulation with segments is fine-tuned for applications of segments.
We will first describe these applications of segments and then return to some details
of de Bruijn’s segment calculus.

Application of segments

Segments were introduced to facilitate the use of abbreviations for segments of
λ-terms in the family of Automath languages.

Before going into applications of segments, we devote a few words to the Au-
tomath project. The Automath project started in 1967 under the auspices of N. G.
de Bruijn. The primary goals of the project were the following:

- first, to design a language, in the words of de Bruijn (see [NGdV94] page 73),
‘suitable for expressing very large parts of mathematics, in such a way that
the correctness of the mathematical contents is guaranteed as long as the rules
of grammar are obeyed’; and

- second, to design computer programs to automate the verification of Au-
tomath texts.

That is, the goals were to design a logical framework and implement it as a proof-
checker. Three decennia of research resulted in a family of typed λ-calculus-like
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formal languages. We name a few: AUT-68, AUT-QE, AUT-Π, AUT-SL, AUT-
SYNT, AUT-∆Π, and AUT-QE-NTI. Several of the Automath languages were im-
plemented.

For an introduction to the Automath project the reader is referred to [Bru67,
Daa73, Bru80]; for a description of Automath languages to [Daa80, Ben81]; for
examples of mathematical theories formalised in Automath to [Ben77, Zuc75].

One of the Automath languages is of particular interest to segments, namely
AUT-SL (Single Line, see [Bru71, Ben77]). The reason why it is interesting is the
following. In general, Automath texts, called books, consist of lines. Each line deter-
mines a basis, declares an object or an axiom, or defines an object. An Automath
book is correct if it satisfies certain well-formedness requirements, including cer-
tain well-typedness requirements. Checking the correctness of an Automath book
involves also reasoning about bases, declarations and definitions. Hence, checking
the correctness of a book involves some meta-reasoning. In contrast, in AUT-SL
Automath books are represented as one large λ-term. Bases, declarations and defini-
tions are encoded as parts of such a λ-term. The advantage of such a representation
is that the correctness of an Automath book corresponds to the well-typedness of a
λ-term. Accordingly, studying properties of Automath books and transformations
defined on them boils down to studying properties of a typed lambda calculus. The
development of AUT-SL has led to Nederpelt’s Λ (also called AUT-Λ, see [Ned73]),
for which the first proof of strong normalisation for an Automath language was
given.

However, there is also a disadvantage of such a book representation: there may
occur many repetitions of segments. The size of a book representation can be re-
duced by introducing an abbreviation mechanism (in the sense of Remark 1.2.16) for
segments: notation for segments, segment variables and abstractions over segment
variables. Hence, a segment calculus is desirable.

Back to the applications of segments. In the literature we find two applications
of segments in languages such as AUT-SL. We describe the applications and give
an example of each. Note that both applications involve a typed lambda calculus
with segments.

i) Segments can be used for representing abstract mathematical structures such
as groups, linear orders, and vector spaces, within lambda calculus. Such
structures are sequences of declarations and axioms:

x1 : A1, . . . , xn : An.

Instances of such structures are also tuples:

(a1, . . . , an) with
a1 : A1, a2 : A2[[x1 := a1]], . . . an : An : [[x1 := a1, . . . , xn−1 := an−1]].

In fact, for this application only the segments of a special form are needed:
the segments consisting only of abstractions and the segments consisting only
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of applications. The segments consisting only of abstractions are called tele-
scopes. The segments consisting only of applications are called vectors. Then
an abstract structure can be represented as the telescope

S ≡ λx1 : A1 . . . . λxn : An. ω�x,

and an instance of S can be represented as the vector

a ≡ ωa1 . . . an.

The vector a is said to ‘fit’ into the telescope S.

ii) Segments can be used to uniformly represent an Automath book, line by
line. As already said, an Automath book consists of lines and each line is a
basis, declaration or a definition. Each of these lines can be represented as a
segment. Then translation of a book, line by line, corresponds to combining
segments that represent these lines, one by one.

We give an example of each application in turn. In both examples it is necessary
to have segments and segment abbreviations at the same level as λ-terms. Only
in that case can segments be freely manipulated: they can be denoted; segment
variables and abstractions over segment variables can be used in abbreviations;
segments can be passed as arguments of a function; and segments may be involved
in the standard transformations including substitution and β-rewriting.

In both examples we use types in abstractions over term variables and leave
the types of abstractions over segment variables out. We depict both examples
as (quasi-)λ-trees. We say ‘quasi’, because the trees will also include λ-terms as
subtrees (due to the lack of space). Moreover, in tree notation, the type of the
abstraction over a term variable is denoted together with the term variable.

Example 5.1.4 (Segments for mathematical structures) This example is
about a reflexive–euclidic binary relation. A binary relation R over a set S is
reflexive if and only if ∀x ∈ S.Rxx, and it is euclidic if and only if ∀x, y, z ∈ S
if Rxy and Rxz then Ryz. This example is also about two properties of such a
relation: transitivity and symmetry. One can show that for such a relation R it
holds ∀x, y, z ∈ S if Rxy and Ryz then Rxz, and ∀x, y ∈ S if Rxy then Ryx.

In a λ-calculus with segments, the structure of a reflexive–euclidic binary relation
can be represented by the segment

re ≡ λS : Set .
λR : (S → S → Prop).
λr : (Πx : S.Rxx).
λe : (Πx : S.Πy : S.Πz : S.Rxy → Rxz → Ryz). ωS,R,r,e.

It can be defined by using an abstraction over a segment variable t and using an
application with re as the right argument, as in Figure 5.4. The rest of the λ-term
in the figure contains the proofs trans and sym that R is transitive and symmetric,
respectively. The reader is invited to check the proof terms.
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·

λt

·

λq : Ryz

eyxz(exyxp(rx))q

λp : Rxy

·

λp : Rxy

exyxp(rx)

λtrans

λsym

λS : Set

λR : S → S → Prop

λr : (Πx : S.Rxx)

λe : (Πx, y, z : S.Rxy → Rxz → Ryz)

ωS,R,r,e

tS,R,r,e

λx, y, z : S

tS,R,r,e

λx, y : Sωt,trans,sym

Figure 5.4: A reflexive–euclidic relation is transitive and symmetric
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Example 5.1.5 (Segment calculus for Automath) We follow the example
given in [Bru78] (p. 35). We first give an example of an Automath book. Then
we represent this book as a part of AUT-SL-term, and as a segment.

Before going into the details of the example, we explain the Automath notation
that is essential in this example. In Automath there is only one binder, namely
[x : A]. Hence, there is no distinction between the binders λx : A and Πx : A as in
for example the λ-cube. For example, the λ-term and its type (λx : α.λy : β.x) :
(Πx : α.Πy : β.α) are denoted in Automath as ([x : α][y : β]x) : ([x : α][y : β]α).
Such a notation has an advantage when using segments: for example, if s ≡ [x :
α][y : β] then s can be used as abbreviation in the term as well as in its type:
s(x) : s(α).

Back to the example of an Automath book. We will represent the following
Automath book1. The lines are numbered for easy reference.

context
indicator identifier definition category

(1) − α := − type
(2) α x := − α
(3) x y := − α
(4) y f := PN α
(5) x b := fαxx α

We explain the book line by line.

i) The first line contains a definition of the basis α : type.

ii) The second line contains a definition of the basis α : type, x : α.

iii) The third line contains a definition of the basis α : type, x : α, y : α.

iv) The fourth line is a declaration of f of type [α : type][x : α][y : α]α. Here,
PN stands for Primitive Notion and it is predefined.

v) The last line is a definition of b as [α : type][x : α]fαxx of type [α : type][x :
α]α.

The main part of this book is the declaration of f and the definition of b, whereas
the first three lines are a stepwise formation of the basis used in the declaration and
definition. Hence, in the Automath language AUT-SL this book is represented2 as
follows:

[f : [α : type][x : α][y : α]α] ([b : [α : type][x : α]α] . . . ) ([α : type][x : α]fαxx).
1This book is written in the Primitive Automath Language (PAL), which has no abstractions.
2Actually, in the Automath book, the parameter mechanism has been used in the declaration

of f and the definition of b. By the parameter mechanism, we mean that the function f is defined
as f(α, x, y) = t, as opposed to the definition of f using the λ-abstraction of lambda calculus,
as in f = λα. λx. λy. t. The parameter mechanism is weaker than the λ-abstraction. Thus, the
representation of the Automath book given here is an embedding into a stronger system. However,
this does not weaken the argument of the example.
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Note that this is an unfinished AUT-SL-term, where the dots . . . denote the missing
part. As we mentioned earlier, AUT-SL does not support segments, so this is an
unfinished AUT-SL-term.

See now Figure 5.5. The figure shows a segment. The dashed lines separate
the representations of the Automath lines; the parts are numbered accordingly. We
explain the segment part by part.

i) The first part contains a definition of the basis α : type. The definition is
represented by the segment [α : type]ωα, using the segment variable s and an
abstraction–application pair.

ii) The second part contains a definition of the basis α : type, x : α. The defini-
tion is represented by extending the existing context s, in an analogous way
as in the first part.

iii) The third part contains a definition of the basis α : type, x : α, y : α. The
definition is represented by extending the existing context t, in an analogous
way as in the first and second part.

iv) The fourth part is a declaration of f of type [α : type][x : α][y : α]α. The
type of f is given by using the abbreviation for the segment u and filling its
open end by α.

v) The last part is a definition of b as [α : type][x : α]fαxx of type [α : type][x :
α]α. Both the definition and type of b use the abbreviation for the segment
u.

In this representation of the Automath book given above, abbreviations (i.e.
segment variables) have been used for parts of the term that occur repeatedly.
Though, there is some overhead in the segment due to the formation of the bases.
However, this overhead is not bad. In general, in a (bigger) Automath book, the
same bases are often used many times, so it pays off to define the bases once as
segments and use the segment variables (abbreviations!) in the remainder of the
book.

Historical remarks

The origin and development of telescopes, segments and segment calculus are re-
lated to the Automath project and the people working on that project. In the early
formalisations of pieces of mathematics, de Bruijn proposed using telescopes for
representing abstract structures. In [Zuc75], where a piece of classical real analysis
has been formalised in the Automath language AUT-Π (telescopes where not in-
cluded in AUT-Π), J. Zucker mentions that telescopes would ‘especially be useful in
an Automath treatment of abstract algebra.’ In [Ben77], where Landau’s ‘Grundla-
gen’ have been translated into Automath, L.S. van Benthem Jutting also mentions
that telescopes are useful structures. In the Automath language AUT-SYNT, pro-
posed and partly developed by I. Zandleven, telescopes were incorporated; however
AUT-SYNT was never implemented.
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·

(1)

[s]

[α : type]

ωα

·

[t]

sα

[x : α]

ωα,x

[u]

tα,x

[y : α]

ωα,x,y

·

[f : uα,x,y − α]

(2)

(3)

(4)

·

tα,x

·
·
· x

x

αf

ωs,t,u,f,b

[b : tα,x − α]

(5)

Figure 5.5: Example of an Automath book
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In [Bru78] de Bruijn defined the segment calculus, which we study in this chap-
ter. In that report, de Bruijn motivates the use of segments in a broader sense
as described by our second motivation, as a logical framework. De Bruijn con-
tributed the weak confluence proof to R. Wieringa and L.S. van Benthem Jutting,
who checked this independently. This report contains the untyped and a simply
typed version of the calculus where types are generated over one type constant.

In [Bal86, Bal87], H. Balsters defined the calculus λσ, which is a restriction
of the original calculus. H. Balsters proved that λσ has the confluence property
and that its simply typed version λTσ (where types are generated over one type
constant) has the subject reduction property.

In [Bru91] de Bruijn described telescopes in a general setting with dependent
types. This is an abstract approach, independent of a particular lambda calcu-
lus. It describes a calculus on telescopes, including composition (concatenation)
of telescopes and tuples that fit into telescopes. Telescopes were not typed in this
system. The focus is on telescopic mappings, which represent morphisms between
the abstract structures that telescopes represent.

Details of de Bruijn’s segment calculus

The original calculus is called Cλξφωη. It is an extension of a name-free untyped
lambda calculus. Among the added features are: a symbol for denoting a hole,
segment variables, functions over segments and terms, and renamings for adjusting
indices. With segment variables and functions over segments, and with β-reduction
defined on both terms and segments, this calculus, as far as the author of this thesis
knows, is the first context calculus.

We go here into some details of the calculus Cλξφωη. We start with a description
of the terms of Cλξφωη, continue with rewriting on these terms and typing of these
terms, and end with an overview of the properties of Cλξφωη.

Signature and formulas. Terms of the calculus Cλξφωη are called formulas by
de Bruijn. The formulas of the calculus are divided into two sorts: terms, with a
variable ξ(n) at the end of the spine; and segments, with an open end ω(k, θ) at the
end of the spine.

The formulas are built from a signature. The signature is an extension of the
signature of lambda calculus with function symbols of fixed arity. The extensions
pertain to the notation for segments, the notation for segment variables and the
notation supporting transformations on segments and terms.

We give the definition of the formulas of Cλξφωη. We deviate here from de
Bruijn’s notation using ‘combs’, and use a more usual notation (cf. also [Bal87]).
The formulas of Cλξφωη are defined by

t ::= ξ(n) | λt | δt t | f(	t) | φ(θ)t | ω(k, θ) | η(k, n)t

and, as can be seen from this formulation, the signature consists of the following
symbols: (in the signature, ξ, λ, δ, φ, ω and η are fixed (parts of the) symbols)
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- (term) variables: denoted by ξ(n) where n ∈ IN and n ≥ 1. The number n
pinpoints the binder by which this variable is bound, as it is customary for
name-free variables. That is, n is a ‘de Bruijn’s index’.

- abstractor: unary operator denoted by λ. This abstractor is used for binding
both term and segment variables.

- applicator: binary operator denoted by δ. Applicator is, contrary to the
lambda calculus, in this calculus explicitly written. The order of arguments
of an applicator is reversed, viz. δaf , contrary to the standard notation f a.
This inverse notation has the advantage that in a β-redex δa(λx.M), the
argument a is easy to see being between δ and λ.

- function symbols: with fixed arity.

- reference transforming mappings: unary operators denoted by φ(θ) where θ
is a mapping with θ : {1, . . .} → {1, . . .}. The mapping θ adjusts the indices,
which is necessary during β-rewriting. In this calculus β-rewriting is defined
stepwise, where the application–abstraction pair (λx. )t traverses through an
object, thus permuting the order of abstractors.

- the open end or end–of–segment symbol: nullary operator denoted by ω(k, θ)
where k ∈ IN and θ is a mapping with θ : {1, ..., k} → {1, . . .}. This symbol
lies at the end of the spine of a segment. The natural number k is the number
of abstractors at the spine of the segment that can bind free variables in an
object placed into ω(k, θ). The mapping θ keeps track of permutations of
abstractions which occur during rewriting.

- segment variables: unary operators denoted by η(k, n) where k, n ∈ IN and
n ≥ 1. The first number k denotes the number of abstractors lying on the
spine of the segment that this variable holds place for. The second number n
denotes by which binder this variable is bound. That is, n is a ‘de Bruijn’s
index’.

The integer k in ω(k, θ) is called the weight of the segment where ω(k, θ) lies on
the spine.

The notation is rather straightforward. The variables, abstractor and applicator
are the same as in lambda calculus in name-free notation. The reference transform-
ing mappings are introduced only for an efficient performance of transformations
on these elements. The end–of–segment symbol denotes, as the name suggests, the
end of a segment. The only symbol that needs some explanation is the segment
variable. Segment variables are unary. Abbreviations of segments are used only to
form something else, a new segment or a term; they are not used on their own.

Example 5.1.6 We give some examples of the formulas of Cλξφωη. Let idk denote
the identity function from {1, . . . , k} to IN.
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i) The segment (λf.λx.ωf,x)g of Example 5.1.3 (see Figure 5.3) is represented
as

δξ(1)λλω(2, id2).

ii) The whole element with the segment of the same example (Example 5.1.3, see
the element on the right of Figure 5.3) is represented as

λδ(δξ(1)λλω(2, id2))λη(2, 1)(δξ(1)δξ(1)ξ(2)).

iii) The representation of the context C ≡ (λy. [])x, which is a segment, of Ex-
ample 2.5.3 is

δξ(1)λω(1, id1).

iv) An example of a formula of Cλξφωη is also

φ(θ1)δξ(5)λλω(3, θ3)

with θ1(5) = 4 and otherwise θ1(n) = n; and, θ2(1) = 2, θ2(2) = 1 and
θ2(3) = 3.

Transformations on formulas. The transformations on formulas that we are
interested in are substitution for term and segment variables, β-rewriting, hole filling
and composition.

Remark 5.1.7 An important issue in a lambda calculus with segments in general,
is that the specific structure of segments regarding the position of the hole is pre-
served under transformations. The preservation of the segment structure means in
particular that if a segment is involved in a transformation, the hole on the spine
can be neither multiplied nor erased within (the boundaries of) the segment. That
is, descendants of a segment are segments again.

The preservation of the segment structure under substitution, hole filling, com-
position and α-reduction, if applicable, can easily be verified. The preservation
under β-reduction will now be explained in some detail. Consider a segment C and
a β-redex (λx. s)t and distinguish the relative position of C with respect to the
redex in a β-step. If the segment C is subsumed by the redex, then the segment
can only be manipulated as a whole (in a structure preserving way). That is, by a
β-step C may be multiplied, but the hole of C can neither be multiplied nor can it
change the position within C. If the segment C subsumes the redex, then the hole is
either at the spine of the redex or disjoint from the redex. In all these cases the hole
remains on the spine under the contraction of the redex. This is due to the specific
position of the hole in a segment and it is in general not the case with contexts with
one hole at an arbitrary position: for example, if (λx. yxx)[] is a λ-context, then it
reduces to the λ-context y [] [], which has two holes.
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In Cλξφωη, substitution for term or segment variables is not defined as a meta-
operation, because there is no need for meta-substitutions. In Cλξφωη, substitution
is implemented together with β-rewriting by the rewrite relation called single step
reduction >1. This reduction rewrites β-redexes stepwise, as it has become a tradi-
tion in explicit substitution calculi (see [ACCL91]), where, in name-carrying lambda
calculus notation, the pair (λx. )t traverses through the term or segment s in the
redex (λx. s)t. In Cλξφωη, the single step reduction is defined by induction to the
structure of s in the redex δtλs. During the traversal of the pair δtλ , new refer-
ence transforming mappings are incorporated in the formula in order to adjust the
references. The adjustment of references is necessary because of the permutation of
binders that occurs during the traversal.

The single step reduction consists of two sets of rules: nine rules (cf. [Bru78],
rules (A1) through (A9)) for traversing reference transforming mappings φ(θ) in the
redex φ(θ)s, and eleven rules (cf. [Bru78], rules (B1) through (B11)) for traversing
the pair δtλ in the redex δtλs. The rules are technical but straightforward. We
mention a few cases. Consider a redex δtλs.

- Suppose s is the open end ω(k, θ) and according to θ there is a reference to
this λ. Then the traversing pauses at the open end until eventually the open
end is filled. This is not a particular rewrite rule, but it follows from a couple
of relevant rules.

- s is a term variable ξ(1) which refers to this λ: if t is a term, the variable is
replaced by t, and the pair δtλ is dropped. This is the rule (B3).

- Suppose s is an abstraction λs′. Then the pair δtλ passes over the λ of s, the
δtλ is applied to s′ and some reference numbers are adapted in both s′ and
t because the two λ’s are permuted. The adaptation is done by a reference
transforming mapping, so the redex δtλλs′ reduces to λδφ(θ1)tλφ(θ2)s′ for
certain θ1 and θ2. This is the rule (B7).

- Suppose s is η(k, n)s′ where the segment variable η(k, n) does not refer to the
abstractor of the redex (i.e. n > 1). Then the pair δtλ passes over η, the
reference number of η is decreased by 1 (one less abstraction on the left of
it), and the pair δtλ is applied to the argument of the segment variable with
adapted reference numbers, because the binders of η and the λ are permuted.
This is the rule (B8).

- Suppose s is η(k, 1)s′, t is a segment without reference transforming map-
pings on the spine, and t ≡ t′ω(k, θ). Then the variable η is replaced by t′

(the segment without the open end), the pair δtλ is passed to s′ with some
adaptation of reference numbers, and θ is applied to s′ and t of the pair to
establish the correct binding between t′ and the rest. This is the rule (B9).

With β-rewriting defined via the single step reduction, the calculus Cλξφωη is
a lambda calculus with explicit substitutions. In fact, the calculus Cλξφωη is, as
far as the author of this thesis knows, one of the first explicit substitution calculi.
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There are two main differences with the modern calculi with explicit substitutions.
First, the single step reduction in Cλξφωη is defined on more expressions, because
Cλξφωη includes segments. Second, in a lambda calculus with explicit substitu-
tions, rewriting of a β-redex (λx. s)t is set off by explicitly forming a substitution
[[x := t]] and applying it to s, viz. (λx. s)t→ s[[x := t]]. In Cλξφωη the pair (λx. )t
traverses through s as an application–abstraction pair.

For the rules to work properly, some conditions are imposed: one of the condi-
tions is imposed on the form of the segments, and the other conditions are incorpo-
rated in the rewrite relation.

The condition on the form of segments is called the internal reference condition,
and it is the following: the mapping θ in ω(k, θ) of a segment S ranges over the
binders present in S (possibly hidden within a segment variable on the spine of S);
the mapping does not range over binders outside the segment S. This condition
is imposed because otherwise rewrite steps may lead to inconsistent bindings (an
example is given in [Bru78], page 28). However, if a segment satisfies the internal
reference condition, then all its reducts satisfy the internal reference condition (that
is, the internal reference condition is preserved under rewriting).

The conditions in the rewrite relation are related to ensuring proper usage of
variables and they are the following. Consider the redex δtλs.

- If t is a term, then all variables of s that refer to this λ are term variables,
and if t is a segment, then all variables of s that refer to this λ are segment
variables.

- If this formula is of the form δtλη(k, 1)s′ and if t is a segment, then the weight
of t equals k and t may not contain reference transforming mappings on the
spine. De Bruijn proved that rewriting with respect to the rules (A1) through
(A9) (involving computation of reference transforming mappings) are strongly
normalising, so the condition that t may not contain reference transforming
mappings on the spine can always be fulfilled; the condition only imposes an
order on rewriting.

These conditions on the rewrite relation call for typing.

Hole filling and composition are only implicitly present in the calculus. Both
hole filling and composition are denoted by application of a segment variable to an
object. For example, in η(3, 1)δaξ(5) and η(2, 1)λω(3, θ). However, upon substitu-
tion of a segment s for the segment variable η(k, n) in η(k, n)u, the open end of
s is immediately filled by u. So a segment may be abbreviated by a variable, but
substitution of the variable and hole filling or composition are done in one rewrite
step. Such an approach is close to how segments are used in proof-checking.

As a whole, the original calculus reflects the very ‘Automath-ed’, implemen-
tation-oriented fashion of the object processing: the objects are represented as
strings of characters and the transformations are implemented by cutting the strings,
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duplicating parts of the strings, inserting new characters and gluing these parts
together again.

Typing. The principal role of types in the calculus is to avoid deadlocks. Ac-
cording to de Bruijn, deadlock occurs in three situations:

- when a function over a term variable is applied to a segment,

- when a function over a segment variable is applied to a term, or to a segment
with a different weight than expected (by that segment variable in the function
body) and

- when a segment does not satisfy the internal reference condition.

These situations are precisely the conditions that are imposed by the rewrite
rules, and which we discussed above. As already said above, the last situation is
avoided by considering only the set of formulas which satisfy the internal reference
condition, which is closed under rewriting. The first two situations are avoided by
typing.

Types are called frames by de Bruijn. Frames and frame functions are introduced
in Cλξφωη as a finite decision procedure for avoiding deadlocks of the first two kind.

Frames are defined over one type constant. This implies in particular, that
frames of λ-terms in Cλξφωη are basically simple types over a singleton.

Frames of segments are rather complex. Due to the distinguished position of
the open end in a segment, the frame of a segment is ‘open-ended’. Due to this
‘open-endedness’, frames of segments can be considered to be polymorphic. We
explain this in an informal way, in lambda calculus using meta-contexts, for which
the same argument holds.

Intermezzo 5.1.8 We describe the form of the type of a segment and argue that
it is, in a sense, polymorphic.

Consider simply typed lambda calculus where types are generated over the sin-
gleton {t}. Let C be a meta-context with the hole at the end of the spine. In
general, the form of the meta-context C restricts the type of terms t that may be
placed into the hole, but the type of C[t] eventually depends on the type of t. Take,
for example, the meta-context C1 ≡ λx : t. []xx. If a λ-term t1 is to be placed into
the hole, its type should be an arrow type t→ t→ T , where T denotes an arbitrary
type, and the type of the result C1[t1] is then t→ T .

In general, in C there may also be some applications and abstractions on the
spine. These applications and abstractions can be matched, after some rewrite steps
(on the representation of the meta-context in a context calculus), to form a redex
(λx. s)s′. Here, the type of the argument s′ cancels the type of the first argument
of the function λx. s, so the type of (λx. s)s′ is the type of s. By continuing the
rewriting to match all possible redexes3 one obtains a context with unmatched

3This suggests at least weak normalisation of this rewriting process. Normalisation properties
have not been proved for de Bruijn’s calculus. Our segment calculus λcs (Section 5.2), which
is a simply typed lambda calculus with segments, has the strong normalisation property (Theo-
rem 5.2.20).



162 CHAPTER 5. DE BRUIJN’S SEGMENTS

abstractions λ	x at the front, and with unmatched applications 	s in front of the hole
[]	s, thus:

λ	x. []	s.

Then, the type of the meta-context is determined by the types of unmatched
abstractions in front, and the types of unmatched applications at the hole. Accord-
ingly, if a λ-term t is to be placed into the hole, its type should be 	τ → T , where 	τ
denote the types of unmatched applications at the hole and T denotes an arbitrary
type. The type of a result C[t] is then 	σ → T , where 	σ denote the types of un-
matched abstractions. For example, in the meta-context C2 ≡ λx.λy. (λz.λu. []d)bc
the abstractors λx and λy and the applicator · d remain unmatched. If a λ-term
t2 is to be placed into the hole, its type should be t → T , where T denotes an
arbitrary type, and the type of the result C2[t2] is then t→ t→ T .

Hence, the type of (the representation in a context calculus of) a meta-context
can be described by these two sequences of types: the types of unmatched abstrac-
tors and the types of unmatched applicators. In addition, the types of binders in
whose scope the hole is define the type of the communication between the con-
text and a term placed into the hole. (The communication and its type have been
ignored in the argument above.)

In Cλξφωη, the situation resembles the situation in lambda calculus with con-
texts as described in Intermezzo 5.1.8. The only difference is that in Cλξφωη there
are two kinds of abstractors: when matching abstractors to applicators we have to
take into account both λ’s and η’s. In Cλξφωη, the frame of a segment S consists
of three sequences of types:

- the sequence of types of binders that remain in front of the segment after some
rewrite steps;

- the sequence of types of applicators that remain in front of the open end after
some rewrite steps; and

- the sequence of types of the binders in whose scope the open end is in S.

Example 5.1.9 We consider the meta-context C2 of Intermezzo 5.1.8 and write
it in the notation of Cλξφωη. So, let S ≡ λλδξ(6)δξ(5)λλδξ(7)ω(4, id) where id
denotes the identity function. The frame of S is (t, t; t; t, t, t, t), where the three
sequences of types are as described above. Here, we deviate from the notation for
frames as in [Bru78].

Frames are computed by a frame function. The frame function takes an element
as an argument and computes its types, if it exists. Next to typing λ-terms and
segments of Cλξφωη as described above, the frame function defines under which
conditions formulas can be combined into bigger, also well-typed formulas. Typing
defined via a (frame) function is a different style of typing than in for example
PTSs. The main difference is in the use of bases, which are present in PTSs, and
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which are not present in a frame function. However, basically these presentations
are the same.

Results. We sum up the results proved for Cλξφωη or its variations. De Bruijn
proved that the rewriting with respect to the rules (A1) through (A9) is strongly
normalising. R.M.A. Wieringa and L.S. van Benthem Jutting both proved inde-
pendently that Cλξφωη is weakly confluent. H. Balsters defined the calculus λσ,
a restriction of Cλξφωη which does not involve reference transforming mappings.
H. Balsters proved that λσ is confluent. He also defined a framed version λTσ and
proved that it has the subject reduction property.

5.2 Segments in the context calculus λc

The calculus λcs, defined in this section, can be described in one sentence: it is the
context calculus λc with types for the simply typed lambda calculus with polymor-
phic segments. We explain this description into more detail; see also Figure 5.6.

- The calculus λcs is the context calculus λc equipped with types: Like the
calculi defined in Chapter 4, the calculus λcs is a subsystem (in the sense of
Definition 1.1.14) of the framework λc, defined by a type system.

- Segments in the framework λc: As explained in Section 5.1, a segment is a
special kind of contexts, with a unique hole occurrence placed at the end of
the spine. Being a context, each segment can be represented in the framework
λc, where the typing rules take care of the restrictions.

- Segments in the calculus λcs: By the term formation rules of λcs, segments
can be represented in λcs. In addition, the calculus λcs includes segment
variables and functions over segments. That is, the calculus λcs is a calculus
with segments as first-class objects.

We emphasise that λcs incorporates the notion of segment, but in a different
way than de Bruijn’s segment calculus. We will return to this comparison
later in the section.

- The calculus λcs is a simply typed lambda calculus with segments: The type
system by which the calculus λcs is defined, is basically the simply typed
lambda calculus. That is, in λcs the terms and segments of the simply typed
lambda calculus can be represented.

- Polymorphic segments: Due to the special position of the hole in a segment,
the type of the hole (and hence, the type of the segment too) is not fully
determined (see Intermezzo 5.1.8). The segments are typed in a way that this
polymorphism is maintained.

This section is structured as follows. First we will briefly discuss the represen-
tation of segments within the framework λc. Next, we will define the calculus λcs

and show that λcs is a subsystem of the framework λc. Then we will show that
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λc-calculus

(substitution,

β-rewrite relation)

α-conversion

λ→-calculus:

λ→-terms

(hole filling, composition)

over λ→-terms

(substitution, α-conversion,

β-rewrite relation,

context-related rewrite relations)

λcs-calculus:

λcs-terms

de Bruijn’s segments

Figure 5.6: The calculus λcs

λcs is confluent and strongly normalising. We will compare the calculus λcs to de
Bruijn’s segment calculus, which also implements the notion of segment, and to the
calculus λc→, which also implements a simply typed lambda calculus with contexts.
Finally, we will give some (non-)examples of typing in λcs.

The approach to the formalisation of segments in λcs for the most part agrees
with the approach to the formalisation of λ-contexts in the calculi of Chapter 4.
However, the calculus λcs, and in particular its type system, is more complicated
than calculi of Chapter 4 because λcs deals with the context that have the hole on
a designated position and that have a polymorphic type.

Representation of segments in λc

With segments being a special kind of contexts, the representation of the lambda
calculus with segments mainly follows the line described in Section 2.5. In particu-
lar, segments are represented as abstractions over precisely one hole variable, which
occurs at the end of the spine4. For instance, the segment (λx. [])y is represented as
δh. (λx.h〈x〉)y. In λcs, the type system takes care of the position of the hole vari-
able, and the preservation of the hole position under rewriting is guaranteed by the
properties of the specific position of the hole variable in a term (see Remark 5.1.7).

4The definition of tree representation of λc-terms is a näıve extension of the tree representation
of λ-terms, where δ is treated as λ, hole filling as application, Λ as a flattened version of a sequence
of λ’s and 〈 〉 and ◦ as a flattened version of a sequence of applications.
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The calculus λcs

We now give the types and the type system of λcs. The type system, in addition
to governing types, guards the polymorphism of segments and the position of the
hole. The position of the hole turns up to be easy to monitor, while guarding the
polymorphism is rather complex.

The types of λcs include the types of simply typed lambda calculus and add
types for holes, segments and communicating terms. In general, the types of λcs

resemble the types of λc→ (see Section 4.2), but, in the case of λcs, the added types
are more elaborate because of the polymorphism.

We explain the key issue of types into more detail by recalling Intermezzo 5.1.8.
In the remark the segment C1 ≡ λxt. []xx and its type were considered. It was
argued that the type of the term M placed into the hole must be of the form
t→ t→ T , where T denotes an arbitrary type. If such a term M is placed into the
hole of C1, then the type of the result C1[M ] is t→ T . In the calculus λcs we use
type variables α, β and type quantifiers ∀α to implement this kind of polymorphism.
A type variable mimics the ‘open end’ in a type, just as a hole variable stands for
the ‘open end’ in a segment. For example, the segment C1 is represented by the
λc-term U ≡ δh.λxt. (h〈x〉)xx, where the type of the hole is omitted for the time
being. The type of the hole h〈x〉 is t→ t→ α, that is, the type of the hole variable
h alone is [t]t→ t→ α, with the type of communication [t] added. With such type,
both V1 of type [t]t→ t→ t and V2 of type [t]t→ t→ t→ t can be put into the
hole using the substitutions [[α := t]] and [[α := t→ t]], respectively. By filling the
hole with V1, one obtains a term of type t→ t, which equals (t→ α)[[α := t]]. By
filling the hole with V2, one obtains a term of type t→ t→ t, which equals (t→
α)[[α := t→ t]]. In the tradition of other type systems, the term U is a function of
type [τ ]τ → τ → α ⇒ τ → α for all α. In the calculus λcs, this quantification is
internalised by ∀α and the type of U is represented by ∀α.[τ ]τ → τ → α⇒ τ → α.

We split the set of base types into the set of type variables and the set of type
constants.

Definition 5.2.1 (Types of λcs) Let Vb denote the set of type variables with α, β
as typical elements. Let Vc denote the set of type constants with a ∈ Vc. Let
V = Vb ∪ Vc. Then, the τ -types (τ ∈ Ts) and the ρ-types (ρ ∈ Ps) are defined as

τ ::= a | τ → τ | ∀α.[	τ ]	τ → α⇒ 	τ → α
ρ ::= τ | 	τ → α | [	τ ]τ | [	τ ]	τ → α

where 	τ → α abbreviates τ1 → (. . . (τn → α)), and ∀α is a binder which binds both
occurrences of α in ∀α.[	τ ]	τ → α⇒ 	τ → α. As usual, → associates to the right, →
binds stronger than [ ] and [ ] binds stronger than ⇒.

The free and bound occurrences of type variables are defined in a standard way.
In addition, we assume renaming of and substitution for free type variables in 	τ → α
or [	τ1]	τ2 → α are defined. Of course, upon substitution, the result has to be a type
again. Due to the position of the type variables, only two kinds of types are allowed
in a substitution: τ and 	τ → α.
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The intuition behind the types is basically the same as in other applications of
the framework λc. The τ -types are used to type λ-terms and segment representa-
tions, and the ρ-types are also used for typing holes, communicating objects and
subterms of segment representations.

Notation. In the sequel the following notation will be used: σ, τ, υ, τ ′, 	τ , 	τ1 . . . ∈ Ts,
ρ ∈ Ps.

The rules of the type system are given next. As in the case of the type systems
in Chapter 4, in the typing rules there are two bases involved, namely Γ for variables
of τ -pretypes and Σ for hole variables. The type of hole variables is of the form
h : [	τ1](	τ2 → α). However, in λcs the base Σ is restricted: it may contain at most
one declaration over hole variables. We assume without loss of generality that the
bases contain distinct variables.

Definition 5.2.2 (Type system) A term U ∈ Ter(λc) is typable by ρ from the
bases Γ,Σ, if Γ; Σ � U : ρ can be derived using the typing rules displayed in
Figure 5.7.

We comment on the typing rules. The rules (var), (abs) and (app) are the rules
comparable to the rules (var), (abs) and (app) respectively in the simply typed
lambda calculus. In this typing the variables and functions may also range over
segments. We will explain the side conditions shortly. The rules (hvar) and (habs)
pertain to typing hole variables and abstractions over hole variables. The rules
(mabs) and (mapp) are used for typing communication.

The rules that need more attention are the rules (fill), (comp1) and (comp2).
The rule (fill) is used for typing hole filling. In this rule, a substitution of the type
variable is employed. We give an example of the usage of this rule.

example
of (fill)

Γ � U : ∀α.[a]a→ a→ α⇒ a→ α
Γ � V : [a]a→ a→ b
Γ � U �V � : a→ b.

The segment U is of type ∀α.ρ1 ⇒ ρ2 where ρ1 and ρ2 end in α. The type ρ1 is
the type of the hole in U . The term V , which is to be put into the hole of U , has
a more specific type than the hole: it has the type ρ1[[α := b]]. Thus, because the
segment U is of type ρ1 ⇒ ρ2 for any α, and because V is of type ρ1 with α := b,
the type of U �V � is ρ2 with α := b, that is, U �V � : ρ2[[α := b]].

The two rules (comp1) and (comp2) are used for typing composition. Composi-
tion of segments is even more complex than composition of contexts in Chapter 4
because of the polymorphism in types. We explain typing of a composition of
segments in λcs by studying a composition of segments in lambda calculus.

Intermezzo 5.2.3 Here we drop the types at abstractions for the sake of readabil-
ity.

Note first that in general the type of a redex (λy′. s′′)s′ is the type of s′′[[y′ := s′]],
which is of the same type as s′′ because substitution preserves types. Thus the
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(var)
(x : τ) ∈ Γ

Γ � x : τ

(abs)
Γ, x : τ ; Σ � U : ρ

Γ;Σ � (λxτ .U) : τ → ρ

with Σ = ∅ and ρ = τ ′

or Σ �= ∅ and ρ = 	τ → α

(app)
Γ;Σ � U : τ → ρ Γ � V : τ

Γ;Σ � U V : ρ
with Σ = ∅ and ρ = τ ′

or Σ �= ∅ and ρ = 	τ → α

(hvar)
{h : [	τ1](	τ2 → α)} = Σ

Γ;Σ � h : [	τ1](	τ2 → α)
with α fresh

(mabs)
Γ, 	x : 	τ ; Σ � U : ρ

Γ;Σ � (Λ	x �τ .U) : [	τ ]ρ

with Σ = ∅ and ρ = τ ′

or Σ �= ∅ and ρ = 	τ1 → α

(mapp)
Γ;Σ � U : [	τ ]ρ Γ � 	V : 	τ

Γ;Σ � U 〈	V 〉 : ρ

with Σ = ∅ and ρ = τ ′

or Σ �= ∅ and ρ = 	τ1 → α

(habs)
Γ;h : [	τ1](	τ2 → α) � U : 	τ3 → α

Γ � (δh[�τ1](�τ2→α).U) : ∀α.[	τ1](	τ2 → α)⇒ 	τ3 → α

(fill)

Γ � U : ∀α.[	τ1](	τ2 → α)⇒ 	τ3 → α
Γ � V : ([	τ1](	τ2 → α))[[α := τ ]]

Γ � U 〈V 〉 : (	τ3 → α)[[α := τ ]]

(comp1)

Γ � U : ∀α.[	σ1](	σ2 → α)⇒ 	σ3 → α
Γ � V : [	σ1](∀β.[	τ1](	τ2 → β)⇒ 	σ2	τ3 → β)

Γ � U ◦ V : ∀β.[	τ1](	τ2 → β)⇒ 	σ3	τ3 → β

(comp2)

Γ � U : ∀α.[	σ1](	τ3	σ2 → α)⇒ 	σ3 → α
Γ � V : [	σ1](∀β.[	τ1](	τ2 → β)⇒ 	τ3 → β)

Γ � U ◦ V : ∀β.[	τ1](	τ2	σ2 → β)⇒ 	σ3 → β

Figure 5.7: Type system for λcs
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easiest way to study types is to study them on normal forms. In Intermezzo 5.1.8
we explained that each (representation of a) segment can be reduced to a segment
of the form

λ	x. []	s.

So, consider the segments C and D given by

C ≡ λ	x. []	s and D ≡ λ	y. []	t.

Let |	s| = m and |	y| = n. Then the composition of C and D is (see also Figure 5.8)

C ◦D = λ	x. (λ	y. []	t)	s.

Note that in C ◦D redexes can be ‘matched’ between the abstractions over 	y and
applications with 	s (here, y1 matches s1, y2 matches s2 etc.). Hence, an a priori
requirement for forming a composition of C and D is that the type of yi and the
type of si are the same for 1 ≤ i ≤ min{m,n}.

In order to determine the normal from of (the representation of) the composition
C ◦ D, the key question is whether |	y| = n ≥ m = |	s| or |	s| = m > n = |	y|. If
n ≥ m then (the representation of) the composition C ◦D reduces to a segment of
the form

λ	x.λyn−m, . . . , yn. []	t ′.

If m > n then (the representation of) the composition C ◦D reduces to a segment
of the form

λ	x. []	t ′′sm−n . . . sm.

Figure 5.9 illustrates these two cases on meta-contexts in lambda calculus. In these
contexts the subterms 	s and 	t are annotated with their type.

The two composition rules distinguish the same two cases. We give two examples
with concrete types for the compositions rules, one for each. These examples, except
for communication, agree with the two examples given for meta-contexts in lambda
calculus in Figure 5.9.

example
of (comp1)

Γ � U : ∀β.[e]c→ β ⇒ f→ β
Γ � V : [e](∀α.[a]b→ α⇒ c→ d→ α)
Γ � U ◦ V : ∀α.[a]b→ α⇒ f→ d→ α.

example
of (comp2)

Γ � U : ∀β.[e]c→ d→ β ⇒ f→ β
Γ � V : [e](∀α.[a]b→ α⇒ c→ α)

Γ � U ◦ V : ∀α.[a]b→ d→ α⇒ f→ α.

In all rules, the basis Γ is used like a basis in the simply typed lambda calculus.
This is not the case with Σ, which strictly follows the free hole variable: the basis Σ
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Figure 5.8: Composition of segments
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Figure 5.9: Examples of compositions of meta-contexts
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changes only by the rules (hvar) and (habs), where the hole variable is introduced
or abstracted; it is empty in rules (fill), (comp1) and (comp2), where ‘completed’
representations of segments are manipulated; and, it is intact in the rest of the
rules, where it follows only the left branch of the term when represented as a tree.
In this way Σ not only carries information about the type of the free hole variable,
but also about the structure of the term. A non-empty Σ means there is a free
hole variable on the spine so that the term is an ‘incomplete’ representation of a
segment. This free hole variable is the (only) element of Σ. An empty Σ means
that at the end of the spine there is either a variable of a τ -type, or a hole variable
bound by a hole abstraction somewhere on the spine. This will be proved later on
(see Lemma 5.2.11).

The side conditions of the rules (abs), (app), (mabs) and (mapp) are the same,
and they allow only two cases: the case where the term U is a representation of a
λ→-term, a segment or a function over λ→-terms and segments (i.e. where ρ = τ ′

and Σ = ∅), and the case where the term U is a representation of a subterm of a
segment (i.e. where ρ = 	τ → α and Σ �= ∅).

The typing rules of λcs resemble the typing rules of λc→. One can recognise
all but the two last rules (comp1) and (comp2) in the typing rules of λc→, by
ignoring the type variables α and the quantifiers ∀α, and by some corrections on
Σ. Note that the side conditions are actually extensions of the applicability of a
rule, since they involve a ρ-type rather than a τ -type as it is the case in λc→. The
two last rules in λcs deal with composition. In λc→ composition is definable, so
there are no composition rules. In contrast, in λcs composition is explicitly present
because the terms that mimic composition, such as comp of the concluding remark
in Section 3.1, are not typable, due to the specific place of holes in segments. Recall
that comp is the λc-term λc. δd. δg. c�Λ	u. (d〈	u〉)�g��. Here the variables d and g
should have types of the form [	τ1](	τ2 → α) (i.e. types of hole variables). However,
they are not on the spine of a context.

Note that by these typing rules, hole variables are immediately provided with
communication, that is, hole variables are labelled. After the rule (hvar), which
gives a type to a hole variable, the only applicable rule is (mapp), because this is
the only rule with a term of type [	τ1]	τ2 → α in the preconditions. This was not the
case in the calculi of Chapter 4. Note also that, similarly to the calculus λc→, only
the ‘unary’ δ, and the binary � � and ◦ are used.

Example 5.2.4 Some examples of terms that are well-typed are (the types in terms
are left out for the sake of readability):

b : b, f : b→ b � λc∀α.[a]α⇒α. c�Λxa. f�(c�Λxa. b�) : (∀α.[a]α⇒ α)→ b
c : ∀α.[a]α⇒ a→ α � c ◦ (Λxa. δh[a,b]β . λyb. h〈xy〉) : ∀β.[a, b]β ⇒ a→ b→ β.

In the first term, there are two occurrences of the variable c: both are involved in
a hole filling but they are filled with terms of different types. This term would not
be well-typed without polymorphism.

Some examples of terms that cannot be typed in λcs are:
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- δg. (δh.λx.h〈x〉)�g�: ‘renaming’ a hole variable h by g is not typable,

- δh. (c ◦ d)�Λx.h〈x〉� and δh.λy. c�Λx.h〈xy〉�: hole filling or composition on
the spine of a segment are not typable.

The calculus λcs is defined on well-typable terms and with rewrite rules that
are applicable to these terms.

Definition 5.2.5 (Segment calculus) The terms of λcs are the well-typed terms
of λc according to Definition 5.2.2. The rewrite rules are the rules (β), ( β), (fill)
and (comp) of λc, now restricted to well-typed terms.

i) The lambda calculus rewrite rule is:

(λxτ .U)V → U [[x := V ]]. (β)

ii) The context rewrite rules are:

(Λ	x �τ .U)〈	V 〉 → U [[	x := 	V ]] ( β)
(δh[�τ1](�τ2→α).U)�V � → U [[h := V ]] (fill)
(δh[�τ1](�τ2→α).U) ◦ (Λ	x �τ1 . δg[�σ1](�σ2→β). V )
→ δg[�σ1](�υ→β).U [[h := Λ	x �τ1 . V ]] (◦)

where the precise form of 	υ in the composition rule (◦) will be specified after
the Generation lemma.

Definition 5.2.6 Let the ARS Aλcs be

Aλcs = 〈Ter(λcs),→β ,→ β ,→fill ,→◦〉.

We call the ARS Aλcs the underlying ARS of the calculus λcs.

The calculus λcs is a subsystem of λc

Before we go into the details of the proof that λcs is a subsystem of λc, we show that
λcs-terms have a unique type. The uniqueness of types follows from the fact that,
although some form of polymorphism is present, the polymorphism is built-in and
the typing is à la Church. By built-in polymorphism we mean that it is encoded
in the types by using type variables and ∀, as opposed to the polymorphism of
λ→-Curry, where it is achieved by type substitution (see Lemma 1.2.55(i)).

Proposition 5.2.7 (Uniqueness of types)
If Γ;Σ � U : ρ1 and Γ;Σ � U : ρ2 then ρ1 = ρ2.
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Proof: By induction on the length of the derivation. QED

The calculus λcs is a subsystem of the framework λc. This is proved in a
standard way by showing that the set of terms of λcs is closed under rewriting. The
closure under rewriting is also proved in a standard way via the Generation lemma,
Thinning lemma and Substitution lemma. The Thinning lemma holds in λcs only
for Γ, and not for Σ, due to the restriction of Σ to the empty set or singletons and
the rigid treatment of Σ in the typing rules. Moreover, such treatment of Σ also
makes the proofs of these lemmas a bit more complicated than in a standard case.

Lemma 5.2.8 (Generation lemma)
i) If Γ;Σ � u : ρ then either (u : ρ) ∈ Γ, and Σ = ∅ or ρ = [	τ1](	τ2 → α) for

certain 	τ1, 	τ2 ∈ Ts and {(u : ρ)} = Σ.
ii) If Γ;Σ � (λxτ .U) : ρ then either Σ = ∅ and there is a τ ′ ∈ Ts such that

ρ = τ → τ ′ and Γ, x : τ � U : τ ′, or Σ = {h : [	σ1](	σ2 → α)} and there are
	τ ∈ Ts such that ρ = τ	τ → α and Γ, x : τ ; Σ � U : 	τ → α.

iii) If Γ;Σ � U1U2 : ρ then either Σ = ∅, ρ ∈ Ts, and there is a τ ∈ Ts such
that Γ � U1 : τ → ρ and Γ � U2 : τ , or Σ = {h : [	σ1](	σ2 → α)} and
ρ = 	τ → α for 	τ ∈ Ts and Γ;Σ � U1 : τ	τ → α and Γ � U2 : τ .

iv) If Γ;Σ � (Λ	x �τ .U) : ρ then either Σ = ∅ and there is a τ ∈ Ts such that
ρ = [	τ ]τ and Γ, 	x : 	τ � U : τ , or Σ = {h : [	σ1](	σ2 → α)} and there is
	τ1 ∈ Ts such that ρ = [	τ ](	τ1 → α) and and Γ, 	x : 	τ ; Σ � U : 	τ1 → α.

v) If Γ;Σ � U 〈	U〉 : ρ then either Σ = ∅, ρ ∈ Ts and there are 	τ ∈ Ts such
that Γ � U : [	τ ]ρ and Γ � 	U : 	τ , or Σ = {h : [	σ1](	σ2 → α)}, there are
	τ1, 	τ2 ∈ Ts such that ρ = 	τ2 → α, Γ;Σ � U : [	τ1](	τ2 → α) and Γ � 	U : 	τ1.

vi) If Γ;Σ � (δh[�τ1](�τ2→α).U) : ρ then Σ = ∅ and there are 	τ3 ∈ Ts such that
ρ = ∀α.[	τ1](	τ2 → α)⇒ 	τ3 → α and Γ;h : [	τ1](	τ2 → α) � U : 	τ3 → α.

vii) If Γ;Σ � U1 �U2� : ρ then Σ = ∅ and there are τ, 	τ1, 	τ2, 	τ3 ∈ Ts and
α ∈ TV such that ρ = 	τ3 → τ , Γ � U1 : ∀α.[	τ1](	τ2 → α) ⇒ 	τ3 → α and
Γ � U2 : [	τ1](	τ2 → τ).

viii) If Γ;Σ � U ◦ V : ρ then Σ = ∅ and there are 	τ1, 	τ2, 	τ3, 	σ1, 	σ2, 	σ3 ∈ Ts and
α, β ∈ TV such that either

ρ = ∀β.[	σ1](	σ2 → β)⇒ 	τ3	σ3 → β
Γ � U : ∀α.[	τ1](	τ2 → α)⇒ 	τ3 → α
Γ � V : [	τ1](∀β.[	σ1](	σ2 → β)⇒ 	τ2	σ3 → β),

or
ρ = ∀β.[	σ1](	σ2	τ2 → β)⇒ 	τ3 → β
Γ � U : ∀α.[	τ1](	σ3	τ2 → α)⇒ 	τ3 → α
Γ � V : [	τ1](∀β.[	σ1](	σ2 → β)⇒ 	σ3 → β).

Proof: Suppose Γ;Σ � U : ρ. The statements follow by distinguishing the cases
of the structure of U . QED

Using the Generation lemma, two precise forms of the rule ◦ can be specified: if
V : [	τ1](∀β.[	σ1](	σ2 → β)⇒ 	τ2	σ3 → β) then

(δh[�τ1](�τ2→α).U) ◦ (Λ	x �τ1 . δg[�σ1](�σ2→β). V ) →◦ δg[�σ1](�σ2→β).U [[h := Λ	x �τ1 . V ]],
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and if V : [	τ1](∀β.[	σ1](	σ2 → β)⇒ 	σ3 → β) then

(δh[�τ1](�σ3�τ2→α).U) ◦ (Λ	x �τ1 . δg[�σ1]�σ2→β . V ) →◦ δg[�σ1](�σ2�τ2→β).U [[h := Λ	x �τ1 . V ]] .

Lemma 5.2.9 (Thinning for Γ) Let Γ;Σ � U : ρ. Then Γ′; Σ � U : ρ for all Γ′

with Γ ⊆ Γ′.

Proof: The statement is proved by the induction to the length of the derivation.
QED

As already mentioned above, Thinning lemma does not hold for the basis Σ.
In fact, the basis Σ may not be enlarged nor can it be reduced to form the same
derivation. There is a strong connection between the form of a well-typed λc-term
U , its type ρ and the base Σ.

Lemma 5.2.10 If Γ;Σ � U : ρ then Σ = ∅ or Σ = {h : [	τ1]	τ2 → α}.

Proof: The statement is proved by induction to the length of the derivation. QED

Lemma 5.2.11 Let Γ;Σ � U : ρ. Then the following statements are equivalent:

i) Σ = {h : [	τ1]	τ2 → α};

ii) hole variable h occurs free on the spine of the term U ;

iii) ρ = [	σ1]	σ2 → α or ρ = 	σ2 → α.

In particular, this lemma implies that a composition or a hole filling cannot occur
on the spine of a segment. For example, suppose U ≡ δhρ.U ′ with a composition
in the spine. Then, according to the typing rule (habs), U ′ should be typable with
Σ = {(h : ρ)}. That means also that U ′ and all its subterms with the root on the
spine of U ′, including the composition, must be typable with Σ = {(h : ρ)}. But,
according to the composition typing rules, compositions are typable only with an
empty Σ.

The Substitution lemma deals with type and term substitutions that arise in a
rewrite step. In the calculi of Chapter 4, the corresponding lemmas deal with type-
preserving substitutions for terms, that is, with the substitutions [[	x := 	V ]] where xi
and Vi are a variable and a term of the same type, for 1 ≤ i ≤ |	x| = |	V |. However,
in the rewrite steps of λcs also substitutions for type variables may arise, and some
terms substitutions may arise which are not type-preserving in a classical sense.
These substitutions can be classified as follows:

- the substitutions [[α := ρ]] where ρ = τ or ρ = 	σ → β, and

- the substitutions [[h := V ]] where h : [	τ1]	τ2 → α and V : [	τ1]	τ2 → ρ where
ρ = τ or ρ = 	σ → β.
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Next to these substitutions there are of course the type-preserving term substitu-
tions.

For the proof the Substitution lemma, we need a small lemma about replacing
a hole variable h by another hole variable g with a type that fits the type of the
original hole variable h.

Lemma 5.2.12
If Γ;h : [	σ1](	σ2 → α) � U : ρ then Γ; g : [	σ1](	σ2	σ → β) � U [[h := g]] :

ρ[[α := 	σ → β]].

Proof: By abbreviating the type of h by ρα, this statement can be given a more
readable form:

Let Γ;h : ρα � U : ρ. Then Γ; g : ρα [[α := 	σ → β]] � U [[h := g]] :
ρ[[α := 	σ → β]].

The proof proceeds by induction to the structure of U and uses Corollary 5.2.11.
QED

Lemma 5.2.13 (Substitution lemma)
i) If Γ, 	x : 	τ ; Σ � U : ρ and Γ � 	V : 	τ then Γ;Σ � U [[	x := 	V ]] : ρ.
ii) If Γ;h : [	τ1](	τ2 → α) � U : ρ and Γ � V : [	τ1](	τ2 → τ) then Γ � U [[h := V ]] :

ρ[[α := τ ]].
iii) If Γ;h : [	τ1](	τ2 → α) � U : ρ and Γ; g : [	σ1](	σ2 → β) � V : [	τ1](	τ2	σ3 → β)

then Γ; g : [	σ1](	σ2 → β) � U [[h := V ]] : (ρ[[α := 	σ3 → β]]).
iv) If Γ;h : [	τ1](	σ3	τ2 → α) � U : ρ and Γ; g : [	σ1](	σ2 → β) � V : [	τ1](	σ3 → β)

then Γ; k : [	σ1](	σ2	τ2 → β) � U [[h := V [[g := k]]]] : ρ[[α := β]].

Proof: The substitutions in (i) and the substitution [[h := V [[g := k]]]] in (iv) are
type-preserving term substitutions, the other substitutions fall under the classifica-
tion as given above. All proofs are conducted by induction to U , and by using the
Generation lemma and the Thinning lemma for Γ. We show only the difficult cases,
namely the parts (iii) and (iv).

Proof of (iii):

(U ≡ u): Because the hole variables basis is not empty, the variable u must be the
hole variable, that is, Γ;h : [	τ1](	τ2 → α) � h : [	τ1](	τ2 → α). Then h[[h := V ]] =
V , and ρ[[α := 	σ3 → β]] = [	τ1](	τ2	σ3 → β). We have Γ; g : [	σ1](	σ2 → β) � V :
[	τ1](	τ2	σ3 → β) by the assumption, as requested.

(U ≡ U1U2): Then, ρ = 	υ → α for 	υ ∈ Ts and there is υ ∈ Ts such that and
Γ;h : [	τ1](	τ2 → α) � U1 : υ	υ → α and Γ � U2 : υ. By the induction hypothesis,
Γ; g : [	σ1](	σ2 → β) � U1[[h := V ]] : υ	υ	σ3 → β. Note that the variable h
does not occur free in U2, so U2[[h := V ]] = U2 and Γ � U2[[h := V ]] : υ.
Then by the rule (app) and the definition of substitution, Γ; g : [	σ1](	σ2 →
β) � (U1U2)[[h := V ]] : 	υ	σ3 → β.
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The cases where U ≡ λxτ .U ′ and U ≡ Λ	x �τ .U ′ are straightforward applications
of the induction hypothesis. The case where U ≡ U ′ 〈	U〉 is similar to the application
case above. The cases where U ≡ δkρ

′
.U ′, U ≡ U1 �U2� and U ≡ U1 ◦ U2 do not

occur, because these cases require an empty Σ (Lemma 5.2.11).

Proof of (iv): We show only two difficult cases; other cases are treated in the same
way as in (iii).

(U ≡ u): Because the hole variables basis is not empty, the variable u must be the
hole variable, that is, Γ;h : [	τ1](	σ3	τ2 → α) � h : [	τ1](	σ3	τ2 → α). Then
h[[h := V [[g := k]]]] = V [[g := k]].

By Lemma 5.2.12 we have Γ; k : [	σ1](	σ2	τ2 → β) � V [[g := k]] : [	τ1](	σ3	τ2 → β),
as requested.

(U ≡ U1U2): Then, ρ = 	υ → α for 	υ ∈ Ts and there is υ ∈ Ts such that and
Γ;h : [	τ1](	σ3	τ2 → α) � U1 : υ	υ → α and Γ � U2 : υ. By the induction
hypothesis, Γ; k : [	σ1](	σ2	τ2 → β) � U1[[h := V [[g := k]]]] : υ	υ → β. Note that
the variable h does not occur free in U2, so U2[[h := V [[g := k]]]] = U2 and
Γ � U2[[h := V [[g := k]]]] : υ. Then by the rule (app) and the definition of
substitution, Γ; k : [	σ1](	σ2	τ2 → β) � (U1U2)[[h := V [[g := k]]]] : 	υ → β.

QED

Proposition 5.2.14 (Subject reduction)
If Γ;Σ � U : ρ and U →→ V , then Γ;Σ � V : ρ.

Proof: The proof is conducted as follows. One first shows that contractions
L → R of all rules preserve types. Then, one shows that any one-step reduction
C[L] → C[R] preserves types by induction to C. Finally, the statement is proved
by induction to the length of the reduction.

We show only the most difficult part of the proof, namely that the contraction
of a composition redex preserves types. So, let L→ R be a contraction of the rule
(◦). According to the Generation lemma we have two cases.

Case 1: We have the following derivations

Γ;h : [	τ1](	τ2 → α) � U : 	τ3 → α

Γ � (δh[�τ1](�τ2→α).U) : ∀α.[	τ1](	τ2 → α)⇒ 	τ3 → α
... Γ, 	x : 	τ1; g : [	σ1](	σ2 → β) � V : 	τ2	σ3 → β
... Γ, 	x : 	τ1 � (δg[�σ1](�σ2→β). V ) : ∀β.[	σ1](	σ2 → β)⇒ 	τ2	σ3 → β
... Γ � (Λ	x �τ1 . δg[�σ1](�σ2→β). V ) : [	τ1](∀β.[	σ1](	σ2 → β)⇒ 	τ2	σ3 → β)

Γ � (δh[�τ1](�τ2→α).U) ◦ (Λ	x �τ1 . δg[�σ1](�σ2→β). V )
: ∀β.[	σ1](	σ2 → β)⇒ 	τ3	σ3 → β.
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Then, by the rule (mabs)

Γ, 	x : 	τ1; g : [	σ1](	σ2 → β) � V : 	τ2	σ3 → β

Γ; g : [	σ1](	σ2 → β) � (Λ	x �τ1 . V ) : [	τ1](	τ2	σ3 → β).

Then, because Γ;h : [	τ1](	τ2 → α) � U : 	τ3 → α and by the Substitution
lemma (iii),

Γ; g : [	σ1](	σ2 → β) � U [[h := Λ	x �τ1 . V ]] : 	τ3	σ3 → β.

Finally, by the rule (habs),

Γ � (δg[�σ1](�σ2→β).U [[h := Λ	x �τ1 . V ]])
: ∀β.[	σ1](	σ2 → β)⇒ 	τ3	σ3 → β

as requested.

Case 2: We have the following derivation

Γ;h : [	τ1](	σ3	τ2 → α) � U : 	τ3 → α

Γ � (δh[�τ1](�σ3�τ2→α).U) : ∀α.[	τ1](	σ3	τ2 → α)⇒ 	τ3 → α
... Γ, 	x : 	τ1; g : [	σ1](	σ2 → β) � V : 	σ3 → β
... Γ, 	x : 	τ1 � (δg[�σ1](�σ2→β). V ) : ∀β.[	σ1](	σ2 → β)⇒ 	σ3 → β
... Γ � (Λ	x �τ1 . δg[�σ1](�σ2→β). V ) : [	τ1](∀β.[	σ1](	σ2 → β)⇒ 	σ3 → β)

Γ � (δh[�τ1](�σ3�τ2→α).U) ◦ (Λ	x �τ1 . δg[�σ1](�σ2→β). V )
: ∀β.[	σ1](	σ2	τ2 → β)⇒ 	τ3 → β.

Then, by the rule (mabs)

Γ, 	x : 	τ1; g : [	σ1](	σ2 → β) � V : 	σ3 → β

Γ; g : [	σ1](	σ2 → β) � (Λ	x �τ1 . V ) : [	τ1](	σ3 → β).

Then, because Γ;h : [	τ1](	σ3	τ2 → α) � U : 	τ3 → α and by the Substitution
lemma (iii),

Γ; k : [	σ1](	σ2	τ2 → β) � U [[h := Λ	x �τ1 . V [[g := k]]]] : 	τ3 → β.

Finally, by the rule (habs),

Γ � (δk[�σ1](�σ2�τ2→β).U [[h := Λ	x �τ1 . V [[g := k]]]])
: ∀β.[	σ1](	σ2	τ2 → β)⇒ 	τ3 → β

as requested. QED
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The closure of the set of well-typed terms implies that the calculus λcs satisfies
the definition of a subsystem (Definition 1.1.14) of the framework λc.

Theorem 5.2.15 (Subsystem λcs) The underlying ARS Aλcs of the calculus λcs

is an indexed sub-ARS of the underlying ARS Aλc of the context calculus λc.

Proof: The statement is proved using the Subject reduction lemma 5.2.14. QED

Properties of rewriting in λcs

Rewriting in λcs is complete, that is, confluent and strongly normalising.

Theorem 5.2.16 (Confluence) The calculus λcs is confluent.

Proof: This property follows by using Lemma 1.1.10, the commutation property of
each pair of rewrite rules of the framework λc (Theorem 3.2.38) and the fact that
λcs is a subsystem of λc (Theorem 5.2.15). QED

Rewriting in λcs is strongly normalising. The proof proceeds via translation
to λ2 (see Section 1.2.3). The strong normalisation of λcs follows from the strong
normalisation of λ2.

Definition 5.2.17 (Translation of λcs to λ2)
i) Define ��		 : Ps → Typ(λ2) as a function that translates the types to the

types of λ2:
�� a 		 = a
��τ → τ ′		 = ��τ 		 → ��τ ′		
��∀α.[	τ1]	τ2 → α⇒ 	τ3 → α		 = ∀α.(��	τ1		��	τ2		 → α)→ (��	τ3		 → α)
��	τ → α		 = ��	τ 		 → α
��[	τ ]τ 		 = ��	τ 		 → ��τ 		
��[	τ1]	τ2 → α		 = ��	τ1

		��	τ2
		 → α.

ii) Define ��		 : Ter(λcs)→ Ter(λ2) as
��u		 = u
�� λxτ .U 		 = λx

��τ��
. ��U		

�� U V 		 = ��U		 ��V 		

�� Λ	x �τ .U 		 = λ	x
���τ��

. ��U		

�� U 〈	U〉 		 = ��U		 ��U1
		 . . . ��Un

		

�� δh[�τ1]�τ2→α.U 		 = Λα. λh
��[�τ1]�τ2→α��

. ��U		
�� U �V � 		 = ��U		 ��τ 		 ��V 		

if, for certain Γ,
Γ � U : ∀α.[	τ1](	τ2 → α)⇒ 	τ3 → α
Γ � V : ([	τ1](	τ2 → α))[[α := τ ]]

�� U ◦ V 		 = comp1
��U		 ��V 		
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if, for certain Γ (the types of c and d are the types of U and V , respectively),
Γ � U : ∀α.[	τ1](	τ2 → α)⇒ 	τ3 → α
Γ � V : [	τ1](∀β.[	σ1](	σ2 → β)⇒ 	τ2	σ3 → β)
comp1 ≡ λc.λd.Λβ.λg

���σ1
�����σ2

��→β . c(��	σ3
		 → β)(λ	x

���τ1��
. d	xβg)

�� U ◦ V 		 = comp2
��U		 ��V 		

if, for certain Γ (the types of c and d are the types of U and V , respectively),
Γ � U : ∀α.[	τ1](	σ3	τ2 → α)⇒ 	τ3 → α
Γ � V : [	τ1](∀β.[	σ1](	σ2 → β)⇒ 	σ3 → β)
comp2 ≡ λc.λd.Λβ.λg

���σ1
�����σ2

�����τ2��→β . cβ (λ	x
���τ1��

. d	x(��	τ2		 → β)g).

iii) Let ∆ be a basis. Then ��∆		 = {(u : ��ρ		) | (u : ρ) ∈ ∆}.

Translation preserves typing.

Proposition 5.2.18 If Γ;Σ �λcs U : ρ then ��Γ		 ∪ ��Σ		 �λ2
��U		 : ��ρ		.

Proof: The proof is done by induction to the length of Γ;Σ �λcs U : ρ. One checks
the typing rules of λcs: from the translations of the premisses, the translations of
the conclusions can be derived in λ2. Then each derivation step in Γ;Σ �λcs U : ρ
can be translated into one or more derivation steps in λ2. QED

Translation preserves rewrite steps.

Proposition 5.2.19 If Γ;Σ �λcs U : ρ and U → V in λcs, then ��U		→→ ��V 		 in λ2.

Proof: In general, the rewrite steps in λcs are translated into many β-steps (in-
volving both λ-abstractions and Λ-abstractions), with one exception: a β-step
where the multiple abstraction and the multiple application are empty, that is,
(Λε.U)〈〉 → β U , which in translation results in an empty β-step: �� (Λε.U)〈〉 		 =

U = ��U		. QED

Theorem 5.2.20 (Strong normalisation) Rewriting in λcs is strongly normal-
ising.

Proof: Let U0 ∈ Ter(λcs) and suppose r is an infinite rewrite sequence in λcs:

r : U0 → U1 → U2 → . . . (∞).

Note indeed that if U0 is a λcs-term, then so are all its reducts. Then, the translation
of U0, U1, U2, . . . to λ2 results in a rewrite sequence ��r		 in the simply typed lambda
calculus:

��r		 : ��U0
		→→ ��U1

		→→ ��U2
		→→ . . . (∞).

Because there are no infinite rewrite sequences in λ2, the tail of ��r		 must eventually
be empty, i.e. ��Un

		 ≡ ��Un+1
		 ≡ . . .. These steps can only be translations of ‘empty’

β-steps, i.e. Un ≡ C[(Λε.U)〈〉]→ β C[U ] ≡ Un+1 . . .. However, since λcs-terms
are finite, there cannot be infinitely many such steps starting from Un. QED

Corollary 5.2.21 Rewriting in λcs is complete.
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Comparison to de Bruijn’s calculus and λc→

We compare the calculus λcs to de Bruijn’s segment calculus. Both calculi are
extensions of lambda calculus with segments, but there are a couple of significant
differences.

The first kind of differences lies in the choice for the lambda calculus nota-
tion: using name-carrying variables as in λcs or using name-free variables as in de
Bruijn’s calculus. Related to the notation is the way of implementing β-rewrite re-
lation. In our calculus the β-rewriting is defined using meta-substitution, whereas
in de Bruijn’s calculus β-rewriting is defined stepwise by traversing the pair (λx. )t
through a term or a segment s in the redex (λx. s)t.

In addition, there are differences in the way segments are represented and used.
These differences pertain to the representation of a hole, representation of a segment
and representation of segment variables; they are discussed in turn.

- In our calculus holes are denoted by a hole variable h whereas in de Bruijn’s
calculus holes are denoted by a constant ω. Moreover, in λcs hole variables are
‘labelled’ by terms, viz. h〈	V 〉; the terms in the ‘label’ capture the effects of β-
step within a segment. In de Bruijn’s calculus holes are labelled by reference
transforming mappings, which can only adjust the intended bindings, and
cannot capture the effects of a β-step within a segment. For this reason, the
redex in a segment keeps ‘hanging’ in front of the hole.

- In our calculus a segment is an abstraction over a hole variable δh.U , where
δh explicitly denotes the root of the segment, while in de Bruijn’s calculus the
root of a segment is implicilty determined.

- In our calculus segment variables are ordinary nullary variables (e.g. c in
c ◦ (Λx. δh.λy.h〈x, y〉)), whereas in de Bruijn’s calculus segment variables
are unary (e.g. η(1, 5) in λη(1, 5)ω(id2)). In de Bruijn’s calculus, whenever
a segment variable is used, it is immediately provided with an object to be
filled into the hole of the segment for which this variable holds place. With
such unary segment variables, the spine of a term is defined differently in de
Bruijn’s calculus and our calculus. For example, the end of the spine in the
term η(1, 5)λω(id2) is ω(id2), so this term is a segment. In the representation
of the same term in λcs, in the term c ◦ (Λx. δh.λy.h〈x, y〉), the end of the
spine is c, so this term is not a segment (although this term does result in a
segment after a substitution for c and reduction to normal form). This implies
that, with such segment variables, de Bruijn’s calculus includes a more flexible
notion of segment than our calculus. In particular, it allows composition or
hole filling on the spine of a segment, which is not allowed in our calculus.

- In de Bruijn’s and Balsters’ typing, the type of the hole is not explicitly fixed,
but it is computed by the typing function. The type of a hole is computed in
such a way that if λ	x �τ . []	s is a segment, then the type of []	s is a base type.
In our calculus the type of []	s may also be functional.
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If we restrict the base type set to a singleton, say {a}, the types in λcs are
comparable to the frames in De Bruijn’s version. In λcs the type of a segment is
also described by three sequences of types (i.e. types of the unmatched abstractions
in front, types of the unmatched applications at the hole and types of the commu-
nication). For example, the segment type ∀α.[a]a → a → α ⇒ a → a → a → α
corresponds to the frame (a, a, a; a, a; a) in de Bruijn’s calculus.

In Section 4.2 an another context calculus was given for simply typed lambda
calculus, namely the calculus λc→. The calculus λc→ included contexts without
restrictions on the number and position of hole, and it allowed no polymorphism
for context types. However, technically, the calculus λcs resembles λc→. We have
already made many comparisons throughout this section in types and type system.
The main difference is in the presence and usage of type variables. By dropping the
polymorphism in λcs and adjusting the treatment of Σ, one obtains the calculus
λc→. Another difference is in the specific position of the hole in λcs and the treat-
ment of the base Σ in the type system. Moreover, composition is explicitly present
in λcs whereas in λc→ it is definable.

Some (non-)examples in λcs

The introductory example cannot be represented within λcs, because it involves
λ-terms that are not typable in λ→, thus also not typable in λcs. In the example,
it holds C[M ]→β xx, and the term xx is not typable in λcs.

The (representation of) context C ≡ (λy. [])x itself is typable in λcs (note that
C is a segment):

x : a � δh[a]α. (λya. h〈y〉)x : ∀α.[a]α⇒ α.

Note that for example, the big example of Figure 5.4 is not typable in λcs,
because this example requires dependent types. This example will be typable in the
next chapter.

Summary of comparisons

We add the calculus λcs into the figures of Section 4.4. The meaning of arrows is
the same in that section.

Figure 5.10 summarises the relationship between the framework λc on the one
hand, and the calculi λcλ, λc→, λc

∼= and λcs on the other hand.

Table 5.1 summarises the expressivity of the applications of the context calculus
λc that are considered in this thesis.
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λcλ λc
∼=

λc

λcsλc→

Figure 5.10: Relationship with λc and its applications

calculus formalises functions over
contexts?

translated to

λcλ contexts of the un-
typed λ-calculus

no untyped λ-calculus

λc→ contexts of λ→ yes λ→

λc
∼= contexts of the un-

typed λ-calculus
yes untyped λ-calculus

λcs segments of λ→ yes λ2

Table 5.1: The expressivity of the context calculi



Chapter 6

The context cube λ[ ]:
the lambda cube with
contexts

In the preceding chapters we have considered lambda calculi with contexts, where a
particular lambda calculus was either untyped or simply typed, and where contexts
were defined as terms with holes. In this chapter we aim to gain more expressive
power by considering also lambda calculi with dependent types and by allowing
holes to occur also in types.

We present here the context cube, or the λ[ ]-cube for short, which is a collection
of eight context calculi related to the eight systems of Barendregt’s lambda cube
with contexts. Indirectly, because contexts for the lambda cube are difficult to
describe by using informal notation as in the lambda calculus, the λ[ ]-cube defines
a notion of context for the lambda cube. The novelty of the λ[ ]-cube is that it
includes also context calculi dealing with dependent types. The simplicity of the
λ[ ]-cube lies in the fact that it can be translated into the lambda cube.

This chapter is structured as follows. Section 6.1 recalls Barendregt’s lambda
cube and discusses the problems when defining and formalising its meta-contexts.
Section 6.2 is a gentle introduction to the context cube. It describes what the con-
text cube is and the approach to formalisation of meta-contexts in the context cube.
Section 6.3 contains the definition of the expressions, rewrite relations and typing in
the systems of the context cube. Section 6.4 shows that rewriting in the λ[ ]-cube is
confluent and strongly normalising, and that each system λ[S] of the λ[ ]-cube can
be translated into the corresponding system λS of the lambda cube. Section 6.5
illustrates how the context cube can be employed for representing de Bruijn’s seg-
ments with ‘polymorphic types’ and how such segments can be used for representing
mathematical structures in proof checking. The fact that the context cube can be
translated into the lambda cube entails that our representations of mathematical
structures could be coded into the existing tools for automated reasoning that are

183
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based on the lambda cube or type theories.
In general, in this chapter we concentrate on the expressivity related to contexts,

and do not consider the expressivity of a particular system λ[S] of the λ[ ]-cube,
because the latter is basically the same as in the system λS of the lambda cube.

6.1 Barendregt’s lambda cube

In this section we give the background for our λ[ ]-cube by analysing the lambda
cube.

The lambda cube, or the λ-cube for short, which was introduced by H.P. Baren-
dregt, comprises eight systems of typed lambda calculi, all of which are typed à
la Church. Most of the eight systems were already known systems at the time,
whether in the same format as in the λ-cube or in an equivalent format. However,
the ingenuity of the λ-cube is that it presents the eight systems in a way that allows
for uniform development of meta-theory. This description method has been further
generalised to Pure Type Systems (PTSs) (see for example [Ber88, Ter89, GN91]).

The systems of the λ-cube are parametrised by the sorts of dependencies that
may occur between terms and types.

We explain what is here meant by the dependency between terms and types. In
the calculi and the typing systems of the preceding chapters, terms and types were
defined as two different syntactic categories. Take for example the simply typed
lambda calculus1 λ→ as defined in Section 1.2.2. In λ→, first types are defined and
then terms, where abstractions are annotated with types. Furthermore, terms and
types are only related by the typing rules in typing statements Γ � M : τ , where
M stands for a term and τ for a type. In contrast, in the λ-cube, terms and types
may depend on each other. An example of a term depending on types is the term
Λα. λx : α.x, which explicitly depends on the type variable α. As a consequence
of such dependencies, in the λ-cube terms and types are defined simultaneously
as one syntactic category, called pseudo-expressions. The typing rules define then
the notion of derivability Γ � A : B and implicitly, in this way, also the notion of
well-defined type and the notion of well-typed term.

For the definition of the systems of the λ-cube, their properties, related ter-
minology and notation, see the preliminary section 1.2.3 and the references given
there. Here, we present the systems of the λ-cube as stratified systems of ex-
pressions, where β-reduction is restricted to particular levels of expressions. This
restriction of β-reduction will later be used in the formalisation of context-related
rewriting in our λ[ ]-cube. Furthermore, we look at meta-contexts of the λ-cube,
which are not defined in [Bar92]. We argue that meta-contexts cannot be defined in

1It is important to note that we consider here the version of the simply typed lambda calculus
λ→ à la Church presented in Section 1.2.2. Another version of λ→ à la Church is the system λ→
of the λ-cube as defined in Section 1.2.3. The two versions of λ→ are essentially the same, due
to the dependencies that are allowed for λ→ of the λ-cube. In particular, based on the allowed
dependencies, terms and types of the λ-cube system λ→ are two different syntactic categories (cf.
Lemma 5.1.14 in [Bar92]).
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an informal way as in the untyped and simply typed lambda calculus. For the defi-
nition of meta-contexts, communication needs to be formalised. Therefore, we will
not define meta-contexts for the λ-cube here directly. Meta-contexts of the λ-cube
will be defined later through the λ[ ]-cube, where context-related issues, including
communication, are formalised.

Before going into details of the λ-cube, we discuss the possible dependencies
between terms and types in general.

Dependencies between terms and types. We list the four possible sorts
of dependencies. This informal discussion is based on Barendregt’s explanation
in [Bar92], Section 5.1.

i) Terms depending on terms: Consider the λ→-expression λx : α.f xx. This
expression is an example of a term (i.e. f xx) depending on terms (denoted by
the term variable x in f xx). This sort of dependency is a natural one by the
formation of λ-terms, which formalise functions as abstractions over terms.

ii) Terms depending on types: Consider the λ2-expression Λα. λx : α.x. It is an
example of a term (here, λx : α.x) depending on types (denoted by the type
variable α). In λ2, the type of this expression is ∀α. α→α. Such types are
called polymorphic, and this sort of dependency is said to capture λ-terms
with polymorphic types.

iii) Types depending on types: Consider the λω-expression λα.α→α→α. It is an
example of a type (i.e. α→α→α) depending on types (denoted by the type
variable α). Alternatively, the expression λα.α→α→α can be understood as a
function from types to types. Hence, it is said to be an element of, in informal
notation, type→type, that is, (λα.α→α→α) : (type→type). The expressions
like type→type are in λω called kinds. The elements of kinds describe how
new types can be formed from other types within the syntax of types: the
expression λα.α→α→α says that, if τ is a type then τ→τ→τ is a type too.

iv) Types depending on terms: Consider the λP -expression λx : τ. σ where τ and
σ are types and where x may occur in σ. This expression is an example of a
type (i.e. σ) depending on terms (denoted by the term variable x in σ). This
expression describes how a new type can be formed using terms within the
syntax of terms and types: if M is a term then σ[[x := M ]] is a type. Types
depending on terms are traditionally called dependent types. This sort of
dependency allows, for example, predicates and cartesian products.

Analogously to the expression λα.α→α→α being considered as a function
from types to types, the expression λx : τ. σ can be considered as a function
from terms to types. In the λ-cube system λC, such expressions are also said
to be elements of kinds.

The permission to λ-abstract in these expressions is crucial. For example, the
term λx : α.x and the type α→α can be seen to depend on the type variable α
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in λ→, but in this system abstraction over types is not allowed. Therefore, in λ→

terms and types do not depend on types.
The first three sorts of dependencies still allow types and terms to be defined

separately: namely, first types and then terms. However, the last sort of dependency
introduces terms in types, and consequently, terms and types become the same
syntactic category.

Furthermore, by allowing the last two sorts of dependencies, β-reduction is in-
troduced on elements of kinds too. For example,

(λα.α→α→α)τ →β τ→τ→τ
(λx : τ. σ)M →β σ [[x := M ]] .

Expressions. Here we address three subjects: (i) implementation of the control
over dependencies in the λ-cube, (ii) a slightly adapted terminology of the λ-cube,
and (iii) the levels in which legal expressions are arranged by the typing relation.

First, we repeat the definition of the pseudo-expressions of the λ-cube (cf. Defi-
nition 1.2.59):

A ::= x | s | (AB) | (λx : A.B) | (Πx : A.B)

where s ∈ S = {∗,�}. Recall also that a pseudo-expression A is called a legal
expression if there are Γ and B such that Γ � A : B or Γ � B : A.

The dependencies described above can be characterised by the four cases ac-
cording to what the abstracted variable (i.e. x in λx.A) stands for and to what the
body of the abstraction (i.e. A in λx.A) is. The first two dependencies describe the
ways in which new terms may be formed: in both cases the body is a term. The
last two cases describe the ways in which new types can be formed: the body of the
abstraction is a type.

For the purpose of expressing the dependencies and governing the expression
formation accordingly, in the λ-cube two sorts are introduced: ∗ and �. The sort ∗
contains types, i.e. τ : ∗ amounts to saying that τ is a type. Types will contain terms
depending on terms and terms depending on types. The sort � contains kinds, i.e.
κ : � amounts to saying that κ is a kind. A dependency is then expressed by a pair
over {∗,�}. The pair (s1, s2) denotes the dependency of the elements of sort s2 on
the elements of sort s1. For example, the pair (∗,�) denotes that elements of kinds
may depend on elements of types. Each system of the λ-cube is parametrised by a
set R, expressing which dependencies are allowed in that particular system.

The formation of types and kinds is governed by the specific typing rules, which
are parametrised by R. Each dependency pair (s1, s2) in R indicates a particular
specific typing rule:

(Abs)
Γ � A : s1 Γ, x : A � B : s2

Γ � (Πx : A.B) : s2
if (s1, s2) ∈ R.

In this rule, s1 determines the sort of the abstracted variable x, s2 determines the
sort of the body of the abstraction. In the λ-cube, the thus formed object (i.e. a
type or a kind) Πx : A.B is by default2 of sort s2.

2In contrast, in PTSs the newly formed object may be of some other sort.
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In the λ-cube, the attention is focused on legal expressions, that is, on the
pseudo-expressions which are ‘well-typed’ with respect to the typing rules of a par-
ticular system. With terms and types defined simultaneously (see above), only by
imposing typing restrictions do we obtain well-defined types and kinds and their
well-typed elements.

The terminology of the λ-cube regarding expressions is refined with respect to
the terminology of the lambda calculus, due to new sorts of expressions. We adopt
here the slightly adapted terminology of the λ-cube system λC (cf. Definition 5.2.3
in [Bar92]), because λC contains all possible dependencies and hence, all sorts of
(legal) expressions. The terminology of λC is based on the fact that legal expressions
can be seen as stratified into five levels3: the level of sorts, the level of kinds, the
level of types, the level of elements of kinds and the level of elements of types:

element of kind : kind : �

element of type : type : ∗.

The examples of dependencies treated above, now in the notation and terminol-
ogy of the λ-cube, are as follows.

element : type or kind : sort needed specific typing rule

λx : τ. f x : Πx : τ. σ : ∗ (∗, ∗)
λα : ∗. λx : α.x : Πα : ∗. σ : ∗ (�, ∗)

λα : ∗. α→α→α : Πα : ∗.∗ : � (�,�)
λx : τ. σ : Πx : τ.∗ : � (∗,�)

We discuss the structure of legal expressions in more detail. An important
observation related to expressions and rewriting in the λ-cube is that although, next
to the standard lambda calculus abstraction λ, a new abstraction Π is introduced,
there is no corresponding application. Accordingly, in the conclusion of the typing
rule (app), the Π-abstraction is immediately eliminated4:

(app)
Γ � F : (Πx : A.B) Γ � a : A

Γ � F a : (B[[x := A]]).
3These levels are however not disjoint, because of the axiom ∗ : �. For example, if A : ∗ and

a : A, then

x : A : ∗ : �

x : (λy : A. A)a : ∗ : �

x : (λY : ∗. Y )A : ∗ : �.

Here, each of the expressions A, (λy : A. A)a and (λY : ∗. Y )A is both an element and a type.
The expression ∗ is both a kind and a sort.

4This is in contrast to the practice in the Automath languages (see [Daa73, Ned73]), where
there is only one abstraction and only one application, both of which may occur in a type. See
also [KBN99] where both β-reduction and Π-reduction are used in the λ-cube.
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This means that a functional type like Πx : A.B may be formed, but if an argument
a is provided, the functionality of the type is adapted and computed immediately:
B[[x := A]]. There is no explicit postponement of such a computation, and hence,
no corresponding application–abstraction elimination rule.

Some examples of legal expressions per level and a short analysis of their struc-
ture are given in the preliminary section 1.2.3.

β-reduction. In the λ-cube, β-reduction is defined on pseudo-expressions. How-
ever, on legal expressions, β-reduction can be seen as being restricted to the level
of elements (of types or kinds), because β-redexes are elements: Consider the redex
(λx : A.b)a and let it be a legal expression. Then, by using the Generation and
Substitution lemmas 1.2.71 and 1.2.72 for the λ-cube, there exist Γ, B and s with

Γ � (λx : A.b) : (Πx : A.B) : s,
Γ � a : A, and
Γ � (λx : A.b)a : B[[x := a]] : s.

Hence, the redex (λx : A.b)a is an element.
With types possibly depending on elements, redexes may occur in types too.

Again, the positions of redexes in a type or kind (and, in general, in any expression)
are restricted by the fact that redexes are elements. For example, redexes cannot
occur on the spine of a kind: Γ � � (λx : A.Π	y : 	B.∗)a : �.

Note here that, in addition to α-conversion, β-reduction is the only rewrite re-
lation in the λ-cube. As we have already remarked, although a new abstraction,
namely Π, is introduced, there is no corresponding application, and hence, no re-
dexes of the form (Πx : A. ) · a where · denotes the application related to Π.

Meta-contexts. For the definition of the λ-cube and investigation of the properties
of the λ-cube, meta-contexts are not needed. Accordingly, in [Bar92] there is no
definition of meta-contexts.

However, an attempt to give a definition of meta-contexts using informal no-
tation as in the lambda calculus, fails. We claim here that, in order to define
meta-contexts in the λ-cube in a way analogous to the definition of meta-contexts
in the untyped lambda calculus, one needs a better representation of holes together
with communication. We set out the assumptions regarding meta-contexts that
seem natural, and describe the problem. The assumptions are the following.

i) In the λ-cube the attention is focused on legal expressions. Then it seems
natural to define (legal) meta-contexts, informally, as legal expressions with
holes. In the sequel, in the informal notation holes will be denoted by []A

where A is the type or kind of the hole.

ii) The notion of legal expression is defined by the typing rules. Then, with
meta-contexts defined as legal expressions with holes, it seems natural to
define the notion of meta-context by using the same typing rules. In the
typing derivations, it seems natural to treat holes as constants, that is, as free
variables which are not allowed to be abstracted.
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iii) In general, hole filling is an integral part of the definition of meta-contexts
(see Section 2.1). As in the case of the untyped lambda calculus, hole filling
is, informally, a literal replacement of a hole by a legal expression of the same
type or kind as the hole.

With these assumptions, meta-contexts and hole filling are not well-defined. The
problem lies in the fact that the typing rules employ substitution and β-conversion,
and as we have shown in Section 2.2, communication of a hole is not preserved
under these transformations. This is illustrated by the example given below.

Example 6.1.1 Consider the typing statement

Y : ∗ � (λX : ∗. λx : []∗. x)Y : (Πx : []∗. []∗)

and a fragment of its derivation:

Y : ∗ � (λX : ∗. λx : []∗. x) : (ΠX : ∗.Πx : []∗. []∗) Y : ∗ � Y : ∗
Y : ∗ � (λX : ∗. λx : []∗. x)Y : (Πx : []∗. []∗).

The hole of the element and the hole of the type originate from the same hole: the
type of x. Therefore, they should be considered as occurrences of the same hole,
and accordingly, filled by the same expression. However, while filling the hole of
the element and the hole of the type by X where X : ∗ is ‘legal’ in the assumption,
it results in an incorrect typing statement in the conclusion: (λX : ∗. λx : X.x) :
(ΠX : ∗.Πx : X.X) but not (λX : ∗. λx : X.x)Y : (Πx : X.X). The problem arises
because in this derivation step, the information [[X := Y ]] is not recorded by the
hole in the type.

Hence, in order to define meta-contexts, a notation for holes with explicitly
denoted communication is necessary. Furthermore, as in the case of lambda calculus
(see Section 2.2), one can show that substitution, α-conversion and β-reduction do
not ‘commute’ with filling of holes.

6.2 Introduction to the context cube

We describe here the λ[ ]-cube informally; the definition is given in the next section.
This section extends the description of our approach to formalisation of contexts,
which was given in Section 2.5.

A collection of context calculi related to the λ-cube. The λ[ ]-cube defines
a collection of eight context calculi. These context calculi extend the eight systems
of the λ-cube with contexts. The λ[ ]-cube provides an adequate notation for meta-
contexts of the λ-cube, where β-reduction on contexts is gained for free.

Context calculi. On (representation of) contexts, also the standard relations
and operations are defined: typing, substitution, α-conversion, and β-reduction.
Furthermore, the systems of the λ[ ]-cube include variables over (representations
of) contexts and functions over (representation of) contexts.
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We stress that context-related rewriting in the λ[ ]-cube is defined on the same
level where β-rewriting is allowed in the λ-cube, namely on the level of elements.
This is the level where the problem of commutation between β-reduction and hole
filling occurred in the informal notation. Incidentally, the consequence of this choice
is that we stay within the framework of the λ-cube.

The notion of context. Indirectly, the λ[ ]-cube defines a notion of context for
the λ-cube. It formalises contexts with many holes, which in turn may occur an
arbitrary number of times. A hole may occur at any position where otherwise a
variable may occur. The holes of a context are filled sequentially.

Typing. The typing relation in each system of the λ[ ]-cube makes the assumptions
listed above. Moreover, the typing relation will satisfy the following: if C is a
context of type or kind T , then C[	a] is of type or kind T [	a] for suitable expressions
	a. This restriction filters out typing statements like (λx : []∗. x) : (Πx : A.A), where
the typing relation assumes more information about filling of holes than available
in the expression and its type or kind.

The typing relation in each system of the λ[ ]-cube is defined in such a way that
the levels are preserved: if a meta-context of the λ-cube is on the level of elements,
types or kinds, then its representation within the λ[ ]-cube is at the same level.

Properties. Technically, we arrive at a very simple extension of the λ-cube. The
syntax of the expressions is extended with new abstractions and applications related
to representing contexts. These new expression constructors can be understood as
macros over the syntax of the λ-cube. In particular, each system of the λ[ ]-cube
can be translated into the corresponding system of the λ-cube. That means that
the whole λ[ ]-cube can be encoded into the λ-cube.

The λ[ ]-cube is rather expressive. For example, as we will show later, ‘poly-
morphic’ de Bruijn’s segments with dependent types can be represented within the
λ[ ]-cube.

Representing the lambda cube with contexts. We give the intuition behind
the representation method. The representation method builds upon the method
described in Section 2.5 for the context calculus λc; see also Example 6.3.9.

- Legal expressions of the λ-cube: These expressions can be represented directly
in the λ[ ]-cube, because each system λ[S] of the λ[ ]-cube is an extension of
the corresponding system λS of the λ-cube.

- Holes: Holes are represented by hole variables h, g,H, . . . applied to a sequence
of n expressions 	N that keep track of the relevant α, β-changes in the context.
So, holes are represented as h〈 	N〉n, where 〈 〉n denotes multiple application.

- Communication: In addition to multiple application, which is used in the
representation of communication around the holes, we introduce the multiple
abstractions Λ and Λ for representing the expressions that are to be put into
holes and their types or kinds. In general, ifM is an expression that is intended
to be put into a hole and where 	x are intended to become bound upon filling,
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and if T is the type (or kind) of M , then M and T are represented in the
λ[ ]-cube as Λn	x: 	A.M and Λn	x: 	A.T respectively, and the intention is that
Λn	x: 	A.M is of type Λn	x: 	A.T . Upon filling the expression into a hole h〈 	N〉n,
that is, upon replacing the hole variable by the expression, commutation can
be computed by a multiple β-rewrite step:

(Λn	x: 	A.M)〈 	N〉n →M [[	x := 	N ]] .

If Λn	x: 	A.T is the type of Λn	x: 	A.M , then the type of (Λn	x: 	A.M)〈 	N〉n is
T [[	x := 	N ]].

- Contexts, hole filling: Contexts are considered as functions over the possible
contents of its holes; that is, contexts are functions over hole variables. The
abstractor for the hole variables is denoted by δ. Hole variables of a con-
text will be abstracted sequentially. In general, if C is a context of type (or
kind) TC with n holes (holes are represented as above), then C is represented
as δh1:T1. . . . δhn:Tn.C and its type is represented as δh1:T1. . . . δhn:Tn. TC .
In general, in (the representation of) types and kinds, hole variables are ab-
stracted by δ. The intention is again that δh1:T1. . . . δhn:Tn.C is of type
δh1:T1. . . . δhn:Tn. TC .

Hole filling is then represented sequentially as follows. If δh:T.U is a context
and if Λn	x: 	A.M is a communicating expression, then hole filling is represented
as (δh:T.U)�Λn	x: 	A.M� and computed by a version of the β-rewrite rule:

(δh:T.U)�Λn	x: 	A.M� → U [[h := Λn	x: 	A.M ]] .

If δh:T.TU is the type of δh:T.U , then the type of (δh:T.U)�Λn	x: 	A.M� is
TU [[h := Λn	x: 	A.M ]].

Composition can be encoded within the λ[ ]-cube.

- Sorts: Using the constructors of the λ[ ]-cube, we will represent terms and
types, as in the λ-cube, and moreover, contexts and communicating terms.
Contexts will not be considered as a new sort of expressions, because contexts
are terms or types with holes. Hence, the dependencies between contexts,
terms and types can be expressed by ∗ and � in a way that is analogous to
controlling the dependencies in the λ-cube.

However, communicating expressions will be considered as special expressions,
because such expressions are combined with contexts, terms and types in
a different way. For example, a context may depend on a communicating
expression, but a communicating expression may only depend on terms and
types. For denoting the sorts of communicating expressions two auxiliary
sorts are introduced:  ∗, which denotes communicating types, and �, which
denotes communicating kinds.
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Remark 6.2.1 The four constructors Λn, 〈 〉n, δ, and � � are also constructors of
the context calculus λc; their role in λc is the same. The two abstractors Λn and δ
are new also with respect to λc.

In sum, the elements are treated as in the context calculus λc; the abstractors
Λ and δ are introduced for representing the types and kinds (with holes). Holes in
types and kinds are filled by substitution, filling of holes in elements can be denoted
and its computation can be postponed. This explanation will also be visible in the
typing rules.

6.3 Definition of the context cube

This section presents the definition of expressions, rewriting and typing of the eight
systems of the context cube.

Let S = {∗,�, ∗, �} be the set of sorts. Let V be a countably infinite set of
variables.

Definition 6.3.1 (Pseudo-expressions) Let s ∈ S and x, 	x ∈ V. The set of
pseudo-expressions A of the λ[ ]-cube is defined inductively by

A ::= s | x | (Πx : A.A) | (λx : A.A) | (AA) |
(Λn	x : 	A.A) | (Λn	x : 	A.A) | (A〈 	A〉n) |

(δx : A.A) | (δx : A.A) | (A�A�)

where |	x| = | 	A| = n.

Notation. As usual, standard abbreviations regarding brackets apply, including
the association to the left. Also, standard abbreviations for sequences of n pseudo-
expressions as 	A and sequences of n variables as 	x apply. When convenient, consec-
utive abstractions (λx1 : A1. . . . (λxn : An.B)) and (Πx1 : An. . . . (Πxn : An.B))
will be abbreviated by λ	x : 	A.B and Π	x : 	A.B, respectively, and moreover, if
A1 ≡ . . . ≡ An, then we write λ	x : A.B and Π	x : A.B, respectively. In the multiple
abstractions Λn and Λn, if n = 0 then we write Λε.A and Λε.A. Furthermore,
we will omit the index n of Λ, Λ, and 〈 〉, and assume that the arities of these
constructors and the number of their arguments match. As in the case of lambda
calculus, if x does not occur free in B, then Πx : A.B = A → B. Arbitrary
expressions will be denoted by A,B,C, . . .. Hole variables will be denoted by
h, g, k, h1,H,G . . .; arbitrary variables will be denoted by x, y, x′, x1,X, Y, . . ..

Substitution over pseudo-expressions is defined in a standard way; we will skip
the definition here.

On pseudo-expressions, rewrite relations are defined via rewrite rules. The
rewrite rules are split into the standard β-reduction and the context-related rewrit-
ing. The context-related rewriting comprises communication and hole filling.
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Definition 6.3.2 (Rewrite rules) The rewrite relations of the λ[ ]-cube are in-
duced by two collections of rewrite rules, the lambda calculus rewrite rule and the
context rewrite rules. The two collections of rewrite rules are given below.

i) The lambda calculus rewrite rule is:

(λx : A.B)C → B[[x := C]] (β)

ii) The context rewrite rules are:

(Λ	x : 	A.B)〈	C〉 → B[[	x := 	C]] ( β)
(δh : A.B)�C� → B[[h := C]]. (fill)

As usual, it is assumed that the bound variables in the rewrite rules are renamed
to avoid variable capturing.
Notation. Let →c denote the rewrite relation generated by the context rewrite
rules of the λ[ ]-cube.

The context rewrite rules can be understood as instances of the β-rewrite rule,
because they too are application–abstraction elimination rules. The rule ( β) is
a multiple version of the β-rule and the rule (fill) is a version of the β-rule dealing
with an abstraction over a hole variable.

Note that there is no composition in either the syntax of the pseudo-expressions
or the rewrite rules. We will show later that composition can be represented within
the systems of the λ[ ]-cube.

Pseudo-expressions and the rewrite rules form a rewrite system. We will call it
the underlying calculus of the context cube, or the λ[ ]-calculus for short, and use
it only as an auxiliary system.

Definition 6.3.3 (The underlying calculus: the λ[ ]-calculus)
The underlying calculus of the context cube, called the λ[ ]-calculus, consists of

the set of pseudo-expressions as defined in Definition 6.3.1 and the rewrite relations
as defined in Definition 6.3.2.

The systems of the context cube are presented in a uniform way, analogously to
the definition of λ-cube (see [Bar92]). The eight systems of the λ[ ]-cube are λ[→],
λ[2], λ[P ], λ[P2], λ[ω], λ[ω], λ[Pω], and λ[C]. The names for these systems are
derived from the names of the systems of the λ-cube. As we will show later, system
λ[S] of the λ[ ]-cube corresponds to the system λS of the λ-cube with contexts.

Each of the eight systems is defined on legal expressions with respect to a par-
ticular collection of the typing rules. The typing rules are divided into the general
typing rules and the specific typing rules. The general typing rules are the rules
that are present in each of the eight systems; these rules guide the formation of
elements, allow for conversion in their types and kinds, and guide the formation
of legal bases. The specific typing rules control the formation of types and kinds
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according to the allowed dependencies between terms and types5 in a particular
system of the λ[ ]-cube. The dependencies that are allowed in a particular system
are expressed by R ⊆ {∗,�} × {∗,�} and each system includes a different subset
of the specific typing rules. Hence, the specific rules are parametrised by R.

The eight systems of the λ[ ]-cube and the dependenciesR allowed in a particular
system are displayed in Table 6.1. The dependencies R of a system λ[S] are the
same as the dependencies of the system λS of the λ-cube.

system λ[S] parametrised by R
λ[→] (∗, ∗)
λ[2] (∗, ∗) (�, ∗)
λ[P ] (∗, ∗) (∗,�)
λ[P2] (∗, ∗) (�, ∗) (∗,�)
λ[ω] (∗, ∗) (�,�)
λ[ω] (∗, ∗) (�, ∗) (�,�)
λ[Pω] (∗, ∗) (∗,�) (�,�)
λ[C] (∗, ∗) (�, ∗) (∗,�) (�,�)

Table 6.1: The systems of the λ[ ]-cube

Statements, declarations and pseudo-bases are defined analogously to the corre-
sponding notion in the λ-cube.

Definition 6.3.4

i) A statement is of the form A : B with A,B ∈ T .

ii) A declaration is a statement of the form x : A where x ∈ V.

iii) A pseudo-basis is a finite, ordered sequence of declarations with distinct vari-
ables. The empty basis is denoted by ∅.

So, a pseudo-basis is an ordered sequence of declarations. This is comparable
to the case of the λ-cube, but contrary to the case of for example simply typed
lambda calculus λ→ or the applications of the context calculus λc. The ordering
is a consequence of the fact that if x1 : A1, . . . , xn : An is a pseudo-basis, then Aj
may depend on xi for i and j with 1 ≤ i < j ≤ n.

The typing relation employs only one basis, viz. Γ � A : B. This basis contains
declarations of both term variables and hole variables. The reason for using only
one basis in the λ[ ]-cube is the fact that the type of a hole variable may depend on
a term variable, and vice versa.

5Here we mean, terms and types in the terminology of, for example, the simply typed lambda
calculus.
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Definition 6.3.5 (Typing) Let λ[S] be a system of the λ[ ]-cube, parametrised
by R. Let A and B be pseudo-expressions and let Γ be a pseudo-basis. Then A : B
can be derived from the pseudo-basis Γ, denoted by Γ � λ[S] A : B, if Γ � A : B
can be derived using R and the typing rules displayed in Figures 6.1 and 6.2.

The systems of the λ[ ]-cube are defined on legal expressions provided with β-
reduction and the context-related rewrite relations.

Definition 6.3.6 (The λ[ ]-cube) Each of the eight systems of the λ[ ]-cube are
defined as follows.

Let λ[S] be one of the systems of the λ[ ]-cube listed in Table 6.1. Let λ[S]
be parametrised by R. Then, the system λ[S] consists of the legal expressions as
defined by the typing rules of Figures 6.1 and 6.2 with respect to R, and of the
rewrite relations of Definition 6.3.2.

We first establish some notation and terminology, and then comment on the
typing system.

Notation. If the system is irrelevant, the index λ[S] in Γ � λ[S] A : B is omitted.
Furthermore, Γ � A : B : C is a shorthand for the two derivations Γ � A : B and
Γ � B : C.

Definition 6.3.7 Let A be a pseudo-expression.

i) A typing statement is of the form Γ � A : B.

ii) Let Γ be a pseudo-basis. Then, Γ is called a (legal) basis if ∃P,Q ∈ T (Γ � P :
Q).

iii) A is called a (legal) expression if ∃Γ, B (Γ � A : B or Γ � B : A).

iv) A is called a kind if there is a basis Γ such that Γ � A : �.

v) A is called a communicating kind if there is a basis Γ such that Γ � A :  �.

vi) A is called a type if there is a basis Γ such that Γ � A : ∗.

vii) A is called a communicating type if there is a basis Γ such that Γ � A :  ∗.

viii) A is called an element if ∃B ∈ T ∃s ∈ S (Γ � A : B : s).

We comment on the typing system. The typing rules of the λ[ ]-cube, displayed
in Figures 6.1 and 6.2, include the typing rules of the λ-cube. These are the general
rules (axiom), (var), (weak), (conv), (abs) and (app), and the specific rule (Π).
Here, in the λ[ ]-cube, these rules are of course adapted for dealing also with new
sorts of expressions: the sort s in (var), (weak) and (conv) may also be  ∗ or
 �; by the rules (var) and (weak) both term variables and hole variables may be
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introduced; and in the conversion B=βcB
′ of the rule (conv) also the context-

related rewriting may be employed.
In addition to the typing rules of the λ-cube, the λ[ ]-cube contains new typing

rules which deal with formation of new sorts of expressions. The additional rules
are the general rules (mabs), (mapp), (habs), and (fill), and the specific rules (Λ)
and (δ). The rules (mabs) and (mapp) deal with communication: they guard the
typing of communication around holes and the typing of elements to be put into
holes. The rules (habs) and (fill) deal with formation of contexts and filling of holes
of a context.

By the rules (mabs) and (habs), the abstraction of variables is reflected in both
the element and its type or kind: in the case of (habs), if Γ, h : A � b : B then
Γ � (δh : A.b) : (δh : A.B). This is comparable to typing of λ-abstractions by the
rule (abs). By the rules (mapp) and (fill), the ‘application’ is postponed in the
element but it is computed immediately in its type or kind: in the case of (fill), for
example, if Γ � a : A and Γ � (δh : A.b) : (δh : A.B) then Γ � (δh : A.b)�a� :
B[[x := a]]. This is comparable to typing of applications by the rule (app). By these
rules a (β-, β- or fill -)redex is formed only in the element. Hence, in general,
although a redex may also occur in a type of a kind, the redex itself is an element.

The specific rules (Λ) and (δ) govern the formation of communicating types
and communicating kinds, and the formation of the types and kinds of contexts,
respectively. They are parametrised by the allowed dependencies in a particular
system, which are expressed by R. The requirement in the rule (Λ) in case |	x| =
0, that there is an s′ with (s′, s) ∈ R ensures that no abstractions are allowed
over expressions over which otherwise no abstractions are allowed. This condition
excludes expressions like Λε.A and Λε.∗ with A : ∗, if otherwise also Λx : B.A and
Λx : B.∗ are not allowed for any B (i.e. if there is no (s,�) in R).

By (thoroughly) inspecting the typing rules of the λ[ ]-cube, one may see that,
as in the case of the λ-cube, legal expressions are stratified into levels. Because
of the new sorts in the λ[ ]-cube, its level structure is more involved than in the
λ-cube:

element : type : ∗ element : communicating type :  ∗

element : kind : � element : communicating kind :  �.

Here, as in the case of the λ-cube, the levels of elements on one hand, and the levels
of types and kinds on the other hand overlap.

We give two examples dealing with legal expressions. The aim of the first exam-
ple is to give a flavour of the levels into which the legal expressions are stratified.

The second example illustrates the expressive power of the λ[ ]-cube. It treats
meta-contexts of the λ-cube: the examples considered can be understood as trans-
lations of meta-contexts. Furthermore, the second example shows that the λ[ ]-cube
has a greater expressivity than just representing meta-contexts. In the λ[ ]-cube
also functions over (representations of) contexts can be represented, as well as in-
termediate results of context-related computation. At the end of this chapter, we
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(axiom) ∅ � ∗ : �

(var)
Γ � A : s

Γ, x : A � x : A
s = ∗,�, ∗, �

(weak)
Γ � A : B Γ � C : s

Γ, x : C � A : B
s = ∗,�, ∗, �

(conv)
Γ � A : B Γ � B′ : s B =βc B

′

Γ � A : B′
s = ∗,�, ∗, �

(abs)
Γ, x : A � b : B Γ � (Πx : A.B) : s

Γ � (λx : A.b) : (Πx : A.B)
s = ∗,�

(app)
Γ � F : (Πx : A.B) Γ � a : A

Γ � F a : (B[[x := a]])

(mabs)
Γ, 	x : 	A � b : B Γ � (Λ	x : 	A.B) :  s

Γ � (Λ	x : 	A. b) : (Λ	x : 	A.B)
s = ∗,�

(mapp)
Γ � F : (Λ	x : 	A.B)

Γ � ai : Ai[[x1 := a1, ..., xi−1 := ai−1]]

Γ � F 〈	a〉 : (B[[	x := 	a]])
for 1 ≤ i ≤ |	a| = | 	A|

(habs)
Γ, h : A � b : B Γ � (δh : A.B) : s

Γ � (δh : A.b) : (δh : A.B)
s = ∗,�

(fill)
Γ � F : (δh : A.B) Γ � a : A

Γ � F �a� : B[[h := a]]

Figure 6.1: General part of the type system for the λ[ ]-cube
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(Π)
Γ � A : s1 Γ, x : A � B : s2

Γ � (Πx : A.B) : s2
if (s1, s2) ∈ R

(Λ)

Γ, x1 : A1, . . . , xi : Ai � Ai+1 : si+1

Γ, 	x : 	A � B : s

Γ � (Λ	x : 	A.B) :  s

if (si, s) ∈ R
for all 1 ≤ i ≤ |	x|,
and, in case |	x| = 0,
if ∃s′ with (s′, s) ∈ R

(δ)
Γ � A :  s1 Γ, h : A � B : s2

Γ � (δh : A.B) : s2
if (s1, s2) ∈ R

Figure 6.2: System-specific part of the type system for the λ[ ]-cube

will work out a more involved example dealing with de Bruijn’s segments with
dependent types and their representation within the λ[ ]-cube.

Example 6.3.8 We list some examples of typing statements.

i) All legal expressions of the λ-cube are legal expressions of the λ[ ]-cube, be-
cause the λ[ ]-cube contains the typing rules of the λ-cube (see Lemma 6.4.14).
The examples of typing statements of the λ-cube that were given in Sec-
tion 1.2.3 are also examples of typing statements of the λ[ ]-cube.

ii) Consider the examples:

X : ∗, Y : ∗ �λ[→] (Λx:X, y:Y.x) : (Λx:X, y:Y.X) :  ∗
X : ∗, Y : ∗ �λ[P ] (Λx:X, y:Y.X) : (Λx:X, y:Y.∗) :  �

X : ∗, h : (Λx:X.X) �λ[→] h : (Λx:X.X) :  ∗.

In general, the elements of  ∗ and  �, that is, communicating types and
communicating kinds respectively, are (always) Λ-abstractions. The reverse
is true too: a Λ-abstraction is an element of either  ∗ or  �. Elements of
Λ-abstractions are either Λ-abstractions or hole variables. The reverse is true
again: a Λ-abstraction or a hole variable is an element of a Λ-abstraction.

iii) Consider the examples and the positions of h〈x〉 and g 〈〉:

X : ∗, h : (Λx : X.X) �λ[→] (λx:X.h〈x〉) : (Πx:X.X) : ∗
X : ∗, h : (Λx : X.∗) �λ[P ] (λx:X.h〈x〉) : (Πx:X.∗) : �

g : (Λε.∗) �λ[P ] (λx: g 〈〉 . x) : (Πx: g 〈〉 . g 〈〉) : ∗
g : (Λε.∗) �λ[P ] (Λx: g 〈〉 . g 〈〉) : (Λx: g 〈〉 .∗) :  �.

In general, in meta-contexts of the λ-cube a hole may occur at any position
where otherwise a variable may occur. Hence, representations of holes, like
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h〈x〉 and g 〈〉, may occur at any position where otherwise a variable (other
than a hole variable) may occur.

iv) Consider the examples:

X : ∗ �λ[→] (δh:(Λx:X.X). λx:X.h〈x〉)
: (δh:(Λx:X.X).Πx:X.X) : ∗

∅ �λ[P ] (δg:(Λε.∗). λx: g 〈〉 . x) : (δg:(Λε.∗).Πx: g 〈〉 . g 〈〉) : ∗
X : ∗, Y : ∗ �λ[2] (δh:(Λx:Y.Y ). λx:Y.h〈x〉)

: ((λX: ∗ . δh:(Λx:X.X).Πx:X.X)Y ) : ∗
X : ∗ �λ[2] ((λY : ∗ . δh:(Λx:Y.Y ). λx:Y.h〈x〉)X)

: (δh:(Λx:X.X).Πx:X.X) : ∗.

In general, a δ-abstraction is an element of either ∗ or �. A δ-abstraction is an
element of a δ-abstraction or an element of an expression which is convertible
to a δ-abstraction. Also, an element of a δ-abstraction is either a δ-abstraction
or an expressions which is convertible to a δ-abstraction.

v) Consider the examples of multiple application and hole filling:

X : ∗, Y : ∗, a : X, b : Y �λ[→] (Λx:X, y:Y.x)〈a, b〉 : X : ∗
X : ∗, a : X,h : (Λx:X.X) �λ[→] h〈a〉 : X : ∗
X : ∗ �λ[P ] (δg:(Λε.∗). λx: g 〈〉 . x)�Λε.X� : (Πx: (Λε.X)〈〉 .∗) : �.

Note that by the formation of a multiple application or hole filling on the level
of elements as above, no multiple application or hole filling is introduced on
the level of types or kinds.

Example 6.3.9 We consider some legal expressions of the λ[ ]-cube, which can be
understood as representations of (legal) meta-contexts of the λ-cube. Throughout
this example the expressions of the λ[ ]-cube will be ‘translated’ into informal, inad-
equate but more intuitive quasi-notation of the λ-cube, which uses []D for denoting
holes of type or kind D.

i) The identity function over type A is a legal expression:

X : ∗ �λ[→] (λx:X.x) : (X→X) : ∗.

ii) Consider the following examples:

X : ∗, Y : ∗ �λ[→] (Λx:X, y:Y.x) : (Λx:X, y:Y.X) :  ∗
X : ∗, Y : ∗ �λ[P ] (Λx:X, y:Y.X) : (Λx:X, y:Y.∗) :  �

∅ �λ[2] (ΛX:∗, x:X.x) : (ΛX:∗, x:X.X) :  ∗.

These examples involve elements that represent terms and types to be placed
into a hole of a context. The element Λx:X, y:Y.x can be understood as the
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term x which is to be placed into a hole in the scope of an x-abstractor and a
y-abstractor. Hence the communication preamble Λx:X, y:Y . Due to possible
dependencies in the types as in the third example, the type of Λx:X, y:Y.x
is the Λ-abstraction Λx:X, y:Y.X. In comparison, in the applications of the
context calculus, for example in λc→, the type of the communicating term
Λx:X, y:Y.x would be [X,Y ]X.

Analogously, the other two statements can be explained. We mention only
that we now deal with also communicating types (for example, Λx:X, y:Y.X),
and with types in communication (for example, X in ΛX:∗, x:X.x). Such
elements are not considered in the context calculus.

iii) Hole variables are of a communicating type or of a communicating kind; for
example:

∅ �λ[Pω] h : (ΛX: ∗ .Πx:X.∗) :  �.

iv) The example

∅ �λ[Pω] (δh:(ΛX ′: ∗ .∗).ΠX: ∗ .Πx: h〈X〉 .∗) : �

can be understood as a representation of the meta-context ΠX: ∗ .Πx:[]∗.∗.
The hole variable in ΠX: ∗ .Πx: h〈X〉 .∗ is abstracted by a δ-abstraction be-
cause ΠX: ∗ .Πx:[]∗.∗ is a kind with a hole.

v) The example

∅ �λ[P2] (δh:(Λε.∗). h〈〉) : ∗

can be understood as a representation of the meta-context []∗. Because the
meta-context []∗ is considered here as a type with a hole, its representation is a
δ-abstraction. Note that the communication of the hole []∗ is void: hence, the
‘empty’ multiple abstraction Λε.∗ as the type of h and the ‘empty’ multiple
application h〈〉 as the representation of the hole.

vi) An example involving hole abstractions is

X : ∗ �λ[→] (δh:(Λy:X.X). λx:X.h〈x〉) : (δh:(Λy:X.X).X→X) : ∗.

This example can be understood as a representation of the typing statement
X : ∗ � (λx:X. []X) : X→X. In comparison, in the applications of the context
calculus, for example in λc→, this typing statement would be represented as
X : ∗ � (δh:([X]X). λx:X.h〈x〉) : ([X]X ⇒ X→X).

vii) The example

∅ �λ[P2] (δh:(Λε.∗). λx: h〈〉 . x) : (δh:(Λε.∗).Πx: h〈〉 . h〈〉) : ∗
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can be understood as a representation of the typing statement ∅ � (λx:[]∗. x) :
(Πx:[]∗. []∗) : ∗.
Note that the meta-context λx:[]∗. x (thus also, the expression
δh:(Λε.∗). λx: h〈〉 . x) can be treated as a ‘polymorphic’ version of the identity
function: by introducing a hole in a type, one implicitly states that ‘for all
types fitting the hole’ λx:[]∗. x is of type Πx:[]∗. []∗.

viii) An example of a function over meta-contexts is the function that takes a
‘polymorphic’ identity function as an argument and instantiates it to the
identity function over X:

X : ∗ �λ[P2] (λc:(δh:(Λε.∗).Πx: h〈〉 . h〈〉). c�Λε.X�)
: (Πc:(δh:(Λε.∗).Πx: h〈〉 . h〈〉).Πx:X.X).

ix ) The meta-context of Example 6.1.1 can be represented as

Y : ∗ �λ[ω] (δh:(ΛX: ∗ .∗). (λX: ∗ . λx: h〈X〉 . x)Y )�ΛX: ∗ .X� : (Πx:Y.Y ).

Consider the fragment of its derivation where

Y : ∗, h : (ΛX: ∗ .∗) � Y : ∗
Y : ∗, h : (ΛX: ∗ .∗) � (λX: ∗ . λx: h〈X〉 . x) : (ΠX: ∗ .Πx: h〈X〉 . h〈X〉)
Y : ∗, h : (ΛX: ∗ .∗) � (λX: ∗ . λx: h〈X〉 . x)Y : (Πx: h〈Y 〉 . h〈Y 〉).

Note that, in contrast to the case in Example 6.1.1, the typing is preserved
(modulo context-related rewriting) under the substitution [[h := ΛX: ∗ .X]].
The reduct of the element (λX: ∗ . λx: h〈X〉 . x)Y is of the same type

Y : ∗, h : (ΛX: ∗ .∗) �λ[ω] (λx: h〈Y 〉 . x) : (Πx: h〈Y 〉 . h〈Y 〉).

Furthermore, one may check that all rewrite sequences starting from the ex-
pression (δh:(ΛX: ∗ .∗). (λX: ∗ . λx: h〈X〉 . x)Y )�ΛX: ∗ .X� end in λx:Y.x.

x ) By introducing a hole in the type of an another hole, the latter hole becomes
‘polymorphic’. Consider the previous example with a hole in the type of h:

X : ∗, a : X,
H : (Λx:X.∗) �λ[P ] (δh:(Λx:X.H 〈x〉). h〈a〉) : (δh:(Λx:X.H 〈x〉).H 〈a〉).

See also Section 6.5, where such ‘polymorphic’ holes are used for representing
segments and mathematical structures.

Composition can be encoded into the systems of the context cube: the compo-
sition expression comp defined in the next definition handles two contexts with one
hole each. The expression comp is rather involved; for a detailed explanation of the
encoding, see Remark 3.1.9. Also alternative notions of composition are possible:
in Section 6.5 we will treat composition (encoded as the expression comp2 ) of two
segments with ‘polymorphic’ types.
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Definition 6.3.10 (Composition) Let C and D be such that for a certain Γ

Γ � C : (δh : (Λ	x1 : 	A1.Π	x2 : 	A2.A).Π	x3 : 	A3.E)
Γ � D : (Λ	x1 : 	A1. δk : (Λ	y1 : 	B1.Π	y2 : 	B2.B).Π	x2 : 	A2.A).

Suppose 	x1 �∈ FVar( 	B1, 	B2, B)). Then comp CD is the composition of C and D
where (the types of c, d, g are dropped for brevity, but they should be the same as
in the type of comp)

Γ � comp ≡ λc. δd. δg. c�Λ	x1 : 	A1. (d〈	x1〉)�g��
: Πc : (δh : (Λ	x1 : 	A1.Π	x2 : 	A2.A).Π	x3 : 	A3.E).

δd : (Λ	x1 : 	A1. δk : (Λ	y1 : 	B1.Π	y2 : 	B2.B).Π	x2 : 	A2.A).
δg : (Λ	y1 : 	B1.Π	y2 : 	B2.B). Π	x3 : 	A3.E .

The expression comp is legal with respect to a particular system λ[S] if C and
D are legal expressions with respect to the same system λ[S]: a typing derivation of
comp uses the same conditions and the same elements of R as the typing derivations
of C and D.

Note that the untyped version of comp, that is,

λc. δd. δg. c�Λ	x1. (d〈	x1〉)�g��

is the same as composition in λc→ (cf. comp in Section 4.2).

6.4 Properties of the context cube

In this section, we investigate the properties of the λ[ ]-cube. Technically speaking,
the λ[ ]-cube is a simple extension of the λ-cube, which can easily be translated
back into the λ-cube. Hence, the properties regarding typing and rewriting of the
systems of the λ[ ]-cube can be stated and proved in the similar way as for the
(corresponding) systems of the λ-cube.

The properties of (the systems of) the λ[ ]-cube can be categorised as follows:

- the properties of the λ[ ]-calculus,

- the relation between the λ[ ]-calculus and the underlying calculus which is
defined on pseudo-expressions of the λ-cube;

- the properties of the typing system(s) of the λ[ ]-cube;

- the relation between the systems of the λ[ ]-cube and the systems of the λ-
cube; and

- the properties of rewriting in the systems of λ[ ]-cube.

This section is divided into five subsections accordingly.
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Remark 6.4.1 The proofs of the statements on typing are performed in the same
way as in the λ-cube. Such a piece of technical luck is a consequence of the fact
that the λ[ ]-cube can be seen as a macro over the λ-cube. In particular, the λ[ ]-
cube does not introduce (β-)rewriting on a level where otherwise no β-rewriting is
allowed in the λ-cube. This is comparable to the situation in [SP94], and contrary
to the situation in for example [KBN99] and some Automath systems (see for ex-
ample [NGdV94]), where due to the presence of applicative expressions on the level
of types and kinds, other more powerful techniques in proofs are used.

Properties of the λ[ ]-calculus

Rewriting in the λ[ ]-calculus, that is, the rewriting on pseudo-expressions of the λ[ ]-
cube, is confluent. This property will be used later in the proof that the rewriting
on legal expressions in each of the eight systems of the λ[ ]-cube is confluent.

Theorem 6.4.2 (Confluence of the λ[ ]-calculus)
Rewriting in the λ[ ]-calculus is confluent.

Proof: The proof can be given by presenting the λ[ ]-calculus in a higher-order
rewriting format, and then showing that the higher-order rewrite system related to
the λ[ ]-calculus is orthogonal and hence confluent. This proof is analogous to the
proof that the context calculus λc is confluent, which has been given in Section 3.2.5.

QED

The following lemma will be needed later in this section, in the proof of the
Substitution lemma 6.4.11 for the systems of the λ[ ]-cube.

Lemma 6.4.3 (Substitution for pseudo-expressions)
Let A, 	B, 	C be pseudo-expressions, let all 	x, 	y be distinct and let 	x �∈ FVar(	C).

Then,

A [[	x := 	B]] [[	y := 	C]] = A [[	y := 	C]] [[	x := 	B[[	y := 	C]]]].

Proof: The proof is done by a straightforward induction to the structure of A.
QED

The λ[ ]-calculus and the underlying calculus of the λ-cube

We define a translation from the λ[ ]-calculus into the underlying calculus of the
λ-cube. We also show that the translation preserves rewriting between pseudo-
expressions.

Definition 6.4.4 (Translation to the calculus of the λ-cube)
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i) Define ��		 as

��s		 =
{
s if s ∈ {∗,�}
s′ if s ≡  s′

��x		 = x
�� λx : A.B 		 = λx : ��A		. ��B		
�� AB 		 = ��A		 ��B		
�� Πx : A.B 		 = Πx : ��A		. ��B		

�� Λ	x : 	A.B 		 = λx1 : ��A1
		. . . . λxn : ��An

		. ��B		

�� A〈 	B〉 		 = ��A		 ��B1
		 . . . ��Bn

		

�� Λ	x : 	A.B 		 = Πx1 : ��A1
		. . . .Πxn : ��An

		. ��B		
�� δh : A.B 		 = λh : ��A		. ��B		
�� A�B� 		 = ��A		 ��B		
�� δh : A.B 		 = Πh : ��A		. ��B		.

ii) Let Γ be a pseudo-basis. Then ��Γ		 = {(u : ��A		) | (u : A) ∈ Γ}.

Lemma 6.4.5 Let A and B be two pseudo-expressions of the λ[ ]-cube. If A → B
in the λ[ ]-calculus, then ��A		→→ ��B		 in the λ-cube.

Proof: The proof is conducted by induction to the structure of A. More specifi-
cally, the following can be shown: (i) if A→βB then ��A		→β

��B		; (ii) if A→fillB
then ��A		→β

��B		; and (iii) if A→ βB then ��A		→→β
��B		. In the third case, the

translation of a β-step is empty if the redex which is contracted is of the form
(Λε. b)〈〉. QED

Typing properties of the systems of the λ[ ]-cube

We show that each system of the λ[ ]-cube has the subject reduction property. This
is proved in an analogous way as for the λ-cube.

Lemma 6.4.6 (Free variables lemma) Let Γ = x1 : A1, . . . , xn : An and Γ �
A : B. Then the following holds:

i) All x1, . . . , xn are distinct.

ii) FVar(A) ∪ FVar(B) ⊆ Γ.

iii) FVar(Ai) ⊆ {x1, . . . , xi−1} for 1 ≤ i ≤ n.

Lemma 6.4.7 (Start lemma) Let Γ be a legal basis. Then the following holds:

i) Γ � ∗ : �.

ii) If (x : A) ∈ Γ then Γ � x : A.
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Proof: One proves first that for all Γ′, B and C if Γ′ � B : C, then both (i)
and (ii) hold for Γ′. These proofs are conducted by induction to the length of the
derivation. Then both parts of the lemma follow from the fact that Γ is a legal
basis, which means that there are B and C such that Γ � B : C. QED

Lemma 6.4.8 (Thinning lemma) Let Γ and Γ′ be legal bases with Γ′ ⊆ Γ. If
Γ′ � A : B, then Γ � A : B.

Proof: The proof is conducted by induction to the length n of the derivation
Γ′ � A : B.

If n = 1 then the derivation is the axiom ∅ � ∗ : �. Then Γ � ∗ : � by the
Start lemma 6.4.7(i).

Suppose now Γ′ � A : B is of length n > 1. The proof proceeds by distinguishing
the cases according to the last typing rule applied in this derivation. Here, we treat
only two cases.

(var) Then, for s = ∗,� and x �∈ Γ′′,

Γ′′ � B : s
Γ′′, x : B � x : B.

Because (x : B) ∈ Γ′ = Γ′′, x : B and Γ′ ⊆ Γ, also (x : B) ∈ Γ. Then by the
Start lemma 6.4.7(ii), and the fact that Γ is legal, we have Γ � x : B.

(mabs) Then,

Γ′, 	x : 	A � b : B Γ′ � (Λ	x : 	A.B) :  s

Γ′ � (Λ	x : 	A. b) : (Λ	x : 	A.B).

If |	x| = 0 then the statement follows directly by the induction hypothesis
(applied twice) and the rule (mabs).

Suppose |	x| > 0. Without loss of generality we assume that 	x �∈ Γ. Note that
for each 1 ≤ i ≤ |	x| the basis Γ′, x1 : A1, . . . , xi : Ai is legal.

Claim: For all 1 ≤ j ≤ |	x| the basis Γ, x1 : A1, . . . , xj : Aj is legal.
Proof of the claim: For each xj one can trace its introduction in
the derivation Γ′, 	x : 	A � b : B. Each xj is introduced by either
the rule (var) or the rule (weak). Both rules have as an assumption
Γ′, x1 : A1, . . . , xj−1 : Aj−1 � Aj : sj .
Then we prove by (bounded) induction to j that the basis Γ′, x1 :
A1, . . . , xj : Aj is legal.
If j = 1 then, because Γ′ � A1 : s1 and using the induction hypoth-
esis of the lemma, it holds that Γ � A1 : s1. By the rule (var), it
holds Γ, x1 : A1 � x1 : A1, and hence, the basis Γ, x1 : A1 is legal.



206 CHAPTER 6. THE CONTEXT CUBE λ[ ]

Let 1 ≤ j < |	x|. Suppose Γ, x1 : A1, . . . , xj : Aj is legal. Because
Γ′, x1 : A1, . . . , xj : Aj � Aj+1 : sj+1 and by the induction hypoth-
esis of the lemma, it holds Γ, x1 : A1, . . . , xj : Aj � Aj+1 : sj+1. By
the rule (var), it holds Γ, x1 : A1, . . . , xj : Aj , xj+1 : Aj+1 � xj+1 :
Aj+1, and hence, the basis Γ, x1 : A1, . . . , xj : Aj , xj+1 : Aj+1 is
legal.

Note that the proof of the claim uses the induction hypothesis of the lemma.

Back to the proof of the lemma. By the induction hypothesis for Γ′, 	x : 	A
and Γ, 	x : 	A, and using the left-hand side assumption, it holds Γ, 	x : 	A � b :
B. By the induction hypothesis for Γ′ and Γ and using the right-hand side
assumption, it holds Γ � (Λ	x : 	A.B) :  s. Then by the rule (mabs) it holds
Γ � (Λ	x : 	A. b) : (Λ	x : 	A.B). QED

In the proof of the Thinning lemma, the property has been used (and proved)
for some cases that if Γ′ and Γ are legal bases with Γ′ ⊆ Γ, and if Γ′, 	x : 	A is legal,
then Γ, 	x : 	A is legal too. In fact, using the Thinning lemma, this property holds
for all such Γ′ and Γ.

Corollary 6.4.9 Let Γ′ and Γ be legal bases with Γ′ ⊆ Γ. Let Γ′, 	x : 	A be also a
legal basis. Then Γ, 	x : 	A is legal too.

Lemma 6.4.10 (Generation lemma)

i) If Γ � s : C then s ≡ ∗ and C ≡ �.

ii) If Γ � x : C then ∃s ∈ S∃B such that C =βcB, Γ � B : s and (x : B) ∈ Γ.

iii) If Γ � (Πx : A.B) : C then ∃(s1, s2) ∈ R such that Γ � A : s1, Γ, x : A � B : s2
and C ≡ s2.

iv) If Γ � (Λ	x : 	A.B) : C then ∃(si, s) ∈ R for 1 ≤ i ≤ |	x| such that Γ, x1 :
A1, . . . , xi−1 : Ai−1 � Ai : si, Γ, 	x : 	A � B : s and C ≡  s.

v) If Γ � (δh : A.B) : C then ∃(s1, s2) ∈ R such that Γ � A :  s1 , Γ, h :
A � B : s2 and C ≡ s2.

vi) If Γ � (λx : A.b) : C then ∃s ∈ {∗,�} ∃B such that Γ � (Πx : A.B) : s,
Γ, x : A � b : B and C =βc (Πx : A.B).

vii) If Γ � (F a) : C then ∃A,B such that Γ � F : (Πx : A.B), Γ � a : A and
C =βcB[[x := a]].

viii) If Γ � (Λ	x : 	A. b) : C then ∃s ∈ {∗,�} ∃B such that Γ � (Λ	x : 	A.B) :  s,
Γ, 	x : 	A � b : B and C =βc (Λ	x : 	A.B).

ix) If Γ � (F 〈	a〉) : C then ∃ 	A,B such that Γ � F : (Λ	x : 	A.B), Γ � ai :
Ai[[x1 := a1, ..., xi−1 := ai−1]] and C =βcB[[	x := 	a]].
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x) If Γ � (δh : A.b) : C then ∃s ∈ {∗,�} ∃B such that Γ � (δh : A.B) : s,
Γ, h : A � b : B and C =βc (δh : A.B).

xi) If Γ;Σ � (F �a�) : C then ∃A,B such that Γ � F : (δh : A.B), Γ � a : A
and C =βcB[[h := a]].

Proof: Let Γ � A : C be a derivation corresponding with one of the cases of this
lemma. In this derivation, there is the (lowest) step in the derivation where the
expression A is formed, say Γ′ � A : C ′. Then, between Γ′ � A : B′ and Γ � A : C
only applications of the rules (weak) and (conv) may occur. These steps may only
enlarge the basis Γ′ into Γ, or perform a conversion in C ′, yielding C.

The lemma is then proved by considering the rule or axiom by which A is formed.
The proof relies on the Thinning lemma and its Corollary 6.4.9.

We show only the case where A ≡ Λ	x : 	A. b. Then A is formed by the step

Γ′, 	x : 	A � b : B Γ′ � (Λ	x : 	A.B) :  s

Γ′ � (Λ	x : 	A. b) : (Λ	x : 	A.B)

where C =βc (Λ	x : 	A.B) and Γ′ ⊆ Γ.
Using the Thinning lemma and the right-hand side assumption of the step, it

holds Γ � (Λ	x : 	A.B) :  s. With Corollary 6.4.9, the basis Γ, 	x is legal. Using the
left-hand side assumption and the Thinning lemma, we have Γ, 	x : 	A � b : B. In
sum, we have Γ � (Λ	x : 	A.B) :  s, Γ, 	x : 	A � b : B and C =βc (Λ	x : 	A.B) for
certain B and s ∈ {∗,�}. QED

Lemma 6.4.11 (Substitution lemma)
If Γ, 	x : 	A,Γ′ � b : B and if Γ � ai : Ai[[x1 := a1, . . . , xi−1 := ai−1]] for

1 ≤ i ≤ |	a|, then

Γ, (Γ′[[	x := 	a]]) � (b[[	x := 	a]]) : (B[[	x := 	a]]).

Proof: The statement is proved by induction to the length n of the derivation
Γ, 	x : 	A,Γ′ � b : B, and by distinguishing the cases according to the last rule
applied in the derivation. The proof uses also the Substitution lemma for pseudo-
expressions 6.4.3.

Here, we consider only two cases for the last rule of the derivation. By U∗ we
denote U [[	x := 	a]].

(mabs) Then,

Γ, 	x : 	A,Γ′, 	y : 	C � b : B Γ, 	x : 	A,Γ′ � (Λ	y : 	C.B) :  s

Γ, 	x : 	A,Γ′ � (Λ	y : 	C. b) : (Λ	y : 	C.B).

By the induction hypothesis, using twice, and by the rule (mabs), we have

Γ,Γ′∗	y : 	C∗ � b∗ : B∗

Γ,Γ′∗ � (Λ	y : 	C∗.B∗) :  s

Γ,Γ′∗ � (Λ	y : 	C∗. b∗) : (Λ	y : 	C∗.B∗),
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that is, by the definition of substitution

Γ,Γ′∗ � (Λ	y : 	C. b)∗ : (Λ	y : 	C.B)∗.

(mapp) Then, for 1 ≤ i ≤ |	c|

Γ, 	x : 	A,Γ′ � F : (Λ	y : 	C.B)
Γ, 	x : 	A,Γ′ � ci : Ci[[y1 := c1, ..., yi−1 := ci−1]]

Γ, 	x : 	A,Γ′ � F 〈	c〉 : B [[	y := 	c]] .

By the induction hypothesis, used |	c| + 1 times, the rule (mapp) and the
definition of substitution, we have

Γ,Γ′∗ � F ∗ : (Λ	y : 	C∗.B∗) Γ,Γ′∗ � c∗i : C∗
i [[y1 := c∗1, . . . , yi−1 := c∗i−1]]

Γ,Γ′∗ � (F 〈	c〉)∗ : B∗ [[	y := 	c∗]] .

Finally, by the Substitution lemma for expressions, B [[	x := 	a]] [[	y := 	c[[	x := 	a]]]]
= B [[	y := 	c]] [[	x := 	a]].

QED

Lemma 6.4.12 Let Γ � A : B. Then there is a sort s such that B ≡ s or Γ � B : s.

Proof: The proof is done by induction to the length of derivation Γ � A : B. The
proof also uses the Generation lemma and the Substitution lemma. QED

Lemma 6.4.13 (Subject reduction)
If Γ � A : B and A→ A′ then Γ � A′ : B.

Proof: Let Γ = 	x : 	A and Γ′ = 	x : 	A ′ with | 	A| = | 	A ′| = n. We say that Γ→ Γ′ if
there is 1 ≤ i ≤ n with Ai → A′

i and for all 1 ≤ j ≤ n with j �= i, it holds Aj = A′
j .

One then proves the following two statements simultaneously by induction to
the length of Γ � A : B and by distinguishing the last rule applied in this derivation:

i) If Γ � A : B and A → A′ then Γ � A′ : B.

ii) If Γ � A : B and Γ → Γ′ then Γ′ � A : B.

The proof relies on the Generation and Substitution lemmas, and on Lemma 6.4.12.
We show only the case where the last step in the derivation Γ � A : B is the

application of the rule (mapp) and where A is the redex being contracted.
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We have the following situation: for 1 ≤ i ≤ |	a| = | 	A| (the assumptions are
numbered for an easy reference)

Γ � a1 : A1 (1)
...

Γ � ai : Ai[[x1 := a1, ..., xi−1 := ai−1]] (i)
...

Γ � an : An[[x1 := a1, ..., xn−1 := an−1]] (n)
Γ � (Λ	x : 	C. b) : (Λ	x : 	A.B) (n+ 1)

Γ � (Λ	x : 	C. b)〈	a〉 : B[[	x := 	a]]

and (Λ	x : 	C. b)〈	a〉 → b[[	x := 	a]]. With the assumption (n + 1) and the Generation
lemma, there is D with Γ � (Λ	x : 	C.D) :  s, (Λ	x : 	C.D)=βc (Λ	x : 	A.B) and
Γ, 	x : 	C � b : D. In the conversion, we have in particular Ci =βcAi for all 1 ≤ i ≤ n
and D=βcB.

By the Generation lemma for Γ � (Λ	x : 	C.D) :  s, there are (si, s) ∈ R for
1 ≤ i ≤ n such that Γ, x1 : C1, . . . , xi−1 : Ci−1 � Ci : si and Γ, 	x : 	C � D : s.

Claim: For all 1 ≤ i ≤ n it holds Γ � ai : Ci[[x1 := a1, . . . , xi−1 := ai−1]].

Proof of the claim: We show this by bounded induction to i. As-
sume for all j < i that Γ � aj : Cj [[x1 := a1, . . . , xj−1 := aj−1]]. From
Γ, x1 : C1, . . . , xi−1 : Ci−1 � Ci : si and by the induction hypothe-
sis and the Substitution lemma we have Γ, x1 : C1, . . . , xi−1 : Ci−1 �
Ci[[x1 := a1, . . . , xi−1 := ai−1]] : si. Consider the assumption (i), which
says Γ � ai : Ai[[x1 := a1, ..., xi−1 := ai−1]]. Because Ci =βcAi and con-
version is closed under substitution, also Ci[[x1 := a1, . . . , xi−1 := ai−1]]
=βcAi[[x1 := a1, ..., xi−1 := ai−1]]. Using the rule (conv) we arrive at
Γ � ai : Ci[[x1 := a1, . . . , xi−1 := ai−1]], as required.

Because Γ, 	x : 	C � b : D, and using the Substitution lemma with [[	x := 	a]], it
holds Γ � b[[	x := 	a]] : D[[	x := 	a]]. Then with the rule (conv),

Γ � b[[	x := 	a]] : D [[	x := 	a]] Γ � B[[	x := 	a]] : s B[[	x := 	a]] = D[[	x := 	a]]
Γ � b[[	x := 	a]] : B [[	x := 	a]] .

QED

Typing in the λ[ ]-cube is not unique, because β-conversions is allowed in types.
For example, if Γ = {X : ∗, x : X} then both Γ � x : X and Γ � x : (λY : ∗. Y )X.
However, the uniqueness of typing does hold up to conversion.

The λ[ ]-cube and the λ-cube

The correspondence between the λ[ ]-calculus and the λ-cube can be summarised
by two sentences:
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- the system λS of the λ-cube can trivially be translated into the system λ[S]
of the λ[ ]-cube;

- the system λ[S] of the λ[ ]-cube can be translated into the system λS of the
λ-cube.

The translation of the system λS into the system λ[S] is the identity function.
The translation of the system λ[S] into the system λS is given by Definition 6.4.4.
Both translations preserve the notion of legal expression and of legal bases. More-
over, both translations preserve rewrite steps on legal expressions.

Lemma 6.4.14

i) If Γ � λS A : B, then Γ � λ[S] A : B.

ii) If A is a legal λS-expression and A →β A
′ in the system λS, then A →β A

′

in the system λ[S].

Proof: The proof of the first part follows trivially from the fact that the typing
rules of the λ-cube are contained in the typing rules of the λ[ ]-cube, and from the
fact that the system λS of the λ-cube and the system λ[S] are parametrised by the
same set of rules R.

For the proof of the second part, note that, by the first part, A is also a legal
λ[S]-expression. Then, the statement follows from the fact that the β-rewrite rule
is also a rewrite rule of the system λ[S] and from the closure property of rewriting
in the system λ[S] (i.e. the subject reduction property 6.4.13). QED

Lemma 6.4.15

i) If Γ � λ[S] A : B in the λ[ ]-cube, then ��Γ		 � λS
��A		 : ��B		 in the λ-cube.

ii) If A is a legal λ[S]-expression and A → A′, then ��A		→→ ��A′		 in the system
λS.

Proof: The proof of the first part is done by translating the typing rules: it can be
shown that from the translations of the premisses, the translations of the conclusions
can be derived in λS. The proof uses also Lemma 6.4.5 to show that if B=βcB

′ in
the λ[ ]-cube, then ��B		 =β

��B′		 in the λ-cube.
The second part is a corollary of the first part of this lemma, Lemma 6.4.5

and the closure property of rewriting in the system λS (i.e. the subject reduction
property 1.2.73 of λS). QED

Rewriting properties of the systems of the λ[ ]-cube

Rewriting in each of the systems of the λ[ ]-cube is confluent and strongly normal-
ising. The confluence proof is a standard one; the proof of strong normalisation
property is conducted via the translation into the λ-cube and the strong normali-
sation property of rewriting in the λ-cube.
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Theorem 6.4.16 (Confluence of the λ[ ]-cube)
Rewriting in each system of the λ[ ]-cube is confluent.

Proof: The proof relies on the subject reduction property (Lemma 6.4.13) and the
confluence property of the λ[ ]-calculus (Lemma 6.4.2). QED

Theorem 6.4.17 (Strong normalisation for the λ[ ]-cube)
Rewriting in any system of the λ[ ]-cube is strongly normalising.

Proof: Let A0 be a legal expression of λ[S] and suppose r is an infinite rewrite
sequence in λ[S]:

r : A0 → A1 → A2 → . . . (∞).

Note that due to the subject reduction property all reducts of A are legal expressions
of λ[S] too. Then, the translation (see Definition 6.4.4) of Ai’s to the the system
λS of the λ-cube results in a rewrite sequence ��r		 in λS:

��r		 : ��A0
		→→ ��A1

		→→ ��A2
		→→ . . . (∞).

Because there are no infinite rewrite sequences in λS, the tail of ��r		 must eventually
be empty, i.e. ��An		 ≡ ��An+1

		 ≡ . . .. These steps can only be translations of ‘empty’
β-steps, i.e. An ≡ C[(Λε.A)〈〉]→ β C[A] ≡ An+1 . . .. Such tail of r is bounded

by the size of An. Hence, there cannot be infinitely many such steps starting from
An. Therefore, all reductions starting from A must be finite. QED

6.5 Application of the context cube: mathematical
structures and segments

In this section we look more closely into the application of meta-contexts in proof
checking and into the representation of this application within the λ[ ]-cube. The
application of meta-contexts in proof checking has already been described as one of
the motivations for formalisation of meta-contexts in Introduction and Section 2.3.
It concerns the usage of meta-contexts for representing mathematical structures
(see also Example 5.1.4). The meta-contexts employed are in fact ‘polymorphic’ (in
the sense of Intermezzo 5.1.8) de Bruijn’s segments with dependent types. When
representing mathematical structures as segments, it is crucial that the types of
holes are ‘polymorphic’, because only in this way a uniform representation can be
obtained. With holes of ‘polymorphic’ types, such representations of mathematical
structures can be used for different purposes, like for example in proofs of different
lemmas involving the structure in question.

The application of meta-contexts in proof checking is illustrated by an example.
From the mathematical point of view, the example treats a reflexive–euclidic relation
and shows that such a relation is transitive and symmetric. From the technical point
of view, the example shows how mathematical structures can be represented as
meta-contexts, how such representations can be combined to form representations
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of bigger mathematical structures, and how such representations can be used in
proofs. First, we will work out the example involving meta-contexts in the informal,
inadequate notation of the λ-cube. Then, we will ‘translate’ this example into
the λ[ ]-cube. Finally, we will consider by way of an example representation of
‘polymorphic’ segments with dependent types in general within the λ[ ]-cube.

In this section we will sometimes, for the sake of brevity, write xA in the ab-
stractions instead of x : A.

Before going into details of the example, a remark on mathematical structures
is in order. When dealing with mathematical structures, we distinguish between
an abstract mathematical structure and a concrete mathematical structure. An
abstract mathematical structure is a structure consisting of sets, relations, functions
and assumptions about the properties of these, which may be considered as an
entity in mathematics. For example, the structure of reflexive binary relation is
(S,R, ref : (Πx : S.Rxx)) where S is a set, R is a binary relation on S and ref is the
assumption that R is reflexive. A concrete mathematical structure is a structure of
concrete sets, functions and relations and proofs that they satisfy certain properties.
For example, a concrete reflexive binary relation is (IN,=, proof ref ) where IN is the
set of natural numbers, the relation = is the equality relation and proof ref is a proof
(in natural language or as an expression of the lambda cube) that = is reflexive.

In the example, we focus mainly on abstract mathematical structures.

An example with meta-contexts in informal notation

First we represent the structure of a binary relation as a segment and then extend
it to a segment representing the structure of a reflexive–euclidic relation. Then we
show how the segment representing the structure of a reflexive–euclidic relation can
be used in the proof of the lemma which says that such a relation is also transitive.

In general, an abstract mathematical structure can be represented as a meta-
context consisting of a sequence of abstractions which represent the components of
the mathematical structure. In particular, the structure of a binary relation can be
represented by the segment

rel ≡ λS : ∗. λR : (S→S→∗). [].

Furthermore, the properties of R being reflexive and euclidic can be represented as

re ≡ λref : (Πx : S.Rxx). λeuc : (Πx, y, z : S.Rxy→Rxz→Ryz). [].

The segment re is designed in such a way that the intentional binding is expressed
by the choice of the free variables S and R, which are intended to be bound by
the binders of the segment rel. Then the (meta-)composition of the two segments
gives a representation of the structure of a reflexive–euclidic relation:

re rel ≡ rel[re] ≡
λS : ∗. λR : (S→S→∗).
λref : (Πx : S.Rxx). λeuc : (Πx, y, z : S.Rxy→Rxz→Ryz). [].
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We use these segments to prove that a reflexive–euclidic relation is transitive and
symmetric. The proofs, which are built using a meta-operation of hole filling, and
the lemma (i.e. the element and its type, respectively) are:

proof trans ≡ re rel [λa, b, c : S.λp : Rab.λq : Rbc. euc bac(euc abap(ref a))q]
: ΠS : ∗.ΠR : (S→S→∗).

Πref : (Πx : S.Rxx).Πeuc : (Πx, y, z : S.Rxy→Rxz→Ryz).
Πa, b, c : S.Rab→ Rbc→ Rac

≡ trans lemma

and

proof sym ≡ re rel [λa, b, c : S.λp : Rab. euc abap(ref a)]
: ΠS : ∗.ΠR : (S→S→∗).

Πref : (Πx : S.Rxx).Πeuc : (Πx, y, z : S.Rxy→Rxz→Ryz).
Πa, b : S.Rab→ Rba

≡ sym lemma.

Representing the example in the λ[ ]-cube

We represent the example given above into the λ[ ]-cube. All the expressions con-
sidered here are of course legal. Moreover, because all of the expressions are closed,
they can be derived with an empty basis. For the sake of brevity, the type of the
variables in abstractions will be left out if it is clear from the surrounding text what
the types should be.

The segment rel representing the structure of a binary relation and the segment
re representing the properties of the relation being reflexive and euclidic can be
represented as the expressions rel and re in the λ[ ]-cube, where

rel ≡ δH. δh.λS.λR.h〈S,R〉
: δHΛS′:∗,R′:(S′→S′→∗).∗. δhΛS′:∗,R′:(S′→S′→∗).H 〈S′,R′〉.

ΠS∗.ΠRS→S→∗. H 〈S,R〉

and

re ≡ ΛS,R. δG. δg.λref . λeuc. g 〈S,R, ref , euc〉
: ΛS∗, RS→S→∗.

δGΛS′:∗,R′:(S′→S′→∗),r:(Πx:S′.R′xx),e:(Πx,y,z:S′.R′xy→R′xz→R′yz).∗.

δgΛS′:∗,R′:(S′→S′→∗),r:(Πx:S′.R′xx),e:(Πx,y,z:S′.R′xy→R′xz→R′yz). G〈S′,R′,r,e〉.

Πref Πx:S.Rxx.ΠeucΠx,y,z:S.Rxy→Rxz→Ryz. G〈S,R, ref , euc〉 .

The novelty of this representation is the additional hole that captures the ‘poly-
morphic’ type of the hole of a segment. For example in rel , the additional hole
H enables us to say, informally, that the type of h is ‘polymorphic’, viz. h :
(ΛS′ : ∗, R′ : (S→S→∗). []). Note that this representation of segments is not a seg-
ment again, because it contains two holes.

Note also that, whenever the representation of a mathematical structure is used,
first the type of this hole h has to be instantiated for the special purpose in question.
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We proceed with the example. The composition of rel and re is represented by
the expression comp2 rel re, where comp2 is designed specifically for rel and re:

comp2 ≡
λc. δd. δK. δk. c�ΛS,R.Πref .Πeuc.K 〈S,R, ref , euc〉��ΛS,R.d〈S,R〉�K��k��

where K : (ΛS′, R′, r, e.∗) and k : (ΛS′, R′, r, e.K 〈S′, R′, r, e〉). Note that comp2
defines a different kind of composition than comp of Definition 6.3.10. The difference
is not only in the number of holes that the arguments of these compositions may
have (one hole each in the case of comp versus two holes each in the case of comp2 ),
but also in the notion of composition that they capture. The notion of composition
implemented by comp is a classical one, whereas the notion of composition captured
by comp2 is specifically designed for this kind of ‘polymorphic’ segments.

The composition comp2 rel re reduces to re rel where

re rel
≡ δK. δk.λS.λR.λref . λeuc. k〈S,R, ref , euc〉
: δKΛS′:∗,R′:(S′→S′→∗),r:(Πx:S′.R′xx),e:(Πx,y,z:S′.R′xy→R′xz→R′yz).∗.

δkΛS′:∗,R′:(S′→S′→∗),r:(Πx:S′.R′xx),e:(Πx,y,z:S′.R′xy→R′xz→R′yz). K 〈S′,R′,r,e〉.
ΠS∗.ΠRS→S→∗.

Πref Πx:S.Rxx.ΠeucΠx,y,z:S.Rxy→Rxz→Ryz. K 〈S,R, ref , euc〉 .

The types trans lemma and sym lemma, and their respective elements
proof trans and proof sym represent the statement that a reflexive–euclidic relation
is transitive and symmetric, and their proofs:

proof trans
≡ re rel �ΛS,R, ref , euc.Πa, b, c:S.Rab→Rbc→Rac�

�ΛS,R, ref , euc. λa, b, c:S. λp:Rab. λq:Rbc. euc bac(euc abap(ref a))q�

: ΠS∗.ΠRS→S→∗.Πref Πx;S.Rxx.ΠeucΠx,y,z:S.Rxy→Rxz→Ryz.
Πa, b, c:S.Rab→Rbc→Rac

≡ trans lemma

and

proof sym
≡ re rel �ΛS,R, ref , euc.Πa, b, c:S.Rab→Rba�

�ΛS,R, ref , euc. λa, b, c:S. λp:Rab. euc abap(ref a)�

: ΠS∗.ΠRS→S→∗.Πref Πx:S.Rxx.ΠeucΠx,y,z:S.Rxy→Rxz→Ryz.
Πa, b, c:S.Rab→Rba

≡ sym lemma.

Note that the proofs are built in a compositional way, by using uniform representa-
tions of the mathematical structures, their composition and the heart of the proof
itself.
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...
...

Γ1 � h〈X,P 〉 : (ΠxX .H 〈X,P, x〉) Γ1 � (fX) : X
(app)

Γ1 � h〈X,P 〉(fX) : H 〈X,P, (fX)〉

...
...

Γ0 � (λX∗. λPX→∗. h〈X,P 〉(fX))
: (ΠX∗.ΠPX→∗.H 〈X,P, (fX)〉) Γ0 � Y : ∗

(app)
Γ0 � (λX∗. λPX→∗. h〈X,P 〉(fX))Y : (ΠPY→∗.H 〈Y, P, (fY )〉)

with
Γ0 = {Y : ∗, f : (ΠZ∗.Z),H:(ΛX∗, PX→∗, xX .∗),

h:(ΛX∗, PX→∗.ΠxX .H 〈X,P, x〉)}
Γ1 = Γ0,X : ∗, P : X→∗

Figure 6.3: A fragment of a derivation

Segments with polymorphic types in the λ[ ]-cube

The examples above involved in fact telescopes, that is, segments without applica-
tions, which are of the form λ	x : 	A. []. Here we consider an example of a segment
with applications.

Let S ≡ (λX: ∗ . λP :(X → ∗). [](fX))Y where Y : ∗ and f : (ΠZ : ∗.Z). This
segment is in the λ[ ]-cube represented as

Y : ∗, f : (ΠZ: ∗ .Z) �λ[C]

δH(ΛX:∗,P :(X→∗),x:X. ∗). δh(ΛX:∗,P :(X→∗).Πx:X.H 〈X,P,x〉).
(λX∗. λPX→∗. h〈X,P 〉(fX))Y

: δH(ΛX:∗,P :(X→∗),x:X. ∗). δh(ΛX:∗,P :(X→∗).Πx:X.H 〈X,P,x〉). ΠPY→∗.H 〈Y, P, (fY )〉 .

Figure 6.3 is a fragment of its derivation, which shows how the type of the segments
keeps track of the applications in the segment.
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Chapter 7

Future work

We set out two ideas for future work.
The first idea concerns adding labels in communication in order to allow for

a more flexible way of communication between a context on the one hand, and
expressions and contexts to be put into its holes on the other hand. For example,
by using labels the ordering of arguments in communication can be avoided.

The second idea concerns an internal definition of subtyping. As we have il-
lustrated in Chapters 5 and 6, contexts can be used in automated reasoning for
representing mathematical structures, like relations, monoids, groups etc. Then,
the aim is to define subtyping so that for example, a group can be used whenever
a monoid is expected, because each group is a monoid. We sketch a definition of
subtyping that makes use of the communication labels.

We describe the two ideas in turn. Although the descriptions are rather detailed,
they are a sketch and it is possible that some adaptations are necessary.

7.1 Communication labels

In our approach to the formalisation of contexts in the context calculus λc and
the context cube λ[ ], communication is represented by multiple abstraction and
multiple application. In a communication redex (Λ	x.M)〈 	N〉 the variables 	x and
arguments 	N are matched positionally, that is, the ith variable xi is matched with
the ith argument Ni, for 1 ≤ i ≤ n = |	x| = | 	N |, so

(Λ	x.M)〈 	N〉 → β M [[x1 := N1, . . . , xn := Nn]] .

This communication mechanism can be improved by adding labels and allowing the
variables and the arguments to be accessed by a label.

In this section, we will show how communication labels can be introduced to the
context cube; labels can be introduced to the context calculus in a similar way. We
will first introduce labels, and then describe two ways of communicating through
labels: full and partial communication. Full communication is just a notational
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convenience, while partial communication is a technical extension of the context
cube. Introduction of labels has primarily an effect on the syntax of expressions, on
the communication rewrite rule and on the typing rules involving communication;
in the account given below we focus on these issues. Furthermore, we will compare
this way of formalisation of communication with a formalisation of communication
where holes are annotated with substitutions.

In the text below we drop the types of the variables in abstractions if they are
irrelevant.

Labels. The variables in multiple abstractions and the arguments between the
brackets in a multiple application can be labelled, as in

Λxa11 , . . . , x
am
m .A, Λxa11 , . . . , x

am
m .M and P 〈Nb1

1 , . . . , Nbn
n 〉 .

Of course, labels may not be renamed. Furthermore, each xi among 	x in Λ	x�a.A
or Λ	x�a.M and each Nj among 	N in P 〈 	N�b〉 should have one, unique label. Such
labels can easily be implemented, as we argue here. Instead of labelling variables
and expressions, labels could be attached to the multiple abstractors (viz. Λ�a and
Λ�a) and the multiple applicator (viz. 〈 〉�b). The uniqueness of ai among 	a and
of bj among 	b can be ensured by the choice of the constructors. Then precisely
one, unique unrenameable label is related to each variable among 	x and to each
argument 	N . With the labels being attached to the constructors, a valid labelling
is preserved under rewriting.

Full communication. Full communication is generated by communication re-
write steps where all variables of the multiple abstraction Λ and all arguments
between 〈 〉 of the multiple application are used. More precisely, an expression of
the form (Λ	x�a.M)〈 	N�b〉 is a communication redex provided that 	b is a permutation
of 	a, and

(Λ	x�a.M)〈 	N�b〉 →M [[x1 := Nl1 , . . . , xm := Nlm ]] ( β)

where the label of xi (i. e. ai) and the label of Nli (i. e. bli) are the same, for
1 ≤ i ≤ m and 1 ≤ li ≤ m with m = |	x| = | 	N |. An example of a full communication
rewrite step is

(Λxa11 , x
a2
2 , x

a3
3 .M)〈Na2

1 , Na1
2 , Na3

3 〉 → β M [[x1 := N2, x2 := N1, x3 := N3]] .

Partial communication. In the account above, an expression of the form
(Λ	x�a.M)〈 	N�b〉 is a communication redex if 	b is a permutation of 	a. In fact, this
requirement can be loosened into the requirement that 	a forms a selection of the
labels of 	b, that is, that 	a is a prefix of a permutation of 	b. Then, in effect, during
a communication step the multiple abstraction selects among the arguments 	N via
the labels:

(Λ	x�a.M)〈 	N�b〉 →M [[x1 := Nl1 , . . . , xm := Nlm ]] ( β)
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where the label of xi (i. e. ai) and the label of Nli (i. e. bli) are the same, for
1 ≤ i ≤ m and 1 ≤ li ≤ n with |	x| = m ≤ n = | 	N |. An example of a partial
communication rewrite step is

(Λxa11 , x
a2
2 .M)〈Na2

1 , Na3
2 , Na1

3 , Na4
4 〉 → β M [[x1 := N3, x2 := N1]] .

The example below illustrates some complexity of partial communication.

Example 7.1.1 We give two examples of rewrite sequences.

i) Consider the rewrite sequence

s ≡ (δh. (h〈Na
1 , N

b
2 , N

c
3 〉)(h〈P a

1 , P
b
2 , P

d
3 〉))�Λxa.M�

→fill ((Λxa.M)〈Na
1 , N

b
2 , N

c
3 〉)((Λxa.M)〈P a

1 , P
b
2 , P

d
3 〉)

→→ β (M [[x := N1]])(M [[x := P1]]).

In s, the hole variable h occurs in two multiple applications with different
labels. Consequently, the expression Λxa.M , which is substituted for h, is
involved in two different partial communication rewrite steps.

ii) Consider the rewrite sequence

t ≡ (λy. (y�Λxa1, xb2.M�)(y�Λxa1, xc3. P �))(δh.h〈Na
1 , N

b
2 , N

c
3 , N

d
4 〉)

→β ((δh.h〈Na
1 , N

b
2 , N

c
3 , N

d
4 〉)�Λxa1, xb2.M�)

((δh.h〈Na
1 , N

b
2 , N

c
3 , N

d
4 〉)�Λxa1, xb2.M�)

→→fill ((Λxa1, x
b
2.M)〈Na

1 , N
b
2 , N

c
3 , N

d
4 〉)((Λxa1, xc3. P )〈Na

1 , N
b
2 , N

c
3 , N

d
4 〉)

→→ β (M [[x1 := N1, x2 := N2]])(P [[x1 := N1, x3 := N3]]).

In t, the variable y is applied to two multiple abstractions with different labels.
This eventually leads to the involvement of the arguments Na

1 , N
b
2 , N

c
3 , N

d
4 ,

which originate from the same expression δh.h〈Na
1 , N

b
2 , N

c
3 , N

d
4 〉, in two dif-

ferent partial communication rewrite steps.

Typing of the context cube with labels. In addition to the standard role of
governing the functionality of expressions, typing in a system of the context cube
with labelled communication should also control labels. Moreover, the typing rules
should ensure that in expressions and their reducts only well-formed communication
redexes occur. That is, the typing rules should also ensure that the requirement
of full communication ‘	b is a permutation of 	a’ and the requirement of the partial
communication ‘	a is a prefix of a permutation of 	b’ are fulfilled in all (existing and
created) communication redexes along a rewrite sequence. Furthermore, the typing
rules should guarantee that in a communication redex the variables 	x of the multiple
abstraction and the arguments 	N of the multiple application agree on types: if a
variable xi among 	x and an argument Nj among 	N have the same label, they should
be of the same type. Also, in the case of partial communication all arguments 	N
should be legal.
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Partial communication is stronger than full communication. Partial com-
munication is stronger than full communication in the sense that full communication
is a special case of partial communication, whereas the converse does not hold. As
the former statement is straightforward, we focus the attention only on the lat-
ter. The only way to mimic partial communication by full communication is by
adapting multiple abstractions or multiple applications so that only full communi-
cation redexes occur. There are two possibilities for adaptation: add fresh, dummy
variables 	y in the multiple abstraction or discard superfluous arguments among 	N .
However, both attempts fail because permutation of arguments is allowed. This is
witnessed by the examples of the rewrite sequences involving partial communica-
tion that were given in Example 7.1.1. In the expression s the multiple abstraction
Λxa.M cannot be extended by dummies, and in the expression t the multiple ap-
plication h〈Na1

1 , Na2
2 , Na3

3 〉 cannot be adapted to fit both communication redexes
that occur later in the respective reductions.

Flexible communication via labels. The effect of full and partial communica-
tion is the following.

In the case of formalisations of untyped or simply typed lambda calculus with
contexts by adding labels, the order of arguments becomes irrelevant. One could
consider the sequence of variables 	x as a set of variables {x1, . . . , xm} and the se-
quence of arguments 	N as a set of arguments {N1, . . . , Nn}. During the contraction
of a communication redex, the variables and the arguments are matched through
labels.

In the case of dependent typing, however, some ordering remains relevant, be-
cause the type of xj may depend on xi if i < j, for 1 ≤ i, j ≤ |	x|. The or-
derings of variables 	x and arguments 	N which are allowed can be determined
by studying the conditions under which the ‘flattened’ versions of such an ex-
pression, viz. Πxi1 :Ai1 . . . .Πxin :Ain .A, λxi1 :Ai1 . . . . λxin :Ain .M and P Nj1 . . . Njn
where xi1 , . . . , xin is a permutation of 	x and where Nj1 , . . . , Njn is a permutation of
(in case of partial communication, a subset of) 	N , are typable in a (corresponding)
system of the context cube.

By adding labels into communication, one essentially annotates holes with sub-
stitutions. For example, the hole [][[x:=M,y:=N ]] and the expression P to be put into
the hole can be represented as h〈Mx, Ny〉 and Λxx, yy. P , respectively. Here x and
y are (not renameable) labels, and x and y are (renameable) variables. On the
representations rewriting is allowed, and, upon hole filling, the original substitution
is reconstructed via the labels.

Other formalisations of contexts that employ holes annotated with substitutions
are the calculus of M. Hashimoto and A. Ohori (see [HO98]), which has a labelled
hole filling, and the calculus of I.A. Mason (see [Mas99]), which has holes labelled
by substitutions. These context formalisations have already been discussed in Sec-
tion 2.4 and Table 2.1. The context calculus of M. Hashimoto and A. Ohori allows
only renamings, and in the formalism of I.A. Mason communication (as well as hole
filling and composition) is formalised as a meta-operation.
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7.2 Subtyping

As we have shown in Chapters 5 and 6, de Bruijn’s segments can be used in auto-
mated reasoning for representing mathematical structures. Then, also statements
about such structures can be formulated and proved. The flexibility and expres-
sivity of automated reasoning about mathematical structures can be enhanced by
supporting a notion of subtyping.

The notion of subtyping we have in mind is the one commonly used in mathe-
matics. We explain this briefly by an example. Suppose st is P is a lemma which
says that each symmetric–transitive relation Q has the property P :

if Qxy, Quv and Qxu then Qyv. (P )

Then the lemma st is P can be also applied to any relation R whose properties
imply symmetry and transitivity. This is allowed because the same proof of the
lemma can be used for such a relation R.

With mathematical structures represented as segments, the key question is how
this treatment of mathematical structures and statements about them in mathe-
matics translates into typing of segments in automated reasoning.

Remark 7.2.1 In the present setting of the context cube, where mathematical
structures can be represented, the reasoning as above can be formalised, but only
by explicitly proving the lemma anew for R. That is, in order to be able to apply the
lemma st is P to a relation R whose properties imply symmetry and transitivity,
one has to reproduce the proof of the lemma for the relation R.

Finding a typing system which also implements subtyping is here a key issue.
In general, subtyping is induced from a relation between two segment types. We
wish to say that S is a subtype of type T , denoted by S � T , if whenever elements
of T are used, elements of S can be used too1.

Note that, the type of a segment in turn reflects the internal structure of the seg-
ment. Hence, this notion of subtyping is an internal one. As such, it is comparable to
the definition of subtyping given by G. Betarte and A. Tasistro (see [BT95, BT97]).
This notion of subtyping is in contrast to the (external) notion of subtyping as
defined by J. Zwanenburg in [Zwa98]. There, the subtyping relation between types
is postulated and it is not based on the internal structure of the objects of those
types.

Subtyping by using communication labels

Communication labels can effectively be employed to implement a notion of sub-
typing. We present here an extended example of how subtyping via labels works.
The example treats the lemma st is P about a symmetric–transitive relation that
was mentioned above. The lemma will first be applied to a symmetric–transitive

1Such an informal definition of subtyping amounts to the standard one in object-oriented pro-
gramming languages.
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relation, and then to two relations whose properties include or entail symmetry and
transitivity, namely to an equivalence relation and a reflexive–euclidic relation.

In the example we will concentrate on the communication steps and the types
of the applications of the lemma to different relations. These types are an indicator
how the subtyping relation should be defined.

The example is presented in the system λ[C] of the context cube, which is
understood as the system λC of the lambda cube with contexts (see Chapter 6 and
in particular Section 6.5 for the representation technique employed). Technically
speaking, the proof of the lemma is an expression and it is placed by hole filling
into three different contexts. The communication steps that follow from hole filling
involve partial communication. In the example, we will drop the types of many
abstractions, for the sake of readability.

(1) Symmetric–transitive relation st and lemma st is P
In this part of the example we present the representation of a symmetric–

transitive relation and the representation of the lemma st is P and its proof.

The structure of a symmetric–transitive relation can be represented as

st ≡ δH. δh.λS.λR.λs.λt. h〈SS, RR, ss, tt〉
: δH : (ΛSS, RR, ss, tt.∗).

δh : (ΛSS, RR, ss, tt.H 〈SS, RR, ss, tt〉).
ΠS : ∗.ΠR : (S→S→∗).
Πs : (Πx, y:S.Rxy→Ryx).Πt : (Πx, y, z:S.Rxy→Ryz→Rxz).
H 〈SS, RR, ss, tt〉

≡ Tst .

In general, a statement and its proof involving a symmetric–transitive relation
typically has the following form (the element corresponds to a proof, and the type
to the statement):

(λx.x�ΛAS, QR, syms, trt. TM��ΛAS, QR, syms, trt.M�) : (Πx : Tst . T ).

Here, we assume that the type of ΛAS, QR, syms, trt.M is ΛAS, QR, syms, trt. TM .
Furthermore, the variable x stands for a symmetric–transitive relation and its type
is the same as the type of st , that is, its type is Tst . The first argument of x
‘instantiates’ the type of the hole on the spine of x (the type of the hole h in st)
and the second argument is the expression that is actually placed in the hole on the
spine of x. In the communication, the labels are the same as in st , but we named
the variables differently in order to emphasise how communication via labels works.
We assume that each of the variables A, Q, sym, and tr has the same type as
the variable under the same label in st . The abstractors Λ and Λ, in a manner of
speaking, unfold the binders AS, QR, syms, trt that are expected to occur, possibly
renamed, in an expression substituted for x. In the expression M and its type TM ,
the variables A, Q, sym and tr may freely be used.

We formalise the lemma st is P and its proof. Recall that the lemma says that if
Q is a symmetric–transitive relation over the set A, then one can prove the following:
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if Qxy and Quv and Qxu, then Qyv. The lemma and its proof are formalised as:

proof
≡ λx. x �ΛAS, QR, syms, trt.Πx, y, u, v:A.Qxy→Quv→Qxu→Qyv�

�ΛAS, QR, syms, trt. λx, y, u, v:A. λp1:Qxy. λp2:Quv. λp3:Qxu.
tr yuv(tr yxu(sym xyp1)p3)p2�

: Πx:Tst .ΠS: ∗ .ΠR:(S→S→∗).Πs:(Πx, y:S.Rxy→Ryx).
Πt:(Πx, y, z:S.Rxy→Ryz→Rxz).Πx, y, u, v:S. Rxy→Ruv→Rxu→Ryv

≡ st is P .

Obviously, this lemma can be applied to a symmetric–transitive relation st . The
application of the lemma amounts to the application of its proof proof to st . This
application, in turn, leads to the following reduction:

proof st
→β δH. δh.λS.λR.λs.λt. h〈SS, RR, ss, tt〉

�ΛAS, QR, syms, trt.Πx, y, u, v:A.Qxy→Quv→Qxu→Qyv�
�ΛAS, QR, syms, trt. λx, y, u, v:A. λp1:Qxy. λp2:Quv. λp3:Qxu.
tr yuv(tr yxu(sym xyp1)p3)p2�

→→fill λS. λR. λs. λt.
(ΛAS, QR, syms, trt.
λx, y, u, v:A. λp1:Qxy. λp2:Quv. λp3:Qxu. tr yuv(tr yxu(sym xyp1)p3)p2)
〈SS, RR, ss, tt〉

→ β λS. λR. λs. λt.

(λx, y, u, v:A. λp1:Qxy. λp2:Quv. λp3:Qxu. tr yuv(tr yxu(sym xyp1)p3)p2))
[[A := S,Q := R, sym := s, tr := t]]

= λS. λR. λs. λt.
λx, y, u, v:S. λp1:Rxy. λp2:Ruv. λp3:Rxu. t yuv(t yxu(s xyp1)p3)p2.

The communication step in this reduction involves full communication, because the
labels S, R, s, t in the multiple abstraction are the same as the labels in the multiple
application. Note that, the final expression is a λ[C]-expression of type

ΠS: ∗.ΠR:(S→S→∗).Πs:(Πx, y:S.Rxy→Ryx).Πt:(Πx, y, z:S.Rxy→Ryz→Rxz).
Πx, y, u, v:A. Rxy→Ruv→Rxu→Ryv.

Hence, the expression proof st should be of the same type.

(2) Applying st is P to equivalence relation eq
We apply the lemma to an equivalence relation, which is reflexive, symmetric

and transitive. The additional property (reflexivity) is not used in the proof of the
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lemma. The structure of an equivalence relation is represented as

eq ≡ δH. δh.λS.λR.λr.λs.λt. h〈SS, RR, rr, ss, tt〉
: δH:(ΛSS, RR, rr, ss, tt.∗).

δh:(ΛSS, RR, rr, ss, tt.H 〈SS, RR, rr, ss, tt〉).
ΠS: ∗ .ΠR:(S→S→∗).Πr:(Πx:S.Rxx).
Πs:(Πx, y:S.Rxy→Ryx).Πt:(Πx, y, z:S.Rxy→Ryz→Rxz).
H 〈SS, RR, rr, ss, tt〉

≡ Teq .

When designing a context calculus with subtyping, we would expect that Teq is a
subtype of Tst , that is, Teq � Tst .

The application of (the proof of) the lemma above to eq leads to the following
reduction:
proof eq
→β→→fill λS. λR. λr. λs. λt.

(ΛAS, QR, syms, trt.
λx, y, u, v:A. λp1:Qxy. λp2:Quv. λp3:Qxu. tr yuv(tr yxu(sym xyp1)p3)p2)
〈SS, RR, rr, ss, tt〉

→ β λS. λR. λr. λs. λt.

(λx, y, u, v:A. λp1:Qxy. λp2:Quv. λp3:Qxu. tr yuv(tr yxu(sym xyp1)p3)p2)
[[A := S,Q := R, sym := s, tr := t]]

= λS. λR. λr. λs. λt.
λx, y, u, v:S. λp1:Rxy. λp2:Ruv. λp3:Rxu. t yuv(t yxu(s xyp1)p3)p2.

The communication step involves partial communication. The multiple abstraction
selects only the arguments labelled by S, R, s, and t, and drops the argument
labelled by r. The final expression is a λ[C]-expression of type

ΠS: ∗ .ΠR:(S→S→∗).Πr:(Πx:S.Rxx).
Πs:(Πx, y:S.Rxy→Ryx).Πt:(Πx, y, z:S.Rxy→Ryz→Rxz).
Πx, y, u, v:S. Rxy→Ruv→Rxu→Ryv.

Hence, the type of proof eq should be the same. Compared to the type of proof st ,
this type has an additional Πr : (Πx:S.Rxx), as expected.

(3) Applying st is P to reflexive–euclidic relation re st
The following example involves a relation with properties that imply symmetry

and transitivity. This relation is a reflexive–euclidic binary relation and it was also
treated in Example 5.1.4. In that example, we have shown that such a relation is
also transitive and symmetric, by the tree depicted in the Figure 5.4. That tree can
be reduced and represented in the present notation as:

re st ≡ δH. δh. λS. λR. λr. λe.
h〈 SS, RR, rr, ee,

(λx, y, z:S.λp:Rxy.λq:Ryz. e yxz(e xyxp(r x))q)t,
(λx, y:S.λp:Rxy. e xyxp(r x))s 〉.
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Note that re st has also labelled expressions in the multiple application, as opposed
to only labelled variables as the previous examples had. Note also that this is a
representation of a reflexive–euclidic relation with the communication extended by
s and t.

When designing a context calculus with subtyping, we would expect that the
type Tre st of re st is a subtype of Tst , that is, Tre st � Tst .

The (proof of) lemma st is P can be applied to re st , allowing the following
reduction. We highlight only the partial communication step, and the final reduct:

proof re st
→→β→→fill λS. λR. λr. λe.

(ΛAS, QR, syms, trt.
λx, y, u, v:A. λp1:Qxy. λp2:Quv. λp3:Qxu. tr yuv(tr yxu(sym xyp1)p3)p2)
〈 SS, RR, rr, ee,
(λx, y, z:S.λp:Rxy.λq:Ryz. e yxz(e xyxp(r x))q)t,
(λx, y:S.λp:Rxy. e xyxp(r x))s 〉

→ β λS. λR. λr. λe.

(λx, y, u, v:A. λp1:Qxy. λp2:Quv. λp3:Qxu. tr yuv(tr yxu(sym xyp1)p3)p2)
[[A := S,Q := R,
sym := λx, y:S.λp:Rxy. e xyxp(r x),
tr := λx, y, z:S.λp:Rxy.λq:Ryz. e yxz(e xyxp(r x))q]]

→→β λS. λR. λr. λe.
λx, y, u, v:S. λp1:Rxy. λp2:Ruv. λp3:Rxu.
e uyv(e yuy(e xyu(e yxy(e xyxp1(r x))(r y))p3)(r y))p2.

With a little bit of patience, one can see that the final expression is a λ[C]-expression
of the type

ΠS: ∗ .ΠR:(S→S→∗).Πr:(Πx:S.Rxx).Πe:(Πx, y, z:S.Rxy→Rxz→Ryz).
Πx, y, u, v:S.Rxy→Ruv→Rxu→Ryv.

Hence, the application proof re st should be of the same type.

More on (sub)typing and partial communication

Some thoughts on subtyping and typing of partial communication, and their mutual
dependence are presented.

The formalisation of a notion of subtyping as described by the example above
is based on two essential ingredients:

- Polymorphism of segments: As discussed in Intermezzo 5.1.8, segment types
are polymorphic because the types of holes are polymorphic: the type of a
hole only states the minimal functionality that the hole has, but this type
has an ‘open end.’ Consequently, the hole of a segment may be filled by any
expression that agrees on its minimal functionality. For example, provided
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they agree on the minimal functionality, a hole may be filled by proofs of
different lemmas, or by segments to form representations of other, bigger
mathematical structures. That means that one does not have to design a
different segment, i.e. a different representation of a mathematical structure
for each application. Hence, polymorphism of segments supports a uniform
representation of mathematical structures as segments.

- Partial communication: Partial communication allows a flexible communica-
tion between an outer segment C on the one hand and an expression M or
a segment D to be put into the hole (on the spine) of the outer segment on
the other hand by allowing the expression M or the segment D to use only
a necessary part of the communication offered by the outer segment C. The
example above illustrated that a proof ‘given in the context of’ an equiva-
lence relation can be ‘placed into the context of’ a relation that entails the
properties of an equivalence relation. Hence, partial communication supports
reusability of proofs.

Technically speaking, these two features are complementary in the following
sense. Provided the requirements regarding minimal functionality and communica-
tion are satisfied, polymorphism allows different expressions to be placed into the
same segment, whereas partial communication allows the same expression to be
placed into different segments. On the level of applications in automated reasoning,
polymorphism allows representation of mathematical structures in a uniform way
and partial communication allows reusability of proofs.

With partial communication being one of the features for implementing sub-
typing, a design of a context calculus with subtyping tackles also the problems of
typing partial communication.

The subtyping relation is induced from a relation between the types of two seg-
ments. A segment type carries also information about the communication labels of
the hole of its elements. The subtyping relation between two segment types is deter-
mined by considering these communication labels and, in addition, by considering
the types of the holes.

Once the subtyping relation between segment types is established, the relation
can be extended to types of expressions, segments and functions involving segments.
We expect this extension will resemble the definition of subtyping on records given
by G. Betarte and A. Tasistro (see [BT95, BT97]).
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Samenvatting

Dit proefschrift is, in het Nederlands vertaald, getiteld ‘Contexten in Lambda Cal-
culus’, en het behandelt het formaliseren en automatisch verifiëren van wiskundig
redeneren.

Het formaliseren van wiskundig redeneren omvat enerzijds het formaliseren van
wiskundige concepten, zoals verzamelingen, relaties en algebra’s, en anderzijds het
formaliseren van de manier waarop redeneren over dergelijke wiskundige concepten
wordt beoefend, zoals het aannemen van axioma’s, het vaststellen van definities
en het bewijzen van stellingen. In een geformaliseerd wiskundig argument worden
de redeneerpatronen onderkend als onafhankelijk van de inhoud van het argument.
Door een argument te formaliseren en te verifiëren dat de redeneerstappen toepassin-
gen zijn van zekere consistente axioma’s en regels, kunnen eventuele fouten in het
argument ontdekt worden. Op deze wijze neemt het vertrouwen in de juistheid van
het argument toe. Hier wordt een collectie axioma’s en regels consistent genoemd
als daaruit geen tegenspraak afgeleid kan worden.

Getypeerde lambda calculi vormen één soort formele systemen waarin wiskundig
redeneren kan worden geformaliseerd.

Dit proefschrift draagt een steentje, of beter gezegd, een (context) kubusje bij
aan het formaliseren van bijzondere wiskundige structuren in getypeerde lambda
calculi op een voor wiskundigen en logici comfortabel niveau van abstractie. Pre-
ciezer geformuleerd, in dit proefschrift wordt gëıllustreerd hoe wiskundige struc-
turen, bestaande uit een collectie van verzamelingen, relaties, functies en aannames
daarover, gerepresenteerd kunnen worden in getypeerde lambda calculi en hoe deze
representaties gebruikt kunnen worden.

Deze wiskundige structuren worden gerepresenteerd als contexten. Contexten
zijn expressies van getypeerde lambda calculi met ‘gaten’ waarin andere expressies
ingevuld kunnen worden. Contexten zijn in lambda calculi een meta-notie. Repre-
senteren van en redeneren over contexten binnen de taal zelf is niet gedefinieerd.

In meer technisch detail behandelt dit proefschrift de volgende onderwerpen. In
Hoofdstukken 1 en 2 wordt een algemene introductie gegeven in formele systemen
en contexten. In Hoofdstuk 3 wordt eerst een uitbreiding, genoemd de context
calculus λc, van ongetypeerde lambda calculus gedefinieerd, ter voorbereiding op
de daarop volgende hoofdstukken. In Hoofdstukken 4 en 5 behandelen we contexten
van de ongetypeerde lambda calculus, contexten van de simpel getypeerde lambda
calculus en De Bruijn’s segmenten. We laten zien dat deze gerepresenteerd kunnen
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worden in de context calculus λc voorzien van verschillende typeringssystemen. In
Hoofdstuk 6 definiëren we de context kubus λ[], een collectie van acht getypeerde
context calculi, waarin contexten van Barendregt’s lambda kubus gerepresenteerd
kunnen worden. Hiermee generaliseren we de context calculus λc. We illustreren hoe
de bovengenoemde wiskundige structuren in de context kubus λ[] gerepresenteerd
worden en hoe we met deze representaties kunnen rederenen. We sluiten af door
in Hoofdstuk 7 te schetsen hoe de context kubus λ[] verder uitgebreid kan worden
om de notie van subtyperen te ondervangen. In een dergelijke uitbreiding zouden
algemene uitspraken zoals ‘iedere A is B’, bijvoorbeeld ‘iedere equivalentierelatie is
een reflexieve relatie’, gerepresenteerd kunnen worden.

De toepassingen van de context calculus λc en de context kubus λ[] kunnen
terugvertaald worden naar Barendregt’s lambda kubus, zoals we dat laten zien in
Hoofdstukken 4, 5 en 6. De consequentie hiervan is dat deze formalisering van
wiskundige structuren gebruikt kan worden in bestaande proof checkers, computer
programma’s voor het automatisch verifiëren en in eenvoudigere gevallen voor het
vinden van bewijzen, die gebaseerd zijn op getypeerde lambda calculi.


