
VRIJE UNIVERSITEIT

Modal Abstraction and Replication

of Processes with Data

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. T. Sminia,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen
op maandag 5 december 2005 om 15.45 uur

in de aula van de universiteit,
De Boelelaan 1105

door

Miguel Ángel Valero Espada

geboren te Barcelona

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15452721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

promotor: prof.dr. W.J. Fokkink
copromotor: dr. J.C. van de Pol

Modal Abstraction and Replication

of Processes with Data

Miguel Valero

c© Miguel Valero, Amsterdam 2005
Printed by Ponsen & Looijen
ISBN 90-64641-15-3
IPA dissertation series 2005-20

The research in this thesis has been carried out at the Centre for Mathemat-
ics and Computer Science (CWI), under the auspices of the research school
IPA (Institute for Programming research and Algorithmics). It has been finan-
cially supported by PROGRESS, the embedded systems research program of
the Dutch organization for Scientific Research (NWO), the Dutch Ministry of
Economic Affairs and the Technology Foundation STW, grant CES.5009 “For-
mal Design, Tooling, and Prototype Implementation of a Real-Time Distributed
Shared Dataspace”.

v

“Arithmétique! algèbre! géométrie! trinité grandiose!
triangle lumineux! Celui qui ne vous a pas connues
est un insensé! Il mériterait l’épreuve des plus grands
supplices; car, il y a du mépris aveugle dans son in-
souciance ignorante; mais, celui qui vous connâıt et
vous apprécie ne veut plus rien des biens de la terre;
se contente de vos jouissances magiques; et, porté sur
vos ailes sombres, ne désire plus que de s’élever, d’un
vol léger, en construisant une hélice ascendante, vers
la voûte sphérique des cieux. La terre ne lui montre
que des illusions et des fantasmagories morales; mais
vous, ô mathématiques concises, par l’enchâınement
rigoureux de vos propositions tenaces et la constance de
vos lois de fer, vous faites luire, aux yeux éblouis, un
reflet puissant de cette vérité suprême dont on remar-
que l’empreinte dans l’ordre de l’univers. Mais, l’ordre
qui vous entoure, représenté surtout par la régularité
parfaite du carré, l’ami de Pythagore, est encore plus
grand; car, le Tout-Puissant s’est révélé complètement,
lui et ses attributs, dans ce travail mémorable qui con-
sista à faire sortir, des entrailles du chaos, vos trésors de
théorèmes et vos magnifiques splendeurs. Aux époques
antiques et dans les temps modernes, plus d’une grande
imagination humaine vit son génie, épouvanté, à la
contemplation de vos figures symboliques tracées sur
le papier brûlant, comme autant de signes mystérieux,
vivants d’une haleine latente, que ne comprend pas
le vulgaire profane et qui n’étaient que la révélation
éclatante d’axiomes et d’hyéroglyphes éternels, qui ont
existé avant l’univers et qui se maintiendront après
lui. Elle se demande, penchée vers le précipice d’un
point d’interrogation fatal, comment se fait-il que les
mathématiques contiennent tant d’imposante grandeur
et tant de vérité incontestable, tandis que, si elle les
compare à l’homme, elle ne trouve en ce dernier que
faux orgueil et mensonge.”

Comte de Lautréamont
Les Chants de Maldoror, 1869

vi

Acknowledgements

After more than four years this thesis is finally getting to the end. Now, I am
writing what I feel is the most critical part of it: the acknowledgements. The
problem is that I do not know how to express all my gratitude to the people
that contributed in different ways to support my work and my every day life
during this time.

No doubt, first I must begin being thankful to Jaco van de Pol. Without your
daily supervision, your help, your comments, your critics and your inexhaustible
enthusiasm and energy, I would not have been able to afford the completion of
my work.

I cannot think of a better promotor than Wan Fokkink. He was always
present during the process of my thesis, especially active at the end. Wan and
Jaco gave me the opportunity to start my research career at CWI. They showed
their confidence in my work from the very beginning (even before) until the end.
Wan was the leader of the SEN2 group when I joined it in 2001, now Jaco has
got his position. I have learned so much from their leadership, that I can just
express my most sincere gratitude.

Apart from Jaco and Wan, I would also like to thank all the other members
(and ex-members) of the SEN2 group. It was a great pleasure to share the
working hours with you. I really appreciate your friendly faces and your clever
minds.

I want to express my gratitude to the members of my reading committee.
Arend Rensink, Jan Friso Groote, Jan Willem Klop and Maŕıa del Mar Gallardo.
Their careful reading of my thesis and their comments helped to improve the
final result of my work. I thank also Jozef Hooman who kindly agreed to act as
opponent in the defense of my thesis.

Special thanks go to the members of the user committee of the PROGRESS
project CES. 5009 in which I worked these last four years. They closely followed
the development of my work and contributed to it with many valuable ideas and
comments.

Thanks to Maŕıa del Mar and Pedro M., I could spend a couple of months
on a research visit at the University of Málaga. The time was short but fruitful.
Also, I thank Gabriel, Pedro d’A. and Nico. They brought me to the University
of Córdoba, Argentina, giving me the possibility of teaching and of finishing my
thesis in an unsurpassable environment.

vii

viii

Mis padres y mi hermano estuvieron siempre a mi lado cuando los necesite
y cuando no, por eso va hacia ellos mi más sincero agradecimiento.

Personally, I am in debt with many more other people. These last years I
have passed most part of the time in Amsterdam, where I changed my accom-
modation quite a lot of times. I have traveled a few times to many different
countries: Belgium, France, Italy, U.K., Portugal, Germany, Spain, Austria,
China,... There was a pleasant period in the warm Málaga. And nowadays I am
living in the heart of Argentina. During this time, I have met a lot of people
in different places and situations. With some of them I have just shared a glass
of wine, a smile, a walk under the moon, a technical chat or a philosophical
discussion, with others a have shared some of the most important parts of my
life. I would like to give a list with all the names expressing how much I liked
to meet each one, but I panic against the possibility of forgetting a single name,
or not being able to find the adequate words to express my gratitude. Actually,
I am not going to give it a try... I just want to conclude by being thankful to
everyone that has been present in my mind and my heart.

Miguel
Buenos Aires, 2005

Contents

Introduction 1

I On Abstraction... 9

1 Modal Abstractions of Labelled Transition Systems 11
1.1 Introduction . 12
1.2 Abstraction of Transition Systems 13

1.2.1 Abstraction by Homomorphism 15
1.2.2 Abstraction by Galois Connection 17

1.3 Modal LTSs Approximations . 23
1.4 Logical Characterisation . 23

1.4.1 Property Preservation of MLTSs Approximations 28
1.4.2 Property Preservation of MLTSs Abstractions 29

1.5 Conclusion . 31
1.6 Proofs . 32

2 Modal Abstractions of Processes 45
2.1 Introduction . 46
2.2 µCRL in a Nutshell . 47

2.2.1 Linear Process Equations 49
2.3 Data Abstraction . 50

2.3.1 Abstraction of Sorts . 50
2.3.2 Abstraction of Data Terms 52
2.3.3 Safety Condition . 54

2.4 Modal Linear Process Equation 55
2.5 A Case Study: The Bounded Retransmission Protocol 57
2.6 Conclusion . 61
2.7 Proofs . 62

3 An Abstract Interpretation ToolKit 69
3.1 Introduction . 70
3.2 Overview of the Tool . 70
3.3 Abstractor . 72

3.3.1 Abstraction of Function Symbols 72

ix

x Contents

3.3.2 Abstraction of Parameters and Variables 74
3.3.3 Abstraction of Sorts . 75
3.3.4 Type Conflicts . 76
3.3.5 From LPEs to Modal -LPEs 76
3.3.6 From Modal -LPEs to LPEsmay/must 79

3.4 Loader . 81
3.5 Abstract Model Checking . 82
3.6 Conclusion . 86

4 Linearization and Abstraction of Replicated Processes 89
4.1 Introduction . 90
4.2 Parallel Uniform Processes . 91
4.3 Abstraction Patterns . 94

4.3.1 Abstraction of the Processes State 94
4.3.2 Abstraction of the State Counter 98

4.4 Parallel Identical Processes . 100
4.5 General Form . 102
4.6 Applications . 102

4.6.1 A Distributed System for Lifting Trucks 103
4.7 Conclusion . 105

5 Accelerated Modal Abstractions 107
5.1 Introduction . 108
5.2 Accelerated Transition Systems 110
5.3 Accelerated Modal Abstractions 111
5.4 Logical Characterisation . 113
5.5 Model Checking . 116
5.6 Adding Accelerated Transitions. 121

5.6.1 The Bounded Retransmission Protocol Revisited 121
5.7 Conclusion . 123
5.8 Proofs . 124

II On Coordination... 129

6 Formal Model of JavaSpaces 131
6.1 Introduction . 132

6.1.1 Modelling JavaSpaces . 136
6.2 Application Point of View . 138

6.2.1 Transactions . 141
6.2.2 Notifications . 142

6.3 Implementation Point of View . 145
6.3.1 Look-up Operations . 147
6.3.2 Transactions . 148
6.3.3 Notifications . 150
6.3.4 Leasing . 153

Contents xi

6.4 Putting All Together . 154
6.5 Conclusion . 156

7 Verification of JavaSpaces Applications 157
7.1 Verification Methodology . 158
7.2 Playing with JavaSpaces . 158
7.3 Parallel Summation . 162

7.3.1 Verification . 166
7.4 Conclusion . 169

8 Abstracting JavaSpaces 171
8.1 A Case Study On Replication . 172
8.2 Abstraction Guidelines . 175
8.3 Conclusion . 177

A JavaSpaces 179
A.1 Data Description . 179
A.2 Basic Data Types . 183
A.3 System Data Structures . 185
A.4 System Data Bases . 189
A.5 Action Definitions . 195
A.6 JavaSpace Process . 196
A.7 Auxiliary Items . 212
A.8 Summation System . 213

Bibliography 219

xii Contents

Introduction

From Practice to Theory... and Back

During the last decade many lines have been written trying to motivate the
use of formal techniques in the industrial world (see, for example, [27, 111]).
Despite the fact that there is now a common agreement about the benefits of
formal methods for critical systems development in certain communities, we are
still in a preliminary phase towards the full integration of formal techniques in
the development process. Usually, real-life systems are far more complex than
the case studies analysed by the scientific community. The challenge of formal
methods is to make the theoretical results applicable to large scale systems.

This thesis is the result of the work done in a project with the title For-
mal Design, Tooling, and Prototype Implementation of a Real-Time Distributed
Shared Dataspace, which was supported by PROGRESS, the embedded sys-
tems research program of the Dutch organisation for Scientific Research NWO,
the Dutch Ministry of Economic Affairs and the Technology Foundation STW
(grant CES.5009) and carried out at the Centrum voor Wiskunde en Informat-
ica (CWI). The main research goal of the project was to analyse the behaviour
of applications built on the top of shared dataspaces. To this end, we can divide
the research topics in two broad parts:

• To specify a formal model of the shared dataspace architecture, the anal-
ysis of applications built on top of it ant to verify requirements imposed
to the system.

• To create a suitable verification framework able to handle realistic appli-
cations.

Real-time critical systems, such as air control management systems, have to
deal with severe requirements of reliability, fault-tolerance, extensibility, time-
liness, efficiency, availability, ... These requirements make the task of building
such systems extremely hard. A way of managing these severe requirements is
to use software architectures [113]. A software architecture is basically a de-
scription of how the different components of a system are to be composed. In
general, it provides a set of interfaces and algorithms that allow external appli-
cations to communicate and coordinate. One of the main advantages of using

1

2 Contents

architectures is reusability, components and the architecture itself can be used
in different applications.

Shared dataspace architectures implement repositories for data elements
in such a way that external components communicate by sharing information
through the repositories instead of interacting directly between each other. This
feature contributes to the conception of modular applications. The architecture
is in charge of handling the concurrent access of the processes to the shared
resources. External processes have a unified view of the shared space, although
the repository may be distributed or centralised [17].

Both distributed and centralised shared dataspace architectures were stud-
ied inside the project. In distributed dataspaces the information is stored in
different devices that are connected through a network. In general, several
copies of data elements reside in different locations. When a new data element
is produced, it is copied in one or several places. The distributed data storage
causes that sometimes the copies of the data elements contain different values.
The architecture has to be aware of the possible lack of data consistency. An
example of this kind of architecture is SPLICE [16, 74] which has been used in
command and control systems on several frigates of various nations and for the
control of the metro of Amsterdam. The research work about this architecture
does not form part of the thesis. Simona Orzan, who participated in the same
project, dedicated some efforts to investigate about SPLICE. Her results can be
found in [97].

In this thesis, we are going to study JavaSpaces [91], which is a Sun Microsys-
tems, Inc. architecture based on the Linda coordination language [25]. Apart
from implementing a centralised shared space, it provides other services such
as leasing, transactions and an event notification mechanism. JavaSpaces inter-
faces are standard and there are publicly available implementations. These fact
motivates us to choose JavaSpaces as the centralised shared dataspace architec-
ture to be investigated. To have a running implementation was an important
issue in order to compare the theoretical results with real executions.

The circumstances under which the architectures are used are extreme: chan-
nels are unreliable, and computers can fail or even die completely. So the project
has to address the question of how to build applications that guarantee the
specified services. In order to be able to design reliable applications, we have to
provide a framework that allows to formally prove that a given system behaves
as expected [37].

An illustrative example of a characteristic application that can be easily
implemented using a shared dataspace architecture, such as JavaSpaces, is the
following radar-monitor system (see Figure 1). The radar produces packets
(A entries) of different measurements taken from an external moving agent.
A transformer processes the measurements by computing predictions of future
moves of the investigated agent. The monitor consumes the processed data (B
entries) and displays the trajectories of the moving objects.

The example introduces another of the main topics of the thesis: replica-
tion. In the radar-monitor system, we would like to have several transformers

Contents 3

�������� ��

���
�

		

���
�

�
�

���
�

���
�

���
�

���
�

T T

P C

write take

write writetaketake

B entry

A entry

Figure 1: Producer-Transformer(s)-Consumer

making calculations at the same time in order to accelerate the display of the
results. The problem then is how to transparently replicate certain processes
in such a way that the behaviour of the system remains correct. Replication
contributes to improve non-functional requirements such as efficiency, availabil-
ity or robustness. In general replication is not straightforward, in fact it may
introduce non-desired behaviours in the overall systems. For instance, if we
replicate carelessly the transformer process in the system above, the change
may cause duplication of the final results which will make the monitor display
wrong trajectories. Some parts of the thesis are dedicated to investigating how
to replicate processes and how to prove that the final application behaves as
expected.

We have stressed that one of the main purposes of the analysis of shared
dataspace architectures is to be able to verify the correctness of complex appli-
cations built on top of them. Formal verification includes different techniques
which differ in the quality of the results and the human effort required to apply
them. We can roughly distinguish three different techniques:

• Testing. It is maybe the most widely used verification technique. It con-
sists of checking that some selected scenarios (test cases) behave as ex-
pected by means of simulation. In general, the selection of suitable test
cases requires human expertise. The rest of the process can be fully auto-
mated. The main limitation of the technique is that in most of the cases
it is not possible to cover all possible scenarios of the system and there-
fore to find all errors of the implementation. Testing becomes extremely
hard for distributed systems in which execution of a test case may be
non-deterministic due to, for example, the unpredictable latencies of the
communication channels. In summary, testing only proves the correctness
of some executions for some scenarios.

• Theorem Proving. This technique allows to prove that a complete system
satisfies its specification, i.e., all behaviors of the implementation are cor-
rect. In general, one proceeds by systematically applying a set of inference
rules to some formal description of the implementation of the system in

4 Contents

order to prove that it satisfies its specification. For complex systems, the
task is arduous and requires strong human interaction to find the proofs.
Theorem Proving proves the correctness of all executions for all scenarios.

• Model Checking. It is a semi-automatic technique, that allows to prove the
correctness of some scenarios against all possible behaviours of the system.
To do so, a finite model of the system has to be built (see below). Model
Checking proves the correctness of all executions for some scenarios.

The technique we have mainly focused on is the third one, which gives a
good balance between completeness of the results and automation. In general,
the application of model checking involves the following phases:

1. First, it is needed to formally specify the system to check. This specifica-
tion has to be written in a formal language, such as logic or, in our case,
process algebra.

2. The requirements of the system are also specified in the same language
as the specification or in a different one. In general, temporal or modal
logics can be used to write the properties that represent the requirements.

3. A model of the system is generated from the formal specification. It
contains all possible behaviors. Some possible ways of representing the
semantics of the specification are finite state automata or a labelled tran-
sition systems.

4. Finally, the satisfaction or refutation of the properties is checked against
the model.

The formal specification of the system and the requirements requires human
expertise. The checking of the satisfaction or refutation of the properties is
automatically done by computers. The limit of automatic verification by model
checking comes from the size of the models. In general, the parallel composition
of the behaviors of processes generates large state spaces, due to the combina-
torial growth, which can hardly be stored or manipulated by machines. Model
checking in general can only handle systems with finite state space (the model
checker mucheck [66], included in the µCRL toolset [12] is an exception that
can handle infinite state systems) . During the last years many research has
been conducted in order to attack the so-called state space explosion problem.
Let us see some of the techniques dedicated to deal with the problem:

• On-the-fly Model Checking or Bounded Model Checking. The idea is to
avoid the exploration of the full state space of a system [53]. The checking
is done just in some parts. This technique allows to quickly find errors
during early phases of the verification process. There is no benefit when
one has to prove the correctness of the full system.

Contents 5

• Symbolic Model Checking. This technique consists of encoding systems
using Binary Decision Diagrams (BDDs), a canonical form for boolean
expressions [90]. These have traditionally been used as the underlying
representation of the set of states. This compact form allows to handle
systems with larger number of states than other standard ways of rep-
resenting the semantics of a system. The efficiency of performing model
checking on BDDs strongly depends on the order of the boolean variables.
The main disadvantage is that a suitable order is in general hard to find
and sometimes requires human intervention.

• Partial Order Reduction. In some cases the order of execution of some
actions does not influence the correctness of the system [2]. Therefore,
some sequences of actions can be eliminated from the state space without
harm, reducing the complexity of the analysed system. A similar technique
applied in the process algebraic setting consists on proving confluence of
actions (see, for example [15]).

• Distributed Model Checking. This technique consists in using extra hard-
ware resources to fight against the state explosion problem. The computa-
tion and the storage are done using different machines connected through
a network. In the project, this technique was successfully explored by
Simona Orzan, see for example [13, 14].

• Abstract Interpretation. It denotes a framework for program analysis.
The seminal idea was to extract program approximations by removing
uninteresting information [29, 30]. In order to obtain approximations,
computations over concrete universes of data are performed over smaller
abstract domains. A typical example of the technique is the so-called
“rule of signs” used to determine the sign of arithmetic expressions by
performing the computation only over the signs of the operators, i.e., the
expression −5 ∗ 10 is abstracted to neg ∗ pos which preserves the sign of
the result.

In the first part of the thesis we focus on abstract interpretation (or simply,
abstraction). The integration of this technique in the automatic verification
framework allows to significantly reduce the complexity of the analyzed systems.
This permits to apply model checking to large systems. The idea is to prove
properties in the (small) abstract system and then to infer the satisfaction or
refutation to the (large) concrete one. Abstract model checking integrates the
following steps:

1. We depart from a concrete specification whose state space is too large or
infinite and it cannot be handled by regular model checking techniques.

2. An abstract specification is built from the concrete, interpreting the con-
crete one over a smaller data domain (as we did for the “rule of signs”).
This step usually requires some human intervention in order to select

6 Contents

suitable abstractions. In principle, the state space corresponding to the
abstraction is significantly reduced.

3. We apply model checking techniques on the abstract system. The results
of the abstract model checking can be inferred to the concrete system
(following some rules).

4. Applying abstraction causes some loss of information, so in some cases it
would not be possible to prove the satisfaction or refutation of some prop-
erties. In these cases, it would be necessary to find better abstractions.

We have titled this section From Practice to Theory... and Back which de-
scribes the research cycle of how the thesis was conceived. We started out with
the main directives of the project by analysing the JavaSpaces architecture.
Once we had specified a formal model of the architecture and we had proved its
suitability by verifying small characteristic examples, we tried to do the same
kind of analysis to non-trivial examples. Realistic case studies quickly discovered
the limits of the verification framework which forced us to start investigating
theoretical enhancements in order to improve the verification capabilities of the
verification framework. Among the different possibilities, we have chosen to in-
vestigate abstraction because of the promising results that others obtained with
it. This decision lead to obtain interesting theoretical results. Finally, to bring
these results into practice motivated us to integrate the theory in our frame-
work, we have dedicated some efforts to integrate the theory in our framework
by developing generic tools and patterns suitable for verification of coordination
models.

The order in which we present the contents of the thesis differs from how it
was conceived. We first introduce the theoretical issues and then the practical
ones. The next section is dedicated to describing what can be found in every
chapter.

How to Read the Thesis?

The thesis is composed by two different parts, the first one is fully dedicated
to abstraction and the second to coordination. Here, we give a short guide of
what can be found in every chapter of the book. Figure 2 presents graphically
the structure of the first part of the thesis.

Chapter 1: Labelled Transition Systems are usually used to capture the se-
mantics of action-based systems, such as process algebraic specifications. So,
in order to apply abstraction techniques to such specifications we are going to
define the meaning of abstractions on Labelled Transition Systems. Basically,
this chapter describes the relations between abstract and concrete systems and
the inference rules about the satisfaction and refutation of properties.

Contents 7

Ch3: Tool

Ch1: Abstraction of LTSs

Ch2: Abstraction of LPEs

Ch5: Accelerated Abstractions Ch4: Abstraction of Replicated Processes

Figure 2: Organisation of the first part of the thesis

Chapter 2: If the first chapter is dedicated to study the semantic level of the
specification, Chapter 2 focuses on the syntactic one. The idea is to generate
abstraction directly from process algebraic specifications by relating concrete
and abstract data domains. We give the conditions under which an abstract
specification is a correct abstraction of a concrete one, and therefore can be
used to infer the satisfaction of properties.

These first two chapters are the theoretical core of the thesis, the rest of
the first part contains extensions or variations of them. They are based on the
following publication: [109].

Chapter 3: To develop tools is a fundamental step in order to make the the-
oretical results applicable in practice. This chapter is dedicated to explaining
an abstract interpretation toolkit that helps to apply abstraction to non-trivial
specifications.

This chapter is based on the following publication: [100].

Chapter 4: In order to apply theory to practice, not only tooling is an indis-
pensable step, but also the creation of reusable patterns. In this chapter, we
present some abstraction patterns that can be used to verify systems composed
by replicated processes. As we have stated above, transparent replication is an
important issue when implementing efficient distributed systems, so here we try
to contribute to facilitate the verification of systems composed by several copies
of the same process.

This chapter is based on the following publication: [105].

8 Contents

Chapter 5: The loss of information caused by abstraction sometimes does not
permit to infer some interesting properties about the progress of the system. In
this chapter, we enhance the basic semantic framework presented in the first
chapter. The extension enriches the expressiveness of abstractions.

The first two chapters of the second part can be read independently of the
rest of the thesis. The third one applies the results of the abstraction part to
coordination. Let us explain their contents:

Chapter 6: Here we describe the formal specification of JavaSpaces. The
specification was modelled having in mind that the main purpose of the specifi-
cation was to be used to verify applications built on top of it. The specification
contains all the ingredients needed to implement interesting applications.
This chapter is based on the following publications: [106, 107].

Chapter 7: In this chapter, we use the formal model of JavaSpaces as a frame-
work to analyse external applications. First, we give some small examples of
verification and then we present a complex case study.

This chapter is based on the following publication: [108].

Chapter 8: This chapter is a conclusion of the second part of the thesis, in
which we give some guidelines of how to apply the results on abstraction to
characteristic JavaSpaces applications. It does not contain new technicalities
but provides general ideas how the theoretical research contributes to the prac-
tice. This chapter closes the research cycle: From Practice to Theory... and
Back.

Every chapter comes with its own introduction, where the main contributions
are explained, the related work pointing the main references to similar research
and a conclusion is given, where apart from giving a short summary of the
contents of the chapter, some possible future directions of research are presented.

Part I

On Abstraction...

9

Chapter 1

Modal Abstractions of Labelled

Transition Systems

This chapter introduces the basic theory of abstraction for transitions systems.
Abstractions are represented by Modal Labelled Transition Systems, that are
graphs whose transitions are labelled with actions that may have two modali-
ties may and must. They are used to encode double approximations of concrete
systems. We enhance the classical abstraction frameworks by allowing the pos-
sibility of abstracting actions. We prove that the abstractions are sound for the
full action-based µ-calculus.

11

12 Chapter 1 Modal Abstractions of Labelled Transition Systems

1.1 Introduction

The application of abstract interpretation to the verification of systems is suit-
able since it allows to formally transform possibly infinite instances of specifica-
tions into smaller and finite ones. By losing some information, we can compute a
desirable view of the analysed system that preserves some interesting properties
of the original. Abstract Interpretation has been successfully used to perform
control and data flow analysis and to deal with the state space explosion prob-
lem. For a comprehensive introduction see [28].

The achievement of the first two chapters is to enhance existing process
algebraic verification languages (e.g. LOTOS [38], µCRL [57]) with state-of-the-
art abstract interpretation techniques that exist for state-based reactive systems.
This chapter is dedicated to introducing the abstraction of transition systems,
and the next chapter to the abstraction of process algebraic specifications.

There exist different techniques to relate abstractions with concrete systems.
The two classical approaches use homomorphisms [26, 36] or Galois Connec-
tions [85, 31, 75, 55] . The first one is conceptually simpler, although the latter
produces more precise abstractions that are sound for safety as well as for live-
ness properties. We adapt both approaches to action-based systems, commonly
used to describe the semantics of process algebraic specifications, allowing ab-
straction of states, transitions and action labels.

Semantically, our method is based on Modal Labelled Transition Systems [84,
83]. MLTSs are mixed transition systems in which transitions are labelled with
actions and with two modalities: may and must. They are appropriate struc-
tures to define abstraction/refinement relations between processes. May transi-
tions determine the actions that possibly occur in all refinements of the system
while must transitions denote the ones that do necessarily happen. On the
one hand, the may part corresponds to an over-approximation that preserves
safety properties of the concrete instance and on the other hand the must part
under-approximates the model and reflects liveness properties.

A three-valued logic ensures that the theory can be used for proofs and refu-
tations of temporal properties. We define approximations and prove that they
are sound for all properties in the full (action-based) µ-calculus [81], including
negation. To achieve this result, we had to extend existing theory by allowing
abstraction and information ordering of action labels, which is already visible
in the semantics of µ-calculus formulas.

The chapter is organised as follows. First we present the main results about
MLTSs and the semantic abstraction of a Labelled Transition Systems (LTS)
to modal LTSs following different approaches. Then, we introduce the logical
characterisation of the abstractions, and the inference rules for satisfaction or
refutation of properties from abstract to concrete systems. The fundamental
proofs of the results of this theory are attached at the end of the chapter. At
the conclusion, we give some explanation about the relation of this work with
respect to the main references of the field. The next chapter is dedicated to the
explanation of how to construct the abstraction directly from process algebraic
specifications.

1.2 Abstraction of Transition Systems 13

1.2 Abstraction of Transition Systems

The set of techniques, used to translate a concrete system to a “safe” abstract
instance of it, is normally called abstract interpretation and it has already been
studied for many years. These techniques have their roots in the seminal papers
of Abstract Interpretation1 by Cousot and Cousot [29, 30]. The main idea is to
provide a relation between the concrete data domain and an abstract version of
it in such a way that the interpretation of the system over the abstract domain
preserves and/or reflects some properties of the original. Although, part of the
results included in this section are well known in the field, we adapt classical
frameworks for generating safe abstract approximations, by doing a non-trivial
extension of them in order to allow the explicit abstraction of action labels. This
will allow to build more expressive abstractions and, furthermore, to manipulate
infinitely branching systems. Furthermore, we integrate in a uniform theory two
broadly used approaches, the one based on homomorphic mappings between
concrete and abstract domains and the other one based on Galois Connections
introduced by Cousot and Cousot.

We start by presenting a small example that will be used as illustration of
the techniques. The system is composed from two processes that communicate
by sending natural numbers through a channel described as a FIFO buffer of
size N (from now on, we assume N ≥ 2), see Figure 1.1 below. The system may
have an arbitrary number of states due to the size of the buffer. Furthermore
it can be infinite if it receives data belonging to an infinite data domain:

75

10 N

producer consumer

Write(5) Read(7)

Figure 1.1: Simple buffer of size N

In order to verify properties of the system such as “If the buffer is full, the
producer cannot write anything” we need to know neither how many items are
in the buffer (we only have to know whether it is full or not) nor what is the
exact value of the stored data. Therefore, we may consider an abstract and
finite version of the system in which all these irrelevant details are omitted and
that preserves the properties we are interested in. On the one hand, the content
of the transferred items can be removed keeping only the information about the
type of action performed (read or write) and, on the other hand, the FIFO list
can be abstracted to a set of values determining the state of the buffer: empty,
full, or anything in between: middle. The abstract representation of the system,
although it loses some information of the original model, allows to check some
interesting properties, as the ones presented above.

1We use abstract interpretation when we speak about the general framework and Abstract
Interpretation (with capitals) to refer to Cousots’ work.

14 Chapter 1 Modal Abstractions of Labelled Transition Systems

Now, let us define some general concepts and then we will continue by in-
troducing the different abstraction techniques. The semantics of a system can
be defined by a Labelled Transition System:

Definition 1.2.1 We define a Labelled Transition System (LTS) as a tuple
(S, Act,→, s0) in which S is a non-empty set S of states, Act a non-empty set
of transition labels, → is a possibly infinite set of transitions and s0 in S is the
initial state. A transition is a triple s

a
→ s′ with a ∈ Act and s,s′ ∈ S.

Figure 1.2 illustrates the LTS corresponding to the example introduced above.
Actions R and W denote respectively read and write operations.

... ...

...

...

... ...
W(1)

R(0)
W(0)

R(0)

W(0)

W(1)
R(0)

W(2)

R(2)

R(1)

...
sN,2

s0

s1,0 s1,1 s1,2

s2,0 s2,1

sN,0 sN,1

Figure 1.2: LTS of the buffer system

To model abstractions we are going to use a different structure that allows
to represent approximations of the concrete system in a more suitable way. As
introduced before, in Modal Labelled Transition Systems transitions have two
modalities may and must which denote the possible and necessary steps in the
refinements. This concept was introduced by Larsen and Thomsen [84]:

Definition 1.2.2 A Modal Labelled Transition System (MLTS) is a tuple (S,
Act, →3,→2, s0) where S, Act and s0 are as in definition 1.2.1 and →3,→2

are possibly infinite sets of (may or must) transitions of the form s
a

→x s′ with
s,s′ ∈ S, a ∈ Act and x ∈ {3, 2}. We require that every must-transition is a

may-transition (
a

→2⊆
a

→3).

1.2 Abstraction of Transition Systems 15

MLTSs are suitable structures for stepwise refinements and abstractions. A
refinement step of a system is done by preserving or extending the existing must-
transitions and by preserving or removing the may-transitions. Abstraction is
done the other way around (formal definitions will be presented in following
sections). Note that every LTS corresponds to a trivially equivalent MLTS in
which →3=→2, we called it concrete MLTS. Now, we introduce how to relate
concrete and abstract systems.

1.2.1 Abstraction by Homomorphism

The first approach to extract abstract Modal Labelled Transition Systems from
concrete MLTSs that we are going to present is based on homomorphisms that
map concrete states and action labels to their abstract versions. This theory
was introduced by Clarke and Long [26]. It is intuitively simple and it allows
significant reductions of the state space.

Having a set of states S and a set of action labels Act with their correspond-
ing abstract sets, denoted by Ŝ and Âct, we define a homomorphism H as a pair
of total and surjective functions 〈hS , hA〉, where hS is a mapping from states to

abstract states, i.e., hS : S → Ŝ, and hA maps action labels to abstract action
labels, i.e., hA : Act → Âct. The abstract state ŝ corresponds to all the states
s for which hS(s) = ŝ, and the abstract action label â corresponds to all the
actions a for which hA(a) = â. Then:

Definition 1.2.3 Given a concrete MLTS M = (S, Act,→3,→2, s0), with

→3=→2 and a homomorphism H = 〈hS , hA〉, we define the MLTS M̂ =

(Ŝ, Âct, _3, _2, ŝ0), called the minimalH -abstraction (denoted by minH(M))
where ŝ0 is equal to hS(s0) and the following conditions hold:

• ŝ
ba
_3 r̂ ⇐⇒ ∃ s, r, a. hS(s) = ŝ ∧ hS(r) = r̂ ∧ hA(a) = â ∧ s

a
→ r

• ŝ
ba
_2 r̂ ⇐⇒ ∀ s.hS(s) = ŝ. (∃ r, a. hS(r) = r̂ ∧ hA(a) = â ∧ s

a
→ r)

This definition gives the most accurate abstraction of a concrete system
by using a given pair of homomorphisms, in other words the one that preserves
most information of the original system. Less precise abstractions would contain
more may transitions and/or fewer must transitions.

Figure2 1.3 shows the minimal abstraction of the buffer model in which only
the states have been abstracted, action labels remain as in the original. H is
equal to the pair 〈hS , IdA〉 in which hS is defined as follows: it maps the initial
state to the abstract state e, which means empty, the states in which there are
N entries in the buffer to f , which represents full, and the rest of the states to
m, which means something in the middle.

2In figures, must-transitions are represented by solid lines and may-transitions by dashed
ones. For clarity, when there is a must transition we do not include the corresponding may

one.

16 Chapter 1 Modal Abstractions of Labelled Transition Systems

f

m

e

W(0)
W(1)

W(2)

W(0)
W(1)

W(2)

W(0)
W(1)

W(2)

R(1)
R(0)

R(2)

R(1)
R(0)

R(2)

R(1)
R(0)

R(2)

...

... ...

...

... ...

Figure 1.3: Abstract buffer size N ; abstraction of states

We see that the system cannot be completely represented, even if the set
of states is finite, because it is infinitely branching. Abstraction frameworks
only based on abstraction of states cannot handle this kind of problems. We
need also to apply abstraction on action labels in order to be able to use model
checking techniques over the abstract system. We define hA as follows: it maps
all the write actions to ŵ and all the read actions to r̂.

e

m

f

bw

br

br

br
bw

bw

Figure 1.4: Abstract buffer size N ; abstraction of states and action labels

In the final system (see Figure 1.4), by the combination of both abstractions,
we have removed all the information about the values that are in the buffer and
the transferred data, only preserving the information about whether the buffer
is empty, full or neither of them. This abstraction allows to have a small finite

1.2 Abstraction of Transition Systems 17

model which keeps some information about the original. The example clearly
illustrates the importance of the abstraction of action labels to avoid infinitely
branching abstractions.

Figure 1.5 illustrates the abstraction definition. We have the abstract must

transition ŝ1

bb
_2 ŝ2 because all the states related to ŝ1 have a transition to

a concrete state related to ŝ2 (the same applies to ŝ0
ba
_2 ŝ0) . Furthermore,

if there is some concrete state related to an abstract state ŝ with a transition
to another state related to an abstract state r̂, then there is a may transition
between ŝ and r̂. In the figure, these abstract transitions are marked by the
dashed arrows. Actions labels can also be abstracted, in the example the con-
crete labels {a0, a1} are mapped to the abstract label â and {b0, b1} to b̂ as is
shown in the figure.

Abstract States
Concrete States

Concrete Transitions
Abstract May Transitions
Abstract Must Transitions

a0

b1
a1

a0

b0

b0

a0

ba

bb

ŝ2

ŝ1

bb

ba

ŝ0

Figure 1.5: Example of modal abstraction of an LTS.

1.2.2 Abstraction by Galois Connection

Instead of using mappings between concrete and abstract domains we can define
more complicated relations. For instance, the approach defined by Cousot and
Cousot is based on Galois Connections [96] between domains. Formally:

Definition 1.2.4 Two functions α and γ over two partially ordered sets (P,⊆)
and (Q, 4) such that α : P → Q and γ : Q → P form a Galois Connection if
and only if the following conditions hold:

1. α and γ are total and monotonic.

2. ∀p : P.p ⊆ γ ◦ α(p).

3. ∀q : Q.α ◦ γ(q) 4 q.

18 Chapter 1 Modal Abstractions of Labelled Transition Systems

α is the lower adjoint and γ is the upper adjoint of the Galois Connection,
and they uniquely determine each other. Galois Connections enjoy suitable
properties to perform abstractions (see for example [31, 34]).

In this case we consider the concrete system built over the power-sets of
states and actions. P(S) and P(Act) are partially ordered sets ordered by the

set inclusion operator. The abstract system is built over Ŝ and Âct, both being
posets equipped with some order 4. The order is a relation based on the preci-
sion of the information contained in the elements of the domain. To relate both
systems, we define a pair G of Galois Connections: G = 〈(αS , γS), (αA, γA)〉.
α is usually called the abstraction function and γ the concretisation function.
Before giving the definition of abstraction, let us see the data domains for the
running example.

{0...N}

{0} {1} {2}

{0,1} {0,2} {1, 2}

...

...

...

{N}

{0...N−1}

...

...

fullmiddleempty

nonFull

{}

{1...N} nonEmpty

...

Figure 1.6: Concrete and abstract lattices of bounded buffers

Figure 1.6 shows two lattices corresponding to the representation of bounded
buffers. The concrete lattice, left hand side, is built over the power sets of
naturals, the upper and lower bounds are represented by the full set (0,... ,N)
and the empty set ({}). It corresponds to the possible lengths of the buffer3.
For instance the set {2} means that the buffer contains exactly two elements,
{1, 4} means that it contains either {1} or {4} elements. The top element
{0, ..., N} represents all buffers of any length (≤ N). The abstract domain is
the previously used set of abstract naturals empty, middle and full extended
with two new values nonEmpty and nonFull and with > and ⊥ in order to
complete the lattice. We abbreviate the names as {⊥, e, m, f, nE, nF,>}. The
definition of αS(L) for L is the states of the buffer which contain l ∈ L number
of elements:

3Note that this way of representing the buffers is already an abstraction.

1.2 Abstraction of Transition Systems 19

if L = {0} then empty else if ∀l ∈ L. 0 < l < N then middle

else if L = {N} then full else if ∀l ∈ L. 0 < s ≤ N then nonEmpty

else if ∀l ∈ L. l < N then nonFull else if L = {} then ⊥ otherwise >

We define γS(ŝ) as:

if ŝ = ⊥ then {} else if ŝ = empty then {0}

else if ŝ = middle then {1, ..., N − 1} else if ŝ = full then {N}

else if ŝ = nonEmpty then {1, ..., N} else if ŝ = nonFull then {0, ..., N − 1}

else Nat

It is trivial to see that P(Nat), {⊥, e, m, f, nE, nF,>}, αS and γS form a
Galois Connection. We can also define the abstraction of the action labels, the
abstract lattice is presented in Figure 1.7. αA of a set of action labels B only
composed from write actions will be equal to ŵ, αA(B) with B composed from
read actions will be equal to r̂, and if there are read and write actions in B then
αA(B) will be > and αA({}) will be ⊥. γA is defined according to αA, as:

• γA(r̂) = {R(n) | n ∈ Nat}

• γA(ŵ) = {W (n) | n ∈ Nat}

• γA(>) = {X(n) | n ∈ Nat ∧ X ∈ {R, W}}

• γA(⊥) = {}

ŵr̂

Figure 1.7: Lattice of abstract actions

We could have defined a more complicated lattice for abstract labels, for
example, one that distinguishes between sending even and odd naturals. As in
the case of the homomorphism, we define the minimal abstraction, as follows:

Definition 1.2.5 Given two systems M and M̂ defined as in Definition 1.2.3
and a pair of Galois Connections G, M̂ is the minimalG-abstraction (denoted
by minG(M)) if and only if s0 ∈ γS(ŝ0) and the following conditions hold:

20 Chapter 1 Modal Abstractions of Labelled Transition Systems

• ŝ
ba
_3 r̂ ⇐⇒ ∃ s ∈ γS(ŝ), r ∈ γS(r̂), a ∈ γA(â). s

a
→ r

• ŝ
ba
_2 r̂ ⇐⇒ ∀ s ∈ γS(ŝ). (∃ r ∈ γS(r̂), a ∈ γA(â). s

a
→ r)

The next figure presents part of the minimal abstraction of the buffer sys-
tem4.

READ

e

f

nE

m

e

f

nF

m

nF nE

WRITE

Figure 1.8: Abstract buffer size N (Galois Connection)

The order defined over the abstract lattices gives a relation about the preci-
sion of the information contained in the values. For example, empty has more
accurate information than nonFull and the latter more than >. Furthermore,
the order induces a precision relation between transitions, for example:

• empty
bw

_2 middle is more precise than empty
bw

_2 nonEmpty because the
transition points to a more precise state (middle 4 nonEmpty),

• empty
bw

_2 nonEmpty is more precise than empty
bw

_2 >, and

• empty
bw

_2 middle is more precise than empty
>
_2 middle , because the

transition is labelled with a more precise label (ŵ 4 >) ...

Due to the order over the abstract states and actions, the minimal system
defined by the above presented definition is saturated by may and must transi-
tions, i.e. there are transitions that do not add any extra information. We can
easily see in the previous figure that the must part is saturated for example,

the transition e
bw

_2 nE does not add any information because we have e
bw

_2 m
which is more precise. We can restrict our definition by requiring that the
abstract transitions are performed only between the most precise descriptions

4For readability, we separate write transitions:
bw

_ and read transitions
br
_ and we do not

include transitions to and from the state >, or labelled with the action >.

1.2 Abstraction of Transition Systems 21

of the concrete transitions, as done in Dams’ theory [31]. To do so, for every

abstract MLTS M̂, first we define:

• For every ŝ, let M(bs,3) be equal to the set of pairs (R, B) with R in P(S)

and B in P(Act) such that ∃ s ∈ γS(ŝ), r ∈ R, a ∈ B such that s
a
→3 r

is in M.

Basically, M(bs,3) represents all sets of possible may-continuations of the
concrete set of states related with ŝ. Then we define, Mmin

(bs,3) as the set of
minimal elements in M(bs,3):

• Mmin
(bs,3) = {(Rm, Bm) ∈ M(bs,3) | ∀ (R, B) ∈ M(bs,3).¬(R ⊂ Rm ∧ B ⊂

Bm)}.

The definition says that among all possible sets of continuations we select
the ones that do not have any subset, i.e., the minimal ones. Observe that
Mmin

(bs,3) will be always composed from pairs of singleton sets. Finally:

• Let M̂(bs,3) be the set of pairs: {(r̂, â) | ∃ (Rmin, Bmin) ∈ Mmin
(bs,3).r̂ =

αS(Rmin) ∧ â = αA(Bmin)}.

M̂(bs,3) is the abstraction of the minimal sets. Then, for every ŝ, we keep

the transitions of M̂ such that ŝ
ba
_3 r̂ if and only if (r̂, â) ∈ M̂(bs,3). This rule

eliminates the redundant may transitions. To remove redundant must ones we
proceed in the same way, the only change is in the first definition:

• For every ŝ, the set M(bs,2) equals the set of pairs of (R, B) such that

∀ s ∈ γS(ŝ) ∃ r ∈ R, a ∈ B.s
a
→2 r is in M.

In the must case Mmin
(bs,2) is not necessarily composed from only singleton

sets. After removing the redundant may and must transitions, in general the

condition
a

_2⊆
a

_3 will not hold anymore. To preserve this property we add an
extra rule requiring that for every must transition the system also has a may
one.

Definition 1.2.6 Given a concrete system M the minimal restricted abstrac-
tion w.r.t. the Galois Connection G, denoted by M̂↓ is the MLTS obtained by
applying the restriction rules to minG(M)

Note that by doing the restriction no information is removed because only
imprecise transitions are eliminated. Let us compute the restricted set of tran-
sitions for the example for the case ŝ equals empty :

• The following pairs will be in M(empty,3)
5:

5We denote by s0 the initial state of Figure 1.2, by s1,x the concrete states of the first row,
by s2,x the states of the second row etc. . .Note that for the states of the first row , s1,x is
reached after the after the insertion of one entry x.

22 Chapter 1 Modal Abstractions of Labelled Transition Systems

– ({s1,0}, {w(0)})

– ({s0, s1,0}, {w(1), w(0)})

– ({s1,2}, {w(2)})

– ({s1,0, sN,1}, {w(0), r(0)})

– . . .

Therefore, M(empty,3) will be composed from an infinite number of pairs
(R, B) such that there is at least one ’s1,x’ in R and w(d) in B with d = x.

• The set of the minimal pairs Mmin
(empty,3) will be:

{({s1,x}, {w(x)})} for any x.

• Considering that αS({s1,x}) is equal to middle and αA({w(x)}) is equal

to ŵ for any x, then M̂(empty,3) will be equal to {(middle , ŵ)}.

• Therefore, we just keep the transition empty
bw

_3 middle and we remove
all the rest of outgoing transitions from empty.

For the complete system, the following transitions are removed from Fig-

ure 1.8: e
bw

_3,2 nF , e
bw

_3,2 nE, m
bw

_3 nF , m
br
_3 nE, f

br
_3,2 nF ,

f
br
_3,2 nE, nF

bw,br
_3 nF , nE

bw,br
_3 nE, nF

br
_3 nE and nE

bw
_3 nF . Fig-

ure 1.9 shows the result of the restriction.

e

f

nE

m

e

f

nF

m

nF nE

WRITE READ

Figure 1.9: Minimal restricted abstract buffer

In general we would not compute the minimal restricted abstraction, but just
approximations of it. The restricted form will be useful in order to characterise
the information preserved by the abstractions as we will see in following sections.

1.3 Modal LTSs Approximations 23

1.3 Modal LTSs Approximations

So far, we have seen the definition of the minimal abstractions using either a
homomorphism or a Galois Connection. However, we can have, as well, non min-
imal abstractions; let us formalise the approximation relation between MLTSs:

Definition 1.3.1 Given two MLTSs M = (S, Act,→3,→2, s0) and N = (S,
Act, _3, _2, s′0) built over the same partially ordered sets of states 〈S, 4S〉
and actions 〈Act, 4A〉; N is an abstraction of M, denoted by M v4 N , if the
following conditions hold:

• s0 4S s′0

• ∀ s, a, r, s′. s
a
→3 r ∧ s 4S s′ =⇒ ∃ a′, r′. s′

a′

_3 r′ ∧ r 4S r′ ∧ a 4A a′

• ∀ s′, a′, r′, s. s′
a′

_2 r′ ∧ s 4S s′ =⇒ ∃ a, r. s
a
→2 r ∧ r 4S r′ ∧ a 4A a′

M v4 N means that N is more abstract than M and it preserves all the
information of the may-transitions of M and at least all must transitions present
in N are reflected in M. The may part of N is an over-approximation of M
and the must part is an under-approximation. The refinement relation is the
dual of the abstraction.

Note that for the homomorphism approach there is no order defined be-
tween states or actions so we substitute 4 by =. In this case abstractions are
done simply by preserving or adding more may transitions and by preserving
or removing some must transitions, i.e.:

• s
a
→3 r =⇒ s

a
_3 r

• s
a
_2 r =⇒ s

a
→2 r

Note that for arbitrary MLTSs and arbitrary orders 4, the abstraction pred-
icate v4 is not a partial order. This is because it is not reflexive. Let us consider
a counter-example:

• M equals s
a
→2 r and s

a
→3 r, with

• s 4 s′

• If M v4 M, then by definition there should exists a′ and r′ with r 4 r′,

a 4 a′ and s′
a′

→3 r′, which is not the case for M

1.4 Logical Characterisation

To express properties about systems [101], we are going to adapt the highly
expressive temporal logic (action-based) µ-calculus [81], see also [114], which is
defined by the following syntax, where A stands for a set of action labels:

24 Chapter 1 Modal Abstractions of Labelled Transition Systems

ϕ ::= T | F | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [A]ϕ | 〈A〉ϕ | Y | µY.ϕ | νY.ϕ

To give some intuition about the semantics, first we are going to present the
standard semantics of the logic for labelled transition systems and later we will
define them for Modal Labelled Transition Systems.

All states satisfy T and none F. ∧ matches all the states that match two
subformulas. ∨ matches all the states that match one of two formulas. The
negation of a formula ϕ matches all the states that do not satisfy the formula ϕ.
The universal operator [A]ϕ holds in a state in which all possible continuations
by actions of A satisfy ϕ. The existential operator 〈A〉ϕ holds in a state in
which there exists a transition by an action belonging to A that satisfies ϕ. Y
denotes a propositional variable. µ and ν are the minimal and maximal fixpoint
operators respectively. We assume that propositional variable Y always appear
under the scope of a fixpoint operator.

In order to guarantee the existence of fixpoints, formulas have to be syntac-
tically monotonic. Since the negation is not monotonic, to get the monotonicity,
every occurrence of a fixpoint variable has to be under the scope of an even num-
ber of negations. As illustration, Figure 1.10 presents the standard semantics
of the logic.

JFKρ = ∅

JTKρ = S

J¬ϕKρ = S\JϕKρ

Jϕ1 ∧ ϕ2Kρ = Jϕ1Kρ ∩ Jϕ2Kρ

Jϕ1 ∨ ϕ2Kρ = Jϕ1Kρ ∪ Jϕ2Kρ

J[A]ϕKρ = {s | ∀ r, a. a ∈ A ∧ s
a
→ r =⇒ r ∈ JϕKρ}

J〈A〉ϕKρ = {s | ∃ r, a. a ∈ A ∧ s
a
→ r ∧ r ∈ JϕKρ}

JY Kρ = ρ(Y)

JµY.ϕKρ =
⋂
{S | JϕK(ρ�[S/Y]) ⊆ S}

JνY.ϕKρ =
⋃
{S | S ⊆ JϕK(ρ�[S/Y])}

Figure 1.10: Semantics of the action based µ-calculus on LTSs

ρ represents the propositional context, it is a function that assigns sets of
states to propositional variables, i.e., ρ : Y → 2S . The fixpoint is defined
using the results of Tarski’s fixpoint theorems [115]. ρ� [S/Y] denotes context
overriding, the value of the propositional variable Y is set to S. Normally,
the following equivalences are used to reduce the complexity of manipulating
properties:

• T = ¬F

1.4 Logical Characterisation 25

• ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2)

• [A]ϕ = ¬〈A〉¬ϕ

• µY.ϕ(Y) = ¬νY.¬ϕ(¬Y)

Now we proceed by presenting the semantics of the formulas over Modal -LTS.
Following [75], a given formula is interpreted dually over an MLTS, i.e. there
will be two sets of states that satisfy it. A set of states that necessarily satisfy
the formula and a set of states that possibly satisfy it. Thus, the semantics
of the formulas are given by JϕKρ ∈ 2S × 2S and the projections JϕKnec

ρ and
JϕKpos

ρ give the first and the second component, respectively. We show below
the simultaneous recursive definitions of the evaluation of a state formula.

JFKρ = 〈∅, ∅〉

JTKρ = 〈S, S〉

J¬ϕKρ = 〈S\JϕKpos
ρ , S\JϕKnec

ρ 〉 (Note the switch of pos and nec)

Jϕ1 ∧ ϕ2Kρ = 〈Jϕ1K
nec
ρ ∩ Jϕ2K

nec
ρ , Jϕ1K

pos
ρ ∩ Jϕ2K

pos
ρ 〉

Jϕ1 ∨ ϕ2Kρ = 〈Jϕ1K
nec
ρ ∪ Jϕ2K

nec
ρ , Jϕ1K

pos
ρ ∪ Jϕ2K

pos
ρ 〉

J[A]ϕKρ = 〈{s | ∀ r, a, a′. a ∈ A ∧ a 4 a′ ∧ s
a′

→3 r =⇒ r ∈ JϕKnec
ρ },

{s | ∀ r, a, a′. a ∈ A ∧ a′ 4 a ∧ s
a′

→2 r =⇒ r ∈ JϕKpos
ρ }〉

J〈A〉ϕKρ = 〈{s | ∃ r, a, a′. a ∈ A ∧ a′ 4 a ∧ s
a′

→2 r ∧ r ∈ JϕKnec
ρ },

{s | ∃ r, s, a′. a ∈ A ∧ a 4 a′ ∧ s
a′

→3 r ∧ r ∈ JϕKpos
ρ }〉

Figure 1.11: Semantics of the action based µ-calculus on Modal -LTSs (part I)

We remark, also, that from the semantics of the negation follows:

• s necessarily satisfies ¬ϕ if and only if s not possibly satisfies ϕ.

• s possibly satisfies ¬ϕ if and only if s not necessarily satisfies ϕ.

Note that the precise order between action labels plays an important role in
the definition of the semantics of the modalities. Let us consider the following
simple example:

• Given the MLTS, s
b
→2 r and s

b
→3 r

• With a 4 b 4 c

• Suppose we want to prove s ∈ J〈{a}〉TKpos
ρ . Then, even if there is not an a

transition from s, the formula will be true because there exists a possible
transition from s labelled with some label less precise than a.

26 Chapter 1 Modal Abstractions of Labelled Transition Systems

• Therefore, if we can possibly do an imprecise action then we should be
able to do a more precise one.

• Suppose we want to prove s ∈ J〈{c}〉TKnec
ρ (from s we can necessarily do

a c step). The formula will be true because we can necessarily do a more
precise action.

• Therefore, if we can necessarily do a more precise action then we should
be able to do a more abstract one.

In this case, the propositional context ρ : Y → 2S × 2S assigns two sets of
states to propositional variable. ρnec denotes the first component of the image
of the function and ρpos the second component. Now we proceed with the
semantics of the fixpoint operators.

JY Kρ = ρ(Y)

JµY <λ.ϕKρ = 〈
⋃

β<λJµY β .ϕKnec
ρ ,

⋃
β<λJµY β .ϕKpos

ρ 〉

JµY λ.ϕKρ = 〈JϕKnec
(ρ�[JµY <λ.ϕKρ/Y]),

JϕKpos
(ρ�[JµY <λ.ϕKρ/Y])

〉

JνY <λ.ϕKρ = 〈
⋂

β<λJνY β .ϕKnec
ρ ,

⋂
β<λJνY β .ϕKpos

ρ 〉

JνY λ.ϕKρ = 〈JϕKnec
(ρ�[JνY <λ.ϕKρ/Y]),

JϕKpos
(ρ�[JνY <λ.ϕKρ/Y])

〉

Figure 1.12: Semantics of the action based µ-calculus on Modal -LTSs (part II)

The definition of the fixpoints is done by simultaneous recursion on the
ordinal λ. Instead of using the standard way of defining the fixpoints as in
Figure 1.10, we have defined them by approximants. It is known (see for ex-
ample [114]) that, for monotonic functions in a lattice, we can construct the
least fixpoint by iterating from the bottom element in an increasing chain un-
til the limit which is the fixed point. In both finite and countable domains,
the length of the iteration is bounded. In the second case the length will be
transfinite. The minimal necessary fixpoint JµY.ϕKnec

ρ is the smallest ordinal

for which JµY <λ.ϕKnec
ρ = JµY λ.ϕKnec

ρ , the same holds for the possible minimal
fixpoint and for the maximal fixpoints.

We have chosen this representation of the fixpoint operators because it allows
to prove results about the inference of properties between systems applying
simple induction schemes on the ordinals (hence, on the values of the context
ρ). By using, the standard way, as in Figure 1.10, we would have to deal with
arbitrary contexts ρ which complicates the task of proving the results.

We remark that:

1.4 Logical Characterisation 27

• JµY <0.ϕKρ = 〈∅, ∅〉

• JνY <0.ϕKρ = 〈S, S〉

• JµY 0.ϕKρ = JϕKρ�[〈∅,∅〉/Y]

• JνY 0.ϕKρ = JϕKρ�[〈S,S〉/Y]

We say that a state s necessarily satisfies a formula ϕ, denoted by s |=nec
ρ ϕ,

if and only if s ∈ JϕKnec
ρ and dually s possibly satisfies a formula ϕ, denoted by

s |=pos
ρ ϕ, if and only if s ∈ JϕKpos

ρ . The notation M, s |=nec
ρ ϕ or s ∈ JϕKnec

ρ,M

means that the state s satisfies the formula ϕ on M. We sometimes omit the
context ρ or the model M, when it is not needed or can be easily inferred. A
trivial property is that for concrete MLTSs JϕKpos = JϕKnec.

Lemma 1.4.1 For the semantics of the µ-calculus over MLTS, the following
equivalences hold:

• T = ¬F, ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2), [A]ϕ = ¬〈A〉¬ϕ and µY.ϕ(Y) =
¬νY.¬ϕ(¬Y)

An interesting property of the semantics is that if s necessarily satisfies a
formula ϕ then also s possibly satisfies ϕ. As we will see, from this fact follow
some other basic results of the theory. Unfortunately, in general the property
does not hold for the semantics given in Figure 1.11. Let us reconsider the

example of the previous page, with the MLTS containing the transitions s
b
→2 r

and s
b
→3 r, and the action labels a 4 b 4 c. We want prove the following

properties:

1. s |=nec 〈{c}〉T

2. s |=pos 〈{c}〉T

Following the definitions (1) is true however (2) is false, which gives a
counter-example. To avoid this kind of undesired results, we can use some
restriction on the action sets. Let us define the saturated sets of actions, as
follows:

• SAT(A) = {a′ | ∃ a ∈ A ∧ a′ 4 a}

Now we can formally formulate the property.

Lemma 1.4.2 For any closed formula ϕ, containing only saturated sets of ac-
tions, the following property holds:

• JϕKnec ⊆ JϕKpos

28 Chapter 1 Modal Abstractions of Labelled Transition Systems

This follows from the fact that every must-transition is also a may-transition
and the fact that the sets of actions are saturated. Without this condition we
would be able to prove s |=nec ϕ and s |=nec ¬ϕ for some ϕ, which would lead
to an inconsistent logic. In fact, it cannot be proved for any formula, s |=nec ϕ
and also s |=nec ¬ϕ, i.e. the necessarily interpretation is consistent and it is
always possible to prove s |=pos ϕ or s |=pos ¬ϕ which means that the possibly
interpretation is complete. We express this in the two following lemmas:

Lemma 1.4.3 If JϕKnec ⊆ JϕKpos, then the necessary interpretation is consis-
tent, i.e., Jϕ ∧ ¬ϕKnec = ∅

Lemma 1.4.4 If JϕKnec ⊆ JϕKpos, then the possible interpretation is complete,
i.e., Jϕ ∨ ¬ϕKpos = S.

The semantics gives a 3-valued logic:

• s necessarily satisfies ϕ.

• s possibly satisfies ϕ but not necessarily satisfies ϕ.

• s not possibly satisfies ϕ.

Note that for any concrete MLTS (system in which every may transition is
also must) JϕKnec will be equal to JϕKpos, although if the formula is interpreted
over an abstract system the set of states that possibly satisfy the formula but
not necessarily represents the loss of information caused by the abstraction.

1.4.1 Property Preservation of MLTSs Approximations

Now, we are going to characterise the relations between the properties satisfied
by different MLTSs. There exists a relation between the abstraction order v
and the properties satisfied. In fact, if a system necessarily satisfies a property
then the formula will hold for all refinements of the system. On the other hand,
if a system does not possibly satisfy a property then none of the refinements
satisfy it. This idea is stated in the following Theorem:

Theorem 1.4.5 Given two MLTSs M and N , over the same sets of states and
labels S and Act, with M v4 N , for any closed formula ϕ and for all s and s′

in S such that s 4 s′,:

• N , s′ |=nec ϕ =⇒ M, s |=nec ϕ

• N , s′ 6|=pos ϕ =⇒ M, s 6|=pos ϕ

This result is useful because, by performing symbolic abstractions (see the
next chapter) we generate approximations of the minimal abstraction, so the
Theorem states that we can still infer the satisfaction/refutation of properties
from the approximation to the original. The proof of the Theorem can be found

1.4 Logical Characterisation 29

at the end of the chapter. Note that we are not requiring ϕ to be composed
by saturated set of actions, this condition is only needed for consistency and
completeness.

1.4.2 Property Preservation of MLTSs Abstractions

Since the abstraction of a system preserves some information of the original one,
the idea is to prove properties on the abstract and then to infer the result for
the original. In order to define the inference rules we have to consider the fact
that actions are abstracted, so action labels of the concrete and of the abstract
system belong to different sets. Abstract formulas are built over labels from a
set Âct and we want to infer the satisfaction to a system built over concrete
actions of a set Act. To characterise the inference rules, we can think of different
approaches:

Option 1 (Wrong). We would like to have some rules of the type:

• If the state ŝ necessarily satisfies the formula ϕ̂ on the abstract model,
then s (with s ∈ γS(ŝ)) satisfies the formula ϕ on the concrete.

• If the state ŝ does not possibly satisfy the formula ϕ̂ on the abstract model,
then s (with s ∈ γS(ŝ)) does not satisfy the formula on the concrete.

Where ϕ is a concrete formula (over concrete action labels) and ϕ̂ is an ab-
stract formula obtained by substituting every action set A in ϕ by its abstraction
αA(A). And the semantics of the satisfaction of a formula over a concrete sys-
tem is the one defined in Figure 1.10. This approach would give problems. Let
us consider the following counter-example:

• Let s
a(0)
→ (3,2) r be the concrete system.

• αS({s}) = ŝ, αS({r}) = r̂, and αA({a(0)}) = αA({a(1)}) = â.

• A correct abstraction of the system could be: ŝ
ba
_2 r̂ and ŝ

ba
_3 r̂

• We want to prove s |=nec 〈{a(1)}〉T (which is trivially false on the concrete
system).

• The abstraction of the formula would be 〈{â}〉T, which is necessarily true
on the abstract system. Which contradicts the concrete result.

The problem is that ŝ
ba
_2 r̂ means that between all the concrete states

related to ŝ exists a transition to a state related to r̂ labelled with an action
related to â. And not that for all actions related to â there exists such a
transition. So, we know that there is a transition but we do not know exactly
which one. In order to deal with this lack of information we propose a second
option.

30 Chapter 1 Modal Abstractions of Labelled Transition Systems

Option 2 (Correct). We are going to define the meaning of the satisfaction
relation of an abstract formula ϕ̂ on a concrete state. Let Jϕ̂Kρ,GA

represent
the concrete states that satisfy an abstract formula. GA is a Galois Connection
(αA, γA) on the action labels (GA is replaced by hA for the homomorphisms).
The semantics is as in Figure 1.10, the only change is in the modal operators:

J〈Â〉ϕ̂Knec
ρ,GA

= {s | ∃ r, â, a. â ∈ Â ∧ a ∈ γA(â) ∧ s
a
→2 r ∧ r ∈ Jϕ̂Knec

ρ,GA
}

J[Â]ϕ̂Knec
ρ,GA

= {s | ∀ r, â, a. â ∈ Â ∧ â 4 αA({a}) ∧ s
a
→3 r =⇒ r ∈ Jϕ̂Knec

ρ,GA
}

Figure 1.13: Necessary semantics of an abstract formula over a concrete system

The possible semantics are equivalent. A concrete state s necessarily satisfies
the abstract formula ϕ̂, denoted by s |=nec

ρ,GA
ϕ̂, if and only if s ∈ Jϕ̂Knec

ρ,GA
. Note

that the only change from the abstract semantics is done in the existential
operator, we see that a concrete state satisfies a formula of the type 〈{â}〉ϕ if
there exists a transition labelled with a concrete action that is included in the
concretisation of â. In this case the equivalence [A]ϕ = ¬〈A〉¬ϕ does not hold
in general, the other equivalences do

Now we can give the property preservation result, for the Galois Connection
approach:

Theorem 1.4.6 Let M be the concrete MLTS (S, Act,→3,→2, s0), in which
→3=→2, G = 〈(αS , γS), (αA, γA)〉 be a Galois Connection between the sets

(P(S),P(Act)) and (Ŝ, Âct), M̂↓ be the MLTS (Ŝ, Âct, _3, _2, ŝ0) denoting
the minimal (restricted) abstraction of M, w.r.t. G. And finally let ϕ̂ be a

closed formula over Âct. Then for all s ∈ S and ŝ ∈ Ŝ such that s ∈ γS(ŝ):

• M̂↓, ŝ |=nec ϕ̂ =⇒ M, s |=nec
GA

ϕ̂

• M̂↓, ŝ 6|=pos ϕ̂ =⇒ M, s 6|=pos
GA

ϕ̂

The proof (see Section 1.6) follows from the fact that every may trace of M

is mimicked on M̂↓ by some related states and, on the other hand, every must
trace of M̂↓ is present in M. For the homomorphic case the Theorem can be
stated similarly:

Theorem 1.4.7 Let M be the concrete MLTS (S, Act,→3,→2, s0), in which
→3=→2, H = 〈hS , hA〉 be a pair or homomorphisms between (S, Act) and

(Ŝ, Âct), M̂ ↓ be the MLTS (Ŝ, Âct, _3, _2, ŝ0) denoting the minimal (re-
stricted) abstraction of M, w.r.t. H . And finally let ϕ̂ be a closed formula over

Âct. Then for all s ∈ S and ŝ ∈ Ŝ such that s = hS(ŝ):

• M̂↓, ŝ |=nec ϕ̂ =⇒ M, s |=nec
hA

ϕ̂

1.5 Conclusion 31

• M̂↓, ŝ 6|=pos ϕ̂ =⇒ M, s 6|=pos
hA

ϕ̂

In this case the semantics are as follows6:

J〈Â〉ϕ̂Knec
ρ,hA

= {s | ∃ r, â, a. â ∈ Â ∧ hA(a) = â ∧ s
a
→2 r ∧ r ∈ Jϕ̂Knec

ρ,hA
}

J[Â]ϕ̂Knec
ρ,hA

= {s | ∀ r, â, a. â ∈ Â ∧ hA(a) = â ∧ s
a
→3 r =⇒ r ∈ Jϕ̂Knec

ρ,hA
}

Figure 1.14: Necessary semantics of an abstract formula over a concrete system

1.5 Conclusion

This chapter includes the basic definitions to abstract action-based systems that
are used, in general, to describe the semantics of process algebraic specifications.
We support three kinds of abstractions:

• Abstraction of states: It is done either by providing a mapping between
concrete and abstract states, or by using a Galois Connection between two
partially ordered sets representing the concrete and the abstract universe
of states. In the second case we have an order that defines the precision
of the states. More precise states contain more information.

• Abstraction of transitions: By using the modalities (may and must) we
join two approximations of the behaviours of the concrete system and over-
and under-approximation. Adding may-transitions or removing must-
transitions produces more abstracted systems.

• Abstraction of actions: Actions are abstracted in the same way as states,
this can produce more expressive abstractions and furthermore helps to
deal with infinitely branching systems.

The three abstractions and the approaches to relate abstract and concrete
systems are combined in a homogeneous manner. Abstract systems are proved to
preserve properties described in the action-based µ-calculus. The next chapter
is dedicated to explaining how to extract correct approximations from system
specifications.

Related Work: A complete description of the work of the past almost thirty
years (from the former papers of Cousot and Cousot [29, 30]) would be an
enormous task. A good overview is presented in [28]. There, the author presents
a brief overview of the theory and pointers to some selected work. An extended
version of the paper can be found on the author’s web site that counts 47 pages
of bibliography. The amount of references gives an idea of the influence of the
theory on the field of static analysis and program verification.

6[a]ϕ = ¬〈a〉¬ϕ holds for the homomorphic case.

32 Chapter 1 Modal Abstractions of Labelled Transition Systems

The first papers by Cousots were difficult to digest and some time had to
pass in order to be assimilated by the verification community. Important con-
tributions were done by Jones and Nielson [77], Dams [31] and Loiseaux and
al. [85], to make the former theories suitable to apply in automatic verification.
They give characterisations of the abstract and concrete systems in terms of the
properties that they satisfy. The characterisations are presented by consider-
ing different fragments of the logic. Some more effort was needed to unify the
different results in a homogeneous theory.

Kelb in [78] integrates the possibility of inferring the satisfaction and the
refutation of properties by defining a 3-valued semantics of a logic. This work is
continued by Huth, Godefroid and al. [75, 55]. They base their models in modal
transition systems which where previously defined by Larsen and Thomsen [84,
83]. Modal transitions system, as we have seen, are suitable structures to model
under-specified systems.

On the other side, the work in [36, 26] use a different framework to define
abstractions. The simplicity of their approach strongly influenced the automatic
techniques of verification. One of the main problems of abstraction theories is
how to find good abstractions. The use of simpler ways of relating systems
allowed to partially automate the search for abstractions. [112, 80] worked on
the unification of the different abstraction approaches. Schmidt characterises
abstraction relations in terms of binary relations that define simulations between
systems. Pnueli presents in a homogeneous way control and data abstraction.

Our work inherits from all the cited references. We have done an extension
of the theories to allow the possibility of abstracting actions. Since labelled
transition systems are the most common structure used to define the semantics
of process algebra, our extension permits the integration of classical abstraction
techniques into the process theory [8].

1.6 Proofs

Proof (Lemma 1.4.1):
We prove the necessary semantics, the possible is proved in the same way.

From now on, for simplicity, we only include the context ρ when it is needed:

Case: Necessary False

1. We have to prove JTKnec = J¬FKnec.

2. By semantics of negation J¬FKnec = ¬JFKpos. Therefore,

3. S ⊆ ¬∅ = S which trivially proves the case.

2 (Case)

Case: Necessary Disjunction

1. We have to prove Jϕ1 ∨ ϕ2K
nec = J¬(¬ϕ1 ∧ ¬ϕ2)K

nec.

1.6 Proofs 33

2. By semantics of negation J¬(¬ϕ1 ∧ ¬ϕ2)K
nec = ¬J¬ϕ1 ∧ ¬ϕ2K

pos. So,

3. ¬(J¬ϕ1K
pos ∩ J¬ϕ2K

pos) which is equal to ¬(¬Jϕ1K
nec ∩ ¬Jϕ2K

nec), then

4. ¬(¬Jϕ1K
nec ∩ ¬Jϕ2K

nec) equals Jϕ1K
nec ∪ Jϕ2K

nec = Jϕ1 ∨ ϕ2K
nec, which

proves the case.

2 (Case)

Case: Necessary Universal

1. We have to prove J[A]ϕKnec = J¬〈A〉¬ϕKnec

2. By semantics of negation J¬〈A〉¬ϕKnec is ¬J¬〈A〉¬ϕKpos , which is equal to

3. ¬{s | ∃ r, a, a′. a ∈ A ∧ a 4 a′ ∧ s
a′

→3 r ∧ r ∈ J¬ϕKpos}, which is equal to

{s | ∀ r, a, a′. a ∈ A∧ a 4 a′ ∧ s
a′

→3 r =⇒ r 6∈ J¬ϕKpos} which is equal to

4. {s | ∀ r, a, a′. a ∈ A ∧ a 4 a′ ∧ s
a′

→3 r =⇒ r ∈ JϕKnec} which is equal to
J[A]ϕKnec and proves the case.

2 (Case)

Case: Necessary Fixpoint

We are going to prove that the equivalence is true by applying transfinite
induction on the ordinals. So, for all value of λ assuming that the lemma is
true for any β < λ. Note that we treat all ordinals as limits of the lower ones,
therefore we do not need to distinguish different inductive cases.

1. We have to prove:

(a) JµY <λ.ϕ(Y)Knec
ρ = J¬νY <λ.¬ϕ(¬Y)Knec

ρ

(b) JµY λ.ϕ(Y)Knec
ρ = J¬νY λ.¬ϕ(¬Y)Knec

ρ

2. By Induction Hypothesis, we know that for all β < λ, JµY β.ϕ(Y)Knec
ρ =

J¬νY β .¬ϕ(¬Y)Knec
ρ

3. From definition we know: J¬νY <λ.¬ϕ(¬Y)Knec
ρ = ¬JνY <λ.¬ϕ(¬Y)Kpos

ρ

which is equal to ¬
⋂

β<λJνY β .¬ϕ(¬Y)Kpos
ρ , which is equal to

4.
⋃

β<λ ¬JνY β .¬ϕ(¬Y)Kpos
ρ =

⋃
β<λJ¬νY β .¬ϕ(¬Y)Knec

ρ by I.H. this is equal
to

5.
⋃

β<λJνY β.ϕ(Y)Knec
ρ = JνY <λ.ϕ(Y)Knec

ρ which proves (1.a).

6. We proceed with (1.b), J¬νY λ.¬ϕ(¬Y)Knec
ρ = ¬JνY λ.¬ϕ(¬Y)Kpos

ρ which

equals ¬J¬ϕ(¬[JνY <λ.¬ϕ(¬Y)Kpos
ρ])Kpos, which is equal to

34 Chapter 1 Modal Abstractions of Labelled Transition Systems

7. Jϕ([J¬νY <λ.¬ϕ(¬Y)Knec
ρ])Knec, then

8. by (1.a), equals Jϕ([JµY <λ.ϕ(Y)Knec
ρ Y])Knec = JµY λ.ϕ(Y)Knec

ρ , that proves
the case

2 (Case)

2(Lemma)

Proof (Lemma 1.4.2):
The proof is done by performing simultaneously structural induction over

the formula ϕ and transfinite induction on the ordinal λ. We need the lemma
for closed formulas only. The semantics of closed formulas is independent of the
valuation. However, because we will do the proof by induction on the formula,
we have to consider open subformulas as well. Because the lemma does not hold
for open formulas for all valuations, we must formulate the induction formula
with care. So we will prove that for all open formulas φ, for all valuations ρ
such that for any Y , ρnec(Y) ⊆ ρpos(Y) holds, the following statement holds:

• JϕKnec
ρ ⊆ JϕKpos

ρ

This means in particular that in order to apply the induction hypothesis
in the fixpoint cases, we must check that the modified valuation satisfies the
constraint. Then, for any property ϕ, for any ρ (under the constrain explained
above), and for any λ assuming that the lemma is true for any β < λ, we con-
sider the following cases:

Case: False

1. We have to prove7 JFKnec ⊆ JFKpos, which is trivial because ∅ ⊆ ∅

2 (Case)

Case: Negation

1. We have to prove J¬ϕKnec ⊆ J¬ϕKpos, which is equivalent to ¬JϕKpos ⊆
¬JϕKnec.

2. By Induction Hypothesis, we have JϕKnec ⊆ JϕKpos, which trivially proves
the case.

2 (Case)

Case: Conjunction

1. We have to prove Jϕ1 ∧ ϕ2K
nec ⊆ Jϕ1 ∧ ϕ2K

pos, which is equivalent to
Jϕ1K

nec ∩ Jϕ2K
nec ⊆ Jϕ1K

pos ∩ Jϕ2K
pos

7For now on, for simplicity, we drop the propositional context when it is not needed.

1.6 Proofs 35

2. By Induction Hypothesis, we have Jϕ1K
nec ⊆ Jϕ1K

pos and Jϕ2K
nec ⊆

Jϕ2K
pos, which trivially proves the case.

2 (Case)

Case: Existential operator

1. We have to prove that for all A, J〈SAT(A)〉ϕKnec ⊆ J〈SAT(A)〉ϕKpos

2. By Induction Hypothesis, we have JϕKnec ⊆ JϕKpos

3. Assume s ∈ J〈SAT(A)〉ϕKnec, then by definition ∃ r, a, a′. a ∈ SAT(A) ∧

a′ 4 a ∧ s
a′

→2 r ∧ r ∈ JϕKnec

4. Let us assume r, a and a′ such that:

(a) s
a′

→2 r

(b) a ∈ SAT(A)

(c) a′ 4 a

(d) r ∈ JϕKnec

5. By definition of MLTS for every must transition there is a may transition,

hence s
a′

→3 r.

6. By definition of saturated, (4.b) and (4.c) imply a′ ∈ SAT(A).

7. By I.H., r ∈ JϕKpos. So,

8. if s ∈ J〈SAT(A)〉ϕKnec then ∃ r, a′ ∈ SAT(A). s
a′

→3 r ∧ r ∈ JϕKpos which
implies

9. s ∈ J〈SAT(A)〉ϕKpos that proves the case.

2 (Case)

Case: Variable Valuation

1. We have to prove JY Knec
ρ ⊆ JY Kpos

ρ .

2. By the constrain on the propositional context, we know ρnec(Y) ⊆ ρpos(Y)
which proves the case.

2 (Case)

Case: Minimal Fixpoint

1. We have to prove that for any λ:

(a) JµY <λ.ϕKnec
ρ ⊆ JµY <λ.ϕKpos

ρ

36 Chapter 1 Modal Abstractions of Labelled Transition Systems

(b) JµY λ.ϕKnec
ρ ⊆ JµY λ.ϕKpos

ρ

assuming (a) and (b) are true for all β < λ.

2. By definition JµY <λ.ϕKnec
ρ =

⋃
β<λJµY β .ϕKnec

ρ

3. By (trans)-Induction Hypothesis we know that for any β < λ the following
equality holds, JµY β .ϕKnec

ρ ⊆ JµY β.ϕKpos
ρ , therefore

4.
⋃

β<λJµY β .ϕKnec ⊆
⋃

β<λJµY β .ϕKpos, which proves (1.a).

5. We proceed with (1.b), by definition JµY λ.ϕKnec
ρ = JϕKnec

(ρ�[JµY <λ.ϕKρ/Y])

and JµY λ.ϕKpos
ρ = JϕKpos

(ρ�[JµY <λ.ϕKρ/Y])

6. By (1.a), we know that JµY <λ.ϕKnec
ρ ⊆ JµY <λ.ϕKpos

ρ so

7. ρ � [JµY <λ.ϕKρ/Y] satisfies the constrain presented above. Therefore,

8. By Induction Hypothesis on the structure of ϕ, JϕKnec
(ρ�[JµY <λ.ϕKρ/Y]) ⊆

JϕKpos
(ρ�[JµY <λ.ϕKρ/Y])

which proves the case.

2 (Case)

2(Lemma)

Proof (Lemma 1.4.3):

1. JϕKnec ⊆ JϕKpos ⇐⇒ JϕKnec ∩ ¬JϕKpos = ∅

2. By the semantics of negation and conjunction, ∅ = JϕKnec ∩ ¬JϕKpos =
JϕKnec ∩ J¬ϕKnec = Jϕ ∧ ¬ϕKnec, which proves the Lemma.

2(Lemma)

Proof (Lemma 1.4.4):

1. JϕKnec ⊆ JϕKpos ⇐⇒ JϕKnec ∩ ¬JϕKpos = ∅ which is equivalent to
¬JϕKnec ∪ JϕKpos = S

2. By the semantics of negation and disjunction, S = ¬JϕKnec ∪ JϕKpos =
J¬ϕKpos ∪ JϕKpos = J¬ϕ ∨ ϕKpos, which proves the Lemma.

2(Lemma)

1.6 Proofs 37

Proof: (Theorem 1.4.5) Following the same reasoning of the proof of pre-
vious Lemma 1.4.2 (see above), we will prove the following stronger statement:
for all s, s′ with s 4 s′, for all open formulas ϕ, and for all ρ and ρ̄, such that:

• s′ ∈ ρ̄nec(Y) =⇒ s ∈ ρnec(Y)

• s ∈ ρpos(Y) =⇒ s′ ∈ ρ̄pos(Y)

it holds that:

• N , s′ |=nec
ρ̄ ϕ =⇒ M, s |=nec

ρ ϕ

• N , s′ 6|=pos
ρ̄ ϕ =⇒ M, s 6|=pos

ρ ϕ

This in turn is proved by induction on the structure of the formula ϕ con-
sidering at the same time the possible and necessary semantics and transfinite
induction on the ordinal λ. We consider the following cases8:

Case: Necessary False

1. We have to prove N , s′ |=nec F =⇒ M, s |=nec F

2. JFKnec
N and JFKnec

M are both ∅ which trivially proves the case.

2 (Case)

Case: Necessary Negation

1. We have to prove N , s′ |=nec ¬ϕ =⇒ M, s |=nec ¬ϕ

2. By the semantics of the negation (1) is equal to N , s′ 6|=pos ϕ =⇒
M, s 6|=pos ϕ

3. By Induction Hypothesis, we know N , s′ 6|=pos ϕ =⇒ M, s 6|=pos ϕ which
trivially proves the case.

2 (Case)

Case: Necessary Conjunction

1. We have to prove N , s′ |=nec ϕ1 ∧ ϕ2 =⇒ M, s |=nec ϕ1 ∧ ϕ2

2. By Induction Hypothesis, we know N , s′ |=nec ϕ1 =⇒ M, s |=nec ϕ1 and
N , s′ |=nec ϕ2 =⇒ M, s |=nec ϕ2 therefore,

3. By the semantics of the conjunction N , s′ |=nec ϕ1 ∧ ϕ2 =⇒ N , s′ |=nec

ϕ1 ∧ N , s′ |=nec ϕ2, then by I.H. follows trivially the case.

8Remember that we denote with → the transitions of M and _ the ones of N , and N is
more abstract than M, i.e., M v4 N

38 Chapter 1 Modal Abstractions of Labelled Transition Systems

2 (Case)

Case: Necessary Existential

1. We have to prove N , s′ |=nec 〈A〉ϕ =⇒ M, s |=nec 〈A〉ϕ

2. Assume N , s′ |=nec 〈A〉ϕ, then ∃ r′, a, a′. a ∈ A ∧ a′ 4 a ∧ s′
a′

_2 r′ ∧
N , r′ |=nec ϕ

3. Assume some r′, a and a′ such that

(a) a ∈ A

(b) a′ 4 a

(c) s′
a′

_2 r′

(d) N , r′ |=nec ϕ

4. By Induction Hypothesis, we know that for all r ∈ M and r′ ∈ N , such
that r 4 r′ follows N , r′ |=nec ϕ =⇒ M, r |=nec ϕ

5. By definition of approximation, s 4 s′ and (3.c), there exist b and r such

that s
b
→2 r and r 4 r′ ∧ b 4 a′, then

6. Assume some b and r such that:

(a) r 4 r′

(b) b 4 a′

(c) s
b
→2 r

7. By transitivity of 4, (3.b) and (6.b) follows that b 4 a.

8. By I.H., (3.d) and (6.a) follows M, r |=nec ϕ

9. Therefore, if N , s′ |=nec 〈A〉ϕ we have proved that ∃ r, a, b. a ∈ A ∧ b 4

a ∧ s
b
→2 r ∧ M, r |=nec ϕ or what is the same M, s |=nec 〈A〉ϕ, which

proves the case.

2 (Case)

Case: Necessary Variable Valuation

1. We have to prove N , s′ |=nec
ρ̄ Y =⇒ M, s |=nec

ρ Y

2. By the restriction on ρ and ρ̄, we know s′ ∈ ρ̄nec(Y) =⇒ s ∈ ρnec(Y)
which trivially proves the case.

2 (Case)

1.6 Proofs 39

Case: Necessary Minimal Fixpoint

1. We have to prove that for any λ:

(a) s′ ∈ JµY <λ.ϕKnec
ρ̄,N =⇒ s ∈ JµY <λ.ϕKnec

ρ,M

(b) s′ ∈ JµY λ.ϕKnec
ρ̄,N =⇒ s ∈ JµY λ.ϕKnec

ρ,M

assuming (a) and (b) are true for all β < λ.

2. By definition JµY <λ.ϕKnec
ρ̄,N =

⋃
β<λJµY β .ϕKnec

ρ̄,N

3. By (trans)-Induction Hypothesis we know that for any β < λ, s′ ∈
JµY β .ϕKnec

ρ̄,N =⇒ s ∈ JµY β.ϕKnec
ρ,M.

4. If s′ ∈
⋃

β<λJµY β .ϕKnec
ρ̄,N implies there exists some β < λ such that s′ ∈

JµY β .ϕKnec
ρ̄,N , then

5. Assuming s′ ∈ JµY β .ϕKnec
ρ̄,N by (3) implies s ∈ JµY β .ϕKnec

ρ,M, so

6. s′ ∈
⋃

β<λJµY β .ϕKnec
ρ̄,N implies s ∈

⋃
β<λJµY β .ϕKnec

ρ,M, which proves the
(1.a).

7. We proceed with (1.b). JµY λ.ϕKnec
ρ̄,N = JϕKnec

(ρ̄�[JµY <λ.ϕKρ̄,N /Y]),N

8. The same holds for M, JµY λ.ϕKnec
ρ,M = JϕKnec

(ρ�[JµY <λ.ϕKρ,M/Y]),M

9. By (1.a), we know that s′ ∈ JµY <λ.ϕKnec
ρ̄,N =⇒ s ∈ JµY <λ.ϕKnec

ρ,M, so

10. ρ̄ � [JµY <λ.ϕKρ̄,N /Y] and ρM � [JµY <λ.ϕKρ,M/Y] satisfy the constrain
presented above. Therefore,

11. Then we apply the Induction Hypothesis on the structure of ϕ, s′ ∈
JϕKnec

(ρ̄�[JµY <λ.ϕKρ̄,N /Y]),N =⇒ s ∈ JϕKnec
(ρ�[JµY <λ.ϕKρ,M/Y]),M. Therefore,

s′ ∈ JµY λ.ϕKnec
ρ̄,N =⇒ s ∈ JµY λ.ϕKnec

ρ,M which proves the case.

2 (Case)

The rest of the proofs for the necessary part follow by the equivalences proved
in Lemma 1.4.1. The proofs for the possible part are as follows:

• F, ∧, ¬ and variable valuation are analogous as the necessary ones.

• The possible existential is dual to the one presented, it is included below
for illustration.

• The fixpoint operator is identical to the necessary one. It is enough to
change nec for pos and to swap M with N .

Case: Possible Existential

40 Chapter 1 Modal Abstractions of Labelled Transition Systems

1. We have to prove N , s′ 6|=pos 〈A〉ϕ =⇒ M, s 6|=pos 〈A〉ϕ or what is the
same M, s |=pos 〈A〉ϕ =⇒ N , s′ |=pos 〈A〉ϕ

2. Assume M, s |=pos 〈A〉ϕ, then ∃ r, a, a′. a ∈ A∧a 4 a′∧s
a′

→3 r∧M, r |=pos

ϕ

3. Assume some r, a and a′ such that

(a) a ∈ A

(b) a 4 a′

(c) s
a′

→3 r

(d) M, r |=pos ϕ

4. By Induction Hypothesis, we know that for all r ∈ M and r′ ∈ N , such
that r 4 r′ follows M, r |=pos ϕ =⇒ N , r′ |=pos ϕ

5. By definition of approximation, s 4 s′ and (3.c), there exist b and r′ such

that s′
b
_3 r′ and r 4 r′ ∧ a′ 4 b, then

6. Assume some b and r′ such that:

(a) r 4 r′

(b) a′ 4 b

(c) s′
b
_3 r′

7. By transitivity of 4, (3.b) and (6.b) follows that a 4 b.

8. By I.H., (3.d) and (6.a) follows N , r′ |=pos ϕ

9. Therefore, if M, s |=pos 〈A〉ϕ we have proved that ∃ r′, a, b. a ∈ A ∧ a 4

b ∧ s′
b
_3 r′ ∧ N , r′ |=pos ϕ, or what is the same N , s′ |=pos 〈A〉ϕ which

proves the case.

2 (Case)

2 (Lemma)

Proof: (Theorem 1.4.6) The proof is done by structural induction over the
formula ϕ simultaneously over the necessary and possible parts. As in the proof
of Theorem 1.4.5 we are going to prove the statement for open formulas, or all
s, ŝ with s ∈ γS(ŝ), for all open formulas ϕ, and for all ρ and ρ̂, such that:

• M̂↓, ŝ ∈ ρ̂nec(Y) =⇒ M,M ∈ ρnec(Y)

• M, s ∈ ρpos(Y) =⇒ M̂↓, ŝ ∈ ρ̂pos(Y)

1.6 Proofs 41

the following statement holds:

• M̂↓, ŝ |=nec
bρ ϕ̂ =⇒ M, s |=nec

ρ,GA
ϕ̂

• M̂↓, ŝ 6|=pos
bρ ϕ̂ =⇒ M, s 6|=pos

ρ,GA
ϕ̂

The base cases: F, ¬ and ∧ are trivial. We just consider the following cases:

Case: Necessary Existential

1. We have to prove M̂↓, ŝ |=nec 〈Â〉ϕ̂ =⇒ M, s |=nec
GA

〈Â〉ϕ̂

2. Assume ŝ |=nec 〈Â〉ϕ̂ (from now on we drop the reference to the system)

then ∃ r̂, â, b̂. â ∈ Â ∧ b̂ 4 â ∧ ŝ
bb
_2 r̂ ∧ r̂ |=nec ϕ̂

3. Assume some r̂, â and b̂ such that

(a) â ∈ Â

(b) b̂ 4 â

(c) ŝ
bb
_2 r̂

(d) r̂ |=nec ϕ̂

4. By Induction Hypothesis, we know that for all r and r̂ such that r ∈ γS(r̂),
r̂ |=nec ϕ̂ =⇒ r |=nec

GA
ϕ̂

5. By definition of minimal restricted abstraction and (3.c), exists a pair

(Rmin, Bmin) in M̂min
(bs,2) such that:

(a) r̂ = αS(Rmin)

(b) b̂ = αA(Bmin)

6. By definition, (Rmin, Bmin) in M̂min
(bs,2) implies (Rmin, Bmin) in M̂(bs,2),

hence:

(a) ∀ s ∈ γS(ŝ), implies ∃ r ∈ Rmin, a ∈ Bmin.s
a
→2 r

7. Assume r and a, such that:

(a) r ∈ Rmin

(b) a ∈ Bmin

(c) s
a
→2 r

8. Then,

(a) By monotonicity of αS and (7.a), αS({r}) 4 αS(Rmin)

(b) by (5.a), αS({r}) 4 r̂, so

42 Chapter 1 Modal Abstractions of Labelled Transition Systems

(c) by monotonicity of γS , γS(αS({r})) ⊆ γS(r̂), so

(d) by the properties of the Galois Connection, s ∈ γS(r̂), therefore

(e) by I.H. and (3.d), r |=nec
GA

ϕ̂

9. And,

(a) By monotonicity of αA and (7.b), αA({a}) 4 αA(Bmin)

(b) by (5.b), αA({a}) 4 b̂, so

(c) by transitivity and (3.b), αA({a}) 4 â, so

(d) by monotonicity of γA, γA(αS({a})) ⊆ γA(â), then

(e) by the properties of the Galois Connection, a ∈ γA(â)

10. Assuming ŝ |=nec 〈Â〉ϕ̂, by (3.a), (7.c), (8.e) and (9.e) we have proved

that ∃ r, â, a. â ∈ Â ∧ a ∈ γA(â) ∧ s
a
→2 r ∧ r |=nec

GA
ϕ̂ or what is the same

s |=nec
GA

〈Â〉ϕ̂ which proves the case.

2 (Case)

Case: Necessary Universal

1. We have to prove ŝ |=nec [Â]ϕ̂ =⇒ s |=nec
GA

[Â]ϕ̂

2. s |=nec
GA

[Â]ϕ̂ implies ∀ r, â, a. â ∈ Â∧ â 4 αA({a})∧ s
a
→3 r =⇒ r |=nec

GA
ϕ̂

3. By Induction Hypothesis, we know that for all r and r̂ such that r ∈ γS(r̂),
r̂ |=nec ϕ̂ =⇒ r |=nec

GA
ϕ̂

4. Let us choose some r, â and a such that:

(a) â ∈ Â

(b) â 4 αA({a})

(c) s
a
→3 r

then we have to prove r |=nec
GA

ϕ̂

5. By definition of restriction, (3.b) and s ∈ γS(ŝ) follows that ({r}, {a}) ∈

M̂(bs,3)

6. 6 ∃(R, B) ∈ M̂(bs,3) with R ⊂ {r} or B ⊂ {a}, hence ({r}, {a}) ∈ M̂min
(bs,3),

then

7. ŝ
αA({a})

_ 3 αS({r})

8. ŝ |=nec [Â]ϕ̂ =⇒ ∀ r̂, â, b̂. â ∈ Â ∧ â 4 b̂ ∧ ŝ
bb
_3 r̂ =⇒ r̂ |=nec ϕ̂

9. By (4.a), (4.b), (7) and (8), we know that αS({r}) |=nec ϕ̂

1.6 Proofs 43

10. By definition of Galois Connection, r ∈ γS(αS({r}))

11. Then, by I.H (with r̂ = αS({r})), (9) and (10), follows r |=nec
GA

ϕ̂, therefore

12. if ŝ |=nec [Â]ϕ̂ =⇒ ∀ r, â, a. â ∈ Â∧ â 4 αA({a})∧ s
a
→3 r =⇒ r |=GA

ϕ̂
which proves the case.

2 (Case)

The proofs of the possible universal and existential case are dual to the ones
presented, so there is no value to include them. In order to prove the fixpoint
operators:

• ŝ ∈ JµY.ϕ̂Knec
bρ =⇒ s ∈ JµY.ϕ̂Knec

ρ,GA

• ŝ 6∈ JµY.ϕ̂Kpos
bρ =⇒ s 6∈ JµY.ϕ̂Kpos

ρ,GA

We are going to define the operators in terms of approximants. So the
minimal fixpoint will be (the maximal fixpoint can be defined by the negation
of the minimal):

JµY <λ.ϕ̂Kρ,GA
=

⋃
β<λJµY β.ϕ̂Kρ,GA

JµY λ.ϕ̂Kρ,GA
= Jϕ̂K(ρ�[JµY <λ.bϕKρ,GA

/Y]),GA

We know that for countable domains and monotonic functions, there is an
ordinal λ such that JµY.ϕ̂Kρ,GA

= JµY λ.ϕKρ,GA
. These definitions are true

for both possible and necessary semantics. Therefore, we can use transfinite
induction, exactly as we did for Theorem 1.4.5, to conclude the proofs.

2 (Theorem)

Proof: (Theorem 1.4.7) The proof of this Theorem has no difficulties, it is
enough to adapt the previous proof.

2 (Theorem)

44 Chapter 1 Modal Abstractions of Labelled Transition Systems

Chapter 2

Modal Abstractions of Processes

This chapter describes a framework to generate modal abstract approximations
from process algebraic specifications, written in µCRL. We introduce a new
format for process specification called Modal Linear Process Equation (MLPE).
An MLPE represents all the possible interleavings of the parallel composition
of a number of processes. Every transition step may lead to a set of abstract
states labelled with a set of abstract actions. We use MLPEs to characterise
abstractions of systems and to generate Modal Labelled Transition Systems.

45

46 Chapter 2 Modal Abstractions of Processes

2.1 Introduction

A preliminary step to abstract process algebraic specifications was already taken
in [42]; those authors show how process algebras [72, 94, 93, 20, 8, 4] can ben-
efit from abstract interpretation in principle. To this end they work with a
basic LOTOS [38] language and a simple temporal logic; their abstractions
preserve linear-time safety properties only. Here, we enhance previous work on
abstraction for process algebra by adapting the results presented in the previous
chapter.

We introduce the theory for applying abstract interpretation techniques to
µCRL specifications, which (as in LOTOS) consist of an ADT part defining data
operations, and a process specification part, specifying an event-based reactive
system. Processes are defined using a.o. sequential and parallel composition,
non-deterministic choice and hiding. Furthermore, atomic actions, conditions
and recursion are present, and may depend on data parameters. The µCRL
toolset transforms specifications to linear process equations (LPE), by eliminat-
ing parallel composition and hiding efficiently.

We implement abstract interpretation as a transformation from LPEs to
Modal -LPEs (MLPEs). MLPEs capture the extra non-determinism arising from
abstract interpretation. They allow a single transition to lead to a set of states
with a set of action labels. We show that the MLTS generated from an MLPE
is a proper abstraction of the LTS generated from the original LPE. By Theo-
rem 1.4.6, this implies soundness for µ-calculus properties. Section 2.4 is devoted
to this issue.

The next figure shows the different possibilities to extract abstract approxi-
mations from concrete specifications.

concrete spec (LPE)

?

(4)

abstract spec (MLPE)

-
(1)

-
(5)

(3)

abstract system (MLTS)

concrete system (LTS)

?

(2)

H
H

H
H

H
H

H
H

H
Hj

From a concrete system, encoded as an LPE, we can:

• Generate the concrete transition system (1), from which we compute the
abstraction (2). Even though the resulting abstraction is optimal, this
option is not very useful for verification because the generation of the
concrete transition system may be impossible (or too expensive) due to
the size of the state space.

• Generate directly the abstract Modal -LTS (3), by interpreting the concrete
specification over the abstract domain. This solution avoids the generation
of the concrete transition system.

2.2 µCRL in a Nutshell 47

• First, generate a symbolic abstraction of the concrete system (4), and then
extract the abstract transition system (5).

Typically, standard abstract interpretation frameworks implement the sec-
ond approach (arrow (3) of the figure), however we believe that the third (arrow
(4) followed by (5)) one is more modular. Modal -LPEs act as intermediate rep-
resentation that may be subjected to new transformations. There exist several
tools (see [13, 15]) that manipulate linear equations that do, for example, sym-
bolic model checking, state space reduction, elimination of dead code, confluence
analysis, . . . Furthermore, different techniques for algebraic verification [62] are
based on linear processes [63, 48].

As we will show in the next chapter, MLPEs can be transformed back to
LPEs. Thus our method integrates perfectly with the existing transformation
and state space generation tools of the µCRL toolset [12, 13]. Also, the three
valued model checking problem can be rephrased as the usual model checking
problem, along the lines of [55]. This enables the reuse of the model checkers in
the CADP toolset [43, 52].

The chapter is organised as follows; first we introduce the syntax and seman-
tics of µCRL. Then we present the basic concepts about abstract interpretation
of data types and the transformation of concrete µCRL specifications to ab-
stract ones. We conclude by illustrating the use of the theory in a case study.
The next chapter describes a tool that implements the theory and facilitates the
application of the technique to realistic specifications.

2.2 µCRL in a Nutshell

µCRL [57] is a combination of process algebra [8, 45, 9] and abstract data types.
Data is represented by an algebraic specification Ω = (Σ, E), in which Σ denotes
a many-sorted signature (S, F), see [64]. Formally:

• A many-sorted signature Σ = (S, F), where S is a set of types or sort
names, and F a set of function symbols. A function f of some sort S, and
with arity n, is typed by f : S0 × · · · × Sn−1 → Sn, where S0, . . . , Sn−1

are the sorts of the arguments of f , and Sn the sort of f .

• A set E of Σ-equations, which are expressions of the form s = t where
s and t are equally typed terms constructed from variables and function
symbols in the usual way.

From process algebra µCRL inherits the following operators:

• p.q performs p and then performs q;

• p + q performs arbitrarily either p or q;

•
∑

d:D p(d) performs p(d) with an arbitrarily chosen d of sort D;

• p � b � q if b is true, performs p, otherwise performs q;

48 Chapter 2 Modal Abstractions of Processes

• p || q runs processes p and q in parallel.

• τ represents the silent step.

• δ stands for deadlock.

Atomic actions may have data parameters. The operator | allows syn-
chronous parameterised communication. If two actions are able to synchronise
we can force that they occur always in communication using the encapsulation
operator (∂H). The operator τI hides enclosed actions by renaming into τ ac-
tions. The initial behaviour of the system can be specified with the keyword
init followed by a process term:

System = τI∂H(p0 ‖ p1 ‖ ...)
init System

The following µCRL process specifies a bounded buffer implemented using
a list. The process can non-deterministically choose between executing a write
or a read action. The write can only be performed if the buffer is not full, i.e.,
the length of the list that models the buffer is smaller that the maximal length
(MAX). The read action can be performed if the buffer is not empty. In the
first case, the state parameter is updated by concatenating a new bit to the list;
in the second case, the first element of the list is removed.

Buffer(l : List) =
∑

b:Bit

write(b).Buffer (cons(b, l)) � lt(len(l), MAX) � δ+

read(head(l)).Buffer(tail(l)) � not(isEmpty(l)) � δ

All specifications must include the boolean sort Bool with the constants true
and false (T and F), because it is needed to define the conditional choice. We
assume also the existence of the sorts naturals (with the standard operations
equality eq, successor succ, predecessor pred, ...), and bits. The sort List can be
defined as follows:

sort List, Bool, Nat
func emptyList :→ List

cons : Bit × List → List
head : List → Bit
tail : List → List
len : List → Nat
isEmpty : List → Bool

var l : List
b : Bit

rew head(cons(b, l)) = b
tail(cons(b, l)) = l
len(emptyList) = 0
len(cons(b, l)) = succ(len(l))
isEmpty(l) = eq(0, len(l))

In the specification of the data type we have used the following keywords:
sort to define the name of the data type, func to define the signature of the

2.2 µCRL in a Nutshell 49

operations, var to define the auxiliary and rew to define the defining equations
of the type.

µCRL, in combination with other tools has been use for verification pur-
poses in different works. The list of cases of study is long, we just point to a few
references. For example [11, 46] present the correctness of the sliding window
protocol, [58] describes a mutual exclusion algorithm, in [99] some errors in
a Java cache coherence coherence protocol were found and corrected. Further-
more, [49] and [86] analyse respectively the Itai-Rodeh leader election and the
link layer of the 1394 protocol. [47] illustrates an in-flight data acquisition unit
and [74, 106] analyse two different shared data spaces architectures, the latter
is presented in Chapter 6.

2.2.1 Linear Process Equations

Every µCRL system can be transformed to a special format, called Linear Pro-
cess Equation or Operator [61, 117]. An LPE (see definition below) is a single
µCRL process which represents the complete system and from which parallel
composition, encapsulation and hiding have been eliminated.

X(d : D) =
∑

i∈I

∑

ei:Ei

ai(fi[d, ei]).X(gi[d, ei]) � ci[d, ei] � δ (2.1)

In the definition, d denotes a vector of parameters d of type D that represents
the state of the system at every moment. We use the keyword init to declare
the initial vector of values of d. Action labels ai are selected from a set of action
names ActNames1. The process is composed by a finite number I of summands,
every summand i, has a list of local variables ei, of possibly infinite domains,
and it is of the following form: a condition ci[d, ei], if the evaluation of the
condition is true the process executes the action ai with the parameter fi[d, ei]
and will move to a new state gi[d, ei], which is a vector of terms of type D.
fi[d, ei], gi[d, ei] and ci[d, ei] are terms built recursively over variables x ∈ [d, ei],
applications of function over terms t = f(t′) and vectors of terms. For example,
we compose two buffers in parallel, as follows:

comm read0|write1 = w
System = τ{w}∂{read0,write1}(Buffer 0(emptyList) ‖ Buffer1(emptyList)
init System

where Buffer0 is equal to the process Buffer in which l is renamed to l0,
write to write0 and read to read0 (similar for Buffer1). We obtain the following
linear form

1From now on we will use ActNames to refer just to the labels and Act to the set of action
label together with the arguments

50 Chapter 2 Modal Abstractions of Processes

X(l0, l1 : List) =
∑

b:Bit

write0(b).X(cons(b, l0), l1) � lt(len(l0), MAX) � δ+

τ.X(tail(l0), cons(head(l0), l1))

� not(isEmpty(l0)) ∧ lt(len(l1), MAX) � δ+

read1(head(l1)).X(l0, tail(l1)) � not(isEmpty(l1)) � δ

To every LPE specification corresponds a labelled transition system. The
semantics of the system described by an LPE are given by the following rules:

• s0 = initlpe

• s
a
→ s′ if and only if exists i ∈ I and exists e : Ei such that ci[s, e] =

T, ai(fi[s, e]) = a and gi[s, e] = s′

Data terms are interpreted over the universe of values D. The LTS corre-
sponding to the Buffer LPE can be generated for any finite value of the constant
MAX. The Buffer is modelled to contain bits which makes it finite. If we change
the specification to have a container of natural numbers then the system will
have an infinitely branching behaviour as the one presented in the previous
chapter.

2.3 Data Abstraction

2.3.1 Abstraction of Sorts

Abstractions from µCRL specifications are generated by interpreting the data
terms over an abstract domain that is in general smaller than the concrete one.
Therefore, to produce an abstraction one should, first, define an abstract data
domain and a relation with the concrete. As we have seen in the previous
chapter, the relation can be expressed as a mapping H : D → D̂ or a Galois
Connection (α : P(D) → D̂, γ : D̂ → P(D)). For example, an abstract domain
for lists may be:

sort abs List
func empty, middle,

full :→ abs List
H : List → abs List

var l : List
b : Bit

rew H(emptyList) = empty
H(cons(b, l)) =

if(MAX ≥ len(cons(b, l)),
full, middle)

We could write a similar data specification for the Galois Connection case us-
ing the extra values nonEmpty, nonFull, > and ⊥. In order to obtain consistent
abstract specifications (which generate transition systems without meaningless
transitions), we impose the following restrictions on the Galois Connections:

2.3 Data Abstraction 51

• α(∅) = ⊥ and 6= ⊥ for any other value S.

• γ(⊥) = ∅ and 6= ∅ for any other value ŝ.

In some cases, it would be interesting to define a Galois Connection from an
homomorphism. In general, it is more intuitive to think in terms of mappings
than of Connections. In practise the lifting of homomorphisms will save some
effort during the task of defining abstractions. To define a Galois Connection
from an homomorphism H we proceed as follows:

If we have the concrete domain D and the abstract D̂, then we build the
abstract lattice as the power set of abstract values P(D̂) ordered by the set

inclusion operator. Furthermore, we define A : P(D) → P(D̂) and G : P(D̂) →
P(D) as:

• A(S) = {H(s) | s ∈ S}

• G(Ŝ) = {s | ∃ ŝ ∈ Ŝ ∧ H(s) = ŝ}

Note that not all Galois Connections can be defined from homomorphisms.
Figure 2.1 displays the abstract lattice of lists.

{empty, middle} {middle, full}

{full}{empty} {middle}

{empty, middle, full}

{ }

Figure 2.1: Lifted abstract lists

Lemma 2.3.1 The pair (A,G) built from a lifted homomorphism H forms a
Galois Connection.2

The idea is to integrate the three ways of relating concrete and abstract do-
mains. We have seen that on the one hand we may have plain homomorphisms,
that can be lifted to Galois Connections by considering the abstract domain
consisting of sets of abstract values, and on the other hand we may have plain
Galois Connections in which the abstract domains are simple abstract values.
To treat homogeneously these approaches, we are going to define a different

2Proofs are at the end of the chapter.

52 Chapter 2 Modal Abstractions of Processes

form of the latter case with the same signature as the lifted homomorphism
case.

We define a new Galois Connection (A,G) from (P(D),⊆) to (P(D̂), 4̇),

based on (α, γ) from (P(D),⊆) to (D̂, 4).

• A(S) = {α({s}) | s ∈ S}

• G(Ŝ) = ∪{γ(ŝ) | ŝ ∈ Ŝ}

• Ŝ 4̇ Ŝ′ if and only if ∀ ŝ ∈ Ŝ ∃ ŝ′ ∈ Ŝ′.ŝ 4 ŝ′

Lemma 2.3.2 (A,G) built from (α, γ) as defined above form a Galois Connec-
tion.

From now on, we will use (A,G) with the order 4̇ (which in the case of the
homomorphisms will be equivalent to ⊆).

2.3.2 Abstraction of Data Terms

Formal specifications are composed by process and data terms. In the previous
section we have presented the possibilities to relate abstract and concrete values.
Now, we describe how to define the abstraction of data terms.

Formally, we start by introducing an abstract operator to relate the concrete
data specification and the abstract version: “ ̂ ”: Σ → Σ̂. In order to maintain
the semantics of the process condition, we apply the restriction that booleans

are not abstracted: B̂ool = Bool.
We are going to overload the syntactic operator “ ̂ ” to denote also the

abstraction of data terms. Data terms are recursively built over constants (unary
functions), variables from a set X , tuples, and function symbols. First, we

introduce a new set X̂ of variables of type D̂. Then we define abstraction of
data terms being a function from concrete terms built over concrete values to
abstract terms built over sets of abstract values: ̂ : T−→

D
(Σ, X) → T−→

P (bD)
(Σ̂, X̂)

(we explain below why we use sets of values).
We try to keep the definition of “ ̂ ” as general as possible, so we do not

fully define it on terms. We only define the following two cases:

• The abstraction of tuples, as: ̂[t0, ..., tn] = [t̂0, ..., t̂n]

• The abstraction of constants, as: ĉ = A({c})3

In order to illustrate how function symbols are going to be abstracted, we
present the following example: in our buffer specification we have a function
cons which adds an element to a list. The abstract version of cons may be
defined as follows:

3From now on, we simplify the notation by using A(c) instead of A({c}), and G(bc) instead
of G({bc})

2.3 Data Abstraction 53

• For the homomorphism:

– abs cons(b, empty) = middle

– abs cons(b, middle) = middle or abs cons(b, middle) = full

– abs cons(b, full) = full

• For the Galois Connection approach:

– abs cons(b, empty) = middle

– abs cons(b, middle) = nonEmpty

– abs cons(b, nonFull) = nonEmpty

– abs cons(b, nonEmpty) = nonEmpty

– abs cons(b, full) = >

– abs cons(b,⊥) = ⊥

– abs cons(b,>) = >

We see in the example that abstract interpretation of functions may add
non-determinism to the system, for instance abs cons(b, middle) in the homo-
morphism case may return different values (middle and full). The reason why
we have defined abstract terms over sets of abstract values is to deal with this
fact.

In the example, the signature of the concrete successor is cons : Bit×List →
List, the abstraction will be abs cons : Bit×L̂ist → P(L̂ist) (the sort Bit is left
concrete). Then, for the homomorphism abs cons(b, middle) = {middle, full}
and for the Galois Connection: abs cons(b, empty) = {nonEmpty}

We have said that booleans are not abstracted. Else for instance a function
isEmpty : List → Bool could be abstracted to the function abs isEmpty :
L̂ist → P(Bool). Then abs isEmpty(nonFull) would be equal to {T, F} and
abs isEmpty(empty) = {T}. We could have defined the abstract type of booleans

with {⊥, T̂, F̂,>} being abs isEmpty(nonFull) equal to >, but we wanted to
avoid the redefinition of the semantics of the conditions of the processes for the
abstract values.

Formally, if we would use only simple Galois Connections we would not
need terms over sets of values in the abstract specification. However, keeping
the sets gives more flexibility because it allows to easily combine the different
types of abstractions and to reuse concrete sorts in the abstract specification
(as for example the booleans of the sort abs isEmpty or Bit in the signature of
abs cons). Below we present a possible definition of the abstraction of List.

Note how the abstraction removes the value of the entries stored in the list,
therefore the head functions returns the collection of all possible values of bits.
The true length of the list is also abstracted, when the list is equal to middle we
do not know the exact number of bits stored, this is represented by returning a
set of all possible lengths. We could have chosen to specify abs cons(b, full) to
be equal to {⊥} (instead of {full}) denoting an execution error.

54 Chapter 2 Modal Abstractions of Processes

sort abs List
func empty, middle, full :→ abs List

abs cons : Bit × abs List → P(abs List)
abs head : abs List → P(Bit)
abs tail : abs List → P(abs List)
abs len : abs List → P(Nat)
abs isEmpty : abs List → P(Bool)

var abs l : abs List
b : Bit

rew abs cons(b, empty) = {middle}
abs cons(b, middle) = {middle, full}
abs cons(b, full) = {full}
abs head(abs l) = {b0, b1}
abs tail(empty) = {empty}
abs tail(middle) = {empty, middle}
abs tail(full) = {middle}
abs len(empty) = {0}
abs len(middle) = {1...pred(MAX)}
abs len(full) = {MAX}
abs isEmpty(empty) = {T}
abs isEmpty(middle) = {F}
abs isEmpty(full) = {F}

In summary, the abstraction of the data specification will consist of a new
data specification, whose values are related with the concrete by means of a
homomorphism or a Galois Connection, and data terms built from the data
type represent sets of values. Functions and equations of the concrete data type
have to be defined over the abstract domain considering the use of sets of values.

2.3.3 Safety Condition

In the previous section we have given the guidelines to define an abstraction
operator for data terms. We remark that not all possible abstract interpretations
are correct; in order to generate safe abstractions the data terms involved in the
specification and their abstract versions have to satisfy a formal requirement,
usually called safety condition. A pair (t, t̂), where t is concrete term that applies
point-wisely to sets and t̂ an abstract one, satisfy the safety condition if and
only if, for all abstract values d̂:

• A(t[G(d̂)]) 4̇ t̂ [d̂]

For consistency, we also require that the evaluation of abstract terms t̂[d̂]

built over values d̂ different from ⊥ is not equal to {⊥}.

2.4 Modal Linear Process Equation 55

2.4 Modal Linear Process Equation

We present now a new format, the Modal Linear Process Equation that will
be used to represent the symbolic abstraction of an LPE. An MLPE has the
following form:

X(d : P(D̂)) =
∑

i∈I

∑

ei:Ei

ai(Fi[d, ei]).X(Gi[d, ei]) � Ci[d, ei] � δ (2.2)

The definition is similar to the one of Linear Process Equation, the difference
is that the state is represented by a list of power sets of abstract values and for
every i: Ci returns a non-empty set of booleans, Gi a non-empty set of states
and Fi also a non-empty set of action parameters. Actions are parameterised
with sets of values, as well. From an MLPE we can generate a Modal Labelled
Transition System following these semantic rules:

• S0 = initmlpe

• S
A
→2 S′ if and only if exists i ∈ I and exists e ∈ Ei (e 6= ⊥) such that

F/∈ Ci[S, e], A = ai(Fi[S, e]) and S′ = Gi[S, e]

• S
A
→3 S′ if exists i ∈ I and exists e ∈ Ei (e 6= ⊥) such that T∈ Ci[S, e],

and A = ai(Fi[S, e]) and S′ = Gi[S, e]

MLPEs allow to capture in a uniform way both approaches: Galois Connec-
tion and Homomorphism as well as the combination of both consisting of the
lifting of a mapping to a Galois Connection. In case we use a plain homomor-
phism (without lifting it to a Galois Connection), we restrict the rules by letting
S0, S, A and S′ be only singleton sets.

To compute an abstract interpretation of a linear process, we define the
operator “ ¯ ”: LPE → MLPE that pushes the abstraction through the process
operators till the data part:

p = X(t) then p̄ = X(t̂) with X being a process name

p = a(t) then p̄ = a(t̂) with a being an action label
p = p0 + ... + pn then p̄ = p̄0 + ... + p̄n

p = δ then p̄ = δ
p = p0.p1 then p̄ = p̄0.p̄1

p = pl � tc � pr then p̄ = p̄l � t̂c � p̄r

p =
∑

e:E p then p̄ =
∑

be: bE p̄

Furthermore, the initial value of the mlpe will be equal to the abstraction
of the initial value of the lpe, i.e., initmlpe = înitlpe. Note that actions are
abstracted by abstracting the arguments of them, the action label is kept un-
changed. Let us show the result of abstracting the buffer process:

56 Chapter 2 Modal Abstractions of Processes

abs Buffer(l : P(abs List)) =
∑

b:Bit

write(b).abs Buffer(̂cons(b, l)) � ̂lt(len(l), MAX) � δ+

read(ĥead(l)).abs Buffer(t̂ail(l)) � ̂not(isEmpty(l)) � δ

In the next chapter we will discuss an implementation for the abstraction of
the data terms. Just considering that the terms return sets of values, as defined
in section 2.3.2, the MLPE form can be used equally for any kind of relation
between the data domains: homomorphisms, arbitrary Galois Connections and
lifted homomorphisms. The following lemma shows that abstractions do not
contain meaningless transitions.

Lemma 2.4.1 For every transition of ŝ
a(bt)
→ r̂, the values ŝ, r̂ and t̂ are not equal

to {⊥}

Now, we present the main result of the chapter that states that an abstrac-
tion of a process, in which data terms satisfy the safety condition, generates
an abstract approximation of the transition system generated by the concrete
process.

Theorem 2.4.2 Given a Linear Process Equation lpe, a Modal Linear Process
Equation ¯lpe and a Galois Connection (A,G) from (P(D),⊆) to (P(D̂), 4̇)
between their data domains (as defined on section 2.3.1). If:

1. ¯lpe is the abstract interpretation of lpe,

2. lts is the LTS generated from lpe4

3. m̂lts↓ the minimal restricted abstraction w.r.t (A,G) of lts

4. And the pairs of concrete and abstract data terms (all pairs (f, F), (g, G)
and (c, C) of lpe and ¯lpe) satisfy the safety condition.

• Then, the MLTS (m̂lts) generated from mlpe is an abstraction of m̂lts↓,

i.e, (m̂lts↓ v4̇ m̂lts)

lpe

?

¯lpe - m̂lts↓m̂lts

lts

?

-

w4̇

4More precisely we should use the concrete MLTS equivalent to lts, see definition 1.2.5.

2.5 A Case Study: The Bounded Retransmission Protocol 57

In (3), we say that m̂lts↓ is the minimal restricted abstraction with respect
to (A,G) of mlts. By definition 1.2.5, to compute the minimal restricted ab-
straction, we need two Galois Connections (αS , γS) and (αA, γA) (for the states
and for the actions), we will use the following:

• (αS , γS) will be (A,G)

• For (αA, γA), we remember that on the abstraction of processes we only
abstract the action arguments and not the action labels. Therefore, we
are going to consider:

– αA(a(t)) = {a(t̂) | t̂ ∈ A(t)}

– γA(â(t)) = {a(t) | t ∈ G(t̂)}

– â(t) 4̇ â(t′)) if and only if t̂ 4̇ t̂′

The proof is done by checking that every may transition generated by the
abstract Modal Linear Process Equation has at least one precise counterpart in
the minimal restricted abstraction of the concrete system (and the other way
around for the must transitions). The proof is included at the end of the chapter.
By theorems 1.4.5, 1.4.6 and 1.4.7, we can prove (refute) properties for lpe by
considering mlpe directly.

In the example of the buffer, in order to assure that the abstraction is correct,
we will have to prove the following safety conditions:

• A(cons(G(b̂, l̂))) 4̇ abs cons(b̂, l̂)

• A(lt(len(G(l̂))), MAX) 4̇ lt(abs len(l̂), MAX)

• A(head(G(l̂))) 4̇ abs head(l̂)

• A(tail(G(l̂))) 4̇ abs tail(l̂)

• A(not(isEmpty((G(l̂)))) 4̇ not(abs isEmtpy(l̂))

As illustration we include the proof of the first safety condition at the end
of the chapter.

2.5 A Case Study: The Bounded Retransmission Proto-
col

The BRP is a simplified variant of a Philips’ telecommunication protocol that
allows to transfer large files across a lossy channel. Files are divided in packets
and are transmitted by a sender through the channel. The receiver acknowl-
edgements every delivered data packet. Both data and confirmation messages
may be lost. The sender will attempt to retransmit each packet at most MAX
times.

58 Chapter 2 Modal Abstractions of Processes

The protocol presents a number of parameters, such as the length of the
lists, the maximum number of retransmissions and the contents of the data,
that cause the state space of the system to be infinite and limit the application
of automatic verification techniques such as model checking. We describe, here,
the application of the abstract interpretation techniques to remove uninteresting
information of this protocol in order to use model checking to verify it.

We base our solution on the µCRL model presented in the paper [56], in
which Groote and v.d. Pol proved using algebraic methods that the model is
branching bisimilar to the desired external behaviour also specified in µCRL.
This proof requires a strong and creative human interaction in order to be
accomplished. However by computing an abstraction of the original we can
automatically model check some properties.

The figure below shows the different agents that participate in the system.
The system contains a sender that gets a file which consists of a list of elements.
It delivers the file frame by frame through a channel. The receiver sends an
acknowledgement for each frame, when it receives a packet it delivers it to the
external receiver client attaching a positive indication Ifst, Iinc or Iok. The
sender, after each frame, waits for the acknowledgements, if the confirmation
message does not arrive, it retransmits the packet. If the transmission was
successful, i.e., all the acknowledgements have arrived, then the sender informs
the sending client with a positive indication. When the maximum number of
retransmissions is exceeded, the transmission is cancelled and Inok is sent to
the exterior by both participants. If the last frame or its confirmation are lost
the sender cannot know whether the receiver has received the complete list,
therefore it sends “I don’t know” to the sending client, Idk.

S R

K

L

3

10

2

6 5

1

9

7 8

9

T T1 2

4

Figure 2.2: Overview of the bounded retransmission protocol

The protocol depends on the time behaviour, which is controlled by two
timers T1 and T2. They determine when the messages are either delivered or lost,
the retransmission of the packets and the timeout that makes the participants
give up the transmission. The solution of [56] does not deal with the explicit
time delays but with some non-deterministic signals (modelled by channels 9
and 10).

We are interested in proving that the external indications delivered by the
sender and the receiver are “consistent”. For that purpose, we chose an abstrac-

2.5 A Case Study: The Bounded Retransmission Protocol 59

sort abs List
func empty :→ abs List

one :→ abs List
more :→ abs List
H : List → abs List
eq : abs List × abs List → Bool
abs head : abs List → P(abs D)
abs tail : abs List → P(abs List)
abs last : abs List → P(Bool)
abs indl : abs List → P(Bit)

var abs l :→ abs List
l : List

rew abs head(l̂) = {d0, d1, d2}
abs tail(empty) = {empty}
abs tail(one) = {empty}
abs tail(more) = {more, one}
abs last(empty) = {T}
abs last(one) = {T}
abs last(more) = {F}
abs indl(empty) = {e1}
abs indl(one) = {e1}
abs indl(more) = {e0}
eq(abs l, abs l) = T
eq(empty, one) = F
eq(..., ...) = ...
H(emptyList) = empty
H(cons(d, emptyList)) = one
H(cons(d, cons(d′, l))) = more

tion that abstracts away the data stored in the file to transmit and maps the
list to three critical values: empty, one, more. empty for when the list is empty,
one when it has only one element, and more when it has more than one. We
provide a new data specification which is shown in the µCRL code below.

The function indl gives different bits when either a list is at its end (it is
empty or has only one element) or when there is more than one element, the
rest of the functions are standard. The maximum number of retransmissions is
abstracted away which makes the sender non-deterministically choose between
resending a lost packet or giving up the transmission.

Once we obtain the abstract MLPE5, we can use the state space generator
of the µCRL toolset to obtain the abstract Modal -LTS. The result consists of
446 states and 1016 transitions, from which 448 are must transitions and the

5All the steps are done using the toolset implemented to abstract µCRL specifications that
will be described in the next chapter.

60 Chapter 2 Modal Abstractions of Processes

rest mays.
The abstraction we have used allows to reason about the execution of the

final part of the protocol without knowing the exact content of data files or the
number of retrials. For example the following safety property: “after a positive
notification by the receiver, the sender cannot send a negative one” is necessarily
satisfied by the abstract system.

(C1): [true* . ’R(.∗,Iok)’ . (¬ ’S(.∗)’)∗ . ’S(Inok)’] F

We have expressed the property in the logic Regular Alternation-free µ-
calculus [88, 89]. The logic embeds regular expressions with modal and fixpoint
operators. There are three types of formulas, action (α), regular (β) and state
formulas (ϕ), expressed by the following grammars:

α ::=T | F | ¬α | α1 ∧ α2 | α1 ∨ α2 | a(d̄) | reg − exp

β ::=α | β1.β2 | β1|β2 | β∗ | β+

ϕ ::=T | F | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [β]ϕ | 〈β〉ϕ | Y | µY.ϕ | νY.ϕ

a stands for an action label from ActNames, and d̄ for a, possibly empty, list of
arguments. When the list is empty, we just write a. a(d̄) matches transitions
with the same action label and exactly the same arguments. T matches all
actions with any argument, ¬α matches all actions but the ones matched by
α. F matches no action, it could have been expressed by ¬T. α1 ∧ α2 matches
all action that match α1 and α2. α1 ∨ α2 matches all action that match α1 or
α2. Action formulas can be also expressed as regular expressions which match
using the standard syntactic rules.

Regular formulas match sequences of actions; ’.’ stands for the concatenation
operator, ’|’ is the choice operator, ’∗’ is the transitive and reflexive closure
operator, and ’+’ is the transitive closure operator.

The semantics of the state formulas is standard. [β]ϕ states that all contin-
uations by sequences matching β satisfy ϕ. 〈β〉ϕ states that there exists at least
one β sequence satisfying ϕ. µ and ν are the minimal and maximal fixpoint
operators.

As we will see in the next chapter, in order to prove the properties we
are going to use the CADP toolset, which only allows the use of alternation
free formulas (formulas in which µ and ν do not alternate). This logic can be
transformed into standard µ-calculus with the syntax given in definition 1.4
using the following equivalences:

2.6 Conclusion 61

β+ =β · β∗

〈β1 · β2〉ϕ =〈β1〉〈β2〉ϕ

〈β1 | β2〉ϕ =〈β1〉ϕ ∨ 〈β2〉ϕ

〈β∗〉ϕ =µX.(ϕ ∨ 〈β〉)

[β1 · β2]ϕ =[β1][β2]ϕ

[β1 | β2]ϕ =[β1]ϕ ∧ [β2]ϕ

[β∗]ϕ =νX.(ϕ ∧ [β])

The following liveness property expresses that: “After a negative notification
by the receiver, there exists a path which leads to a negative or don’t know
notification by the sender”.

(C2): [T* . ’R(.∗,Inok)’] 〈 T* . (’S(Idk)’ ∨ ’S(Inok)’)〉 T

The next property is stronger than the previous, instead of only request-
ing that there exists a path it states that the expected sender notification is
inevitably achieved:

(C3): [T* . ’R(.∗,Inok)’] µ X. (〈 T〉 T∧ [¬(’S(Idk)’ ∨ ’S(Inok)’)] X)

These three properties are necessarily satisfied in the abstract system, there-
fore we can infer its satisfaction in the original one. However, the following
property which states that ”after a positive notification by the receiver there
exists a path which leads to a don’t know notification by the sender” is not sat-
isfied in the abstract system. The reason is that we have abstracted away the
maximum number of retransmissions, therefore if all the acknowledgements are
lost the sender can retransmit the frames forever:

(C4): [T* . ’R(.∗,Iok)’] 〈 T* . ’S(Idk)’ 〉 T

C4 is not necessarily satisfied but is possibly satisfied on the abstract,
therefore we cannot conclude anything on the concrete.

Other papers have verified some properties of the protocol using abstract
interpretation, we refer among others to [87, 33]. The approach of Manna et
al. is based on automatic predicate abstractions and is limited to the proof of
invariants. Dams and Gerth propose a number of creative abstractions in order
to prove the satisfaction of some safety properties about the sequentiality of the
delivering of the frames.

2.6 Conclusion

Our approach to extract abstractions from system specifications differs from
the classical one on the fact that instead of giving the abstract semantics of

62 Chapter 2 Modal Abstractions of Processes

the original model we symbolically generate a new specification that captures
the abstract behaviour. A µCRL specification is first transformed to an LPE.
We have defined a function that abstracts LPEs The function preserves the
structure of the specification and pushes the abstraction until the data.

The correctness of the abstraction of the system depends on the correctness
of the abstraction of data. We have not described how exactly data terms are
abstracted, we have just introduced the basic ideas of an operator to abstract
data that uses sets to capture the non-determinism that abstract functions may
introduce. The next chapter describes a possible implementation of the opera-
tor. The toolkit that is described in the next chapter facilitates the application
of the theory to non-trivial applications, as the bounded retransmission protocol
presented in the previous section.

The result of the abstractions are always Modal -LPEs. The abstract trans-
formation of the concrete system to the MLPE format permits to apply other
symbolic transformation techniques for processes and tools to the abstract sys-
tems [12].

2.7 Proofs

Proof (Lemma 2.3.1) We have to prove:

1. A and G are monotonic.

2. ∀S : P(D), S ⊆ G ◦ A(S).

3. ∀Ŝ : P(D̂),A ◦ G(Ŝ) ⊆ Ŝ.

• A is monotonic.

1. We have to prove, if S ⊆ S ′ then A(S) ⊆ A(S′)

2. s ∈ S implies s ∈ S′, therefore by definition of A follows that H(s) ∈
A(S) implies H(s) ∈ A(S′). Hence,

3. A(S) ⊆ A(S′), which proves the case.

• G is monotonic.

1. We have to prove, if Ŝ ⊆ Ŝ′ then G(Ŝ) ⊆ G(Ŝ′)

2. Assuming s ∈ G(Ŝ), implies, by definition, H(s) ∈ Ŝ

3. Ŝ ⊆ Ŝ′ implies H(s) ∈ Ŝ′, so

4. s ∈ G(Ŝ′), which proves the case.

• S ⊆ G ◦ A(S)

1. Let s be in S, then H(s) ∈ A(S),

2. therefore, s ∈ G ◦ A(S), which proves the case.

2.7 Proofs 63

• A ◦ G(Ŝ) ⊆ Ŝ

1. If ŝ ∈ A ◦ G(Ŝ) then for some s, H(s) ∈ Ŝ and s ∈ G(Ŝ)

2. therefore, ŝ = H(s) ∈ Ŝ which proves the case.

2 (Lemma)

Proof (Lemma 2.3.2). We have to prove:

1. A and G are monotonic.

2. ∀S : P(D), S ⊆ G ◦ A(S).

3. ∀Ŝ : P(D̂),A ◦ G(Ŝ)4̇Ŝ.

• A is monotonic.

1. We have to prove, if S ⊆ S ′ then A(S)4̇A(S′)

2. Let us assume ŝ ∈ A(S), then ∃ s ∈ S.α({s}) = ŝ

3. Assume s ∈ S implies s ∈ S′. Then α({s}) ∈ A(S), therefore

4. ŝ ∈ A(S′), which proves the case.

• G is monotonic.

1. We have to prove, if Ŝ4̇Ŝ′ then G(Ŝ) ⊆ G(Ŝ′)

2. Let us assume s ∈ G(Ŝ), then ∃ŝ ∈ Ŝ ∧ s ∈ γ(ŝ)

3. By definition of 4̇ follows that if ŝ ∈ Ŝ then ∃ ŝ′ ∈ Ŝ′ with ŝ 4 ŝ′

4. ŝ 4 ŝ′ implies that γ(ŝ) ⊆ γ(ŝ′) then

5. s ∈ γ(ŝ) implies s ∈ γ(ŝ′), therefore if s ∈ G(Ŝ) then s ∈ G(Ŝ′),
which proves the case.

• S ⊆ G ◦ A(S)

1. Let us assume s ∈ S, then α({s}) ∈ A(S), so

2. γ(α({s})) ⊆ G(A(S))

3. By the properties of the Galois Connection (α, γ), s ∈ γ(α({s})),
then

4. s ∈ G ◦ A(S), which proves the case.

• A ◦ G(Ŝ)4̇Ŝ

1. Assume ŝ ∈ A(G(Ŝ)), then,∃ s ∈ G(Ŝ) with ŝ = α({s})

2. Assume s ∈ G(Ŝ) and ŝ = α({s}), then ∃ ŝ′ ∈ Ŝ such that s ∈ γ(ŝ′)

3. By the properties of the Galois Connection (α, γ), α({s}) 4 α(γ(ŝ′)),

then ŝ = α({s}) 4 ŝ′

64 Chapter 2 Modal Abstractions of Processes

4. Therefore, ∀ ŝ ∈ A(G(Ŝ)) ∃ ŝ′ ∈ Ŝ with ŝ 4 ŝ′, which proves the case.

2 (Lemma)

Proof (Lemma 2.4.1) We apply induction over sequences of transitions:

1. For the basic case initmlpe = înitlpe, which is equal to A({initlpe}), by
consistency requirement on the abstraction function it is different from
{⊥}

2. For the inductive case, assuming ŝ 6= {⊥} and ŝ
a(bt)
→ r̂ then, we have to

prove:

(a) r̂ 6= {⊥}

(b) t̂ 6= {⊥}

3. ŝ
a(bt)
→ r̂ implies, exists i and ê such that:

(a) Gi(ŝ, ê) = r̂

(b) Fi(ŝ, ê) = t̂

4. ê is not equal to ⊥ and ŝ is not equal to {⊥}, then the consistency re-
quirement of the abstract data terms r̂ and t̂ are not equal to {⊥}

2 (Lemma)

(Theorem 2.4.2)

Proof: (may part)

1. Let ŝ
a(bt)
→ 3 r̂ be a may transition of the minimal restricted abstraction

m̂lts↓.

2. Then, by definition of minimal restricted abstraction, there exists s, t, r,
R, B such that:

(a) s
a(t)
→ r in lts

(b) s ∈ G(ŝ)

(c) r ∈ R

(d) t ∈ B

(e) t̂ = A(B)

(f) r̂ = A(R)

(g) (R, B) in ltsmin
(bs,3)

3. As R and B are singletons, we obtain:

2.7 Proofs 65

(a) R = {r}

(b) B = {t}

4. lts is generated from lpe, therefore, we will have a summand in lpe that

generates the transition s
a(t)
→ 3 r, i.e., exists i and e such that:

(a) T = ci(s, e)

(b) a(t) = a(fi(s, e))

(c) r = gi(s, e)

5. We have to mimic this step in ¯lpe, for which we only know that the safety
conditions are met, so:

(a) A(ci(G(ŝ, ê))) 4̇ Ci(ŝ, ê)

(b) A(fi(G(ŝ, ê))) 4̇ Fi(ŝ, ê)

(c) A(gi(G(ŝ, ê))) 4̇ Gi(ŝ, ê)

6. Now, we define:

(a) ê = A(e)

(b) t̂′ = Fi(ŝ, ê)

(c) r̂′ = Gi(ŝ, ê)

7. In order to prove m̂lts↓ v4̇ m̂lts, it suffices to prove:

(a) T ∈ Ci(ŝ, ê)

(b) t̂ 4̇ t̂′

(c) r̂ 4̇ r̂′

8. To prove (7.a) we proceed as follows:

(a) Booleans are not abstracted therefore by safety condition (5.a) is
reduced to ci(G(ŝ, ê)) ⊆ Ci(ŝ, ê)

(b) By definition of Galois Connection, e ∈ G(A(e)), hence by (6.a) e ∈
G(ê), so

(c) by (2.b), follows (s, e) ∈ G(ŝ, ê)6, so

(d) T = ci(s, e) ∈ ci(G(ŝ, ê)) by set-wise application of ci, then

(e) by (8.a) the case is proved.

9. To prove (7.b) we proceed as follows:

(a) as above, (s, e) ∈ G(ŝ, ê) and fi(s, e) ∈ Fi(G(ŝ, ê)),

(b) by monotonicity of A follows A(fi(s, e)) 4̇A(Fi(G(ŝ, ê))

6Remember that the abstraction functions apply pointwisely to tuples.

66 Chapter 2 Modal Abstractions of Processes

(c) then, by the safety condition (5.b), A(fi(s, e)) 4̇Fi(ŝ, ê), so

(d) The case is proved by (1.e), (3.b), (4.b) and (6.b).

10. (7.c) is proved as the previous case.

2 (may part)

Proof: (must part)

1. Let ŝ
a(bt)
→ 2 r̂ be a must transition in m̂lts, so there exists a summand i in

¯lpe and a value ê such that:

(a) F /∈ Ci(ŝ, ê)

(b) a(t̂) = a(Fi(ŝ, ê))

(c) r̂ = Gi(ŝ, ê)

2. By m̂lts↓ v4̇ m̂lts, the transition ŝ
a(bt)
→ 2 r̂ has to reflect a transition in the

the minimal restricted abstraction, so there have to exist r̂′, t̂′ such that:

(a) ŝ
a(bt′)
→ 2 r̂′ is in m̂lts↓

(b) t̂′ 4̇ t̂

(c) r̂′ 4̇ r̂

3. In other words, we need to prove that exists (Rm, Bm) in ltsmin
(bs,2) such

that:

(a) ŝ
a(A(Bm))

→ 2 A(Rm) is in m̂lts↓

(b) A(Rm) 4̇ r̂

(c) A(Bm) 4̇ t̂

4. By the safety conditions (see may part of the proof) and by monotonicity
of G, we have:

(a) G(A(gi(G(ŝ, ê)))) ⊆ G(Gi(ŝ, ê)), so

(b) by definition of Galois Connection, gi(G(ŝ, ê)) ⊆ G(Gi(ŝ, ê))

5. The same follows for Fi, so:

(a) fi(G(ŝ, ê)) ⊆ G(Fi(ŝ, ê))

6. We are going to prove that the pair (gi(G(ŝ, ê)), fi(G(ŝ, ê))) is in lts(bs,2)

7. To prove (6), we have to prove there exists s, r and t, such that:

(a) s ∈ G(ŝ)

2.7 Proofs 67

(b) r ∈ gi(G(ŝ, ê))

(c) t ∈ fi(G(ŝ, ê)), such that

(d) s
a(t)
→ 2 r is in lts

8. By Lemma 2.4.1, ŝ 6= ⊥, therefore G(ŝ) is non-empty (the same holds for
G(ê)), then:

(a) Exists s, e such that s ∈ G(ŝ) and e ∈ G(ê), hence

(b) (s, e) ∈ G(ŝ, ê), so

(c) gi(G(ŝ, ê)) is the set-wise application of gi to G(ŝ, ê). Hence gi(s, e) ∈
gi(G(ŝ, ê))

(d) The same holds for fi(s, e) and ci(s, e)

9. To prove (7.d) with r = gi(s, e) and t = fi(s, e), we have to prove that the

lpe generates the transition s
a(fi(s,e))

→ gi(s, e). So, we just need:

(a) ci(s, e) = T, which follows by the safety condition, (1.a) and (8.d),

10. Therefore, (gi(G(ŝ, ê)), fi(G(ŝ, ê))) is in lts(bs,2)

11. Then, either:

(a) exists (Rm, Bm) in ltsmin
(bs,2), with:

i. Rm ⊂ gi(G(ŝ, ê)) and

ii. Bm ⊂ fi(G(ŝ, ê))

(b) or, (gi(G(ŝ, ê)), fi(G(ŝ, ê))) is in ltsmin
(bs,2)

12. If (11.a) then:

(a) by (4.b), Rm ⊂ G(Gi(ŝ, ê))

(b) By monotonicity of A follows A(Rm) 4̇A(G(Gi(ŝ, ê))), and

(c) by definition of Galois Connection and (1.c), A(Rm) 4̇ Gi(ŝ, ê) = r̂,
and

(d) The same holds for Bm, A(Bm) 4̇ t̂

(e) (Rm, Bm) in ltsmin
(bs,2) implies ŝ

a(A(Bm))
→ 2 A(Bm)), which proves (3).

13. If (11.b) is true then:

(a) By monotonicity of A and (4.b), A(gi(G(ŝ, ê))) 4̇A(G(Gi(ŝ, ê))), so

(b) then by definition of Galois Connection and (1.c), it follows that
A(gi(G(ŝ, ê))) 4̇ Gi(ŝ, ê) = r̂

(c) The same for fi(G(ŝ, ê))

(d) Then it proves (3), which concludes the proof.

68 Chapter 2 Modal Abstractions of Processes

2 (must part)

2 (Theorem)

Proof (Safety Condition):

We are going to prove A(cons(G(b̂, l̂))) 4̇ abs cons(b̂, l̂), then

• b is not abstracted therefore b̂ = b, then the proof reduces to:

A(cons(b,G({l̂}))) 4̇abs cons(b, l̂)

• We are going to prove for the homomorphism, therefore, we have to prove:

∀ l.H(l) = l̂ ⇒ H(cons(b, l)) ∈ abs cons(b, l̂)

Then we proceed by cases:

• Case l̂ equals empty:

1. l = emptyList

2. H(emptyList) = empty

3. H(cons(b, emptyList)) = middle

4. abs cons(b, empty) = {middle}, which proves the case.

• Case l̂ equals middle:

1. Case l equals cons(b, l′) and len(l) = MAX − 1:

(a) H(l) = middle

(b) H(cons(b, l)) = full

(c) abs cons(b, middle) = {middle, full}, which proves the case.

2. Case l equals cons(b, l′) and 0 < len(l) < MAX − 1:

(a) H(l) = middle

(b) H(cons(b, l)) = middle

(c) abs cons(b, middle) = {middle, full}, which proves the case.

• Case l̂ equals full:

1. l = cons(b, l′) and len(l) ≥ MAX :

2. H(l) = full

3. H(cons(b, l)) = full

4. abs cons(b, full) = {full}, which proves the case.

2 (Safety Condition)

Chapter 3

An Abstract Interpretation ToolKit

The implementation of the previously developed theory is an indispensable step
in order to apply abstract interpretation techniques to realistic systems. This
chapter presents a toolkit that assists in the task of generating modal approx-
imations of µCRL specifications. The tool implements the ideas presented in
the previous two chapters. It is conceived to be completely integrated with the
existing µCRL toolset and verification methodology.

69

70 Chapter 3 An Abstract Interpretation ToolKit

3.1 Introduction

One of the most important issues to bring abstract interpretation techniques to
practise is how to select reasonable abstractions. In general, there exist different
abstraction approaches that can be applied within the verification methodology.
For example, in variable hiding or pointwise abstraction first the value of some
variables of the specification is considered as unknown, and subsequently, ex-
tra non-determinism is added to the system when there are predicates over
the abstracted variables. Another automated abstraction technique is so-called
predicate abstraction in which only the value of some conditions is retained and
propagated over the predicates of the specification that the depend on the con-
ditions. Program slicing is a technique that tries to eliminate all parts of the
specification that are not relevant for the current verification.

The most common abstraction technique consists in interpreting the concrete
specification over a smaller data domain. The user selects the set of variables to
abstract and provides a new abstract domain that reflects some aspects of the
original. This technique requires creative human interaction in order to select
the parts of the system that are suitable to abstract and to provide the corre-
sponding data domains. Furthermore, the user must ensure that the abstract
interpretation satisfies some so-called safety requirements.

Our tool implements the automatic pointwise abstraction and, moreover,
assists the user to create his own abstractions. The tool supports the use of
two mainstream techniques for data abstraction. The one in which the concrete
and the abstract data domain are related via homomorphic functions, as well
as the one based on Galois Connections. Furthermore, a lifting mechanism is
also implemented which allows to automatically build Galois Connections from
homomorphisms. All these techniques were explained in the previous chapters.

Standard abstraction frameworks are only based on the abstraction of states
which make them unable to deal with infinitely branching systems with action
labels. A unique feature of our tool is that it allows the abstraction of both
states and action labels. In the implementation, we try to reuse existing tools
as much as possible. In particular, we encode Modal -LPEs as LPEs and Modal -
LTSs as LTSs, in order to reuse the µCRL and CADP toolsets. We also provide
a new method to reduce the 3-valued model checking problem to two 2-valued
model checking problems.

This chapter starts by giving a general view of the tool and the methodology
for applying abstraction techniques to realistic applications. Then, we introduce
with more detail the different components of the tool. The chapter concludes
with some references to other related tools.

3.2 Overview of the Tool

The following figure describes the tool architecture, whose main components
are:
Abstractor. It is in charge of performing the symbolic transformation from LPEs

3.2 Overview of the Tool 71

A
bs

tr
ac

tio
n

L
ib

A
bs

tr
ac

t
M

od
el

C

he
ck

er

Y
E

S,
 N

O
, ?

fo
rm

ul
a

M
us

t

fo
rm

ul
a

M
ay

L
oa

de
r

A
bs

tr
ac

tio
n

Sa
fe

ty
C

on
di

tio
ns

T
he

or
em

Pr
ov

er

ab
st

ra
ct

io
n

us
er

 d
ef

in
ed

A
bs

tr
ac

tio
n

L
ib

ra
ry

M
od

el
C

he
ck

er

L
PE

A
bs

tr
ac

to
r

Pa
ra

m
et

er
s

fo
rm

ul
a

N
ec

es
sa

ry

Po
ss

ib
le

Pr

ob
le

m

Pr
ob

le
m

In
co

m
pl

et
e

M
L

PE

M
L

PE

M
L

T
S

V
ar

ia
bl

es
to

 A
bs

tr
ac

t

In
st

an
tia

to
r

µ
C

R
L

to
o
ls

µ
C

R
L

to
o
ls

µ
C

R
L

to
o
ls

Figure 3.1: Architecture of the toolkit

to Modal -LPEs. It gets a µCRL specification in linear format and, typically,
a set of parameters and variables to abstract, then it generates a new specifi-
cation. The new specification is the skeleton of the abstraction, it has to be
completed by adding the abstract data specification. The tool allows the use

72 Chapter 3 An Abstract Interpretation ToolKit

of different ways of abstracting (homomorphisms, Galois Connections and lifted
homomorphisms), the resulting specification will depend on the user’s choice.

Abstraction Loader. It is in charge of managing the data specifications. From the
Modal -LPE skeleton, the Loader may export the abstract signature that the user
has to provide in order to complete the specification. It is also used to import
abstract data types from external files, and to generate automatic abstractions
by hiding variables. As we previously marked, abstract interpretations have
to be proved correct, the tool generates the safety conditions that abstract
functions have to satisfy. Some safety requirements can be automatically proved
correct using the µCRL theorem prover, the others need human interaction.

Abstract Model Checker. The transition system generated from an abstraction
represents a double approximation of the original. We use a 3-valued logic in
order to infer the satisfaction or refutation of properties. The 3-valued model
checking problem can be transformed to two standard 2-valued problems. Hence
one can use the existing model-checking tools.

Action labels may be abstracted. Therefore, formulas have to be abstracted
according to the abstract action labels. Due to the abstraction of formulas,
in some cases, we cannot infer the exact result of the model checking of the
concrete formula; in section 3.5, we provide the guidelines to model check and
to infer the results.

3.3 Abstractor

We recall that in the previous chapter we have defined the function “ ̂ ” over
process terms that pushes the abstraction till the data part. The Abstractor
implements the function over process and data terms.

The tool gets as input a Linear Process Equation and a set of parameters
and local variables to abstract. Alternatively, the user can provide a list of
sorts, in this case all parameters and variables of the selected sorts will be
abstracted. Subsequently, the input is transformed conforming the user selection
by replacing the different symbols that appear in the specification by their
abstract counterparts. And propagating the abstraction when it is needed. The
output is a Modal -LPE.

We have seen that data terms fi(d, ei), gi(d, ei) and ci(d, ei) are composed
by function symbols, parameters and local variables. Based on the parameters
and variables selected by the user some (or all) function symbols are replaced
by their abstract definition. In this section, we present the abstraction criteria
that the tool implements.

3.3.1 Abstraction of Function Symbols

The Abstractor will traverse the process specification, transforming the function
symbols according to the user input. In case the arguments of a function are
modified the tool will generate a new signature for the function and will replace
the old one.

3.3 Abstractor 73

We recall that a way of capturing the non-determinism induced by the ab-
stracted functions is using sets of values. For instance, we can consider the
abstraction of the integers to their sign, i.e., {neg, zero, pos}; Intuitively, the
definition of the abstract successor of zero and pos will in both cases be pos.
However the abstract successor of neg can be either neg or zero, therefore, the
sort of the abstract successor will be a set of abstract integers. We define lifting
to be the operation of replacing single values to sets of values. We give now the
rules for abstracting and lifting function symbols. Let us consider the function
f: S0 × ... × Sn−1 → Sn:

1. If there is a data term in the process specification in which the ith ar-
gument of f is abstracted then the signature of the function will change
according to the following rules:

(a) All sorts Sj = Si with j ∈ [0, ..., n− 1] will be abstracted.

(b) If Sn = Si then the target sort of f will be abstracted and lifted.

(c) If Sn 6= Si then the target sort of f will be lifted.

Let us consider again the abstraction of integers, with the following functions:
succ : Int → Int, + : Int×Int → Int and <: Int×Int → Bool. Then, following
the above presented rules:

• If there is a data term in which the argument of succ is abstracted then
the target sort of the abstract version of succ will be abstracted and lifted,
i.e., abs succ : abs Int → P(abs Int).

• If one argument of + is abstracted then the other argument will be ab-
stracted as well and the target sort will be abstracted and lifted, i.e.,
+̂ : abs Int × abs Int → P(abs Int)

• If one argument of < is abstracted then the other argument will be ab-
stracted as well and the target sort will be lifted, i.e., <̂ : abs Int ×
abs Int → P(Bool)

Let us consider, now, the abstraction of lists of type D, with the following
standard functions: cons : D × List → List and head : List → D. Then,
following the rules:

• If the first argument of cons is abstracted then the new signature will be:
abs cons : abs D × List → P(List).

• If the second argument of cons is abstracted then the new signature will
be: abs cons : D × abs List → P(abs List).

• If both arguments of cons are abstracted then the new signature will be:
abs cons : abs D × abs List → P(abs List).

• If the argument of head is abstracted then the new signature will be:
abs head : abs List → P(D).

74 Chapter 3 An Abstract Interpretation ToolKit

Furthermore:

2. If there is a data term in which the ith argument of f is lifted then:

(a) The target sort of f will be lifted.

For example:

• If the argument of succ is lifted (but not abstracted) then the target will
be lifted, i.e., succ : P(Int) → P(Int).

• If the argument of succ is lifted and abstracted then the target be ab-
stracted and lifted, i.e., abs succ : P(abs Int) → P(abs Int). (Note that
this is the result of the application of rule 1.b).

The tool will automatically generate auxiliary functions and equations to
manipulate sets, by providing the pointwise lifting of the not lifted ones. For
instance, for a function f in which the ith sort has been lifted and the rest
remains unlifted, i.e., f: D0 × ... × P(Di) × ...Dn−1 → P(Dn), the following
equation will be generated:

• Let X be of type P(Di) and x of type Di

• f(..., X, ...) = ∪{f(..., x, ...) |x ∈ X}1

3.3.2 Abstraction of Parameters and Variables

The user selects the list of parameters and variables that he wants to abstract.
The choice may influence the sorts of other related parameters. To determine
the sorts of the abstract specification we follow the next rules:

3. If a parameter di : Di is selected to be abstracted then its sort will change.
The new sort of the abstract parameter will be the powerset of the ab-
stract version of its concrete sort, i.e., di : P(abs Di). The explanation
why abstracted parameters are also lifted is that after every recursion, the
updated values of the parameters are computed from functions. And, as we
have seen in the previous section, to capture the extra non-determinism,
functions are lifted to sets. Therefore, the specification may contain as-
signments in which parameters receive sets of values.

4. If a variable eai
: Eai

is selected to be abstracted then its sort is changed
to the abstract version of the concrete one, i.e., eai

: abs Eai
. In this case,

we do not lift the sorts of the values to powersets because their values are
not induced from any abstracted data term.

5. If a parameter di : Di is not selected to be abstracted but there is an
assignment of a data term in which appears an abstract parameter or an
abstract variable, or a lifted or abstracted function then the parameter is
lifted, i.e., di : P(Di).

In section 3.3.5, we show some examples of these rules.

1Note that function symbols are overloaded.

3.3 Abstractor 75

3.3.3 Abstraction of Sorts

For every abstracted sort the user will have to provide the abstract domain and
the relation with the concrete one. The tool supports three ways of relating the
domains, the homomorphic and the Galois Connection approach and also the
combination of them that consists of the lifting of a homomorphism to a Galois
Connection (all introduced in chapters 1 and 2). In practise, this possibility is
very fruitful because it permits the user just to provide the mapping between
the concrete and the abstract data domain and the definition of the abstract
functions. The tool automatically lifts the structure to a Galois Connection.

Not all Galois Connections can be represented by a lifted homomorphism,
however the use of the lifted homomorphism may be convenient to perform rapid
and powerful abstractions. The lifting technique reduces the number of abstract
definitions that the user has to provide to specify the abstract system.

For every abstracted sort abs D, the tool will generate the signature of the
functions alpha : P(D) → P(abs D), gamma : P(abs D) → P(D) and 4:
P(abs D) × P(abs D) → P(Bool). The first one represents the abstraction
function, the second one the concretisation function and the third the order on
the abstract domain. The user selects one of the three types of abstraction.
Then in case of homomorphism or lifted homomorphism the following auxiliary
function definitions will be generated:

• H : D → abs D

• H−1 : abs D → P(D)

• alpha(X) = {H(x)|x ∈ X}

• gamma(abs X) = ∪{H−1(abs x) | abs x ∈ abs X}

In case the user selects Galois Connections the tool will generate:

• α : P(D) → abs D

• γ : abs D → P(D)

• alpha(X) = {α({x}) | x ∈ X}

• gamma(abs X) = ∪{γ(abs x) | abs x ∈ abs X}

• lt(abs X, abs Y) = ∀ abs x ∈ abs X ∃ abs y ∈ abs Y.abs x 4 abs y

In the first case, the user will have to provide H and H−1 (if there are
conflicting cases, see next section). In the second α, γ and the order 4. Note
that these definitions correspond to the ones given in Chapter 2, section 2.3.1.

H−1 and γ do not have to be provided in general, they are use to solve
the conflicts. In some cases, it is not possible to define them because they
produce infinite sets. The definition can be always avoided by abstracting more
parameters or variables.

76 Chapter 3 An Abstract Interpretation ToolKit

3.3.4 Type Conflicts

Abstraction of data terms is done by abstracting first the parameters and vari-
ables that appear inside the terms, and then by propagating the abstraction to
the function symbols according to the rules specified above. The abstraction
may raise some type conflicts. We list below the different conflicts and how they
are resolved:

6. There is an assignment in which a parameter of sort P(D) gets a term d
of sort D. Then d is replaced by {d}.

7. There is an assignment in which a parameter or an argument of a function
of sort P(abs D) gets a term d of sort D. Then d is replaced by alpha({d})

8. There is an assignment in which a parameter of sort P(D) gets a term d
of sort P(abs D). Then d is replaced by gamma(d).

9. If the data term Ca of a condition is abstracted then it is replaced by
gamma(Ca).

The next section includes some examples of these rules.

3.3.5 From LPEs to Modal-LPEs

The Abstractor replaces the data terms of the LPEs by their abstract counter-
parts, producing MLPEs. The user can select the parameters and variables to
abstract, then the abstraction is propagated over the data terms of the specifica-
tion, with the rules that we presented in the previous sections. Let us reconsider
the example of the buffer:

Buffer(l : List) =
∑

b:Bit

write(b).Buffer (cons(b, l)) � lt(len(l), MAX) � δ+

read(head(l)).Buffer(tail(l)) � not(isEmpty(l)) � δ

The linear process specifies a bounded buffer. The process can choose non-
deterministically between executing a write or a read action. The write can
only be performed if the buffer is not full, i.e., the length of the list that models
the buffer is smaller that the maximal length (MAX). The read action can be
performed if the buffer is not empty. In the first case, the state parameter is
updated by concatenating a new bit to the list; in the second case, the first
element of the list is removed. The concrete specification has the following
signatures:

• cons : Bit × List → List

• len : List → Nat

• lt : Nat × Nat → Bool

3.3 Abstractor 77

• gt : Nat × Nat → Bool

• head : List → Bit

• tail : List → List

If the user selects the parameter l to be abstracted then the propagation of the
abstraction will yield the following signatures2:

• abs cons : Bit ×P(abs List) → P(abs List)

• abs len : P(abs List) → P(Nat)

• lt : P(Nat) × Nat → P(Bool)

• gt : Nat ×P(Nat) → P(Bool)

• abs head : P(abs List) → P(Bit)

• abs tail : P(abs List) → P(abs List)

To complete the specification, the user has to provide the domain of the abstract
list, abs List, the relation between the concrete domain and the abstract one
and the definitions for the new functions. All the functions needed to manipulate
sets of values are automatically provided by the tool by performing a pointwise
application of the non-abstracted ones.

Let us, now, present a process that manipulates lists. The actions the process
performs are meaningless and are just selected to illustrate the transformations:

X(l0 : List,l1 : List, n : Nat) =
∑

d0:D

write(d).X(cons(d0, l0), l1, len(l0)) � lt(n, 3) � δ+

swap.X(l1, concat(l0, l1), length(l1)) � isFull(l0) � δ+
∑

d1:D

display(position(l0, d1)).X(l0, l1, n) � T � δ

The concrete signature of the functions cons, len and lt is the same as in the
previous example, the other ones are:

• concat : List× List → List

• isFull : List → Bool

• position : List × D → Nat

2The complete output of the Abstractor for this example is given in the next section.

78 Chapter 3 An Abstract Interpretation ToolKit

Let the user select the parameter l0 and the local variable d1 to abstract
then the resulting Modal -LPE will be:

X(l̂0 :P(abs List), l1 : P(List),P(n) : Nat) =
∑

d0:D

write(d).X(abs cons(d0, l̂0), {l1}, abs len(l̂0)) � lt(n, 3) � δ+

swap.

X(alpha({l1}), gamma(abs concat(l̂0, alpha({l1}))), abs len(l1))

� abs isFull(l̂0) � δ+
∑

cd1:abs D

display(abs position(l̂0, d̂1)).X(l̂0, l1, n) � T � δ

The parameters l1 and n are lifted because they get the values of lifted
terms. In general not all the parameters of the vector are lifted, some of them
remain unabstracted and unlifted. The second summand shows how type con-
flicts are solved by using the abstraction and concretisation functions alpha and
gamma. In the third summand we see how the parameters of the action may be
lifted. Furthermore, they may also be abstracted. The signature of the function
symbols will be:

• abs cons : P(abs List) × D → P(abs List)

• abs len : P(abs List) → P(Nat)

• len : P(List) → P(Nat)

• lt : P(Nat) × Nat → P(Bool).

• abs concat : P(abs List) ×P(abs List) → P(abs List).

• abs isFull : P(abs List) → P(Bool)

• abs position : P(abs List) ×P(abs D) → P(Nat)

Theorems 1.4.6 and 1.4.7 prove that the Modal -LTS generated by an Modal -
LPE is a correct abstraction of the concrete one generated from the LPE if the
pairs of data terms (f, F), (g, G) and (c, C) for all summands satisfy the safety
conditions. The Abstractor transforms concrete data terms by abstracting the
parameters, variables and functions from which they are constructed. If the
abstract functions satisfy the safety conditions then the full data terms will
also satisfy them, the reason is that all the transformations performed by the
Abstractor (lifting operations to sets, applying α or γ, ...) are monotonic and
preserve the safety relation of the functions. The Loader can extract from the
specification the safety requirements for the abstracted functions.

3.3 Abstractor 79

3.3.6 From Modal-LPEs to LPEsmay/must

Modal -LPEs can be transformed back to standard Linear Process Equations.
This allows the reuse of the µCRL tools that are conceived to manipulate LPEs.
To do that, first we extend the action labels by adding two suffixes. Let Act-
Names (or ActN for short) be the set of action labels of a Modal -LPE. We de-
fine ActNamesmay/must = {a may | a ∈ ActNames}∪{a must | a ∈ ActNames}.
Then, we duplicate the number of summands generating for every summand of
the Modal -LPE two new ones, one for the may transitions and the other for
the must transitions. These new summands are built following the patterns

presented below. By
→
Ga we denote the sort of elements of Ga (the same holds

for
→
F a). The pattern for homomorphisms is:

X(d : P(D)) =
∑

a∈ActN

∑

ea:Ea

∑

fa:
→

F a

∑

ga:
→

Ga

a may(fa).X({ga})

� member(T, Ca(d, ea))∧

member(fa, Fa(d, ea))∧

member(ga, Ga(d, ea))

� δ+
∑

a∈ActN

∑

ea:Ea

∑

fa:
→

F a

a must(fa).X(Ga(d, ea))

� not(member(F, Ca(d, ea)))∧

singleton(Fa(d, ea))∧

member(fa, Fa(d, ea))∧

singleton(Ga(d, ea))

� δ

(MLPE to LPE (H))

The patterns is derived from the semantics of Modal -LPEs presented in sec-
tion 2.4. For the homomorphism, we require the states of the process and the
arguments of the actions to be single abstract values, because every concrete
value is mapped to only one abstract one. However, for the Galois Connection
we allow them to be sets of values. The pattern for Galois Connections and
lifted homomorphisms is:

80 Chapter 3 An Abstract Interpretation ToolKit

X(d : P(D)) =
∑

a∈ActN

∑

ea:Ea

a may(Fa(d, ea)).X(Ga(d, ea))

� member(T, Ca(d, ea))

� δ+
∑

a∈ActN

∑

ea:Ea

a must(Fa(d, ea)).X(Ga(d, ea))

� not(member(F, Ca(d, ea)))

� δ

(MLPE to LPE (GC))

For the above example, using the Galois Connection approach, the resulting
LPEmay/must will be:

X(l̂ : P(abs List)) =
∑

b:Bit

write may(b).X(abs cons(b, l̂))

� member(T, lt(abs len(l̂), MAX)) � δ+
∑

b:Bit

write must(b).X(abs cons(b, l̂))

� not(member(F, lt(abs len(l̂), MAX))) � δ+

read may(abs head(l̂)).X(abs tail(l̂))

� member(T, not(abs isEmpty(l̂))) � δ+

read must(abs head(l̂)).X(abs tail(l̂))

� not(member(F, not(abs isEmpty(l̂)))) � δ

The equivalence of the Modal -LPE and the LPEmay/must is given by the follow-
ing proposition:

Proposition 3.3.1 Let M be a Modal -LPE, and let mL be the corresponding
Modal -LTS (S, Act,→may,→must, s0). Moreover, let Mmay/must be the equiva-
lent LPEmay/must of M, and let L be its corresponding LTS (S, Actmay/must,→
, s0). Then, for all s, s′ ∈ S and a ∈ ActNames , with a possibly empty vector d̄
of arguments, we have:

• s
a may(d̄)

→ s′ ⇐⇒ s
a(d̄)
→ 3 s′

• s
a must(d̄)

→ s′ ⇐⇒ s
a(d̄)
→ 2 s′

The proposition holds for both types of abstraction.

3.4 Loader 81

3.4 Loader

The Abstractor returns the skeleton of the abstraction, i.e, an incomplete Modal -
LPE. In order to generate the corresponding Modal -LTS, the user has to com-
plete the Modal -LPE by providing the abstract domains and the definition of the
abstract functions. The Abstraction Loader assists the user to manage abstract
domains by providing import/export mechanisms and an automatic abstraction
generator.

In the previous example, abs List may be described by a domain with three
values {empty, one, more}, determining when the list is empty, has a single
element or more, removing the information about the value of the stored ele-
ments. Then, the user has to provide the mapping H : List → abs List3, as for
example:

• H(emptyList) = empty

• H(cons(b, nil)) = one

• H(cons(b, cons(b′, l))) = more

Furthermore, he has to provide the definition of the abstracted functions, for
instance:

• abs cons(b, empty) = {one}, abs cons(b, one) = {more} and abs cons(b,
more) = {more}

• abs len(empty) = {0}, abs len(one) = {1} and abs len(more) = {2, 3,
..., maxLength }4

• abs head(l) = {b0, b1}

• abs tail(one) = {empty} and abs tail(more) = {one, more}

The mode export of the Loader lists the functions needed to complete the specifi-
cation, we recall that the functions needed to manipulate sets are automatically
generated by the tool. The mode load is used to import the definitions. The
mode auto automatically performs the pointwise abstraction of the sorts and
functions.

A Modal -LTS, generated from an abstract Modal -LPE (over and under)
approximates the original system, if every pair of functions (f, abs F) satisfies a
formal requirement. The list of safety conditions is generated by the Loader in
the format of the µCRL prover [104]. The form of the safety conditions depends
also on the type of abstraction. For the example above, choosing the Galois
Connection, the following conditions will be generated.

• ∀ b, abs l : lt(alpha(cons(b, gamma({abs l}))), abs cons(b, abs l))

3or α : P(List) → abs List depending on the type of abstraction selected by the user.
4Concrete lists are considered of bounded length (maxLength). Alternatively, one could

abstract the sort Nat as well.

82 Chapter 3 An Abstract Interpretation ToolKit

• ∀ abs l : lt(alpha(len(gamma({abs l}))), abs len(abs l))

• ∀ abs l : lt(alpha(head(gamma({abs l}))), abs head(abs l))

• ∀ abs l : lt(alpha(tail(gamma({abs l}))), abs tail(abs l))

For the (lifted)-homomorphisms, the safety conditions are reduced to:

• ∀ b, l : H(cons(b, l)) ∈ abs cons(b, H(l))

• ∀ l : len(l) ∈ abs len(H(l))

• ∀ l : head(l) ∈ abs head(H(l))

• ∀ l : H(tail(l)) ∈ abs tail(H(l))

If the safety conditions hold for the function symbols then, by construction,
they will hold for the full data terms. Therefore, instead of proving the safety
conditions for every guard, action and next in a process specification we can
prove in general that the abstract data specification satisfies the “safety condi-
tions” and then infer that any particular system does as well. This would allow
to reuse abstract specifications of the data into different systems and create
libraries of abstractions.

3.5 Abstract Model Checking

To integrate the abstract interpretation techniques in the verification method-
ology we have to provide a relation between the satisfaction of a formula over
the abstract system and its reflection to the concrete. This section describes
the abstract model checking process for the homomorphic approach, the Galois
Connection one may be defined in an equivalent way following the premises
explained in Chapter 1. Typically, the process is as follows:

1. The user gives a concrete formula ϕ to prove in the concrete system (from
now on M).

2. The arguments of the actions in ϕ, which are given as concrete sorts, are
abstracted, resulting in abs ϕ.

3. We check the satisfaction of abs ϕ over the abstract model (abs M , which
is described by a Modal -LTS).

4. The result of the satisfaction is inferred to the concrete system. The
inferences, as we will see, have some restrictions.

(step i) Concrete properties ϕ are described using the regular alternating-free
action-based µ-calculus [88, 89], see Section 2.5. We remember the syntax of
the logic:

3.5 Abstract Model Checking 83

α ::=T | F | ¬α | α1 ∧ α2 | α1 ∨ α2 | a(d̄) | reg − exp

β ::=α | β1.β2 | β1|β2 | β∗ | β+

ϕ ::=T | F | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [β]ϕ | 〈β〉ϕ | Y | µY.ϕ | νY.ϕ

We recall that in order to be used as input for CADP toolset formulas have
to be alternating free.

(step ii) As we have shown in the previous section, action arguments may be
abstracted and/or lifted to sets during the abstraction process. In order to prove
ϕ, we transform it to abs ϕ by replacing every concrete argument of the actions
by its abstract counterpart, i.e, a(d) will be rewritten to a(H(d)).

(step iii) Following [75], an abstract formula is interpreted dually over an Modal -
LTS, i.e. there will be two sets of states that satisfy it. A set of states that
necessarily satisfy the formula and a set of states that possibly satisfy it. From
the practical point of view, an interesting fact is that the 3-valued model check-
ing problem can be easily transformed to two standard 2-valued problems. This
allows the use of existing model checking tools such as the evaluator of the
CADP toolset [43].

To do the translation, we follow the ideas of [21, 55]. Basically, given a
formula abs ϕ we generate two different formulas abs ϕmust and abs ϕmay, the
first one will be used to determine when a system necessarily satisfies a property
and the second when it possibly does. They have the same structure as abs ϕ but
are built over ActNamesmay/must instead of over ActNames. For this purpose,
we define two recursive operators Tmay and Tmust. See below for the definition
of the first one (Tmust is dual):

• Tmay(¬ abs ϕ) = ¬Tmust(abs ϕ)

• Replace each occurrence of [β] in abs ϕ by [βmust]

• Replace each occurrence of 〈β〉 in abs ϕ by 〈βmay〉

• For the rest of the cases, Tmay is pushed inwards.

βmay replaces all occurrences of α by αmay which is defined as follows:

• if α = a(d̄) then αmay = a may(d̄).

• if α = T then αmay = Tmay. It matches all may actions.

• if α = F then αmay = ¬ (Tmay). It matches actions that are not may.
¬ (Tmay) is equivalent to Tmust.

• if α = ¬ (α′) then αmay = ¬α′
may ∧ Tmay. It matches all may actions that

do not match α′
may .

84 Chapter 3 An Abstract Interpretation ToolKit

These transformations are done time linear in the size of the formula. The dif-
ference between this approach and the one used by Godefroid and al. [55] is
that instead of generating two different models and using one single formula,
we use a single model and two versions of the formula. In general formulas are
much smaller than systems and their duplication is less expensive. We present,
below, some typical properties, in the abs ϕmust form:

Deadlock freedom, with regular expressions:

(P1): [’. ∗may .∗’∗] 〈 ’. ∗must .∗’∗ 〉 T

The dot . in the regular expressions inside the action formulas matches any
character, therefore .∗ matches any number of occurrences of any character.
Deadlock freedom, with fixed point operators:

(P2): ν X. (〈 ’. ∗must .∗’ 〉 T∧ [’. ∗may .∗’] X)

No execution sequence leads to a:

(P3): [’. ∗may .∗’∗ . ’amay’] F

There exists a sequence leading to a:

(P4): 〈 ’. ∗must .∗’∗ . ’amust’ 〉 T

All sequences lead to a:

(P5): µ X. (〈 ’. ∗must .∗’ 〉 T∧ [¬(’amay’ ∧ ’. ∗may .∗’)] X)

The next two properties are the abstraction of C2 and C3 presented in the
previous chapter:

(A2): [’. ∗may .∗’∗ . ’Rmay(.∗,{Inok})’] 〈 ’. ∗must .∗’∗ .

(’Smust({Idk})’ ∨ ’Smust({Inok})’)〉 T

(A3): [’. ∗may .∗’∗ . ’Rmay(.∗,{Inok})’] µ X. (〈 ’. ∗must .∗’ 〉 T∧

[¬((’Smay({Idk})’ ∨ ’Smay({Inok})) ∧ ’. ∗may .∗’)] X)

(step iv) The result of the abstract model checking process gives a 3-valued
result:

• abs M satisfies abs ϕmust.

• abs M satisfies abs ϕmay but does not satisfy abs ϕmust.

3.5 Abstract Model Checking 85

• abs M does not possibly satisfy abs ϕmay.

In the first case, we are able to infer the satisfaction of ϕ, i.e., abs M |=
Tmust(abs ϕ) ⇒ M |=H abs ϕ. In the third case, we are able infer the refu-
tation of ϕ , i.e., abs M 6|= Tmay(abs ϕ) ⇒ M 6|=H abs ϕ However, the second
case does not give any information about satisfaction or refutation of the prop-
erty. The inference of the satisfaction or refutation of the concrete formulas is
not straightforward. The reason is that by abstracting actions we have lost the
exact information about concrete transitions.

Above, |=H defines the satisfaction of an abstract formula over a concrete
system. The semantics of state and regular formulas do not change. We rep-
resent by Jabs αKH the set of concrete actions that satisfy the abstract action
formula abs α. The semantics is given below:

JTKH = Act JFKH = ∅
Jabs α1 ∧ abs α2KH = Jabs α1KH ∩ Jabs α2KH

Jabs α1 ∨ abs α2KH = Jabs α1KH ∪ Jabs α2KH

J¬ abs α′KH = Act \ Jabs α′KH

Ja(abs d)KH = {a(d) |H(d) = abs d}

We now give an example. Let us consider the system in Figure 3.2:

S0

b(d1)

b(d0)

b(d)

S1

a(d0)

a(d1)

a(d)

s3

s2

s1

s0

Figure 3.2: Example of abstract Model Checking.

The abstraction is built by mapping s0 and s1 to S0, s2 and s3 to S1 and d0

and d1 to d. We want to prove the following properties:

• “It is possible to do a transition a(d0) from the initial state”
s0 |= 〈a(d0)〉T. The abstract version of the formula is 〈a(d)〉T, which
trivially holds for S0. Therefore, we can infer that there exists x such
that H(x) = d for which 〈a(x)〉T holds in s0. In other words, s0 |=
〈a(d0) ∨ a(d1)〉T which implies that s0 |= 〈a(d0)〉T or s0 |= 〈a(d1)〉T.

• “It is not possible to do a transition b(d0) from the initial state”
s0 |= [b(d0)] F. The abstract version of the formula is [b(d)] F, which
trivially holds for S0. Therefore, we can infer that for all x such that
H(x) = d implies [b(x)] F holds in s0. In other words, s0 |= [b(d0) ∨
b(d1)] F which implies that s0 |= [b(d0)] F and s0 |= [b(d1)] F.

86 Chapter 3 An Abstract Interpretation ToolKit

In the first case, we have less information than we requested due to the ab-
straction, and we cannot infer the exact satisfaction or refutation of the original
formula in the concrete model. In the second case we have enough to infer the
exact result. The output of the inference can be described by quantifiers over
the actions using a logic such as the one presented in [118].

Note that in the special case of action labels without data arguments abs ϕ
will be equal to ϕ so the abstract model checking problem coincides with the
classical theories based on state abstraction only.

An important aspect of abstract model checking refers to spurious counter-
examples. Some formulae are not satisfied due to non-realistic scenarios i.e.
abstract traces that do not have any corresponding concrete one. In these
cases, it is possible to improve the precision of the abstract model in two ways:

• By removing the spurious may traces. Which gives a model with less
possible behaviours.

• By adding extra must traces. Which gives a model with more necessary
behaviours.

Classical theories such as [82] eliminate possible behaviours using refinement
by program execution. The second possibility is studied in chapter 5. Another
way to deal with spurious counter-example is to strength the formula to prove in
order to discriminate the non-realistic traces, this possibility is studied in [51].
None of these theories are implemented in the tool yet.

3.6 Conclusion

Automated applications are indispensable to apply formal methods to realistic
industrial systems. Here we have described a toolkit that helps in using the
abstraction techniques theoretically introduced in the first chapters. The tool
described is not the only one dedicated to such tasks.

The existing tool closest to ours is αSpin [51] which provides an interface for
abstracting PROMELA specifications. The user can select abstractions from a
library. The tool produces an over-approximation of the system. The Bandera
toolset [69] implements the same method of abstraction, furthermore it provides
algorithms for program slicing and data dependency analysis in order to auto-
matically find suitable variables to abstract. Bandera generates PROMELA
code from simple Java programs.

FeaVer [73] and abC [35] abstract C programs by hiding variables. The first
one translates the code to PROMELA, furthermore it also allows the user to
define his own abstractions, the latter abstracts directly the C code by imple-
menting an extension of the GCC compiler. Java PathFinder [70], BeBop [5] and
SLAM [6] use predicate abstraction. We refer to [32] for an extended overview
of tools and techniques for abstract model checking.

All the enumerated tools only generate over-approximations, therefore they
are only able to check for the satisfaction of safety properties. Our tool supports

3.6 Conclusion 87

µ-calculus, therefore, we can use indistinctly safety and liveness properties.
Furthermore, the transformation from LPEs to Modal -LPEs allows to reason
about the abstract system on a syntactic level, and embeds all the techniques
in the existing µCRL tools. Finally, another feature that is not provided by any
other tool is the possibility of abstracting action labels.

Besides the case of study of the bounded retransmission protocol presented
in the previous chapter. We have used to tool to verify other applications
like a real-life distributed system for lifting trucks (lorries, railway carriages,
buses and other vehicles) [60]. Furthermore, we have studied abstractions of
characteristic applications implemented on a shared data-space architecture.
These case studies are briefly presented further in this thesis.

In [98], the tool was used to attempt to improve the performance of dis-
tributed algorithms for model checking and state space reduction. The idea is
to introduce a new distribution policy of state spaces over workers. This policy
reduces the number of transitions between states located at different workers.
This in turn is expected to reduce the communication costs of the distributed
algorithms. We have used the automatic abstraction mechanism of the tool
to compute a small approximation of the state space, starting from some high
level description of the system. Based on this approximation, the connectivity
of concrete states is predicted. This information is used to distribute states with
expected connectivity to the same worker.

The tool implements a simple automatic abstraction approach, as variable
hiding, and facilitates the use of creative abstractions. More work is needed
to automate the task of selecting suitable abstractions and of providing correct
abstract domains. The next chapter describes a general pattern to abstract
replicated processes that can be used in many different applications.

As presented at the end of the previous section, an interesting aspect that
should be studied deeper is how to deal with spurious counter-examples. Chap-
ter 5 analyses a way of dealing with false negatives raised while model checking
of progress formulae.

88 Chapter 3 An Abstract Interpretation ToolKit

Chapter 4

Linearization and Abstraction of

Replicated Processes

In practise, distributed systems are quite often composed by an arbitrarily large
but finite number of processes that execute a similar program. The automatic
verification of such systems is very limited by the well known state explosion
problem. We propose a general framework for specifying and abstracting the
parallel composition of uniform processes with data, which allows to perform
model checking of realistic instances of such systems. Furthermore, in some
cases, the technique allows to generalise the satisfaction of the properties to any
number of processes.

89

90 Chapter 4 Linearization and Abstraction of Replicated Processes

4.1 Introduction

Abstraction is a powerful technique to reduce the complexity of systems. It is
well known that selecting suitable abstractions is in general very hard. There
are no universal abstractions that assist in the verification of any kind of sys-
tems. In this chapter we consider a class of applications that appear quite often:
distributed systems composed of an arbitrary but finite number of uniform pro-
cesses with data.

Based on the results of the previous chapters and in [65, 109], we develop a
general framework and its formal requirements for safely abstracting the system
by performing abstract interpretation of data. The framework consists in a
special linear process equation that is proved suitable to define and abstract
such systems. Moreover, we present two abstraction patterns, which fulfil the
requirements and can be embedded in the general framework. The patterns are:

1. Abstraction of process state: instead of keeping the state of each process,
we only count the number of processes that are in a certain state.

2. Abstraction of the state counter: instead of storing the exact number of
processes that are in a same state, we only consider some specific cases of
the counter.

Furthermore, we present a special abstraction schema for systems composed
by indistinguishable processes, i.e., their behaviour does not depend on their
identity. We illustrate the feasibility of our technique by verifying a (simplified)
distributed lift system [60] and a shared data space architecture built over the
JavaSpaces architecture [106] (see the second part of this thesis).

Our approach can be used to verify large instances of distributed systems.
Moreover, in combination with classical data abstraction, we can generalise the
results to any instance of parameters of the system. We include two examples
using the results of the chapter.

Related work. The Parameterized model checking problem, which is in gen-
eral not decidable [3], has been addressed in several works using different ap-
proaches. Abstraction techniques for model checking are sound but incomplete,
and need human creative interactions in order to select the appropriate abstrac-
tions.

The closest to ours are [76, 110]. Ip and Dill [76] use a special data type to
represent process identities and perform an abstraction that maps the processes
that are in a certain state to the values {zero, more, zero or more}. The work by
Pong and Dubois [110] follows the same idea but needs more user interaction in
order to define the abstract behaviour of the abstracted processes. An improve-
ment of our approach with respect to theirs is that we can deal with both safety
and liveness properties. Moreover, we do not give a fixed abstraction mapping
but a general pattern that can be instantiated with different abstraction rela-
tions. The parallel composition of processes is automatically translated to a
required form, therefore the user only needs to define the desired abstractions.

4.2 Parallel Uniform Processes 91

Liveness for parameterized systems was already addressed in [103]. To use
this approach, one has to define safe acceleration schemes in order to infer live-
ness properties. Automated and complete techniques, e.g., the one proposed by
Emerson and Kahon for Snoopy Cache Coherence Protocols [40], are restricted
to a particular set of systems. Other sound but incomplete methods use, for ex-
ample, inductive invariants [116] automatically generated from small instances
of a system that hold in every larger instance of it. Another approach is based
on a cutoff theorem, which has to be found and proved in order to generalise
the verification result (see a.o. [39]).

4.2 Parallel Uniform Processes

Linearization. We use µCRL to specify systems composed by an arbitrary
number of uniform processes. We assume that the processes are loosely coupled,
i.e., they do not communicate directly with each other. This requirement is
not necessary, it is just to simplify the development (in section 4.5, we give the
general form for any kind of process). However, we allow them to communicate
with external processes that may play the role of networks or coordination
architectures. Uniform processes share the same specification, i.e., they are
syntactically the same. This does not mean that their behaviour is equal for all
of them. Every processes is uniquely identified, by a natural number k, and its
behaviour may be determined by its identity. From now on, we assume that the
uniform processes share the following linear form (see definition 2.1):

P (k : Nat , d : D) =∑
i∈I

∑
ei:Ei

ai(fi(k, d, ei)).

P (k, gi(k, d, ei)) � ci(k, d, ei) � δ

(*)

This linear form makes no restriction on the specification of the processes.
For a process P (k, d), k is the identity and d the data parameter of some ar-
bitrary data type D representing the state of the process.1 We assume the
existence of a global constant N > 1 denoting the number of uniform processes,
therefore k is in the range {0, . . . , N − 1}.

Groote and van Wamel [65] defined an equation that models the parallel
composition N of such processes, it uses a data type DTable to store the values
of parameters d of each process. It defines tables indexed by natural numbers,
and each element has the data type D. Based on their definitions, we specify a
different representation that is more appropriate for performing abstractions.

Let K denote the set {0, . . . , N−1}. The data type DTable has the signature
of K → D. Each table is a function from K to D. Thus, a process with identity
k only has one state in a table. Furthermore, we define update as a function to
update the old value e of process P (k) with d, and test as a function to check
whether the specified position and data are in the table.

1Typically processes have a vector of parameters, using pairing and projections we can
easily see that the use of a single parameter d is not an essential limitation.

92 Chapter 4 Linearization and Abstraction of Replicated Processes

update : K × D × D × DTable → DTable
test : K × D × DTable → Bool

The defining equations are:

update(k, d, e, dt) =def dt [k := d]
test(k, d, dt) =def dt(k) = d

The argument e of update represents the old value of the process k, it is not
necessary for the definitions of concrete linear systems, however we will see that
it is helpful to define abstraction patterns. Let dk be the initial value of the
process k and dt be initially defined as dt(k) = dk for all k ∈ K, then:

Theorem 4.2.1 Given a process P as defined in (*), the system P (0, d0) ||
P (1, d1) || · · · || P (N − 1, dN−1) is strongly bisimilar to Q(dt), where dt is equal
to [d0, d1, ..., dN−1] and Q is an LPE of the form:

Q(dt : DTable) =∑
i∈I

∑
k:Nat

∑
d:D

∑
ei:Ei

ai(fi(k, d, ei)).

Q(update(k, gi(k, d, ei), d, dt))

�test(k, d, dt) ∧ ci(k, d, ei) ∧ k < N � δ

Proof: Let ξ denote the state vector [d0×. . .×dN−1] of the processes P (0, d0) ||
P (1, d1) || · · · || P (N − 1, dN−1). We define the relation R:

dt R ξ ⇐⇒ ∀ k ∈ K. dt(k) = ξ[k]

Initially, is trivial to see that [d0, d1, ..., dN−1]R [d0 × . . . × dN−1]. Then, to
prove that the parallel composition of N processes (from now on S) is bisimilar
to Q, we have to prove that if from a state ξ, S can do a step to ξ ′ and ξ is
related to dt, then Q(dt) can do the same action to dt′ and dt′ R ξ′, and the
other way around.

• Let us consider the first implication:

1. If S = P (0, ξ[0]) || P (1, ξ[1]) || · · · || P (N − 1, ξ[N − 1]) can do an
a-step (a step labelled with a) implies that there exists one k such
that P (k, ξ[k]) can do an a-step.2

2. If P (k, ξ[k]) does an a-step implies that there exists a summand i
and an e such that ci(k, ξ[k], e) = T and a = ai(fi(k, ξ[k], e)).

3. If P (k, ξ[k]) performs the step then ξ′ will be ξ[ξ[k] := gi(k, ξ[k], e)].

4. ξ R dt implies that dt(k) = ξ[k]. Then, test(k, ξ[k], dt) = T.

5. The condition of the ith summand of Q is: test(k, d, dt)∧ci(k, d, ei)∧
k < N . The condition is true for d = ξ[k]. Then:

2Remember, that we assume that processes do not communicate between each other

4.2 Parallel Uniform Processes 93

6. dt′ will be equal to update(k, gi(k, ξ[k], e), d, dt), i.e., dt′ = dt[k :=
gi(k, ξ[k], e)]

7. Hence ξ′ R dt′ which proves the case.

• The other implication is similar

Hence, S and Q are bisimilar.

2 (Theorem)

Theorem 4.2.1 states that any parallel composition of uniform processes can
be encoded using an LPE and a data type DTable. Instead of the condition test,
Groote and van Wamel used a function get to access the state of the processes.
Both approaches are equivalent for defining concrete systems, in which every
process is in only one state. However, our approach minimises the extra non-
determinism added by the abstractions that do not allow to determine the exact
state of the processes.

The process Q as defined in Theorem 4.2.1 trivially satisfies the following
invariant (I1):

∑

d∈D

∑

k∈K

(dt(k) = d) = N

The invariant states that the addition of the number of processes by state
is equal to the number of processes. Basically, means that every process k is in
one and only one state d. This invariant will be uses in future proofs.

Abstraction. Now we present an abstraction framework for an LPE in Theo-
rem 4.2.1. It is composed by some definitions and requirements that any partic-
ular instance of abstraction must fulfil. To perform an abstraction it is needed to
specify a mapping H3 from concrete tables DTable to abstract ones abs DTable.
Furthermore, the concrete linear form is symbolically abstracted to the following
Modal -LPE (see Definition 2.2):

abs Q(abs dt : P(abs DTable)) =∑
i:I

∑
k:Nat

∑
d:D

∑
ei:Ei

ai(fi(k, d, ei)).

abs Q(abs update(k, gi(k, d, ei), d, abs dt))

�abs test(k, d, abs dt) ∧ ci(k, d, ei) ∧ k < N � δ

abs Q is the abstract version of the process defined in Theorem 4.2.1, it gets
as a parameter the abstract specification abs DTable, that is initialised by the
abstraction of the concrete initial table, and can be accessed with the functions
abs update and abs test, which have the following signatures:

abs update : K × D × D × abs DTable → P(abs DTable)
abs test : K × D × abs DTable → P(Bool)

3In this chapter, we only consider abstractions by homomorphisms. We believe that it can
be extended to the Galois Connection framework, without extra difficulties.

94 Chapter 4 Linearization and Abstraction of Replicated Processes

Recall that all the functions point-wisely apply to sets of values. The func-
tion symbols appearing in the data terms are: abs test ,∧, ci, <, fi, abs update
and gi, from which only abs test and abs update are abstracted. Therefore, in
order to prove the correctness of an instance of abstraction, the following con-
ditions have to hold: ∀k ∈ K, d, e:D and dt:DTable

H(update(k, d, e, dt)) ∈ abs update(k, d, e,H(dt))
test(k, d, dt) ∈ abs test(k, d,H(dt))

The remaining functions appearing in the specification are not abstracted,
so there is no safety requirement related with them, as we have seen in previous
chapters. A direct consequence of the fulfilment of the requirements and by
Theorem 2.4.2 is that the Modal -LTS generated from the abstract specification
is a safe abstraction of the original system, therefore it can be used to prove
the satisfaction and/or the refutation of safety and liveness properties.

We see that processes are abstracted using standard data abstraction. By
linearizing we encode the behaviour of the processes with a table, then we use
abstraction to reduce the range of values of the table. This abstraction can
be used in combination with other kinds of abstractions. For example, we can
abstract the data type D that represents the state of the processes to reduce
even further the size of the system. In the following section we present some
instances of the general abstraction framework.

4.3 Abstraction Patterns

The previous section presented the abstract linear form for replicated processes
composed in parallel, now we give two abstract data definitions that satisfy the
safety requirements.

4.3.1 Abstraction of the Processes State

Instead of storing the values d of every process we just save the number of
processes that are in a certain state. See Figure 4.1 for as graphical explanation.

Let Count denote the set {0, . . . , N}. Let Succ be the successor function
defined as Succ(c) = c+1 for c ∈ {0, ..., N −1} and Succ(N) = N , and let Pred
be the predecessor function defined as Pred(c) = c − 1 for c ∈ {1, ..., N} and
Pred(0) = 0. First, we give a function match from Count to P(Bool) with the
defining equations as follows:

match(c) =def

{T} if c = N
{T, F} if 0 < c < N
{F} if c = 0

match checks whether a process is in a given state. The result of the function
is {T} when all the processes are in the given state; {F} when no process is in
the state; otherwise, {T,F}, since we do not know the exact answer. The last
case will introduce non-determinism to the model of the system.

4.3 Abstraction Patterns 95

.

.

.

. ..

n − 1

n0

d0

n1

d1 d2

n2#k

D

dn−1

d1

d0

k

0

1

Figure 4.1: Abstract table 1: by a counter

Next, we specify abs DTable as the type D → Count . Each table abs dt is a
function from D to Count, abs dt(d) expresses the number of processes that are
in the state d. abs update updates the number of processes in a certain state and
abs test is a function to check if a process is in a certain state. The definitions
are:

abs test(k, d, abs dt) =def match(abs dt(d))
Succ(abs dt, d) =def abs dt [d := Succ(abs dt(d))]
Pred (abs dt, d) =def abs dt [d := Pred(abs dt(d))]

abs update(k, d, e, abs dt) =def {Succ(Pred(abs dt, e), d)}

If a process goes to one state, then we first decrement the counter of the
previous state, and afterwards we increment the counter of the new state. The
abs test function does not depend on the index of the process, it only depends
on the state. We define the abstraction function Ht from DTable to abs DTable
as follows:

Ht(dt)(d) =def

∑
k∈K(dt(k) = d)

which means that for every state d, we compute the number of processes k
that are in d (dt(k) = d).

Theorem 4.3.1 The mapping Ht and the data type abs DTable with the func-
tions abs update and abs test define a safe abstraction.

Proof: As we have seen in the general framework, it is enough to prove the
following safety conditions :

96 Chapter 4 Linearization and Abstraction of Replicated Processes

test(k, d, dt) ∈ abs test(k, d,Ht(dt))
Ht(update(k, d, e, dt)) ∈ abs update(k, d, e,Ht(dt))

We prove the first condition:

By definition, we have:

• test(k, d, dt) is equal to (dt(k) = d)

• Ht(dt)(d) =
∑

k∈K(dt(k) = d)

• abs test(k, d,Ht(dt)) = match(Ht(dt)(d))

Then:

• Case test(k, d, dt) = T.

– We know that there is at least one process k in the state d hence∑
k∈K(dt(k) = d) ≥ 1. Therefore, Ht(dt)(d) ≥ 1

– We distinguish several cases:

1. if Ht(dt)(d) < N then match(Ht(dt)(d)) = {T, F};

2. if Ht(dt)(d) = N then match(Ht(dt)(d)) = {T};

3. by (I1) Ht(dt)(d) > N is not possible.

– Hence the condition is true for this case.

• Case test(k, d, dt) = F.

– Since test(k, d, dt) = F, it follows that not all the processes are in the
state d, hence

∑
k∈K(dt(k) = d) < N . Therefore, Ht(dt)(d) < N .

– We distinguish the cases:

1. if Ht(dt)(d) = 0 then match(Ht(dt)(d)) = {F};

2. if Ht(dt)(d) > 0 then match(Ht(dt)(d)) = {T, F}.

• In all cases, we obtain test(k, d, dt) ∈ abs test(k, d,Ht(dt)), which proves
the condition.

For the second condition, we see by the definition of the concrete linear form
that update(k,d,e,dt) is only applied to e’s that satisfy test(k, e, dt), therefore,
by definition of test, dt(k) = e. We will use this invariant of the system to
facilitate the proof:

By definition, we have:

• update(k, d, dt(k), dt) is equal to dt [k := d]

• Ht(dt)(d) =
∑

k∈K(dt(k) = d)

• abs update(k, d, dt(k),Ht(dt)) = {Succ(Pred(Ht(dt), e), d)}

4.3 Abstraction Patterns 97

Then:

• Case d = dt(k) (transition to the same state)

1. By definition, update(k, d, d, dt) = dt

2. Let c be
∑

k′∈K(dt(k′) = d). Then, c > 0 because there is at least
one process in d.

3. abs update(k, d, d,Ht(dt)) = {Ht(dt) [Ht(dt)(d) := Succ(Pred(c))]}

4. Succ(Pred(c)) for c > 0 equals c, hence abs update(k, d, d,Ht(dt)) =
{Ht(dt)}

• Case d 6= dt(k) (transition to a different state)

1. Let:

– update(k, d, dt(k), dt) be dt′. (the table after the transition)

–
∑

k′∈K(dt(k′) = dt(k)) be c. (the number of processes in the
source state d)

–
∑

k′∈K(dt(k′) = d) be c′. (the number of processes in the desti-
nation state d)

2. Trivially c > 0, and by (I1) c′ < N

3.
∑

k′∈K(dt′(k′) = dt(k)) = c − 1

4.
∑

k′∈K(dt′(k′) = d) = c′ + 1

5. Let P be Pred(Ht(dt), dt(k)) and S be Succ(P, d).

6. By definition P = Ht(dt(k))[c := Pred(c)]. Then c > 0 implies
P = Ht(dt(k))[c := c − 1]

7. By definition S = P [c := Succ(c)]. Then c < N implies S = P [c :=
c + 1]

8. Then by (3, 4) S = Ht(dt′)

9. Considering abs update(k, d, dt(k),Ht(dt)) = {S}, and by (8) it fol-
lows that abs update(k, d, dt(k),Ht(dt)) = {Ht(dt′)}

• In both cases, we obtain:
Ht(update(k, d, dt(k), dt)) ∈ abs update(k, d, dt(k),Ht(dt))

2 (Theorem)

This abstraction can be used for the verification of properties that do not
depend on the exact process that executes an action, but only depends on
whether there is a process that executes it or not.

98 Chapter 4 Linearization and Abstraction of Replicated Processes

4.3.2 Abstraction of the State Counter

We can generate a more abstract version of the system by abstracting the
counter. Instead of storing the exact number of processes that are in a de-
termined state we can just consider some specific cases, for example: (a) There
is no process in a certain state. (b) All processes are in a certain state. (c)
There are some (but not all) processes in a certain state (assuming N > 1).

To perform this abstraction, we define an abstract counter abs count by spec-
ifying a new mapping Hc : Count → abs count . The sort abs count has three
values: zero, some and all. Together, we define two functions abs succ, abs pred:
abs count→ P(abs count) to increase and decrease an abstract counter.

Hc(c) =def

all if c = N
some if 0 < c < N
zero if c = 0

abs succ(zero) =def {some}
abs pred(zero) =def {zero}
abs succ(some) =def {some, all}
abs pred(some) =def {zero, some}

abs succ(all) =def {all}
abs pred(all) =def {some}

The function abs match is an auxiliary function used to check whether a
process in a certain state based on the information of the abstract counter. It
corresponds to the function match for Count.

abs match(zero) =def {F}
abs match(some) =def {T, F}

abs match(all) =def {T}

In our second instance of the general framework, we redefine abs DTable as a
data type with the signature D → abs count . Accordingly, abs dt(d) expresses
the abstract number of processes which are in state d. abs update is a function
to update the number of processes in one state. The definitions of the new
functions are as the ones defined in the previous section, the only difference is
that we replace the concrete functions for the counter by abstract ones:

abs test(k, d, abs dt) =def abs match(abs dt(d))
Succ(abs dt, d) =def abs dt[d := abs succ(abs dt(d))]
Pred(abs dt, d) =def abs dt[d := abs pred(abs dt(d))]

abs update(k, d, e, abs dt) =def {Succ(Pred(abs dt, e), d)}

abs test is used to check if a given process is in a certain state, it checks
the state counter by using the auxiliary function abs match. Succ and Pred
compute respectively the abstract successor and predecessor of an state counter.
abs update updates the abstract table. The new table is a more abstract version
of the previous one. The abstract mapping Htc

: DTable → abs DTable, is the
combination of the mappings Ht and Hc:

4.3 Abstraction Patterns 99

Htc
(dt)(d) =def Hc(Ht(dt)(d))

Theorem 4.3.2 The abstract table with abstract counters constructed using
the mapping Htc

, defines a safe abstraction.

Proof: Considering the result of Theorem 4.3.1, the two safety requirements
for the functions abs test and abs update reduce to proving that ∀c : Count the
following conditions hold:

Hc(Succ(c)) ∈ abs succ(Hc(c))
Hc(Pred(c)) ∈ abs pred(Hc(c))

match(c) ⊆ abs match(Hc(c))

We start with the first condition:

1. c = 0.

(a) Succ(c) = 1 and Hc(1) = some

(b) Hc(0) = zero and abs succ(zero) = {some}

2. 0 < c < N .

(a) Succ(c) is either N or 0 < Succ(c) < N , therefore Hc(Succ(c)) = all
or some.

(b) Hc(c) = some and abs succ(some) = {some, all}

3. c = N .

(a) Succ(N) = N and Hc(N) = all

(b) abs succ(all) = {all}

The second condition for the predecessor function can be proved in the same
way. For the third condition:

1. c = 0.

(a) match(0) = {F}

(b) Hc(0) = zero and abs match(zero) = {F}

2. 0 < c < N .

(a) match(c) = {T, F}

(b) Hc(c) = some and abs match(some) = {T, F}

3. c = N .

(a) match(N) = {T}

(b) Hc(N) = all and abs match(all) = {T}

100 Chapter 4 Linearization and Abstraction of Replicated Processes

2 (Theorem)

This pattern is more abstract than the previous, therefore it will preserve
less information. The next figure represents graphically the idea of the abstract
pattern.

. . .
{zero} {zero, some}

d1d0

{some, all}{some}

dnd2

c#k

Figure 4.2: Abstract table 2: by an abstract counter

We remark, again, that the abstraction patterns are just examples of in-
stances that match the general framework provided in section 4.2. Depending
on the system other values for the abstract counter may be selected, for exam-
ple the domains {zero, one,more} or {zero,more, zero or more} used in Ip and
Dill’s work [76] are easily embedded in our framework. This abstraction pattern
may be also combined with the previous one by only abstracting the counters
related to some specific states and leaving the others as natural counters.

4.4 Parallel Identical Processes

Linearization. Section 4.2 was dedicated to the linearization and abstraction
of uniform processes. We have defined uniform processes as the ones that share
the same specification, i.e., they are syntactically the same. Each process has
assigned an unique identity. Even if two processes are syntactically the same,
their behaviour may be different because of their identity.

We consider a particular case of uniform processes which are indistinguish-
able. We call this class of identical processes. The behaviour of each process
does not depend on its own identity k. They share the following linear form:

P (d : D) =
∑

i∈I

∑
ei:Ei

ai(fi(d, ei)).P (gi(d, ei))

�ci(d, ei) � δ
(**)

Given two identical processes pi and pj that are in the same state d. If a
condition c is true for pi, then it is also true for pj . Furthermore, they can
execute the same action to end in the same new state.

If processes are identical then the mapping of section 4.3.1 does not lose
information. Therefore, the concrete system is composed by a table that stores
the number of processes that are in a certain state. We redefine the concrete
table DTable of the signature D → Count . dt(d) yields the number of processes
in a certain state d. Accordingly, we redefine the functions update and test.

update : D × D × DTable → DTable
test : D × DTable → Bool

4.4 Parallel Identical Processes 101

The defining equations are:

test(d, dt) =def

{
T if dt(d) > 0
F if dt(d) = 0

Succ(dt, d) =def dt [d := Succ(dt(d))]
Pred(dt, d) =def dt [d := Pred(dt(d))]

update(d, e, dt) =def Succ(Pred(dt, e), d)

Then we have the following theorem:

Theorem 4.4.1 Given a process P as defined in (**), the system P (d0) ||
P (d1) || · · · || P (dN−1) is strongly bisimilar to Q(dt), where dt is equal to
[d0, d1, ..., dN−1] and Q is an LPE of the following form:

Q(dt : DTable) =
∑

i∈I

∑
d:D

∑
ei:Ei

ai(fi(d, ei)).

Q(update(gi(d, ei), d, dt))

�test(d, dt) ∧ ci(d, ei) � δ

Proof: As in Theorem 4.2.1, ξ denotes the state vector [d0 × . . . × dN−1] of
processes P (d0) || P (d1) || · · · || P (dN−1). Now, we define the relation R:

dt R ξ ⇐⇒ ∀ d ∈ D. dt(d) =
∑

k∈K(ξ[k] = d)

Initially, is trivial to see that [d0, d1, ..., dN−1]R [d0 × . . . × dN−1]. Then, to
prove that the parallel composition of N processes (from now on S) is bisimilar
to Q, we have to prove that if from a state ξ, S can do a step to ξ ′ and ξ is
related to dt, then Q(dt) can do the same action to dt′ and ξ′ R dt′, and the
other way around. First, it is straightforward to verify the following invariant
(I2) of Q:

test(d, dt) ⇐⇒ ∃ k ∈ K. d = ξ[k]

Then, we consider the first implication:

1. If S = P (ξ[1]) || P (ξ[0]) || · · · || P (ξ[N−1]) can do a a-step (a step labelled
with a) then there exists one k such that P (ξ[k]) can do an a-step.

2. If P (ξ[k]) does an a-step then there exists a summand i and an e such
that ci(ξ[k], e) = T and a = ai(fi(ξ[k], e)).

3. If P (ξ[k]) performs the step then ξ′ will be ξ[ξ[k] := gi(ξ[k], e)].

4. Let c and c′ be the number of processes in ξ[k] before and after the step,
and n and n′ the number of processes in gi(ξ[k], e) before and after the
step. Is trivial to see that:

• If ξ[k] 6= gi(ξ[k], e) then c′ = c − 1 and n′ = n + 1.

• If ξ[k] = gi(ξ[k], e) then c′ = c.

102 Chapter 4 Linearization and Abstraction of Replicated Processes

5. By the (I2), test(ξ[k], dt) = T. Hence, the condition of the ith summand
of Q will be true.

6. dt′ will be equal to update(gi(ξ[k], e), d, dt), in other words dt′ will be equal
to Succ(Pred(dt, d), gi(ξ[k], e)).

7. By Definition of Succ and Pred and by (4), it follows that ξ ′ R dt′ which
proves the case.

The other implication is proved in the same way. Hence, S and Q are
bisimilar.

2 (Theorem)

Instead of storing the state of every process, we have used a counter repre-
senting the number of processes that are in a certain state and we have proved
that both representations are equivalent (are strongly bisimilar).

This representation of the composition of processes basically removes all the
symmetrical paths that may be generated by the interleaving of the behaviour
of the different processes.

Abstraction. In order to abstract the system with identical processes, we can
trivially adapt the definitions given for the case of uniform processes. In this
case the abstraction would consist of abstraction of the counters, therefore, one
may use, for example, the pattern provided in section 4.3.2, in which the counter
is abstracted to some symbolic values that determine the abstract number of
processes that are in a certain state.

4.5 General Form

We have assumed that the uniform processes in parallel do not communicate
between each other but only with external processes. In order to generalise the
framework to any kind of uniform processes, we have to extend the definitions by
allowing direct communication via an internal action γ(ai1 , ai2) parameterized
with data. The following equation (GF) generalises definition 4.2.

The abstraction framework should be extended to handle the new form. A
similar definition can be given for the case of identical processes.

4.6 Applications

In this section, we shortly introduce a case study that uses the results of the
chapter. Another case study is included in Chapter 8.

4.6 Applications 103

Q(dt : DTable) =∑
i∈I

∑
k:Nat

∑
d:D

∑
ei:Ei

ai(fi(k, d, ei)).

Q(update(k, gi(k, d, ei), d, dt))

�test(k, d, dt) ∧ ci(k, d, ei) ∧ k < N � δ+

∑
i1∈I

∑
i2∈I

∑
k1:K

∑
k2:K

∑
d1:D

∑
d2:D

∑
e1:Ei

∑
e2:Ei

γ(ai1 , ai2)(fi1 (k1, d1, e1)).

Q(update(k2, gi2(k2, d2, e2), d2, update(k1, gi1(k1, d1, e1), d1, dt)))

�test(k1, d1, dt) ∧ ci1(k1, d1, e1) ∧ k1 < N∧

test(k2, d2, dt) ∧ ci2(k2, d2, e2) ∧ k1 > k2∧

fi1(k1, d1, e1) = fi2(k2, d2, e2) � δ
(GF)

4.6.1 A Distributed System for Lifting Trucks

A real-life distributed system for lifting trucks (lorries, railway carriages, buses
and other vehicles), which was designed and implemented by a Dutch company,
was analysed in µCRL together with CADP by Groote et al. [60].

The system consists of a number of lifts; each lift supports one wheel of the
truck that is being lifted and has its own micro-controller. On each lift there
are some buttons that control its movement. The micro-controllers of the dif-
ferent lifts belonging to a system are connected to a ‘cyclic’ CAN (Controller
Area Network). The formal analysis of the system discovered some errors in
the original specification and helped to build a refined version of the incorrect
implementation. The new specification could be proved correct for small in-
stances of the system (at most 5 lifts). In [100] we have extended the analysis
of some requirements to an arbitrary number of lifts. Basically, we first give a
simplified version of the original specification that removes some details about
the initialisation phase, then we apply the previously introduced techniques (see
section 4.3.1 and section 4.3.2).

If the up button of a certain lift is pressed, all the lifts of the system should
go up. The system has to assure that all lifts move simultaneously to the same
direction. Lifts are programmed in such a way that during normal operation,
they take turns to claim the bus. To achieve this orderly usage of the CAN bus,
each lift must know its position in the network. Furthermore, in order to be
able to find out whether all lifts are in the same state, each lift must know how
many lifts there are in the network.

Initially, all lifts are in a standby state. The state of a lift is changed if its up
button is pressed, then it will send an up message to the bus. Other lifts change
their state according to the messages they receive, and when it is their turn to
use the bus they broadcast a message according to their state. These messages
are received by all the other lifts, and the lift where a button is pressed will count
them. When it counts enough state messages, it will broadcast a move message

104 Chapter 4 Linearization and Abstraction of Replicated Processes

when it gets the turn to use the bus, after which all the lifts will synchronously
move. The state of each lift is the vector composed by: the identifier of the lift,
which determines the order to claim the bus, the current state of the lift and a
counter for synchronised lifts which ranges from 0 to N . The behaviour of the
lifts also depends on the messages passed around, which are composed by: the
identity, the state of the sender of the last message and a boolean specifying
when the up-button was pressed. The complete system is composed by the
parallel composition of the N lifts and the process that models the CAN bus.

In order to create an abstraction that proves properties for an arbitrary
number of lifts, we have to combine the abstraction of processes as proposed
in this paper with classical data abstraction. Therefore, we first abstract all
the parameters and local variables that depend on N . Then, we see that the
behaviour of the lifts depends on the process identifier so we have to use the
abstraction pattern for uniform processes. Therefore, we construct the abstract
table with abstract counters for every state using the abstraction pattern in
section 4.3.2.

We have built such abstraction using the abstraction assistant for µCRL
specifications presented in the previous chapter. The result of the abstraction
is a Modal -LTS. We see below the comparison between the abstract result and
some concrete instances.

System States

Crt 5 Lifts 2,751
Crt 6 Lifts 10,011
Crt 7 Lifts 33,031
Crt 8 Lifts 101,255

Abs N Lifts 1341

Formally, we express a correctness criterion by the following safety property:

(P2): [’. ∗may .∗’∗. ’movemay’ .¬ (’upmay’)∗ . ’movemay’] F

Basically, the formula states that after a movement of the lift system, a
button should be pressed in order to let the system move again. The safety
formula is satisfied by the abstract system for an arbitrary number of processes
N , therefore we can infer its satisfaction to all instances of the concrete system.

In this example we have seen that in some cases the abstraction patterns
together with regular data abstraction may be used to generalise the model
checking problem to an arbitrary number of uniform components. In order to
prove properties for N processes, we had to abstract from quite a lot of infor-
mation. Consequently, we were not able to verify interesting liveness properties
for the abstract specification.

4.7 Conclusion 105

4.7 Conclusion

In this chapter, we have developed a framework to abstract a subclass of sys-
tems consisting of a set of (in)distinguishable replicated processes composed in
parallel. First, we give a linear form, which differs from the standard form pro-
posed for µCRL in [61, 117], to capture the behaviour of the full system. The
special linear form encodes the state of replicated processes by using a table, in
other words processes are specified using data. Once we have the suitable linear
form we can apply the results of abstract interpretation described in the two
first chapters:

• We transform the concrete linear form to the corresponding Modal -LPE,
abstracting and lifting the functions that manipulate the table.

• We generate the safety conditions associated to the abstracted functions.

• We give two abstract definitions of the table that satisfy the safety con-
ditions and, therefore, generate correct Modal -LTS of a given concrete
system.

We believe that identifying classes of systems and providing suitable abstrac-
tions for them is a desirable way to help the system designer to integrate the
abstract interpretation theories in his verification methodology. The patterns
described in this chapter will not help in all cases, but they do apply in some
practical cases.

106 Chapter 4 Linearization and Abstraction of Replicated Processes

Chapter 5

Accelerated Modal Abstractions

This chapter is dedicated to explaining an extension to the abstraction frame-
work presented in the first chapter. We enhance Modal Labelled Transitions
Systems by allowing transitions to be labelled with regular expressions. This
permits to represent that a process can reach a state by executing a sequence of
actions, abstracting the intermediate states. We show how using, what we call,
accelerated -transitions we can improve the expressiveness of the abstractions
being able to prove more liveness properties.

107

108 Chapter 5 Accelerated Modal Abstractions

5.1 Introduction

In the first chapter, we have reasoned about the benefits of extending the classi-
cal frameworks of abstraction by allowing the abstraction of action labels. The
improvements allowed to generate more expressive abstractions and to deal with
infinitely branching systems. Actions were abstracted by mapping (or relating)
concrete instances to abstract ones. In this chapter we are going to consider a
more powerful way of abstracting actions. The idea is to abstract complete se-
quences of transitions labelled by concrete actions to single transitions labelled
by abstract sequences of actions.

Abstraction has been successfully used to prove mainly safety properties.
Even though some frameworks allow the inference of liveness properties their
verification remains one of the major challenges of abstraction theories [102].
The problem comes from the extra behaviours added by the abstractions. We
start by giving an example to motivate the extension.

Figure 5.1 represents the classical abstraction of a decreasing counter. It
represents an over-approximation in which the values greater or equal to 1 are
collapsed to a single abstract state: ’+’:

dec

+ 0 expired

dec

expire

Figure 5.1: Abstraction of a decreasing counter.

From the abstract system we cannot infer that, in all traces, the action expire
is eventually executed. This property is trivially true for the concrete system
for any initial value of the counter, because the only possible action is the one
that decreases the value of the counter. The reason why the property is not
true in the abstract system, is the existence of abstract loop: + → +, that does
not correspond to an infinite concrete computation.

In general, abstraction introduces non-determinism to the system which
causes the loss of information. The problem of how to improve the expressive-
ness of such type of abstractions has already been addressed by other authors.
An interesting approach is, for example, the one proposed by Pnueli, in [79, 41].
His idea is to impose fairness constraints to the abstract system in order to
remove undesirable behaviours. The fairness constraints are extracted from the
knowledge we have of the concrete system. We know that the concrete sys-
tem does not contain any infinite decreasing trace, hence the abstract should
not have it either. In the previous example, we can infer the following constraint:

“For any fair trace, if the transition + → 0 is infinitely often enabled then it
should be infinitely often taken.”

5.1 Introduction 109

Any fair computation of the abstract system will not contain an infinite loop
+ → +. Therefore, under the constraint, we are able to prove that expired is
reached. This approach is valid to remove non-progressing traces. It has been
used to infer properties coded in LTL by Pnueli and also recently by Bosnacki
et al. [18]. In the latter approach the authors proved that in some specific cases,
such as the counter abstraction, strong fairness constraints can be reduced to
weak fairness which are more efficiently handled by model checkers.

Here, we propose an alternative approach motivated by the following ex-
ample. Let us consider a slightly more complex system: a resettable counter
(which Pnueli’s approach cannot handle). The following figure represents an
over-approximation of a counter that might be reset to its initial value (that is
bigger than 0), in case the counter is not expired:

reset

+ 0 expired

dec

dec expire

reset

Figure 5.2: Abstraction of a resettable counter.

In this case the property “in all traces, expire is eventually executed” is true
neither in the abstract system nor in the concrete. However, we can formulate
an interesting property of the system, such as, “for any reachable non-expired
state there is path that leads to expire”. This property cannot be expressed in
LTL, we need some logic that captures the branching behaviour of the system.
Furthermore, to reason about the abstract system we cannot impose the above
presented fairness constraint because the abstract loop: + → +, in this case,
does correspond to some concrete loop. To deal with such systems, we are going
to use a different approach. The idea we propose in this chapter is to include a
new kind of transitions that represent finite computations, which will allow to
infer stronger progress properties.

We recall that to model abstractions we have used Modal Labelled Transition
Systems which have two modalities: may and must. On the one hand, the may
part corresponds to an over-approximation that preserves safety properties of
the concrete instance and on the other hand the must part under-approximates
the model and reflects progress properties. Here, we enhance MLTSs by allowing
must-transitions to match sequences of actions, which captures the idea that in
a finite computation a state can be reached from a given one.

We define a new type of structure accelerated-Modal Labelled Transition Sys-
tems in which must-transitions are labelled with regular expressions built over
the action labels and the usual operators. We present this idea in the next sec-
tion. Then, we present how to generate abstractions with accelerations and we
give the preservation results. We prove that the framework is sound and com-

110 Chapter 5 Accelerated Modal Abstractions

plete for a logic based on the Propositional Dynamic Logic (PDL [68]) which
is a branching logic, in the style of HML [71] with regular expressions, less
expressive than µ-calculus [114].

Section 5.5 is dedicated to practical issues, defining a model checking algo-
rithm for accelerated -MLTS and PDL properties. This chapter is mainly focused
on the semantic level, nevertheless at the end we give some hints about how to
extract accelerated abstraction from specifications.

5.2 Accelerated Transition Systems

Section 1.2, we have introduced two different structures to model the behaviours
of systems: LTSs and Modal -LTSs. The first one was used to describe concrete
semantics and the second one abstract semantics. We recall the definition of
the latter:

Definition 5.2.1 A Modal Labelled Transition System (MLTS) is a tuple (S,
Act, →3,→2, s0) where S is a non-empty set of states, Act is a non-empty
set of action labels and s0 is the initial state and →3,→2 are possibly infinite
sets of (may or must) transitions of the form s

a
→x s′ with s,s′ ∈ S, a ∈ Act

and x ∈ {3, 2}. We require that every must-transition is a may-transition

(
a

→2⊆
a

→3).

We enhance Modal -LTSs by changing the definition of must-transitions. We
call accelerated must-transitions, those transitions that condense a sequence of
steps in a single one. accelerated must-transitions will be labelled by regular
expressions σ built over the alphabet Act and the usual operators ·, ∗ and |.
It can be also used σ+, which is an abbreviation for σ · σ∗. Let us see the
definition:

Definition 5.2.2 An Accelerated Modal Labelled Transition System (accModal -
LTS) is a tuple (S, Act,→3,→�, s0) where S, Act and s0, →3 are as in the pre-
vious definition, and →� is a possibly infinite set of accelerated -must transitions
of the form s

σ
→� s′ with s,s′ ∈ S, and σ is a regular expression. Furthermore,

we require:

• Every accelerated must-transition corresponds to a finite sequence of may-
transitions, i.e.:

s
σ
→� s′ =⇒ ∃ a0, ..., ai. s

a0→3 ...
ai→3 s′ ∧ [a0 · · ·ai] ∈ JσK1

Basically, the new definition allows must-transitions to be labelled with ar-
bitrary regular expressions. Examples of correct accelerated transitions are:

• s
a+
→� s′

1We denote by JσK the language generated from σ, i.e. L(σ)

5.3 Accelerated Modal Abstractions 111

• s
a|b
→� s′

• s
a.b∗.a
→ � s′

A trivial result is that every Modal -LTS is an accModal -LTS. It follows from
the fact that every must transition is an accelerated must-transition in which
σ is equal to a single action label. The condition that every must-transition
corresponds to a sequence of may-transitions, is similar to the one imposed in
the MLTS and, as we will see, it will help to define the logical characterisation
of the abstractions.

The next figure2 presents a modal abstraction of the resettable counter with
accelerated transitions. Note that the difference with the abstraction that we
could have generated using the theory of the first chapters is the presence of the

accelerated transitons +
dec+
→ � 0. The next section is dedicated to explaining

how such an abstraction can be defined from a concrete system.

+ 0 expired

dec

dec expire

reset

reset

dec+

Figure 5.3: Resettable counter with one accelerated must-transition

5.3 Accelerated Modal Abstractions

This section is dedicated to explaining how to define abstract approximations
of concrete transition systems. From a concrete system described by an LTS,
we can generate an abstraction by relating concrete states with abstract states.
Pnueli and Bosnacki et al. use function mappings to define abstractions. As
we have seen, this approach was suggested by Clarke and Long [26, 36]. An
alternative approach suggested by Cousot and Cousot [29] is based on Galois
Connections, which allow concrete states to be related to more than one ab-
stract state. The Galois Connection framework gives, in general, more accurate
abstractions than the homomorphic approach. In this chapter, we are going to
work with simple mappings, but we believe that the extension to more compli-
cated relations can be done following the ideas of Chapter 1 . Furthermore, we
do not consider, in this chapter, the abstraction of action labels.

2We use the following representation in the figures: may transitions (dashed lines), accel-

erated must-transitions (solid lines). The may transitions corresponding to must-transitions
are not drawn.

112 Chapter 5 Accelerated Modal Abstractions

Let us assume a set of abstract values Ŝ and an abstraction function h : S →
Ŝ that is total and surjective. An abstract value ŝ corresponds to all the states
s for which h(s) = ŝ. We define the way of generating an abstraction from a
concrete system, as follows:

Definition 5.3.1 Given a concrete LTS, M (S, Act,→, s0) and a mapping h :

S → Ŝ, we say that the accModal -LTS, M̂ defined by (Ŝ, Act,→3,→�, ŝ0)

is the minimal abstraction by h (denoted by M̂ = minh(M)) if and only if
h(s0) = ŝ0 and the following conditions hold:

• ŝ
a
→3 r̂ ⇐⇒ ∃ s, r. h(s) = ŝ ∧ h(r) = r̂ ∧ s

a
→ r

• ŝ
σ
→� r̂ ⇐⇒ (∀ s.h(s) = ŝ =⇒ ∃ r, a0, ..., ai. h(r) = r̂ ∧ s

a0→ ...
ai→

r ∧ [a0 · · · ai] ∈ JσK)

[a0 · · · ai] ∈ JσK means that the concatenation of a0, ..., ai belongs to the language
generated by the regular expresion σ.

A transition ŝ
σ
→� r̂ means that for all s mapped to ŝ there exists an r

mapped to r̂ such that we can go from s to r by a word contained in the
language generated from σ.

This definition gives the most accurate abstraction of a concrete system
for a given homomorphism h, in other words the one that preserves as much
information as possible of the original system. Now, we define the notion of
approximation to characterise the non-minimal abstractions:

Definition 5.3.2 Given two accModal -LTSs, M̂ (Ŝ, Act,→3,→�, ŝ0) and N̂

(Ŝ, Act, _3, _�, ŝ0) built over the same sets of states and actions; N̂ is an

approximation of M̂, denoted by M̂ v N̂ , if the following conditions hold:

• ŝ
a
→3 r̂ =⇒ ŝ

a
_3 r̂

• ŝ
σ′

_� r̂ =⇒ ∃σ0, ..., σi. ŝ
σ0→� · · ·

σi→� r̂ ∧ Jσ0 · · ·σiK ⊆ Jσ′K

The relation v characterises an order on the precision of the abstractions. M̂ is
more precise than N̂ because it has less (or the same number of) may-transitions
and more accelerated must-transitions or more precise ones. For example, con-
sidering only one accelerated must-transition ŝ

σ
→� r̂, we have:

ŝ
a
→� r̂ v ŝ

a+
→� r̂ v ŝ

a∗
→� r̂ v ŝ

a∗|b
→ � r̂ v ŝ 6→� r̂

Note, that the last case means that there is not any must transition between
ŝ and r̂. It is a correct abstraction even if it does not contain a lot of information.
Another simple example would be:

ŝ
a
→� t̂

b
→� r̂ v ŝ

a·b
→� r̂

5.4 Logical Characterisation 113

So far, we have discussed the approximation relation between a concrete sys-
tem modeled by an LTS and an abstraction modeled by accelerated Modal -LTS.
Now, we are going to present some results about the preservation of properties
between them.

5.4 Logical Characterisation

We are going to use a logic based on the propositional dynamic logic (PDL)
to characterise the properties that can be inferred from abstract systems to
concrete ones. We consider three types of formulas, action (α), regular (β) and
state formulas (ϕ), expressed by the following grammars:

α ::=T | F | ¬α | α1 ∧ α2 | α1 ∨ α2 | a

β ::=α | β1 · β2 | β1|β2 | β∗

ϕ ::=T | F | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [β]ϕ | 〈β〉ϕ

Note that this logic is as a subset of the one presented in Chapter 3, sec-
tion 3.5. We recall the meaning of the formulas: a stands for an action label,
it matches transitions with the same action label. T matches all actions, ¬α
matches all actions but the ones matched by α. F matches no action, it could
have been expressed by ¬T.

Regular formulas match sequences of actions; ’·’ stands for the concatenation
operator, ’|’ is the choice operator, ’∗’ is the transitive and reflexive closure
operator. Note that α is used to represent both a regular formula with only one
action and an action formula.

The semantics of the state formulas is standard. [β]ϕ holds in a state in
which all continuations by sequences matching β end in a state satisfying ϕ.
〈β〉ϕ holds in a state in which exists at least one β sequence to a state satisfying
ϕ.

We have chosen this logic because of the fact that it is also built over regular
formulas, which makes it easier to manage in the abstraction framework we have
presented.

As in the first chapter, a state formula is interpreted dually over accModal -
LTSs, i.e. there will be two sets of states that satisfy it. A set of states that
necessarily satisfy the formula and a set of states that possibly satisfy it. Thus,
the semantics of the formulas is given by JϕK ∈ 2S × 2S and the projections
JϕKnec and JϕKpos give the first and the second component, respectively.

First, we present the semantics for necessary interpretation. We start with
the state formulas in which basically the modality is pushed inwards in all the
operators, and inverted for the negation:

114 Chapter 5 Accelerated Modal Abstractions

JTKnec = S

JFKnec = ∅

J¬ϕKnec = S \ JϕKpos

Jϕ1 ∧ ϕ2K
nec = Jϕ1K

nec ∩ Jϕ2K
nec

Jϕ1 ∨ ϕ2K
nec = Jϕ1K

nec ∪ Jϕ2K
nec

J[β]ϕKnec = {s | ∀ r, a0, ..., ai. s
a0→3 · · ·

ai→3 r ∧

[a0 · · ·ai] ∈ JβK =⇒ r ∈ JϕKnec}

J〈β〉ϕKnec = {s | ∃ r, σ0, ..., σi. s
σ0→� · · ·

σi→� r ∧

Jσ0 · · ·σiK ⊆ JβK ∧ r ∈ JϕKnec}

By the definition of negation if a system necessarily satisfies a negated property
then it does not possibly satisfy the property (in positive form), i.e., J¬ϕKnec =
¬JϕKpos. The possibly semantics is dual, we just present it for the box and
diamond operators (note the swap of the modalities):

J[β]ϕKpos = {s | ∀ r , σ0, ..., σi. s
σ0→� · · ·

σi→� r∧

Jσ0 · · ·σiK ⊆ JβK =⇒ r ∈ JϕKpos}

J〈β〉ϕKpos = {s | ∃ r, a0, ..., ai. s
a0→3 · · ·

ai→3 r∧

[a0 · · ·ai] ∈ JβK ∧ r ∈ JϕKpos}

Now, we give the semantics for the regular formulas:

JαK = {[a] | a ∈ JαK}

Jβ1 · β2K = Jβ1K ◦ Jβ2K

Jβ1|β2K = Jβ1K ∪ Jβ2K

Jβ∗K = JβK∗

Now, we give the semantics for the action formulas JαK:

JaK = {a}

JTK = Act

JFK = J¬TK

Jα1 ∧ α2K = Jα1K ∩ Jα2K

Jα1 ∨ α2K = Jα1K ∪ Jα2K

J¬αK = Act \ JαK

Lemma 5.4.1 We have the classical equivalences on state formulas:

• T = ¬F

5.4 Logical Characterisation 115

• ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2)

• J[β]ϕK = J¬〈β〉¬ϕK

We remark that the necessary interpretation is consistent, i.e., we cannot
prove at the same time that one formula and its negation are necessarily sat-
isfied. Furthermore, the possible semantics are complete, we can either prove
a property or its negation. These two properties follow from the fact that
JϕKnec ⊆ JϕKpos. We formally state these results:

Lemma 5.4.2 JϕKnec ⊆ JϕKpos

Lemma 5.4.3 The necessary interpretation is consistent, i.e., Jϕ∧¬ϕKnec = ∅

Lemma 5.4.4 The possible interpretation is complete, i.e., Jϕ ∨ ¬ϕKpos = S.

Now, we present the preservation results:

Theorem 5.4.5 Given two accModal -LTSs, M̂ and N̂ , over the same sets of
states and labels Ŝ and Act, with M̂ v N̂ for all ŝ in Ŝ and for all formula ϕ,
we have:

• N̂ , ŝ |=nec ϕ =⇒ M̂, ŝ |=nec ϕ

• N̂ , ŝ 6|=pos ϕ =⇒ M̂, ŝ 6|=pos ϕ

Theorem 5.4.6 Let M be the LTS, (S, Act,→, s0), h be mapping between

S and Ŝ and let the accModal -LTS, M̂ (Ŝ, Act,→3,→�, Ŝ0) be the minimal

abstraction of (M̂ = minh(M)). Then for every ϕ, and s and ŝ such that
h(s) = ŝ, we have:

• M̂, ŝ |=nec ϕ =⇒ M, s |= ϕ

• M̂, ŝ 6|=pos ϕ =⇒ M, s 6|= ϕ

The first Theorem defines the inference between different abstractions, and
the second Theorem between a concrete system and its minimal abstraction.
Together they can be used to infer properties from an abstract approximation
to the concrete. The proofs of the Theorems are included at the end of the
chapter.

If we have to prove a property ϕ on a concrete system M, it is enough that
an abstract approximation M̂ necessarily satisfies it. If we want to refute a
property, we prove that M̂ does not possibly satisfies it Let us consider again
the example of Figure 5.3, the property we want to prove is:

116 Chapter 5 Accelerated Modal Abstractions

(P): [(¬ “expire”)*] 〈 T*. “expire” 〉 T

which is read as: after any sequence of actions different to expire there is a path
that leads to expire. We want to prove that this property is necessarily satisfied
in the abstract system given above. We recall that the universal modality is
interpreted over may actions and the existential over must ones. Hence:

• From the initial state +, the states that may be reached by (¬ “expire”*)
are {+, 0}. Then,

• from + there is the path
dec+
→ �

expire
→ � and Jdec+ · expireK ⊂ JT∗ · expireK,

therefore + satisfies 〈 T*. “expire” 〉 T.

• From 0 we have the transition
expire
→ �, and JexpireK ⊂ JT∗· expireK, therefore

0 also satisfies the 〈 T*. “expire” 〉 T.

• Hence, the formula is necessarily satisfied in the abstraction and we can
infer the satisfaction on the concrete system.

We remark that the formula cannot be proved using only the abstraction
framework presented in the first chapter because there will not be a must-
transition between + and 0.

This section included the main preservation results about the logical char-
acterisation and an intuitive example about how to apply the results to infer
properties. Next section is dedicated to describe a decidable model checking al-
gorithm that implements the semantics given above. This shows that the model
checking problem for accelerated -MLTSs is still decidable.

5.5 Model Checking

The model checking problem is solved by two functions eval must and eval may
both defined from formulas to P(S). They work by analysing the subformula
components of the original. They are derived from the semantics presented in
section 5.4. We only present eval must which returns the set of states that
necessary satisfy a formula. eval may returns the set of states that possibly
satisfy a formula and it is simpler than the other because there are no accelerated
transitions involved.

function eval must(ϕ){

if ϕ = F then return ∅;

if ϕ = ¬ϕ1 then return S \ eval may(ϕ1);

if ϕ = ϕ1 ∨ ϕ2 then return eval must(ϕ1) ∪ eval must(ϕ2);

if ϕ = 〈β〉ϕ1 then return exists must(β, eval must(ϕ1));

}

5.5 Model Checking 117

exists must(β, R) returns the set of states that can reach a state in R by
performing a sequence of actions such that the language generated by the con-
catenation of the action labels is included in the language generated by β. We
first give an algorithm to compute this function, and then provide an explana-
tion for it. In the algorithm we use the following notation: Given an automaton
B, B(i,J) denotes the automaton that is obtained from B by changing the initial
state to i and the final states to J .

function exists must(β, R){

1 B := DFA(β);

b0 := START(B);

F := FINAL(B);

2 for all σ such that ∃ s, r ∈ S. s
σ
→� r do

Rσ := {(i, J) | JσK ⊆ JB(i,J)K}

3 for all s, r ∈ S do

R(s,r) := ∪{Rσ | s
σ
→� r}

4 do {

for all s, r ∈ S do

R′
(s,r) := R(s,r)

for all s, r, t ∈ S do

R(s,t) := R(s,t) ∪

{(h, J) | ∃ I. (h, I) ∈ R(s,r) ∧ ∀i ∈ I.(i, J) ∈ R(r,t)}

} while (∃ s, r ∈ S. R′
(s,r) 6= R(s,r))

return {s | ∃ r ∈ R ∃ (b0, J) ∈ R(s,r). J ⊆ F};

}

eval must analyses recursively the given formula, computing for every sub-
formula the set of states that satisfy it. exists must computes the part referring
the accelerations, let us see how the last algorithm works:

1. First, the algorithm computes a deterministic automaton (DFA) corre-
sponding to the regular expression β. B denotes this automaton, b0 its
initial state and F the set of final states.

2. Then, for every regular expression σ of the transition system, we compute
Rσ which consists of the pairs (i, J) of B, such that the language generated
by σ is included in the language accepted by the automaton B(i,J). If (i, J)
is in Rσ then all pairs (i, J ′) with J ⊂ J ′ are also in Rσ

3. In the third step, for every pair of states (s, r) of the transition system, we
take the union of the sets associated to the transitions from s to r. That
is, (i, J) ∈ R(s,r) implies that there exists a regular expression σ such that

118 Chapter 5 Accelerated Modal Abstractions

there is a transition from s to r labelled with σ, i.e, s
σ
→� r, and the

language of σ is included in the language accepted by B(i,J).

4. Then, for every pair of states, we compute the closure of the sets. The
computation is done until the fixpoint is reached. If (h, J) ∈ R(s,t) then

there exists a sequence of transitions from s to t, i.e., s
σ0→� ...

σn→� t
such that the language of the concatenation of σ0, ..., σn is included in the
language accepted by B(h,J).

We can prove that this invariant is satisfied at any step of the computation
by applying induction on the number of while-do loops. After step 3, it
is trivially satisfied considering only sequences of length one. Then, let
us assume that the invariant is true after the mth while-do loop. If we
perform the next step of the fixpoint computation, for any three states
s, r and t such that:

• If there is a pair (h, I) in R(s,r) and for all i in I , there is a pair (i, J)
in R(r,t), (h, J) will be added to R(s,t).

• By I.H., we know that there is a sequence σ0, ..., σn such that s
σ0→�

...
σn→� r, and the language Jσ0 · · ·σnK is included in the language

accepted by B(h,I) and

• for all i ∈ I , there is a sequence σ′
0, ..., σ

′
n such that r

σ′
0→� ...

σ′
n→� t,

and the language Jσ′
0 · · ·σ

′
nK is included in the language accepted by

B(i,J). Then

• for all i ∈ I there will be a sequence s
σ0→� ...

σn→�

σ′
0→� ...

σ′
n→� t such

that the language Jσ0 · · ·σnK ◦ Jσ′
0 · · ·σ

′
nK is included in the language

accepted by B(h,J), which implies

• there exists a sequence s
σ0→� ...

σn→�

σ′
0→� ...

σ′
n→� t such that the

language Jσ0 · · ·σnK ◦ Jσ′
0 · · ·σ

′
nK is included in the language accepted

by B(h,J), hence Jσ0 · · ·σn · σ′
0 · · ·σ

′
nK ⊆ B(h,J)

5. Finally, the algorithm returns the states s that are related with a target
state r ∈ R, such that the relation R(s,r) contains a pair (b0, J) where b0

is the initial state of B and J only contains final states of B.

From J ⊆ F follows that the language accepted by B(b0,J) is included
in the language accepted by B. And, by the invariant of the previous
loop (step 4), we see that there exists a sequence of regular expressions
σ0, ..., σn such that there is a sequence of transitions from s to r labelled
with σ0, ..., σn, i.e., s

σ0→� ...
σn→� r and the language of the concatenation

of the sigmas is included in the language accepted by B(b0,J), so also in
the language accepted by B.

We can easily see that the function exists must terminates, this is due to
the fact that for every pair (s, r) the relation R(s,r) will contain elements in

5.5 Model Checking 119

(B,P(B)), which are finite because the number of states B of the finite automa-
ton generated from the input β is finite. Furthermore, the fixpoint computation
is monotonic which implies that the algorithm will finish. We have sketched
how to prove that the results of the algorithm are sound. It is still to be proved
whether it finds all the states that satisfy the property or not.

The use of regular expressions adds more computational complexity to the
normal model checking algorithm. The algorithm is exponential on the size of
the automaton corresponding to β and the automata of the transitions, and on
the size of the transition systems. Even though the complexity is very high,
in practise the regular expressions that will appear will be rather simple, so
we expect that it will not cause a significant slow down of the normal model
checking algorithms.

Let us now show two examples about exists must.

Example 5.1: Considering the following transition system:

R

r

u

sσ0 = ab

σ4 = a

σ5 = b+

σ3 = ab

σ2 = bc∗

σ1 = c

t

We want to compute exists must(β, R) of it, with β is equal to ab ∗ c and
R = {t}. The first step is to transform β to a deterministic automaton:

jh i

b

a c

Then:

• Rσ0
= Rσ3

= Rσ4
= {(h, {i}), (h, {i, j}), (h, {i, h}), (h, {i, j, h})}

• Rσ1
= {(i, {j}), (i, {j, i}), (i, {j, h}), (i, {j, i, h})}

• Rσ2
= ∅

• Rσ5
= {(i, {i}), (i, {i, j}), (i, {i, h}), (i, {i, j, h})}.

Now, in step 3 we compute the relations between states of the transition
system:

• R(r,s) = Rσ0

120 Chapter 5 Accelerated Modal Abstractions

• R(s,t) = Rσ1

• R(u,u) = Rσ3
∪ Rσ4

• R(u,t) = Rσ5

• The sets for the rest of the pairs of states are empty.

We close the relations under concatenation, which adds:

• R(r,t) = {(h, {j}), (h, {j, i}), (h, {j, h}), (h, {j, i, h})}

Finally, we see that R(r,t) contains the pair (h, {j}) which is the initial state
of β and {j} = F . Therefore, there is a path from r to t such the language of the
concatenation of the labels is included in β. Hence, the result of the function
will be {r}.

Example 5.2: The next example is included to motivate why we use pairs
(i, J) with J being a set of states instead of pairs (i, j). The latter will not work
for cases as the following. Let us consider the following transition system:

R

r

t

σ0 = a

sσ1 = a | b

σ2 = a+ | b

σ3 = a

R

u

We want to compute exists must(β, R) of it, with β is equal to a+ | b+ and
R = {u, t}. The first step is to transform β to a deterministic automaton:

a

h

b

i

j

ab

Then, Rσ0
= Rσ3

= {(h, {i}), ..., (i, {i}, ...)}3, Rσ1
= {(i, {i, j}), ...}, Rσ2

=
{(h, {i, j}), ...}. Now, in step 3 we compute the relations between states of the
transition system: R(r,r) = Rσ0

, R(r,s) = Rσ1
, R(s,t) = Rσ3

and R(r,u) = Rσ2
.

The sets for the rest of the pairs of states are empty. We close the relations
under concatenation, then we obtain:

3Note that we do not close the set upwards.

5.6 Adding Accelerated Transitions. 121

• R(r,s) = {(h, {i, j}), ...}

• R(r,t) = ∅

• R(s,t) = {(h, {i}), ..., (i, {i}), ...}

• R(r,u) = {(h, {i, j}), ...}

Then, the final result will be {r, s}.

5.6 Adding Accelerated Transitions.

So far, we have described how to capture semantically a transition that rep-
resents a set of computations. A different problem is, given a specification of
the system, how to add sound accelerated -transitions. We give here some ideas
about this.

In some cases a transition of the type s
a∗
→� r corresponds to a loop in the

original specification. The transition expresses that the loop executes a number
of actions a and then terminates. We do not know how many cycles it contains,
but it ends at some point. Therefore to add such a transition to the abstract
labelled transition system, we will have to prove termination of the concrete
loop. Proving termination of sequential programs has been investigated for
many years, we believe that many of the results of this field can be applied to
our framework.

One of the common ways to prove termination is by checking that the com-
putation progresses in a given well-founded domain. For example, in order to
infer fairness constrains, Pnueli ([79]) uses a monitor process composed in paral-
lel with the modelled system. The monitor controls the progress in the domain
of the naturals. In some cases it is trivial to find the domain, for example for the
decreasing counter, but this is not always the case. There are other techniques
and tools for proving termination, see for instance [119, 54].

A transition like s
(b·a∗·c)+

→ � r can capture a nested loop, whose termination
can be proved separately for each loop. Another common source of missing
must-transitions in abstractions appears in if-then-else constructions, when the
condition is abstracted and it cannot be computed whether it is true or false.
In that case, the abstraction will contain two may-transitions, one to the then

branch (s
a
→3 r) and the other to the else one (s

b
→3 r). There we are sure that

either one or the other is taken, therefore we can add the transition s
a|b
→� r.

Let us now do a simple analysis of the bounded retransmission protocol, to
describe a possible methodology to add and use accelerations.

5.6.1 The Bounded Retransmission Protocol Revisited

We refer to the Bounded Retransmission Protocol explained in section 2.5. We
have seen that the property C4 was possibly satisfied but not necessarily, there-
fore we could not infer its satisfaction or refutation to the concrete. The prop-
erty stated that there is a path, after a positive notification of the receiver, in

122 Chapter 5 Accelerated Modal Abstractions

which the sender notifies I don’t know. The sender delivers dk when he is not
sure that the last packet has been delivered or not, because this packet or its
acknowledgements were lost and the number of retransmissions has expired.

(C4): [T* . ’R(.∗,Iok)’] 〈 T* . ’S(Idk)’ 〉 T

We recall that, to prove the property, we have to find all may-paths leading
to ’R(.∗,Iok)’, and then, to check that they are followed by a must-path leading
to ’S(Idk)’. The property should be true in the concrete, but the abstraction
that we have selected removes the real value of the retransmissions, so the sender
is not sure if the number has decreased until zero.

We are going to do an ad hoc analysis of the system in order to enrich
the model to be able to prove that the property is necessarily satisfied. If we
examine the counter-example given for the necessary evaluation of formula C4,
we see that there is an abstract may-loop from which a may dk transition can
be reached. This loop contains the following actions:

1. The sender transmits the last packet.

2. The sender sets the timer and decreases the counter.

3. The channel delivers the packet.

4. The receiver notifies ok.

5. The receiver sends the acknowledgement.

6. The channel loses the acknowledgement.

7. The timer interrupts because the timeout expires.

We see the counter that controls the number of retransmissions is only
changed in action 2 where it is decreased. In the concrete specification the
counter is decreased by one and, trivially, at some point it will reach zero, but
in the abstract we have lost the value of the counter. We know that the counter
is bigger than zero but we do not know the exact value. Therefore, we can add
an accelerated transition capturing the computation of the loop +

σ
→� 0, where:

• + is the state in which we start to transmit a packet. The counter is
bigger than zero.

• 0 is the state is which the counter is zero, therefore from there the sender
can notify I don’t know.

• The label σ is equal to (1·2·3·4·5·6·7)+

By adding this new transition we can infer the satisfaction of the property
which could not be inferred otherwise. We see that the language generated by
the new transition σ concatenated with ’S(Idk)’ is included in JT∗ · ’S(Idk)’ K.

5.7 Conclusion 123

5.7 Conclusion

In this chapter we have introduced an extension of the abstraction of action
labels which allows to encode more expressive abstractions. The framework
we have defined can be improved by using more complicated relations between
concrete and abstract domains, such as Galois Connections, instead of just
homomorphisms.

Even though the model checking algorithm we have defined is in general
very inefficient the regular expressions used to define accelerations will usually
be very simple, which should control the extra computational costs.

In the previous section, we have done a manual analysis of the communi-
cation protocol from which we can extract a general methodology for adding
accelerations. Let us survey the steps:

1. First, we try to prove a property using the simple abstraction framework.
If the property cannot be inferred or refuted, then

2. we analyse the counter-example looking for the abstract behaviours that
do not correspond to any concrete behaviour.

3. If a counter-example is a spurious may loop, we try to prove termination
of it. Here, we can reuse many of the existing techniques and algorithms
for termination.

4. We add the corresponding accelerated transition.

5. We try to prove the property again.

The methodology is based on classical counter-example guided refinement
(see, for example [82]) with the inclusion of the termination proofs and the
addition of accelerations. Work has to be done to implement the ideas into the
toolset described in Chapter 3.

The use of accelerations can be combined with fairness constraints à la
Pnueli. In our framework, on the one hand accelerations add more necessary
behaviours which helps to prove more liveness properties. On the other hand
fairness constraints remove possible behaviours which help to prove more safety
properties.

Related work is so-called regular model checking [19, 1]. In that theory
systems are fully specified using regular expressions, then the verification is
done by comparing the language generated by the system with some property.
Regular model checking has been successfully used to verify simple examples,
in which the behaviours present a lot of regularity [44]. In our framework,
also some parts of the system are describe by regular expressions, which allows
more flexibility. Furthermore, our technique is integrated inside the abstract
interpretation framework.

124 Chapter 5 Accelerated Modal Abstractions

5.8 Proofs

Proof Lemma(5.4.1): We only include the proof for the modal operators.

Case: Necessary Universal

1. We have to prove J[β]ϕKnec = J¬〈β〉¬ϕKnec

2. J[β]ϕKnec equals:

{s | ∀ r, a0, ..., ai. s
a0→3 · · ·

ai→3 r ∧ [a0 · · ·ai] ∈ JβK =⇒ r ∈ JϕKnec}

3. J¬〈β〉¬ϕKnec = ¬J〈β〉¬ϕKpos , which equals:

{s | 6 ∃ r, a0, ..., ai. s
a0→3 · · ·

ai→3 r ∧ [a0 · · ·ai] ∈ JβK ∧ r ∈ J¬ϕKpos}

4. which is equivalent to:

{s | ∀ r, a0, ..., ai. s
a0→3 · · ·

ai→3 r ∧ [a0 · · · ai] ∈ JβK =⇒ r 6∈ J¬ϕKpos}

5. By the semantics of negation r 6∈ J¬ϕKpos is equal to r ∈ JϕKnec which
proves the case.

2 (Case)

Case: Possible Universal

1. We have to prove J[β]ϕKpos = J¬〈β〉¬ϕKpos

2. J[β]ϕKpos equals:

{s | ∀ r , σ0, ..., σi. s
σ0→� · · ·

σi→� r ∧ Jσ0 · · ·σiK ⊆ JβK =⇒ r ∈ JϕKpos}

3. J¬〈β〉¬ϕKpos = ¬J〈β〉¬ϕKnec , which equals:

{s | 6 ∃ r, σ0, ..., σi. s
σ0→� · · ·

σi→� r ∧ Jσ0 · · ·σiK ⊆ JβK ∧ r ∈ J¬ϕKnec}

4. which is equivalent to:

{s | ∀ r , σ0, ..., σi. s
σ0→� · · ·

σi→� r ∧ Jσ0 · · ·σiK ⊆ JβK =⇒ r 6∈ J¬ϕKnec}

5. By the semantics of the negation r 6∈ J¬ϕKnec is equal to r ∈ JϕKpos which
proves the case.

2 (Case)

2 (Lemma)

5.8 Proofs 125

Proof: (Lemma 5.4.2) We apply induction over the structure of ϕ. The
cases T, F,¬,∧ and ∨ are trivial. We consider J〈β〉ϕKnec ⊆ J〈β〉ϕKpos, the other
case is similar:

1. By Induction Hypothesis we have: JϕKnec ⊆ JϕKpos

2. s ∈ J〈β〉ϕKnec implies:

∃ r, σ0, ..., σi. s
σ0→� · · ·

σi→� r ∧ Jσ0 · · ·σiK ⊆ JβK ∧ r ∈ JϕKnec

3. By definition of accMLTS, s
σ
→� t implies s

a0→3 · · ·
ai→3 t and [a0 · · ·aj] ∈

JσK, which implies:

s
σ0→� · · ·

σi→� r =⇒ s
a0,0
→ 3 · · ·

a0,j
→ 3 · · ·

ai,0
→3 · · ·

ai,j
→3 r ∧

[a0,0 · · · a0,j · · · ai,0 · · · ai,j] ∈ Jσ0 · · ·σiK

4. Therefore, assuming s ∈ J〈β〉ϕKnec implies:

∃ r, a0,0 . . . a0,j . . . ai,0 . . . ai,j . s
a0,0
→ 3 · · ·

a0,j
→ 3 · · ·

ai,0
→3 · · ·

ai,j
→3 r ∧

[a0,0 · · · a0,j · · · ai,0 · · · ai,j] ∈ JβK and by I.H. r ∈ JϕKpos

hence, s ∈ J〈β〉ϕKpos , which proves the Lemma.

2(Lemma)

Proof: (Lemmas 5.4.3 and 5.4.4) These proofs can be found at the end
of Chapter 1

2(Lemmas)

Let us now proceed with the proofs of the Theorems.

Proof (Theorem 5.4.5): We apply induction over the structure of ϕ, on the
necessary and possible semantics at the same time. We skip the trivial cases.

Case: Necessary Existential

1. We have to prove N̂ , ŝ |=nec 〈β〉ϕ implies M̂, ŝ |=nec 〈β〉ϕ

2. By Induction Hypothesis, we know N̂ , ŝ |=nec ϕ =⇒ M̂, ŝ |=nec ϕ

3. N̂ , ŝ |=nec 〈β〉ϕ implies:

∃ r̂, σ′
0, ..., σ

′
i. ŝ

σ′
0

_� · · ·
σ′

i
_� r̂ ∧ Jσ′

0 · · ·σ
′
iK ⊆ JβK ∧ N̂ , r̂ |=nec ϕ

126 Chapter 5 Accelerated Modal Abstractions

4. By definition of approximation, ŝ
σ′

_� r̂ =⇒ ∃σ0, ..., σj . ŝ
σ0→� · · ·

σi→�

r̂ ∧ Jσ0 · · ·σiK ⊆ Jσ′K, therefore:

ŝ
σ′
0

_� · · ·
σ′

i

_� r̂ =⇒ ∃σ0,0, ..., σ0,j , . . . , σi,0, ..., σi,j .

ŝ
σ0,0
→ � · · ·

σ0,j
→ � · · ·

σi,0
→� · · ·

σi,j
→� r̂∧

Jσ0,0 · · ·σ0,j · · ·σi,0 · · ·σi,j . K ⊆ Jσ′
0 · · ·σ

′
iK

5. Assuming N̂ , ŝ |=nec 〈β〉ϕ, follows:

∃ r̂, σ0,0, ..., σ0,j , . . . , σi,0, ..., σi,j .ŝ
σ0,0
→ � · · ·

σ0,j
→ � · · ·

σi,0
→� · · ·

σi,j
→� r̂ ∧

Jσ0,0 · · ·σ0,j · · ·σi,0 · · ·σi,j K ⊆ JβK and by I.H. M̂, r̂ |=nec ϕ

which proves the case.

2 (Case)

Case: Possible Existential

1. We have to prove N̂ , ŝ 6|=pos 〈β〉ϕ implies M̂, ŝ 6|=pos 〈β〉ϕ or what is the

same M̂, ŝ |=pos 〈β〉ϕ implies ŝ |=pos 〈β〉ϕ

2. By Induction Hypothesis, we know M̂, ŝ |=pos ϕ =⇒ N̂ , ŝ |=pos ϕ

3. M̂, ŝ |=pos 〈β〉ϕ implies:

∃ r̂, a0, ..., ai.. ŝ
a0→3 · · ·

ai→3 r̂ ∧ [a0 · · · ai] ∈ JβK ∧ M̂, r̂ |=pos ϕ

4. By definition of approximation, ŝ
σ
→3 r̂ =⇒ ŝ

a
_3 r̂, therefore:

ŝ
a0→3 · · ·

ai→3 r̂ =⇒ ŝ
a0

_3 · · ·
ai
_3 r̂

5. Assuming M̂, ŝ |=pos 〈β〉ϕ, follows:

∃ r̂, a0, ..., ai.ŝ
a0

_3 · · ·
ai

_3 r̂ ∧ [a0 · · · ai] ∈ JβK and by I.H. N̂ , r̂ |=pos ϕ

which proves the case.

2 (Case)

2 (Theorem)

Proof (Theorem 5.4.6): As in the previous Theorem, we apply induction
over the structure of ϕ4. We skip the trivial cases.

Case: Necessary Existential

4In this case, we do not explicitly represent the model to which formulas refer.

5.8 Proofs 127

1. We have to prove, ŝ |=nec 〈β〉ϕ implies s |= 〈β〉ϕ

2. By Induction Hypothesis, we know ŝ |=nec ϕ ∧ h(s) = ŝ =⇒ s |= ϕ

3. ŝ |=nec 〈β〉ϕ implies:

∃ r̂, σ0, ..., σi. ŝ
σ0→� · · ·

σi→� r̂ ∧ Jσ0 · · ·σiK ⊆ JβK ∧ r̂ |=nec ϕ

4. By definition of minimal abstraction, ŝ
σ
→� r̂ implies ∀ s.h(s) ∈ ŝ =⇒

(∃ r, a0, ..., aj . h(r) = r̂ ∧ s
a0→ ...

aj
→ r ∧ [a0 · · · aj] ∈ JσK), therefore:

ŝ
σ0→� · · ·

σi→� r̂ =⇒

(∀ s.h(s) ∈ ŝ =⇒ ∃ r, a0,0, ..., a0,j , ..., ai,0, ..., a0,j . h(r) = r̂∧

s
a0,0
→ · · ·

a0,j
→ · · ·

ai,0
→ · · ·

ai,j
→ r ∧ [a0,0 · · ·a0,j · · ·ai,0 · · ·ai,j] ∈ Jσ0 · · ·σiK)

5. Assuming ŝ |=nec 〈β〉ϕ, follows:

∃ r, a0,0, ..., a0,j , ..., ai,0, ..., ai,j . s
a0,0
→ · · ·

a0,j
→ · · ·

ai,j
→ · · ·

ai,j
→ r ∧

[a0,0 · · ·a0,j · · · ai,0 · · ·ai,j] ∈ JβK and by I.H. r |= ϕ

which proves the case.

2 (Case)

Case: Possible Existential

1. We have to prove ŝ |=pos 〈β〉ϕ implies s 6|= 〈β〉ϕ or what is the same
s |= 〈β〉ϕ implies ŝ |=pos 〈β〉ϕ

2. By Induction Hypothesis, we know s |= ϕ ∧ h(s) = ŝ =⇒ ŝ |=pos ϕ

3. s |= 〈β〉ϕ implies:

∃ r, a0, ..., ai. s
a0→ · · ·

ai→ r ∧ [a0 · · · ai] ∈ JβK ∧ r |= ϕ

4. By definition of minimal abstraction, h(s)
a
→ r =⇒ ŝ

a
→ h(r), therefore:

s
a0→ · · ·

ai→ r =⇒ ŝ
a0→3 · · ·

ai→3 h(r)

5. Assuming s |= 〈β〉ϕ, follows:

∃ r̂, a0, ..., ai. ŝ
a0→3 · · ·

ai→3 r̂ ∧ [a0 · · ·ai] ∈ JβK and by I.H. r̂ |=pos ϕ

which proves the case.

2 (Case)

2 (Theorem)

128 Chapter 5 Accelerated Modal Abstractions

Part II

On Coordination...

129

Chapter 6

Formal Model of JavaSpaces

This chapter introduces a formal model of JavaSpaces. JavaSpaces is a shared
data space architecture that provides a virtual repository allowing entities, like
clients and servers, to communicate by sharing objects. The formal model,
written in µCRL, captures the main features of the architecture, such as, com-
munication primitives, transactions, leasing and the notification mechanism.
The main purpose of the proposed formalism is to allow the verification of dis-
tributed applications built on top of JavaSpaces. The next chapter is dedicated
to illustrating the use of the model by verifying different applications.

131

132 Chapter 6 Formal Model of JavaSpaces

6.1 Introduction

It is well known that the design of reliable distributed systems can be an ex-
tremely arduous task. The parallel composition of processes with a simple
behaviour can produce a wildly complicated system. A distributed application
has to face some important challenges: it has to facilitate communication and
synchronisation between processes across heterogeneous networks, dealing with
latencies, partial failures and system incompatibilities. The use of coordina-
tion architectures is a suitable way to manage the complexity of specifying and
programming large distributed applications.

Re-usability is one of the most important issues of coordination architec-
tures. Once the architecture has been implemented on a distributed network,
different applications can be built according to the requirements without any
extra adaptation. Programmers implement their systems using the interface
provided by the architecture, which consists of a set of primitives or operators.

In this chapter, we study the JavaSpacesTM [91] technology that is a Sun
Microsystems, Inc. architecture based on the Linda coordination language [25].
JavaSpaces is a JiniTM [92] service that provides a platform for designing dis-
tributed computing systems. It gives support to the communication and syn-
chronisation of external processes by setting up a common shared space. Java-
Spaces is both an application program interface (API) and a distributed pro-
gramming model. The coordination of applications built under this technology
is modeled as a flow of objects. The communication is different from traditional
paradigms based on message passing or method invocation models. Compo-
nents of applications built under the JavaSpaces model are “loosely coupled”,
they do not communicate with each other directly but by sharing information
via the common repository.

Several remote processes can interact simultaneously with the shared repos-
itory, the space handles the details of concurrent access. The interface provided
by JavaSpaces is essentially composed by insertion and lookup primitives. Fur-
thermore, it give support for transactions, leasing and it implements a notifica-
tion mechanism. The API provided by Sun Microsystems is:

public interface JavaSpace {

Lease write(Entry e, Transaction txn, long lease)

throws RemoteException, TransactionException;

public final long NO_WAIT = 0; // don’t wait at all

Entry read(Entry tmpl, Transaction txn, long timeout)

throws TransactionException, UnusableEntryException,

RemoteException, InterruptedException;

Entry readIfExists(Entry tmpl, Transaction txn,

long timeout)

throws TransactionException, UnusableEntryException,

RemoteException, InterruptedException;

Entry take(Entry tmpl, Transaction txn, long timeout)

throws TransactionException, UnusableEntryException,

6.1 Introduction 133

RemoteException, InterruptedException;

Entry takeIfExists(Entry tmpl, Transaction txn,

long timeout)

throws TransactionException, UnusableEntryException,

RemoteException, InterruptedException;

EventRegistration notify(Entry tmpl, Transaction txn,

RemoteEventListener listener, long lease,

MarshalledObject handback)

throws RemoteException, TransactionException;

Entry snapshot(Entry e) throws RemoteException;

}

A write operation places a copy of an entry into the space. Entries are
granted for a fixed period of time (lease). The space automatically removes the
objects when their lease expires. Two different entries have the same type if
and only if they are of the same class. They should implement the following
interface:

public interface Entry extends java.io.Serializable { }

Entries can be located by “associative lookup” implemented by matching
templates. Processes find the entries they are interested in by expressing con-
straints about their contents without having any information about the object
identification, owner or location. Match operations use entry objects of a given
type, whose fields can either have values (references to objects) or wildcards
(null references). When considering a template T as a potential match against
an entry E, fields with values in T must be matched exactly by the value in the
same field of E. Wildcards in T match any value in the same field of E.

A read request returns a copy of an object from the space that matches the
provided template. Read requests are blocking in principle, but processes can
limit the amount of time they are willing to wait for a matching entry. If this
time expires without finding a matching entry, a null entry is returned. Read-
IfExists is similar to read, but it only blocks if there exist matching objects in
the space that are involved in some transaction (see below). Take and takeIfEx-
ists are the destructive versions of read: once an object has been returned, it is
removed from the space.

Transactions ensure that a set of grouped operations are performed on the
space atomically, in such a way that either all of them complete or none are
executed. After the creation of a transaction, a process can either abort it, or
commit. Transactions are also subject to leasing. If the lease expires the space
automatically aborts the transactions and raises an exception. Transactions
affect the behaviour of the primitives. E.g., an object written within a trans-
action is not externally accessible until the transaction commits, if the trans-
action aborts the insertion will never be visible. Transactions provide a means
for enforcing consistency. JavaSpaces’ transactions are claimed to preserve the
ACID properties: Atomicity, Consistency, Isolation and Durability. The trans-
actional model, the leasing mechanism and the event notification mechanism

134 Chapter 6 Formal Model of JavaSpaces

are supported by the JINI architecture. We see below an extract of the Jini
specification of transactions:

public interface Transaction {

public static class Created implements Serializable {

public final Transaction transaction;

public final Lease lease;

Created(Transaction transaction, Lease lease) {...}

}

void commit()

throws UnknownTransactionException, ...;

void abort()

throws UnknownTransactionException, ...;

...

}

Transactions are create by means of an external entity called Transaction
Manager, we see part of its interface:

public interface TransactionManager

extends Remote, TransactionConstants

{

public static class Created implements Serializable {

public final long id;

public final Lease lease;

public Created(long id, Lease lease) {...}

}

Created create(long leaseFor)

throws LeaseDeniedException, ...;

int getState(long id)

throws UnknownTransactionException, ...;

...

}

The transaction manager is in charge of creating new transactions, and per-
forming the commits, aborts, et cetera... Apart from transactions, the space
also handles some distributed events, in particular: a process can inform the
space about its interest in future incoming entries by using the notify primitive.
The space will notify by an event when a matching object arrives into the space.
This feature will be explained in more detail in the next section.

Figure 6.1 presents an overview of the JavaSpaces architecture. Below, we
present a small example of a function that renames entries that match a given
template to a different type. The renaming is encapsulated in a transaction.

renamer(JavaSpace space,

TransactionManager trcManager, MyEntry typeA){

while(true){

6.1 Introduction 135

Application

process

Application

process

process

Application

process

Application

Application

process

entries

read(waiting)

notify

write
Transaction

take

Expired Entry

Spacenotify
event

read takewrite

waiting for
notification

Figure 6.1: JavaSpaces architecture overview

try{

Transaction trc =

(Transaction) trcManager.create(TIMEOUT);

MyEntry e =

(myEntry) space.take(typeA, trc, long.MAX_INT);

space.write(e.rename(), trc, Lease.FOREVER);

trc.commit();

} catch (Exception ex){

break; // exit the loop

}

}

}

The function first creates a transaction by requesting it to a transaction
manager. Then, the process retrieves one entry of typeA by doing a blocking
take. The entry is selected by using a template that is provided in the arguments
of the function. A template is an entry in which some fields have values an the
rest are null. The matching is performed by comparing the entries of the space
with the non-null values of the template. After the take, the function puts the
renamed version into the space and commits the transaction. If the timeout
of the transaction expires the space sends an exception which is caught by the
process, then the process finishes.

A full description of the JavaSpaces and Jini architectures can be found at:

• http://www.jini.org/nonav/standards/davis/doc/specs/html/js-spec.html

• http://www.jini.org/nonav/standards/davis/doc/specs/html/coreTOC.html

136 Chapter 6 Formal Model of JavaSpaces

6.1.1 Modelling JavaSpaces

This chapter is dedicated to explaining the formal specification of the JavaSpaces
architecture. One of the main difficulties of the specification resides in the lack
of orthogonality of the different features of the architecture. Some of the features
interfere with others. For instance, the results of the write operations depends
on whether they are executed inside a transaction or not. This fact inflates the
number of possible combinations of behaviours. We need to take into account
all the possibilities, which increases the difficulty of the modelling task. The
model has been built taking into account the following considerations:

1. The model should support the most important parts of the JavaSpaces
specification introduced above. Even though it has to be as compliant
as possible with the informal specification provided by Sun [91], some
concepts are left out to keep the model simple and suitable to be used
for automatic verification. For example, we have left away the snapshot
operation which is basically mend to improve performance of reading the
same entry several times.

2. The main goal of the model is to be used for verification by model checking.
In general, to apply model checking, we need to generate the full state
space of the system and in order to generate it we need an executable and
finite specification.

3. Therefore, we need to select the correct level of abstraction in order to have
enough details of the model to allow the execution of it. However, we do
not specify the internal behaviours of the algorithms used by JavaSpaces,
we only need to represent the external actions that they perform. For
example, we have not modelled in fully detail the transaction mechanism,
with the transaction manager, the protocols, et cetera... Instead, we have
modelled the external behaviour of the transactions.

4. An executable specification allows to use simulation to get the first insight
into the analysed systems and to quickly check the behaviour of them, as
a step prior to the formal verification.

5. If we want finite specifications, we are forced to constrain the instances of
the systems by limiting the resources that the space and applications can
access. We are going to define a set of constants that bound the different
sources of infiniteness of the systems.

6. The behaviour of JavaSpaces applications strongly depend on the data
structures managed by the space. µCRL is a suitable language to model
this system because it allows an elegant integration of data and processes.

According with these considerations and the language selected to do the
specification, we enumerate below some of the important modelling choices:

6.1 Introduction 137

• The different classes of the JavaSpaces architecture are specified using
µCRL sorts. In section A.1 we give a full list of all the sorts.

• The use of sorts does not allow to implement the same matching procedure
as it is done in the JavaSpaces specification. We have modelled it by using
queries instead of by matching templates, see section 6.2.

• The main entities of the space (Entries, Transactions, Leases,...) are iden-
tified by using natural numbers. These numbers are used as pointers to
the objects.

• In the JavaSpaces specification, resources are limited, for instance, there is
maximum number of entries that can be stored in the space. These limits
depend on the available memory of the system. To model this feature, we
use costants to bound the identifiers of the resources. We modelled also
a mechanism to assign fresh identifiers to every created resource, when
possible.

• JavaSpaces primitives may raise exceptions due to, for example, network
failures or external interruptions. For simplicity, we have modelled the
exception mechanism only in case of expiration of transactions. All the
primitives (but look-up operations) are considered atomic.

• Look-up operations (take, read, takeIfExists and readIfExists are modelled
by two actions. One used by the external process to do the query and
another used by the space to return the required values, see section 6.3.1.

• µCRL does not have a mechanism to handle exceptions. To model excep-
tions, in case of transaction expiration, we have used an extra action that
should be executable in all the scope of the transaction, see section 6.2.1.

• The time is modelled using a centralised clock operated by the space, see
section 6.3.4. There is no synchronisation between the clocks of external
applications and the central time.

• We have considered that the space always grants the requested leases
and timeouts. In the JavaSpaces specification, the space in some cases is
allowed to grant smaller times.

• JavaSpaces implementations are multi-threaded hence many different op-
erations can be done in parallel. Instead of having different processes, we
modelled the space as a single process that can handle multiple requests
by using interleaving.

The modelling choices are described with more detail in the next sections.
After this short introduction about the JavaSpaces architecture, and the main
goals and considerations about the formal model, the rest of the chapter is
organised as follows: first, we introduce the specification from the external
application point of view, describing the JavaSpaces interface. Then, we present

138 Chapter 6 Formal Model of JavaSpaces

the model of the implementation details from the space point of view. The
appendix includes the full µCRL specification and a guide with the description
of all the data structure included in the specification.

6.2 Application Point of View

The space is modeled as a single process called javaspace. User applications are
implemented as external processes executed in parallel with the space. Exter-
nal applications exchange data between them by transferring entries through the
shared space. The communication between the javaspace process and the exter-
nal applications is done by means of a set of synchronous actions, derived from
the JavaSpaces API, presented in the previous section. A JavaSpaces system is
specified in µCRL as follows1:

System = τI∂H(javaspace(...) ‖ external p0(...) ‖ external p1(...) ‖ ...)

The arguments of the javaspace process represent the current state of the
space. They are composed by: stored objects, pending look-up operations,
active transactions, et cetera. . . These arguments are explained in detail in sec-
tion 6.3. External processes are anonymous and they cannot communicate with
each other but through the space. We recall that τI is use to hide a set of
actions and ∂H to force communication of some specific actions, we explain the
specification in more detail in section 6.4.

In the JavaSpaces specification, an entry corresponds to a serialisable Java
object which implements the public interface Entry. In our model, entries are
represented by a sort. Users can define their own data structure according to the
application requirements. Entries are composed by data fields from standard
sorts (naturals, booleans,. . .) or new sorts, and operators. The sort Entry
must include the equality (eq) function, and the constructor entryNull, both are
necessary to perform the look-up operations. The following code presents the
definition of a simple type of entries:

sort Entry

func entryNull:→Entry

A,B: →Entry

map eq: Entry×Entry→Bool

rename:Entry→Entry

var e: Entry
rew eq(e, e) = T

eq(entryNull, A) = F eq(A, entryNull) = F
eq(entryNull, B) = F eq(B, entryNull) = F
eq(A, B) = F eq(B, A) = F
rename(A) = B rename(B) = A

1We refer to section 2.2 for an introduction to µCRL.

6.2 Application Point of View 139

The insertion of an entry into the space is done by means of the write action.
The µCRL definition is derived from the following fragment of the JavaSpaces
API:

Lease write(Entry e, Transaction txn, long lease)

throws RemoteException, TransactionException;

The arguments of the action write are: the entry to insert, and the transac-
tion identifier to which the action is attached. The space returns the reference
to the requested lease. The µCRL signature of the operation is:

sort Nat, Entry, Time
act write: Entry×Nat×Time×Nat

The first three arguments are provided by the external application, the fourth
is the return value. The inserted data have to be of the sort Entry, as defined
above. The behaviour of the action depends on whether it is executed under
a transaction or not. If it is not joined to any transaction, meaning that the
transaction id parameter is equal to NULL, then the insertion is instantaneously
updated in the space. The use of transactions is explained in more detail further
in the present section. In our model, Write actions are executed atomically. We
do not allow exceptions during operations (the same assumption is made for all
the operations, the only exceptions allowed are the ones caused by expiration of
transactions). Once a write has been executed the entry is successfully inserted.
Different write invocations will place different objects in the repository, even if
the data values are equal.

Users can associate a lease to every inserted entry. An entry is automati-
cally removed from the space when its lease expires. Leases are of sort Time
which basically consists of natural numbers together with a special constant
FOREVER. The null value (0) means that the entry is deleted in the same
time unit that it is placed in the space. The FOREVER value says the entry
will never be removed. For simplicity, we assume that the requested leases are
always granted (in the real JavaSpaces the granted lease may differ from the
requested one). The space returns the reference to the lease, which is a natural
number (the fourth argument of write). The lease can be renewed by using the
following action, in which the process passes the lease identifier and the new
requested timeout to the space:

act renew: Nat×Time

We have implemented another version of the write action with three argu-
ments (write: Entry×Nat×Time) in which the space does not return the lease’s
reference. This version is used when the external process does not have future
interest in modifying the lease’s timeout. We give an example of write invoca-
tion in which the application process inserts an entry A not attached to any
transaction and leased, first, for one time unit and then upgraded to two time
units:

140 Chapter 6 Formal Model of JavaSpaces

proc p =
...
.
∑

lease:Nat write(A, NULL, tt(1), lease)

.renew(lease, tt(2))
...

Look-up primitives could be classified as: destructive and non-destructive,
depending on whether the item is removed or not after the execution of the
action, and in blocking and non-blocking depending on whether the process waits
until it receives the requested item. We can invoke destructive look-ups (take)
or non-destructive (read), setting up the time during which the action blocks.

The JavaSpaces specification says that a look-up request searches in the
space for an Entry that matches the template provided in the action. If the
match is found, a reference to a copy of the matching entry is returned. If
no match is found, null is returned. We implement the matching operation
by adding to every invocation one predicate, as argument, which determines
whether an entry matches the action or not. This predicate belongs to the sort
Query, defined using the sort Entry. The sort Query must include the operator
match used to perform the matching.

Let’s see an example of Query sort that has three possible queries: any that
matches any entry in the space and isTypeA and isTypeB that match A and B
entries respectively:

sort Query

func any: →Query

isTypeA, isTypeB: →Query

map match: Query×Entry→Bool

var e: Entry q: Query
rew match(q, entryNull) = F match(any, e) = ¬ eq(e, entryNull)

match(isTypeA, A) = T match(isTypeA, B) = F
match(isTypeB, A) = F match(isTypeB, B) = T

An entry of the space will match a look-up action if it satisfies the associated
query, as indicated by the match predicate. We have implemented four look-
up primitives: read, take, readIfExists and takeIfExists. All of them take the
following arguments: channel identifier, transaction identifier number, timeout
and query.

The execution of a look-up primitive is done by means of two atomic actions.
First the external process invokes the primitive (read, take, . . .), then the space
communicates the result of the requests by returning a matching entry if the
operation was successfully performed or an entryNull if the timeout has expired
and no objects satisfied the query. A well-formed specification of an external ap-
plication has to have a return operation immediately after a look-up operation.
This constraint avoids that a process executes two look-up operations without
waiting for the result. The external processes provides an identifier pointing to
the channel where it is expecting the answer. The returned entry will be send

6.2 Application Point of View 141

by the space to this channel. The signatures are2:

sort Nat, Entry, Time, Query
act read, take, readIfExists,takeIfExists: Nat× Nat×Time×Query

ReadReturn, TakeReturn,
ReadIEReturn, TakeIEReturn: Nat×Entry

The return operation uses the chanel identifier passed as argument in the
look-up invocation, to send the returned entry. Let’s see an example program
using the blocking take which requests an entry of type A:

proc p(id:Nat) =
...
.take(id, NULL, tt(1), isTypeA)

.
∑

e:Entry TakeReturn(id, e)

....� eq(e, entryNull) �...

...

The ifExists operations perform a test of presence before blocking, i.e., they
check whether there are matching entries in the space which may be locked
by some transactions. If there are no (locked or unlocked) entries the ifExists
operations will not block, i.e., its timeout will be set to 0, and an entryNull will
be sent as soon as the space executes the return operation.

6.2.1 Transactions

In our model the instantiation of a transaction is done by the action create,
which has as arguments: the created transaction (provided by the space), and
the requested lease. The space allocates a new resource and returns to the user
the identification number of the created transaction and the reference to the
granted lease, both are encapsulated in the TransactionCreated structure.

sort TransactionCreated
func trcCreated: Nat×Nat →TransactionCreated

Once the transaction has been created, operations join to it by passing its
id number to the corresponding primitives. A transaction can complete by
the explicit actions commit and abort, or by being automatically aborted when
its lease expires. If the last case happens, the space sends an “exception”. We
model the exceptions by a communication action called exception parameterized
with the id of the transaction. If a process creates a transaction, it has to
add the possibility of receiving exceptions to all the actions executed until the
commitment (or abortion) of the transaction. The signatures of the actions
involved in the transaction mechanism are:

2We used the following name convention on the whole specification: we write with lower
case the actions that are actively performed by a process, with upper case the ones that are
reactive and by the initial letter the result of the communication. For example, take is actively
performed by an external process, the space will react by doing Take (with upper case). Both
actions will communicate and result in an action T (see section 6.4).

142 Chapter 6 Formal Model of JavaSpaces

sort Nat, Time
act create: TransactionCreated×Time

commit, abort, Exception: Nat

Transactions make changes on the semantics of the primitives, e.g. when a
write action is performed under a transaction, the entry will be externally visible
only after the transaction commits, and if the transaction is aborted no changes
will be updated in the space. If a process inserts an entry under a transaction,
and meanwhile another process executes a readIfExists, the second process will
block to wait for the commitment of the transaction (or for the timeout).

We have presented, so far, enough ingredients of the µCRL interface to be
able to specify the small example we have shown in the introduction. The
example is modeled as a recursive process which renames entries of type A:

proc renamer(id: Nat) =∑
trc:TransactionCreated create(trc, TIMEOUT)

.(take(id, trcId(trc), FOREVER, isTypeA)

+ Exception(trcId(trc)).δ)

.
∑

e:Entry (TakeReturn(id, e)

+ Exception(trcId(trc)).δ)

.(write(rename(e), trcId(trc), FOREVER)

+ Exception(trcId(trc)).δ)

.(commit(trcId(trc)) + Exception(trcId(id)).δ)

.δ

The transactional mechanism has been simplified, for example our model
doesn’t support nested transactions or transactions over multiple processes. The
inclusion of these features will need a deeper insight on the Jini architecture from
which JavaSpaces inherits the mechanism.

6.2.2 Notifications

Several entities are involved in the notification mechanism: The external pro-
cesses that register their interest in future incoming entries. The space which
fires events when a new incoming entry matches the queries associated to the
registrations. The destinations of the events, called listeners, wait for the arrival
of events and “react” to them and the network. Events travel through a net-
work which is assumed to be unreliable. Notifications can be lost, duplicated,
unordered,... note that it is not the same for takes, returns, et cetera which are
performed reliably and never be lost.

The registration is done by the synchronous action notify based on the Java-
Spaces specification [50].

EventRegistration notify(Entry tmpl, Transaction txn,

RemoteEventListener listener, long lease,

6.2 Application Point of View 143

MarshalledObject handback)

throws RemoteException, TransactionException;

The primitive gets, as arguments, the template to match entries, the refer-
ence to a transaction, the reference to the remote event listener, the lease and a
handback used to pass information from the registered application to the listen-
ers. If the transaction aborts all the registrations associated to the transaction
are cancelled.

After a notify registration, the space returns an eventRegistration object,
which includes the registration identification number (the space assigns a iden-
tification number to any new registration), the source of the events (in our case
this will be always the space), the granted lease and the initial sequence number
for events generated from the notify registration.

public class EventRegistration implements java.io.Serializable

{

public EventRegistration(long eventID,

Object eventSource,

Lease eventLease,

long seqNum) {...};

public long getID() {...};

public Object getSource() {...};

public Lease getLease() {...};

public long getSequenceNumber() {...};

}

Every matching entry will increase by one the sequence number of the reg-
istrations. If the registration is associated to a transaction, only written entries
inside the same transaction are counted. Newly generated events will contain a
sequence number greater than the previous one. Remote listeners are modelled
based on the interface below.

public interface RemoteEventListener extends Remote,

java.util.EventListener

{

void notify(RemoteEvent theEvent)

throws UnknownEventException, ...;

}

In the µCRL model, we have abstracted away the handback of the notify
registration. The template is replaced by a query, as in the previous operations.
For simplicity, we assume the registration is done atomically, thus no exceptions
can be fired between the beginning of the registration and its return. It would
not have been difficult to model the operation with exceptions as we did for the
transactions. Therefore, the initial sequence number of events will be zero. Due
to these simplifications, the space will return an eventRegistration containing

144 Chapter 6 Formal Model of JavaSpaces

only the registration identification number and the lease identifier. The regis-
tration is performed reliably so it does not throw any exception when executing.
The µCRL signature is:

sort Nat, Query, Time, EventRegistration
act notify: Nat×Time×Query×EventRegistration

The arguments are: the transaction identification number, the lease, the
query and the event registration (provided by the space).

Events sent by the space include the registration identification number to
which they are directed and the sequence number, which can be used by listeners
to know the number of events that occurred since the last notification.

An event listener is a process that reacts to the reception of an event and that
may be running remotely. Every listener contains a method (notify 3) invoked
whenever it receives a notification event. According to the JavaSpaces specifica-
tion the notify call is synchronous so the space waits for a listener until the call
finishes, but the JavaSpaces implementations are multi-threaded hence many
different notify calls can be done concurrently. We have modeled the notify
operation with our single javaspace process, assuming that we have an imple-
mentation with enough threads to manage all the notifications of the system.
We model the delivery in an asynchronous way, i.e., the µCRL space delivers
the event and doesn’t wait until the end of the method call of the listener. This
policy will not be admissible if there are too many listener registrations or if the
notify methods are very slow (as this would block the space for long periods) or
never return.

µCRL does not allow dynamic creation of processes at runtime so listeners
have to be defined at the beginning, according to the needs of the application.
A listener has the following structure:

proc listener(id: Nat) =∑
regId:Nat receiveRegId(id, regId).

listenerActive(id, regId)

proc listenerActive(id:Nat, regId: Nat, ...) =∑
seq:Event Notify(regId, seq)

.do work

.listenerActive(id, regId, ...)

The listener gets active when it receives from a process the registration
number to which it is associated. Then, by the action Notify receives events
from the space. The do work operation may be composed of any computation or
any communication with other processes or with the space. The listener cannot
be interrupted while it is performing some task. An example of a process that
registers its listener for events is:

3Not to be confused with the registration notify method.

6.3 Implementation Point of View 145

proc p(...,listenerId:Nat,...) =
...∑

evReg:EventRegistration

notify(NULL, FOREVER, isTypeA, evReg)

sendRegId(listenerId, regId(evReg))

...

Events go through a unreliable network. The network can always lose, dupli-
cate and reorder the events. We model the network by a new process composed
in parallel with the space, the application processes and the listeners. More
details about the network process are given in the next section. We use the
auxiliary communicating actions sendRegId and receiveRegId to pass infor-
mation between the listener and the process.

So far, we have presented the basic features of the JavaSpaces architecture
from the external point of view. All the methods contained in the JavaSpaces
API have been implemented but the snapshot. We consider that the later is not
essential for verification purposes because it is only used to increase performance
when the same entry is read several times. The next section is dedicated to
introducing the implementation details.

6.3 Implementation Point of View

The javaspace process handles the concurrent access of the external applications
to the common repository. It manages a data base storing the following data
(the full specification of the space is given in the appendices):

• The shared entries (M).

• The active transactions (Trc).

• Pending look-up operations (PA).

• Notify registrations (Reg).

The process executes non-deterministically the actions which are enabled at
any moment. The javaspace, following the requests of the external processes,
can at any time add new entries, start look-up operations, return values to the
the look-up actions, create, commit and abort transactions, decrement the time-
outs, create registrations, collect expired entries, renew leases, ... The actions
synchronise with an external process and update the data base of the space. All
the operations are done atomically, and do not raise exceptions.

Entries are internally encapsulated in a sort called Object, which includes the
entry, its lease and an identification number. The space automatically assigns
a fresh id to every new entry. The id is used to manage the locks induced by
the read operations performed under transactions. The signature of the Object
sort is defined as follows:

146 Chapter 6 Formal Model of JavaSpaces

sort Object

func object: Nat×Entry×Lease→Object

map eq: Object×Object→Bool

id:Object→Nat

entry:Object→Entry

lease:Object→Lease

decT:Object→Object

isExpired:Object→Bool

The function decT is used to decrement the lease of the Object. If the lease’s
timeout is FOREVER then it will never be decremented. isExpired returns true
if the lease timeout is equal to 0.

Objects are stored in a data base (M) that has the structure of a multiset.
The size of M is bounded by a constant (maxObjects). The entries are organ-
ised without any order, so when the space executes a search action, all of the
matching entries have the same possibility to be selected.

When the space receives an external invocation of a write, it creates a new
object and it inserts it into the set. The following fragment of code corresponds
to a write action not attached to any transaction:

∑
e:Entry, trcId:Nat, timeout:Time, objectId: Nat, leaseId: Nat

Write(e, trcId, timeout)

.javaspace(in(object(objectId, e, lease(leaseId, timeout)), M),

PA, Trc, match(e, trcId, Reg))

� eq(trcId, NULL) ∧ ¬ eq(e, entryNull) ∧

(lt(timeout, maxTime) ∨ eq(timeout, FOREVER)) ∧

eq(objectId, freshId(U(M, UWsets(Trc)))) ∧

lt(objectId, maxObjects) ∧

eq(leaseId, freshId(U(leases(M), U(leases(Trc), leases(Reg))))) ∧

lt(leaseId, maxLeases) � δ

We see that the write action can be done under the following conditions:

• The id of the transaction is equal to NULL. As we said before, the code
corresponds to the write without transaction. There is another summand
of the javaspace process in charge of handling the cases under transaction.

• The entry to write is not NULL.

• The lease’s timeout is either FOREVER or smaller than a given bound.
There is a constant fixing the maximum timeout that can be granted (max-
Time). This restriction applies to all timeouts appearing in the system.

• There is at least one fresh object id available. If the space is full, all the ids
are assigned to some entries therefore no more entries may be inserted.
The function freshId returns an unused id or maxObjects. The second

6.3 Implementation Point of View 147

possibility implies that the space is full and the entry cannot be inserted.
The objects are stored in M.

• The space checks if there are fresh ids in the union of all the places that
can store objects: in M and in special write sets of the transactions.

• There is at least one fresh lease id available. The search for leases ids is
done in the union all entities that can have associated leases.

After the execution of the action, the space updates the object set and checks
if there are some notify registrations that match the new entry, in order to send
a notification event. The matching of registrations is done by the function
match(e, trcId, Reg).

There is another summand handling the writes without transaction that also
returns the lease id to the external process. In this case the code is exactly the
same, the only difference is the action invocation which will include the lease’s
id : Write(e, trcId, timeout, leaseId).

6.3.1 Look-up Operations

Regarding the look-up primitives: when the space receives a search request first
it creates a pending action. A pending action includes: the type of action (read,
take, . . .), the transaction id to which it is associated, the query, the original
value of the timeout and the current timeout. Pending actions are stored in a
set PA of the sort ActionSet, we can see the full specification in the appendix A.
The following code presents a take request without transaction:

∑
procId:Nat, trcId:Nat, timeout:Time, query:Query

Take(procId, trcId, timeout, query)

.javaspace(M, in(action(takeA, trcId,

procId, timeout, query), PA), Trc, Reg)

� eq(trcId, NULL) ∧

(lt(timeout, maxTime) ∨ eq(timeout, FOREVER)) ∧

lt(len(PA), maxActions) � δ

The action set PA has the same structure as the object set. It is also bounded
by the constant maxActions. Pending actions do not have any identifier. If there
is an object that matches one of the pending actions then the space returns the
entry to the corresponding external process by means of the return action. An
entry matches an action if the execution of the match operation of the associated
query returns true. The return operation is not urgent, the space can postpone
the return even if there are some matching entries. If there is a pending action
with an expired timeout the space returns the entryNull. We give the code
corresponding to a successful return of matching entry for a take invocation.

∑
a:Action, o:Object

148 Chapter 6 Formal Model of JavaSpaces

takeReturn(procId(a), entry(o))

.javaspace(rem(o, M), rem(a, PA), Trc, Reg)

� get(PA, a) ∧ get(M, o) ∧

eq(type(a), takeA) ∧ eq(trcId(a), NULL) ∧

match(query(a), entry(o)) ∧ ¬ readLocked(o, Trc) � δ

The first three arguments of the return action are the ones that were provided
in the look-up invocation. After the take the object is removed from the space,
this will not be the case for the read returns. Before returning the entry, the
space checks if the object is locked by some transaction, see section 6.3.2. We
explain later the locking mechanism. Figure 6.2 graphically outlines the look-up
mechanism:

process

process

ActionSet

Application

Application

Application

process

RP

return(id, entry(o))

return(id, entryNull)

Space

ObjectSet

(successful take)

(read request)

TP

(lease expired)

read(trc, to, query)

match(query, entry(o))

Figure 6.2: Look-up mechanism

6.3.2 Transactions

We continue introducing the signature of the sort transaction:

sort Transaction

func transaction: Nat×Lease×
ObjectSet×ObjectSet×ObjectSet→Transaction

When created, every transaction receives a fresh identification number, 0 is
reserved for the NULL transaction. Apart from the id and the associated lease,
transactions have three object sets. The sets are used to trace the changes
performed by the operations joined to the transaction:

• Wset: stores the entries written under a transaction. After a commit the
objects are placed in the data base M.

• Tset: after a successful take, the matched object is removed from the space
and is placed into Tset. If the transaction commits the object contained

6.3 Implementation Point of View 149

in Tset are deleted. However, if the transaction is aborted the objects are
put back in the space.

• Rset: stores the entries read under the transaction. When an object in
Rset is read-locked, it cannot be taken outside the transaction. An object
can be read-locked by several transactions.

We now present the creation operation:
∑

timeout: Time, trcId: Nat, leaseId:Nat

Create(trcCreated(trcId, leaseId), timeout)

.javaspace(M, PA,

in(transaction(trcId, lease(leaseId, timeout), emO, emO, emO),

Trc), Reg)

� eq(trcId, freshId(Trc)) ∧ lt(trcId, maxTrc)) ∧

(lt(timeout, maxTime) ∨ eq(timeout, FOREVER)) ∧

eq(leaseId, freshId(U(leases(M), U(leases(Trc), leases(Reg)))))) ∧

lt(leaseId, maxLeases) � δ

Initially, the sets associated to the transaction are set to empty. As in the
previous cases the space first tries to allocate the needed resources by searching
fresh ids. The following µCRL code corresponds to the commit action:

∑
trcId: Nat, trc: Transaction

Commit(trcId)

.javaspace(U(M, Wset(trc)), PA),

rem(trc, Trc), remRegs(id(trc), Reg))

� get(Trc, trc) ∧ eq(trcId, id(trc))� δ

When the transaction commits the new object set of the space will be the
union of M with the write set of the transaction. After the commitment the
entities associated with the transaction (pending actions and registrations) are
removed. The abort operation is as follows:

∑
trcId: Nat, trc: Transaction

Abort(trcId)

.javaspace(U(M, Tset(trc)), PA),

rem(trc, Trc), remRegs(id(trc), Reg))

� get(Trc, trc) ∧ eq(trcId, id(trc))� δ

Note that the only difference with the commit is that the new set of objects
is the old set plus the objects stored in the take set of the transactions. If a
process executes a readIfExists or takeIfExists and there is no matching object
in the space, we check in the Wsets and Tsets of the other transactions to decide
whether the process has to block or not.

150 Chapter 6 Formal Model of JavaSpaces

Exceptions are thrown when the timeout of a transaction expires. The ex-
ception is a synchronous action that communicates with the process that holds
the transaction identifier. In case of an exception, the changes performed under
the transaction are rolled back. Let us see the definition:

∑
trc: Transaction

exception(id(trc))

.javaspace(U(M, Tset(trc)),

remPAs(id(trc), PA), rem(trc, Trc), remRegs(id(trc), Reg))

� get(Trc, trc) ∧ isExpired(trc) � δ

Figure 6.3 summarises the mechanism of transactions.

Application

process

process

Application

Transactions

Transaction Rset

Wset

Space

Tset

take
read

takeIfExists
check

write

Exception

Figure 6.3: Transactional model

The specification of the rest of the operations under transactions, such as
write under a transaction, can be found in the appendix of the thesis.

6.3.3 Notifications

Notify registrations are defined as follows:

sort Registration

func registration: Nat×Nat×Lease×
Query×Nat×Bool→Registration

The fields of the registration are: the identification number, the listener id
to which the events are directed, the lease, the query that match the incoming
entries, the sequence number of matching entries, and a boolean used to know
whether the space has to send new events or not. The following code presents
registration:

6.3 Implementation Point of View 151

∑
timeout: Time, trcId: Nat, leaseId:Nat, regId:Nat, query:Query

Notify(trcId, timeout, query, evRew(regId, leaseId))

.javaspace(M, PA, Trc,

in(registration(regId, trcId, lease(leaseId, timeout),

query, 0, F), Reg))

� eq(regId, freshId(Reg)) ∧ lt(len(Reg), maxRegistrations)) ∧

(lt(timeout, maxTime) ∨ eq(timeout, FOREVER)) ∧

eq(leaseId, freshId(U(leases(M), U(leases(Trc), leases(Reg)))))) ∧

lt(leaseId, maxLeases) � δ

After every successful insertion of an entry the space increments the coun-
ters associated with the notify registrations. The sending of events can be
postponed. At any moment the space can decide to send a notification event to
the corresponding process. Events are model by the following sort:

sort Event
func event: Nat×Nat →Event

An event contains the reference to the registration identifier to which it is
directed and the value of the counter of notifications. Messages travel over
the network from the space to the event destination (the listener); they are not
delivered instantaneously nor reliably. Hence events may be lost and never reach
their destinations. We model the network with the following process:

proc Network(E:EventList) =∑
e:Event Notify(e).Network(in(e, E))

� lt(len(E), maxEvents) � δ+∑
e:Event notify(registrationId(e), seq(e))

.Network(rem(e, E))

� get(E,e) � δ+

duplicate.Network(in(e, E))

� get(E,e) ∧ lt(len(E), maxEvents) ∧ lt(0, len(E)) � δ+

lose.Network(tail(E))

� lt(0, len(E)) � δ

The network is implemented by a process that manipulates a finite list of
events (see implementation in section A.3. The process can: receive an event
from the space (Notify), deliver an event to a listener (notify), duplicate or
lose the first event of the list. Note that the network can deliver the events in any
order. We have used the following conventions on action names, in section 6.4
one can find how the actions communicate:

• notify, is the action performed by a process to register for events.

152 Chapter 6 Formal Model of JavaSpaces

• Notify, is the action performed by the space to register for events.

• notify, is the action performed by the space to send an event.

• Notify, is the action performed by the network to receive an event.

• notify, is the action performed by the network to deliver an event.

• Notify, is the action performed by a process to receive an event.

Applications using the notification mechanism are composed by the parallel
composition of the javaspace process, the application processes, the listeners
and the network. Figure 6.4 illustrates the notification mechanism.

Application

Listener

process

process

Listener

Application

Space Registrations

Entries
matching

matching

NETWORK

read take

registration

write

notifications take,write,...

Pending Actions

Loose

Duplicate

Swap order

Figure 6.4: Notification architecture

We also added leasing to the registration mechanism. We proceed in the
same way as for the look-up primitives. The application process passes the
requested lease to the space which includes this value in a data field of the
registration object. When the registration lease expires the space automatically
removes the registration from the data base without further communications.
Listeners can receive events even if the registration has been removed, because
the messages may be delayed on the network.

Notify can also be joined to a transaction. The space will send events when
a matching entry is written under the same transaction of the registration or
under the null transaction. If a transaction expires the joined registrations will
be removed.

6.3 Implementation Point of View 153

6.3.4 Leasing

The leasing mechanism as the transactions and event notifications, is part of
the Jini architecture. Leases are defined by the following sort:

sort Lease

func lease: Nat×Time→Lease

map eq: Lease×Lease→Bool

id:Lease→Nat

timeout:Lease→Time

decT:Lease→Lease

isExpired:Lease→Bool

hasTimeout:Lease→Bool

A new lease is created after the insertion of an entry, a notify registration
and the creation of a new transaction. All leases have a different identification
number which allows external agents to renew their timeout. hasTimeout re-
turns true when the lease’s timeout is different from FOREVER. The rest of
the functions are identical to the ones of the Object set. The following frag-
ment of code implements the action of renewing the timeout of a lease which is
associated to an Object :

∑
leaseId:Nat, timeout:Nat, o:Object

Renew(leaseId, timeout)

.javaspace(in(object(id(o), entry(o), lease(leaseId, timeout)), rem(o,M)),

PA, Trc, Reg)

� get(M, o) ∧ eq(id(lease(o)), leaseId) � δ

Note that the renewal is always granted by the space, and the new timeout
will be the one requested by the external process. We can do the same to leases
associated to transactions or registrations. In fact we could have implement a
set of leases as we did for pending actions, objects or registrations.

The space manages a centralised discrete clock. Under some constraints, the
space can tick which cause the decrement of all timeouts. Between two time
ticks many actions may happen. Externally several actions can be performed
in parallel (in the sense of interleaving). Here is the code that describes the
behaviour of the clock:

tick.javaspace(decT(M), decT(PA), decT(Trc), decT(Reg))

� (areTimeouts(M) ∨ areTimeouts(PA) ∨

areTimeouts(Trc) ∨ areTimeouts(Reg)) ∧

(¬ areExpired(M) ∨ ¬ areExpired(PA) ∨

¬ areExpired(Trc) ∨ ¬ areExpired(Reg)) � δ

The action tick can only happen if there are some entities in the space with
an active timeout (greater than 0 and not equal to FOREVER). This is done

154 Chapter 6 Formal Model of JavaSpaces

by including the condition areTimeouts, the idea is avoid self tick -loops, which
can hide deadlocks in the system. If there are some expired timeouts the space
has to first perform the operations that correspond to the expiration.

6.4 Putting All Together

In summary, the javaspace process can at any time:

• Receive request of services: look-ups or insertions.

• Match entries with pending actions, sending the result to the external
processes.

• Create, commit or abort transactions.

• Decrement timeouts.

• Renew leases.

• Accept notify registrations. And send events to some listener through the
network.

• Perform actions related to the timeout expirations: delete expired entries
or registrations, abort transactions by sending the corresponding exception
and return null entries for the unmatched look-up operations.

We have presented separately the javaspaces specification from two different
point of view: from the side of the external applications and from the side of the
implementation. In order to build a complete system and to apply automated
verification to it, we have to consider some more issues.

As we have seen in section 6.2, a complete system is composed by the parallel
composition of the javaspace process with the external applications, as follows:

System = τI∂H(javaspace(...) ‖ external p0(...) ‖ external p1(...) ‖ ...
NetWork(emptyList) ‖ listener0(...) ‖ listener1(...) ‖ ...)

∂H forces communication of some specific actions. The network and listeners
are put in parallel when needed. Let us, first, show the full declaration of actions
(some of them have been described in the previous sections):

act write, Write, W : Entry×Nat×Time
write, Write, W : Entry×Nat×Time×Nat
take, Take, T : Nat×Nat×Time×Query
read, Read, R : Nat×Nat×Time×Query
readIfExists, ReadIfExists, RIE : Nat×Nat×Time×Query
takeIfExists, TakeIfExists, TIE : Nat×Nat×Time×Query
takeReturn, TakeReturn, TReturn :Nat×Entry
readReturn, ReadReturn, RReturn : Nat×Entry
readIfExistsReturn, ReadIfExistsReturn, RIEReturn : Nat×Entry

6.4 Putting All Together 155

takeIfExistsReturn, TakeIfExistsReturn, TIEReturn : Nat×Entry
create, Create, C : TransactionCreated×Time
commit, Commit, Cm : Nat
abort, Abort, A : Nat
exception, Exception, E : Nat
notify, Notify, N: Nat×Time×Query×EventRegistration
notify, Notify, N: Event
notify, Notify, N: Nat×Nat

tick
duplicate lose
gc: Entry
gc: Registration
renew,Renew,Rnew: Nat×Time

We recall that we have used the following convention: we write with lower
case the actions that are actively performed by a process, with upper case the
ones that are reactive and by the initial letter the result of the communication.
The definition of the communication is as follows:

comm write |Write = W
take |Take = T
read |Read = R
readIfExists |ReadIfExists = RIE
takeIfExists |TakeIfExists = TIE
takeReturn |TakeReturn = TReturn
readReturn |ReadReturn = RReturn
readIfExistsReturn |ReadIfExistsReturn = RIEReturn
takeIfExistsReturn |TakeIfExistsReturn = TIEReturn
create |Create = C
commit |Commit = Cm
abort |Abort = A
exception |Exception = E
notify |Notify = N
notify | Notify = N
notify | Notify = N

renew |Renew = Rnew

All the actions above (write, Write, take, Take, read,...) are forced to com-
municate, therefore they are included in the set H of ∂H . Furthermore, the
result of the communication (W, T, R, ...) is normally hidden. To hide actions
we use the operator τI .

We have required that the system must be suitable to do model checking.
To satisfy the requirement we need to generate finite state spaces. We have
defined a set of constants that are used to define bounds on the different data
structures. These constants are: maxObjects, maxActions, maxEvents, max-
Time, maxRegistrations, maxLeases, maxTransactions. The definition of the
constants can be seen in the appendix. The setting of these constants allows to
manipulate different instances of the system.

156 Chapter 6 Formal Model of JavaSpaces

6.5 Conclusion

For brevity, we have not explaining in full detail all the operations that the
space can perform. However we include in the appendix A the full specification
of the javaspace process. It has around 1000 lines of code (more than 1500 lines
together with the data specification). Even if the model captures the most part
of the functionalities of the architecture, there are a few interesting features that
are not included, such as for example: nested transactions or use of multiple
spaces. We believe that the later might be included without major problems, the
former may need some deeper inside in the Jini’s specification of transactions.

The model has been created from the informal specification provided by
Sun. An important question is how to validate the correctness of the model
with respect to the informal description. Validation has been done by means
of the analysis of small examples whose behaviours are predictable [67], and by
methodic simulation of all the features. Another possible way is to compare
the specification with another formal model, such as the one presented in [22]
and [24] (which only contains the basic operations for reading, taking and
writting and the notification mechanism that is modelled separately). However
our model contains more features which makes a comparison difficult. In any
case, more effort should have dedicated for validation of the model by doing, for
instance, exhaustive testing.

As we have said the main aim of the model it to verify applications im-
plemented on top of JavaSpaces. The next chapter is dedicated to describing
the use of the model for verification purposes. We will see that the model is
suitable to verify interesting and non-trivial applications, which was one of the
initial requirements. The model might be used also to verify meta-properties of
the architecture, as done in [23]. In that case we would have to extract some
correctness criteria from Sun’s specification and to check these criteria against
the µCRL model.

Chapter 7

Verification of JavaSpaces Applications

In the previous chapter, we have presented a formal model of the JavaSpaces ar-
chitecture. This chapter is dedicated to introducing a verification methodology
for JavaSpaces applications. In the first part of the chapter, we illustrate the
usage of the framework by proving some properties on some simple examples.
The last part is dedicated to the study of a non-trivial fault-tolerant application
that solves a typical coordination problem. The problem consists of the com-
putation of an extensive task, performed in parallel by splitting it into smaller
and more manageable parts. This sort of problems is specially well-suited to be
implemented using JavaSpaces.

157

158 Chapter 7 Verification of JavaSpaces Applications

7.1 Verification Methodology

The chapter is composed by a set of small JavaSpaces examples, and by an
exhaustive analysis of a realistic application. The methodology we are going to
use to verify the systems is:

1. First, we specify in µCRL the application we want to analyse. We will
follow the premises presented in section 6.2 of the previous chapter.

2. Then, we compose the external components with the formal model of
JavaSpaces.

3. We formally describe the properties that we want to check. The language
used to write the properties is the regular alternation-free µ-calculus in-
troduced in Chapter 3, section 3.5.

4. Using the µCRL tool set, we generate the state space corresponding to
the full system.

5. Finally, using the CADP model checker [43], we prove the properties cor-
rect. If some property is not satisfied we analyse the counter-example to
extract some information about the error. Note that (4) and (5) can be
done on-the-fly without generating the full state space.

Model checking in general can only handle finite state spaces. Therefore,
in some cases, we will have to restrict the system to a fixed number entries,
processes, events... in order to obtain a finite system. These numbers are
typically small. The next chapter is dedicated to showing how to generalise the
model checking results to any parameter by using abstraction techniques.

7.2 Playing with JavaSpaces

The following examples are inspired by the classical arcade game Ping-Pong,
in which two players throw one ball from one to the other. This example has
been taken from Chapter 5 of the book “JavaSpacesTM Principles, Patterns,
and Practice” [50]. The players are modeled by two processes called Ping and
Pong which communicate by means of an entry that encapsulates the ball. We,
first, propose a very simple version of the game, later we will make some small
changes to the game rules.

Simple Ping-Pong: In the first version, players can only catch and throw
the ball. The Entry sort (ball) is defined as follows:

sort Entry

func entryNull:→Entry

ball: Name→Entry

map eq:Entry×Entry→Bool

receiver:Entry→Name

7.2 Playing with JavaSpaces 159

var e: Entry
n: Name
receiver(ball(n)) = n

The only field the entry has is the name of the player whom the ball is
directed to. The name is from the sort Name, that has two constructors Ping and
Pong, and one function (other) used to switch from one to the other (other(Ping)
= Pong and other(Pong) = Ping). To get the ball from the space, a player uses
a query:

sort Query

func forMe: Name→Query

eq: Query×Query→Query

map match: Query×Entry→Bool

var e: Entry
n’: Name

rew match(forMe(n), e) = eq(n, receiver(e))
eq(forMe(n), forMe(n’)) = eq(n, n’)

The code of both players is the same:

proc player(id:Nat, name:Name) =

take(id, NULL, FOREVER, forMe(name))

.
∑

e:Entry TakeReturn(id, e)

.print(name)

.write(ball(other(name)), NULL, FOREVER)

.player(id, name)

Print is an external action used to communicate to the environment that a
player has caught the ball and is going to throw it back. In the initial state
the space includes a ball directed to Ping. The values of the other main data
structures (TransactionSet, PendingActionSet,. . .) are initialised to empty. The
system instantiation is as follows:

System = τ{W, E, Rt}∂{write, Write, take, Take, takeReturn, TakeReturn}

(javaspace(in(object(0, ball(Ping), lease(0, FOREVER)), emO),

emT, emA, emR)

|| player(0, Ping) || player(1, Pong))

We can prove, for example, a safety property expressing the prohibition of
“bad” execution sequences, such as the player Ping cannot throw the ball twice
in a row:

(A1): [T* . ”print(Ping)” . (¬ ”print(Pong)”)* . ”print(Ping)”] F

The following property expresses that after a Ping, the action Pong is even-
tually reached:

160 Chapter 7 Verification of JavaSpaces Applications

(A2): [T* . ”print(Ping)”]〈T* . ”print(Pong)” 〉 T

Both properties are satisfied by the model. The state space has only 23
states and 33 transitions.

Timed Ping-Pong: Now, we introduce a small change in the rules of the
game. In this version, once a player has caught the ball, he has one time unit
to put it back into the space, otherwise he loses the game. We model this
approach by using transactions. After a player has performed take, he creates
a transaction leased for one time unit. When the write operation is performed,
the transaction can safely commit. Let us see the processes code:

proc player(id: Nat, name:Name) =

take(id, NULL, FOREVER, forMe(name))

.
∑

e:Entry TakeReturn(id, e)

.
∑

trc:TransactionCreated create(trc, tt(1))

.(write(ball(other(name)), trcId(trc), FOREVER)

+ Exception(trcId(trc)).loser(name))

.(print(name) + Exception(trcId(trc)).loser(name))

.(commit(trcId(trc))) + Exception(trcId(trc)).loser(name))

.player(id, name)

proc loser(name:Name) = theLoser(name).δ

The complete system contains 51 states and 95 transitions. The properties
A1 and A2 are also satisfied by this system, however the following property
that states that after a Ping, Pong is inevitably reached is not:

(A3): [T* . ”print(Ping)”] µX. (〈 T〉 T∧ [¬ ”print(Pong)”] X)

The property is not satisfied, due to the fact that after a Ping the player
Pong can receive a timeout exception and therefore lose the game.

In the formula A3, for all traces that contain a Ping a fixpoint computation
is started. The variable X represents the sets of states that satisfy the full
formula on each iteration of the computation. The formula is satisfied if the
initial state is in X when the fixpoint is reached. Starting from the empty set
of states (X = ∅), the first iteration will actualise the variable X by adding all
the states that have at least one outgoing transition (〈 T〉 T) and all transitions
different to print(Pong) go to the empty set, in order words the states that
only have print(Pong) transitions. The following iterations will add the states
that have all transitions going to the states belonging to the previous iteration.

Ping-Pong with events: Now, we give a different implementation of the
game by using the notification mechanism. Each player subscribes to the entries

7.2 Playing with JavaSpaces 161

that encapsulate balls directed to them. The associated listeners are in charge
of collecting the ball and sending it back.

proc player(name:Name) =∑
reg:EventRegistration notify(NULL, FOREVER, forMe(name), reg)

.sendRegId(name, regId)

.(write(ball(Ping), NULL, FOREVER) � eq(Pong, name) � δ)

.δ

The player Pong writes the first ball into the space which is initially empty.
The action send is used to activate the listener, whose code is:

proc listener(name:Name) =∑
regId:Nat receiveRegId(name, regId)

.listenerActive(name, regId)

proc listenerActive(name:Name, regId: Nat) =∑
seq:Nat (Notify(regId, seq) � lt(seq, MaxGame) � δ)

take(regId, NULL, FOREVER, forMe(name))

.
∑

e:Entry TakeReturn(regId, e)

.print(name)

.write(ball(other(name)), NULL, FOREVER)

.listenerActive(name, regId)

Listeners only receive events with a sequence number below a maximum
(this constraint is imposed to avoid that the sequence numbers can grow until
infinity, generating an infinite state space). After the arrival of an event, the
listener takes the corresponding ball and writes it back to the space.

In this case the full system is composed by the players the listeners and the
network composed in parallel with the space. The system has 12448 states and
34093 transitions, for MaxGame equal 2.

System = τ{...}∂{...}(javaspace(emO, emT, emA, emR)

|| player(Ping) || player(Pong)

|| listener(Ping) || listener(Pong) ||Network(emEv))

Formula A1 is satisfied by the system, however A2 is not. This is because
listeners can get blocked. This will happen when the network duplicates an
event and lets a listener think that there is no such a ball directed to itself
when there is not. A combination of these behaviours leads to a deadlock in the
system. A3, obviously, does not hold either.

162 Chapter 7 Verification of JavaSpaces Applications

7.3 Parallel Summation

Now, we address the problem of fault-tolerant parallel summation of a multiset
of numbers [108, 59]. The main difficulty of this application is how to determine
when the summation is completed. Among the different possibilities to solve the
problem, we propose an algorithm consisting of a number of identical processes
(Workers) that independently perform simple additions and a Master, that is
a special worker, who is charged to publish the result when the complete sum
is accomplished. First, we present a naive (and wrong) implementation of this
idea. Next, we will impose on the system extra non-functional requirements and
give a correct solution to the problem.

The following two fragments of Java code implement the wrongly terminating
solution. Note that we do not show the definition of auxiliary classes and the
initialisation of the system. The entries in the space are instances of the class
Number which encapsulates a natural number:

while(true){

e1 = (Number) space.take(anyNumber, NULL, 0);

if(e1 == null){return;}

e2 = (Number) space.take(anyNumber, NULL, 0);

if(e2 == null){

space.write(e1, NULL, Lease.FOREVER);

return;

}

space.write(e1.plus(e2), NULL, Lease.FOREVER);

println("Worker wrote: " + e1.plus(e2));

}

A Worker first tries to take two entries, one after the other, by performing
non-blocking takes matching any number in the space. If he succeeds then he
writes the addition and loops, otherwise he undoes the changes (if needed) and
halts. The calls to the method take get three parameters: First, the template
which is also an instance of the class NUMBER. Second, the reference to the
transaction which is equal to NULL as the action is not performed within a
transaction. And finally, the timeout of the action, 0 means that if there are
no entries in the space the method will not wait. The method write receives
the entry to be stored, the transaction reference and the lease. The constant
FOREVER is used to place objects that will never be removed by the space.
Let us, now, present the code of the Master :

while(true){

e1 = (Number) space.take(anyNumber, NULL, 0);

if(e1 == null){return;}

e2 = (Number) space.take(anyNumber, NULL, 0);

if(e2 == null){

System.out.println("Master publish:" + e1);

return;

7.3 Parallel Summation 163

}

space.write(e1.plus(e2), NULL, Lease.FOREVER);

println("Master wrote: " + e1.plus(e2));

}

The Master is similar to the Workers, but if the second take does not succeed
the Master publishes the value of the first entry as the final result. In case both
takes return an entry he performs the normal addition and continues. Note
that this solution will lead to incorrect publications, for example: a Worker
may take the last but one item, and while it is busy, the Master might take the
last one and think that the algorithm has terminated. Before examining how
the Master can be sure that he took the last element, let us consider another
important issue.

We extend the system with faulty behaviour, i.e. any process may suddenly
stop and restart. But if a worker crashes after taking a number, this number
would be lost. This forces us to consider the use of transactions. To guarantee
non-corruption of the data due to the failure of a process, the critical operations
have to be encapsulated by a transaction. In case a Worker halts or fails in the
middle of an operation, the space will automatically recover to a stable state,
undoing the modifications.

Recall that transactions are subject to leasing. Now the lease on the Work-
ers ’ transactions provides an upper bound on the duration of a simple summa-
tion operation. We choose this timeout (from now denoted top) to be sufficiently
large to perform one addition. It can be approximated by the estimated du-
ration of a simple addition plus the latencies of the coordination primitives.
We can, now, propose a mechanism that guarantees the exclusive access of the
Master to the data:

1. When the Master is willing to check termination, he starts a transaction
and writes a special entry (lock) to prevent Workers to start new opera-
tions. Thus, Workers have to check the non-existence of the lock entry in
the space before starting a new addition.

2. Then, the Master waits until the end of all possible active operations, i.e.
he has to block longer than the upper bound of the Workers ’ operations
(at least top + 1 time units). We denote this timeout with topM .

3. Now, he is sure he has exclusive access, i.e., no Worker has an entry, and
no Worker can take any of them. Then:

• If there is only a single entry in the space the Master publishes it,
commits the transaction and halts.

• If there are two entries he performs a simple addition, puts the result
in the space, removes the lock, commits the transaction and waits
until he decides to restart the termination test again.

164 Chapter 7 Verification of JavaSpaces Applications

The Master ’s operations have to be executed under a transaction to prevent
problems such as for instance: the failure of the Master after having locked the
space will forbid any more progress by Workers. The timeout of the transaction
(tma) has to be sufficient to guarantee that the process can perform the steps
of the protocol. tma can be underapproximated by: topM plus the estimated
time to perform a simple sum, plus the latencies of the involved coordination
primitives. Now, let us, first, see the body of the Master process and then the
explanation of some details of the implementation:

while(true){

try{

Transaction txn = trcManager.create(t_ma);

space.write(lock, txn, Lease.FOREVER);

space.take(noEntry, txn, t_opM);

e1 = (Number) space.take(anyNumber, txn, 0);

if(e1 == null){

txn.abort();

return;

}

e2 = (Number) space.take(anyNumber, txn, 0);

if(e2 == null){

txn.commit();

println("Master publish: " + e1);

return;

}

space.write(e1.plus(e2), txn, Lease.FOREVER);

space.take(anyLock, txn, 0);

txn.commit();

println("Master wrote: " + e1.plus(e2));

} catch (Exception e){} //loop

Thread.sleep(t_wait);

}

The Master first creates a transaction and locks the space by writing a
lock entry. The lock is written inside the transaction, therefore it will not
be externally visible except that it blocks IfExists actions. Then, the Master
has to wait until the end of the active operations (topM). Since we make no
assumptions on the relative speed of the clock of different processes, we cannot
use local primitives as Thread.sleep(T opM) to perform the wait. However, we
can use synchronization between the Master process and the space, by reading
with a template that matches nothing (noEntry). This operation will always
block during topM time units. After the null return of this primitive, he has
exclusive access and can test the completion of the algorithm.

The behaviour of the generic Workers is similar to the naive version. But
now the operations are executed under a transaction, leased for top time units. In
case a Worker receives an exception due to the expiration of the transaction’s

7.3 Parallel Summation 165

timeout, he just restarts the algorithm again. Another change is that before
every addition, a worker has to check whether the space is locked or not by
the Master. This test is done by means of a ReadIfExists primitive which only
blocks if there are matching entries with conflicting transaction locks. Note that
the Master is never going to free the lock before removing it, so, this operation
can only result in a null return, which allows Workers to continue their tasks,
or a transaction exception which will force them to restart.

while(true){

try{

Transaction txn = trcManager.create(t_op);

space.readIfExists(lock, txn,Long.MAX_VALUE);

e1 = (Number) space.take(anyNumber, txn, 0);

if(e1 == null){

txn.abort();

continue; // loop

}

e2 = (Number) space.take(anyNumber, txn, 0);

if(e2 == null){

txn.abort();

continue; //loop

}

space.write(e1.plus(e2), txn, Lease.FOREVER);

space.take(anyLock, txn, 0);

txn.commit();

println("Worker wrote: " + e1.plus(e2));

} catch (Exception e){} //loop

}

Since all the critical actions are encapsulated in transactions, all agents can
arbitrarily fail and restart without corrupting the information of the system.
However, to detect the completion of the sum one Master should be alive suffi-
ciently long.

The application allows to have any number of running Workers. However,
replication of the Master would lead to incorrectness. Nevertheless, it’s possible
to imagine a complete replicable application in which all the processes are equal
and the role of Master or Worker is assigned by a special entry or token. In this
case, if the actual Master dies the Workers will compete for the token. Note
that this solution will require to manage two different transactions, one as in
the previous processes and another to deal with the new token.

The proposed algorithm tries to maximise the efficiency of the computation
by allowing as many operations in parallel as possible. Note that Workers do
not compete between each other for any resource, so they run completely in
parallel. But, performance of the system depends on the selection of accurate
upper bounds on the simple additions, the rate of test for termination, which
is given by the time the Master waits between consecutive loops (twait) and,

166 Chapter 7 Verification of JavaSpaces Applications

of course, on the number of active Workers and the reliability of the processes.
twait can be tuned according to the estimated total duration.

If we knew a priori the amount of numbers in the space, we might use a
counter, storing this number and decreasing it after every successful operation,
this solution will have a negative effect on the performance of the system due
to the concurrent access to this shared entry. Other similar solutions based on
a shared data structure will suffer from the same handicap.

Another possible approach to solve the problem could be based on the dis-
patch of notification events after successful additions which would allow pro-
cesses to control the number of entries left in the space and determine termina-
tion. This solution presents difficulties due to the, by specification, unreliable
distribution of events, i.e. events may be lost, duplicated or unordered, and the
verification of the algorithm would be unfeasible.

Even if the basic idea of the algorithm is rather simple, the proposed solu-
tion deals with quite complicated features: mutual exclusion, transactions and
relations between timeouts. Therefore we cannot immediately claim that the
algorithm is correct, i.e., that the master publishes the expected result. In the
following section we are going to use a formal procedure to prove correctness.

7.3.1 Verification

In order to verify the correctness of the proposed algorithm, we first translate
it to µCRL. Process expressions are obtained by systematic manual translation
of the Java code presented above. Let us first see the Master ’s code:

proc Master(id: Nat) =∑
trc:Nat, leaseId:Nat create(trcCreated(trc, leaseId), tma)

.(write(lock, trc, FOREVER) + ExM(id, trc))

.(take(id, trc, topM, noEntry) + ExM(id, trc))

.(TakeReturn(id, entryNull) + ExM(id, trc))

.(take(id, trc, tt(0), anyNumber) + ExM(id, trc))

.(
∑

e1:Entry TakeReturn(id, e1)

.(((take(id, trc, tt(0), anyNumber) + ExM(id, trc))

.(
∑

e2:Entry TakeReturn(id, e2)

.((commit(trc) + ExM(id, trc))

.publish(value(e1)).δ

� eq(e2, entryNull) �

(write(plus(value(e1), value(e2)), trc, FOREVER)

+ ExM(id, trc))

.(take(id, trc, tt(0), anyLock) + ExM(id, trc))

.(TakeReturn(id, lock) + ExM(id, trc))

.(commit(trc) + ExM(id, trc))

7.3 Parallel Summation 167

.Master wrote(plus(value(e1), value(e2))))

+ ExM(id, trc)))

� not(eq(e1, entryNull)) �

abort(trc).δ)

+ ExM(id, trc))

.Master(id)

ExM(trc) encodes the possibility of receiving an exception due to the timeout
of the transaction. In that case, the Master restarts the algorithm:

proc ExM(id:Nat, trc:Nat) = Exception(trc).Master(id)

Now, we present the Workers ’ code:

proc Worker(id:Nat) =∑
trc:Nat, leaseId: Nat create(trcCreated(trc, leaseId), top)

.(readIfExists(id, trc, FOREVER, anyLock) + ExW(id, trc))

.(
∑

l:Entry ReadIfExistsReturn(id, l)

.((take(id, trc, tt(0), anyNumber) + ExW(id, trc))

.(
∑

e1:Entry TakeReturn(id, e1)

.((take(id, trc, tt(0), anyNumber) + ExW(id, trc))

.(
∑

e2:Entry TakeReturn(id, e2)

((write(plus(value(e1), value(e2)),trc,FOREVER)

+ ExW(id, trc))

.(Worker wrote(plus(value(e1), value(e2)))

+ ExW(id, trc))

.commit(trc)

� not(eq(e2, entryNull)) �

abort(trc).Worker)

+ ExW(id, trc))

� not(eq(e1, entryNull)) �

abort(trc).Worker)

+ ExW(id, trc)

� eq(l, entryNull) �

abort(trc).Worker)

+ ExW(id, trc))

.Worker(id)

proc ExW(id:Nat, trc:Nat) = Exception(trc).Worker(id)

168 Chapter 7 Verification of JavaSpaces Applications

Model checking techniques are (mostly) restricted to systems with finite (and
small) state spaces. Therefore, we will have to limit our system by fixing the
number of workers, and the amount of entries initially included in the repository.
We will perform a model checking analysis for different instances of these values.
Furthermore, we fix the following constants:

tma = tt(2) topM = tt(1) top = tt(0)

As we said in the previous section, tma has to be greater than topM , and the
latter greater than top.

The correctness claim of the algorithm is that successful termination is de-
tected, i.e. the Master publishes the correct result. Therefore, we would like to
prove a property meaning that on all possible paths, starting from the initial
state, the action publish(n) will be reached, with n representing the correct
result. This is expressed by the “inevitable reachability” property, as follows:

(B1): µX. (〈 T〉 T∧ [¬ ’publish(n)’] X)

The formula does not hold for the given specification. The reason is that
processes may fail continuously which does not allow any progress in the compu-
tation. We can have an infinite loop in which the Master creates a transaction
and, then, the transaction is aborted by an exception before the completion of
the assigned task. What we can prove is that there exists at least one path that
leads to the publication of the result, expressed by the following formula:

(B2): 〈 T* . ”publish(n)” 〉 T

The formula is satisfied but is not strong enough in order to believe that the
system acts correctly. The reason is that the system may contain deadlocks or
livelocks that are not detected by the formula. We are going to prove a property
that expresses that publish is reached in all fair traces.

(B3): [(¬ ’publish(n)’)*]〈(¬ ’publish(n)’)* . ’publish(n)’〉 T

The property says that for all possible traces (without publish) there exists
a path that leads to publish. Another possibility to prove the stronger property
“inevitable reachability” is based in the imposition of a constraint on the be-
haviour of the processes. We assume some sort of reliability of the process. For
instance, the Master process may fail any number of times but at some time it
becomes safe and does not fail anymore. To implement the idea we specify a
new Master process which is a copy of the previous one but with the difference
that the safe Master ’s transaction cannot expire, i.e., it’s leased FOREVER.
When the unsafe process gets an exception, it chooses non-deterministically to
become safe or to stay unsafe. We indicate the first choice by adding an external
action to inform the environment about the change:

7.4 Conclusion 169

proc ExM(trc) = Exception(trc).(Master + safe.SafeMaster)

In this case we assume for the Workers that once they fail they do not restart
again. This constraint removes all possible non-progressing loops produced by
continuous failures of the Workers. The property that we are going to prove is:

(B4): [(¬ ”safe”)*. ”safe”] µX. (〈 T〉 T∧ [¬ ”publish(n)”] X)

The formula expresses that once the Master becomes safe then the publish
action is “inevitably reached”. The property is satisfied by the constrained
system. The above properties reason about the termination of the algorithm
once the Master becomes safe but we have to be sure also that all participants
may contribute to the progress of the computation. For this purpose, we check
also the following property, expressing that both unreliable Master and Workers
may perform additions, writing the result into the space:

(B5): 〈 T* . ’M wrote.*’ 〉 T∧ 〈 T* . ’W wrote.*’ 〉 T

We have checked the properties on several instances of the system. With
different number of Workers and entries. The following table gives the size of
the systems on which we have done the experiments:

data entries
workers 2 3 4 5

1 16206 193179 9195321 –
2 56436 691056 36791821 –
3 121256 1520550 – –

Figure 7.1: Sizes of the generated state spaces

7.4 Conclusion

Through the analysis of a non-trivial example we validated our general frame-
work to verify JavaSpaces applications. The studied problem is a representative
example of coordination problems that JavaSpaces is aimed at. The µCRL lan-
guage and its related tool sets have been shown to be suitable to model check
this class of applications. We conclude that small but non-trivial JavaSpaces
applications can be effectively verified using our technology. This technology
could still be scaled up, by using abstraction and symmetry techniques. In the
next chapter, we provide general patterns to abstract JavaSpaces applications.

We have seen in section 7.2, how we manually translate the Java code into
µCRL. We think that the automatic translation of the code is very important
from a methodological point of view and for the “industrial” application of
the verification technique, however this process is completely orthogonal to our

170 Chapter 7 Verification of JavaSpaces Applications

research and can be carried out by applying techniques implemented in the
Bandera [69] or Loop Project’s [7] tool.

The proposed algorithm for parallel summation can be generalised in or-
der to solve other similar coordination problems. Furthermore, we can see this
generalisation as an alternative fault-tolerant distributed implementation of the
so-called chemical abstract machines [10]. The JavaSpaces will store the chem-
ical molecules and the Workers will perform in parallel the chemical reactions.

The Gamma paradigm [95] is also based on the computation of simple op-
erations over multisets of data according to some specific rules. The present
case study can be transformed in such a way that it supports other operations
different from summation.

Chapter 8

Abstracting JavaSpaces

This short chapter concludes the second part of the thesis. So far, we have pre-
sented the formal specification of JavaSpaces and we have analysed a non-trivial
application, where we have seen the difficulties to handle realistic instances of
the case study due to the state explosion problem. We start by presenting a
small case study that illustrates how to apply the abstraction framework pre-
sented in the first part of the thesis to a specific application. Then, some basic
guidelines will be given about how to apply the results about abstraction to
generic JavaSpaces applications.

171

172 Chapter 8 Abstracting JavaSpaces

8.1 A Case Study On Replication

Abstraction, as we have discussed in the first part of the thesis, is a suitable
technique to attack the state explosion problem that arises during the auto-
matic analysis of complex systems. In section 7.3 of Chapter 7, we saw how
we can hardly verify instances of the summation algorithm with more than 3
workers and 5 entries, these figures are relatively small comparing to what can
be considered as a realistic system. Even if the verification of small instances
gives extra confidence about the correctness of the system, we cannot formally
infer that it behaves correctly for any instance.

The target of the concluding chapter is not to deeply study any concrete
case study but to give the guidelines on how and where we can use abstraction
techniques to verify JavaSpaces applications. We want to identify the parts
of common JavaSpaces applications that are suitable to be abstracted and to
provide examples of abstract patterns that can be used. For this purpose, we
first analyse a simple application and then, in the next section, we generalise
the conclusions of the analysis. Let us consider a simple example composed by
three different types of components:

�������� ��

���
�

		

���
�

�
�

���
�

���
�

���
�

���
�

T T

P C

write take

write writetaketake

B entry

A entry

Figure 8.1: Producer-Transformer(s)-Consumer

• Producer: It writes new entries into a shared repository. We can think
of the producer as an acquisition unit that generates a continuous flux of
data that have to be processed. We mark the unprocessed entries as being
of type A.

• Transformer: It retrieves entries of type A from the repository, performs
some computation and writes back a transformed entry. The processed
entry is of type B.

• Consumer: It takes the processed information and displays the result of
the computations.

Unprocessed data becomes obsolete after some specific time. Therefore every
A has an associated timeout. The repository will automatically remove the
entries with expired timeouts. The complete system is defined by the parallel

8.1 A Case Study On Replication 173

composition of the producer, the consumer, a process representing the repository
and N Transformers process.

A real life example that can match our model is, for example, a radar-monitor
system. The radar introduces packets of different measurements taken from
an external moving agent. Transformer processes the measures by computing
predictions of future moves of the investigated agent. The monitor displays the
results of the process. In general, we would like to have several transformers
making calculations at the same time in order to accelerate the display of the
results. Figure 8.1 presents an overview of the system.

The implementation of such systems is straightforward using the JavaSpaces
architecture. The µCRL code of the different components of the system, that
are composed in parallel with the JavaSpaces process, is:

proc Producer =
write(A, NULL, timeout)
.Producer

proc Consumer =
take(cC, typeB, NULL, FOREVER)
.TakeReturn(cC, B)
.Consumer

proc Transformer =
take(cT, typeA, NULL, FOREVER)
.TakeReturn(cT, A)
.write(B, NULL, timeout)
.Transformer

We considered that Transformer shared the same communication channel
cT with the space. If two transformers are in the same state, waiting for an
entry, they would compit for the returned entry. Actually we do not care about
this fact because it is not important which of the Transformers performes the
computation.

One basic requirement to check is that the system, no matter what happens,
keeps progressing. In other words that it will not deadlock. If the capacity
of the repository is bounded and the A entries are never eliminated (infinite
timeout), the system may arrive to a deadlock state. Let us consider a finite
instance of the system with one single Transformer and the size of the repository
equals 2. The following sequence of steps: 1) Producer writes A, 2) Producer
writes A, 3) transformer takes A, 4) Producer writes A, leads to a deadlock since
the repository is full and the transformer cannot write a B entry, the producer
cannot write any new entry either and the consumer cannot retrieve any B entry
to free some space in the repository. If the repository is unbounded this problem
will not arise since both producer and transformer can always write. But this
solution is not realistic because we cannot assume to have infinite memory. The
idea is to use the entries’ timeout to allow the repository to free some place

174 Chapter 8 Abstracting JavaSpaces

for new incoming entries. In principle, by using timeouts, there should not be
any deadlock in the system, because in any state one of the following actions is
possible:

• If it is not full then the producer can Write.

• If there is some A entry in the repository, Transformers that are waiting
for an entry can take it (similar for B).

• If there is one expired entry, i.e., its timeout equals 0, and no process is
requiring it, then the repository can remove the entry.

• If there is one entry with non-expired timeout, the repository can decrease
the timeout of the entry.

Transformer ’s codes are identical (as they all used the same channel iden-
tifier) therefore we can use the pattern presented in Section 4.4. Moreover, we
can abstract it by doing an abstraction to the counters of the number of pro-
cesses that are in one state, as presented in pattern of Section 4.3.2. We can
not abstract all state counters because it is important to capture the idea that
every read request performed by a Transformer should be followed by exactly
one answer from the repository. Therefore, we abstract all state counters but
the one that determines the number of processes that are waiting for an entry.

The absence of deadlock may be expressed using the action-based µ-calculus
with modalities as follows:

(P1): ν X. (〈 ’. ∗must .∗’ 〉 T∧ [’. ∗may .∗’] X)

The formula states that from every state that may be reached there is an
out-going must transition. Below, we present a table with the sizes of the state
spaces for different instances of the system. We compare three cases:

• The concrete system represented with the standard representation of par-
allel processes (denoted by Crt).

• The concrete system given in the linear form proposed in the equation of
Theorem 4.4.1 (denoted by Crt Lin).

• The abstract version of the last case (denoted by Abs).

The table shows how the standard representation of parallel processes can
not deal with big instances of the system. However our proposed format can,
because it eliminates symmetries of the interleavings. Moreover, with the ab-
straction we can reduce even more the size of the systems. It is possible to
handle instances with more than 100 parallel processes. In order to generalise
the model checking problem to an arbitrary number of processes, we would have
to abstract also some other parts of the system.

8.2 Abstraction Guidelines 175

Crt States Crt Lin States Abs States

5T 15,135 10T 4,663 10T 3,858
6T 49,560 20T 25,828 20T 12,093
7T 161,097 40T 267,302 40T 42,171
8T 520,494 80T 1,193,830 80T 156,759

100T 241,269

This example shows that the proposed framework is suitable for verifying
liveness properties.

8.2 Abstraction Guidelines

The simple example presented in the previous section allow us to point out the
general abstractable parts of the JavaSpaces applications. Let us consider the
different parts of the system that can be abstracted:

• Entries: The entries that are manipulated by the system are only of
sorts A or B. Note that this already an abstraction of a realistic case in
which the entries can contain an arbitrary value. They can be for example
measurements of an external radar that transformers have to manipulate
to produce digested values. When the correctness of the application does
not depend on the real values of the entries (which is the case for the
example) we can abstract away these values.

In the summation algorithm of the previous chapter, we were interested
in the publication of the correct value of the addition. If we abstract the
value of the entries then we can relax the property. We might prove that
something is published (independently of the value of the result). Fur-
thermore, we can check that every path leading to a publication contains
the desirable number of partial publications.

Note that, one can also abstract queries according to the abstraction of
the entries.

• Entry Set: Apart from the contents of the entries, we can abstract the
repository to a counter describing the number of entries inside the reposi-
tory. Furthermore, we may only consider some interesting symbolic values
such as empty, more and full as we have done for the buffer example of
Chapter 1.

If we are interested in proving termination, for example described as at
some point all entries are removed from the space, we would have problems
using some symbolic abstraction. To solve this problem we can use ac-
celerations. We know that by performing the action take (more precisely
takeReturn) the number of entries in the set decreases by one. There-
fore, we cannot have a path containing an infinite number of takeReturns,
unless it contains an infinite number of writes.

176 Chapter 8 Abstracting JavaSpaces

• Timeouts and Leases: They play a very important role in the process
of implementing applications. Considering that the number of resources
of the space is limited, timeouts and leases may be used to control the
usage of them. We have that, in the example, the lease of the entries was
necessary to guarantee the absence of deadlocks in the system.

They are implemented by using decreasing counters. The space grants a
value, and then it decreases the counter until zero where some action is
performed, such as: exceptions, garbage collection or null returns. Triv-
ially, counters can be abstracted by considering the needed symbolic val-
ues. Normally, we would have to distinguish whether the timeouts are
expired or not. In some cases, we may need more values to capture the re-
lations among different counters (for example in the case of the summation
algorithm).

As for the previous case, accelerations will help to verify expirations of
timeouts. For leases, the pattern will coincide exactly with the resettable
counter presented in Chapter 5, because leases can be renewed at any case.

• Replicated Processes: The example itself was used to show the appli-
cation of the patterns to replicated processes. In fact, many of the typical
JavaSpaces applications have a similar form. We have different kinds of
processes interacting among each other through the space, some of the
processes are identical. For example, in the summation case study we can
replicate the worker process.

For replicated processes we can abstract away from channel identifiers, as
we have done for the Producer-Transformer(s)-Consumer. We can con-
sider that replicated processes share the same communication channel.
This fact allows the use of the pattern for identical processes presented in
Section 4.4, because external processes are not identifiable. We show be-
low the linear process that captures an arbitrary number of transformers.
We consider that the process can be in three different states:

1. Taking. Just before performing the take action.

2. Waiting. for the return of a take.

3. Writing. Inserting the new entry in the space.

proc Transformers(dt: DTable) =∑
d: D(

take(cT, typeA, NULL, FOREVER)

.Transformers(update(waiting, d, dt))

� test(d, dt) ∧ d = taking � δ +

TakeReturn(cT, A)

.Transformers(update(writing, d, dt))

8.3 Conclusion 177

� test(d, dt) ∧ d = waiting � δ +

write(B, NULL, timeout)

.Transformers(update(taking, d, dt))

� test(d, dt) ∧ d = writing � δ)

If we use symbolic counters to represent the number of processes that are
in a given state, we will not be able to count down to zero. In that case,
we can again use accelerations to describe the fact that at some point the
number of processes in a state becomes zero.

• Other parts: The abstraction of the rest of the structures of the space is
more complicated such as: pending actions or transactions. They play a
crucial role in the well behaving of the system. For example, if we abstract
away the contents of the pending actions the space will not know what he
has to return and to whom.

8.3 Conclusion

This entire chapter is a conclusion for the second part of the thesis, it describes
how to apply the verification framework by abstraction to JavaSpaces applica-
tions. The purpose of the chapter was not to apply the abstraction patterns to
an illustrative example, but to give some guidelines about the general applica-
tion of them.

As an exercise, it would be interesting to use the patterns to push forward
the verification of the summation example. Some of the abstractions can be
easily applied because they are fully automated by the abstraction toolset for
µCRL presented in Chapter 3. However, other abstractions need extra effort to
implement tools to support them, for example:

• To use the pattern for replicated processes, we first need to transform
the processes to a special linear form. This transformation can be done
manually for simple examples, but it is tedious for more complex systems.

• The inclusion of accelerations, so far, is a little bit more complicated. In
Chapter 5, we have described the theory at the semantic level. It is still to
be investigate how to add the accelerations directly to the specification.
In any case for simple examples, we can use ad how reasoning, as we have
done in section 5.6.1.

We have applied several abstraction techniques to JavaSpaces applications
by prototype tools and sometimes by hand. This shows that the techniques are
promising. To apply this routinely on a larger scale, some more implementation
and integration would be needed.

178 Chapter 8 Abstracting JavaSpaces

Appendix A

JavaSpaces

This appendix includes the full JavaSpaces specification together with the source
code of the summation algorithm. It is organized with the following order:

1. The different data structures that the space uses.

2. The definition of actions and communications.

3. The process javaspace.

4. The auxiliary constants and processes.

5. The summation system, presented in section 7.3.

A.1 Data Description

We start by describing all the sorts one by one, and then we provide their µCRL
code:

• Bool: Represents the booleans. It contains two constructors true and
false, and the basic operators for negation, conjunction, disjunction,...

• Nat: Represents the natural numbers. It contains two constructors 0 and
successor, and the basic operators for addition, comparision, ...

• Time: Represents the time that is used by processes to request leases
or timeouts. It contains two constructors FOREVER and tt. The first
one represents the maximum, no other time value is bigger than FOR-
EVER. By using tt we encapsulate a natural numbers. For example, tt(1)
represents the time value 1.

The operations are basically the same as for the natural numbers. The
differences are when applying the operators to the constant FOREVER.
For instance, the result of decrementing FOREVER is FOREVER.

179

180 Appendix A JavaSpaces

• TypeAction: Represents the different types of look-up operations, used
to distinguish among the pending actions, see section 6.3.1. There are
four different constants:

– takeA, It denotes a take action.

– readA. It denotes a read action.

– takeEA. It denotes a takeIfExists action.

– readEA. It denotes a readIfExists action.

The µCRL code of these four sorts is included in section A.2. Now, we
continue with some other core data structures:

• Object: It is used to encapsulate Entries, see section 6.3. The constructor
object has three arguments:

– The object identifier, represented by a natural number. Identifiers
are used to implement the blocking mechanism of transactions.

– The entry. We recall that the sort Entry should be provided by the
external application, in section A.8, we see an example of it.

– The lease. It is the reference to the lease.

The sort provides functions to access to the different components of the
object, to decrement the lease and to check if the object has expired.

• Action: It is used to encapsulate the pending look-up operations, see
section 6.3.1. The constructor action has the following arguments:

– The type of action: readA, takeA, ...

– The reference to the transaction to which it is associated. This field
is a natural number.

– The timeout of sort Time.

– The channel identifier, to which the answer has to be sent. It is a
natural number provided by the external process.

– The query of sort Query. We recall that the query is used to im-
plement the matching, see section 6.2. It has to be provided by the
external application. We can see an example in section A.8.

The sort provides functions to access to the different fields of the pending
action, to decrement the timeout and to check if the action has expired.

• Entry: It is used to model Entries. It has to be provided by the external
user. All entries have to contain a null constructor entryNull, used to
implement the unsuccessful return of the look-up operations.

• Query: It is used to model the matching mechanism. It has to be provided
by the external user. All sorts have to contain the match function.

A.1 Data Description 181

The µCRL code of the first two sorts can be found in section A.2. An
example of sorts Entry and Query can be found in section A.8

• Transaction: It models the transactions, see section 6.3.2. The construc-
tor has the following arguments:

– The transaction identifier, which is a natural number.

– The reference to the lease.

– The three different object sets used to implement the transaction
mechanism, as we have seen in section 6.3.2.

Apart from the accessors to the different fields of the transaction, to decre-
ment the lease and to check if it has expired, the sort has some functions
to add and remove objects to and from the objects sets.

• TransactionCreated: It is used as return value after the creation of a
transaction. The constructor contains two fields: the transaction identifier
and the lease identifier.

• Lease: Represents the lease. It contains two fields: the identifier which is
a natural number, and the timeout. It provides functions to decrement the
timeout, to check if it is expired and to check if it has a timeout different
than FOREVER.

• Registration: It models the event registrations, as we have seen in sec-
tion 6.3.3. The constructors contains the following fields:

– The registration identifier.

– The reference to the transaction to which it is associated.

– The reference to the lease.

– To query used to match incoming entries.

– The sequence number of matching entries that have arrived.

– A boolean (notified) denoting if there is some pending event to be
sent.

The sort provides functions to access to the different fields, to decrement
the lease and to check if it has expired. Furthermore, it has a function
match to increment the sequence number if an entry matches the query.
And two functions to check and change the status of the registration (from
not notified to notified and the other way around).

• EventRegistration: It is used as return value after the registration for
incoming entries. The constructor contains two fields: the registration
identifier and the lease identifier.

182 Appendix A JavaSpaces

• Event: It is used to represents the notification events sent by the space
to the listeners. Every event contains the registration identifier to which
it is directed and the sequence number (number of matching entries that
have arrived since the last notification).

All these sorts are presented in section A.2. Now we proceed explaining the
data bases of the system.

• ObjectSet. It represents a set of objects. It has two constructors: the
empty set, emO and the insertion function. It also provides the following
operations:

– Basic functions to add, remove and get entries from the set. And to
make the union of two sets.

– areExpired. It is a function to check if there are expired entries.
There is also a function to decrement all active leases.

– areTimeouts. It is a function to check if there are active leases (with
value different than FOREVER and bigger than 0) in the set.

– matches. It is a function to check if there are some objects matching
a the query of a pending action.

– freshId. It is a function to look for fresh identifiers. Identifiers are
from a given range (0...maxObjects). When a new object is created
a unused identifier is assigned to it. The function isUsed is used to
check if an identifier is already assigned to an object.

– leases. Gives the set of leases associated to the objects of the set.

• ActionSet. It is used to model the pending action set. The specification
is very similar to the previous one. Apart from the basic functions, there
is a function match to check if an object matches some action’s query.

• TransactionSet. It is used to model the transaction set. Its specification
is also very similar to the ObjectSet ’s one. Apart from the previously cited
functions, it provides:

– URsets. It is function to make the union of all read sets of the active
transactions. The same functions exists for the write and take sets.
This functions are used to implement the blocking mechanism.

– readLocked. Checks if an entry is locked by some active transaction.

• LeaseSet. It is simple set to store the leases. It just has the basic
constructors, and the functions to look for fresh ids.

• RegistrationSet. It is set to store registrations. Its specification is also
very similar to the ObjectSet ’s one.

• EventList. It is simple list to store events. It is used by the implementa-
tion of the network between the space and the listeners, see section 6.3.3.
It provides the basic functions to manipulate lists.

A.2 Basic Data Types 183

A.2 Basic Data Types

sort Bool
func T,F:->Bool
map eq:Bool#Bool->Bool

not:Bool->Bool
and,or:Bool#Bool->Bool
if:Bool#Bool#Bool->Bool

var x,y:Bool
rew eq(T,T)=T eq(F,F)=T

eq(T,F)=F eq(F,T)=F
and(T,x) = x and(F,x) = F
and(x,F) = F and(x,T) = x
or(T,x) = T or(F,x) = x
or(x, T) = T or(x, F) = x
not(T) = F not(F) = T
if(T,x,y) = x if(F,x,y) = y
not(not(x)) = x

sort Nat
func 0:->Nat

S:Nat->Nat
map eq:Nat#Nat->Bool

plus:Nat#Nat->Nat
P:Nat->Nat
lt:Nat#Nat->Bool
gt:Nat#Nat->Bool
ge:Nat#Nat->Bool
le:Nat#Nat->Bool
if:Bool#Nat#Nat->Nat

var x,y:Nat
rew eq(x,x) = T eq(0,S(x)) = F

eq(S(x),0) = F eq(S(x),S(y)) = eq(x,y)
eq(x,S(x)) = F eq(S(x),x) = F
plus(x,0) = x plus(x,S(y)) = S(plus(x,y))
ge(x,0) = T ge(0,S(x)) = F
ge(S(x),S(y)) = ge(x,y) gt(x,y) = ge(x,S(y))
lt(x,y) = gt(y,x) le(x,y) = ge(y,x)
P(0) = 0 P(S(x)) = x
if(T,x,y) = x if(F,x,y) = y

% Some frequently used constants

map 1,2,3,4,5,6:-> Nat
rew 1 = S(0)

2 = S(S(0))
3 = S(S(S(0)))
4 = S(S(S(S(0))))
5 = S(S(S(S(S(0)))))
6 = S(S(S(S(S(S(0))))))

184 Appendix A JavaSpaces

% Time: natural, use to specify timeouts, leases, ...

sort Time
func tt:Nat->Time

FOREVER:->Time
map eq:Time#Time->Bool

plus:Time#Time->Time
lt:Time#Time->Bool
gt:Time#Time->Bool
ge:Time#Time->Bool
le:Time#Time->Bool
S:Time->Time
decT:Time->Time

var x, x’:Nat
t1, t2: Time

rew eq(FOREVER, FOREVER) = T
eq(tt(x), FOREVER) = F
eq(tt(x), tt(x’)) = eq(x,x’)
eq(FOREVER, tt(x)) = F
plus(FOREVER, FOREVER) = FOREVER
plus(tt(x), FOREVER) = FOREVER
plus(tt(x), tt(x’)) = tt(plus(x,x’))
plus(FOREVER, tt(x)) = FOREVER
lt(FOREVER, FOREVER) = F
lt(tt(x), FOREVER) = T
lt(tt(x), tt(x’)) = lt(x,x’)
lt(FOREVER, tt(x)) = F
le(FOREVER, FOREVER) = T
le(tt(x), FOREVER) = T
le(tt(x), tt(x’)) = le(x,x’)
le(FOREVER, tt(x)) = F
gt(FOREVER, FOREVER) = F
gt(tt(x), FOREVER) = F
gt(tt(x), tt(x’)) = gt(x,x’)
gt(FOREVER, tt(x)) = T
ge(FOREVER, FOREVER) = T
ge(tt(x), FOREVER) = F
ge(tt(x), tt(x’)) = ge(x,x’)
ge(FOREVER, tt(x)) = T
S(FOREVER) = FOREVER
S(tt(x)) = tt(S(x))
decT(tt(x)) = tt(P(x))
decT(FOREVER) = FOREVER

% TypeAction:

sort TypeAction
func takeA, readA, takeEA, readEA :->TypeAction
map eq:TypeAction#TypeAction->Bool

A.3 System Data Structures 185

var ta1, ta2: TypeAction
rew eq(takeA, takeA) = T eq(readA, readA) = T

eq(takeEA, takeEA) = T eq(readEA, readEA) = T
eq(takeA, readA) = F eq(takeA, readEA) = F
eq(takeA, takeEA) = F eq(readA, takeA) = F
eq(readA, readEA) = F eq(readA, takeEA) = F
eq(takeEA, readA) = F eq(takeEA, readEA) = F
eq(takeEA, takeA) = F eq(readEA, readA) = F
eq(readEA, takeA) = F eq(readEA, takeEA) = F

A.3 System Data Structures

% Object:

sort Object
func object:Nat#Entry#Lease->Object
map eq:Object#Object->Bool

entry:Object->Entry
lease:Object->Lease
id:Object->Nat
decT:Object->Object
isExpired:Object->Bool

var o,o’:Object
e:Entry
l:Lease
id:Nat

rew eq(o, o’) = and(and(
eq(lease(o), lease(o’)),
eq(id(o), id(o’))),
eq(entry(o), entry(o’)))

entry(object(id,e,l)) = e
lease(object(id,e,l)) = l
id(object(id,e,l)) = id
decT(object(id,e,l)) = object(id,e,decT(l))
isExpired(o) = isExpired(lease(o))

% Action:

sort Action
func action: TypeAction#Nat#Nat#Time#Query->Action
map eq:Action#Action->Bool

type:Action->TypeAction
trcId:Action->Nat
timeout:Action->Time
procId:Action->Nat
query:Action->Query
decT:Action->Action
isExpired:Action->Bool

var a,a’:Action

186 Appendix A JavaSpaces

trc:Nat
to:Time
type:TypeAction
q:Query
pId:Nat

rew eq(a,a’) = and(and(and(and(
eq(type(a), type(a’)),
eq(timeout(a), timeout(a’))),
eq(procId(a), procId(a’))),
eq(trcId(a), trcId(a’))),
eq(query(a), query(a’)))

type(action(type,trc,pId,to,q)) = type
trcId(action(type,trc,pId,to,q)) = trc
timeout(action(type,trc,pId,to,q)) = to
procId(action(type,trc,pId,to,q)) = pId
query(action(type,trc,pId,to,q)) = q
decT(action(type,trc,pId,to,q)) =

action(type,trc,pId,decT(to),q)
isExpired(a) = eq(timeout(a), tt(0))

% Transaction:

sort Transaction
func transaction:Nat#Lease#

ObjectSet#ObjectSet#ObjectSet->Transaction
map eq:Transaction#Transaction->Bool

id:Transaction->Nat
lease:Transaction->Lease
Wset:Transaction->ObjectSet
Tset:Transaction->ObjectSet
Rset:Transaction->ObjectSet
decT:Transaction->Transaction
isExpired:Transaction->Bool
inW:Object#Transaction->Transaction
inT:Object#Transaction->Transaction
inR:Object#Transaction->Transaction
remW:Object#Transaction->Transaction
remT:Object#Transaction->Transaction
remR:Object#Transaction->Transaction
if:Bool#Transaction#Transaction->Transaction

var t,t’:Transaction
id:Nat
l:Lease
Ws,Ts,Rs:ObjectSet
o:Object

rew eq(t, t’) = and(and(and(and(eq(id(t), id(t’)),
eq(lease(t), lease(t’))), eq(Wset(t),Wset(t’))),
eq(Tset(t),Tset(t’))), eq(Rset(t),Rset(t’)))

id(transaction(id, l, Ws, Ts, Rs)) = id
lease(transaction(id, l, Ws, Ts, Rs)) = l

A.3 System Data Structures 187

Wset(transaction(id, l, Ws, Ts, Rs)) = Ws
Tset(transaction(id, l, Ws, Ts, Rs)) = Ts
Rset(transaction(id, l, Ws, Ts, Rs)) = Rs
decT(transaction(id, l, Ws, Ts, Rs)) =

transaction(id, decT(l), Ws, Ts, Rs)
isExpired(t) = isExpired(lease(t))
inW(o,transaction(id, l, Ws, Ts, Rs)) =

transaction(id, l, in(o, Ws), Ts, Rs)
inT(o,transaction(id, l, Ws, Ts, Rs)) =

transaction(id, l, Ws, in(o, Ts), Rs)
inR(o,transaction(id, l, Ws, Ts, Rs)) =

transaction(id, l, Ws, Ts, in(o, Rs))
remW(o,transaction(id, l, Ws, Ts, Rs)) =

transaction(id, l, rem(o, Ws), Ts, Rs)
remT(o,transaction(id, l, Ws, Ts, Rs)) =

transaction(id, l, Ws, rem(o, Ts), Rs)
remR(o,transaction(id, l, Ws, Ts, Rs)) =

transaction(id, l, Ws, Ts, rem(o, Rs))
if(T,t,t’) = t

if(F,t,t’) = t’

% TransactionCreated:
% return data after the creation of a transaction

sort TransactionCreated
func trcCreated:Nat#Nat->TransactionCreated
map eq:TransactionCreated#TransactionCreated->Bool

trcId:TransactionCreated->Nat
leaseId:TransactionCreated->Nat

var t,t’:TransactionCreated
id:Nat
l:Nat

rew eq(t, t’) = and(eq(trcId(t), trcId(t’)),
eq(leaseId(t), leaseId(t’)))

trcId(trcCreated(id, l)) = id
leaseId(trcCreated(id, l)) = l

% Lease:

sort Lease
func lease:Nat#Time->Lease
map eq:Lease#Lease->Bool

id:Lease->Nat
timeout:Lease->Time
decT:Lease->Lease
isExpired:Lease->Bool
hasTimeout:Lease->Bool

var l,l’:Lease
to:Time
id:Nat

188 Appendix A JavaSpaces

rew eq(l, l’) = and(
eq(id(l), id(l’)),
eq(timeout(l), timeout(l’)))

id(lease(id,to)) = id
timeout(lease(id,to)) = to
decT(lease(id,to)) = lease(id,decT(to))
isExpired(l) = eq(timeout(l),tt(0))
hasTimeout(l) = not(eq(timeout(l), FOREVER))

% Registration

sort Registration
func registration: Nat#Nat#Lease#

Query#Nat#Bool -> Registration
map eq: Registration#Registration -> Bool

id:Registration -> Nat
trcId:Registration -> Nat
query:Registration->Query
lease:Registration -> Lease
notified:Registration -> Bool
seq:Registration -> Nat
isExpired:Registration->Bool
decT:Registration->Registration
match:Entry#Nat#Registration->Registration
notify:Registration->Registration
if:Bool#Registration#Registration->Registration

var no, no’:Registration
id:Nat
b:Bool
q:Query
e:Entry
l:Lease
s,trc,trcId:Nat

rew eq(no, no’) = and(and(and(and(and(
eq(id(no), id(no’)),
eq(trcId(no), trcId(no’))),
eq(lease(no), lease(no’))),
eq(query(no), query(no’))),
eq(notified(no), notified(no’))),
eq(seq(no), seq(no’)))

if(T,no,no’) = no
if(F,no,no’) = no’
id(registration(id,trc,l,q,s,b)) = id
trcId(registration(id,trc,l,q,s,b)) = trc
lease(registration(id,trc,l,q,s,b)) = l
query(registration(id,trc,l,q,s,b)) = q
seq(registration(id,trc,l,q,s,b)) = s
notified(registration(id,trc,l,q,s,b))= b
isExpired(no) = isExpired(lease(no))
decT(registration(id,trc,l,q,s,b)) =

A.4 System Data Bases 189

registration(id,trc,decT(l),q,s,b)
match(e,trcId,registration(id,trc,l,q,s,b)) =

if(and(match(q, e),
or(eq(trcId,trc), eq(trcId,NULL))),

registration(id,trc,l,q,S(s),F),
registration(id,trc,l,q,s,b))

notify(registration(id,trc,l,q,s,b)) =
registration(id,trc,l,q,s,T)

% EventRegistration:
% return data after the registration for events

sort EventRegistration
func evReg:Nat#Nat->EventRegistration
map eq:EventRegistration#EventRegistration->Bool

regId:EventRegistration->Nat
leaseId:EventRegistration->Nat

var e,e’:EventRegistration
id:Nat
l:Nat

rew eq(e, e’) = and(eq(regId(e), regId(e’)),
eq(leaseId(e), leaseId(e’)))

regId(evReg(id, l)) = id
leaseId(evReg(id, l)) = l

% Event

sort Event
func event: Nat#Nat -> Event
map eq: Event#Event -> Bool

registrationId:Event -> Nat
seq:Event -> Nat

var ev, ev’:Event
id, s:Nat

rew eq(ev, ev’) = and(
eq(seq(ev), seq(ev’)),
eq(registrationId(ev), registrationId(ev’)))

registrationId(event(id,s)) = id
seq(event(id,s))= s

A.4 System Data Bases

% Object Set:

sort ObjectSet
func emO:->ObjectSet

in:Object#ObjectSet->ObjectSet
map eq:ObjectSet#ObjectSet->Bool

if:Bool#ObjectSet#ObjectSet->ObjectSet

190 Appendix A JavaSpaces

rem:Object#ObjectSet->ObjectSet
get:ObjectSet#Object->Bool
U:ObjectSet#ObjectSet->ObjectSet
areExpired:ObjectSet->Bool
areTimeouts:ObjectSet->Bool
matches:Query#ObjectSet->Bool
decT:ObjectSet->ObjectSet
freshId:ObjectSet->Nat
freshId:ObjectSet#Nat->Nat
isUsed:ObjectSet#Nat->Bool
leases:ObjectSet->LeaseSet
leases:ObjectSet#LeaseSet->LeaseSet

var S,S’:ObjectSet
o,o’:Object
time:Time
query:Query
n:Nat
L:LeaseSet

rew eq(emO,emO) = T
eq(emO,in(o,S)) = F
eq(in(o,S),emO) = F
eq(in(o,S),in(o’,S’)) = and(eq(o,o’),eq(S,S’))
if(T,S,S’) = S
if(F,S,S’) = S’
rem(o,emO) = emO
rem(o,in(o’,S)) = if(eq(o,o’),S,in(o’,rem(o,S)))
get(emO,o) = F
get(in(o,S),o’) = or(eq(o,o’),get(S,o’))
U(S,emO)=S
U(emO,S)=S
U(S,in(o,S’))=U(in(o,S),S’)
areExpired(emO)=F
areExpired(in(o,S)) = or(isExpired(o),areExpired(S))
areTimeouts(emO) = F
areTimeouts(in(o, S)) =

if(hasTimeout(lease(o)), T, areTimeouts(S))
matches(query, emO) = F
matches(query, in(o, S)) =

if(match(query, entry(o)), T, matches(query, S))
decT(emO) = emO
decT(in(o, S)) = in(decT(o), decT(S))
freshId(S) = freshId(S, P(maxObjects))
freshId(S, 0) = if(isUsed(S, 0), maxObjects, 0)
freshId(S, S(n)) =

if(isUsed(S, S(n)), freshId(S, n), S(n))
isUsed(emO, n) = F
isUsed(in(o, S), n) = if(eq(id(o), n), T, isUsed(S,n))
leases(S) = leases(S, emL)
leases(emO, L) = L
leases(in(o, S), L) = leases(S, in(lease(o), L))

A.4 System Data Bases 191

% Action Set:

sort ActionSet
func emA:->ActionSet

in:Action#ActionSet->ActionSet
map eq:ActionSet#ActionSet->Bool

if:Bool#ActionSet#ActionSet->ActionSet
rem:Action#ActionSet->ActionSet
remPAs:Nat#ActionSet->ActionSet
U:ActionSet#ActionSet->ActionSet
areExpired:ActionSet->Bool
areTimeouts:ActionSet->Bool
get:ActionSet#Action->Bool
decT:ActionSet->ActionSet
match:Object#ActionSet->Bool
len:ActionSet->Nat

var S,S’:ActionSet
a,a’:Action
time:Time
o:Object
id:Nat

rew eq(emA,emA) = T
eq(emA,in(a,S)) = F
eq(in(a,S),emA) = F
eq(in(a,S),in(a’,S’)) = and(eq(a,a’),eq(S,S’))
if(T,S,S’) = S
if(F,S,S’) = S’
rem(a,emA) = emA
rem(a,in(a’,S)) = if(eq(a,a’),S,in(a’,rem(a,S)))
U(S,emA)=S
U(emA,S)=S
U(S,in(a,S’))=U(in(a,S),S’)
areExpired(emA)=F
areExpired(in(a,S)) = or(isExpired(a), areExpired(S))
areTimeouts(emA) = F
areTimeouts(in(a, S)) =

if(not(eq(timeout(a), FOREVER)), T, areTimeouts(S))
get(emA,a) = F
get(in(a,S),a’) = or(eq(a,a’),get(S,a’))
decT(emA) = emA
decT(in(a, S)) = in(decT(a), decT(S))
match(o, emA) = F
match(o, in(a, S)) =

if(match(query(a), entry(o)), T, match(o, S))
len(emA) = 0
len(in(a, S)) = S(len(S))
remPAs(id,emA) = emA
remPAs(id,in(a,S)) =

if(eq(id,trcId(a)),

192 Appendix A JavaSpaces

remPAs(id, S), in(a,remPAs(id, S)))

% Transaction Set

sort TransactionSet
func emT:->TransactionSet

in:Transaction#TransactionSet->TransactionSet
map eq:TransactionSet#TransactionSet->Bool

if:Bool#TransactionSet#TransactionSet->TransactionSet
rem:Transaction#TransactionSet->TransactionSet
get:TransactionSet#Transaction->Bool
getById:TransactionSet#Nat->Transaction
areExpired:TransactionSet->Bool
areTimeouts:TransactionSet->Bool
decT:TransactionSet->TransactionSet
freshId:TransactionSet->Nat
freshId:TransactionSet#Nat->Nat
isUsed:TransactionSet#Nat->Bool
URsets:TransactionSet->ObjectSet
UWsets:TransactionSet->ObjectSet
UTsets:TransactionSet->ObjectSet
readLocked:Object#TransactionSet->Bool
leases:TransactionSet->LeaseSet
leases:TransactionSet#LeaseSet->LeaseSet

var S,S’:TransactionSet
t,t’:Transaction
time:Time
n:Nat
o:Object
L:LeaseSet

rew if(T,S,S’) = S
if(F,S,S’) = S’
rem(t,emT) = emT
rem(t,in(t’,S)) = if(eq(t,t’),S,in(t’,rem(t,S)))
get(emT,t) = F
get(in(t,S),t’) = or(eq(t,t’),get(S,t’))
getById(in(t,S),n) = if(eq(id(t),n), t, getById(S, n))
eq(emT,emT) = T
eq(emT,in(t,S)) = F
eq(in(t,S),emT) = F
eq(in(t,S),in(t’,S’)) = and(eq(t,t’),eq(S,S’))
areTimeouts(emT) = F
areTimeouts(in(t, S)) =

if(hasTimeout(lease(t)), T, areTimeouts(S))
areExpired(emT)=F
areExpired(in(t,S)) = or(isExpired(t), areExpired(S))
decT(emT) = emT
decT(in(t, S)) = in(decT(t), decT(S))
freshId(S) = freshId(S, P(maxTrc))
freshId(S, 0) = maxTrc % NULL is reserved

A.4 System Data Bases 193

freshId(S, S(n)) =
if(isUsed(S, S(n)), freshId(S, n), S(n))

isUsed(emT, n) = F
isUsed(in(t, S), n) =

if(eq(id(t), n), T, isUsed(S,n))
URsets(emT)=emO
URsets(in(t,S))=U(Rset(t),URsets(S))
UWsets(emT)=emO
UWsets(in(t,S))=U(Wset(t),UWsets(S))
UTsets(emT)=emO
UTsets(in(t,S))=U(Tset(t),UTsets(S))
readLocked(o, S) = isUsed(URsets(S), id(o))
leases(S) = leases(S, emL)
leases(emT, L) = L
leases(in(t, S), L) = leases(S, in(lease(t), L))

% Lease Set

sort LeaseSet
func emL:->LeaseSet

in:Lease#LeaseSet->LeaseSet
map U:LeaseSet#LeaseSet->LeaseSet

freshId:LeaseSet->Nat
freshId:LeaseSet#Nat->Nat
isUsed:LeaseSet#Nat->Bool

var L, L’:LeaseSet
l: Lease
n: Nat

rew U(L,emL)=L
U(emL,L)=L
U(L,in(l,L’))=U(in(l,L),L’)
freshId(L) = freshId(L, P(maxLeases))
freshId(L, 0) = if(isUsed(L, 0), maxLeases, 0)
freshId(L, S(n)) =

if(isUsed(L, S(n)), freshId(L, n), S(n))
isUsed(emL, n) = F
isUsed(in(l, L), n) =

if(eq(id(l), n), T, isUsed(L,n))

% Registration Set:

sort RegistrationSet
func emR:->RegistrationSet

in:Registration#RegistrationSet->RegistrationSet
map eq:RegistrationSet#RegistrationSet->Bool

if:Bool#RegistrationSet#
RegistrationSet->RegistrationSet

rem:Registration#RegistrationSet->RegistrationSet
U:RegistrationSet#RegistrationSet->RegistrationSet
areExpired:RegistrationSet->Bool

194 Appendix A JavaSpaces

areTimeouts:RegistrationSet->Bool
get:RegistrationSet#Registration->Bool
decT:RegistrationSet->RegistrationSet
len:RegistrationSet->Nat
freshId:RegistrationSet->Nat
freshId:RegistrationSet#Nat->Nat
isUsed:RegistrationSet#Nat->Bool
match:Entry#Nat#RegistrationSet->RegistrationSet
remRegs:Nat#RegistrationSet->RegistrationSet
leases:RegistrationSet->LeaseSet
leases:RegistrationSet#LeaseSet->LeaseSet

var S,S’:RegistrationSet
r,r’:Registration
time:Time
n:Nat
e:Entry
trcId:Nat
L:LeaseSet

rew
eq(emR,emR) = T
eq(emR,in(r,S)) = F
eq(in(r,S),emR) = F
eq(in(r,S),in(r’,S’)) = and(eq(r,r’),eq(S,S’))
if(T,S,S’) = S
if(F,S,S’) = S’
rem(r,emR) = emR
rem(r,in(r’,S)) = if(eq(r,r’),S,in(r’,rem(r,S)))
U(S,emR)=S
U(emR,S)=S
U(S,in(r,S’))=U(in(r,S),S’)
areExpired(emR)=F
areExpired(in(r,S)) = or(isExpired(r), areExpired(S))
areTimeouts(emR) = F
areTimeouts(in(r, S)) =

if(hasTimeout(lease(r)), T, areTimeouts(S))
get(emR,r) = F
get(in(r,S),r’) = or(eq(r,r’),get(S,r’))
decT(emR) = emR
decT(in(r, S)) = in(decT(r), decT(S))
len(emR) = 0
len(in(r, S)) = S(len(S))
freshId(S) = freshId(S, P(maxRegistrations))
freshId(S, 0) = if(isUsed(S, 0), maxRegistrations, 0)
freshId(S, S(n)) =

if(isUsed(S, S(n)), freshId(S, n), S(n))
isUsed(emR, n) = F
isUsed(in(r, S), n) =

if(eq(id(r), n), T, isUsed(S,n))
match(e,trcId,emR) = emR
match(e,trcId,in(r,S)) =

A.5 Action Definitions 195

in(match(e,trcId,r), match(e,trcId,S))
remRegs(trcId,emR) = emR
remRegs(trcId,in(r,S)) =

if(eq(trcId,trcId(r)),
remRegs(trcId, S), in(r,remRegs(trcId, S)))

leases(S) = leases(S, emL)
leases(emR, L) = L
leases(in(r, S), L) = leases(S, in(lease(r), L))

% Event List:

sort EventList
func emEv:->EventList

in:Event#EventList->EventList
map first:EventList->Event

tail:EventList->EventList
get:EventList#Event->Bool
rem:Event#EventList->EventList
len:EventList->Nat
if:Bool#EventList#EventList->EventList

var e,e’:Event
E,E’:EventList

rew first(in(e, E)) = e
tail(in(e, E)) = E
len(emEv) = 0
len(in(e, E)) = S(len(E))
get(emEv,e) = F
get(in(e,E),e’) = or(eq(e,e’),get(E,e’))
rem(e,emEv) = emEv
rem(e,in(e’,E)) = if(eq(e,e’),E,in(e’,rem(e,E)))
if(T,E,E’) = E
if(F,E,E’) = E’

A.5 Action Definitions

act write, Write, W : Entry#Nat#Time
write, Write, W : Entry#Nat#Time#Nat
take, Take, T : Nat#Nat#Time#Query
read, Read, R : Nat#Nat#Time#Query
readIfExists, ReadIfExists, RIE : Nat#Nat#Time#Query
takeIfExists, TakeIfExists, TIE : Nat#Nat#Time#Query
takeReturn, TakeReturn, TReturn : Nat#Entry
readReturn, ReadReturn, RReturn : Nat#Entry
readIfExistsReturn, ReadIfExistsReturn,

RIEReturn : Nat#Entry
takeIfExistsReturn, TakeIfExistsReturn,

TIEReturn : Nat#Entry
create, Create, C : TransactionCreated#Time
commit, Commit, Cm : Nat

196 Appendix A JavaSpaces

abort, Abort, A : Nat
exception, Exception, E : Nat
notify, Notify, N: Nat#Time#Query#EventRegistration
_notify, __Notify, _N: Event
__notify, _Notify, __N: Nat#Nat
tick
duplicate loose
gc: Entry
gc: Registration
renew,Renew,Rnew: Nat#Time

comm write|Write = W
take|Take = T
read|Read = R
readIfExists|ReadIfExists = RIE
takeIfExists|TakeIfExists = TIE
takeReturn|TakeReturn = TReturn
readReturn|ReadReturn = RReturn
readIfExistsReturn|ReadIfExistsReturn = RIEReturn
takeIfExistsReturn|TakeIfExistsReturn = TIEReturn
create|Create = C
commit|Commit = Cm
abort|Abort = A
exception|Exception = E
notify|Notify = N
_notify|__Notify = _N
__notify|_Notify = __N
renew|Renew = Rnew

A.6 JavaSpace Process

proc javaspace(M:ObjectSet, PA:ActionSet,
Trc:TransactionSet, Reg: RegistrationSet) =

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% WRITE WITHOUT TRANSACTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sum(e:Entry, sum(trcId:Nat, sum(timeout:Time,
sum(objectId: Nat, sum(leaseId: Nat,
Write(e, trcId, timeout)
.javaspace(in(object(objectId, e,

lease(leaseId, timeout)), M),
PA, Trc, match(e, trcId, Reg))

<| and(and(and(and(and(and(
eq(trcId, NULL),
not(eq(e, entryNull))),
or(lt(timeout, maxTime), eq(timeout,FOREVER))),
eq(objectId, freshId(U(M, UWsets(Trc))))),

A.6 JavaSpace Process 197

lt(objectId, maxObjects)),
eq(leaseId,

freshId(U(leases(M), U(leases(Trc), leases(Reg)))))),
lt(leaseId, maxLeases))

|>
delta)))))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% WRITE WITH TRANSACTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

+
sum(e:Entry, sum(trcId:Nat, sum(timeout:Time,

sum(trc: Transaction, sum(objectId: Nat,
sum(leaseId: Nat,

Write(e, trcId, timeout)
.javaspace(M, PA, in(inW(object(objectId, e,

lease(leaseId, timeout)), trc),
rem(trc, Trc)), match(e, trcId, Reg))

<| and(and(and(and(and(and(and(and(
not(eq(trcId, NULL)),
get(Trc, trc)),
eq(trcId, id(trc))),
not(eq(e, entryNull))),
or(lt(timeout, maxTime), eq(timeout, FOREVER))),
eq(objectId, freshId(U(M, UWsets(Trc))))),
lt(objectId, maxObjects)),
eq(leaseId,

freshId(U(leases(M), U(leases(Trc), leases(Reg)))))),
lt(leaseId, maxLeases))

|>
delta))))))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% WRITE WITHOUT TRANSACTION (returning the lease)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

+
sum(e:Entry, sum(trcId:Nat, sum(timeout:Time,
sum(objectId: Nat, sum(leaseId: Nat,

Write(e, trcId, timeout, leaseId)
.javaspace(in(object(objectId, e,

lease(leaseId, timeout)), M),
PA, Trc, match(e, trcId, Reg))

<| and(and(and(and(and(and(
eq(trcId, NULL),
not(eq(e, entryNull))),
or(lt(timeout, maxTime), eq(timeout,FOREVER))),
eq(objectId, freshId(U(M, UWsets(Trc))))),
lt(objectId, maxObjects)),
eq(leaseId,

freshId(U(leases(M), U(leases(Trc), leases(Reg)))))),

198 Appendix A JavaSpaces

lt(leaseId, maxLeases))
|>
delta)))))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% WRITE WITH TRANSACTION (returning the lease)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

+
sum(e:Entry, sum(trcId:Nat, sum(timeout:Time,

sum(trc: Transaction, sum(objectId: Nat,
sum(leaseId: Nat,

Write(e, trcId, timeout, leaseId)
.javaspace(M, PA, in(inW(object(objectId, e,

lease(leaseId, timeout)), trc),
rem(trc, Trc)), match(e, trcId, Reg))

<| and(and(and(and(and(and(and(and(
not(eq(trcId, NULL)),
get(Trc, trc)),
eq(trcId, id(trc))),
not(eq(e, entryNull))),
or(lt(timeout, maxTime), eq(timeout, FOREVER))),
eq(objectId, freshId(U(M, UWsets(Trc))))),
lt(objectId, maxObjects)),
eq(leaseId,

freshId(U(leases(M), U(leases(Trc), leases(Reg)))))),
lt(leaseId, maxLeases))

|>
delta))))))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% TAKE PRIMITIVE WITHOUT TRANSACTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

+
sum(procId:Nat, sum(trcId:Nat, sum(timeout:Time,

sum(query:Query,
Take(procId, trcId, timeout, query)
.javaspace(M, in(action(takeA, trcId,

procId, timeout, query), PA), Trc, Reg)
<| and(and(

eq(trcId, NULL),
or(lt(timeout, maxTime), eq(timeout,FOREVER))),
lt(len(PA), maxActions))

|>
delta))))

% NULL RETURN
+
sum(a:Action,

takeReturn(procId(a), entryNull)
.javaspace(M, rem(a, PA), Trc, Reg)

A.6 JavaSpace Process 199

<| and(and(and(and(
get(PA, a),
eq(type(a), takeA)),
eq(trcId(a), NULL)),
isExpired(a)),
not(matches(query(a), M)))

|>
delta)

% NON-NULL RETURN
+
sum(a: Action, sum(o: Object,

takeReturn(procId(a), entry(o))
.javaspace(rem(o, M), rem(a, PA), Trc, Reg)

<| and(and(and(and(and(
get(PA, a),
get(M, o)),
eq(type(a), takeA)),
eq(trcId(a), NULL)),
match(query(a), entry(o))),
not(readLocked(o, Trc)))

% Not read locked by any transaction
|>
delta))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% READ PRIMITIVE WITHOUT TRANSACTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

+
sum(procId:Nat, sum(trcId:Nat, sum(timeout:Time,

sum(query:Query,
Read(procId, trcId, timeout, query)
.javaspace(M, in(action(readA, trcId,

procId, timeout, query), PA), Trc, Reg)
<| and(and(

eq(trcId, NULL),
or(lt(timeout, maxTime), eq(timeout,FOREVER))),
lt(len(PA), maxActions))

|>
delta))))

% NULL RETURN
+
sum(a:Action,

readReturn(procId(a), entryNull)
.javaspace(M, rem(a, PA), Trc, Reg)

<| and(and(and(and(
get(PA, a),
eq(type(a), readA)),
eq(trcId(a), NULL)),

200 Appendix A JavaSpaces

isExpired(a)),
not(matches(query(a), M)))

|>
delta)

% NON-NULL RETURN
+
sum(a: Action, sum(o: Object,

readReturn(procId(a), entry(o))
.javaspace(M, rem(a, PA), Trc, Reg)

<| and(and(and(and(
get(PA, a),
get(M, o)),
eq(type(a), readA)),
eq(trcId(a), NULL)),
match(query(a), entry(o)))

|>
delta))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% READ_IF_EXISTS PRIMITIVE WITHOUT TRANSACTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% There are matching entries in M or in Trc
+
sum(procId:Nat, sum(trcId:Nat, sum(timeout:Time,

sum(query:Query,
ReadIfExists(procId, trcId, timeout, query)
.javaspace(M, in(action(readEA, trcId,

procId, timeout, query), PA), Trc, Reg)
<| and(and(and(

eq(trcId, NULL),
or(lt(timeout, maxTime), eq(timeout,FOREVER))),
lt(len(PA), maxActions)),
matches(query, U(M, U(UWsets(Trc), UTsets(Trc)))))

|>
delta))))

% There are not matching entries in M or in Trc
+
sum(procId:Nat, sum(trcId:Nat, sum(timeout:Time,

sum(query:Query,
ReadIfExists(procId, trcId, timeout, query)
.javaspace(M, in(action(readEA, trcId,

procId, tt(0), query), PA), Trc, Reg)
<| and(and(and(

eq(trcId, NULL),
or(lt(timeout, maxTime), eq(timeout,FOREVER))),
lt(len(PA), maxActions)),
not(matches(query, U(M, U(UWsets(Trc), UTsets(Trc))))))

A.6 JavaSpace Process 201

|>
delta))))

% NULL RETURN
+
sum(a:Action,

readIfExistsReturn(procId(a), entryNull)
.javaspace(M, rem(a, PA), Trc, Reg)

<| and(and(and(and(
get(PA, a),
eq(type(a), readEA)),
eq(trcId(a), NULL)),
isExpired(a)),
not(matches(query(a), M)))

|>
delta)

% NON-NULL RETURN
+
sum(a: Action, sum(o: Object,

readIfExistsReturn(procId(a), entry(o))
.javaspace(M, rem(a, PA), Trc, Reg)

<| and(and(and(and(
get(PA, a),
get(M, o)),
eq(type(a), readEA)),
eq(trcId(a), NULL)),
match(query(a), entry(o)))

|>
delta))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% TAKE_IF_EXISTS PRIMITIVE WITHOUT TRANSACTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% There are matching entries in M or in Trc
+
sum(procId:Nat, sum(trcId:Nat, sum(timeout:Time,

sum(query:Query,
TakeIfExists(procId, trcId, timeout, query)
.javaspace(M, in(action(takeEA, trcId,

procId, timeout, query), PA), Trc, Reg)
<| and(and(and(

eq(trcId, NULL),
or(lt(timeout, maxTime), eq(timeout,FOREVER))),
lt(len(PA), maxActions)),
matches(query, U(M, U(UWsets(Trc), UTsets(Trc)))))

|>
delta))))

202 Appendix A JavaSpaces

% There are not matching entries in M or in Trc
+
sum(procId:Nat, sum(trcId:Nat, sum(timeout:Time,

sum(query:Query,
TakeIfExists(procId, trcId, timeout, query)
.javaspace(M, in(action(takeEA, trcId,

procId, tt(0), query), PA), Trc, Reg)
<| and(and(and(

eq(trcId, NULL),
or(lt(timeout, maxTime), eq(timeout,FOREVER))),
lt(len(PA), maxActions)),
not(matches(query, U(M, U(UWsets(Trc), UTsets(Trc))))))

|>
delta))))

% NULL RETURN
+
sum(a:Action,

takeIfExistsReturn(procId(a), entryNull)
.javaspace(M, rem(a, PA), Trc, Reg)

<| and(and(and(and(
get(PA, a),
eq(type(a), takeEA)),
eq(trcId(a), NULL)),
isExpired(a)),
not(matches(query(a), M)))

|>
delta)

% NON-NULL RETURN
+
sum(a: Action, sum(o: Object,

takeIfExistsReturn(procId(a), entry(o))
.javaspace(rem(o, M), rem(a, PA), Trc, Reg)

<| and(and(and(and(and(
get(PA, a),
get(M, o)),
eq(type(a), takeEA)),
eq(trcId(a), NULL)),
match(query(a), entry(o))),
not(readLocked(o, Trc)))

% Not read by any transactions
|>
delta))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% TAKE PRIMITIVE WITH TRANSACTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

+
sum(procId:Nat, sum(trcId:Nat, sum(timeout:Time,

A.6 JavaSpace Process 203

sum(query:Query, sum(trc:Transaction,
Take(procId, trcId, timeout, query)
.javaspace(M, in(action(takeA, trcId,

procId, timeout, query), PA), Trc, Reg)
<| and(and(and(and(

not(eq(trcId, NULL)),
get(Trc, trc)),
eq(trcId, id(trc))),
or(lt(timeout, maxTime), eq(timeout,FOREVER))),
lt(len(PA), maxActions))

|>
delta)))))

% NULL RETURN
+
sum(a:Action, sum(trc: Transaction,

takeReturn(procId(a), entryNull)
.javaspace(M, rem(a, PA), Trc, Reg)

<| and(and(and(and(and(and(and(
not(eq(trcId(a), NULL)),
get(Trc, trc)),
eq(trcId(a), id(trc))),
get(PA, a)),
eq(type(a), takeA)),
isExpired(a)),
not(matches(query(a), M))),
not(matches(query(a), Wset(trc))))

|>
delta))

% NON-NULL RETURN (entry is in M)
+
sum(a:Action, sum(o: Object,

takeReturn(procId(a), entry(o))
.javaspace(rem(o, M), rem(a, PA),

in(inT(o, getById(Trc, trcId(a))),
rem(getById(Trc, trcId(a)), Trc)), Reg)

<| and(and(and(and(and(and(
not(eq(trcId(a), NULL)),
get(PA, a)),
get(M, o)),
eq(type(a), takeA)),
or(eq(timeout(lease(o)), FOREVER),

lt(timeout(lease(getById(Trc, trcId(a)))),
timeout(lease(o))))),

match(query(a), entry(o))),
not(readLocked(o, rem(getById(Trc, trcId(a)), Trc))))

|>
delta))

204 Appendix A JavaSpaces

% NON-NULL RETURN (entry is in Trc)
+
sum(a:Action, sum(o: Object,

takeReturn(procId(a), entry(o))
.javaspace(M, rem(a, PA), in(remR(o, remW(o,

getById(Trc, trcId(a)))),
rem(getById(Trc, trcId(a)), Trc)), Reg)

<| and(and(and(and(
not(eq(trcId(a), NULL)),
get(PA, a)),
get(Wset(getById(Trc, trcId(a))), o)),
eq(type(a), takeA)),
match(query(a), entry(o)))

|>
delta))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% READ PRIMITIVE WITH TRANSACTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

+
sum(procId:Nat, sum(trcId:Nat, sum(timeout:Time,

sum(query:Query, sum(trc:Transaction,
Read(procId, trcId, timeout, query)
.javaspace(M, in(action(readA, trcId,

procId, timeout, query), PA), Trc, Reg)
<| and(and(and(and(

not(eq(trcId, NULL)),
get(Trc, trc)),
eq(trcId, id(trc))),
or(lt(timeout, maxTime), eq(timeout,FOREVER))),
lt(len(PA), maxActions))

|>
delta)))))

% NULL RETURN
+
sum(a:Action, sum(trc: Transaction,

readReturn(procId(a), entryNull)
.javaspace(M, rem(a, PA), Trc, Reg)

<| and(and(and(and(and(and(and(
not(eq(trcId(a), NULL)),
get(Trc, trc)),
eq(trcId(a), id(trc))),
get(PA, a)),
eq(type(a), readA)),
isExpired(a)),
not(matches(query(a), M))),
not(matches(query(a), Wset(trc))))

|>
delta))

A.6 JavaSpace Process 205

% NON-NULL RETURN (entry is in M)
+
sum(a:Action, sum(o: Object,

readReturn(procId(a), entry(o))
.javaspace(M, rem(a, PA), in(inR(o,

remR(o, getById(Trc, trcId(a)))),
rem(getById(Trc, trcId(a)), Trc)), Reg)

<| and(and(and(and(and(
not(eq(trcId(a), NULL)),
get(PA, a)),
get(M, o)),
eq(type(a), readA)),
or(eq(timeout(lease(o)), FOREVER),

lt(timeout(lease(getById(Trc, trcId(a)))),
timeout(lease(o))))),

match(query(a), entry(o)))
|>
delta))

% NON-NULL RETURN (entry is in Trc)
+
sum(a:Action, sum(o: Object,

readReturn(procId(a), entry(o))
.javaspace(M, rem(a, PA), in(inR(o,

remR(o, getById(Trc, trcId(a)))),
rem(getById(Trc, trcId(a)), Trc)), Reg)

<| and(and(and(and(
not(eq(trcId(a), NULL)),
get(PA, a)),
get(Wset(getById(Trc, trcId(a))), o)),
eq(type(a), readA)),
match(query(a), entry(o)))

|>
delta))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% TAKE_IF_EXISTS PRIMITIVE WITH TRANSACTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% There are matches in M or in Trc
+
sum(procId:Nat, sum(trcId:Nat, sum(timeout:Time,

sum(query:Query, sum(trc:Transaction,
TakeIfExists(procId, trcId, timeout, query)
.javaspace(M, in(action(takeEA, trcId,

procId, timeout, query), PA), Trc, Reg)
<| and(and(and(and(and(

not(eq(trcId, NULL)),
get(Trc, trc)),

206 Appendix A JavaSpaces

eq(trcId, id(trc))),
or(lt(timeout, maxTime), eq(timeout,FOREVER))),
lt(len(PA), maxActions)),
matches(query, U(M, U(UWsets(Trc), UTsets(Trc)))))

|>
delta)))))

% There are not matches in M or in Trc
+
sum(procId:Nat, sum(trcId:Nat, sum(timeout:Time,

sum(query:Query, sum(trc:Transaction,
TakeIfExists(procId, trcId, timeout, query)
.javaspace(M, in(action(takeEA, trcId,

procId, tt(0), query), PA), Trc, Reg)
<| and(and(and(and(and(

not(eq(trcId, NULL)),
get(Trc, trc)),
eq(trcId, id(trc))),
or(lt(timeout, maxTime), eq(timeout,FOREVER))),
lt(len(PA), maxActions)),
not(matches(query, U(M, U(UWsets(Trc), UTsets(Trc))))))

|>
delta)))))

% NULL RETURN
+
sum(a:Action, sum(trc: Transaction,

takeIfExistsReturn(procId(a), entryNull)
.javaspace(M, rem(a, PA), Trc, Reg)

<| and(and(and(and(and(and(and(
not(eq(trcId(a), NULL)),
get(Trc, trc)),
eq(trcId(a), id(trc))),
get(PA, a)),
eq(type(a), takeEA)),
isExpired(a)),
not(matches(query(a), M))),
not(matches(query(a), Wset(trc))))

|>
delta))

% NON-NULL RETURN (entry is in M)
+
sum(a:Action, sum(o: Object,

takeIfExistsReturn(procId(a), entry(o))
.javaspace(rem(o, M), rem(a, PA), in(inT(o,

remT(o, getById(Trc, trcId(a)))),
rem(getById(Trc, trcId(a)), Trc)), Reg)

<| and(and(and(and(and(and(
not(eq(trcId(a), NULL)),

A.6 JavaSpace Process 207

get(PA, a)),
get(M, o)),
eq(type(a), takeEA)),
or(eq(timeout(lease(o)), FOREVER),

lt(timeout(lease(getById(Trc, trcId(a)))),
timeout(lease(o))))),

match(query(a), entry(o))) ,
not(readLocked(o, rem(getById(Trc, trcId(a)), Trc))))

|>
delta))

% NON-NULL RETURN (entry is in Trc)
+
sum(a:Action, sum(o: Object,

takeIfExistsReturn(procId(a), entry(o))
.javaspace(M, rem(a, PA), in(remR(o,

remW(o, getById(Trc, trcId(a)))),
rem(getById(Trc, trcId(a)), Trc)), Reg)

<| and(and(and(and(
not(eq(trcId(a), NULL)),
get(PA, a)),
get(Wset(getById(Trc, trcId(a))), o)),
eq(type(a), takeEA)),
match(query(a), entry(o)))

|>
delta))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% READ_IF_EXISTS PRIMITIVE WITH TRANSACTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% There are matches in M or in Trc
+
sum(procId:Nat, sum(trcId:Nat, sum(timeout:Time,

sum(query:Query, sum(trc:Transaction,
ReadIfExists(procId, trcId, timeout, query)
.javaspace(M, in(action(readEA, trcId,

procId, timeout, query), PA), Trc, Reg)
<| and(and(and(and(and(

not(eq(trcId, NULL)),
get(Trc, trc)),
eq(trcId, id(trc))),
or(lt(timeout, maxTime), eq(timeout,FOREVER))),
lt(len(PA), maxActions)),
matches(query, U(M, U(UWsets(Trc), UTsets(Trc)))))

|>
delta)))))

% There are not matches in M or in Trc
+

208 Appendix A JavaSpaces

sum(procId:Nat, sum(trcId:Nat, sum(timeout:Time,
sum(query:Query, sum(trc:Transaction,
ReadIfExists(procId, trcId, timeout, query)
.javaspace(M, in(action(readEA, trcId,

procId, tt(0), query), PA), Trc, Reg)
<| and(and(and(and(and(

not(eq(trcId, NULL)),
get(Trc, trc)),
eq(trcId, id(trc))),
or(lt(timeout, maxTime), eq(timeout,FOREVER))),
lt(len(PA), maxActions)),
not(matches(query, U(M, U(UWsets(Trc), UTsets(Trc))))))

|>
delta)))))

% NULL RETURN
+
sum(a:Action, sum(trc: Transaction,

readIfExistsReturn(procId(a), entryNull)
.javaspace(M, rem(a, PA), Trc, Reg)

<| and(and(and(and(and(and(and(
not(eq(trcId(a), NULL)),
get(Trc, trc)),
eq(trcId(a), id(trc))),
get(PA, a)),
eq(type(a), readEA)),
isExpired(a)),
not(matches(query(a), M))),
not(matches(query(a), Wset(trc))))

|>
delta))

% NON-NULL RETURN (entry is in M)
+
sum(a:Action, sum(o: Object,

readIfExistsReturn(procId(a), entry(o))
.javaspace(M, rem(a, PA), in(inR(o,

remR(o, getById(Trc, trcId(a)))),
rem(getById(Trc, trcId(a)), Trc)), Reg)

<| and(and(and(and(and(
not(eq(trcId(a), NULL)),
get(PA, a)),
get(M, o)),
eq(type(a), readEA)),
or(eq(timeout(lease(o)), FOREVER),

lt(timeout(lease(getById(Trc, trcId(a)))),
timeout(lease(o))))),

match(query(a), entry(o)))
|>
delta))

A.6 JavaSpace Process 209

% NON-NULL RETURN (entry is in Trc)
+
sum(a:Action, sum(o: Object,

readIfExistsReturn(procId(a), entry(o))
.javaspace(M, rem(a, PA), in(inR(o,

remR(o, getById(Trc, trcId(a)))),
rem(getById(Trc, trcId(a)), Trc)), Reg)

<| and(and(and(and(
not(eq(trcId(a), NULL)),
get(PA, a)),
get(Wset(getById(Trc, trcId(a))), o)),
eq(type(a), readEA)),
match(query(a), entry(o)))

|>
delta))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% TRANSACTIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% CREATE TRANSACTION
+
sum(timeout:Time, sum(trcId:Nat, sum(leaseId:Nat,

Create(trcCreated(trcId, leaseId), timeout)
.javaspace(M, PA, in(transaction(trcId,

lease(leaseId, timeout), emO, emO, emO), Trc), Reg)
<| and(and(and(and(

eq(trcId, freshId(Trc)),
lt(trcId, maxTrc)),
or(lt(timeout, maxTime), eq(timeout,FOREVER))),
eq(leaseId,

freshId(U(leases(M), U(leases(Trc), leases(Reg)))))),
lt(leaseId, maxLeases))

|> delta)))

% COMMIT
+
sum(trcId: Nat, sum(trc: Transaction,

Commit(trcId)
.javaspace(U(M, Wset(trc)), PA,

rem(trc, Trc), remRegs(id(trc), Reg))
<| and(

get(Trc, trc),
eq(trcId, id(trc)))

|> delta))

% ABORT
+
sum(trcId: Nat, sum(trc: Transaction,

210 Appendix A JavaSpaces

Abort(trcId)
.javaspace(U(M, Tset(trc)), PA,

rem(trc, Trc), remRegs(id(trc), Reg))
<| and(

get(Trc, trc),
eq(trcId, id(trc)))

|> delta))

% TIMEOUT
+
sum(trc: Transaction,
exception(id(trc))
.javaspace(U(M, Tset(trc)), remPAs(id(trc), PA),

rem(trc, Trc), remRegs(id(trc), Reg))
<| and(

get(Trc, trc),
isExpired(trc))

|> delta)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% NOTIFICATION MECHANISM
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% REGISTRATION
+
sum(trcId: Nat, sum(timeout:Time, sum(query:Query,
sum(regId: Nat, sum(leaseId:Nat,

Notify(trcId, timeout, query, evReg(regId, leaseId))
.javaspace(M, PA, Trc, in(registration(regId, trcId,

lease(leaseId, timeout), query, 0, F), Reg))
<| and(and(and(and(

or(lt(timeout, maxTime), eq(timeout,FOREVER)),
lt(len(Reg), maxRegistrations)),
eq(regId, freshId(Reg))),
eq(leaseId,

freshId(U(leases(M), U(leases(Trc), leases(Reg)))))),
lt(leaseId, maxLeases))

|> delta)))))

% TIMEOUT
+
sum(reg: Registration,

gc(reg)
.javaspace(M, PA, Trc, rem(reg, Reg))

<| and(
get(Reg, reg),
isExpired(reg))

|> delta)

% SEND EVENT

A.6 JavaSpace Process 211

+
sum(reg:Registration,

_notify(event(id(reg), seq(reg)))
.javaspace(M, PA, Trc, in(notify(reg), rem(reg, Reg)))

<| and(and(
get(Reg, reg),
not(notified(reg))),
lt(0, seq(reg)))

|> delta)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% LEASE RENEWAL
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% LEASE OF OBJECT
+
sum(leaseId:Nat, sum(timeout: Time, sum(o: Object,

Renew(leaseId, timeout)
.javaspace(in(object(id(o), entry(o),

lease(leaseId, timeout)), rem(o,M)), PA, Trc, Reg)
<| and(

get(M,o),
eq(id(lease(o)), leaseId))

|> delta)))

% LEASE OF TRANSACTION
+
sum(leaseId:Nat, sum(timeout: Time, sum(trc: Transaction,

Renew(leaseId, timeout)
.javaspace(M, PA, in(transaction(id(trc),

lease(leaseId, timeout), Wset(trc), Tset(trc),
Rset(trc)), rem(trc, Trc)), Reg)

<| and(
get(Trc,trc),
eq(id(lease(trc)), leaseId))

|> delta)))

% LEASE OF REGISTRATION
+
sum(leaseId:Nat, sum(timeout: Time, sum(reg: Registration,

Renew(leaseId, timeout)
.javaspace(M, PA, Trc,

in(registration(id(reg), trcId(reg),
lease(leaseId, timeout), query(reg),

seq(reg), notified(reg)), rem(reg, Reg)))
<| and(

get(Reg,reg),
eq(id(lease(reg)), leaseId))

|> delta)))

212 Appendix A JavaSpaces

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GARBAGE COLLECTOR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

+
sum(o:Object,

gc(entry(o))
.javaspace(rem(o,M), PA, Trc, Reg)

<| and(and(
get(M,o),
isExpired(o)),
not(match(o, PA)))

|> delta)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CLOCK
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% TICK
+
tick.javaspace(decT(M), decT(PA), decT(Trc), decT(Reg))
<| and(

or(or(or(
areTimeouts(M),
areTimeouts(PA)),
areTimeouts(Trc)),
areTimeouts(Reg)),
and(and(and(
not(areExpired(M)),
not(areExpired(PA))),
not(areExpired(Trc))),
not(areExpired(Reg)))
)

|> delta

A.7 Auxiliary Items

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% AUXILIARY CONSTANTS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

map maxObjects:->Nat
rew maxObjects = 6
map maxActions:->Nat
rew maxActions = 6
map maxTime:->Time
rew maxTime = tt(3)
map maxEvents:->Nat
rew maxEvents = 3
map maxRegistrations:->Nat

A.8 Summation System 213

rew maxRegistrations = 3
map maxLeases:->Nat
rew maxLeases = plus(maxObjects,

plus(maxTrc, maxRegistrations))
map NULL:->Nat
rew NULL = 0
map maxTrc:->Nat
rew maxTrc = 3

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% EVENT COMMUNICATION CHANEL (bounded)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

proc Network(E:EventList) =

% RECEIVE AN EVENT
sum(e:Event,
__Notify(e).Network(in(e, E))
<| lt(len(E), maxEvents) |> delta)

% DELIVER AN UNORDERED EVENT
+
sum(e:Event,
__notify(registrationId(e), seq(e))
.Network(rem(e, E))
<| get(E,e) |> delta)

% DUPLICATE
+

duplicate.Network(in(e, E))
<| and(and(

lt(len(E), maxEvents),
lt(0, len(E))),
get(E,e))

|> delta

% LOSE HEAD
+
lose.Network(tail(E))
<| lt(0, len(E)) |> delta

A.8 Summation System

sort Entry
func entryNull:->Entry

number:Nat->Entry
lock:->Entry

map eq:Entry#Entry->Bool
value:Entry->Nat

214 Appendix A JavaSpaces

var e:Entry
n, n’:Nat

rew eq(entryNull,entryNull) = T
eq(entryNull,number(n)) = F
eq(number(n), entryNull) = F
eq(number(n),number(n’)) = eq(n, n’)
eq(lock,lock) = T
eq(entryNull,lock) = F
eq(lock, entryNull) = F
eq(lock,number(n)) = F
eq(number(n), lock) = F
value(number(n)) = n

sort Query
func any:->Query

anyNumber:->Query
anyLock:->Query
noEntry:->Query

map match:Query#Entry->Bool
eq:Query#Query->Bool

var e:Entry
n:Nat

rew match(any, e) = T
match(anyNumber, number(n)) = T
match(anyNumber, lock) = F
match(anyLock, lock) = T
match(anyLock, number(n)) = F
match(noEntry, e) = F
eq(any,any) = T
eq(any,anyNumber) = F
eq(any,anyLock) = F
eq(any,noEntry) = F
eq(anyNumber,anyNumber) = T
eq(anyNumber,any) = F
eq(anyNumber,anyLock) = F
eq(anyNumber,noEntry) = F
eq(anyLock,anyLock) = T
eq(anyLock,noEntry) = F
eq(anyLock,any) = F
eq(anyLock,anyNumber) = F
eq(noEntry,noEntry) = T
eq(noEntry,anyLock) = F
eq(noEntry,anyNumber) = F
eq(noEntry,any) = F

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

act waiting safe
wrote, M_wrote, W_wrote, SM_wrote:Nat
publish:Nat

A.8 Summation System 215

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

map t_ma:->Time
rew t_ma = tt(2)
map t_opM:->Time
rew t_opM = tt(1)
map t_op:->Time
rew t_op = tt(0)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

proc Master(id:Nat) =
sum(trc:Nat, sum(leaseId:Nat,

create(trcCreated(trc, leaseId), t_ma)
.(write(lock, trc, FOREVER) + ExM(id, trc))
.(take(id, trc, t_opM, noEntry) + ExM(id, trc))
.(TakeReturn(id, entryNull) + ExM(id, trc))

.(take(id, trc, tt(0), anyNumber)+ ExM(id, trc))

.(sum(e1:Entry, TakeReturn(id, e1)
.(((take(id, trc, tt(0), anyNumber) + ExM(id, trc))
.(sum(e2:Entry, TakeReturn(id, e2)

.((commit(trc) + ExM(id, trc))

.publish(value(e1)).delta
<|eq(e2, entryNull)|>
(write(number(plus(value(e1),

value(e2))), trc, FOREVER)
+ ExM(id, trc))

.(take(id, trc, tt(0), anyLock) + ExM(id, trc))

.(TakeReturn(id, lock) + ExM(id, trc))

.(commit(trc) + ExM(id, trc))

.M_wrote(plus(value(e1), value(e2)))))
+ ExM(id, trc)))
<| not(eq(e1, entryNull)) |>
abort(trc).delta))

+ ExM(id, trc))))
.Master(id)

proc ExM(id:Nat, trc:Nat) =
Exception(trc).(Master(id) + safe.SafeMaster(id))

proc SafeMaster(id:Nat) =
sum(trc:Nat, sum(leaseId:Nat,

create(trcCreated(trc, leaseId), FOREVER)
.write(lock, trc, FOREVER)
.take(id, trc, t_opM, noEntry)
.TakeReturn(id, entryNull)

.take(id, trc, tt(0), anyNumber)

.sum(e1:Entry, TakeReturn(id, e1)
.(take(id, trc, tt(0), anyNumber)

216 Appendix A JavaSpaces

.sum(e2:Entry, TakeReturn(id, e2)
.(commit(trc)
.publish(value(e1)).delta
<|eq(e2, entryNull)|>
write(number(plus(value(e1),

value(e2))), trc, FOREVER)
.take(id, trc, tt(0), anyLock)
.TakeReturn(id, lock)
.commit(trc)
.SM_wrote(plus(value(e1), value(e2)))))

<| not(eq(e1, entryNull)) |>
abort(trc).delta))))

.SafeMaster(id)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

proc Worker(id:Nat) =
sum(trc:Nat, sum(leaseId:Nat,

create(trcCreated(trc, leaseId), t_op)
.(readIfExists(id, trc, FOREVER, anyLock) + ExW(id, trc))
.(sum(l:Entry, ReadIfExistsReturn(id, l)

.((take(id, trc, tt(0), anyNumber) + ExW(id, trc))

.(sum(e1:Entry, TakeReturn(id, e1)
.((take(id, trc, tt(0), anyNumber) + ExW(id, trc))
.(sum(e2:Entry, TakeReturn(id, e2)

.((write(number(plus(value(e1),
value(e2))),trc,FOREVER)

+ ExW(id, trc))
.(W_wrote(plus(value(e1),

value(e2))) + ExW(id, trc))
.commit(trc)
<| not(eq(e2, entryNull)) |>
abort(trc).Worker(id)))
+ ExW(id, trc))

<| not(eq(e1, entryNull)) |>
abort(trc).Worker(id)))

+ ExW(id, trc))
<| eq(l, entryNull) |>
abort(trc).Worker(id)))

+ ExW(id, trc))))
.Worker(id)

proc ExW(id:Nat, trc:Nat) = Exception(trc).Worker(id)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Sys = hide({
tick, W, T, TReturn, R, RReturn,
C, Cm, A, RIE, E, RIEReturn, TIE, TIEReturn,
_N, __N, N, Rnew},

A.8 Summation System 217

encap({
write, Write,
take, Take, takeReturn, TakeReturn,
read, Read, readReturn, ReadReturn,
readIfExists, ReadIfExists,
takeIfExists, TakeIfExists,
readIfExistsReturn, ReadIfExistsReturn,
takeIfExistsReturn, TakeIfExistsReturn,
notify, Notify, _notify, __Notify, __notify, _Notify,
create, Create, commit, Commit, abort, Abort,
exception, Exception,
renew, Renew},

javaspace(M2, emA, emT, emR) || Master(0) || Worker(1)))

init Sys

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

func M1, M2, M3, M4, M5:->ObjectSet
rew M1 = in(object(0, number(1), lease(0, FOREVER)), emO)

M2 = in(object(1, number(1), lease(1, FOREVER)), M1)
M3 = in(object(2, number(1), lease(2, FOREVER)), M2)
M4 = in(object(3, number(1), lease(3, FOREVER)), M3)
M5 = in(object(4, number(1), lease(4, FOREVER)), M4)

218 Appendix A JavaSpaces

Bibliography

[1] P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A survey of
regular model checking. In CONCUR, volume 3170 of LNCS, pages 35–
48. Springer, 2004.

[2] R. Alur, R.. Brayton, T. Henzinger, S. Qadeer, and S. K. Rajamani.
Partial-order reduction in symbolic state-space exploration. Formal Meth-
ods in System Design, 18(2):97–116, 2001.

[3] K.R. Apt and D. Kozen. Limits for automatic verification of finite-state
concurrent systems. IPL, 22(6):307–309, 1986.

[4] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge University
Press, 1990.

[5] T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean
programs. In SPIN, volume 1885 of LNCS, pages 113–130. Springer, 2000.

[6] T. Ball and S. K. Rajamani. Automatically validating temporal safety
properties of interfaces. In SPIN, volume 2057 of LNCS, pages 103–122.
Springer, 2001.

[7] J. van den Berg, M. Huisman, B. Jacobs, and E. Poll. A type-theoretic
memory model for verification of sequential Java programs. In WADT,
volume 1827 of LNCS. Springer, 2000.

[8] J.A. Bergstra and J.W. Klop. Algebra of communicating processes with
abstraction. TCS, pages 77–121, 1985.

[9] J.A. Bergstra, A. Ponse, and S.A. Smolka, editors. Handbook of Process
Algebra. North-Holland, 2001.

[10] G. Berry and G. Boudol. The chemical abstract machine. TCS, 96(1):217–
248, 1992.

[11] M. Bezem and J.F. Groote. A correctness proof of a one bit sliding window
protocol in µCRL. In The Computer Journal, volume 37(4), pages 289–
307, 1994.

219

220 Bibliography

[12] S. Blom, W. Fokkink, J. F. Groote, I. van Langevelde, B. Lisser, and J.
van de Pol. µCRL: A toolset for analysing algebraic specifications. In
CAV, volume 2102 of LNCS, pages 250–254. Springer, 2001.

[13] S. Blom, J. F. Groote, I. van Langevelde, B. Lisser, and J. van de Pol.
New developments around the µCRL tool set. ENTCS, 80, 2003.

[14] S. Blom and S.M. Orzan. A distributed algorithm for strong bisimulation
reduction of state spaces. STTT, page To appear, 2005.

[15] S. Blom and J. van de Pol. State space reduction by proving confluence.
In CAV, volume 2404 of LNCS, pages 596–609. Springer, 2002.

[16] M. Boasson. Control systems software. In Transactions on Automatic
Control, pages 1094–1107. IEEE, 1993.

[17] M.M. Bonsangue, J.N. Kok, and G. Zavattaro. Comparing coordination
models based on shared distributed replicated data. In SAC, pages 146–
155. ACM, 1999.

[18] D. Bosnacki, N. Ioustinova, and N. Sidorova. Using fairness to make ab-
stractions work. In SPIN, volume 2989 of LNCS, pages 198–215. Springer,
2004.

[19] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model check-
ing. In CAV, volume 1855 of LNCS. Springer, 2000.

[20] D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating
sequential processes. ACM, 31(3):560–599, 1984.

[21] G. Bruns and P. Godefroid. Model checking partial state spaces with 3-
valued temporal logics. In CAV, volume 1877 of LNCS, pages 274–287.
Springer, 1999.

[22] N. Busi, R. Gorrieri, and G. Zavattaro. Process calculi for coordination:
From Linda to JavaSpaces. In AMAST, volume 1816 of LNCS, pages
198–212. Springer, 2000.

[23] N. Busi and G. Zavattaro. On the serializability of transactions in Java-
Spaces. ENTCS, 54, 2001.

[24] N. Busi and G. Zavattaro. Publish/subscribe v.s. shared dataspace coor-
dination infrastructures. In WETICE, pages 328–333. IEEE, 2001.

[25] N. Carriero and D. Gelernter. How to Write Parallel Programs: A First
Course. MIT Press, 1990.

[26] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and ab-
straction. ACM, pages 343–354, 1992.

Bibliography 221

[27] E.M. Clarke and J.M. Wing. Formal methods: State of the art and future
directions. ACM, 28(4):626–643, 1996.

[28] P. Cousot. Abstract interpretation based formal methods and future chal-
lenges. In Informatics: 10 Years Back, 10 Years Ahead, volume 2000 of
LNCS, pages 138 – 143. Springer, 2001.

[29] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction of approximation of fixed
points. ACM, pages 238–252, 1977.

[30] P. Cousot and R. Cousot. Systematic design of program analysis frame-
works. ACM, pages 269–282, 1979.

[31] D. Dams. Abstract Interpretation and Partition Refinement for Model
Checking. PhD thesis, Eindhoven University of Technology, 1996.

[32] D. Dams. Abstraction in software model checking: Principles and practice
(tutorial overview and bibliography). In SPIN, volume 2318 of LNCS,
pages 14–21. Springer, 2002.

[33] D. Dams and R. Gerth. The bounded retransmission protocol revisited.
ENTCS, 9, 2000.

[34] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive
systems. ACM, pages 253–291, 1997.

[35] D. Dams, W. Hesse, and G. Holzmann. Abstracting C with abC. In CAV,
volume 2404 of LNCS, pages 515–520. Springer, 2002.

[36] D.E. Long. Model Checking, Abstraction, and Compositional Verification.
PhD thesis, Carnegie Mellon University, 1993.

[37] P. Dechering and I. van Langevelde. The verification of coordination. In
COORDINATION, volume 1906 of LNCS, pages 335–340. Springer, 2000.

[38] P.H.J. van (eds) Eijk, C.A. Vissers, and M. Diaz. The formal description
technique LOTOS, 1989.

[39] E.A. Emerson and V. Kahlon. Reducing model checking of the many to
the few. In CADE, volume 1831 of LNCS, pages 236–254. Springer, 2000.

[40] E.A. Emerson and V. Kahlon. Rapid parameterized model checking of
snoopy cache coherence protocols. In TACAS, volume 2619 of LNCS,
pages 144–159. Springer, 2003.

[41] Y. Fang, N. Piterman, A. Pnueli, and L. Zuck. Liveness with invisible
ranking. In VMCAI, volume 2937 of LNCS, pages 223–238. Springer,
2004.

222 Bibliography

[42] A. Fantechi, S. Gnesi, and D. Latella. Towards automatic temporal logic
verification of value passing process algebra using abstract interpretation.
In CONCUR, volume 1119 of LNCS, pages 562–578. Springer, 1996.

[43] J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and
M. Sighireanu. CADP – a protocol validation and verification toolbox. In
CAV, volume 1102 of LNCS, pages 437–440. Springer, 1996.

[44] D. Fisman and A. Pnueli. Beyond regular model checking. In FSTTCS,
volume 2245 of LNCS, pages 156–170. Springer, 2001.

[45] W. Fokkink. Introduction to Process Algebra. Texts in Theoretical Com-
puter Science. Springer, 2000.

[46] W. Fokkink, J.F. Groote, J. Pang, B. Badban, and J. van de Pol. Verifying
a sliding window protocol in µCRL. In AMAST, volume 3116 of LNCS,
pages 148–163. Springer, 2004.

[47] W. Fokkink, N. Ioustinova, E. Kesseler, J. van de Pol, Y. Usenko, and
Y. Yushtein. Refinement and verification applied to an in-flight data ac-
quisition unit. In CONCUR, volume 2421 of LNCS, pages 1–23. Springer,
2002.

[48] W. Fokkink and J. Pang. Cones and foci for protocol verification revisited.
In FOSSACS, volume 2620 of LNCS, pages 267–281. Springer, 2003.

[49] W. Fokkink and J. Pang. Simplifying Itai-Rodeh leader election for anony-
mous rings. ENTCS, 128:53–68, 2005.

[50] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces principles, patterns,
and practice. Addison-Wesley, 1999.

[51] M. M. Gallardo, J. Mart́ınez, P. Merino, and E. Pimentel. αSPIN: A tool
for abstract model checking. STTT, 5(2-3):165–184, 2004.

[52] H. Garavel, F. Lang, and R. Mateescu. An overview of CADP 2001.
European Association for Software Science and Technology Newsletter,
4:13–24, 2002.

[53] R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In PSTV, volume 38 of IFIP, pages
3–18, 1995.

[54] J. Giesl, R., P. Schneider-Kamp, and S. Falke. Automated termination
proofs with AProVE. In RTA, volume 3091 of LNCS, pages 210–220.
Springer, 2004.

[55] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model
checking using modal transition systems. In TACAS, volume 2154 of
LNCS, pages 426–440. Springer, 2001.

Bibliography 223

[56] J. F. Groote and J. van de Pol. A bounded retransmission protocol for
large data packets. In AMAST, volume 1101 of LNCS, pages 536–550.
Springer, 1996.

[57] J. F. Groote and A. Ponse. The syntax and semantics of µCRL. In ACP,
Workshops in Computing Series, pages 26–62, 1995.

[58] J.F. Groote and H.P. Korver. Correctness proof of the bakery protocol in
µCRL. In ACP, Workshops in Computing Series, pages 63–86, 1995.

[59] J.F. Groote, F. Monin, and J. Springintveld. A computer checked alge-
braic verification of a distributed summation algorithm. Formal Aspects
of Computing, 2004.

[60] J.F. Groote, J. Pang, and A.G. Wouters. Analysis of a distributed system
for lifting trucks. JLAP, 56(1-2):21–56, 2003.

[61] J.F. Groote, A. Ponse, and Y. Usenko. Linearization in parallel pCRL.
JLAP, 48(1-2):39–70, 2001.

[62] J.F. Groote and M.A. Reniers. Algebraic process verification. In Handbook
of Process Algebra, pages 1151–1208. North-Holland, 2001.

[63] J.F. Groote and J. Springintveld. Focus points and convergent process
operators. A proof strategy for protocol verification. JLAP, 49(1-2):31–
60, 2001.

[64] J.F. Groote and J.J. van Wamel. Algebraic data types and induction in
µCRL. Technical report, Universiteit van Amsterdam, 1994.

[65] J.F. Groote and J.J. van Wamel. The parallel composition of uniform
processes with data. TCS, 266(1-2):65–75, 2001.

[66] J.F. Groote and T.A.C. Willemse. Model-checking processes with data.
Science of Computer Programming, 56:251–273, 2005.

[67] S. L. Halter. JavaSpaces example by example. Prentice Hall PTR, 2002.

[68] D. Harel, A. Pnueli, and J. Stavi. Propositional dynamic logic of context-
free programs. FOCS, pages 310–321, 1981.

[69] J. Hatcliff, M. Dwyer, C. Pasareanu, and Robby. Foundations of the
Bandera abstraction tools. In The Essence of Computation, volume 2566
of LNCS, pages 172 – 203. Springer, 2002.

[70] K. Havelund and J. Skakkebaek. Applying Model Checking in Java Veri-
fication. In SPIN, volume 1680 of LNCS, pages 216–232. Springer, 1999.

[71] M. Hennessey and R. Milner. On observing nondeterminism and concur-
rency. In ICALP, volume 85 of LNCS, pages 295–309. Springer, 1980.

224 Bibliography

[72] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[73] G.J. Holzmann and M.H. Smith. A practical method for verifying event-
driven software. In ICSE. ACM, 1999.

[74] J.M.M. Hooman and J. van de Pol. Formal verification of replication on a
distributed data space architecture. In SAC, pages 351–358. ACM, 2002.

[75] M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition systems: a
foundation for three-valued program analysis. In VMCAI, volume 2294 of
LNCS, pages 155–169. Springer, 2001.

[76] C.N. Ip and D.L. Dill. Verifying systems with replicated components in
Murφ. In CAV, volume 1102 of LNCS, pages 147–158. Springer, 1996.

[77] N. D. Jones and F. Nielson. Abstract interpretation: A semantics-based
tool for program analysis. In Handbook of Logic in Computer Science,
pages 527–636. Oxford Science Publications, 1995.

[78] P. Kelb. Model checking and abstraction: a framework preserving both
truth and failure information. Technical report, University of Oldenburg,
1994.

[79] Y. Kesten and A. Pnueli. Verifying liveness by augmented abstraction. In
CSL, volume 1683 of LNCS, pages 141–145. Springer, 1999.

[80] Y. Kesten and A. Pnueli. Control and data abstraction: The cornerstones
of practical formal verification. STTT, 2(4):328–342, 2000.

[81] D. Kozen. Results on the propositional µ-calculus. In ICALP, volume 140
of LNCS, pages 348–359. Springer, 1982.

[82] D. Kroening, A. Groce, and E. M. Clarke. Counterexample guided ab-
straction refinement via program execution. In ICFEM, volume 3380 of
LNCS, pages 224–238. Springer, 2004.

[83] K. G. Larsen. Modal specifications. In Automatic Verification Methods
for Finite State Systems, volume 407 of LNCS, pages 232–246. Springer,
1989.

[84] K. G. Larsen and B. Thomsen. A modal process logic. In LICS, pages
203–210. IEEE, 1988.

[85] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property
preserving abstractions for the verification of concurrent systems. Formal
Methods in System Design, pages 11–44, 1995.

[86] S. Luttik. Description and formal specification of the Link Layer of P1394.
In WAFMSD, 1997.

Bibliography 225

[87] Z. Manna, M. Colon, B. Finkbeiner, H. Sipma, and T. E. Uribe. Ab-
straction and modular verification of infinite-state reactive systems. Re-
quirements Targeting Software and Systems Engineering, pages 273–292,
1997.

[88] R. Mateescu. Verification des proprietes temporelles des programmes par-
alleles. PhD thesis, Institut National Polytechnique de Grenoble, 1998.

[89] R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for
regular alternation-free µ-calculus. Science of Computer Programming,
46(3):255–281, 2003.

[90] K. McMillan. Symbolic Model Checking. PhD thesis, Carnegie Mellon
University, 1993.

[91] SUN Microsystems. JavaSpacestm Service Specification, 2000. See http:

//java.sun.com/products/javaspaces/.

[92] SUN Microsystems. Jinitm Technology Core Platform Specification, 2000.
See http://www.sun.com/jini/specs/.

[93] R. Milner. A Calculus of Communicating Systems. Springer, 1980.

[94] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[95] V. K. Murthy and E. V. Krishnamurthy. Gamma programming paradigm
and heterogeneous computing. In HICSS, page 273. IEEE, 1996.

[96] O. Ore. Galois connexions. Trans. American Mathematics Society, 55:493–
513, 1944.

[97] S. Orzan. On distributed verification and verified distribution. PhD thesis,
Free University Amsterdam, 2004.

[98] S. Orzan, J. van de Pol, and M. Valero Espada. A state space distribution
policy based on abstract interpretation. ENTCS, 128:35–45, 2005.

[99] J. Pang, W. Fokkink, R. Hofman, and R. Veldema. Model checking a
cache coherence protocol for a Java DSM implementation. In IPDPS,
page 238. IEEE, 2003.

[100] J. Pang, J. van de Pol, and M. Valero Espada. Abstraction of parallel
uniform processes with data. In SEFM, pages 14–23. IEEE, 2004.

[101] A. Pnueli. The temporal logic of programs. In Symposium on Foundations
of Computer Science, pages 46–57. IEEE, 1977.

[102] A. Pnueli. Abstraction for liveness. In VMCAI, volume 3385 of LNCS,
pages 146–164. Springer, 2005.

226 Bibliography

[103] A. Pnueli and E. Shahar. Liveness and acceleration in parameterized
verification. In CAV, volume 1855 of LNCS, pages 328–343. Springer,
2000.

[104] J. van de Pol. A prover for the µCRL toolset with applications. Technical
Report SEN-R0106, CWI, 2001.

[105] J. van de Pol and M. Valero Espada. An abstract interpretation toolkit
for µCRL. ENTCS, 133:295–313, 2005.

[106] J. van de Pol and M. Valero Espada. Formal specification of JavaSpacesTM

architecture using µCRL. In COORDINATION, volume 2315 of LNCS,
pages 274–290. Springer, 2002.

[107] J. van de Pol and M. Valero Espada. µCRL specification of event notifi-
cation in JavaSpaces, 2002.

[108] J. van de Pol and M. Valero Espada. Verification of JavaSpaces parallel
programs. In ACSD, pages 196–205. IEEE, 2003.

[109] J. van de Pol and M. Valero Espada. Modal abstraction in µCRL. In
AMAST, volume 3116 of LNCS, pages 409–425. Springer, 2004.

[110] F. Pong and M. Dubois. A new approach for the verification of cache
coherence protocols. In TPDS, pages 773–787. IEEE, 1995.

[111] J.M. Rushby. Formal methods and their role in the certification of critical
systems. Technical report, CSL, 1995.

[112] D. Schmidt. Binary relations for abstraction and refinement, 1999.

[113] M. Shaw and D. Garlan. Software Architecture: Perspectives of an Emerg-
ing Discipline. Prentice-Hall, 1996.

[114] C. Stirling. Modal and Temporal Properties of Processes. Texts in Com-
puter Science. Springer, 2001.

[115] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5:285–309, 1955.

[116] A. Tiwari, H. Rueß, H. Säıdi, and N. Shankar. A technique for invariant
generation. In TACAS, volume 2031 of LNCS, pages 113–127. Springer,
2001.

[117] Y. Usenko. Linearization in µCRL. PhD thesis, Eindhoven University of
Technology, 2002.

[118] T. Willemse. Semantics and Verification in Process Algebras with data
and timing. PhD thesis, Eindhoven University of Technology, 2003.

[119] H. Zantema. TORPA: Termination of rewriting proved automatically. In
RTA, volume 3091 of LNCS, pages 95–104. Springer, 2004.

Summary

This thesis is composed by two parts:

Part I, On Abstraction... The first five chapters are dedicated to the study
of abstract interpretation (or simply, abstraction). The automatic verification
of realistic applications, such as air control management, traffic control systems,
... is limited by the complexity of the systems. Abstraction constitutes a frame-
work for program analysis. The idea is to extract program approximations by
removing uninteresting information. In order to obtain approximations, com-
putations over concrete universes of data are performed over smaller abstract
domains. A typical example of this technique is the so-called “rule of signs”
used to determine the sign of arithmetic expressions by performing the com-
putation only over the signs of the operators, e.g., the expression −5 ∗ 10 is
abstracted to neg ∗ pos which preserves the sign of the result. The integration
of this technique in an automatic verification framework allows to significantly
reduce the complexity of the analyzed systems. The idea is to prove or disprove
properties in the (small) abstract system and then to infer the satisfaction or
refutation to the (large) concrete one.

Part II, On Coordination... The second part of the thesis is dedicated to
the study of a shared dataspace architecture, called JavaSpaces. Real-time crit-
ical systems have to deal with severe requirements of reliability, fault-tolerance,
extensibility, timeliness, efficiency, availability, ... These requirements make the
task of building such systems extremely hard. A way of managing these severe
requirements is to use software architectures. A software architecture is basically
a description of how the different components of a system are to be composed.
Shared dataspace architectures implement repositories for data elements in such
a way that external components communicate by sharing information through
the repositories instead of interacting directly between each other. This fea-
ture contributes to the conception of modular applications. The architecture
is in charge of handling the concurrent access of the processes to the shared
resources. External processes have a unified view of the shared space, although
the repository may be distributed or centralised. We have modelled a formal
framework to verify applications built on top of JavaSpaces and we have used
it to analyse a non-trivial application. Furthermore, we have provided some
guidelines to apply the results of the first part of the thesis to the second.

227

228 Bibliography

Samenvatting

Dit proefschrift bestaat uit twee delen:

Deel I, Over Abstractie... De eerste vijf hoofdstukken zijn gewijd aan de
studie van abstracte interpretatie (of, eenvoudiger uitgedrukt, abstractie). De
geautomatiseerde verificatie van realistische toepassingen, zoals luchtverkeer-
sleidingssystemen, wordt bemoeilijkt door de complexiteit van dergelijke syste-
men. Abstractie ligt aan de basis van een raamwerk voor programma-analyse.
Het onderliggende idee is om benaderingen te extraheren uit een programma,
door middel van het verwijderen van oninteressante informatie. Om zulke be-
naderingen te verkrijgen, worden berekeningen voor het concrete universum van
een datadomein uitgevoerd over een abstractie van dit universum. Een typisch
voorbeeld van deze techniek is om het plus- of minteken van een aritmetische
expressie te bepalen door de berekening alleen uit te voeren met betrekking tot
de tekens van operatoren; bijvoorbeeld, de expressie −5 ∗ 10 wordt geabstra-
heerd tot neg ∗ pos, dat als uitkomst neg heeft. De integratie van abstractie
in een geautomatiseerd raamwerk voor verificatie kan een aanzienlijke reductie
opleveren van de complexiteit van de geanalyseerde systemen. Daardoor kunnen
algoritmische technieken voor verificatie worden toegepast op grote systemen.
Het idee is om eigenschappen te bewijzen voor (kleine) geabstraheerde syste-
men, en vervolgens aan te tonen dat een dergelijke eigenschap dan ook geldt
voor het (grote) concrete systeem.

Deel II, Over Coordinatie... Het tweede gedeelte van dit proefschrift is
gewijd aan de studie van een architectuur met een enkele, gedeelde dataruimte,
JavaSpaces genaamd. Systemen in bijvoorbeeld lucht- en ruimtevaart moeten
voldoen aan strenge eisen wat betreft betrouwbaarheid, fout-tolerantie, uitbrei-
dbaarheid, tijdigheid, efficiëntie, beschikbaarheid, ... Deze eisen maken het
buitengewoon moeilijk om dergelijke systemen te construeren. Een manier
om met deze eisen om te gaan is het gebruik van software-architecturen. Een
software-architectuur bestaat in feite uit een beschrijving hoe de verschillende
componenten van een systeem dienen te worden samengesteld. JavaSpaces im-
plementeert opslagplaatsen voor data-elementen, en externe componenten com-
municeren indirect met elkaar door middel van het delen van informatie via
deze bewaarplaatsen. Dit kenmerk draagt bij aan de begripsvorming wat be-
treft modulair ontwerp. De architectuur zorgt voor de afhandeling van gelijkti-

229

230 Bibliography

jdige toegang van processen tot gedeelde middelen. Externe processen hebben
een uniforme kijk op de gedeelde dataruimte, ongeacht of de ruimte gedis-
tribueerd of gecentraliseerd is. Wij hebben een formeel raamwerk gemodelleerd
om toepassingen de verifiëren die bovenop JavaSpaces zijn gebouwd, en we
hebben dit gebruikt om een niet-triviale toepassing te analyseren. Verder hebben
we enkele richtlijnen opgesteld hoe de resultaten uit het eerste gedeelte van dit
proefschrift kunnen worden toegepast in het tweede gedeelte.

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Pro-

cess Algebra. Faculty of Mathematics and
Computing Science, TUE. 1996-01

A.M. Geerling. Transformational Devel-

opment of Data-Parallel Algorithms. Fac-
ulty of Mathematics and Computer Science,
KUN. 1996-02

P.M. Achten. Interactive Functional Pro-

grams: Models, Methods, and Implementa-

tion. Faculty of Mathematics and Computer
Science, KUN. 1996-03

M.G.A. Verhoeven. Parallel Local

Search. Faculty of Mathematics and Com-
puting Science, TUE. 1996-04

M.H.G.K. Kesseler. The Implementation

of Functional Languages on Parallel Ma-

chines with Distrib. Memory. Faculty of
Mathematics and Computer Science, KUN.
1996-05

D. Alstein. Distributed Algorithms for

Hard Real-Time Systems. Faculty of Mathe-
matics and Computing Science, TUE. 1996-
06

J.H. Hoepman. Communication, Syn-

chronization, and Fault-Tolerance. Fac-
ulty of Mathematics and Computer Science,
UvA. 1996-07

H. Doornbos. Reductivity Arguments and

Program Construction. Faculty of Mathe-
matics and Computing Science, TUE. 1996-
08

D. Turi. Functorial Operational Semantics

and its Denotational Dual. Faculty of Math-
ematics and Computer Science, VUA. 1996-
09

A.M.G. Peeters. Single-Rail Handshake

Circuits. Faculty of Mathematics and Com-
puting Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering

Specification Formalism. Faculty of Mechan-
ical Engineering, TUE. 1996-11

P. Severi de Santiago. Normalisation in

Lambda Calculus and its Relation to Type

Inference. Faculty of Mathematics and Com-
puting Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and

Partition Refinement for Model Checking.

Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-13

M.M. Bonsangue. Topological Dualities

in Semantics. Faculty of Mathematics and
Computer Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs

of Small Treewidth. Faculty of Mathematics
and Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transfor-

mations in Context. Faculty of Computer
Science, UT. 1997-02

P.F. Hoogendijk. A Generic Theory of

Data Types. Faculty of Mathematics and
Computing Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type The-

ory in Logic and Mathematics. Faculty of
Mathematics and Computing Science, TUE.
1997-04

C.J. Bloo. Preservation of Termination for

Explicit Substitution. Faculty of Mathemat-
ics and Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Al-

gebra. Faculty of Mathematics and Comput-
ing Science, TUE. 1997-06

F.A.M. van den Beuken. A Functional

Approach to Syntax and Typing. Faculty of
Mathematics and Informatics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal

Testing. Faculty of Computer Science, UT.
1998-01

G. Naumoski and W. Alberts. A

Discrete-Event Simulator for Systems Engi-

neering. Faculty of Mechanical Engineering,
TUE. 1998-02

J. Verriet. Scheduling with Communica-

tion for Multiprocessor Computation. Fac-
ulty of Mathematics and Computer Science,
UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous

Low-Power 80C51 Microcontroller. Fac-
ulty of Mathematics and Computing Science,
TUE. 1998-04

A.A. Basten. In Terms of Nets: System

Design with Petri Nets and Process Algebra.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1998-05

E. Voermans. Inductive Datatypes with

Laws and Subtyping – A Relational Model.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1999-01

H. ter Doest. Towards Probabilistic

Unification-based Parsing. Faculty of Com-
puter Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simula-

tion of Surface Processes. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
03

C.H.M. van Kemenade. Recombinative

Evolutionary Search. Faculty of Mathemat-
ics and Natural Sciences, UL. 1999-04

E.I. Barakova. Learning Reliability: a

Study on Indecisiveness in Sample Selec-

tion. Faculty of Mathematics and Natural
Sciences, RUG. 1999-05

M.P. Bodlaender. Scheduler Optimization

in Real-Time Distributed Databases. Fac-
ulty of Mathematics and Computing Science,
TUE. 1999-06

M.A. Reniers. Message Sequence Chart:

Syntax and Semantics. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
07

J.P. Warners. Nonlinear approaches to

satisfiability problems. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
08

J.M.T. Romijn. Analysing Industrial Pro-

tocols with Formal Methods. Faculty of
Computer Science, UT. 1999-09

P.R. D’Argenio. Algebras and Automata

for Timed and Stochastic Systems. Faculty
of Computer Science, UT. 1999-10

G. Fábián. A Language and Simulator for

Hybrid Systems. Faculty of Mechanical En-
gineering, TUE. 1999-11

J. Zwanenburg. Object-Oriented Concepts

and Proof Rules. Faculty of Mathematics
and Computing Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated

Neural Prediction System. Faculty of Math-
ematics and Natural Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Imple-

mentation of Attribute Grammars. Faculty
of Mathematics and Computer Science, UU.
1999-14

R. Schiefer. Viper, A Visualisation Tool

for Parallel Program Construction. Fac-
ulty of Mathematics and Computing Science,
TUE. 1999-15

K.M.M. de Leeuw. Cryptology and State-

craft in the Dutch Republic. Faculty of
Mathematics and Computer Science, UvA.
2000-01

T.E.J. Vos. UNITY in Diversity. A

stratified approach to the verification of dis-

tributed algorithms. Faculty of Mathematics
and Computer Science, UU. 2000-02

W. Mallon. Theories and Tools for the

Design of Delay-Insensitive Communicating

Processes. Faculty of Mathematics and Nat-
ural Sciences, RUG. 2000-03

W.O.D. Griffioen. Studies in Computer

Aided Verification of Protocols. Faculty of
Science, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the

MathSpad Editor. Faculty of Mathematics
and Computing Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending

and Packaging Plant. Faculty of Mechanical
Engineering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriv-

ing Correct Programs. Faculty of Mathemat-
ics and Computing Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging

Heterogeneous Applications. Faculty of Nat-
ural Sciences, Mathematics and Computer
Science, UvA. 2000-08

E. Saaman. Another Formal Specification

Language. Faculty of Mathematics and Nat-
ural Sciences, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary

Search Discovering and Representing Search

Space Structure. Faculty of Mathematics
and Natural Sciences, UL. 2001-01

R. Ahn. Agents, Objects and Events a com-

putational approach to knowledge, observa-

tion and communication. Faculty of Mathe-
matics and Computing Science, TU/e. 2001-
02

M. Huisman. Reasoning about Java pro-

grams in higher order logic using PVS and

Isabelle. Faculty of Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design

Processes through Structured Reflection.
Faculty of Mathematics and Computing Sci-
ence, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting: syn-

tax and semantics. Faculty of Sciences, Divi-
sion of Mathematics and Computer Science,
VUA. 2001-05

R. van Liere. Studies in Interactive Visu-

alization. Faculty of Natural Sciences, Math-
ematics and Computer Science, UvA. 2001-
06

A.G. Engels. Languages for Analysis and

Testing of Event Sequences. Faculty of
Mathematics and Computing Science, TU/e.
2001-07

J. Hage. Structural Aspects of Switching

Classes. Faculty of Mathematics and Natu-
ral Sciences, UL. 2001-08

M.H. Lamers. Neural Networks for Analy-

sis of Data in Environmental Epidemiology:

A Case-study into Acute Effects of Air Pol-

lution Episodes. Faculty of Mathematics and
Natural Sciences, UL. 2001-09

T.C. Ruys. Towards Effective Model

Checking. Faculty of Computer Science, UT.
2001-10

D. Chkliaev. Mechanical verification of

concurrency control and recovery protocols.
Faculty of Mathematics and Computing Sci-
ence, TU/e. 2001-11

M.D. Oostdijk. Generation and presen-

tation of formal mathematical documents.
Faculty of Mathematics and Computing Sci-
ence, TU/e. 2001-12

A.T. Hofkamp. Reactive machine control:

A simulation approach using χ. Faculty of
Mechanical Engineering, TU/e. 2001-13

D. Bošnački. Enhancing state space re-

duction techniques for model checking. Fac-
ulty of Mathematics and Computing Science,
TU/e. 2001-14

M.C. van Wezel. Neural Networks for In-

telligent Data Analysis: theoretical and ex-

perimental aspects. Faculty of Mathematics
and Natural Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Speci-

fication and Analysis of Industrial Systems.
Faculty of Mathematics and Computer Sci-
ence and Faculty of Mechanical Engineering,
TU/e. 2002-02

T. Kuipers. Techniques for Understanding

Legacy Software Systems. Faculty of Nat-
ural Sciences, Mathematics and Computer
Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in Pro-

cess Algebra. Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA.
2002-04

R.J. Willemen. School Timetable Con-

struction: Algorithms and Complexity. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verifi-

cation of Probabilistic, Real-time and Para-

metric Systems. Faculty of Science, Mathe-
matics and Computer Science, KUN. 2002-
06

N. van Vugt. Models of Molecular Com-

puting. Faculty of Mathematics and Natural
Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius: Guid-

ing and Cost-Optimality in Model Check-

ing of Timed and Hybrid Systems. Faculty
of Science, Mathematics and Computer Sci-
ence, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin

Packing. Faculty of Mathematics and Natu-
ral Sciences, UL. 2002-09

D. Tauritz. Adaptive Information Fil-

tering: Concepts and Algorithms. Faculty
of Mathematics and Natural Sciences, UL.
2002-10

M.B. van der Zwaag. Models and Logics

for Process Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Science,
UvA. 2002-11

J.I. den Hartog. Probabilistic Extensions

of Semantical Models. Faculty of Sciences,
Division of Mathematics and Computer Sci-
ence, VUA. 2002-12

L. Moonen. Exploring Software Systems.
Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2002-13

J.I. van Hemert. Applying Evolutionary

Computation to Constraint Satisfaction and

Data Mining. Faculty of Mathematics and
Natural Sciences, UL. 2002-14

S. Andova. Probabilistic Process Algebra.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2002-15

Y.S. Usenko. Linearization in µCRL. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2002-16

J.J.D. Aerts. Random Redundant Storage

for Video on Demand. Faculty of Mathe-
matics and Computer Science, TU/e. 2003-
01

M. de Jonge. To Reuse or To Be Reused:

Techniques for component composition and

construction. Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA.
2003-02

J.M.W. Visser. Generic Traversal over

Typed Source Code Representations. Faculty
of Natural Sciences, Mathematics, and Com-
puter Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Networks.
Faculty of Mathematics and Natural Sci-
ences, UL. 2003-04

T.A.C. Willemse. Semantics and Veri-

fication in Process Algebras with Data and

Timing. Faculty of Mathematics and Com-
puter Science, TU/e. 2003-05

S.V. Nedea. Analysis and Simulations of

Catalytic Reactions. Faculty of Mathematics
and Computer Science, TU/e. 2003-06

M.E.M. Lijding. Real-time Scheduling of

Tertiary Storage. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2003-07

H.P. Benz. Casual Multimedia Process An-

notation – CoMPAs. Faculty of Electrical
Engineering, Mathematics & Computer Sci-
ence, UT. 2003-08

D. Distefano. On Modelchecking the Dy-

namics of Object-based Software: a Founda-

tional Approach. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2003-09

M.H. ter Beek. Team Automata – A For-

mal Approach to the Modeling of Collabora-

tion Between System Components. Faculty
of Mathematics and Natural Sciences, UL.
2003-10

D.J.P. Leijen. The λ Abroad – A Func-

tional Approach to Software Components.
Faculty of Mathematics and Computer Sci-
ence, UU. 2003-11

W.P.A.J. Michiels. Performance Ratios

for the Differencing Method. Faculty of
Mathematics and Computer Science, TU/e.
2004-01

G.I. Jojgov. Incomplete Proofs and Terms

and Their Use in Interactive Theorem Prov-

ing. Faculty of Mathematics and Computer
Science, TU/e. 2004-02

P. Frisco. Theory of Molecular Computing

– Splicing and Membrane systems. Faculty
of Mathematics and Natural Sciences, UL.
2004-03

S. Maneth. Models of Tree Translation.
Faculty of Mathematics and Natural Sci-
ences, UL. 2004-04

Y. Qian. Data Synchronization and Brows-

ing for Home Environments. Faculty of
Mathematics and Computer Science and
Faculty of Industrial Design, TU/e. 2004-05

F. Bartels. On Generalised Coinduc-

tion and Probabilistic Specification Formats.
Faculty of Sciences, Division of Mathematics
and Computer Science, VUA. 2004-06

L. Cruz-Filipe. Constructive Real Anal-

ysis: a Type-Theoretical Formalization and

Applications. Faculty of Science, Mathemat-
ics and Computer Science, KUN. 2004-07

E.H. Gerding. Autonomous Agents in

Bargaining Games: An Evolutionary Inves-

tigation of Fundamentals, Strategies, and

Business Applications. Faculty of Technol-
ogy Management, TU/e. 2004-08

N. Goga. Control and Selection Techniques

for the Automated Testing of Reactive Sys-

tems. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-09

M. Niqui. Formalising Exact Arithmetic:

Representations, Algorithms and Proofs.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2004-10

A. Löh. Exploring Generic Haskell. Fac-
ulty of Mathematics and Computer Science,
UU. 2004-11

I.C.M. Flinsenberg. Route Planning Al-

gorithms for Car Navigation. Faculty of
Mathematics and Computer Science, TU/e.
2004-12

R.J. Bril. Real-time Scheduling for Media

Processing Using Conditionally Guaranteed

Budgets. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-13

J. Pang. Formal Verification of Distributed

Systems. Faculty of Sciences, Division of
Mathematics and Computer Science, VUA.
2004-14

F. Alkemade. Evolutionary Agent-Based

Economics. Faculty of Technology Manage-
ment, TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position Es-

timation Using a Single Base Station. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2004-16

S.M. Orzan. On Distributed Verification

and Verified Distribution. Faculty of Sci-
ences, Division of Mathematics and Com-
puter Science, VUA. 2004-17

M.M. Schrage. Proxima - A Presentation-

oriented Editor for Structured Documents.
Faculty of Mathematics and Computer Sci-
ence, UU. 2004-18

E. Eskenazi and A. Fyukov. Quanti-

tative Prediction of Quality Attributes for

Component-Based Software Architectures.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Algebra.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2004-20

N.J.M. van den Nieuwelaar. Supervi-

sory Machine Control by Predictive-Reactive

Scheduling. Faculty of Mechanical Engineer-
ing, TU/e. 2004-21

E. Ábrahám. An Assertional Proof System

for Multithreaded Java -Theory and Tool

Support- . Faculty of Mathematics and Nat-
ural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remodel-

ing in Bone Tissue. Faculty of Biomedical
Engineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights Con-

trol - Expression and Enforcement. Fac-
ulty of Electrical Engineering, Mathematics
& Computer Science, UT. 2005-03

H. Gao. Design and Verification of Lock-

free Parallel Algorithms. Faculty of Mathe-
matics and Computing Sciences, RUG. 2005-
04

H.M.A. van Beek. Specification and Anal-

ysis of Internet Applications. Faculty of
Mathematics and Computer Science, TU/e.
2005-05

M.T. Ionita. Scenario-Based System Ar-

chitecting - A Systematic Approach to De-

veloping Future-Proof System Architectures.
Faculty of Mathematics and Computing Sci-
ences, TU/e. 2005-06

G. Lenzini. Integration of Analysis Tech-

niques in Security and Fault-Tolerance. Fac-
ulty of Electrical Engineering, Mathematics
& Computer Science, UT. 2005-07

I. Kurtev. Adaptability of Model Trans-

formations. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science, UT.
2005-08

T. Wolle. Computational Aspects of

Treewidth - Lower Bounds and Network Re-

liability. Faculty of Science, UU. 2005-09

O. Tveretina. Decision Procedures for

Equality Logic with Uninterpreted Func-

tions. Faculty of Mathematics and Com-
puter Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Finite Pop-

ulations in Dynamic Environments. Faculty
of Biomedical Engineering, TU/e. 2005-11

J. Eggermont. Data Mining using Ge-

netic Programming: Classification and Sym-

bolic Regression. Faculty of Mathematics
and Natural Sciences, UL. 2005-12

B.J. Heeren. Top Quality Type Error Mes-

sages. Faculty of Science, UU. 2005-13

G.F. Frehse. Compositional Verification of

Hybrid Systems using Simulation Relations.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2005-14

M.R. Mousavi. Structuring Structural Op-

erational Semantics. Faculty of Mathemat-
ics and Computer Science, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis of Prob-

abilistic Systems. Faculty of Mathematics
and Computer Science, TU/e. 2005-16

T. Gelsema. Effective Models for the

Structure of pi-Calculus Processes with

Replication. Faculty of Mathematics and
Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint

Solvers. Faculty of Natural Sciences, Math-
ematics, and Computer Science, UvA. 2005-
18

J.J. Vinju. Analysis and Transformation

of Source Code by Parsing and Rewriting.
Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2005-19

M.Valero Espada. Modal Abstraction and

Replication of Processes with Data. Faculty
of Sciences, Division of Mathematics and
Computer Science, VUA. 2005-20

