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General introduction 

Combined treatment consisting of radiation and chemotherapy has improved 

clinical outcome after radiotherapy in a variety of tumor types [1]. Efforts have been 

made to further enhance tumor response and decrease normal tissue toxicity by 

combining radiation with more specific, molecular targeted agents [2]. The class of 

alkylphospholipids (APLs) is a heterogeneous group of synthetic, single-chain 

phospholipids that has been studied as anti-cancer agent for decades. These 

compounds accumulate in cellular membranes [3], thereby affecting both apoptotic 

and survival signal transduction pathways. Modes of action underlying the anti-

tumor effect of APLs include activation of the pro-apoptotic SAPK/JNK pathway 

and inhibition of the MAPK/ERK and PI3K-Akt/PKB survival pathways [4-7]. One of 

these compounds, perifosine, was designed for oral use [8] and has been tested in 

clinical phase I trials as monotherapy in patients with advanced solid tumors [9,10]. 

Because their mechanism of action is distinct from classical anti-cancer drugs, 

APLs are considered as attractive compounds to combine with radiotherapy [4,11]. 

Indeed, in addition to potent anti-tumor properties as single agents in preclinical 

models, APLs have shown promising results in vitro when combined with radiation. 

For example, miltefosine reduced clonogenic survival after radiation [12], whereas 

an enhanced apoptotic response was observed when leukemic cells were treated 

with perifosine, miltefosine or edelfosine, combined with radiation [5]. 

 

Outline of this thesis 

The aim of this thesis is to provide a solid basis for further clinical development of 

APL treatment combined with radiotherapy. Here we describe the translation of 

perifosine treatment in combination with radiation, from in vitro and in vivo assays 

to a clinical study. Chapter 1.2 provides the rationale and current status of this 

combined modality approach. In Chapter 2.1 and 2.2, the first step in tumor cell kill, 

drug uptake by tumor cells, and subsequent cytotoxic effects are discussed. We 

studied the role of lipid raft-mediated endocytosis of APLs in S49 lymphoma cells, 

and reported the involvement of this mode of uptake for all tested APL analogues. 

However, uptake of APLs is a tumor type-specific process, since in the squamous 

cell carcinoma KB, a tumor cell line that actively incorporates high amounts of APL, 

uptake was not related to such endocytic activity. A differential drug uptake by 

proliferating versus confluent endothelial cells underlies the hypothesis that APLs 

could inhibit angiogenesis in vitro. This hypothesis was confirmed using 2 assays, 
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in which APLs showed potent inhibition of the formation of bloodvessel-like 

structures (Chapter 2.3). Chapter 3 includes experimental animal studies on 

perifosine treatment, as single oral treatment and in combination with radiation. 

Perifosine showed slow pharmacokinetics, extensive body distribution and tumor 

accumulation in mice after oral administration. Of the 3 squamous cell carcinomas 

tested, the KB tumor was the most sensitive and displayed the highest degree of 

perifosine accumulation in vitro and as xenograft. In this tumor model we have 

found promising anti-tumor activity after treatment with perifosine in combination 

with radiotherapy, both in vitro and in vivo. This thesis is concluded with a phase I 

and pharmacokinetic study in which we report a good tolerability of daily intake of 

perifosine combined with radiotherapy (Chapter 4). These results were the basis 

for a randomized phase II trial in patients with non-small cell lung cancer. 
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Abstract 

Concurrent treatment with radiotherapy and chemotherapy has emerged as an 

effective strategy to improve clinical outcome of cancer. In addition to combining 

radiation with classical anti-cancer agents, several new biological response 

modifiers are under investigation in pre-clinical and clinical studies. Synthetic 

alkylphospholipids (APLs) are anti-cancer agents that in contrast to most anti-

cancer drugs do not target DNA, but insert in the plasma membrane and 

subsequently induce a broad range of biological effects, ultimately leading to cell 

death. APLs kill tumor cells directly by induction of both apoptotic and non-

apoptotic cell death, and indirectly by interference with critical signal transduction 

pathways involved in phospholipid metabolism and cell survival. Due to their 

distinct mode of action, these drugs are considered as attractive candidates to 

combine with radiotherapy. In this review, we discuss several APLs that have 

reached clinical application. These include first-generation alkyl-lysophospholipids 

edelfosine and ilmofosine, second-generation alkylphosphocholine prototype 

miltefosine and the more recently developed analogues perifosine and 

erucylphosphocholine. We focus on mechanisms of action and the rationale to 

combine these agents with radiotherapy. The preclinical results on molecular 

targeting underlying this approach are reviewed, concluded with first clinical data 

on combined treatment of radiotherapy with perifosine. 
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Introduction 

Approximately 50% of all cancer patients are treated with radiotherapy, either as 

primary treatment with curative intent or for palliation of cancer related symptoms. 

Likelihood of tumor response after radiotherapy is determined by the total radiation 

dose required for tumor cell kill and varies between tumor types, ranging from very 

radiosensitive low grade lymphomas (90% tumor control at 4 Gy [1]) to notoriously 

radioresistant malignant gliomas (not responsive at clinically achievable doses). 

During the last decades, many approaches have been applied to further improve 

treatment outcome after radiotherapy. One of these approaches involves the 

combination with agents that have the capability to increase the sensitivity of cells 

to radiation (radiosensitizers). Most conventional radiosensitizers are cytostatic 

agents themselves (platinum analogues, 5-fluorouracil, gemcitabine) and target 

primarily the structure and function of the DNA, integrity of which is essential for 

DNA synthesis and cell division [2]. Although chemoradiation has resulted in 

improved local tumor control in various solid tumors [3], its application is limited by 

an increase in normal tissue toxicity. Various molecular targeted agents, more 

specifically modulating signal transduction pathways in tumor cells, have the 

potential to further enhance tumor response to radiotherapy while limiting side 

effects [4,5]. In this review, we focus on the class of alkylphospholipids (APLs) and 

their use in anti-cancer therapy, with emphasis on clinically relevant analogues. In 

particular, we address cytotoxic effects of APL analogues on cellular targets, 

supporting the rationale that this class of membrane-targeted drugs could enhance 

the efficacy of radiotherapy. Pre-clinical results are discussed and finally first 

clinical data and implications are provided. 

 

Alkylphospholipids as anti-cancer agents in historical perspective 

APLs can be classified according to their molecular structure. First-generation 

APLs are distinguished by ether-linked aliphatic side-chains (a long and a very 

short one) to a glycerol backbone, and are referred to as alkyl-lysophospholipids 

(ALPs), or ether lipids. This class of compounds has been developed during the 

early 1970’s, when these lysolecithin analogues were synthesized for 

immunomodulating applications [6]. During the process of finding biologically stable 

analogues, it was demonstrated that these ALPs possessed anti-proliferative 

properties in tumor cells [7]. To date, the most widely studied ALP is rac-1-O-

octadecyl-2-O-methyl-glycero-3-phosphocholine (Et-18-OCH3; edelfosine, Fig. 1). 
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Figure 1. Chemical structures of clinically tested APLs. The alkyl-lysophospholipid (ALP)-prototype 
edelfosine is characterized by an ether-linked aliphatic side chain to a glycerol backbone. A decrease in 

alkyl chain length (C18 →→→→ C16) and substitution of the linker-oxygen by sulfur yields the thio-ether lipid 
ilmofosine. In the chemical structure of the alkylphosphocholine (APC)-prototype miltefosine, the 
glycerol moiety is lacking. Erucylphosphocholine differs from miltefosine only by a longer chain length 

(C16 →→→→ C22) and the introduction of a cis-double bond. Finally, an alkyl chain modification (C16 →→→→ C18) 
and substitution of the choline headgroup of miltefosine by a cyclic aliphatic piperidyl residue yields 
perifosine. 

In addition to potent anti-tumor activity in vitro, edelfosine has shown in vivo 

efficacy in tumor models in both mouse [8,9] and rat [10,11]. Despite high anti-

tumor activity of edelfosine in preclinical models, clinical activity is low, since an 

early clinical phase I trial with edelfosine in patients with advanced malignant 

disease showed only 2 partial remissions with non-small cell lung cancer (NSCLC) 

after intravenous treatment and none after oral treatment [12]. A multicenter phase 

II trial in patients with advanced NSCLC demonstrated stable disease in 87% of all 

cases. However, response rate and time to tumor progression were unfavorable 

when compared with an historical group of patients treated with ifosfamide and 

etoposide [13]. The only clinical application of edelfosine at this moment is for 

purging purposes of bone marrow in acute leukemia. The basis of this clinical use 

was the observation that edelfosine selectively kills leukemic cells, thus sparing 

normal bone marrow cells both in vitro and in laboratory animals [14]. Bone marrow 

purging with 75 µg/mL edelfosine for 4 h could be done safely in patients with 
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acute leukemia [15], and a subsequent phase II study showed low toxicity and 

results not dissimilar from purging trials with other agents [16]. 

A second ALP that has reached the clinic is the thioether variant of edelfosine, 1-

hexadecyl-thio-2-methoxymethyl-rac-glycero-3-phosphocholine (BM 41.440; 

ilmofosine, Fig. 1). Ilmofosine has demonstrated both in vitro and in vivo anti-tumor 

activity in a variety of tumor cells [17-24]. Ilmofosine has been tested in phase I 

studies as a 2 h/weekly infusion in different treatment schedules [25,26]. Similar to 

edelfosine, gastrointestinal toxicity was dose limiting, and a dose of 450 mg/m
2
 was 

recommended for phase II trials. However, uncertainty exists about clinical activity 

since these phase I trials and a phase II trial in patients with non-small cell 

bronchogenic carcinoma [27] did not report objective responses. 

Structure-activity studies led to the generation of the group of alkylphosphocholines 

(APCs), in which the glycerol backbone is deleted [28]. Although the APC-

prototype hexadecylphosphocholine (HePC; miltefosine, Fig. 1) is degraded by 

phospholipases yielding choline, phosphocholine and 1,2-

diacylphosphatidylcholine after systemic treatment [29,30], potent anti-tumor 

activity in vitro against a variety of tumors has been described [30-33]. In vivo data 

are less clear-cut, since miltefosine reduced growth of the human squamous cell 

carcinoma KB xenograft in mice and both methylnitrosourea- and 7,12-

dimethylbenzanthracene-induced mammary carcinomas in rats [34,35], but lacked 

activity in rats with serially-transplanted mammary tumors [11], benzo(a)pyrene-

induced fibrosarcomas and acetoxymethylmethylnitrosamine-induced colorectal 

carcinomas [36]. Due to hemolytic effects when administered intravenously [37], 

miltefosine could only be developed as oral and topical formulation. A first dose 

escalation study reported nausea and vomiting as dose limiting, and recommended 

a 150 mg/day dose for further phase II testing. Unfortunately, lack of activity in 

patients with advanced soft tissue sarcoma [38], metastatic colorectal cancer [39] 

and squamous cell head and neck cancer [40] led to discontinuation of oral 

treatment development against cancer. First evidence of clinical activity was 

obtained when miltefosine was applied topically for treatment of skin metastases of 

breast cancer [41]. Subsequent phase II trials showed responses to topical 

treatment in patients with cutaneous lymphoma [42] and cutaneous breast cancer 

metastases [43,44]. It is worth noting that in addition to application in anti-cancer 

therapy, APLs have shown activity against protozoal disease [45], and miltefosine 

is now widely used as an effective oral treatment against leishmaniasis [46]. 

Replacing the choline moiety in miltefosine by a heterocyclic nitrogen group was 
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expected to yield derivates with an improved metabolic stability and therapeutic 

index [47]. One of these compounds is octadecyl-(1,1-dimethyl-piperidinio-4-yl)-

phosphate, (D-21266; perifosine, Fig. 1), in which a piperidine has been attached 

to the alkyl-phosphate chain. This structural change apparently prevents 

degradation in vivo, since hardly any degradation products could be measured in 

plasma of mice treated with perifosine [48]. Although to date the available pre-

clinical and clinical data remain limited, reports on anti-cancer activity are 

mounting. Perifosine showed toxicity similar to miltefosine against a variety of 

tumor cell lines in vitro, and the first in vivo results indicated equipotent anti-tumor 

properties in rats bearing dimethylbenzanthracene-induced mammary tumors, but 

with a far better tolerability [49]. Additional in vivo data are scarce, but a selective 

activity in some tumor types as is seen for the parental compound miltefosine is 

likely. Indeed, the relatively high drug levels measured in the miltefosine-

responsive KB xenograft in nude mice after oral administration of perifosine 

suggest an in vivo selectivity for this tumor compared to A431 and HNXOE 

carcinomas [48]. The first phase I study in patients with solid tumors revealed a 

similar toxicological profile as miltefosine since gastrointestinal toxicity was dose 

limiting, and the maximum tolerable dose was established at 200 mg/day for 3 

weeks [50]. A dose schedule involving a loading dose of 150 mg x 6, and a 

maintenance dose of 100 mg/day could be well tolerated and revealed modest 

activity in sarcoma and possibly, renal cell carcinoma [51]. At this moment, 

perifosine is tested in multiple clinical phase II trials. A detailed overview of clinical 

trials conducted with perifosine is shown in Table 1. Unfortunately, few clinical 

responses have been reported so far. No tumor response was reported in patients 

with metastatic melanoma [56], androgen independent prostate cancer [57], 

metastatic or locally advanced soft tissue sarcoma [58] or recurrent or metastatic 

head and neck cancer [59].  

Currently, erucylphosphocholine (ErPC, Fig. 1) is being used in preclinical studies 

as a new potent alkylphosphocholine. Although erucylphosphocholine only differs 

from miltefosine in alkyl chain length and the presence of a double bond, striking 

differences were found in pharmacological behavior. This relatively minor structural 

modification increased hydrophobicity resulting in the formation of lamellar 

membranous erucylphosphocholine-structures, which prevents development of 

hemolytic toxicity [60]. This allows erucylphosphocholine to be applied 

intravenously, resulting in comparable tumor responses at 5x lower doses and with 

reduced gastrointestinal toxicity [61], suggesting a low bioavailability. Although 
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erucylphosphocholine displays dose limiting toxicity which is common for APLs, it 

differs from other analogues by distinct accumulation in brain tissue [62]. In view of 

the encouraging responses of brain tumors both in vitro [63,64] and in vivo [63], 

erucylphosphocholine is considered to be the most promising APL to date, with 

possible application in treatment of brain tumors. No clinical data on 

erucylphosphocholine are available yet. 
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Mechanism of action 

Interference with phospholipid turnover and lipid signaling. APLs differ from 

classical chemotherapeutic agents, since their primary target is the plasma 

membrane and not the DNA. Due to their chemical structure, they easily insert into 

the plasma membrane where they can act as detergent resulting in direct cell lysis. 

At more clinically relevant concentrations, they interfere with multiple cellular 

processes, including phospholipid turnover and signal transduction pathways. The 

biosynthesis and turnover of phospholipids are crucial for the maintenance of 

membrane integrity in the broadest sense, and thereby for cell survival. After 

internalization, edelfosine and miltefosine interfere with phosphatidylcholine (PC) 

synthesis by inhibition of CTP:phosphocholine cytidylyltransferase (CCT) [65], the 

key enzyme controlling de novo PC synthesis [66,67] (Fig. 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. APLs interfere with phospholipid turnover. A key event in the cytotoxic action of APLs (in the 
figures represented by perifosine, but all these compounds are presumed to act by a similar fashion) is 
the inhibition of PC synthesis. Abbreviations not mentioned in the text: CDP-choline, cytidine 5'-
diphosphocholine; CER, ceramide; CK, choline kinase; CPT, choline phosphotransferase; P-choline, 
phosphocholine; PKC, protein kinase C; PLC, phospholipase C; SM, sphingomyelin; SMS, 
sphingomyelin synthase; SMase, sphingomyelinase. 

This directly triggers apoptosis, as is demonstrated by addition of lysoPC, an 

exogenous precursor for PC, which prevented edelfosine-induced cytotoxicity 

[68,69]. However, inhibition of PC synthesis has been suggested only to play a 

partial role in cell death induced by APCs [70]. It remains unclear whether this 
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discrepancy is dependent on the APL analogue used, or the cell type studied. 

Another cellular target described in the literature is the activation of 

phosphatidylinositol-specific phospholipase C (PI-PLC), subsequently blocking 

cleavage of phosphatidylinositol 4, 5 diphosphate (PIP2), formation of inositol 

1,4,5-triphosphate (IP3), diacylglycerol (DAG) and activation of protein kinase C 

(PKC) [71] (Fig. 2). Contradictory results have been reported about the effect of 

hexadecylphosphocholine on another enzyme involved in proliferation, namely 

phospholipase D (PLD). Wieder and coworkers reported an acute, dose-dependent 

stimulation of PLD after treatment [72]. More recently however, it has been 

postulated that abrogation of PLD activation after chronic exposure to 

hexadecylphosphocholine may be underlying its anti-tumor activity [73]. 

 

Induction of stress signaling and apoptosis. It has become evident that the 

plasma membrane is more than a physical barrier that separates the intracellular 

compartment of the cell from the external environment. Numerous cellular 

processes are regulated at the level of the cell membrane, including phospholipid 

turnover, lipid second messenger formation and signal transduction pathways that 

are crucial for life and death decisions. Interference with these processes by APLs 

can result in cell death, predominantly via induction of apoptosis [74]. 

A family of aspartate-specific proteases known as caspases, plays a key role in the 

executioning of apoptosis [75-77]. Initiator caspases (like caspase 8/9/10) act 

upstream of effector caspases (caspase 3/6/7) that are involved in the cleavage of 

substrates which are essential for cell survival. In general, programmed cell death 

is initiated via 2 distinct pathways [78]. The extrinsic ‘death receptor dependent’ 

pathway is activated by binding of extracellular ligands to the receptors of the 

tumor necrosis factor-receptor superfamily, including TNFR, CD95/Fas and TRAIL-

R. Upon triggering of the receptor, a complex consisting of an adaptor protein and 

initiator caspases is formed (death-inducing signaling complex – DISC), which is 

essential for death receptor-mediated apoptosis [79]. The intrinsic ‘mitochondrial 

pathway’ on the other hand, is regulated at the level of the mitochondria [80] by 

pro- and anti-apoptotic members of the Bcl-2 family [81]. The 2 pathways are 

interconnected by the Bcl-2 protein Bid. Bid is cleaved by caspase 8 as a 

consequence of death receptor ligation, and subsequently, cytochrome C is 

released by the mitochondria. This cascade results in the formation of a complex 

consisting of cytochrome C, Apaf 1 and caspase 9, also known as the 

‘apoptosome’ (Fig. 3). 
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Figure 3. Apoptosis signaling and stress pathways induced by APLs. Treatment can result in both 
apoptotic and non-apoptotic cell death. Apoptosis induction can be direct, by activation of executioner 
caspases by caspase 8, or indirect by the amplification loop via the mitochondria. 

Data on the mechanism by which ALPs and APCs induce apoptosis are 

controversial. Some investigators reported a Fas/CD95 death receptor-mediated 

induction of apoptosis, independent from its natural ligand FasL [74,82-84], 

whereas others excluded a role of the CD95 receptor in APL-induced apoptosis in 

general [85-87]. These investigators introduced a dominant negative FADD 

(receptor domain of CD95), thereby completely blocking CD95 receptor signaling. 

However, this modification did not rescue cells from APL-induced apoptosis. 

Involvement of the mitochondrial pathway in APL-induced apoptosis was 

demonstrated more recently [84,87-89]. 

 

Inhibition of survival & proliferation pathways. Cells are dependent on signals 

from the external environment for survival. Signaling pathways involved are often 

utilized by tumor cells to evade apoptosis and induce proliferation and ultimately 

survival after treatment. The G-protein RAS plays a central role in activation of 

these pathways (Fig. 4), and proteins acting at any level of these signal 

transduction cascades are therefore considered as potential pharmacological 
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targets. The serine/threonine kinase Akt is a component of the phosphatidylinositol 

3’-kinase/Akt signal transduction pathway, which regulates a diversity of cellular 

processes, including apoptosis, proliferation, differentiation and metabolism. Three 

Akt-isoforms have been identified to date, Akt1/PKBα, Akt2/PKBβ, and Akt3/PKBγ 

[90]. All isoforms are (co-) activated by components of the lipid kinase family of 

phosphatidylinositol-3 kinases (PI3Ks). Activation of the PI3K/Akt cascade is 

initiated by binding of a ligand to its growth factor receptor at the plasma 

membrane. After receptor activation, phosphatidylinositol-4,5-bisphosphate (PIP2) 

acts as substrate to generate the second messenger phosphatidylinositol-3,4,5-

bisphosphate (PIP3). PIP3 recruits a subset of signaling proteins, including PDK 

and Akt, where Akt can be phosphorylated at Thr
308

 and Ser
473

. PDK1 plays a 

central role in the phosphorylation of Akt at Thr
308

 [91], however the mechanism of 

Ser
473

 phosphorylation remains controversial. Dually-phosphorylated PKB/Akt is 

translocated to the nucleus, where it activates a number of downstream targets 

involved in cell proliferation, survival and differentiation [92]. The PI3K-Akt signaling 

pathway negatively regulates cell death by phosphorylation and inactivation of pro-

apoptotic proteins Bad [93] and FKHRL-1 [94]. On the other hand, Akt promotes 

expression of anti-apoptotic molecules, for instance through activation of the NFκ-B 

pathway [95]. Other target proteins promote cell cycle progression and cell growth 

and include glycogen synthase kinase-3 (GSK-3), mammalian target of rapamycin 

(mTOR) and cyclin-dependent kinase inhibitors p21
CIP1/WAF1

 and p27
KIP1

. 

Overexpression of the PI3K-PKB/Akt pathway is often associated with 

tumorigenesis [96,97] and subsequently with poor prognosis in cancer patients. 

The PKB/Akt pathway has extensively been implicated as a contributor to 

radioresistance [98-101]. In particular the epidermal growth factor receptor (EGFR) 

family has been targeted to overcome radiation resistance [102]. EGFR-activated 

PKB/Akt has been proposed to protect cells from radiation-induced apoptosis by 

multiple mechanisms, including phosphorylation of Bad and interference with 

apoptotic signaling at the level of the mitochondria [103]. These insights make 

PKB/Akt an attractive target for anti-cancer therapy and more specifically, for 

combined therapy. Several investigators have shown an enhanced tumor response 

to radiation after interference with the PKB/Akt signaling pathway [100,104]. In the 

last years, the PKB/Akt survival pathway has been identified as one of the targets 

of APLs [105,106]. Ruiter and coworkers showed a dose-dependent inhibition of 

insulin-induced PKB/Akt activation in tumor cells treated with edelfosine, 

miltefosine or perifosine. Interference with PKB/Akt by perifosine was studied in 
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more detail by Kondapaka et al., who identified inhibition of recruitment of PKB/Akt 

to the membrane as mechanism of action [106]. This is likely due to inhibition of 

PI3K-mediated PIP3 formation [105]. 

A second mechanism by which APLs can interfere with survival of tumor cells is by 

targeting one of the mitogen-activated protein kinase (MAPK) pathways (Fig. 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. APLs block signaling of 2 prominent survival pathways downstream of RAS. The MAPK and 
PKB/Akt pathway can be activated by binding of growth factors to the receptor; activation of these 
pathways is associated with radioresistance of tumor cells. 

The Ras/Raf/MEK/ERK signaling pathway is one of the best-characterized 

pathways downstream of RAS. ERK is frequently constitutively activated in tumor 

cells. RAS signaling is complex, and associated with counter regulatory processes, 

such as cell proliferation and cell cycle arrest. This review is limited to the role of 

MAPK signaling in proliferation and survival. After binding to a receptor tyrosine 

kinase, such as by EGF, PDGF or VEGF, RAS becomes activated and undergoes 

a conformational change, which results in the formation of a high affinity-binding 

site for RAF. RAF is consequently recruited to the membrane, where it can be 

phosphorylated at various sites and, in turn, can phosphorylate its substrate MEK. 

Downstream of this cascade can ERK, when activated, directly phosphorylate 

multiple transcription factors including c-Jun and c-Myc. Alternatively, ERK can 

activate transcription factor CREB via its downstream target RSK [107]. In addition 

to the promotion of proliferation, the MAPK pathway can negatively regulate the 
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induction of apoptosis. Under certain conditions, RAF can translocate to the 

mitochondria and inactivate the Bad protein [108]. Bad indirectly promotes 

apoptosis by negative regulation of the anti-apoptotic Bcl-family. The ultimate 

outcome of MAPK signaling is diverse, and is dependent on several other factors 

like the cell type involved and the degree of phosphorylation at each level of this 

pathway. In recent years, APLs have been shown to be potent inhibitors of the 

MAPK-pathway [109,110]. One mechanism by which edelfosine inhibits MAPK 

signaling is by interference of the interaction of RAF with activated Ras, thereby 

reducing the levels of RAF that are translocated to the membrane [111]. 

 

Combination of alkylphospholipids and radiation 

Evidently, the way by which APLs induce cytotoxicity is very complex, and involves 

numerous signal transduction pathways and a diversity of proteins in these 

pathways. Since some of these pathways have been implicated in influencing 

radiosensitivity and radioresistance of tumor cells, APLs have been considered 

attractive compounds to combine with radiotherapy. The first APL showing 

radiosensitizing properties was miltefosine [112]. However, this effect was limited 

to cell lines expressing an activated Ras oncogene. Berkovic et al. showed that 

miltefosine and edelfosine could reduce clonogenic survival after ionizing radiation, 

using the squamous cell carcinoma KB [113], a model cell system for APL cancer 

research. In addition, in vitro studies have identified perifosine as radiosensitizer in 

KB [5,114] and A431 [5] squamous cell carcinoma, and erucylphosphocholine in 

malignant glioma [115]. The inhibiting effects of APLs on survival and proliferation 

pathways, together with the induction of stress signaling led to the hypothesis that 

APLs would enhance radiosensitivity by enhanced induction of radiation-induced 

apoptosis [116]. This was tested in a lymphoma tumor model, and a prominent 

enhancement of radiation-induced apoptosis was found for edelfosine, miltefosine, 

and perifosine [110]. For edelfosine, this combination led to a synergistic apoptotic 

response. Crucial in this regard was activation of the SAPK/JNK signaling pathway 

(Fig. 3). This pathway is a component of the signal transduction pathway through 

mitogen-activated protein kinases (MAPK) that is mediated by the stress-activated 

protein kinase, also known as c-Jun N-terminal kinase (SAPK/JNK). This cascade 

is activated by inflammatory cytokines (TNFα, IL-1) and multiple environmental 

stress factors, like UV, heat shock, oxidation and ionizing radiation. SAPK, and its 

family member p38 are phosphorylated by SAPK/ERK kinase (SEK)1. 
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Furthermore, p38 is a downstream target of MKK3 and MKK6. In turn, the p38 and 

SAPK/JNK-inducers are activated by MEKK1. An upstream regulator of MEKK1 is 

Rac1, and may be a primary target in the SAPK/JNK pathway. In addition, 

SAPK/JNK is able to directly induce mitochondrial-dependent apoptosis [117,118]. 

The SAPK/JNK pathway is involved in cell death induced by a variety of cellular 

stress factors, including CD95 stimulation, ionizing radiation and APL treatment 

[119-122]. Its role in enhanced radiation-induced apoptosis by APLs was 

demonstrated by the expression of a dominant-negative c-Jun, which led to a 

dramatic decrease in apoptosis induction by both single modalities as well as the 

combination [110]. Recently, enhanced radiation-induced apoptosis by 

erucylphosphocholine was linked to inhibition of PKB/Akt-mediated anti-apoptotic 

signaling [123]. 

The first translation of this combined strategy to an in vivo setting showed 

promising responses. Where escalating doses of radiation or perifosine induced 

dose-dependent tumor growth delay in mice, did a combination of both result in 

complete and sustained tumor remission at a clinically achievable perifosine 

plasma concentration [114]. Although the cytotoxic mechanism of action remains 

unclear, immunohistochemical analysis of tumor tissue after treatment indicated a 

prominent role of apoptosis, measured by caspase 3 activation. It should be noted 

that these proof-of-principle studies were done in a favorable experimental setting, 

using the highly responsive KB carcinoma. The issue of tumor specificity in this 

regard must be recognized, since this tumor displays a relatively high degree of 

drug internalization. A discrepancy between in vitro and in vivo radiosensitization 

was shown in a malignant glioma tumor model. Although De la Pena et al. showed 

clear radiosensitization by perifosine in vitro, subcutaneous gliomas did not show 

an enhanced response to radiation after treatment with perifosine [124]. Since only 

1 dose schedule was tested, it is not clear whether an enhanced radiation 

response by perifosine could be obtained at optimal (clinically relevant) dose 

scheduling. Currently, only 1 clinical study on treatment with APLs combined with 

radiotherapy is available. A phase I trial was conducted in patients with advanced 

solid tumors, who were treated with fractionated radiotherapy concurrently with 

daily intake of perifosine [52]. Perifosine proved tolerable to a dose of 150 mg/day, 

combined with radiotherapy. Gastrointestinal toxicity was reported to be dose 

limiting. 
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Perspectives 

APLs act distinct from DNA damaging agents, and are therefore attractive 

candidate drugs for combination therapy. Pre-clinical data on perifosine combined 

with radiation look all together promising. In addition, acceptable tolerability was 

reported in a phase I trial with patients with advanced solid tumors [52]. A 

randomized phase II study is underway to evaluate the activity of this combination 

in patients with locally advanced NSCLC. 

Obviously, the generation of new APLs with a broader therapeutic window would 

increase their applicability in anti-cancer therapy. Optimal dose scheduling can 

further minimize normal tissue toxicity, which for all APLs tested to date is 

gastrointestinal. Due to their long elimination half-life, APLs are suitable for loading-

maintenance dosing. This approach has been shown to result in stable mean 

plasma concentrations over time of study and a good tolerability in patients with 

advanced cancer treated with perifosine [51]. 

Data are lacking on in vivo tumor specificity of APLs. From in vitro studies, a clear 

difference in drug sensitivity is found among cell types. This difference is explained, 

at least partly, by selective drug accumulation. For instance, tumor cells that have 

gained resistance to APLs often display reduced drug accumulation [125-127]. In 

addition, selective cytotoxicity of edelfosine to leukemic cells compared to normal 

cells is correlated with uptake [74] and the highly sensitive KB carcinoma 

incorporates a relatively high amount of drug both in vitro and in vivo [48]. Studies 

are warranted to help to understand why some tumors incorporate lethal amounts 

of these lipids whereas other tumors do not. More insight in mechanisms of drug 

uptake might lead to the identification of markers for drug uptake and subsequently 

for clinical tumor response. 

Although PKB is considered to be one of the main targets underlying the rationale 

for this combined strategy, the importance of PKB/Akt targeting in APL-induced 

radiosensitization remains to be confirmed. A more quantitative analysis of the 

effect of APL treatment in vivo on PKB/Akt and other candidate proteins would give 

more insight in the role for these proteins in the response to radiation. Effective 

biological targeting is an obvious requirement to be fulfilled both in monotherapy as 

well as in combined therapy. Whether this requirement can be met is determined 

by sufficient drug accumulation by tumor tissue on one side and (lack of) normal 

tissue toxicity on the other. 

Due to its distinct mode of action, APLs have been tested in combination with 
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regimens other than radiotherapy. Preliminary results about the cytotoxicity of 

perifosine combined with a diversity of compounds are encouraging: supra-additive 

cytotoxicity in combination with the protein kinase antagonist UCN-01 [128], 

enhanced activity when combined with anti-EGF receptor monoclonal antibody 

cetuximab (C225) in cancer cells with mutated PTEN [129], a synergistically 

enhanced apoptotic response in human leukemic cells when combined with either 

histone deacetylase inhibitors [130] or etoposide [131] and enhanced growth delay 

when combined with temozolomide in glioma [132]. However, most data are limited 

to in vitro assays. Therefore, more data on in vivo activity and tolerability might 

provide a basis for future clinical development of APLs in anti-cancer therapy. 

Results obtained to date indicate that application of this class of agents could have 

a role in the treatment of leukemic malignancies. For solid tumors accumulating 

evidence suggests that APLs, as part of a multimodality approach, could enhance 

the anti-tumor activity of existing anti-cancer regimens. 
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Abstract 

Single-chain alkylphospholipids (APLs), unlike conventional chemotherapeutic 

drugs, act on cell membranes to induce apoptosis in tumor cells. We tested 4 

different APLs, i.e. edelfosine, perifosine, erucylphosphocholine and compound D-

21805, as inducers of apoptosis in the mouse lymphoma cell line S49. We 

compared their mechanism of cellular entry and their potency to induce apoptosis 

through inhibition of de novo biosynthesis of phosphatidylcholine (PC) at the 

endoplasmic reticulum. APL potency closely correlated with the degree of PC 

synthesis inhibition in the order edelfosine > D-21805 > erucylphosphocholine > 

perifosine. In all cases, exogenous lysoPC, an alternative source for cellular PC 

production, could partly rescue cells from APL-induced apoptosis, suggesting that 

PC biosynthesis is a direct target for apoptosis induction. Cellular uptake of each 

APL was dependent on lipid rafts, as pretreatment of cells with the raft-disrupting 

agents methyl-β-cyclodextrin, filipin, or bacterial sphingomyelinase, reduced APL 

uptake and/or apoptosis induction, and alleviated the inhibition PC synthesis. 

Uptake of all APLs was inhibited by siRNA-mediated blockage of sphingomyelin 

synthase (SMS1), which was previously shown to block raft-dependent 

endocytosis. Similar to edelfosine, perifosine accumulated in (isolated) lipid rafts 

independent on raft sphingomyelin content persé. However, perifosine was more 

susceptible than edelfosine to back-extraction by fatty acid-free serum albumin, 

suggesting a more peripheral location in the cell due to less effective 

internalization. Overall, our results suggest that lipid rafts are critical membrane 

portals for cellular entry of APLs depending on SMS1 activity, and therefore are 

potential targets for APL anti-cancer therapy. 
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Introduction 

Synthetic lipase-resistant analogues of lysophosphadidylcholine, collectively 

named alkylphospholipids (APLs), exert cytotoxic effects against a wide variety of 

tumors [1-4]. The prototype of these compounds, 1-O-octadecyl-2-O-methyl-rac-

glycero-3-phosphocholine (Et-18-OCH3; edelfosine), structurally resembles 

lysophosphatidylcholine (lysoPC) (Fig. 1) in that it has the same polar headgroup 

and a single long apolar hydrocarbon chain, which allows an easy insertion into the 

plasma membrane. Whereas membrane-inserted lysoPC undergoes rapid 

turnover, edelfosine with its stable ether bonds is not metabolized, leading to 

accumulation in cell membranes. This interferes with lipid-based signal 

transduction, often resulting in apoptosis of tumor cells. In later studies, the glycerol 

moiety in APLs was found not essential for the anti-tumor activity. A second 

generation of this class of compounds therefore comprised of phospho-ester-linked 

(single-chain) alkylphosphocholines and derivatives thereof. The first of these 

compounds, hexadecylphosphocholine (miltefosine), was clinically effective in 

patients with skin metastasis of breast cancers [2,5] and cutaneous lymphomas [6]. 

Erucylphosphocholine (ErPC) containing a much longer (22-carbon) chain with a 

cis-13,14 double bond (Fig. 1) could be applied intravenously and thereby showed 

improved anti-tumor activity with reduced hemolytic and gastrointestinal side 

effects [7,8]. Interestingly, it increased the cytotoxicity of ionizing radiation [9,10]. A 

structural analogue, octadecyl-(1,1-dimethyl-piperidinio-4-yl)-phosphate (perifosine; 

D-21266), in which the choline head group has been substituted by a piperidine 

moiety (Fig. 1) has received mounting attention as an anti-cancer agent, especially 

in combination with other pharmacological drugs [11-16] as well as with 

radiotherapy [4,17-19]. 

In contrast to classical chemotherapeutic drugs that target the DNA, APLs act at 

cell membranes by interfering with the turnover and synthesis of natural 

phospholipids and by disrupting membrane-signaling networks at multiple sites, 

leading to cell death [3,4,20]. For the APLs edelfosine and miltefosine, it has been 

shown that they induce apoptosis through inhibition of CTP:phosphocholine 

cytidylyltransferase (CCT), a key enzyme in phosphatidylcholine (PC) biosynthesis 

[21-23]. In order to inhibit this enzyme at the endoplasmic reticulum, APLs need to 

be internalized. We have demonstrated that edelfosine, after insertion in the 

plasma membrane, accumulates in lipid rafts and is then internalized by an 

endocytic pathway that depends on intact rafts and on the activity of sphingomyelin 
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synthase 1 (SMS1) [23-25]. How other APLs are taken up by cells, their relative 

potency and mechanism of apoptosis induction is currently unknown.  

Here, we compared 4 anti-cancer APLs (molecular structures depicted in Fig. 1) 

with respect to their cellular uptake, cytotoxicity and mechanism of apoptosis 

induction in mouse S49 lymphoma cells. We found that all APLs utilize lipid rafts for 

internalization to inhibit PC synthesis to varying degrees, correlating with the 

efficiency and persistency of cellular uptake and potency to induce apoptosis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Chemical structures of synthetic APLs used in this study. Structures of edelfosine (also 
denoted as Et-18-OCH3), erucylphosphocholine (ErPC), octadecyl-2-(trimethylarsonio)-ethyl-phosphate 
(D-21805), and perifosine (D-21266) in comparison to natural lysophosphatidylcholine (LysoPC). Note the 
3 distinct submolecular structural moieties, (i) phosphocholine and related headgroup analogues, which 
are zwitterionic and represent the polar part of the molecule, (ii) glycerol backbone, present only in 
lysoPC and edelfosine, and (iii) the apolar alkyl-chain (acyl-chain in LysoPC). 
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Materials and Methods 

Reagents. Edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine; 

Et-18-OCH3) was purchased from BioMol (Plymouth Meeting, PA). [
3
H]Et-18-OCH3 

(39 Ci/mmol) was synthesized by Moravek Biochemicals (Brea, CA). Perifosine 

(compound D-21266), octadecyl-2-(trimethylarsonio)-ethyl-phosphate (compound 

D-21805), erucylphosphocholine (ErPC), and [
14

C]perifosine (31 mCi/mmol) were 

kindly provided by Zentaris GmbH (Frankfurt, Germany). [Methyl-
14

C]choline 

chloride (58 mCi/mmol) was derived from Amersham Pharmacia Biotech. 

[
3
H]Sphingosine was synthesized by Piet Weber at DSM (Delft, The Netherlands). 

Reagents for lipid extraction and subsequent analyses, as well as Silica 60 TLC 

plates (20 cm x 20 cm) were from Merck (Darmstadt, Germany). Sphingomyelinase 

(Bacillus cereus), filipin and MβCD were from Sigma Chemicals Co. (Zwijndrecht, 

The Netherlands). 

 

Cell culture. Mouse S49.1 lymphoma cells (S49) were grown in Dulbecco’s 

modified Eagle’s medium, containing high glucose and pyruvate, supplemented 

with 8% fetal calf serum, 2 mM L-glutamine, 100 units/mL penicillin, 100 µg/mL 

streptomycin at 37
o
C and 5% CO2. Edelfosine-resistant variants (S49

AR
) were 

isolated in 2 selection rounds of growth in 15 µM edelfosine for 72 h, followed by 

plating in semi-solid medium and isolation of colonies of surviving cells [26]. S49
AR

 

cells could be grown continuously in 15 µM edelfosine with a doubling time of 12 h, 

similar to that of the parent S49 cells. S49
mock

 and S49
siSMS1

 cells were generated 

as described previously [25]. All experiments with S49
AR

 cells were performed with 

cells grown without the selection agent for at least 1 week. 

 

Silencing of sphingomyelin synthase-1 by siRNA retroviral transduction. In 

order to suppress the expression of sphingomyelin synthase-1 (SMS1), S49 cells 

were retrovirally transduced by short interfering RNAs (siRNAs), yielding S49
siSMS1

 

cells, as described previously [25]. Briefly, siRNAs directed to SMS1 were inserted 

into the retroviral vector pRETRO-SUPER. Retroviral supernatants were obtained 

from Phoenix cells and used to transduce S49 cells. Stable S49
siSMS1

 cells were 

selected with puromycin. The following siRNA primers were used: sense 

GATCCCCGCATGGGAGTTGATTTAGATTCAAGAGATCTAAATCAACTCCCATG

CTTTTTGGAAA and antisense AGCTTTTCCAAAAAGCATGGGAGTTGATTT-

AGATCTCTTGAATCTAAATCAACTCCCATGCGGG. For mock transfection 



Chapter 2.1 

 44 

(S49
mock

), scrambled RNA was used. 

 

Cellular uptake of APLs and apoptosis assay. Cells were grown to a density of 

2.5x10
6
/mL before [

14
C]perifosine (0.2 µCi, 20 µM) or [

3
H]edelfosine (0.2 µCi, 15 

µM) was added. At given time points, samples were taken, incubated for 2 min on 

ice and washed with cold phosphate-buffered saline (PBS). Samples were lysed in 

0.1 N NaOH for scintillation counting. For apoptosis, cells were seeded at 1.5x10
6
 

cells/mL, cultured overnight and incubated for indicated time periods with various 

concentrations of APLs. Cells were washed with PBS and lysed overnight at 4
o
C in 

0.1% (w/v) sodium citrate, 0.1% (v/v) Triton X-100 and 50 µg/mL propidium iodide 

[27]. Fluorescence intensity of propidium iodide-stained DNA was determined on a 

FACScan (Becton Dickinson Advanced Cellular Biology), and data analyzed using 

Lysis software. 

 

Lipid biosynthesis. To measure PC and sphingomyelin biosynthesis, cells at 

2.5x10
6
 cells/mL were incubated with [

14
C]choline chloride (1 µCi/mL). At given 

time points, aliquots of cell suspension were taken, washed and resuspended in 

200 µL PBS. Lipids were extracted with chloroform/methanol (1:2, v/v) and phase 

separation was induced using 1 M NaCl. The organic phase was washed in a 

solution of methanol/H2O/chloroform (235:245:15, v/v/v), and separated by silica 

TLC, using choroform:methanol:acetic acid:water, 60:30:8:5, v/v/v/v). Alternatively, 

cells were radiolabeled for 24 h with 1 µCi/mL [
3
H]sphingosine [28]. In this case, 

lipid extracts were separated by TLC using chloroform/methanol/0.2% CaCl2 

(60:40:9, v/v/v). Radioactive lipids were visualized and quantified using a Fuji BAS 

2000 TR Phosphor Imager and identified using internal standards, which were 

visualized by iodine staining. 

 

Isolation of lipid rafts. A detergent-resistant lipid raft fraction was prepared as 

described previously [23]. Briefly, cells (2.0x10
6
/mL) were solubilized into 2 mL of 

ice-cold MBS buffer (25 mM MES, 150 mM NaCl), including 1% Triton X-100 and 

homogenized with a tight fitting Dounce homogenizer (10 strokes). The 

homogenate was adjusted to 40% sucrose and put on the bottom of an 

ultracentrifuge tube (4 mL). A discontinuous sucrose gradient was prepared by 

overlaying 5 mL of 30% sucrose and 3 mL of 5% sucrose (both in MBS), 

subsequently. The tubes were centrifuged at 39,000 rpm in a SW41 rotor for 16-18 

h at 4
o
C and 12x 1.0 mL fractions were collected manually from the top of the 
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gradient. For incorporation of perifosine in lipid rafts, cells were incubated with 

[
14

C]perifosine (0.2 µCi/mL; 20 µM) for 15 min to allow insertion into the outer 

leaflet of the plasma membrane lipid bilayer. Sphingomyelin levels in each fraction 

were determined after 24 h radiolabeling of cells with 1 µCi/mL [
3
H]sphingosine, 

followed by Triton X-100 solubilization and sucrose gradient centrifugation and TLC 

separation (see above). 

 

Results 

Differential potency of 4 different APLs to induce apoptosis in S49 cells. We 

have previously described that the synthetic ether-lipid edelfosine (Et-18-OCH3) 

can induce apoptosis in S49 lymphoma cells, in a dose- and time-dependent 

fashion [23]. The onset of apoptosis in these cells was relatively fast and already 

appeared after 3 h. As the structurally related analogues perifosine and 

erucylphosphocholine (ErPC) (Fig. 1) have more clinical potential, we examined 

the potency of these compounds, compared to edelfosine, to induce apoptosis in 

S49 lymphoma cells. We also tested a new APL derivative, Zentaris compound D-

21805, in which the nitrogen in the choline moiety is substituted by arsenic (Fig. 1). 

It appeared that D-21805, ErPC and perifosine are less potent inducers of 

apoptosis than edelfosine, with IC50 values of 15, 25, ≥ 50 and 12 µM, respectively 

(Fig. 2A).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Dose-dependency and kinetics of apoptosis induction by various APLs. S49 cells were treated 
for 6 h with different concentrations of APL (A), or for the times indicated with D-21805 (20 µM; open 
squares), perifosine (20 µM; closed squares), erucylphosphocholine (20 µM; open circles) or edelfosine 
(15 µM Et-18-OCH3; closed circles) (B). Apoptotic nuclear fragmentation was determined by FACS 
analysis (see Materials and Methods). Data are means of 4 experiments ± SD.  
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Contrary to edelfosine, D-21805 and perifosine did not reach plateau levels of 

apoptosis after 7 h incubation, even at a high concentration of 50 µM (Fig. 2A). In 

addition, the onset of apoptosis in cells treated with D-21805, ErPC, and perifosine 

was delayed, compared to edelfosine (Fig. 2B). Whereas maximal apoptosis by 

edelfosine was reached at 7 h, the other APLs required a prolonged (overnight) 

incubation time to reach maximum apoptosis. 

 

Relative potency of individual APLs to inhibit PC synthesis correlates with 

their potency to induce apoptosis. We have previously demonstrated in S49 and 

HeLa cells, that continuous PC synthesis is crucial for cell survival and that 

edelfosine induces apoptosis by inhibiting de novo PC synthesis [23,24]. To test 

whether this holds true for the 3 other APLs, S49 cells were incubated with the PC 

precursor [
14

C]choline in the absence or presence of edelfosine, D-21805, 

perifosine, or ErPC and the PC synthesized was measured after 2 h. The APLs 

were found to inhibit PC synthesis to various degrees, edelfosine being the most 

potent, followed by D-21805, ErPC and perifosine, amounting to 65, 60, 50 and 

30% inhibition, respectively (Fig. 3A). These data correlate with the relative 

percentages of apoptosis induced by these compounds (Fig. 3B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. PC synthesis inhibition by APLs (A) and apoptosis suppression by exogenous LysoPC (B). (A) 
S49 cells were pretreated for 30 min with perifosine (20 µM), erucylphosphocholine (ErPC, 20 µM), D-
21805 (20 µM) or edelfosine (15 µM), and then incubated for 2 h with 0.2 µCi/mL [14C]choline precursor to 
label cellular PC, which was visualized after lipid extraction and TLC analysis and was quantified using 
phosphor-imaging technology. (B) Apoptosis (nuclear fragmentation) induced in S49 cells by these 
concentrations of APLs after 5 h (open bars), and upon co-addition of 25 µM lysoPC (closed bars).  
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To demonstrate the importance of PC synthesis for cell survival, we administered 

exogenous lysoPC, an alternative precursor of PC [23], to the cells that were 

challenged with the various APLs. Figure 3B shows that, indeed, lysoPC rescued 

cells from apoptosis induction by perifosine, D-21805, ErPC and edelfosine, by 34, 

36, 40 and 50% respectively. 

From these results together, we conclude that all 4 APLs inhibit de novo PC 

synthesis in S49 cells to different degrees, which appeared to correlate with their 

potency to induce apoptosis. The observed protective effect of lysoPC indicates 

that this abrogation of PC synthesis is responsible (at least partly) for the onset of 

apoptosis induction by all tested APLs, as we concluded previously for edelfosine 

[23,24]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. APL-induced inhibition of PC synthesis is alleviated by disruption of lipid rafts. S49 cells were 

preincubated (for 30 min) with MββββCD (2 mg/mL; hatched bars), or with bSMase (150 milliunits/mL; open 
bars), or were not preincubated (black bars). Cells were then treated with buffer (control), or with the 
APLs perifosine (20 µM), ErPC (20 µM), D-21805 (20 µM) or edelfosine (15 µM), and were, 30 min later, 
incubated for 2 h with 0.2 µCi/mL [14C]choline precursor to label cellular PC, which was visualized after 
lipid extraction and TLC analysis; radioactive PC spots (A) were quantified using Phosphor Imaging (B).  
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Cellular uptake of APLs, PC synthesis inhibition and consequent apoptosis 

induction is mediated by lipid rafts. Inhibition of de novo PC synthesis by APLs 

occurs at the level of the rate-determining enzyme CTP:phosphocholine 

cytidylyltransferase located in the endoplasmic reticulum and the nucleus. Thus, 

APLs need to be internalized to inhibit this enzyme. Edelfosine was previously 

found to accumulate preferentially in detergent-resistant lipid raft fractions, and was 

internalized by raft-dependent endocytosis [23-25]. In order to investigate whether 

PC inhibition and apoptosis induction in S49 cells by perifosine, D-21805, and 

ErPC was likewise mediated by lipid rafts, we disrupted these membrane domains 

by extracting their cholesterol with methyl-β-cyclodextrin (MβCD), and by 

hydrolyzing their sphingomyelin (SM) with bacterial sphingomyelinase (bSMase). 

Fig. 4 shows that these treatments of cells alleviated the inhibition of PC synthesis 

for each APL. 

In general, the PC synthesis rescuing effect of bSMase treatment was stronger 

than of MβCD. Fig. 5A shows that treatment of S49 cells with MβCD prevented 

apoptosis induction, for all tested APLs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Apoptosis induction by APLs is prevented by cholesterol extraction and downregulation of SM 
synthesis. Apoptosis was induced at 7 h by the indicated APLs in S49 cells (open bars), in S49 cells 

preincubated (30 min) with methyl-ββββ-cyclodextrin (MββββCD, 2 mg/mL) (A, solid bars), and in the SMS1-
deficient cell lines S49siSMS1 (B, solid bars) and S49AR (C, solid bars). Perifosine, erucylphosphocholine 
(ErPC) and D-21805 were used at 20 µM; edelfosine was used at 15 µM). Apoptosis was measured by 
nuclear fragmentation. Data are means of triplicates ± SD.  

We recently described that edelfosine-resistant cells (S49
AR

 cells) lack the raft 

constituent SM, through a 50-fold downregulated SM synthase (SMS1) expression. 
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Genetically, SM deficiency can also be induced in S49 cells by RNAi-mediated 

SMS1 downregulation (Fig. 6F), yielding so-called S49
siSMS1

 cells [25]. Fig. 5B and 

5C show that both of these S49 cell variants are not only resistant to edelfosine but 

to the other APLs as well. Resistance in S49
siSMS1 

cells was less stringent than in 

the S49
AR

 cells because the RNAi-induced downregulation of SMS1 expression 

was not as pronounced as in S49
AR

 cells [25]. The data presented in Fig. 5 confirm 

that apoptosis sensitivities to all APLs are dependent on lipid raft integrity 

(including appropriate cholesterol content) and SMS1-mediated SM production in 

the lipid rafts. 

 

Perifosine accumulates in lipid rafts, independent of their sphingomyelin 

levels, but internalization depends on sphingomyelin synthesis. As edelfosine 

was previously shown to accumulate in lipid rafts prior to its raft-mediated 

internalization [23-25], we investigated possible raft accumulation of perifosine, the 

only APL available in 
14

C-labeled form. Fig. 6A-C show that, similar to edelfosine 

[23], [
14

C]perifosine accumulated in lipid rafts to similar levels for S49 cells and 

S49
AR

 and S49
siSMS1

 cells, that are deficient in SM synthesis (Fig. 6D and F). In 

addition, when S49 cells were pretreated with bacterial SMase to decrease SM 

levels (Fig. 6E), there was no effect on the preference of perifosine to accumulate 

in rafts (Fig. 6B). Therefore, we conclude that the levels of SM in lipid rafts are 

irrelevant for the accumulation of perifosine into these membrane microdomains. 

While the content of SM was irrelevant, its synthesis (which has functions beyond 

simply contributing to raft structure; see Discussion) was important for the active 

cellular uptake of perifosine, as it was for edelfosine [25]. 



Chapter 2.1 

 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Perifosine accumulates in lipid rafts independent of the sphingomyelin content. (A-C) S49 
control cells (solid bars) or sphingomyelin-deficient cells (S49siSMS1, S49AR, and bSMase-treated S49 cells 
(open bars) were incubated for 15 min with [14C]perifosine (20 µM, 0.02 µCi/mL), washed and detergent-
insoluble lipid rafts were then isolated on sucrose density gradients (typically fractions 3-5). 
Radioactivity in the gradient fractions was counted and expressed as a percentage of total activity. (D) 
S49 and S49AR cells (indicated) were labeled with [methyl-14C]choline (1 µCi/mL, overnight). Detergent-
insoluble lipid rafts were isolated on sucrose gradients, extracted and separated by TLC. Positions of 
phospholipids are indicated. SM appears typically as 2 spots [25]. (E) S49 cells were labeled with 
[3H]sphingosine (1 µCi/mL, 4 h) and then treated with bacterial sphingomyelinase (bSMase, 150 
milliunits/mL, 30 min). (Sphingo)lipids were extracted and separated by TLC. The location of SM and 
other sphingolipids, ceramide (Cer), glucosylceramide (GlcCer) and lactosylceramide (LacCer) is 
indicated. Phosphatidylethanolamine (PE) is a catabolic end-product of sphingosine-1-phosphate 
degradation [25]. (F) S49 cells and sphingomyelin-downregulated S49siSMS1 cells were labeled, extracted 
and analyzed on TLC as in (E). 
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Similar to [
3
H]edelfosine (Fig. 7A), the time-dependent uptake of [

14
C]perifosine at 

37
o
C was decreased in SMS1-downregulated cells (S49

AR
 and S49

siSMS1
) as 

compared with the parental S49 cells (Fig. 7B). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Time-dependent cellular uptake of edelfosine and perifosine; dependence on SMS1 expression 
(A,B) and lipid raft integrity (C). Cells were incubated at 37ºC with [3H]edelfosine (15 µM, 0.02 µCi/mL) (A) 
or [14C]perifosine (20 µM, 0.02 µCi/mL) (B, C) for the times indicated, and then washed with cold PBS, 
solubilized and the radioactivity was counted. From this the amount of uptake in nmol (± SD; n=4) was 
calculated. Symbols for cells in panels (A,B): S49, closed circles; S49AR, open circles; S49mock, closed 
squares; S49siSMS1, open squares. (C) S49 cells remained untreated (closed circles), were pretreated (30 

min) with filipin (1 µg/mL; closed diamonds), methyl-ββββ-cyclodextrin (2 mg/mL; open triangles), or 
bacterial sphingomyelinase (150 milliunits/mL; closed triangles).  

Also similar to edelfosine [23], internalization of [
14

C]perifosine was dependent on 

lipid raft integrity, since raft disruption of S49 cells with the cholesterol 

sequestrating agents filipin and methyl-β-cyclodextrin or with bSMase, decreased 

the uptake of this APL (Fig. 7C).  

 

Different levels of cellular uptake of perifosine compared to edelfosine. When 

comparing the uptake at 37
o
C of edelfosine with perifosine in more detail, we found 

that the perifosine taken up by S49 cells remained less persistently associated with 

(bound to) the cells than edelfosine (Fig. 8). This persistence of APL accumulation 

in the cells was demonstrated by back-extraction with fatty acid-free bovine serum 

albumin (BSA), a technique that we used previously to analyze internalization of 

exogenous lysoPC in cells [24]. BSA will only back-extract the APL fraction that 

remains in the outer leaflet of the plasma membrane lipid bilayer, not the APL that 

has been internalized by spontaneous and/or protein-mediated transbilayer 

‘flipping’ or endocytosis. Fig. 8A and B show the relative amount of radiolabeled 
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edelfosine that, after 10 min or 1 h incubation at 37
o
C remains associated to cells 

after BSA back-extraction, which was a about 2-fold higher than for perifosine. 

These levels of internalized APL were higher in S49 cells than in S49
AR

 cells, which 

are explained by the lack of raft-mediated endocytosis in the latter cells [23,25].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Fraction of the cellular uptake of edelfosine and perifosine that is resistant to BSA back-
extraction. S49 and S49AR cells were incubated at 37ºC (A, B) or at 4ºC (C) with [14C]perifosine (20 µM, 
0.02 µCi/mL; closed bars) or [3H]edelfosine (15 µM, 0.02 µCi/mL; open bars) for the times indicated (10 
min, 1 h), and then washed 3 times with cold PBS or with fatty acid-free bovine serum albumin (BSA) 
(1%). Data are expressed as the percentage of radioactivity left in the cells after BSA washing relative to 
PBS washing. Data are means of 3 experiments ± SD. 

We next determined the persistent uptake at 4
o
C, a temperature which still allows 

spontaneous transbilayer flipping [24] but no ‘active’ endocytic uptake. Fig. 8C 

shows that the same percentage (about 45%) of edelfosine and perifosine 

remained associated to S49 cells after BSA back-extraction, suggesting that the 

internalization by spontaneous flipping is the same for the 2 APLs. Intriguingly, 

however, from S49
AR

 cells much more perifosine (80%) than edelfosine (45%) can 

be back-extracted under these low-temperature conditions, suggesting that in 

these APL-resistant cells, perifosine is less subject to trans-bilayer flipping than 

edelfosine, for reasons that are not clear. 

The most important conclusion from these data is that the cellular uptake of 

perifosine is less efficient than of edelfosine, so that more perifosine than 

edelfosine remains located at the plasma membrane outer leaflet, available to BSA 

back-extraction. While spontaneous membrane traversal (flipping) in S49 cells 

appears the same for the 2 compounds, temperature dependent ‘active’ uptake is 

higher for edelfosine than for perifosine. 
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Discussion 

In this paper, we have shown that S49 lymphoma cells are sensitive to a class of 

structurally related synthetic APLs, which comprises edelfosine, D-21805, 

erucylphosphocholine and perifosine. The relative potency of these 4 anti-cancer 

agents to induce apoptosis in S49 cells differed and was correlated with their 

capacity to inhibit PC synthesis in the cell. We demonstrated for each of these 

compounds that this inhibition of PC synthesis was a direct trigger for apoptosis 

induction because exogenous lysoPC, an alternative source for PC production 

(through acylation inside the cell), rescued the cells from APL-induced apoptosis. 

For 2 of these compounds, (radiolabeled) edelfosine and perifosine, we 

demonstrated that they accumulated in the detergent-resistant lipid raft fractions 

and that cellular uptake was impaired when the rafts were disrupted by cholesterol 

extraction (using MβCD) or when the synthesis of a major raft phospholipid, SM, 

was downregulated. These latter interventions protected the cells against apoptosis 

induction by all APLs. It is therefore likely that each of these APLs, after initial 

insertion in the outer leaflet of the plasma membrane lipid bilayer, accumulates in 

lipid rafts and from there, is taken up by raft-mediated endocytosis, as we 

demonstrated previously for edelfosine in more detail [23-25].  

The differential efficacy of apoptosis induction by the 4 APLs (Fig. 2 and 3B) is 

likely related to their different chemical structure (Fig. 1). Edelfosine, the most 

effective one, contains a glycerol backbone with 2 ether-linked substituents: a long 

alkyl chain and a short O-methyl group, properties that allow its easy partitioning 

into lipid rafts, as argued before [23,28,29]. In model membranes, 

hexadecylphosphocholine (miltefosine; lacking the glycerol-backbone) was less 

miscible with SM than edelfosine, yet stabilized SM-cholesterol-rich ordered 

domains, similar to edelfosine [29]. This is in line with our finding that perifosine, 

like edelfosine, accumulates in raft fractions, but possibly in weaker association 

with SM. If true, it remains to be seen if this relates to the degree of cellular uptake, 

the route by which this occurs and the apoptotic potency. The lower potency of 

perifosine to induce apoptosis cannot be ascribed to metabolic breakdown, since 

the molecule remained essentially intact within the cell [30]. 

When comparing the most potent APL, edelfosine, with the least effective one, 

perifosine, we find some similarities, but also differences in their behavior in cells. 

Both compounds accumulate in rafts, but they differ in the capacity to inhibit PC 

synthesis. It is possible that different APLs have differential inhibitory effects on the 
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CTP:phosphocholine cytidylyltransferase persé. However, is also possible that not 

every APL can reach this enzyme in the endoplasmic reticulum by the same route 

and to the same extent. In this regard, it is of interest that perifosine, after cellular 

uptake, can be much more easily back-extracted by BSA than edelfosine. This 

would suggest a less pronounced cellular internalization, possibly by a different 

route and/or by localization more in the cell periphery than edelfosine. The 

mechanism of cellular internalization and distribution of APL is probably also 

dependent on the cell type, as we previously observed that KB cells showed a 

remarkably high uptake and sensitivity for perifosine compared with the other 

squamous carcinoma cell lines A431 and HNXOE [30]. 

It is a remarkable finding that perifosine incorporation in lipid rafts is independent of 

SM content. Neither inhibition of SM synthesis by RNAi-mediated SMS1 

downregulation, nor SM breakdown by bacterial SMase affected perifosine 

incorporation into the lipid raft fractions. Similar results were recently published for 

edelfosine [25]. Yet, SM synthesis was important for cellular uptake of perifosine 

and the subsequent induction of apoptosis, since downregulation of SMS1 by RNAi 

prevented these events, again, similar as we found for edelfosine [25]. In this 

regard, it should be noted that SMS1 activity in the trans-Golgi [31] has important 

cell biological implications that goes beyond the mere production of SM for nascent 

lipid rafts [25]. SMS1 also produces diacylglycerol that activates protein kinase D, 

which is essential for anterograde vesicular trafficking towards the plasma 

membrane [32]. We have argued that APL internalization by raft-dependent 

endocytosis may represent the retrograde route of constitutive lipid raft-vesicular 

cycling that may exist between the trans-Golgi, the plasma membrane and the 

endosomal compartments [25].  

Our results strengthen the idea that inhibition of PC synthesis is a major insult to 

cells, which is apparently sufficient to initiate their apoptotic machinery, at least in 

S49 lymphoma cells. Not only edelfosine but also other APLs can induce apoptosis 

in this way. How exactly PC synthesis inhibition by APLs results in apoptosis is 

unknown. Rescue of cells from cell death by exogenous lysoPC, which is rapidly 

converted to PC [24], suggests that a continuous PC synthesis is crucial for cell 

survival. We have argued that a continuous phospholipid supply by vesicular 

trafficking might support a survival mechanism [33]. In line with this speculative 

idea is that proper PC synthesis may regulate PKB/Akt kinase activity, as it was 

shown that an inhibition in PC synthesis precedes PKB/Akt inactivation [34]. This 

might be a reason why perifosine and edelfosine inhibited PKB/Akt activation in 
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various cell types [16,35,36]. However, the precise mechanism by which this PC 

synthesis inhibition connects in molecular terms to the initiation of the apoptotic 

machinery remains to be investigated. Also, future studies should reveal to what 

extent such a raft- and SMS1-dependent APL uptake mechanism applies to other 

types of (human) cancer cells. 
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Abstract 

Perifosine is a member of the class of synthetic alkylphospholipids (APLs), and is 

being evaluated as anti-cancer agent in several clinical trials. These single-chain 

APLs accumulate in cellular membranes and disturb lipid-dependent signal 

transduction, ultimately causing apoptosis in a variety of tumor cells. The APL 

prototype edelfosine was previously found to be endocytosed by S49 mouse 

lymphoma cells via lipid rafts. An edelfosine-resistant cell variant, S49
AR

, was 

found to be cross-resistant to other APLs, including perifosine. This resistance was 

due to defective synthesis of the raft constituent sphingomyelin, which abrogated 

APL cellular uptake. Sensitivity of S49 cells to edelfosine was higher than to 

perifosine, which correlated with a relatively higher uptake. Human KB epidermal 

carcinoma cells were much more sensitive to APLs than S49 cells. Their much 

higher APL uptake was highly dependent on intracellular ATP and ambient 

temperature, and was blocked by chlorpromazine, independent of canonical 

endocytic pathways. We found no prominent role of lipid rafts for APL uptake in 

these KB cells: Contrary to S49
AR

 cells, perifosine-resistant KBr cells display 

normal sphingomyelin synthesis, whereas APL uptake by the responsive KB cells 

was insensitive to treatment with methyl-β-cyclodextrin, a cholesterol-sequestrator 

and inhibitor of raft-mediated endocytosis. In conclusion, different mechanisms 

determine APL uptake and consequent apoptotic toxicity in lymphoma versus 

carcinoma cells. In the latter cells, APL uptake is mainly determined by a raft- and 

endocytosis-independent, but metabolic energy-dependent process, possibly by a 

lipid transporter. 
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Introduction 

The group of synthetic single-chain alkylphospholipids (APLs) is a heterogeneous 

class of anti-cancer agents, which exerts cytotoxic effects against a wide variety of 

tumors [1-5]. In contrast to classical chemotherapeutic drugs, APLs do not target 

DNA but primarily act at the level of cell membranes. This distinct mode of action, 

which includes inhibition of phospholipid turnover and interference with signal 

transduction pathways, makes APLs attractive candidates for combination therapy 

with classical anti-cancer agents and ionizing radiation [6,7]. Several APLs are 

currently under investigation as radiosensitizers, since they have been shown to 

enhance radiation-induced cell death, both in vitro [6,8-13] and in vivo [11]. 

The prototype of these APL compounds is 1-O-octadecyl-2-O-methyl-rac-glycero-

3-phosphocholine (Et-18-OCH3; edelfosine), an ether-linked phospholipid with a 

glycerol backbone. Other members of the APL family lack this glycerol backbone, 

their alkyl chain being directly esterified to a phosphocholine moiety or analogue 

thereof, for example hexadecylphosphocholine (miltefosine), erucylphosphocholine 

(ErPC, which is intravenously applicable) and octadecyl-(1,1-dimethyl-piperidinio-4-

yl)-phosphate (compound D-21266; perifosine [14]). This latter compound has 

been tested in phase I trials in patients with solid tumors as single agent [15,16] 

and in combination with radiotherapy [17], and is currently being evaluated in 

phase II studies. 

In general, tumor cells can gain resistance to cytotoxic agents via multiple 

mechanisms, such as increased drug metabolism, enhanced drug efflux and 

reduced drug accumulation. There is no evidence for increased APL degradation. 

Similar to edelfosine [18], we found that perifosine is almost completely 

metabolically stable, both in vitro and in vivo [19]. Reduced APL uptake, however, 

is often observed in tumor cells that have gained resistance to these synthetic 

lipids [18,20-22]. Conversely, the high sensitivity of KB squamous cell carcinoma to 

APLs is correlated with a high degree of drug accumulation [19]. The precise 

mechanism by which APLs are internalized has long been a matter of debate. 

Whereas several investigators have reported a reduced uptake by tumor cells after 

treatment with pharmacological inhibitors of endocytosis [23-25], others have failed 

to show a correlation between resistance to APLs and endocytosis [26,27].  

Our group has recently demonstrated that in S49 lymphoma cells, edelfosine 

accumulates in sphingolipid- and cholesterol-enriched plasma membrane 

microdomains, known as lipid rafts [28,29]. The drug is then rapidly internalized via 
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these domains in S49 cells, whereas this process is disturbed in the edelfosine-

resistant cell variant S49
AR

 [22,29]. This abrogated uptake of edelfosine was linked 

to reduced levels of sphingomyelin (SM), an essential raft constituent. Recently, we 

showed this defect to occur at the level of SM synthase 1 (SMS1) expression [30]. 

Although lipid rafts are clearly involved in APL uptake by lymphoma cells, their role 

in the uptake by solid tumors remains unknown. The human squamous cell 

carcinoma KB has previously been studied as an APL-responsive tumor model, 

both in vitro [19,31] and in vivo [11,32]. Here, we compared the APL uptake in the 

S49/S49
AR

 lymphoma with the KB carcinoma model and an APL-resistant cell 

variant, KBr. APL resistance was induced differently in these cells. S49
AR

 cells 

were selected after continuous edelfosine treatment [33] whereas KBr was 

generated after mutagenesis and subsequent continuous culturing in the presence 

of perifosine. In both cell models, we find a correlation between cellular APL uptake 

and sensitivity, as well as cross-resistance to other APLs. However, contrary to 

S49 cells, APL uptake by KB cells is predominantly raft- and endocytosis-

independent, but dependent on metabolic energy, possibly an ATP-dependent lipid 

transporter. 

 

Materials and methods 

Materials. [Methyl-
14

C]choline chloride (56 mCi/mmol) and L-lyso-3-

phosphatidylcholine, 1-[1-
14

C]palmitoyl ([
14

C]LysoPC, 56 mCi/mmol; Code CFA633) 

were purchased from Amersham Pharmacia Biotech. Erucylphosphocholine 

(ErPC), compound D-21805 (with arsenic substituting the choline nitrogen atom), 

perifosine (octadecyl-(1,1-dimethyl-piperidinio-4-yl)-phosphate; compound D-

21266), and [
14

C]perifosine (31 mCi/mmol) were kindly provided by Zentaris GmbH 

(Frankfurt, Germany). Edelfosine (Et-18-OCH3) was from Kamiya Biomedical 

Company (Seattle, WA). [
3
H]Edelfosine (39 Ci/mmol) was synthesized by Moravek 

Biochemicals (Brea, CA). Miltefosine (hexadecylphosphocholine) was from 

Cayman Chemical (Ann Arbor, MI). Reagents for lipid extraction and subsequent 

analyses, as well as Silica 60 TLC plates (20 cm x 20 cm) were from Merck 

(Darmstadt, Germany). BODIPY-lactosylceramide, Alexa-488-labeled transferrin 

and FITC-dextran were from Molecular Probes (Leiden, The Netherlands). All other 

chemicals were from Sigma (Zwijndrecht, The Netherlands). 

 
Cell culture. The human head and neck squamous cell carcinoma KB and 

resistant KBr were kindly provided by dr. F. Gamarro (Granada, Spain). The KBr 
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cells (also named KB PER
®
 clone 10) were obtained by mutagenesis with ethyl-

methanesulfonate, followed by intervals of incubation with increasing 

concentrations of perifosine, as described in detail elsewhere (F. Munoz-Martinez, 

C. Torres, S. Castanys and F.  Gamarro, manuscript in preparation). KB and KBr 

were maintained in Dulbecco’s Modified Eagles Medium (Gibco, Rockville), 

supplemented with 10% (v/v) fetal bovine serum (Life Technologies) and 

antibiotics. Mouse S49.1 lymphoma cells (S49) were grown in Dulbecco’s modified 

Eagle’s medium, containing high glucose and pyruvate, supplemented with 8% 

fetal calf serum, 2 mM L-glutamine and antibiotics. Edelfosine-resistant variants 

(S49
AR

) were isolated in 2 selection rounds of growth in 15 µM edelfosine (Et-18-

OCH3) for 72 h, followed by plating in semi-solid medium and isolation of colonies 

of surviving cells, as described by Smets et al. [33]. The selected S49
AR

 clone 

could be grown continuously in 15 µM edelfosine with a doubling time of 12 h, 

similar to the parental S49 cells. Experiments with S49
AR

 cells were performed with 

cells grown without the selection agent for at least 1 week. All cell lines were tested 

negative for mycoplasma. 

 

Phospholipid synthesis. KB/KBr cells (2.5x10
5
/well in 6-well plates) and 

S49/S49
AR

 cells (1x10
6
/well in 6-well plates) were incubated overnight, and labeled 

for 8 h with 1 µCi/mL [methyl-
14

C]choline chloride to measure SM synthesis. For 

PC synthesis from exogenous LysoPC, cells were incubated for the indicated times 

with 0.025 µCi [
14

C]LysoPC. Cells were harvested, washed and fixed in methanol. 

Lipids were extracted with chloroform/methanol (1:2, v/v) and phase separation 

was induced using 1 M NaCl. The organic phase was washed in a solution of 

methanol/H2O/chloroform (235:245:15, v/v/v), and separated by silica TLC, using 

chloroform/methanol/acetic acid/H2O, 60:30:8:5, v/v/v/v). Radioactive 

phospholipids, among which [
14

C]PC and [
14

C]SM, were identified using internal 

standards and quantified using a Fuji BAS 2000 TR Phosphor Imager. 

 

Apoptosis assay. KB/KBr cells were plated in 6-well plates (1x10
5
 cells/well) and 

allowed to attach overnight, whereas S49/S49
AR

 cells were plated in 96-well plates 

(1x10
5
 cells/well) before incubation for indicated time periods with APLs. Cells were 

washed in phosphate-buffered saline (PBS) and incubated at 4
o
C in 0.1% (w/v) 

sodium citrate, 0.1% (v/v) Triton X-100 and 50 µg/mL propidium iodide [33]. 

Fluorescence intensity of propidium iodide-stained sub-nuclear DNA fragments 

was determined by FACScan analysis (Becton Dickinson, San Jose, CA). The data 
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were fitted to a sigmoidal concentration-response curve and IC50 calculation was 

done using GraphPad Prism version 4.00 for Windows (GraphPad Software, San 

Diego, CA). 

 

APL uptake and ATP depletion. Cells were plated in 12-well dishes (S49/S49
AR

 – 

1x10
6
 cells/mL, KB/KBr – 5x10

4
 cells/well) and incubated overnight. Cells were 

pretreated for 30 min with 2.5 mg/mL methyl-β-cyclodextrin or 20 µM 

chlorpromazine, where indicated. Hereafter, cells were incubated with 

[
14

C]perifosine (0.03 µCi/mL, 1 µM) or [
3
H]edelfosine (0.15 µCi/mL, 1 µM). At 

appropriate time points, cells were washed with PBS, subsequently lysed in 1 M 

NaOH and diluted in Ultima Gold scintillation liquid (PerkinElmer, Wellesley, MA) 

for scintillation counting in a TRI-CARB liquid scintillation analyzer. ATP depletion 

was obtained by pre-incubation for 30 min with DMEM lacking D-glucose and 

sodium pyruvate, and containing 20 mM 2-deoxy-D-glucose and 10 mM sodium 

azide. Statistical analysis of the data was performed using Student’s t-test. 

 

K
+
 depletion and 

125
I-EGF internalization. KB cells were incubated for 5 min in 

DMEM/H2O (1:1 (v/v)) at 37
o
C, followed by a 60-min incubation at 37

o
C in minimal 

medium without K
+
 (20 mM Hepes at pH 7.5, 140 mM NaCl, 1 mM CaCl2, 1 mM 

MgSO4, 5.5 mM glucose and 0.5% BSA). Control cells were incubated in minimal 

medium supplemented with 10 mM KCl. Cells were incubated for 5 min with 1 

ng/mL [
125

I]EGF (epidermal growth factor) (684 mCi/mmol; from Amersham) or for 

1 h with radiolabeled APL (see above). Membrane-bound EGF was stripped off by 

washing with acidified PBS (HCl, pH 2.1) for 2 min at 4
o
C. Radioactivity in cells 

was measured by scintillation counting. 

 

Isolation of lipid rafts. A lipid raft fraction was prepared by detergent extraction of 

cells and sucrose gradient centrifugation for the determination incorporation of 

radiolabeled APL in lipid rafts [22]. S49 cells were grown to a density of 

2.0x10
6
/mL, incubated with [

14
C]perifosine (0.03 µCi/mL, 20 µM) or [

3
H]edelfosine 

(0.15 µCi/mL, 15 µM). KB cells were plated in 8 cm diameter dishes (5x10
6
/dish – 2 

dishes for each raft isolation), allowed to attach overnight and incubated with 

[
14

C]perifosine or [
3
H]edelfosine (0.02 µCi/mL, 1 µM) for 30 min. Cells were washed 

twice with ice cold PBS, solubilized into 2 mL of ice-cold MBST buffer (25 mM 

MES, 150 mM NaCl, 1% Triton X-100) and homogenized with a tight fitting Dounce 

homogenizer (10 strokes). The extract was adjusted to 40% sucrose by the 
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addition of 2 mL of 80% sucrose in MBS (lacking Triton X-100) and put on the 

bottom of an ultracentrifuge tube. A discontinuous sucrose gradient was prepared 

by overlaying 5 mL of 30% sucrose and 3 mL of 5% sucrose (both in MBS), 

respectively. The tubes were centrifuged at 39,000 rpm in a SW41 rotor for 16-18 h 

at 4
o
C and 12x 1.0 mL fractions were collected manually from the top of the 

gradient.  

 

Confocal microscopy. 1x10
5
 cells KB/KBr cells were grown on glass coverslips 

overnight. Cells were incubated in serum-free DMEM for 30 min, and subsequently 

incubated for 30 min with BODIPY-lactosylceramide (5 µM), Alexa-488-labeled 

transferrin (10 µg/mL) or FITC-dextran (2 µg/mL). The cells were subsequently 

washed twice with ice-cold PBS and fixed for 15 min in 4% formaldehyde/PBS. 

Thereafter, cells were washed with PBS and mounted in Vectashield (Vector 

Laboratories, Ltd., Peterborough, England). Microscopy was done using a TCS 

SP2 confocal microscope (Leica Microsystems B.V., Rijswijk, The Netherlands).  

 

Results 

Drug resistance induced by either edelfosine or perifosine causes cross-

resistance to other APLs. We used 2 tumor cell models, the mouse lymphoma 

S49 with its edelfosine-resistant variant S49
AR

 [33] and the human squamous cell 

carcinoma KB with its perifosine-resistant variant KBr to study APL uptake and 

consequent cellular sensitivity or resistance towards apoptosis induction by these 

drugs. The dose-response curves reveal that S49 cells are approximately 5-fold 

more sensitive to edelfosine than to perifosine. The data furthermore indicate that 

the edelfosine-resistant S49
AR

 are cross-resistant to perifosine. However, the 

difference in sensitivity towards perifosine compared to edelfosine between S49 

and S49
AR

 is only moderate, yet statistically significant (1.2-fold, P < 0.05) 

(compare Fig. 1A and B). Parental KB cells were equally sensitive to perifosine and 

edelfosine, with EC50’s of about 2 µM for both compounds. APL resistance was 

pronounced (> 40-fold) in KBr and comparable for both perifosine and edelfosine 

(Fig. 1C and D). 
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Figure 1. Differential sensitivity of S49 and KB cells and their APL-resistant cell variants S49AR and KBr, 
respectively, to perifosine or edelfosine. Dose-dependent induction of apoptosis, measured by nuclear 
fragmentation, in S49 (solid circles) and S49AR cells (open circles) 24 h after treatment with either 
perifosine (A) or edelfosine (B). Apoptosis in KB (solid squares) and KBr cells (open squares) was 
determined after exposure for 48 h to perifosine (C) or edelfosine (D). Values are means of 

quadruplicates ±±±± SD. 

Cells were treated with a panel of APLs to test whether resistance induced by a 

single APL analogue resulted in cross-resistance to other APL members. In 

addition to perifosine and edelfosine, cells were treated with the APL analogues 

miltefosine, erucylphosphocholine (ErPC) and Zentaris compound D-21805, in 

which the choline nitrogen atom has been replaced by arsenic. APL-induced 

apoptosis in S49 and KB cells was measured at different time points, 24 h and 48 h 

respectively, because of different apoptosis kinetics in these cells [11,29]. All tested 

compounds induced apoptosis in S49 at a concentration of 20 µM, edelfosine 

being most potent and miltefosine being only moderately effective (Fig. 2A). 

Interestingly, the edelfosine-resistant S49
AR

 cells showed cross-resistance to all 

other APLs, although the degree of resistance varied between the APLs tested 
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(Fig. 2A). KB cells were overall highly affected by APLs, applied at 5 µM (deduced 

from Fig. 1), whereas the perifosine-resistant KBr cells were fully cross-resistant to 

apoptosis induction by the other APLs (Fig. 2B). The different degree of cross-

resistance for other APLs observed for S49
AR

 and KBr suggests distinct underlying 

mechanisms determining their resistance. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Differential sensitivity of S49 and KB cells and their APL-resistant cell variants S49AR and KBr, 
respectively, to apoptosis induction by a panel of APL analogues. Apoptosis was determined by 
propidium iodide staining and FACS analysis of subdiploid nuclear fragments. (A) Apoptosis in S49 and 
S49AR cells, 24 h after treatment with 20 µM APL. (B) Apoptosis in KB and KBr cells, 48 h after treatment 

with 5 µM APL. Values are means of triplicates ±±±± SD. 

APL uptake depends on metabolic energy, especially in KB cells. We next 

assessed the relationship between APL sensitivity and cellular uptake in S49 and 

KB cells. We also compared the mechanism of uptake of 2 APLs, perifosine and 

edelfosine, in these 2 cell types. Evidence exists that after initial insertion into the 

outer leaflet of the plasma membrane, APLs accumulate in lipid rafts [22,35] (see 

below) and undergo raft-dependent endocytosis [22,36]. To assess the possible 

role of endocytosis, APL uptake at 37
o
C was compared with 4

o
C, a temperature at 

which endocytosis is blocked. In S49 cells, edelfosine uptake (at 30 min) was more 

pronounced, and more temperature-dependent than the uptake of perifosine (Fig. 

3A). Remarkably, KB carcinoma cells showed a much higher APL uptake (more 

than 10-fold for perifosine) than S49 cells (at the same concentration, 1 µM), and 

the KB cellular uptake of perifosine was twice as high as edelfosine. Furthermore, 

APL uptake by KB cells was almost completely (94%) blocked at 4
o
C (Fig. 3B). For 

perifosine, the temperature effect and hence the mode of cellular uptake was quite 
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contrasting for KB and S49 cells. Perifosine uptake by S49 was only moderately 

(35%) sensitive to low temperature, compared to edelfosine (64%). To confirm that 

KB cells display a more active, temperature and energy-dependent uptake of APL, 

we subjected the 2 cell types to ATP depletion prior to APL uptake. It appeared 

that the APL uptake by KB cells was much more compromised (55%) by such 

energy depletion than the S49 cells (15% for perifosine, 36% for edelfosine) (Fig. 

3C). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Differential uptake of perifosine and edelfosine by S49 and KB cells, depending on temperature 
and cellular ATP. Uptake of [14C]perifosine (0.03 µCi/mL, 1 µM) and [3H]edelfosine (0.15 µCi/mL, 1 µM) 

was determined in S49 cells (A) and KB cells (B) after 30 min incubation at 37ºC or 4ºC (indicated). (C) 
Effect of ATP depletion on the uptake of APL, 20 µM or 1 µM by S49 and KB cells, respectively. Values 

are means of triplicates ±±±± SD. *P < 0.05; **P < 0.001. 

APLs accumulate in lipid rafts in KB and S49 cells independent of 

sphingomyelin content. We have previously shown that edelfosine accumulates 

in lipid rafts of S49 cells [22]. We pre-incubated S49 and KB cells with radiolabeled 

edelfosine and perifosine, and isolated detergent-resistant lipid raft fractions from 

these cells. We found a similar APL distribution among the sucrose gradient 

fractions of both cell types. APLs accumulated in the lipid raft fractions 2 to 4, 

perifosine even more prominently (about 2-fold) than edelfosine (Fig. 4A and B). 

Furthermore, APL accumulation in lipid raft fractions was comparable between 

parental and resistant cells (data not shown). The bulk APLs distributing at the 

higher density (non-raft) fractions 7-11 is derived from all other membranous parts 

(plasma- and endoplasmic membranes) of the cell. We calculated that, based on 

protein content, perifosine and edelfosine in the combined raft fractions 2-4 were 

46- and 34-fold enriched, respectively, relative to the non-raft fractions 7-11, for 
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S49 cells. For KB cells, these enrichments were 43- and 16-fold, respectively. Our 

previous data [22,29] (see also Fig. 5) have revealed that in S49 cells, mainly the 

raft-dependent routes of APL internalization are relevant for apoptosis sensitivity in 

these cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Edelfosine and perifosine accumulate in lipid rafts of S49 and KB cells, independent of 
sphingomyelin (SM) synthesis. Cells were treated with perifosine or edelfosine for 30 min, and rafts were 
subsequently isolated. Fractions 2-4 represent detergent-resistant rafts. Representative distributions are 
shown after incubation with either 20 µM or 1 µM APL for S49 (A) and KB (B), respectively. SM synthesis 
is abrogated in the APL-resistant S49AR cells (C), but not in KBr cells (D). Cells were labeled for 8 h with 
[14C]choline. Lipids were extracted, separated by TLC, visualized and quantified by PhosphorImaging 
(right panels; n=3 ± SD; *P < 0.05). PC, phosphatidylcholine; SM, sphingomyelin.  

Reduced APL uptake in S49
AR

 has previously been shown to be the result of 

impaired raft-mediated endocytosis, due to downregulated SMS1 expression and 

consequently reduced SM synthesis [22,30]. Indeed, S49
AR

 cells were deficient in 

SM production, as shown by the lack of [
14

C]choline incorporation (Fig. 4C). In 

contrast to S49
AR

 cells, APL resistance in KBr cells was not accompanied by 

reduced SM synthesis. The TLC separation of radiolabeled lipid extracts from KB 

and KBr cells showed two comparable SM spots (Fig. 4D), typically corresponding 
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to a SM pool with relatively short acyl chains (16 C-atoms) and a SM pool with long 

acyl chains (predominantly C24:1) and containing a C16-dihydro- (sphinganine) 

species, as described previously [30]. We conclude that, unlike S49
AR

 cells, 

downregulation of SM synthesis is not the mechanism of APL resistance induction 

in KBr. 

 

APL internalization is raft-dependent in S49, but raft-independent in KB cells. 

To get more insight in the mode of uptake of APLs in the 2 cell types, we used 2 

inhibitors of endocytosis, methyl-β-cyclodextrin (MβCD) and chlorpromazine, that 

act in different ways: MβCD inhibits raft-mediated endocytosis by extracting 

cholesterol from the membrane, whereas chlorpromazine is commonly used as an 

inhibitor of clathrin-mediated endocytosis, as it inhibits clathrin-coated pit formation 

at the plasma membrane [37]. Cells were pretreated with either of these inhibitors, 

followed by treatment (for 1 h) with equi-effective concentrations of APLs (20 µM 

for S49, 1 µM for KB). The effect of these inhibitors on the relative APL uptake by 

the 2 cell types was very different (Fig. 5). MβCD reduced the uptake of 

respectively edelfosine and perifosine in S49 cells by as much as 64% and 77%, 

but only by 15% and 8% in KB cells. Chlorpromazine on the other hand, more 

effectively reduced the edelfosine and perifosine uptake by KB cells (56% and 

68%, respectively) than by S49 cells (34% and 24%, respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Cell type-dependent effect of pharmacological inhibitors of endocytosis on the uptake of APLs. 

Cells were pretreated for 30 min with methyl-ββββ-cyclodextrin (MββββCD; 2.5 mg/mL) (blocks raft-dependent 
endocytosis) or chlorpromazine (20 µM) (blocks raft-independent endocytosis), and subsequently 
incubated for 1 h with 0.03 µCi [14C]perifosine or 0.15 µCi [3H]edelfosine at 20 µM for S49/S49AR cells (A) 
and at 1 µM for KB/KBr cells (B). Uptake values are expressed in nmol APL per µg cellular protein, as 

means of triplicates ±±±± SD. *P < 0.05; **P < 0.001. 
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When we compare cellular uptake of edelfosine with perifosine, we find relatively 

little difference in perifosine uptake between S49 and S49
AR

 cells, in agreement 

with Fig. 1A. Although absolute edelfosine uptake by KB cells was lower than 

perifosine uptake, the effects of MβCD and chlorpromazine on cellular uptake were 

similar for both APLs (Fig. 5B). Neither of the 2 endocytosis inhibitors reduced the 

APL uptake to the level of the APL-resistant KBr clone, which displayed a 9-fold 

reduced perifosine uptake. 

Although the chlorpromazine effect on APL uptake would suggest the involvement 

of clathrin-mediated endocytosis [37], we did not find a defect in the clathrin-

dependent internalization of fluorescently labeled transferrin by its cognate 

receptor in KBr cells (Fig. 6B). Moreover, we found that another established way to 

block clathrin-mediated endocytosis, by K
+
 depletion of cells, failed to reduce the 

uptake of both edelfosine and perifosine by KB cells, whereas as a positive control, 

the uptake of [
125

I]EGF via the epidermal growth factor receptor (EGFR) was fully 

blocked (Fig. 6A). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. No defects in canonical endocytosis routes can explain abrogated APL uptake in KBr cells. (A) 
APL uptake in KB cells is not affected by K+ depletion (which blocks clathrin-mediated endocytosis). 
Cells were left untreated or were K+ depleted, as described in Materials and Methods. Uptake of 
[14C]perifosine (0.03 µCi, 1 µM) (closed bars), or [3H]edelfosine (0.15 µCi, 1 µM) (open bars), or 1 ng 
[125I]EGF (684 mCi/mmol) (positive control; hatched bars) was measured at 30 min. Values represent 
percentage uptake relative to controls (mean of triplicates ± SD of a representative experiment. **P < 
0.001). (B) Confocal microscopy of fluorescently labeled markers of endocytosis. KB and KBr cells, 
grown on cover slips, were incubated with BODIPY-lactosylceramide (5 µM) (marker for raft-mediated 
endocytosis), Alexa-488-labeled transferrin (10 µg/mL) (marker for clathrin-mediated endocytosis) or 
FITC-Dextran (2 µg/mL) (marker for fluid-phase endocytosis) for 30 min at 37ºC. Uptake of these 
fluorescent markers by KB cells (upper panels) and KBr cells (lower panels) was visualized by confocal 
microscopy. The bar in the figure represents 20 µm. 
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Therefore, we do not believe that the clathrin-dependent pathway is a major route 

of APL endocytosis in KB cells. We also found no differences between KB and KBr 

cells in the raft-mediated endocytosis of a fluorescent raft marker, BODIPY-

lactosylceramide [38] and the uptake of fluorescent dextran via fluid-phase 

endocytosis (Fig. 6B). In conclusion, we found no clear defect in 3 different routes 

of endocytosis that would explain the resistance of KBr cells to APLs. 

To address the mechanism of internalization of APL-like compounds further, we 

studied the uptake of exogenous lysoPC. From our previous work in HeLa cells 

[36], we know that exogenous lysoPC does not accumulate in lipid rafts and is 

internalized independently from these microdomains, by transbilayer flipping, at 

least to a significant extent. Immediately after membrane traversal, lysoPC is fully 

acylated to PC [36]. We therefore incubated KB and KBr cells with [
14

C]lysoPC and 

followed in time the production of [
14

C]PC. From a comparison of the absolute 

(arbitrary) units of [
14

C]PC synthesized in time (Fig. 7A) with the [
14

C]lysoPC left in 

the cells (Fig. 7B), it follows that indeed, most of the LPC is rapidly (within a few 

min) converted into PC. This is even more clear when expressed in percentages 

conversion of LysoPC into PC (Fig. 7C). Furthermore, similar to edelfosine and 

perifosine, the LysoPC internalization and subsequent conversion to PC was much 

decreased in the KBr cells (Fig. 7A). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Internalization of exogenous LysoPC and subsequent acylation to PC in KB and KBr cells. KB 
cells (squares) and KBr cells (circles) were incubated for indicated time periods with 0.025 µCi 
[14C]LysoPC, in the absence (closed symbols) or presence of chlorpromazine (20 µM; 30 min 
preincubation) (KB+, KBr+; open symbols). Cells were then washed 3 times with PBS. Lipids were 
extracted and separated by TLC. [14C]PC (panel A, solid lines) and residual [14C]LysoPC (panel B, broken 
lines) were quantified by Phosphor Imaging. Values represent arbitrary units (A.U.) of a representative 
experiment. (C) Percentage of conversion of [14C]LysoPC (broken lines) into [14C]PC (solid lines) as a 
function of time.  



Cell type-dependent uptake of alkylphospholipids 

 73 

The residual LysoPC in KBr cells was higher than in KB cells (Fig. 7B), indicative of 

impaired internalization in the KBr cells. As a control, LysoPC to PC conversion in 

KB and KBr cell lysates was not different (data not shown), indicating that the 

intracellular acyl-transferase activities were similar in these cells, and that the 

reduced LysoPC to PC conversion in intact KBr cells was indeed the consequence 

of a blockade in transbilayer movement of the lysoPC. Similar to APL uptake, this 

lysoPC internalization was sensitive to chlorpromazine treatment, but the relative 

reduction of PC formation by chlorpromazine was not as dramatic as in the KBr 

cells (Fig. 7A).  

Collectively, these results suggest that, contrary to S49 cells, APL uptake in KB 

cells is mainly raft-independent, but dependent on a yet undefined energy-

dependent (active) uptake mechanism that can be inhibited by chlorpromazine. We 

find no clear evidence for a defective endocytosis in APL-resistant KBr cells. Since 

these cells are also resistant to uptake of natural LysoPC, we rather think of a 

defect in transmembrane flipping, possibly at the level of an unknown transporter. 

 

Discussion 

In this study, we show that the cellular uptake and consequent toxicity of anti-

cancer APLs in the KB squamous cell carcinoma differs significantly from S49 

lymphoma cells. For this latter cell type, we previously described in detail how the 

APL edelfosine is internalized by clathrin-independent, raft-mediated endocytosis 

[22,30]. The present study suggests that, in S49 cells, the other APLs are also 

taken up by this route. We showed for example that the uptake of edelfosine and 

perifosine in these cells was inhibited by the cholesterol-chelating agent MβCD, 

which disrupts lipid rafts. KB cells on the other hand, were much more sensitive to 

APLs than S49 cells due to a higher cellular uptake. Contrary to S49 cells, this high 

APL uptake in KB cells was mainly raft-independent but, instead, more dependent 

on ambient temperature and metabolic energy. In addition, APL uptake in KB cells 

was inhibited by chlorpromazine, which is usually suggestive of a clathrin-

dependent uptake [37] but, relevant to our present study, may have relatively non-

specific phospholipid ‘translocase’ effects as well [39,40]. However, K
+
 depletion, 

another way to block clathrin-dependent endocytosis [37], had little effect on APL 

uptake in KB cells, yet prevented internalization of [
125

I]EGF by its cognate receptor 

via the clathrin pathway. Moreover, APL-resistant KBr cells show dramatically 

impaired uptake of (radiolabeled) edelfosine, perifosine and even natural lysoPC, 
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while their uptake of transferrin, presumably via clathrin-dependent receptor 

internalization, was unaffected. So, there is much evidence against clathrin-

dependent endocytosis of APL as a major route to induce toxicity in KB cells. In 

this regard, there is a remarkable resemblance of the KB/KBr system with the 

macrophage-like RAW cells and their APL-resistant counterparts, described 

previously [18].  

The crucial role of lipid rafts in the uptake of edelfosine by S49 lymphoma cells [22] 

was recently further explained. We found that the edelfosine-resistant cell variant 

S49
AR

 was deficient in the raft constituent sphingomyelin (SM) due to 

downregulated expression of SMS1. This inhibition of SM synthesis in the trans-

Golgi network abrogated lipid raft vesicular trafficking/recycling and raft-dependent 

endocytosis of edelfosine and apoptosis induction in these cells [30]. We now 

demonstrate that these SM-deficient S49
AR

 cells are not only resistant to edelfosine 

but also to the other APLs. Interestingly, we found a similar APL cross-resistance in 

the KBr cells. While parental KB carcinoma cells take up high amounts of APLs, 

such as miltefosine [31] and perifosine [19] (also shown in this study), the KBr 

variant cells, originally made resistant to perifosine, were even more cross-resistant 

to APLs than S49
AR

 cells. Importantly however, this resistance is based on a 

different mechanism: contrary to S49
AR

 cells, the KBr cells displayed normal SM 

synthesis, suggesting that APL resistance was independent on lipid rafts. This 

notion is supported by the different effects in these cells of MβCD, which 

sequesters cholesterol and inhibits raft-dependent endocytosis: we found that this 

lipid raft-disrupting agent dramatically reduced APL uptake in S49 cells, but not in 

KB cells. 

Targeting of lipid rafts was recently suggested to underlie the selective induction of 

apoptosis in multiple myeloma cells by both edelfosine and perifosine [41]. 

Following this concept, Mollinedo and coworkers reported that edelfosine was 

localized in rafts in leukemic cells, in agreement with our data, but not in solid 

tumor cells [35]. We found some APL accumulation in isolated lipid rafts of the solid 

tumor cell KB, but without an apparent consequence. Thus it seems that APL 

incorporation in lipid rafts and the role of these rafts in APL-induced cytotoxicity is 

very much dependent on the cell type. 

The group of Berkovic and Fleer has made KB cells resistant to miltefosine 

(hexadecylphosphocholine) (yielding a distinct KBr cell variant) by prolonged 

culturing in the presence of this drug [21], in a similar way as the S49
AR

 cells were 

made resistant to edelfosine. Their KBr cells contained even more SM than the 
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parental KB cells, while the uptake of miltefosine was reduced to 20-40%. These 

cells were cross-resistant to edelfosine and ilmofosine (another APL) and showed 

reduced uptake of inositol, for reasons that remain unclear. The KBr cells used in 

our studies were obtained via a process that involved mutagenesis. This method 

possibly induced genetic defects related to energy-mediated uptake processes, 

since active, energy-dependent APL uptake was completely blocked in these KBr 

cells, whereas SM synthesis and uptake of the raft marker lactosylceramide was 

not impaired. Taken together, our results and those of the German group [21,31] 

strongly argue against a role for SM synthesis and lipid rafts, but suggest a defect 

in energy-dependent active uptake to explain the APL resistance in KBr carcinoma 

cells. 

While no apparent defects in SM synthesis, lipid raft- or clathrin-dependent, or 

fluid-phase endocytosis are detectable in KBr cells to explain their resistance to 

APLs, what other energy-dependent uptake mechanism could be involved in these 

cells? We found that APL uptake in KB cells was inhibited by chlorpromazine and 

by cytochalasin B (data not shown), which disrupts actin filaments. Both of these 

drugs can inhibit endocytosis, and although the mentioned canonical routes of 

endocytosis seem not to be affected in the KBr cells, it remains possible that APLs 

are taken up by an as yet poorly defined endocytic pathway in KB cells. 

Alternatively, the active APL uptake by KB cells could be mediated by an unknown 

ATP-driven transporter (see below) that is somehow compromised by 

chlorpromazine and cytochalasin B-induced cytoskeleton disruption.  

In 2 non-mammalian cell systems, there is evidence for the involvement of a P-type 

transmembrane ATPase that actively translocates APL molecules like miltefosine 

and perifosine over the plasma membrane. First, in the parasite Leishmaniana, 

resistance to miltefosine has been attributed to inactivation of the transporter 

protein LdMT and its beta-subunit LdRos3 [42,43]. Secondly, in yeast there are 

similar P-type ATPases, Dnf1p and Dnf2p that, in association with their non-

catalytic beta-subunit Lem3p, act as “flippases” for inward transbilayer movement 

of aminophospholipids, lysophospholipids and APLs [44-46]. It is possible that 

mammalian counterparts of these ATPases exist that can act as a flippase for APL 

uptake. A recent study in Caco-2 intestinal epithelial cells indeed suggests the 

existence of a yet undefined carrier-mediated uptake of miltefosine [47]. Whether 

such a flippase exists in KB cells and is inactivated in KBr cells, remains unknown. 

In conclusion, we report a critical role of raft-mediated endocytosis in the uptake of 

APLs by S49 lymphoma cells, whereas uptake by KB carcinoma cells occurs 
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mainly by a raft-independent, energy-dependent route that is sensitive to 

chlorpromazine and does not involve the canonical endocytosis pathways. 

Individual APLs are taken up to different extents, which correlates with cell 

sensitivity towards the drug. The precise mode of APL internalization by KB cells 

and the mechanism of resistance in KBr cells need to be further defined with the 

help of additional specific markers for endocytic activity or the possible 

identification of an APL transmembrane transporter. 
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Abstract 

Synthetic alkylphospholipids (APLs), such as edelfosine, miltefosine and perifosine 

constitute a new class of anti-neoplastic compounds with various clinical 

applications. Here we have evaluated the anti-angiogenic properties of APLs. The 

sensitivity of 3 types of vascular endothelial cells (EC) (bovine aortic EC, human 

umbilical vein EC, human microvascular EC) to APL-induced apoptosis was 

dependent on the proliferative status of these cells and correlated with the cellular 

drug incorporation. Whereas confluent, non-dividing endothelial cells failed to 

undergo apoptosis, proliferating endothelial cells showed 3-4 fold higher uptake 

and significant levels of apoptosis after APL treatment. These findings raised the 

question whether APLs interfere with new blood vessel formation. To test the anti-

angiogenic properties in vitro, we studied the effect of APLs using 2 different 

experimental models. In the first one we tested the ability of human microvascular 

EC to invade a 3-dimensional human fibrin matrix and form capillary-like tubular 

networks. In the second model bovine aortic EC were grown in a collagen gel 

sandwich to allow tube formation. We found that all 3 APLs interfered with 

endothelial tube formation in a dose-dependent manner with a more than 50% 

reduction at 25 µM. Interference with the angiogenic process represents a novel 

mode of action of APLs and may significantly contribute to the anti-tumor effect of 

these compounds. 
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Introduction 

Synthetic alkylphospholipids (APLs) represent a group of membrane-permeable 

compounds with anti-neoplastic properties and a broad range of clinical 

applications. For example, edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-

phosphocholine) has been used as a purging agent in autologous bone marrow 

transplantation [1]. Topical application of miltefosine (hexadecylphosphocholine) 

was shown to be an effective therapy for skin metastases of breast cancer [2] and 

cutaneous lymphomas [3]. Oral administration of miltefosine is successfully used in 

the treatment of visceral leishmaniasis, a systemic protozoal infection [4]. The most 

recent derivative, perifosine (octadecyl-(1,1-dimethyl-piperidinio-4-yl)-phosphate), 

has been evaluated as an oral anti-cancer drug in clinical phase I [5,6] and II [7,8] 

studies, and as a potential radiosensitizer in a clinical phase I study we recently 

concluded [9]. 

APLs differ from most currently used cytotoxic drugs with respect to their cellular 

targets. APLs primarily act on cell membranes where they accumulate in 

sphingolipid- and cholesterol-enriched microdomains, known as lipid rafts [10]. 

Following raft-dependent internalization, these compounds interfere with the rapid 

and continuous phospholipid turnover that is essential for cell survival [11,12]. This 

interference occurs at different levels: edelfosine and miltefosine inhibit 

phosphoinositide-specific phospholipase C and consequent formation of the 

second messengers diacylglycerol and inositol 1,4,5-trisphosphate [13,14]. In 

addition, both APLs inhibit phosphatidylcholine (PC) turnover at the level of PC 

degradation as well as PC resynthesis [11,15,16]. The latter inhibition occurs at the 

level of CTP:phosphocholine cytidylyltransferase [17,18], the rate-determining 

enzymatic step in PC biosynthesis. Signaling events downstream of these 

disturbing effects of APLs on lipid metabolism and signaling, include inhibition of 

the mitogen-activated protein kinase/extracellular signal-regulated kinase 

(MAPK/ERK) pathway [19,20], activation of pro-apoptotic stress-activated protein 

kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling [21,22]
 
and, as we and 

others reported more recently, inhibition of the Akt/protein kinase B (PKB) survival 

pathway [23,24]. These effects most likely contribute to a change in the balance 

between pro- and anti-apoptotic signaling. Indeed, APLs are potent inducers of 

apoptosis in a variety of tumor cell lines [25-27]. In addition, APLs enhance 

radiation- and chemotherapy-induced cytotoxicity, both in vitro [22,28-32] and in 

vivo [32].
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Angiogenesis is the outgrowth of new blood vessels from pre-existing ones and 

occurs during development, but normally stops at maturity. In the healthy adult it is 

only found in the endometrium and ovaries during the menstrual cycle, and in 

conditions associated with tissue repair and inflammation. Angiogenesis is 

increased in a number of diseases including rheumatoid arthritis, diabetic 

retinopathy and cancer. This increase is accompanied by changes in the behavior 

of endothelial cells, which are reflected in a large increase in their proliferation rate, 

increased migration and invasion into the extracellular matrix, and the formation of 

new tubular structures. The increased vascular bed nourishes the malignant tissue 

and accelerates the growth of many tumors. In the last 2 decades not only have the 

mechanisms and factors that underlie the angiogenic process become better 

known, but insight has also grown into the possibilities that inhibition of the 

angiogenic process may contribute to the treatment of solid tumors [33-38]. In this 

context, the recombinant humanized anti-VEGF monoclonal antibody bevacizumab 

represents an apposite example of an anti-angiogenic approach that increases the 

effectiveness of chemotherapy and radiotherapy [33]. 

In the present studies we used 3 well-characterized and clinically relevant APLs 

(edelfosine, miltefosine and perifosine) to evaluate their effect on endothelial 

integrity. We found that each compound induced apoptosis in endothelial cells from 

both human and bovine origin depending on the proliferative status of the cells. 

Confluent, quiescent endothelial cells were relatively resistant, whereas 

proliferating endothelial cells were highly sensitive to APL-induced apoptosis. In 

addition, we investigated whether APLs were capable to interfere with 

angiogenesis in vitro. For these studies 2 experimental models were selected. In 

the first, human microvascular endothelial cells were cultured on top of a 3-

dimensional fibrin matrix and allowed to migrate and form an invasive capillary-like 

tubular network [39,40]. In the second model, bovine aortic endothelial cells were 

grown in a collagen gel sandwich to re-organize and form sustained tubular 

structures [41]. In both models, APLs inhibited the formation of endothelial tube-like 

structures. We therefore conclude that besides the preferential apoptotic effect on 

malignant cells, interference with angiogenesis may contribute to the anti-tumor 

effect of these compounds. 
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Materials and Methods 

Reagents. Miltefosine was purchased from Sigma Chemical Co. (Zwijndrecht, The 

Netherlands). Edelfosine was from Biomol (Plymouth Meeting, PA) and PAF-18 

from ICN Biomedical Inc. (Aurora, OH). [
3
H]Edelfosine (specific activity 58 

mCi/mmol) was synthesized by Moravek Biochemicals (Brea, CA). [
14

C]Miltefosine 

(specific activity 42 mCi/mmol), perifosine and [
14

C]perifosine (specific activity 31 

mCi/mmol) were kindly provided by Zentaris GmbH (Frankfurt, Germany). These 

compounds were diluted in serum-free culture medium. Thrombin was purchased 

from Leo Pharmaceutic Products (Weesp, The Netherlands) and human fibrinogen 

from Chromogenix AB (Mölndal, Sweden). Factor XIII was generously provided by 

dr. H. Metzner and dr. G. Seemann (Aventis Behring, Marburg, Germany), bFGF 

was obtained from PeproTech Inc. (London, UK), human recombinant TNFα from 

Biogent (Gent, Belgium) and human recombinant VEGF-A165 from ReliaTech 

(Braunschweig, Germany). A crude preparation of endothelial cell growth factor 

(ECGF) was prepared from bovine hypothalamus as described [42]. Collagen was 

purchased from Vitrogen 100 (Cohesion Palo Alto, CA). 

 

Cell culture. The human squamous carcinoma cell lines A431 and HeLa and 

human fibroblasts were cultured in Dulbecco’s modified Eagle’s medium (DMEM, 

GIBCO-BRL, Paisley, Scotland) supplemented with 10% heat-inactivated fetal calf 

serum (FCS), penicillin (50 units/mL), and streptomycin (50 µg/mL). Human 

monoblastic leukemia U937 cells and human T lymphoid leukemic Jurkat cells 

(J16; kindly provided by prof. J. Borst, The Netherlands Cancer Institute, 

Amsterdam, The Netherlands) were grown at a density between 0.1x10
6

 and 1x10
6

 

cells/mL in Iscove's modified Dulbecco's medium (GIBCO-BRL, Paisley, Scotland), 

supplemented with 10% heat-inactivated FCS, penicillin (50 units/mL) and 

streptomycin (50 µg/mL). Prior to APL treatment, cells were resuspended in serum-

free medium (RPMI-1640 or DMEM) and kept overnight. Endothelial cells from 

human umbilical veins (HUVEC; kindly provided by dr. J.A. van Mourik, Sanquin, 

Amsterdam, The Netherlands) were cultured in plastic 6-well plates, precoated with 

human fibronectin (2 mg/mL). The medium consisted of an equal mixture of RPMI-

1640 and M199 (GIBCO-BRL), 20% (v/v) heat-inactivated pooled human serum, 2 

mM glutamine (Merck, Darmstadt, Germany), penicillin (100 units/mL), 

streptomycin (100 units/mL) and fungizone (2.5 µg/mL) (GIBCO-BRL). When 

human serum had to be omitted from the medium, 0.5% human serum albumin 



Chapter 2.3 

 86 

(Sanquin, Amsterdam, The Netherlands) and human transferrin (20 µg/mL, Sigma) 

were added. Confluent monolayers were harvested by trypsinization, resuspended 

in medium and subcultured. Subcultured cells from passages 1 and 2 were used. 

The medium was replaced every 3 days. Endothelial cells from bovine aortic origin 

(BAEC; kindly provided by dr. Haimovitz-Friedman, Memorial Sloan-Kettering 

Cancer Center, New York, USA) were grown to confluence in DMEM low glucose 

(1 g/L) (GIBCO-BRL), supplemented with 10% bovine calf serum (BCS), penicillin 

(50 units/mL) and streptomycin (50 µg/mL). For serum-free conditions medium 

containing 0.5% BCS was used. Confluent monolayers were either used for 

experiments or further subcultured at a plating density of 0.75x10
5
 cells/cm

2
. 

Confluence (cell density 6x10
5
/cm

2
 and > 90% of cells in G0-G1) was reached at 4-

5 days after plating. Human foreskin microvascular endothelial cells (HMVEC) were 

isolated, cultured and characterized as previously described [43]. HMVEC were 

cultured on gelatin-coated dishes in M199 supplemented with 20 mmol/L HEPES 

(pH 7.3), 10% heat-inactivated pooled human serum, 10% heat-inactivated 

newborn bovine calf serum (NBCS), 150 µg/mL crude ECGF, 2 mM glutamine, 5 

units/mL heparin, 100 units/mL penicillin and 100 units/mL streptomycin. Cells 

were used after they had reached confluence and had been cultured without 

growth factor for at least 24 h. In some experiments proliferating endothelial cells 

were used. For these studies, cultures were harvested at 1-2 days after plating, i.e. 

during the exponential phase of cell growth (cell density 1.5x10
5
/cm

2
). 

 

Apoptosis assay. Apoptosis was determined by either staining with the DNA-

binding fluorochome bisbenzimide (Hoechst 33258, Sigma) [44] to detect 

morphological nuclear changes or by propidium iodide staining and fluorescence-

activated cell sorting (FACS) analysis [45] to determine the percentage of 

subdiploid apoptotic nuclei. For the bisbenzimide staining, APL-treated cells were 

harvested at the indicated time points, washed once with phosphate-buffered 

saline (PBS) and resuspended in 3.7% (v/v) paraformaldehyde/PBS solution. After 

10 min at room temperature, the fixative was removed and the cells were 

resuspended in 15 µL of PBS containing 16 µg/mL bisbenzimide. Following a 15-

min incubation at room temperature, a 10 µL aliquot was placed on a glass slide, 

and 400 cells/slide were scored in duplicate for the incidence of apoptotic nuclear 

changes under an Olympus AH2-RFL fluorescence microscope using a BH2-

DMU2UV exciter filter.  

For the propidium iodide staining, cells were seeded at 2x10
5
 cells/mL, 100 µL/well 
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in round-bottomed, 96-well microtiter plates in serum-free RPMI-medium. Cells 

were lysed overnight in 200 µL Nicoletti Buffer (0.1% sodium citrate, 0.1% Triton X-

100, and 50 µg/mL propidium iodide) and the percentage of apoptotic nuclei, 

recognized by their subdiploid DNA content, was determined on a FACScan 

(Beckton Dickinson, San Jose, CA) using Lysis II software. 

 

Incorporation of APLs. Cultures of confluent or proliferating BAEC were 

incubated in low serum (0.5%) culture medium containing 15 µM APL, traced with 

0.05 µCi/mL radiolabeled compound. At various time intervals up to 2 h the 

medium was removed and cells were washed 3 times with ice-cold PBS and 

subsequently lysed in 0.1 N NaOH. The incorporated radioactivity was quantified 

by liquid scintillation counting and normalized for total cell number. 

 

In vitro angiogenesis models. Two in vitro angiogenesis models were used to 

study the formation of tubular structures as previously described [39-41]. For the 

first model, human fibrin matrices were prepared by addition of 0.1 units/mL 

thrombin to a mixture of 2.5 units/mL factor XIII (final concentrations), 2 mg/mL 

fibrinogen, 2 mg/mL sodium citrate, 0.8 mg/mL NaCl, and 3 µg/mL plasminogen in 

M199 without indicator, and 300 µL aliquots of this mixture were added to 48-well 

plates. After clotting at room temperature, the fibrin matrices were soaked with 0.5 

mL M199 supplemented with 10% heat-inactivated pooled human serum and 10% 

heat-inactivated NBCS for 2 h at 37
o
C to inactivate the thrombin. Highly confluent 

HMVEC (0.7x10
5
 cells/cm

2
) were seeded in a 1.25:1 split ratio on the fibrin 

matrices and cultured for 24 h in M199 without indicator supplemented with 10% 

heat-inactivated pooled human serum, 10% heat-inactivated NBCS and 

penicillin/streptomycin. Confluent monolayers of HMVEC were then stimulated with 

the indicated mediators (2.5 ng/mL TNFα and 10 ng/mL bFGF or 25 ng/mL VEGF) 

for 8 to 10 days in the absence or presence of APL. Every second day the culture 

medium was removed and fresh medium containing appropriate mediators and test 

compounds was added. An important feature of this model is that it does not allow 

endothelial cells to proliferate. Instead, cells migrate and invade the underlying 

matrix. The formation of capillary-like tubular structures of endothelial cells in the 3-

dimensional fibrin matrix was analyzed by phase contrast and dark-field 

microscopy. The total length of capillary-like tubular structures of 6 randomly 

chosen microscopic fields (7.3 mm
2
/field) was measured using a Nikon FXA 

microscope equipped with a monochrome CCD camera (MX5) connected to a 
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computer with Optimas image analysis software (Tokyo, Japan), and expressed as 

mm/cm
2
. For the second model, 0.25 mL of collagen solution (5 mL collagen, 1 mL 

10x DMEM, 1 mL 0.1 M NaOH, 1 mL 0.1 M Na2CO3, 2 mL 1x DMEM) was placed in 

a 24-well plate. After polymerization, 3.5x10
5
 cells/0.5 mL DMEM medium 

supplemented with 0.5% BCS were evenly distributed in the wells. After the cells 

were attached, the medium was aspirated and the top layer of collagen was added. 

After polymerization medium with APL was added and incubated for 24–48 h at 

37
o
C. After incubation the cells were fixed with 3% paraformaldehyde. In this 

model, endothelial cells re-organize, mimicking the resolution phase of 

angiogenesis; the read-out used is the total additive sprout length [41]. 

 

Statistical analyses. Statistical analyses of the data were performed by standard 

procedures, using Student’s t-test. Differences were considered significant when P 

values were smaller than 0.05. 

 

Results 

APL-induced apoptosis in malignant versus normal cells. Three clinically 

relevant APLs (edelfosine, miltefosine and perifosine) were assayed for their 

capacity to induce apoptosis in a panel of cancer cell lines and a variety of normal 

cell types. As illustrated in Fig. 1, edelfosine induced apoptosis in all human tumor 

cell lines tested, both from solid (A431 and HeLa) and leukemic origin (U937 and 

Jurkat T). In contrast, 3 types of confluent normal vascular endothelial cells (BAEC, 

HUVEC and HMVEC) failed to undergo apoptosis after APL treatment. This 

resistance was observed for all 3 compounds even after doses as high as 30 µM 

(not shown). Table 1 shows the ED50 values in the different tumor cell lines for the 

3 APLs used. The most potent APL was edelfosine, which is considered as the 

prototype of this group of compounds. 
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Figure 1. APL-induced apoptosis in tumor 
cells (A431, HeLa, U937, Jurkat T) and normal  
confluent endothelial cells (BAEC, HUVEC, 
HMVEC). Apoptosis was determined at 16 h 
after treatment with 10 µM edelfosine by 
FACScan analysis after propidium iodide 

staining. Data are expressed as mean ±±±± SD 
from 3 independent experiments. 

 

 

 

 

 

 

APL-induced apoptosis in confluent versus proliferating endothelial cells. We 

observed a striking difference in the propensity to undergo APL-induced apoptosis 

between confluent and proliferating endothelial cells (Fig. 2). As discussed above 

and consistent with our previous observations [22], APLs did not induce significant 

levels of apoptosis in confluent cultures of BAEC, HUVEC and HMVEC. Up to 

concentrations of 25 µM for 48 h, APLs exerted no significant effect on endothelial 

cell viability in confluent culture (not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. APLs induce apoptosis in proliferating but not in confluent endothelial cells. (A) Dose-effect 
relationship of edelfosine-induced apoptosis at 24 h in proliferating and confluent BAEC. (B) Edelfosine 
(10 µM)-induced apoptosis in proliferating and confluent BAEC, HUVEC and HMVEC at 24 h. Apoptosis 

was determined by FACS analysis after propidium iodide staining. Data are expressed as mean ±±±± range 
from 2 independent experiments. 
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However, as shown in Fig. 2A, exponentially proliferating endothelial cells showed 

a dose-dependent increase in apoptosis after edelfosine treatment. Similar 

differences in apoptosis sensitivity between confluent and proliferating cells were 

observed in HUVEC and HMVEC (Fig. 2B) and after treatment with the 2 other 

APLs (not shown).  

 

Incorporation of APLs in confluent versus proliferating endothelial cells. 

Because it has been shown that the cytotoxic effect of APLs correlates with its 

cellular uptake [25,46,47], we measured the incorporation of [
3
H]edelfosine, 

[
14

C]miltefosine and [
14

C]perifosine in cultures of confluent and proliferating 

endothelial cells. We found that proliferating BAEC incorporated much larger 

amounts of APLs than confluent BAEC, namely by a factor of approximately 3-4 at 

2 h (Fig. 3A). The kinetics of APL uptake was also different with a more rapid and 

prolonged uptake in proliferating BAEC. Fig. 3B shows the uptake of edelfosine 

over a period of 2 h. Similar kinetics were observed for miltefosine and perifosine 

(not shown). In confluent BAEC the uptake reached its maximum at about 30 min 

after addition. It should be noted that the incorporation of APL in proliferating BAEC 

preceded the appearance of apoptotic morphology that was detected after 4-6 h 

(not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Incorporation of radiolabeled APL in proliferating (closed circles) and confluent (open circles) 
BAEC. At the indicated time points after addition of 0.05 µCi/mL [3H]edelfosine, [14C]miltefosine or 
[14C]perifosine (final APL concentration 15 µM), the incorporation of the compound was measured by 
liquid scintillation and normalized for total cell number. (A) APL uptake at 2 h. Data are expressed as 

mean ±±±± range from 2 independent experiments. (B) Time course of [3H]edelfosine uptake. Data shown 
are representative of 3 experiments performed. 
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Effect of APLs on endothelial tube formation in vitro. Because endothelial 

proliferation and apoptosis are both major determining factors in angiogenesis, we 

reasoned that APLs might interfere with new vessel formation. To test this 

hypothesis, we employed 2 in vitro angiogenesis models. It is important to note that 

both models do not allow endothelial proliferation, thereby excluding an anti-

proliferative effect of APLs as the main cause of their potential anti-angiogenic 

properties. In the first model, described by Koolwijk et al. [39,40], HMVEC are 

seeded on a 3-dimensional human fibrin matrix to form a confluent monolayer. In 

the continuous presence of the combination of an angiogenic factor (VEGF or 

bFGF) and TNFα, outgrowth of capillary-like tubular structures in the fibrin matrix is 

observed over a period of 8-10 days. The total length of these tubular networks is 

quantified by computer-assisted image analysis [39]. Fig. 4 shows a set of phase 

contrast microscopy images of a representative experiment. In the unstimulated 

cultures, the confluent monolayer of HMVEC remained on top of the 3-dimensional 

fibrin matrix. Invading endothelial cells and tubular structures could not be 

observed (Fig. 4A). 

 

 

 

 

 

 

 

 

 

 

Figure 4. Capillary-like tube formation is inhibited by APLs. HMVEC cultured on top of a 3-dimensional 

fibrin matrix were not stimulated (A), or stimulated with 10 ng/mL bFGF and 2.5 ng/mL TNFαααα (B), or with 

bFGF and TNFαααα in the presence of 100 µM edelfosine (C), or with bFGF and TNFαααα in the presence of 100 
µM PAF-18 (D). After 8 days of culture representative phase contrast photographs were taken (bar: 300 
µm). Similar results were obtained in 3 independent experiments. 

The addition of bFGF or TNFα alone was not sufficient to induce tube formation 

(not shown). However, the simultaneous addition of bFGF and TNFα resulted in 

the outgrowth of tubular structures invading the fibrin matrix and forming a capillary 

network (Fig. 4B). The number of endothelial cells on top of the fibrin matrix was 

not significantly changed compared with unstimulated cultures (95% of control; not 
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shown). In the presence of APL, a significant inhibition in the formation of tubular 

structures was observed. Fig. 4C shows the effect of 100 µM edelfosine. The 

morphology of the endothelial monolayer covering the fibrin matrix was slightly 

altered, but no significant detachment of cells was observed. The specificity of 

APL-induced interference with tube formation was demonstrated by the use of 

platelet-activating factor-18 (PAF-18), a structurally related, but ineffective 

counterpart of edelfosine [25]. The addition of PAF-18 up to 100 µM did not 

significantly affect the outgrowth of tubular structures (Fig. 4D and 5). 

The inhibitory effect of edelfosine on bFGF/TNFα-induced tube formation was 

dose-dependent, as shown in Fig. 5. At 25 µM, this inhibition was 54% of controls 

and reached statistical significance. At 100 µM, the inhibition was complete. We 

note that the final concentration of APL in the angiogenesis studies was kept 

higher than in the apoptosis assays, because the higher serum concentration in the 

former type of experiments sequesters APLs and thus diminishes the effective 

concentration by a factor of 2-3. To assure that the cell membrane integrity was not 

impaired under these conditions, we performed a separate set of standard culture 

experiment, in which endothelial lactate dehydrogenase (LDH) release and trypan 

blue exclusion were measured after APL treatment. No significant changes in both 

parameters were found in APL-treated endothelial cell cultures as compared with 

controls, confirming the viability of the cells (data not shown). 

 

Figure 5. Dose-dependent inhibition of capillary-like 
tube formation by APLs. HMVEC seeded on top of a 3-
dimensional fibrin matrix were not stimulated (control) 

or stimulated with 10 ng/mL bFGF and 2.5 ng/mL TNFαααα 
in the presence of increasing amounts of edelfosine, or 
100 µM PAF-18. After 8 days of culturing total tube 

length/cm2 ±±±± SD of triplicate wells was measured (*P < 
0.005 compared with 0 µM edelfosine). Similar results 
were obtained in 3 independent experiments. 
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Next, we introduced another angiogenic factor in this system and investigated the 

effect of other APLs on tube formation. Like we found for bFGF (Fig. 6A), VEGF 

added in combination with TNFα to the endothelial monolayers induced the 

formation of tubular structures (Fig. 6D). Furthermore, like edelfosine, miltefosine 

(Fig. 6B,E) and perifosine (Fig. 6C,F) interfered with the outgrowth of endothelial 

tubes by both bFGF/TNFα and VEGF/TNFα.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Different APLs inhibit bFGF/TNFαααα- and VEGF/TNFαααα-mediated tube formation. HMVEC cultured 

on top of a 3-dimensional fibrin matrix were stimulated with 10 ng/mL bFGF and 2.5 ng/mL TNFαααα (A,B,C) 

or with 25 ng/mL VEGF and 2.5 ng/mL TNFαααα (D,E,F). No APL added (A,D); 50 µM miltefosine (B,E) and 50 
µM perifosine (C,F). After 8 days of culture representative phase contrast photographs were taken. 
Similar results were obtained in 3 independent experiments. 

To confirm these inhibitory effects of APLs on tube formation, we employed a 

second model [41], using endothelial cells from bovine origin. In this model BAEC 

are seeded between a collagen sandwich and allowed to re-organize and rapidly 

form tubular structures within 48 h (Fig. 7A). Similar to HMVEC grown on a fibrin 

matrix, APL inhibited tube formation by BAEC in a collagen sandwich as well. Fig. 
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7D-F shows the dose-dependent interference with tube formation by edelfosine. At 

20 µM and higher, no tubular structures could be discerned; quantification of the 

total sprout length was therefore not possible. Miltefosine (Fig. 7B) and perifosine 

(Fig. 7C) inhibited this process in a comparable fashion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. APL-induced interference with endothelial tube formation. BAEC were seeded between a 
collagen sandwich and allowed to rapidly re-organize and form capillary-like tubular structures within 48 
h. No APL added (A); 10 µM miltefosine (B); 10 µM perifosine (C) and 10, 20, 50 µM edelfosine (D,E,F). 
Similar results were obtained in 3 independent experiments. Magnification 100x. 

Discussion 

The present study was undertaken to investigate the effect of 3 clinically relevant 

APLs on normal vascular endothelial cells in comparison with a panel of tumor cell 

lines, and to study the anti-angiogenic properties of these compounds in vitro. 

Edelfosine, miltefosine and perifosine induced a time- and dose-dependent 

increase in apoptosis in a variety of human leukemic and solid tumor cell lines. 

Importantly, the ED50-values we found here fall within the same micromolar range 
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as obtained in plasma from APL-treated patients [5,6]. In our phase I study, we 

measured a dose-dependent steady state plasma concentration of perifosine 

between 4 and 23 µM, which was maintained throughout the 4-week treatment 

period [9]. In contrast to the effect on tumor cells, 3 types of normal quiescent 

endothelial cells were insensitive to APL-induced apoptosis. This differential 

cytotoxic effect of APLs is consistent with data obtained in other cell systems 

[25,27,48] and offers a solid basis for further clinical evaluation of these 

compounds as selective anti-cancer drugs. Another attractive biological property of 

APLs is their capacity to strongly enhance radiation-induced apoptosis of tumor 

cells in vitro and in vivo, as we described recently [22,28,32]. In the present studies 

we observed a remarkable difference in APL-induced apoptosis between confluent, 

resting versus actively proliferating endothelial cells. These findings are consistent 

with Araki et al. [49], who reported on apoptosis induced by the structurally related 

compound Et-16-OCH3 (edelfosine = Et-18-OCH3) in subconfluent cultures of 

HUVEC. We found that APL-induced endothelial apoptosis correlated with the 

cellular uptake of the compound. Proliferating endothelial cells incorporated large 

amounts of APL, resulting in significant levels of apoptosis. In quiescent endothelial 

cells, on the other hand, the uptake of APL was only one-third of proliferating cells 

and insufficient to induce significant apoptotic cell death. The relationship between 

APL uptake and apoptosis sensitivity is emerging as a more general phenomenon. 

Mollinedo et al. [25] demonstrated that upon transformation with SV40, 3T3 

fibroblasts became sensitive to edelfosine and incorporated high amounts of the 

lipid. Similarly, apoptosis sensitivity was restored in human T lymphocytes after 

activation with mitogens [46]. Thus, the amount of APL incorporated by the 

endothelial cell, most likely in combination with the enhanced metabolic activity of 

the cell, apparently dictates the biological effect. Because endothelial apoptosis 

has been identified as an important determinant in tumor angiogenesis [50-52], 

these observations prompted us to study anti-angiogenic properties of APLs in 

vitro.  

Angiogenesis is a complex and tightly regulated process of new blood vessel 

formation from pre-existing vasculature. Its role in tumor growth and metastases 

has now clearly been established and several strategies of anti-angiogenic therapy 

have been developed and tested clinically [33-35]. During angiogenesis several 

phases can be distinguished: (a) degradation of the basement membrane, (b) 

endothelial migration and invasion in the extracellular matrix, (c) endothelial 

proliferation, and (d) the formation of capillary-like tubes [36]. A large number of 
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angiogenic factors have been identified in recent years, including VEGF and bFGF 

[37,38]. The formation of capillary-like structures can be studied in vitro using 

different model systems. For our experiments we employed 2 well-characterized 

models. The first consists of a 3-dimensional human fibrin matrix covered by 

human microvascular endothelial cells [39,40]. This model mimics the in vivo 

situation where fibrin is a common component of the matrix present at sites of 

chronic inflammation and tumor stroma [53]. Both an angiogenic factor (bFGF or 

VEGF) and a factor to induce urokinase-type plasminogen activator (e.g. TNFα) 

are required in this in vitro model to induce endothelial migration and the formation 

of capillary-like tubular structures without endothelial proliferation [34,35]. The 

present studies demonstrate that APLs are efficient inhibitors of both VEGF/TNFα- 

and bFGF/TNFα-induced tube formation from pre-existing monolayers of confluent 

HMVEC. Moreover, the structurally related, but ineffective compound PAF-18 failed 

to interfere with this process. Also in a second re-organization model using a 

collagen sandwich and endothelial cells from bovine origin, APLs interfered with 

tube formation (Fig. 7). The anti-angiogenic action of APLs cannot be explained by 

an anti-proliferative effect, because both models do not allow endothelial 

proliferation. Instead, these models study endothelial migration and re-

organization. It is also unlikely that extensive cytotoxic effects account for the 

inhibition of angiogenesis, as the endothelial monolayer remains intact throughout 

the observation period (Fig. 4 and 5). 

It remains to be established which signal transduction pathways are important for 

the apoptotic and anti-angiogenic effects of APLs. In this context, we have 

previously shown that APLs activate the pro-apoptotic SAPK/JNK pathway. In 

addition, APLs efficiently prevent serum- and growth factor-induced MAPK/ERK 

signaling both in tumor and endothelial cells [19,20,22,54]. More recently, we found 

that APLs also inhibit the Akt/PKB survival pathway [28]. These signaling systems 

are not only important for cell death and survival, but have been implicated in 

angiogenesis as well [55-58]. In different in vitro and in vivo angiogenesis models it 

has been shown that blockade of the MAPK/ERK or Akt/PKB pathway by 

pharmacological or molecular approaches induces apoptosis and inhibits 

angiogenesis [55,56,59]. Our current line of research is focused on the 

identification of additional, critical (intra-)cellular targets of APLs [10]. 

In conclusion, our data show that not only tumor cells, but also normal endothelial 

cells can be a target for APLs. The cytotoxic effect, however, depends on the 

proliferative status with actively dividing cells incorporating more APL and thus 
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being apoptosis-sensitive. Furthermore, we demonstrated that APLs are effective 

inhibitors of endothelial capillary-like tube formation in vitro. Taken together, these 

results support the concept that APLs exert their anti-tumor effect both directly 

through apoptosis and indirectly, through interference with the angiogenic process. 
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Abstract 

Clinical use of anti-cancer alkylphospholipids (APLs) is limited by gastrointestinal 

toxicity. However, new interest has emerged since it was shown that these drugs 

enhance the cytotoxic effect of conventional chemotherapy and radiotherapy in 

preclinical models. The aim of this study was to characterize the pharmacokinetic 

profile of perifosine, an oral analogue of alkylphosphocholine (APC), and to 

compare in vitro drug uptake with in vivo drug accumulation in 3 human-derived 

squamous cell carcinomas (A431, HNXOE and KB). In vitro, KB cells showed a 

remarkably high uptake and sensitivity for perifosine compared with A431 and 

HNXOE cells. In vivo, perifosine reached a clinically relevant plasma concentration 

in mice after a single oral dose of 40 mg/kg. Perifosine was not metabolized and 

displayed slow elimination, with a terminal half-life of 137 (± 20) h and an apparent 

volume of distribution of 11.3 L/kg. Comparable tumor accumulation was observed 

for A431 and HNXOE tumors, whereas perifosine uptake by KB xenografts was 

substantially higher. Tissue distribution occurred throughout the whole body 

reaching high perifosine levels in the gastrointestinal tract, while heart and brain 

tissue contained relatively low levels. Based on its stability and relatively high 

tumor uptake in vivo, perifosine is an attractive candidate for further evaluation, e.g. 

as radiosensitizer. 
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Introduction 

Perifosine (D-21266 - octadecyl-(1,1-dimethyl-piperidinio-4-yl)-phosphate) is a 

heterocyclic member of membrane-permeable single-chain anti-tumor 

alkylphosphocholines (APCs). This class of synthetic anti-cancer agents primarily 

acts at the level of the cell membrane, in contrast to most conventional 

chemotherapeutic drugs that target the DNA. APCs are selectively toxic for 

malignant cells, both in vitro [1] and in vivo [2-5]. Although the precise mechanism 

of action is not yet fully elucidated, APCs have been shown to interfere with 

phospholipid metabolism and survival signaling, to induce apoptosis, inhibit 

neovascularization, prevent invasion and induce tumor cell differentiation (reviewed 

in [6-11]). 

APC(-like compounds) that are currently applied clinically are edelfosine, 

miltefosine and its derivative, perifosine. Miltefosine is effective as an oral drug 

against leishmaniasis [12] and as a topical treatment of breast cancer skin 

metastases [13]. Edelfosine has been applied as a purging agent in autologous 

bone marrow transplantation [14] and perifosine has entered several phase I and II 

trials. The clinical use of APCs is limited due to major side effects. The APC 

prototype miltefosine (hexadecylphosphocholine) for instance, causes hemolysis 

when administered parenterally [15]. Further, its oral application was ceased in a 

phase II trial due to cumulative gastrointestinal toxicity, especially vomiting and 

diarrhea [16]. 

Perifosine, in which the choline moiety of miltefosine is replaced by a cyclic 

aliphatic piperidyl residue (Fig. 1), was designed for an improved systemic 

therapeutic index. Indeed, perifosine was shown to be better tolerated than 

miltefosine in rats bearing DMBA-induced tumors [17]. Recently, perifosine has 

been evaluated in phase I trials using different dose schedules in patients with 

solid tumors [18,19]. Renewed interest in APCs has emerged since they were 

shown to enhance cell death induced by conventional chemotherapeutics [20] and 

more recently, by radiation [21,22]. The enhanced radiation-induced cell kill is 

thought to depend on interference with survival signal transduction pathways by 

APCs [23]. We and others have shown that APCs induce stress-activated protein 

kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling and inhibit mitogen-activated 

protein kinase (MAPK) and protein kinase B (Akt/PKB) signaling, resulting in an 

enhanced apoptotic response [22,24]. In addition, APCs act as radiosensitizers in 

different solid tumor cell lines [21,25]. 
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Despite several in vitro and in vivo studies, the pharmacokinetic behavior and 

biodistribution of perifosine in an animal tumor model have not yet been described. 

The pharmacokinetic profile of perifosine and its selective uptake by malignant 

cells are important determinants of the anti-tumor response after perifosine 

treatment, both as a single agent treatment and in combined modality strategies. 

The aim of this study was to determine in vitro and in vivo perifosine uptake by 

tumor cells. Furthermore, we aimed to quantitate plasma pharmacokinetics, 

biodistribution and metabolic fate after oral perifosine treatment. 

 

 

 

 

Figure 1. Chemical structure of perifosine and 
its parent compound, miltefosine. 

 

 

 

 

 

Material and Methods 

Chemicals. Perifosine and [2,6-
14

C]perifosine (66.8 µCi/mg) were kindly provided 

by Zentaris GmbH (Frankfurt, Germany). 

 

Cell culture. The A431 epidermoid vulva carcinoma cell line and KB head and 

neck carcinoma cell line were obtained from the ATCC. The HNXOE is a head and 

neck squamous cell carcinoma cell line derived from a metastasis of the oral cavity 

[26]. A431, KB and HNXOE cells, routinely tested for absence of mycoplasma, 

were cultured in Dulbecco’s Modified Eagles Medium (Gibco, Rockville, 

supplemented with 100 units/mL penicillin, 100 µg/mL streptomycin and 10% (v/v) 

fetal bovine serum (Life Technologies). 

 

In vitro drug uptake and cytotoxicity. Drug uptake: 5x10
4
 cells in 2 mL 

DMEM/well were plated in 6-well plates and incubated overnight. [
14

C]perifosine 

was added to a final concentration of 1 µM. After 1, 2, 4, 8 and 24 h of incubation, 

medium was removed and the cells were washed twice with PBS. The cells were 
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dissolved in 1 mL Solvable (Packard Instrument Co., Groningen, The Netherlands), 

diluted in Ultima Gold scintillation liquid and measured using a TRI-CARB liquid 

scintillation analyzer (Canberra Packard Benelux B.V., Groningen, The 

Netherlands). Cytotoxicity assay: The sulforhodamine B (SRB) assay was used to 

determine the cytotoxicity of perifosine in the A431, HNXOE and KB cell lines. 

Cells (3,000 in 200 µL DMEM/well) were allowed to attach overnight, followed by 

incubation with perifosine. After 48 h, the cells were fixed in 10% TCA/HBSS, 

washed with H2O and stained with 0.4% SRB/1% acetic acid. Plates were washed 

with 1% acetic acid, and protein bound SRB was dissolved in 10 mM Tris-HCl (pH 

7.5). The extinction was measured at 540 nm with a microplate reader (Bio-Tek 

Instruments, Winooski, VT). The surviving fraction was calculated by dividing the 

mean extinction for each concentration by the mean extinction of the control wells 

(medium). 

 

Animals and tumors. Female BALB/c nude mice (18-28 g), were obtained from 

the animal department of the Netherlands Cancer Institute. Animals, kept and 

handled according to institutional guidelines complying with Dutch legislation under 

a 12/12 h light/dark cycle at a temperature of 22
o
C, received a standard diet and 

acidified water ad libitum. Mice were injected subcutaneously on the lower dorsum 

with 1x10
6
 A431 cells, 1x10

6
 HNXOE cells or 3x10

6
 KB cells in 50 µL PBS. 

 

Pharmacokinetic analysis. Tumor bearing animals were administered a single 

oral dose of 40 mg/kg (A431, HNXOE and KB xenografts) or 4 daily administrations 

of 10 mg/kg (A431 xenografts) perifosine, using a stomach tube. At various time 

points after administration (0-168 h), animals were anesthetized and blood was 

collected by way of heart puncture (for each tumor 3-5 animals/time point). Blood 

was centrifuged at 14,000 rpm for 5 min (4
o
C), and 10-20 µL plasma was diluted in 

Ultima Gold scintillation liquid (Packard Bioscience B.V., Groningen, The 

Netherlands) and [
14

C]perifosine was measured using a TRI-CARB liquid 

scintillation analyzer (Canberra Packard Benelux B.V., Groningen, The 

Netherlands). Pharmacokinetic analysis was done for a single dose of 40 mg/kg, 

with plasma samples obtained from experiments with all 3 tumors. The area under 

the curve (AUC) of perifosine in plasma after a single administration of 40 mg/kg 

was calculated with the linear trapezoidal rule. The elimination half-life (t½) was 

calculated using linear regression analysis of the log plasma concentration-time 

curve. The maximum plasma concentration (Cmax) was calculated using the 
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software program MW/Pharm (Mediware, Groningen, The Netherlands) [27]. 

Remaining plasma after heart puncture was stored at -20°C until thin layer 

chromatography (TLC). 

 

Thin Layer Chromatography. Plasma samples obtained at various time points 

after oral administration, containing approximately 3,000 dpm [
14

C]perifosine, were 

adjusted to 200 µL with PBS. Lipids were extracted with methanol/chloroform (1:2, 

v/v) and phase separation was induced with 1 M NaCl. The organic phase was 

dried, dissolved in chloroform and applied on a silica TLC plate. The plate was 

developed in chloroform/methanol/25% ammonia (7:4:1, v/v/v). [
14

C]Perifosine was 

visualized and quantified using a Fuji BAS 2000 TR Phosphor Imager (Fuji Photo 

Film Co., Tokyo, Japan). 

 

Tumor and normal tissue distribution studies. Mice were allowed to grow 

tumors with an initial mean diameter of at least 5 mm (measured in 3 orthogonal 

directions). The mice received, by way of a stomach tube, a single dose of 40 

mg/kg perifosine/[
14

C]perifosine (0.1 µCi/g) or 4 daily dosages of 10 mg/kg 

perifosine/[
14

C]perifosine (0.05 µCi/g) dissolved in PBS, in a volume of 5 µL/g body 

weight. At various time points (0-168 h) after the first administration, animals were 

anesthetized, sacrificed by cervical dislocation and tumors and organs were 

collected. The gastrointestinal tract was cleared from content and all tissues were 

dissolved in 1-6 mL Solvable (Packard Instrument Co., Groningen, The 

Netherlands) at 60
o
C overnight, bleached with 30% H2O2, diluted in Ultima Gold 

scintillation liquid and measured using a TRI-CARB liquid scintillation analyzer. 

 

Results 

In vitro studies 

Perifosine uptake and sensitivity. To determine in vitro uptake of perifosine, 

A431, HNXOE and KB cells were incubated with 1 µM [
14

C]perifosine. Uptake by 

A431 and HNXOE cells was in the same range, reaching a plateau of around 1 

µg/10
6
 cells after approximately 4 h of incubation. KB cells however, showed 

significantly higher uptake reaching 8 µg/10
6
 cells at 24 h (Fig. 2A). 

Perifosine cytotoxicity is shown in Fig. 2B. The remarkably high level of perifosine 

uptake by KB cells was accompanied by a relatively high sensitivity for this drug 

(IC50=0.84 ± 0.08 µM). A431 and HNXOE cells showed a comparable perifosine 
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uptake, with A431 cells being slightly more sensitive than HNXOE cells (IC50 values 

9.95 ± 0.82 µM and 24.55 ± 0.64 µM, respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. In vitro determination of perifosine uptake and sensitivity of A431, HNXOE and KB cells. (A) 
Drug uptake after incubation with 1 µM [14C]perifosine (mean values of 3 independent experiments, ± 
SD). (B) Cytotoxicity after 48 h of incubation with perifosine. Shown are representative dose response 
curves. 

In vivo studies 

Tumor and normal tissue pharmacokinetics after oral perifosine treatment were 

studied in female BALB/C nude mice, bearing subcutaneous tumors. 

 

Plasma pharmacokinetics. Pharmacokinetic analysis of [
14

C]perifosine in blood 

plasma after a single oral dose of 40 mg/kg showed a Cmax of 5.7 µg/mL, 22 h after 

administration and a t½ of 137 ± 20 h (Fig. 3; Table 1). Four daily administrations of 

10 mg/kg perifosine resulted in a Cmax of about 6 µg/mL (measured 24 h after the 

last administration), similar as obtained with a single dose of 40 mg/kg (Fig. 3). 
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Figure 3. Plasma levels of perifosine after 
oral administration of a single dose of 40 
mg/kg and 4 daily dosages of 10 mg/kg 
(values are means ± SEM, n=4-13). 

 

 

 

 

 

 

 

 

 

Metabolic fate. Plasma levels of [
14

C]perifosine were used to determine the 

metabolic fate of perifosine after oral administration. Plasma was collected from 8-

168 h after administration, and plasma lipids were extracted and separated by TLC. 

Autoradiography of [
14

C]perifosine in the plasma extract compared to the stock 

solution revealed a high in vivo stability. Up to 168 h after administration, only a 

very small fraction of radiolabeled by-product was present in the plasma, and this 

fraction seemed to be constant over time (Fig. 4). From the total amount of [
14

C] 

that was present in plasma 168 h after administration, 96% had the same Rf value 

as authentic perifosine and is therefore assumed to be the original non-degraded 

compound. 

 

 

 

 

 

 

 

 

 

Figure 4. Visualization of [14C]perifosine and by-product (arrow), extracted from plasma up to 168 h after 
administration and separated using thin layer chromatography. Perifosine/[14C]perifosine before 
administration (t=0) is used as marker. Graph: Quantification of perifosine and by-product, 168 h after 
administration. 
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Tumor pharmacokinetics after single and repeated oral administration. In vivo 

tumor uptake was studied using A431, HNXOE and KB xenografts. Tumor bearing 

mice were administered a single dose of 40 mg/kg perifosine, and drug levels were 

measured up to 7 days after administration. For the A431 and HNXOE tumors, 

maximum drug levels of approximately 70 and 60 µg/g were reached, respectively, 

at 48 h after administration (Fig. 5A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. (A) Perifosine uptake by A431, HNXOE and KB tumors after a single dose of 40 mg/kg. (B) 
Perifosine uptake by A431 tumors after a single dose of 40 mg/kg and 4 daily dosages of 10 mg/kg. All 
values are means ± SEM (n=3-5; *P < 0.05, Student’s t-test). 

No significant decrease in perifosine concentration was observed in the A431 

tumor until 144 h after administration, whereas the HNXOE tumor only showed a 

moderate decrease from 96 h onwards after administration. KB tumors displayed a 

more pronounced drug uptake, with increasing levels measured at least up to 144 

h, which resulted in substantially higher perifosine levels (approximately 100 µg/g) 

as compared to A431 and HNXOE tumors. 

To compare perifosine uptake after single and repeated administration, A431 tumor 

bearing animals received 4 daily administrations of 10 mg/kg perifosine. Similar 

A431 tumor drug levels were reached for both single and repeated administration. 

While peak perifosine levels were reached at 48 h after a single administration, 

maximum levels were measured after 120 h for the repeated administration. Drug 

levels declined from 144 h onwards for the repeated dose schedule (Fig. 5B). 
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Biodistribution after single and repeated oral administration. The 

biodistribution of perifosine after single and repeated oral administration is shown 

in Fig. 6. The major organs were analyzed for the presence of [
14

C]perifosine from 

8-168 h after oral administration. Radiolabel was encountered in all analyzed 

organs, from relatively low levels in the heart and brain, to relatively high levels in 

the gastrointestinal tract. Single administration of a dose of 40 mg/kg resulted in 

maximum levels measured in stomach, small intestine, colon, liver and kidneys at 8 

h after administration. Delayed distribution was observed in lungs, spleen, heart 

and brain. Four daily administrations of 10 mg/kg resulted in increasing perifosine 

levels in all organs up to 96 h after the first administration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Tissue distribution of perifosine after administration of a single dose 40 mg/kg (closed circles) 
and 4 daily dosages of 10 mg/kg (open circles). Shown is the perifosine concentration (µg/g wet weight) 
in different organs until 168 h after administration. The first data point in small intestine at high 
perifosine dose amounted to 370 µg/g. Values are means ± SEM (n=4). 
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Toxicity. As an index of systemic toxicity, changes in body weight after oral 

perifosine administration were measured. The results are shown in Fig. 7. A single 

dose of 40 mg/kg resulted in a slight, reversible weight loss, and 4 daily dosages of 

10 mg/kg each did not have a significant effect on body weight. No significant 

differences in mean body weight were observed between treated and control 

animals beyond 9 days after administration (not shown).  

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Perifosine toxicity after administration of PBS (control), a single dose of 40 mg/kg or 4 daily 
doses of 10 mg/kg. Perifosine toxicity is represented as changes in mean body weight. Values are means 
± SEM (n=3-8). 

Discussion 

In this study we show the in vitro and in vivo uptake of perifosine in 3 human 

squamous cell carcinomas (vulvar, head and neck). In vitro, the KB cell line shows 

the highest level of drug accumulation and a high sensitivity compared with A431 

and HNXOE cell lines. In vivo, perifosine accumulation reached levels of 60-70 

µg/g in A431 and HNXOE xenografts and 100 µg/g in KB tumors. Further, orally 

administered perifosine displayed a slow elimination and extensive distribution in 

normal tissues. 

APCs have been studied as anti-cancer agents for more than 2 decades. Although 

these agents showed promising properties in vitro, clinical use is limited, mainly 

due to gastrointestinal side effects. Based on animal studies, the APC analogue 

perifosine was expected to have a higher tolerability than its parent compound 

miltefosine. However, a phase I trial of perifosine revealed a similar toxicological 

profile as miltefosine, with a MTD of 200 mg/day [18]. More interest has arisen to 

combine APCs with conventional chemotherapy and, more recently, radiotherapy, 
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since it was shown that APCs can enhance cell death induced by these regimens 

[20,22,25]. Currently, perifosine combined with radiotherapy is evaluated in a 

phase I study [28]. To support clinical data and to optimize drug scheduling, 

additional in vitro and in vivo data are needed. 

Here we show a good correlation between in vitro perifosine uptake and 

cytotoxicity, and the in vivo uptake of three human squamous cell carcinomas. 

Several animal tumor models have been used to study the effect of APCs, the KB 

tumor being one of these models. Indeed, the APC-sensitive KB tumor shows a 

remarkable perifosine uptake compared with the other tested tumors. A431 and 

HNXOE cells incorporate comparable amounts of perifosine, with an uptake 

plateau at 4 h of incubation with 1 µM perifosine. For both cell lines, no cytotoxicity 

at this concentration is observed after 48 h of incubation. 

The plasma levels reached after oral administration of a single sub-toxic dose of 40 

mg/kg (Cmax = 5.7 µg/mL, or 12.3 µM) are in agreement with plasma concentrations 

measured in phase I trials using a daily dose schedule [18] or a loading 

dose/maintenance dose schedule [19]. In addition, these concentrations have been 

shown to be effective in vitro. Not only is this concentration cytotoxic for the 

sensitive KB carcinoma, it also exceeds the IC50 of the A431 cell line. At these 

concentrations, APCs have not only been shown to induce apoptosis and to inhibit 

cell proliferation, but also to act as a radiosensitizer in these cell lines [25]. 

In vivo, similar perifosine uptake by A431, HNXOE and KB cells is observed. A 

repeated schedule was slightly better tolerated than a single dose, and both 

schedules resulted in similar tumor levels. This is in line with the linear dose-

response relationship that has been described for miltefosine treatment of KB 

tumors [29]. A plateau is reached at roughly 48 h after a single dose for the 3 tumor 

types tested. Further, maximum perifosine levels in A431 tumors are measured 48 

h after the last administration when a repeated dose schedule is applied. A 48 h 

interval between perifosine administration and local tumor irradiation might 

therefore improve the in vivo efficacy of this combined modality. 

Perifosine treatment is limited, like other APCs, by gastrointestinal toxicity. In 

several in vitro studies, perifosine cytotoxicity is comparable to other APCs, like 

miltefosine and edelfosine. However, we show that perifosine is not a substrate for 

phospholipases, or any other catabolic enzymes. Whereas miltefosine has been 

shown to be metabolized, yielding choline, phosphocholine and 1,2-

diacylphosphocholine [30], we show a high degree of stability of [
14

C]perifosine 

after oral administration. Up to 168 h after administration, the great majority of the 
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plasma-extracted drug is still present as parent compound. This relates to a slightly 

longer t½ for perifosine compared to miltefosine (137 and 96 h, respectively). This 

could be beneficial, since APC-induced cytotoxicity has been shown to be partially 

reversible, depending on drug concentration and duration of treatment [31]. 

Perifosine tissue distribution after oral administration appeared to involve the whole 

body, similar as previously shown for the APCs hexadecylphosphocholine 

(miltefosine), octadecylphosphocholine and erucylphosphocholine [2]. In general, 

oral administration of perifosine resulted in similar drug profiles in most organs. 

However, relatively high drug levels were found in the small intestine, in contrast to 

heart and brain in which relatively low levels were measured. Indeed, 

gastrointestinal toxicity has been reported to be dose limiting in phase I studies 

[18,19]. This toxicity may be associated with the presence of the drug in the upper 

part of the gastrointestinal tract after oral intake. In this context, accumulation in the 

small intestine after intravenous administration was not observed for the 

structurally related miltefosine [30]. The low perifosine levels of perifosine that we 

found in brain tissue would imply that erucylphosphocholine might be a better 

candidate for treatment of brain tumors, since this APC specifically accumulates in 

brain tissue [32]. In contrast to miltefosine [2,30,33], perifosine does not 

accumulate specifically in the kidney. Therefore, renal dysfunction, as described 

after miltefosine treatment [34], is not to be expected after perifosine treatment. 

In summary, the APC-sensitive KB carcinoma accumulates significantly higher 

amounts of perifosine than the more resistant A431 and HNXOE cells, both in vitro 

and in vivo. Perifosine is absorbed from the gastrointestinal tract within 24 h, is not 

metabolized and distributes over the body. Maximum tumor levels after a sub-toxic 

total dose of 40 mg/kg are reached at 48 h after administration. These findings are 

a sound basis for further investigation of oral application of perifosine, possibly 

combined with other regimens, for instance radiotherapy. 
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Abstract 

Purpose: Combined modality treatment has improved outcome in various solid 

tumors. Besides classical anti-cancer drugs, a new generation of biological 

response modifiers has emerged that increases the efficacy of radiation. Here, we 

have investigated whether perifosine, an orally applicable, membrane-targeted 

alkylphospholipid (APL), enhances the anti-tumor effect of radiation in vitro and in 

vivo. Experimental design: Several long- and short-term in vitro assays 

(clonogenic survival, sulforhodamine B cytotoxicity, apoptosis and cell cycle 

analysis) were used to assess the cytotoxic effect of perifosine in combination with 

radiation. In vivo, the response of human KB squamous cell carcinoma xenografts 

was measured after treatment with perifosine, irradiation and the combination. 

Radiolabeled perifosine was used to determine drug disposition in tumor and 

normal tissues. At various intervals after treatment, tumor specimens were 

collected to document histopathological changes. Results: In vitro, perifosine 

reduced clonogenic survival, enhanced apoptosis and increased cell cycle arrest 

after radiation. In vivo, radiation and perifosine alone induced a dose-dependent 

tumor growth delay. When combining multiple perifosine administrations with single 

or split doses of radiation, complete and sustained tumor regression was observed. 

Histopathological analysis of tumor specimens revealed a prominent apoptotic 

response after combined treatment with radiation and perifosine. Radiation-

enhanced tumor response was observed at clinically relevant plasma perifosine 

concentrations and accumulating drug disposition of >100 µg/g in tumor tissue. 

Conclusions: Perifosine enhances radiation-induced cytotoxicity, as evidenced by 

reduced clonogenic survival and increased apoptosis induction in vitro, and by 

complete tumor regression in vivo. These data provide strong support for further 

development of this combination in clinical studies. 
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Introduction 

Alkylphospholipids (APLs), such as alkylphosphocholines and alkyl-

lysophospholipids, have been identified as synthetic anti-tumor agents that, in 

contrast to most classical chemotherapeutic drugs, primarily accumulate in the cell 

membrane [1]. There, they interfere with signal transduction pathways and 

subsequently affect multiple cellular processes, including apoptosis, proliferation 

and survival. Despite encouraging preclinical results, clinical use of APLs has been 

limited due to severe gastrointestinal [2,3] and hemolytic toxicity [4]. The 

alkylphosphocholine prototype miltefosine (hexadecylphosphocholine) is currently 

used as a topical formulation against cutaneous lymphomas and breast cancer 

metastases [5] and as an oral treatment against leishmaniasis [6]. Perifosine (D-

21266; octadecyl-(1,1-dimethyl-piperidinio-4-yl)-phosphate), a heterocyclic 

analogue of miltefosine, has been evaluated as an oral anti-cancer drug. Initial 

studies showed an improved therapeutic index in preclinical models [7]. In several 

phase I and pharmacokinetic studies, gastrointestinal adverse effects were 

reported as dose limiting toxicity [8,9]. Recently, phase II studies in patients with 

metastatic or recurrent melanoma [10] and androgen-independent prostate cancer 

[11] revealed no objective responses after treatment with perifosine as single 

agent. 

Combined modality treatment has led to improved treatment results in patients with 

advanced solid tumors, as has been demonstrated in several clinical studies during 

the last decade. In particular, the concurrent use of radiotherapy and 

chemotherapy resulted in reduced recurrence rates and improved survival and has 

become standard therapy in advanced head and neck, lung, cervical and anal 

cancer [12]. The combination of these classical anti-cancer regimens with novel 

biological response modifiers, has emerged as an attractive strategy to further 

increase tumor response and limit normal tissue toxicity [13,14]. Based on their 

potential to modulate signal transduction pathways involved in apoptosis, 

proliferation and survival, APLs are attractive candidates for such a combined 

modality approach. Indeed, perifosine demonstrates synergistic cytotoxicity in vitro 

when combined with other cytotoxic drugs, e.g. the cyclin-dependent kinase 

antagonist UCN-01 (7-hydrostaurosporine) [15] and histone deacetylase inhibitors 

(HDACIs) [16]. In addition, several APLs have been shown to enhance radiation-

induced cell death in a variety of tumor types in vitro. Erucylphosphocholine 

enhanced radiation-induced apoptosis in glioblastoma cells [17], whereas 
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edelfosine (Et-18-OCH3), miltefosine and perifosine increased radiation-induced 

apoptosis in human leukemic cells [18]. Furthermore, miltefosine and perifosine 

showed radiosensitizing properties in human squamous cell carcinomas [13,19]. 

These findings have led us to the design of a phase I trial in patients with solid 

tumors where radiotherapy will be combined with daily intake of perifosine [20]. 

Perifosine acts on multiple cellular targets that contribute to the mechanism of 

enhanced radiation-induced cell death. The increased apoptotic response of U937 

leukemic cells and Jurkat T-cells treated with APLs has been shown to depend on 

the activation of stress-activated protein kinase/c-Jun N-terminal kinase 

(SAPK/JNK) [18]. Moreover, these drugs were found to interfere with signaling 

pathways crucial for cell survival, like the protein kinase B [21,22], protein kinase C 

[23,24], and mitogen-activated protein kinase [25,26] signaling cascades. More 

recently, perifosine was identified as a potent cyclin-dependent kinase 2 (Cdk2)-

inhibitor, causing a p53-independent, but p21-dependent cell cycle arrest [27]. In 

this context, it has been suggested that inhibition of Cdk activity may promote 

apoptosis, depending on the cellular context [28]. 

Thus far, reports on an enhanced radiation response after combined treatment with 

APLs have been limited to in vitro studies. We recently showed a high degree of 

metabolic stability of perifosine after oral administration and a relatively high drug 

uptake in a panel of squamous cell carcinomas in vivo [29]. Here, we have studied 

the effect of perifosine treatment in combination with ionizing radiation on different 

determinants of cytotoxicity in vitro and anti-tumor response in vivo, using the 

alkylphosphocholine-responsive KB tumor model. 

 

Material and Methods 

Antibodies. Antibody against active-caspase 3 used for flow cytometry was 

purchased from BD Biosciences (San Jose, California), FITC-labeled goat anti-

rabbit IgG antibody was purchased from Molecular Probes, Inc. (Eugene, OR), 

mouse anti-bromodeoxyuridine was purchased from Dako Cytomation (Glostrup, 

Denmark), anti-mouse IgG-FITC was derived from Sigma-Aldrich Chemie GmbH 

(Steinheim, Germany), cleaved-caspase 3 (Asp
175

)-specific antibody and labeled 

polymer-horseradish anti-rabbit used for immunohistochemistry were purchased 

from Cell Signaling Technology (Beverly, MA) and DakoCytomation (Carpinteria, 

CA), respectively.  
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Reagents. Perifosine and [2,6-
14

C]perifosine (66.8 µCi/mg) were kindly provided 

by Zentaris AG (Frankfurt, Germany). Crystal violet and glutardialdehyde were 

obtained from Merck KgaA (Darmstadt, Germany). All other chemicals were 

purchased from Sigma (St. Louis, MO). 

 

Cell Culture. The human head and neck squamous cell carcinoma cell line KB, 

routinely tested for absence of mycoplasma, was cultured in Dulbecco’s-Modified 

Eagles Medium (DMEM), supplemented with 100 units/mL penicillin, 100 µg/mL 

streptomycin and 10% fetal bovine serum (FBS). 

 

Clonogenic survival assay. Cells (200-3,200) in 10 mL medium were plated in 8 

cm diameter dishes, incubated for 4 h for the cells to attach, and irradiated using a 

Pantak X-ray machine, operating at 250 kVp and 12 mA with a 0.6 mm Cu filter with 

a dose rate ranging from 0.9 to 1.7 Gy/min. Perifosine was added at a final 

concentration of 0.4 µmol/L, immediately before irradiation. After 3 days, medium 

was removed and replaced with either control medium or with medium containing 

0.4 µmol/L perifosine. Cells were allowed to form colonies over a period of 14 days 

after irradiation, which were subsequently fixed and stained by 0.2% crystal 

violet/2.5% glutardialdehyde. The number of colonies were counted with a 

Colcount (Oxford Optronix, Oxford, United Kingdom) and visually confirmed under 

a light microscope to contain at least 50 cells. Cell survival was corrected for 

plating efficiency. 

 

Sulforhodamine B cytotoxicity assay. 500 KB cells in 200 µL/well were plated in 

96-well plates. After perifosine was added in serial dilutions, the plates were 

irradiated (0-8 Gy). After 5 days of incubation, cells were washed and stained with 

sulforhodamine B [30]. Extinction was measured at 540 nm with a microplate 

reader (Bio-Tek Instruments, Winooski, VT). The data were fitted to a sigmoidal 

concentration-response curve and IC50 calculation was done using GraphPad 

Prism version 4.00 for Windows, (GraphPad Software, San Diego, CA). For each 

radiation dose, control wells (medium) were set at 100% survival. 

 

Apoptosis measurement. KB cells (1.25x10
4
/well) were plated in 6-well plates in 

2 mL medium and incubated overnight to allow the cells to attach. Perifosine was 

added and the cells were irradiated using a 
137

Cs radiation source at an absorbed 

dose rate of ~1 Gy/min. After 120 h, cells and supernatant were collected, washed 
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and resuspended in Nicoletti buffer (50 µg propidium iodine/mL, 0.1% sodium 

citrate, 0.1% Triton X-100) [31]. The apoptotic fraction was assessed as the 

percentage of cells present in the sub-G1 population. To confirm the findings by 

nuclear staining, cells were alternatively stained for active-caspase 3. In brief, cells 

were fixed in 4% formaldehyde/PBS and permeabilized in 0.1% saponin/0.5% 

BSA/PBS. Thereafter, cells were incubated with a rabbit anti-active-caspase 3 

antibody (1:50) and stained with goat anti-rabbit FITC (1:100). All measurements 

were done using a FACScan flow cytometer (Becton Dickinson, San Jose, CA). 

 

Cell cycle analysis. KB cells (2.5x10
5
 per well) were plated in 6-well plates and 

incubated overnight. Treatment consisted of either addition of perifosine at a final 

concentration of 2 µmol/L, irradiation to 5 Gy or the combination. After 8, 24 and 48 

h of incubation, cells were labeled with IUdR as described previously [32]. In brief, 

nuclei were isolated and incubated with a mouse anti-BrdU antibody, which also 

binds to IUdR (1:50), followed by 30 min of incubation with a FITC-conjugated anti-

mouse antibody (1:50). Finally, the nuclei were incubated with propidium iodine to 

stain total DNA. Flow cytometry was carried out using a FACScan flow cytometer. 

 

In vivo tumor growth delay assay. Female BALB/c nude mice, 6-10 weeks old 

(18-28 g) were obtained from the animal department of the Netherlands Cancer 

Institute. Animals were kept and handled according to institutional guidelines 

complying with Dutch legislation under a 12/12 h light/dark cycle at a temperature 

of 22
o
C, receiving a standard diet and acidified water ad libitum. Mice were injected 

s.c. at the lower back with 3x10
6
 KB cells in 50 µL PBS, and tumor volume was 

measured regularly, using calipers. Tumor size was calculated using the formula: 

volume = π/6 x length x width x height, where tumor volume at the start of 

treatment was normalized to 100%. When the tumor reached a mean diameter of 

~6 mm (measured in 3 orthogonal directions), treatment was started. Four 

treatment groups (n=5-9 animals/group) were distinguished: Control (no perifosine, 

no radiation), perifosine (oral administration), radiotherapy (local tumor irradiation), 

and combined therapy (oral administration of perifosine and local tumor irradiation). 

Drug administration: Mice received, by way of gastric intubation, 1-3 oral doses of 

40 mg/kg perifosine every 48 h. Control animals received PBS, orally. Irradiation: 

Animals treated according to a combined treatment schedule were irradiated 48 h 

after the first perifosine administration. This time interval corresponds to 

approximately the tmax in tumor tissue after a single administration of 40 mg/kg. For 
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irradiation, mice were immobilized in custom designed jigs, which allowed specific 

irradiation of the dorsal tumor while shielding the rest of the animal. Irradiations 

were carried out using a Pantak X-ray machine, with a dose rate of ~4 Gy/min. To 

ensure homogeneous dose distribution, mice were rotated through 180° half way 

during the irradiation procedure. 

 

Histopathological analysis. At 96, 120, and 144 h after start of treatment, animals 

were sacrificed, and tumors were excised, fixed in ethanol/acetic acid/formol saline 

fixative (40:5:10:45 v/v/v/v), embedded in paraffin and sectioned at 3 to 4 µm onto 

slides. Sections were stained using an antibody against cleaved-caspase 3 (1:100) 

and a labeled polymer-horseradish peroxidase anti-rabbit, according to standard 

protocols. The percentage of cells expressing active-caspase 3 was determined by 

counting immuno-reactive cells in 3 different optical fields. Because the KB tumors 

grow rapidly and show central areas of necrosis when untreated, these analyses 

were done on the peripheral rim of vital tumor tissue. 

 

Tumor and normal tissue pharmacokinetics. Mice bearing s.c. KB tumors (with 

an initial mean diameter of at least 6 mm) received 1-3 doses of 40 mg/kg 

perifosine, traced with [
14

C]perifosine (0.05 µCi/g) dissolved in PBS in a volume of 

5 µL/g body weight. At various time points after administration, mice were 

anaesthetized, and blood was collected by way of a heart puncture and sacrificed 

by cervical dislocation. Blood was centrifuged at 14,000 rpm for 5 min (4
o
C), and 

plasma was collected. Tumors and major organs were excised and dissolved in 1-6 

mL Solvable (Packard Instrument Co., Groningen, The Netherlands) at 60
o
C 

overnight, bleached with 30% hydrogen peroxide, and diluted in Ultima Gold 

scintillation liquid (PerkinElmer, Wellesley, MA). All [
14

C]perifosine measurements 

were done using a TRI-CARB liquid scintillation analyzer. The area under the curve 

(AUC) up to the last measured concentration-time point was determined by 

applying the linear-logarithmic trapezoidal method. 

 

Results 

In vitro results 

Perifosine-induced radiosensitization is dependent on prolonged drug 

exposure. The impact of drug exposure time on the clonogenic capacity of KB 

cells after radiation was determined by applying a 3-day and a 14-day exposure to 
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0.4 µmol/L perifosine. Continuous exposure to this drug concentration reduced the 

plating efficiency by 36 ± 11% compared with the untreated cells. Incubation of the 

cells with perifosine for 14 days significantly reduced clonogenic survival after 

irradiation. At doses ≥ 6 Gy, this reduction was statistically significant. This 

prolonged exposure time seemed to be essential, because removal of perifosine 3 

days after irradiation led to loss of this radiosensitizing effect (Fig. 1A). 

 

Radiation increases sensitivity of KB cells to perifosine. To test whether 

irradiation enhanced the sensitivity of KB cells to perifosine, dose-response curves 

and corresponding IC50’s of KB cells treated with increasing doses of irradiation 

were obtained using the SRB cytotoxicity assay. Whereas non-irradiated cells 

showed an IC50 of 0.38 ± 0.04 µmol/L after 5 days of incubation, radiation induced 

a dose-dependent decrease of the IC50 down to 0.23 ± 0.02 µmol/L for KB cells 

treated with 8 Gy irradiation. This corresponds to a maximum decrease of 39 ± 1% 

(Fig. 1B). 

 

Perifosine enhances radiation-induced apoptosis. The effect of perifosine, 

radiation and the combination on apoptosis induction was assessed using flow 

cytometry. Both nuclear fragmentation with propidium iodine staining and caspase 

3 staining using an active-caspase 3-specific antibody were measured. Both 

perifosine and radiation induced a significant dose-dependent apoptotic response. 

When radiation and perifosine were combined, the number of apoptotic cells was 

strongly increased and resulted in a more than additive effect in the dose range 

between 0.3 and 0.6 µmol/L perifosine (Fig. 1C). Similar results were obtained 

when cells were treated with perifosine, radiation, or the combination, and stained 

with an active caspase 3-specific antibody (Fig. 1D). It should be noted that the 

steep dose-response relationship of KB cells after treatment with perifosine or 

radiation hampers the calculation of a supra-additive interaction between both 

stimuli over the full dose ranges according to the concept of Steel and Peckham 

[33]. 
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Figure 1. In vitro cytotoxicity induced by perifosine combined with radiation. (A) Radiosensitization is 
dependent on a prolonged exposure time after radiation. KB cells were irradiated in the absence 
(control), or in the presence of 0.4 µmol/L perifosine and exposed to the drug for either 3 days or 14 
days. At day 14, cultures were fixed and stained for assessment of colony formation. Note: Markers 
representing survival of untreated cells (control) and cells exposed to perifosine for 3 days almost 
completely overlap. (B) Radiation increases the sensitivity of KB cells to perifosine. Dose-response 
curves were generated after a 5-day incubation period with a serial dilution of perifosine, combined with 
0-8 Gy radiation. Expressed is the relative perifosine sensitivity after irradiation (IC50 irradiated cells/IC50 
non-irradiated cells). (C) Perifosine enhances radiation-induced apoptosis. KB cells were treated with 
perifosine, radiation or a combination at doses indicated. After 5 days, cells were stained for DNA 
content by propidium iodine and nuclear fragmentation was quantified using flow cytometry. (D) 
Apoptosis analyzed by the detection of active-caspase 3-positive cells, 5 days after treatment. All values 

are means ±±±± SD (*P < 0.05, one-tailed Student’s t-test). 

Perifosine prolongs radiation-induced cell cycle arrest, mainly in G2. Cell 

cycle perturbations induced by treatment with either perifosine, radiation or a 

combination were analyzed using IUdR labeling and flow cytometry. 

Representative dot plots at 24 h after treatments are shown in Fig. 2A. At this time 

point, the most pronounced cell cycle arrest was observed after combined 

treatment. Both perifosine and radiation caused a block in G2-M and a decrease in 

S phase. The S-phase population was reduced by ~80%, whereas the G2-M 

population increased with >300% compared with control cells. At 48 h after 

treatment, the cell cycle distribution after irradiation was restored, whereas 
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perifosine and combined treated cells still displayed an impaired cell cycle 

progression (Fig. 2B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Analysis of cell cycle progression after treatment with either 2 µmol/L perifosine, 5 Gy radiation 
or the combination. (A) Representative cell populations collected 24 h after treatment. Cells were labeled 
with IUdR for determination of S-phase fraction (upper region, positive for IUdR), and stained with 
propidium iodine for distinguishing G1 (lower left region) from G2/M cells (lower right region). (B) Time-
course representation of cell cycle progression of KB cells after the different treatment schedules. Cell 

cycle changes are represented relative to untreated cells. Data are means ±±±± SD. 

In vivo results 

Perifosine enhances the anti-tumor effect of radiation. To investigate whether 

perifosine improves the tumor response after radiation in vivo, BALB/c nude mice 

bearing KB tumor xenografts were treated with either perifosine, radiation, or with 

both modalities, and tumor size was measured regularly. Table 1 shows the 

normalized tumor growth delay. Three treatment schedules were used to determine 

the in vivo enhancement of radiation by orally administered perifosine. 
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In the first schedule, 10 Gy irradiation induced a growth delay of ~21 days; a single 

dose of 40 mg/kg was ineffective. This drug dose did not lead to enhancement of 

the radiation effect (Fig. 3A), although 1 complete remission occurred. The second 

schedule involved 2 administrations of 40 mg/kg with a 48 h interval; 10 Gy 

irradiation was applied immediately after the second administration. Two doses of 

40 mg/kg perifosine led to a substantial growth delay of 8 days. Again, a radiation 

dose of 10 Gy induced a substantial growth delay (21 days). Two administrations of 

perifosine combined with 10 Gy irradiation led to complete remission of the KB 

tumor in 6 of 7 animals (Fig. 3B). The combined therapy of 10 Gy irradiation and 

perifosine was more effective than a single irradiation dose of 13 Gy, which 

ultimately resulted in regrowth of the tumors in 6 of 8 animals (Fig. 3B). This 

corresponds with an enhancement factor of at least 1.3. The third schedule 

involved a split dose radiation consisting of 2 fractions of 5 Gy on day 2 and 4. 

Perifosine was administered in 3 doses of 40 mg/kg on day 0, 2 and 4. As 

expected, both perifosine treatment and radiotherapy as single modalities led to a 

substantial growth delay (12 and 19 days, respectively). Again, combined treatment 

led to complete tumor regression, which sustained for at least 90 days (Fig. 3C). 

 

Toxicity after oral perifosine treatment and local tumor irradiation. Body 

weight of animals treated according to the treatment schedules described in the 

previous paragraph was monitored and used as an index for systemic toxicity. In all 

3 experiments, no significant weight loss due to local tumor irradiation was 

observed. A single dose of 40 mg/kg perifosine resulted in a slight but reversible 

weight loss, which sustained for 10 days. Increased weight loss was observed after 

combined treatment; however, this was reversible and initial body weight was 

regained within 3 weeks (Fig. 3D). Although 2 oral doses of 40 mg/kg resulted in a 

reduction in body weight of 6% at day 4 after start of treatment, the initial body 

weight was regained after 2 weeks. When this dose schedule was combined with 
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10 Gy irradiation at day 2, weight loss up to 8% on day 7 was observed. Again, this 

toxicity was reversible and lasted 18 days (Fig. 3E). Administration of 40 mg/kg 

perifosine at day 0, 2 and 4 did not result in increased toxicity, compared with 40 

mg/kg perifosine administered only at day 0 and 2. Maximum weight loss was 

encountered when 3 doses of perifosine were applied with a split dose of 2 x 5 Gy 

irradiation. However, this did not exceed 10% of initial body weight and lasted for 

more than 3 weeks (Fig. 3F). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. In vivo efficacy and toxicity of treatment with perifosine, radiation and combined schedules. 
BALB/c nude mice bearing KB xenografts with a mean diameter of approximately 6 mm were treated with 
either perifosine p.o., radiation, or a combination. (A), (B) and (C) Animals treated with single or multiple 

doses of perifosine, and a single or split dose of γγγγ-radiation, as indicated in the figure labels. Tumor size 
was measured at least 3 times a week (quantification of treatment efficacy, number of animals/group are 
summarized in Table 1). (D), (E) and (F) Treatment-induced toxicity, expressed as changes in body 
weight, after treatment as indicated in the figure labels. 
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Histopathological analysis. KB tumors were excised at different time intervals (4-

6 days) after treatment, and stained using a cleaved-caspase 3-specific antibody. 

Because untreated KB tumors grow rapidly and display central areas of necrosis, 

these analyses were done on the peripheral rim of vital tumor tissue. Compared 

with untreated tumors, an increase in the number of apoptotic cells was found after 

radiation or perifosine (Fig. 4A). The most prominent apoptotic response was 

observed after combined treatment with radiation and perifosine. Furthermore, 

enlarged nuclei were clearly visible in the radiation-treated and, to a lesser extent, 

combined-treated tumors. In untreated tumors the percentage of apoptosis varied 

between 3.2 ± 1.3% to 5.2 ± 2.2% (Fig. 4B). Radiation (1x10 Gy) induced a 

significant increase in tumor apoptosis ranging from 11.0 ± 3.8% on day 4 to 16.2 ± 

1.9% on day 6. Tumors treated with perifosine only (2x40 mg/kg) also showed an 

increase in the amount of apoptosis, which was maximal at 5 days post-treatment 

(23.0 ± 9.0%; P < 0.05). The largest increase in the apoptotic response resulted 

from the combined radiation plus perifosine treatment. The percentage of apoptosis 

increased progressively from 13.8 ± 1.0% at 4 days to 30.5 ± 7.4% at 5 days and 

38.2 ± 13.1% at 6 days. These numbers were also significantly higher than the 

amount of  apoptosis induced by both treatments separately (P < 0.03 at 6 days). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Histopathological analysis of KB xenografts. Tumor bearing animals received 40 mg/kg 
perifosine at 0 and 48 h; animals were irradiated at 48 h. At 96, 120 and 144 h after start of treatment, 
tumors were excised and stained for cleaved-caspase 3. (A) Representative sections of tumors from 
mice, 120 h after either no treatment (control), treated with perifosine, radiation, or the combination. 
Magnification 40x. (B) Quantification of the fraction of apoptotic cells present in tumor sections, 
harvested at various time points after start of treatment with perifosine, radiation or a combination. *P < 
0.05, for separate treatments compared with controls; **P < 0.03, for combined treatment compared with 
separate treatments (one-tailed Student’s t-test). 
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Tumor and normal tissue pharmacokinetics. To quantify tumor and normal 

tissue distribution after the various schedules, 1-3 doses of perifosine, together 

with tracer amounts of [
14

C]perifosine, were administered to tumor bearing animals. 

A single dose of 40 mg/kg perifosine resulted in plasma levels of 5 µg/mL at 48 h 

after administration, which declined thereafter. A second 40 mg/kg dose at 48 h 

resulted in further increased plasma levels of 9 µg/mL at 96 h and 7 µg/mL at 144 h 

after the second administration. Finally, plasma levels exceeded 10 µg/mL after a 

third administration at 96 h (Fig. 5A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Tumor and normal tissue pharmacokinetics of 3 escalating doses of perifosine. Mice bearing 
KB tumor xenografts were administered 40 mg/kg perifosine/[14C]perifosine p.o. on day 0 (1x40 mg/kg), 
day 0 and 2 (2x40 mg/kg) or day 0, 2 and 4 (3x40 mg/kg). On days 2, 4 and 6, plasma, organs and tumors 
were collected and drug exposure was determined. (A) Time-dependent plasma concentrations after oral 
administration of perifosine. (B) Time-dependent intra-tumoral drug concentrations. (C) Perifosine 
disposition in tumor and normal tissue. Represented is the area under the curve (AUC) up to 144 h, after 

1-3 doses. All values are means ±±±± SEM, 4-5 animals/group. 
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Steady state tumor concentrations of around 75 µg/g were measured from 48 until 

144 h after a single administration. A second administration increased maximum 

tumor levels to ~150 µg/g at 96 to 144 h. A third dose of 40 mg/kg at 96 h resulted 

in tumor levels reaching ~200 µg/g at 144 h after start of treatment (Fig. 5B). 

The area under the concentration-time curve was calculated from the 

concentration-time curves of the major organs (Fig. 5C). Perifosine was found in all 

organs, but the highest concentration was measured in tumor tissue and the small 

intestine. Higher drug accumulation was found after a second oral administration, 

whereas a third administration resulted in only a limited further increase in area 

under the concentration-time curve. To exclude an effect of radiation on drug 

uptake in the KB carcinoma, 1 group of animals was irradiated with 10 Gy, 

immediately followed by a first dose of 40 mg/kg perifosine and a second dose at 

48 h after irradiation; 144 h after irradiation, similar tumor concentrations (170 µg/g) 

were measured, compared with tumors of animals that received perifosine without 

radiation (data not shown). 

 

Discussion 

In this study we show in vitro and in vivo enhancement of radiation-induced cell 

death by the APL perifosine in the KB squamous cell carcinoma. In vitro, perifosine 

reduced clonogenic survival, enhanced apoptosis, and blocked cell cycle 

progression after irradiation. In vivo, radiation or perifosine as single modality 

induced a dose-dependent tumor growth delay. However, multiple doses of 

perifosine combined with single or split dose irradiation resulted in complete and 

sustained remission of KB tumor xenografts. 

To our knowledge, this is the first study in which the oral alkylphosphocholine 

analogue perifosine is shown to increase radioresponsiveness in vivo. Previous 

activity studies in animals with perifosine as single agent have already showed 

tumoristatic effects after long-term or high-dose administration of the drug [7]. 

Based on mechanistic insights collected over recent years by our group and others 

[13,18,21,26], we considered the likelihood that perifosine would increase the 

cytotoxic effect of radiation in vivo. 

In the present studies, we tested the combination of perifosine and radiation in the 

human KB tumor grown in vitro and as xenograft in nude mice. To exclude any 

contribution of a perifosine-related metabolite to the cytotoxic effect, we tested the 

stability of the compound, both in vitro (not shown) and in vivo [29]. No significant 
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degradation (<4%) of perifosine was measured. 

From the in vitro experiments we can conclude that perifosine affects cellular 

sensitivity to radiation, and that this interaction results in increased cytotoxicity as 

measured by both short-term and long-term assays. A more than additive apoptotic 

response was observed when radiation was combined with low concentrations of 

perifosine. The slow kinetics of apoptosis induction in these cells, associated with 

late (> 24 h) caspase 3 activation, are consistent with a post-mitotic or delayed 

type of apoptosis [34]. 

In a clonogenic survival assay, prolonged exposure to perifosine induced marked 

radiosensitization. This is in line with reports describing a treatment duration-

dependent cytotoxicity by APLs [35,36]. Furthermore, radiosensitization by 

perifosine is suggested to be dependent on intense and prolonged PKB/Akt 

inhibition [37]. Along similar lines, prolonged inhibition of RAS-mediated survival 

pathways has been identified as a strategy to radiosensitize tumor cells [38-41]. 

Cell cycle-disrupting agents are considered attractive candidates to combine with 

radiotherapy [42]. One possible mechanism by which perifosine exerts its 

radiosensitizing effect might be by redistribution of cells in a radiosensitive phase of 

the cell cycle [43]. However, although pretreatment of KB cells with perifosine led 

to a relative accumulation in de sensitive G2-M phase, we did not find a significant 

reduction in clonogenic survival after irradiation under these conditions (data not 

shown). Furthermore, these prominent cell cycle effects were observed at 

concentrations far exceeding those at which radiosensitization was found. 

Therefore, a major role of cell cycle redistribution in perifosine-induced 

radiosensitization is unlikely. 

The steep dose-response relationship of perifosine in this tumor model in vitro was 

also evident in vivo, and seemed crucial for the radiosensitizing effect. A single 

dose of 40 mg/kg was ineffective by itself and did not enhance radiation-induced 

tumor growth delay. Multiple (2-3) administrations, however, resulted in significant 

tumor growth delay and, when combined with radiation, to complete tumor 

eradication. 

The mechanism by which perifosine exerts its anti-tumor effect in vivo, either as 

single agent or in combination with radiation, remains uncertain. Based on our in 

vitro data, both apoptotic and non-apoptotic cell death contribute to the observed 

response. Furthermore, our histopathological analyses show a significant increase 

in apoptosis after treatment with perifosine or radiation. The largest increase in the 

amount of apoptosis was observed after combined therapy. Taken together, these 
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data support a significant role of apoptotic cell death in the anti-tumor effect of the 

combination treatment. 

Tumor response was correlated with the degree of perifosine accumulation in 

tumor tissue. In fact, the amount of drug uptake by tumor cells after perifosine 

treatment as single or combined modality could well be the determining factor for 

treatment outcome. We measured plasma and tumor concentration at 48 h after 

the last oral administration, because perifosine uptake by the KB tumor has been 

shown to reach a plateau after this time interval [29]. Because this plateau was 

maintained for at least 168 h after administration, a prolonged tumor exposure is 

likely. Following a single oral dose of 40 mg/kg perifosine, mean maximum tumor 

levels of 87 µg/g were measured. This schedule was ineffective in enhancing the 

radiation response. Multiple perifosine administrations causing tumor growth delay 

and, in combination with radiation induced tumor regression, resulted in tumor 

levels ranging from 125 up to almost 300 µg/g. All these concentrations exceeded 

the levels of other alkylphosphocholines, such as miltefosine, 

octadecylphosphocholine and erucylphosphocholine measured in NMU-induced 

tumors in rats after oral administration of tumor growth inhibiting doses [44]. 

Importantly, the maximal perifosine plasma concentration measured in radiation-

enhancing treatment schedules corresponded with clinically achievable plasma 

levels. In patients with advanced cancer, both steady state levels during treatment 

with a loading dose/maintenance schedule, and peak plasma levels measured in 

patients receiving 200 mg/day were in this range. 

In conclusion, our data demonstrate that perifosine increases radiosensitivity in 

vitro and enhances tumor response to radiation. Multiple doses of perifosine were 

more effective than a single dose, and when given in combination with radiation, 

led to complete and sustained tumor regression. These studies also show that the 

tumor response after combined treatment is mediated, at least partly, by induction 

of apoptosis. Based on these findings, perifosine is an attractive candidate for 

evaluation as a radiosensitizer in clinical studies. 
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Abstract 

Purpose: Perifosine is an orally applicable, membrane-targeted alkyl-

phosphocholine analogue with anti-tumour activity and radiosensitising properties 

in preclinical models. The purpose of this phase I study was to determine the 

feasibility and tolerability of concurrent daily perifosine and radiation in patients with 

advanced cancer. Patients and methods: Starting dose of perifosine was 50 

mg/day; dose escalation was in steps of 50 mg. Daily administration commenced 2 

days before radiotherapy and was continued throughout the radiation treatment. At 

least 3 patients were entered at each dose level; at the 150 mg/day level 10 

patients were included. Pharmacokinetic sampling was performed weekly pre-

dosing. Twenty-one patients were entered. Tumour types included NSCLC (n=17), 

prostate, oesophageal, colon and bladder cancer. Most patients (16/21) had 

received prior chemotherapy; none radiotherapy. Median number of daily perifosine 

administrations was 31 (range 24-53). Mean radiation dose (BED10) was 59.8 Gy 

(range 50.7 to 87.5 Gy in 13-28 fractions). Results: Major drug-related toxicities 

according to CTC criteria were nausea in 57%, fatigue in 48%, vomiting in 38%, 

diarrhoea in 38% and anorexia in 19%. No bone marrow toxicity was observed. 

DLT (nausea/vomiting) was encountered in 2 of 5 patients at the 200 mg/day dose 

level. Dose-dependent steady-state plasma levels were reached after 1 week. 

Major radiotherapy-related acute toxicity consisted of dysphagia in 38% and 

pneumonitis in 29%. Conclusion: Perifosine can be safely combined with 

fractionated radiotherapy. A dosage of 150 mg/day, to be started at least 1 week 

prior to radiotherapy, is recommended for phase II evaluation. 
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Introduction 

Alkylphospholipids (APLs) comprise a heterogeneous group of synthetic 

compounds with anti-tumour activity in vitro and in vivo [1]. Two classes of APLs 

can be distinguished: (1) alkylphosphocholines (APC), such as 

hexadecylphosphocholine (miltefosine), erucylphosphocholine and the APC 

analogue octadecyl-(1,1-dimethyl-piperidinio-4-yl)-phosphate (perifosine), and (2) 

alkyl-lysophospholipids (ALP), such as 1-O-octadecyl-2-O-methyl-rac-glycero-3-

phosphocholine (edelfosine) and 1-hexadecylthio-2-methoxy-methyl-rac-glycero-3-

phosphocholine (ilmofosine). APLs accumulate preferentially in sphingolipid- and 

cholesterol-enriched microdomains in the plasma membrane, so-called “lipid rafts” 

[2]. Here, they interfere with normal phospholipids turnover and affect multiple 

signal transduction pathways involved in cell survival, proliferation and apoptosis. 

APLs exert a strong cytotoxic effect against a variety of human tumour cell lines in 

vitro. The underlying mechanism of this anti-tumour activity is complex and 

includes interference with phosphatidylcholine biosynthesis, inhibition of 

phospholipase C and PKC activity, stimulation of the SAPK/JNK pathway and 

inhibition of MAPK/ERK and Akt/PKB signalling [3-5]. 

Perifosine is a recently developed APC with a favourable toxicity profile upon oral 

administration in preclinical models compared to other APLs [6]. In several clinical 

phase I studies, one of these performed in our institute, gastrointestinal adverse 

effects including nausea, vomiting and diarrhoea were reported as dose limiting 

toxicity [7,8]. As single agent, perifosine has shown only limited anti-tumour activity 

in phase II studies [9]. The combination of classical anti-cancer regimens with 

novel biological response modifiers, has emerged as an attractive strategy to 

further increase tumour response and limit normal tissue toxicity [10,11]. Given 

their potential to modulate signal transduction pathways mediating apoptosis, 

proliferation and survival, APLs are rational candidates for such a combined 

modality approach [11,12]. Indeed, perifosine demonstrates (supra-) additive 

cytotoxicity in vitro when combined with other drugs [13-16]. In addition, several 

APLs have been shown to enhance radiation-induced cell death in a variety of 

tumour types in vitro [4,11,12,17,18]. Recently, we demonstrated complete and 

sustained tumour regression of the xenografted KB squamous cell carcinoma after 

combined treatment of radiation and multiple doses of perifosine [19]. Based on 

these experimental and clinical findings we designed the current phase I trial. The 

objectives were (1) to test the feasibility and tolerability of the combined treatment 
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consisting of fractionated radiotherapy and concurrent daily oral perifosine in 

patients with advanced solid tumours, (2) to determine the dose limiting toxicity and 

maximum tolerated dose, (3) to identify the recommended dose schedule for 

further clinical testing, (4) to explore pharmacokinetics of perifosine in relation to 

toxicity, and (5) to document any anti-tumour activity of the combination. 

 

Patients and methods 

Eligibility criteria. This study, conducted at The Netherlands Cancer 

Institute/Antoni van Leeuwenhoek Hospital, was reviewed and approved by the 

Medical Ethics Committee of the institute. All patients signed a written informed 

consent. Patients were eligible for this trial if they had a histologically or 

cytologically proven inoperable solid tumour for which standard local/systemic 

treatment was not or no longer available. Patients had to be 18 years of age or 

older, have an ECOG-WHO performance status of 0-2 and a life expectancy of at 

least 12 weeks. Other eligibility criteria included adequate bone marrow, liver and 

kidney function. Exclusion criteria consisted of prior irradiation of target lesion 

within 1 year prior to entry; concomitant or recent (within 4 weeks) treatment with 

other anti-cancer agents; prior treatment with perifosine; history of haemolytic 

events; any condition classified as grade > 1 (NCI Common Toxicity Criteria, 

version 2.0) except if caused by the underlying malignant disease; symptomatic 

brain metastases or leptomeningeal disease; breast feeding, pregnancy or 

inadequate contraception. 

 

Treatment plan and study design. Perifosine: Perifosine was supplied by 

Zentaris GmbH (Frankfurt am Main, Germany) as a 50 mg film-coated tablet, 

soluble in gastric juice. Patients commenced daily intake 2 days before the start of 

radiotherapy and continued this intake throughout the entire radiation treatment 4 

hours prior to each fraction. Starting dose was 50 mg/day and dose escalation was 

in steps of 50 mg/day up to 200 mg/day. This dose scheme was based on the 

maximum-tolerated dose (MTD), previously established in a phase I study of 

perifosine alone [7]. For each dose level 3 patients were entered. At the highest 

dose level or at the dose level to be recommended for future studies, if this was 

lower than 200 mg/day, a minimum of 6 patients were included. Decisions on 

further escalation were made no sooner than 4 weeks after completion of a dose 

level. If no dose limiting toxicity (DLT) was observed within this 4 weeks interval, 
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the next higher dose level was opened for the next 3 patients. Radiotherapy: 

Fractionated external beam irradiation was given to a Biologically Effective Dose 

(α/β=10) of 40-70 Gy in 4-7 weeks at 2.0 Gy per fraction with a minimum of 4 

fractions per week. Fraction size should not exceed 3.0 Gy. The radiation dose was 

specified according to the ICRU 50 guidelines. Planning target volumes (PTV) 

encompassed the areas of macroscopic tumour including areas of radiologically 

evident involvement, with a margin of normal tissue of 1.5 cm at the 95% isodose. 

PTV was irradiated by AP-PA opposed fields or by multiple field arrangement. A 

simulation procedure was mandatory for all fields; shielding was by customised 

blocks or multileaf collimator. 

 

Patient evaluation. Pre-treatment evaluation included a complete medical history 

and complete physical examination. Indicator lesions were measured by CT scan 

before start of treatment and repeatedly during the study for efficacy assessment. 

Response evaluation was performed according to the RECIST criteria. Prior to and 

at a weekly basis during therapy full haematology, serum chemistry, creatinine 

clearance and urine analysis were performed. Radiation-induced acute and late 

toxicity was graded according to the Southwest Oncology Group (SWOG) and the 

LENT SOMA Toxicity Scales, respectively. Perifosine-related toxicity was recorded 

according to the CTC. DLT was defined as an adverse event which is likely related 

to the study treatment with an intensity of drug-related CTC grade ≥ 3 (non-

haematological toxicity, excluding alopecia and untreated nausea and vomiting) or 

CTC grade 4 platelets, CTC grade 4 ANC ≥ 5 days or grade 3 plus fever 

(haematological toxicity), or an intensity of radiotherapy-related SWOG (acute) and 

LENT SOMA (late) toxicity scale grade ≥ 3 despite symptomatic/prophylactic 

treatment, or discontinuation of intake of perifosine due to any grade of probably 

drug-related toxicity for more than 20% of planned treatment days. The MTD was 

defined as the dose level of perifosine where 2 or more out of 6 patients 

experienced a DLT. 

 

Pharmacological studies. Whole blood for pharmacokinetic analysis was 

sampled before the start of treatment, weekly during therapy, before oral intake of 

perifosine (pre-dosing) and at the end of treatment. Samples were frozen and 

stored at –20°C until analysis by liquid chromatography coupled with tandem mass 

spectrometry (LC-MS/MS), using miltefosine as an internal standard, as previously 

described [7,20]. The lower detection limit was 4.0 ng/mL using a 250 µL sample 
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volume. The assay was validated up to a concentration of 2000 ng/mL [20]. 

 

Results 

Patients. Twenty-one patients with an indication to receive radiotherapy were 

entered in this study (Table 1). There were 17 males and 4 females with a median 

age of 59 years (range 43-82 years). All patients had advanced solid tumours, the 

majority NSCLC (17/21; 81%). NSCLC subtypes were: adenocarcinoma (n=9), 

large cell undifferentiated carcinoma (n=6) and squamous cell carcinoma (n=2). 

Prior treatment consisted of chemotherapy (n=16; 76%), hormonal therapy (n=1) 

and surgery (n=3). Two patients had received no prior treatment and none had 

previous radiotherapy. The median number of oral perifosine administrations was 

31 (range 24-53; Table 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The administered daily doses ranged from 50 to 200 mg. Three patients were 

included at the 50 and 100 mg dose levels. Because at the 200 mg dose level 2 

out of 5 patients developed DLT, the 150 mg dose level was expanded to a total of 

10 patients to better define the tolerability and pharmacokinetic parameters of this 

dose level. 

Fractionated radiotherapy was given with radical or palliative intent in a schedule 
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that depended on the stage and locoregional extension of the disease. AP-PA 

opposed fields were applied in 9 patients, a multiple field arrangement in 12 

patients. Most patients (17/21; 81%) were irradiated to a total dose of 39-51 Gy in 

13-17 fractions of 3.0 Gy, 4 fractions/week (Table 2). In 4 patients a different 

fractionated schedule was applied; 17 x 2.5 Gy (n=2), 25 x 2.4 Gy and 28 x 2.5 Gy 

(4 fractions/week), respectively. The calculated mean Biologically Effective Dose 

(α/β=10) was 59.8 Gy (range 50.7-87.5 Gy; Table 2). All patients completed the 

radiation treatment as scheduled. 

 

Toxicity. No bone marrow toxicity was observed in any of the patients treated. 

Non-haematological drug-related toxicity (Table 3) was mainly gastrointestinal and 

consisted of nausea (57%), including 2 dose limiting nausea at the 200 mg dose 

level, vomiting (38%), including 2 dose limiting vomiting in the same patients at the 

200 mg dose level, anorexia (19%), diarrhoea (38%) and fatigue (48%). Both the 

frequency and the severity of these side effects increased with increasing drug 

dose. The 2 patients who developed DLT terminated the perifosine intake on day 

15 and 17, respectively, but completed the radiation treatment as planned.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

None of the patients demonstrated significant changes in blood glucose levels. The 

perifosine associated gastrointestinal side effects were most frequently observed 

from the second week of treatment onwards and did not always respond 

satisfactorily to standard anti-emetic regimens (metoclopramide and/or 

dexamethasone). One patient at the 100 mg dose level, 4 patients at the 150 mg 
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dose level and 4 patients at the 200 mg dose level needed 5HT-3 antagonists as 

well during treatment.  

Radiotherapy-related acute toxicity consisted of skin erythema grade 1 (n=1), 

dysphagia grade 1-2 (n=6), grade 3 (n=2) and pneumonitis grade 1-2 (n=6). 

Patients who developed grade 3 dysphagia were treated with i.v. fluids and did not 

require tube feeding; 4 patients that developed grade 2 pneumonitis required 

temporarily steroids, but no oxygen. No radiation-induced acute toxicity grade 4 

was observed and there was no clear relationship between acute radiation 

toxicities and the dose of perifosine. When analysing those patients with NSCLC 

(n=14) who received comparable radiation schedules and treatment fields (Table 

2), a similar toxicity profile emerged. 

Given the 2 DLTs at the 200 mg dose level the number of patients at the 150 mg 

dose level was expanded up to 10 to better document the tolerability and 

pharmacokinetic parameters of this dose level. Because none of these patients 

experienced DLT, the 150 mg dose level was identified as the MTD in combination 

with radiotherapy and recommended for further phase II evaluation. 

 

Pharmacological studies. Fig. 1A shows representative plasma concentration 

versus time curves for each of the 4 dose levels. These data illustrate that steady-

state plasma levels are reached approximately at 1 week after the start of 

perifosine intake. Mean pre-dose concentrations of perifosine on days 7, 14, 21 

and 28 are provided in Table 4. A positive correlation was observed between the 

dose and trough plasma concentration (Fig. 1B).  
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Figure 1. (A) Trough plasma concentrations of perifosine versus time. Representative curves for each 
dose level: 50 mg (circles), 100 mg (triagles), 150 mg (diamonds) and 200 mg (squares). (B) Trough 
plasma concentrations of each patient on day 14 versus administered dose of perifosine. Solid symbols 
represent mean values. Blood samples were collected weekly pre-dosing and analysed by LC-MS/MS. 

The plasma concentration of perifosine of each patient on day 14 including the 

mean of these values versus the administered dose are presented in Fig. 1B. 

Regression analysis revealed a linear relationship (correlation coefficient = 0.71; P 

< 0.01). 

Fig. 2 illustrates the plasma concentrations measured in patient number 9 who was 

recruited at the 150 mg dose level. This patient, receiving 28 fractions of 2.5 Gy 

combined with daily perifosine over a total period of 7 weeks, experienced only 

mild toxicity (grade 1 nausea and diarrhoea). 

 

 

Figure 2. Weekly measured pre-dosing plasma concentrations 
of patient number 9 treated for 7 weeks with radiation (28 x 2.5 
Gy) combined with daily 150 mg perifosine. 
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Response data. Although the primary objective of this study was to test the 

feasibility and tolerability of concurrent perifosine and radiotherapy, clinical 

responses were also documented. Based on preclinical studies by us and other 

groups [4,11,12,17-19], we consider perifosine as a potential radiosensitiser, 

increasing the anti-tumour effect of radiotherapy. Therefore, we focused this 

analysis on locoregional responses within the radiation portals (Table 5). After a 

median follow up of 10 months (range 1-39) we observed an infield response rate 

of 52% (11/21), consisting of 5 partial (24%) and 6 complete responses (28%). In 

10/21 (48%) patients a stable disease was documented. After completion of 

treatment, half of the patients (11/21; 52%) showed metastatic disease progression 

outside the irradiated area at a median of 3 months (range 1-17). Patient number 9 

with stage IV NSCLC and who was included at the 150 mg dose level, 

demonstrated a CT- and PET-confirmed complete remission within the radiation 

field. Two years later, he developed a solitary metastasis in the right adrenal gland, 

which was removed surgically. This patient shows at 3½ years after his initial 

treatment no evidence of disease.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

Perifosine is an orally applicable, membrane-targeted alkylphosphocholine 

analogue with anti-tumour activity and radiosensitising properties in preclinical 

models [4,17,19]. Based on these favourable biological properties, this drug is 

considered to be an attractive candidate for combined use with radiotherapy 

[11,18]. In the present phase I clinical trial, escalating doses of perifosine were 
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given concurrently with fractionated radiotherapy in patients with advanced solid 

tumours in order to identify the DLT and MTD and to establish the recommended 

dose for further clinical testing. In addition, relevant pharmacokinetic data were 

generated for optimal dose scheduling. Our study shows that perifosine can be 

safely combined with radiation at a daily dose of 150 mg. The median number of 

daily perifosine administrations was 31, corresponding with a drug exposure time of 

4½ weeks. The most frequently observed side effects included nausea (57%), 

fatigue (48%), vomiting (38%), diarrhoea (38%) and anorexia (19%) and appeared 

to increase both in incidence and severity with increasing doses. This is in 

agreement with toxicity profiles reported in other studies where perifosine was 

tested as single agent [7-9]. Although there was some variation in radiotherapy 

schedules and fields, the subgroup of NSCLC patients with comparable treatment 

parameters showed a similar toxicity profile as the total study population. Thus, the 

addition of radiation did not significantly enhance the acute side effects associated 

with perifosine. In 43% of the patients 5HT-3 antagonists were required besides 

standard anti-emetic regimens to treat gastrointestinal side effects. Despite these 

measures, DLT was seen in 2 out of 5 patients at the 200 mg dose level. Both 

these patients terminated perifosine intake, but were able to complete the radiation 

treatment as planned. Subsequently, the number of patients at the 150 mg dose 

level was expanded to a total of 10; no additional DLT was encountered. The MTD 

of perifosine in combination with radiation and recommended for subsequent 

phase II testing, was therefore established at 150 mg/day. The pharmacological 

studies showed that at day 7 dose-dependent steady-state plasma concentrations 

were reached, indicating the need for a run-in period of 1 week before the start of 

radiotherapy. Furthermore, a statistically significant correlation was found between 

plasma concentration and administered dose. All plasma concentrations ranged 

between 1.7 ± 0.4 µg/mL at the 50 mg dose level at day 7 and 10.5 ± 3.3 µg/mL at 

the 200 mg dose level at day 28. Previous preclinical studies have demonstrated 

that perifosine exerts its radiosensitising and anti-tumour effect in vitro at culture 

media concentrations between 0.2 and 11.3 µg/mL [6,19,21] and that in vivo 

plasma concentrations can be reached between 5 and 10 µg/mL [19]. Importantly, 

these plasma concentrations resulted in intratumoural drug accumulation varying 

from 60 to 200 µg/g, depending on the tumour model studied [19,21]. In line with 

these recently obtained animal data, which indicated continuous tumour 

accumulation after administration, 1 week of perifosine treatment prior to 

radiotherapy is recommended for phase II studies. We expect that this fine-tuning 
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of treatment protocol will not influence the tolerability. The plasma concentrations 

achieved in the present and other trials are biologically relevant, since they fall 

within the range of concentrations that induce tumour regression and 

radiosensitisation in vitro and in vivo. 

In this trial we also looked at treatment efficacy. The significance of these data, 

however, is limited for several reasons. First of all, the design of phase I trials 

generally precludes statistical assessment of treatment efficacy, although it has 

been argued that these studies generate relevant information on response rates 

[22]. Moreover, radiotherapy alone will induce a clinical response in a number of 

patients irrespective of the addition of perifosine. Nonetheless, an overall 

locoregional response rate of 52% observed in the total study population and 47% 

in the subgroup of NSCLC patients, compares favourably with historical controls 

[23] and stimulates further clinical development of this novel combined modality 

approach. A multicentre randomised phase II study is currently being conducted in 

locally advanced NSCLC patients. 

In conclusion, perifosine can be safely combined with fractionated radiotherapy. 

The dose limiting toxicity of this combined treatment is gastrointestinal. The 

recommended daily dose for clinical phase II studies is 150 mg to be started at 

least 1 week prior to radiotherapy. Pharmacological results showed that potentially 

active exposure to perifosine can be achieved to enhance radiation effects. 
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Summary, discussion and conclusions 

The group of alkylphospholipids (APLs) represents a heterogeneous class of 

synthetic lipids that has been studied as anti-cancer agent for more than 2 

decades. These drugs seem to be particularly promising to target leukemic 

malignancies. Edelfosine has been used as a purging agent for over a decade 

[1,2]. Recently, Mollinedo and coworkers reported promising selective activity of 

perifosine and edelfosine against patient-derived and cultured multiple myeloma 

cells, while normal bone marrow cells were spared [3]. Although most APL 

analogues have shown potent anti-tumor activity in pre-clinical models, clinical use 

has been limited, mainly due to gastrointestinal side effects. Perifosine (D-21266) 

is a promising APL analogue, being suitable for oral application [4]. Because the 

mode of action of APLs is distinct from classical anti-cancer agents that generally 

target the DNA, these lipids have been considered attractive candidates for 

combined use with radiation [5]. Targets underlying the rationale of combining 

APLs with radiotherapy include survival and proliferation signaling through PKB/Akt 

and MAPK pathways, which are blocked by APLs [5-7]. These pathways are often 

upregulated in tumor cells and may contribute to radioresistance. In addition, 

treatment with APLs results in the activation of the SAPK pathway. This stress-

induced pathway was recently shown to play a crucial role in the induction of 

apoptosis after treatment with APLs, both as single modality and combined with 

radiation [6]. For perifosine and other APLs, an enhanced apoptotic response in 

leukemic cells was shown after combined treatment with radiation [6]. This thesis 

builds on these results and describes the stepwise process of testing perifosine as 

radiosensitizer, from in vitro mechanistic investigations via in vivo proof-of-concept 

studies to a clinical phase I trial. 

Chapter 1 gives a general introduction of this thesis and provides an overview of 

clinical applications of APLs to date. Furthermore, it discusses the molecular 

targets of APLs that underlie the rationale to combine these agents with 

radiotherapy. 

Chapter 2 covers the majority of the in vitro studies of this thesis. Prior to their 

cytotoxic action, APLs need to be internalized by tumor cells. Chapter 2.1 focuses 

on raft-dependent endocytosis of APLs in lymphoma cells. This mode of drug 

uptake was previously identified to be essential for edelfosine to induce apoptosis 

in S49 cells [8,9]. Here we show similar results for the uptake of a panel of APLs. 

However, the relative importance of raft-dependent endocytosis seems tumor type-
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dependent. We studied drug uptake in a second tumor model, the human 

squamous cell carcinoma KB, which was shown to be highly dependent on 

metabolic energy, but independent from lipid rafts (Chapter 2.2). In Chapter 2.3, we 

describe the use of in vitro models to characterize the anti-angiogenic potential of 

APLs. The sensitivity of 3 types of vascular endothelial cells to APLs was 

dependent on their proliferation status, because apoptosis was induced in 

proliferating, but not in confluent endothelial cells. In addition, all tested APLs 

inhibited the formation of capillary-like structures in a dose-dependent manner. 

These results suggest a novel mode of action of APLs that may contribute to their 

anti-tumor effect. 

Chapter 3 describes the pharmacokinetics, tissue distribution in mice after oral 

administration and the in vivo anti-tumor activity of perifosine as single agent and in 

combination with radiotherapy. In Chapter 3.1, we report on the pharmacokinetic 

parameters after oral administration. We observed a slow pharmacokinetic profile 

and a high degree of drug stability. Drug accumulation was measured in 3 

squamous cell carcinomas, and a correlation was established between both in vitro 

and in vivo uptake of perifosine, and drug sensitivity. In Chapter 3.2, we used the 

KB carcinoma model to further study the activity of perifosine, as single agent and 

combined with radiation. Several in vitro assays demonstrated enhanced 

cytotoxicity after combined treatment. Both single modalities induced dose-

dependent tumor growth delay of KB xenografts, whereas combined treatment 

resulted in complete and sustained tumor regression. Histopathological analysis of 

tumor sections stained for the presence of active-caspase 3-positive cells, showed 

a clear induction of apoptosis after single agent treatment and more prominently, 

after combined treatment. 

This thesis is concluded with a phase I study in patients with advanced solid 

tumors (Chapter 4.1). Patients received daily perifosine, combined with 

radiotherapy. The dose limiting toxicity was gastrointestinal, and a 150 mg daily 

dose was recommended for further phase II testing, to be started 1 week prior to 

radiation treatment. 

 

The results presented in this thesis indicate that perifosine might be an effective 

agent to enhance the anti-tumor effect of radiation. Previously it was shown that 

the APL analogues edelfosine and miltefosine could enhance radiation-induced cell 

kill [10,11]. More recently, APLs were identified as potent enhancers of radiation-

induced apoptosis in various leukemic cell lines [5]. Perifosine is one of these 
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compounds, and has recently been evaluated as monotherapy in clinical trials 

[12,13]. We focused on the treatment of solid tumors, since carcinomas include the 

majority of cancers and are frequently treated with radiotherapy. In contrast to 

leukemic cells, no supra-additivity in apoptosis induction was found in carcinoma 

cells. This might be due to the fact that carcinoma cells in general are less prone to 

undergo apoptosis. Moreover, apoptosis is not necessarily the main mode of cell 

death in these systems. Radiosensitization by perifosine was demonstrated in the 

clonogenic survival assay, a long term in vitro assay which takes into account all 

types of cell kill. We found reduced clonogenic survival after radiation by perifosine 

in both KB and A431 cells. Although the mechanism of radiosensitization by 

perifosine remains unclear, we observed a strong exposure time-dependency. In 

view of this observation, survival signaling pathways such as MAPK and PKB/Akt 

remain relevant targets in perifosine-induced radiosensitization. In this context, it 

has recently been suggested that inhibition of the PKB/Akt pathway reduces DNA-

PK activity, thereby interfering with DNA damage repair [14]. This may in part 

explain the radiosensitizing effect of perifosine. 

The mechanism of action of APLs is not yet fully understood. It has been 

suggested that inhibition of angiogenesis could contribute to the antitumor effect of 

edelfosine [15]. Underlying this hypothesis is a selective induction of apoptosis by 

APLs in proliferating endothelial cells [16]. We studied the anti-angiogenic 

properties of edelfosine, perifosine and miltefosine in more detail using 2 well-

established in vitro assays. Indeed, a dose-dependent inhibition of capillary-like 

structures was observed for all tested compounds. Whether APLs exert anti-

angiogenic effects in vivo remains to be determined. 

In addition to proliferation-dependent cytotoxicity in endothelial cells, APLs have 

been described to selectively target certain tumors. In this respect, the KB 

carcinoma is a tumor model which responds to APL treatment both in vitro and in 

vivo [17]. Importantly, in KB cells we observed an enhanced radiation response in 

vivo after oral perifosine treatment. This could, to a large extent, be explained by 

the high degree of drug uptake by these cells. We tested in vitro and in vivo 

perifosine accumulation in 3 human squamous cell carcinomas (KB, A431, and 

HNXOE). Drug uptake of these tumor models in vitro correlated both with uptake 

when grown as xenografts and with perifosine sensitivity. The high drug uptake, 

sensitivity and enhanced tumor response after combined treatment in KB cells 

indicate a crucial role of drug internalization both in vitro and in vivo. This is 

corroborated by the fact that most APL-resistant tumors display reduced drug 
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uptake [8,18,19]. Measurement of drug concentrations in (tumor) tissues from 

patients, which has not yet been feasible, would therefore be of great value to 

place our results obtained in the lab in clinical context. 

We studied in more detail the role of endocytosis in uptake of perifosine and 

prototype edelfosine. Previous studies revealed a role of lipid rafts in the uptake of 

edelfosine by mouse lymphoma S49 cells [8]. We hypothesized that perifosine was 

internalized in a similar fashion. Indeed, edelfosine-resistant S49
AR

 and S49
siSMS1

 

cells, which lack sphingomyelin synthesis due to downregulated sphingomyelin 

synthase 1 expression [9], show a general resistance to the other APL analogues 

we tested, albeit to different extents. A clear tumor type dependency for raft-

mediated uptake of APLs was demonstrated using the KB/KBr carcinoma model. 

The extensive drug accumulation by KB cells was shown to be severely 

compromised by ATP depletion and low temperature. This energy-dependent 

cellular uptake seems not to be related to endocytosis, since the basal endocytic 

pathways in the APL-resistant KBr cells, were unimpaired. Alternatively, it could be 

mediated by an unknown ATP-driven transporter. Identifying the mode of uptake in 

KB cells might allow the prediction of the response of other tumor types to APL 

treatment, both as single and multimodality treatment regimens. 

Perifosine has been evaluated as single agent in multiple phase II studies but 

unfortunately, results are in general disappointing [20-27]. Therefore, instead of 

using perifosine as single agent, we focused on its potential radiosensitizing 

properties. This is a fundamentally different approach and usually requires lower, 

and thus less toxic drug doses. Furthermore, structure-activity studies might lead to 

the generation of APL analogues with an improved therapeutic index. In any case, 

their mechanism of action, distinct from classical anticancer regimens, makes APLs 

potentially most useful in combined modality strategies. Indeed, preclinical data is 

mounting that perifosine enhances not only the anti-tumor effect of radiotherapy, 

but also of other anticancer agents [28-32].  

In conclusion, accumulating evidence suggests that APLs can complement 

conventional anti-cancer treatment in the clinic. The results presented in this thesis 

suggest that clinical use of perifosine in the treatment of solid tumors might be 

most effective in a combined modality approach. More efforts must be made to 

come to an evidence-based tumor treatment strategy. When there is a role of APLs 

beyond the experimental use as anti-cancer agents, this role will be limited to 

distinctive tumor types as is the case with most available anti-cancer treatments. 

To achieve a patient-tailored anti-cancer treatment, more preclinical data need to 
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be generated concerning markers predicting tumor response in vivo. In our 

research, we found a one-to-one relationship between APL uptake and response in 

multiple tumor models, suggesting that components in pathways involved in uptake 

of amphiphilic molecules are in this respect attractive candidate markers. Evidence 

is accumulating that the uptake routes of these types of molecules include both 

endocytic internalization pathways and more specific ATP-driven transporters, as 

appears to be the case in the KB tumor model. A possible identification of this 

transporter in KB cells and subsequent screening for the presence and expression 

of this and other (genetically) related transporters in radioresistant tumor cell lines 

and patient-derived tumor tissue might be informative on the applicability of APL 

treatment in clinical anti-cancer therapy. When the mechanism of entry into tumor 

cells is better understood, unraveling of the complex mechanism of APL-induced 

cytotoxicity will be the next challenge. 
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Samenvatting 

Alkylfosfolipiden behoren tot een heterogene groep van synthetische fosfolipiden 

met een enkele (lange) koolwaterstofketen. Deze groep van anti-kankermiddelen is 

zeer effectief gebleken in preklinische modellen, maar de klinische toepassing is 

beperkt als gevolg van maag-darm toxiciteit. Doordat alkylfosfolipiden een 

werkingsmechanisme hebben dat verschilt van de klassieke anti-

kankerbehandelingen (ze grijpen aan op celmembranen en niet op het DNA), zijn 

deze middelen aantrekkelijk om te combineren met andere modaliteiten zoals 

radiotherapie. Bovendien remmen alkylfosfolipiden de activering van bepaalde 

signaal transductie routes, zoals PKB/Akt en MAPK, die tumorcellen kunnen 

beschermen tegen de beschadigende werking van bestraling. Inderdaad blijken 

alkylfosfolipiden onder sommige condities de effectiviteit van bestraling te kunnen 

verhogen. Dit proefschrift beschrijft het onderzoekstraject naar de klinische 

toepassing van alkylfosfolipiden als combinatiebehandeling met bestraling, van het 

mechanisme van drug opname door gekweekte tumorcellen, via effectiviteit- en 

toxiciteitstudies in proefdieren naar uiteindelijk een fase I patiëntenstudie. In het 

bijzonder hebben we perifosine bestudeerd, een alkylfosfolipide dat oraal kan 

worden toegediend en dus voor patiënt en arts gemakkelijk in gebruik is.  

In hoofdstuk 1 beschrijven we het historisch gebruik van de verschillende 

alkylfosfolipiden als anti-kankerbehandeling en de gedachtegang om deze 

middelen te combineren met bestraling. Bovendien bediscussiëren we de eerste 

onderzoeksresultaten van deze combinatie. 

Om effectief te kunnen zijn, moeten alkylfosfolipiden opgenomen worden door de 

tumorcel. In de hoofdstukken 2.1 en 2.2 is het onderzoek beschreven naar de 

opname via endocytose (opname van extracellulaire deeltjes, vloeistoffen en 

organismen via instulping van de plasma membraan gevolgd door binnenwaartse 

afsnoering van membraanblaasjes). Uit eerder onderzoek is gebleken dat het 

alkylfosfolipide prototype edelfosine in belangrijke mate wordt opgenomen via 

zogenaamde ‘lipid rafts’. Rafts (letterlijk ‘vlotten’) zijn microdomeinen van de 

plasma membraan die worden gekenmerkt door een hoog gehalte in cholesterol en 

sfingomyeline. Deze rafts zijn betrokken bij diverse processen zoals 

signaaltransductie en inductie van apoptose, maar vormen ook een opname route 

van onder andere micro-organismen en, zoals recent is gebleken, van edelfosine. 

Wij vonden dat opname van alkylfosfolipiden via lipid rafts sterk celtype-afhankelijk 

is. Terwijl opname van de diverse geteste alkylfosfolipiden in S49 lymfoma cellen in 
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hoge mate afhankelijk was van de aanwezigheid van functionele rafts, vonden we 

hier geen aanwijzingen voor in KB carcinoma cellen. De hoge opname van 

alkylfosfolipiden door KB cellen blijkt een sterk temperatuur- en energie-afhankelijk 

proces, wat helaas nog niet volledig opgehelderd is. In hoofdstuk 2.3 beschrijven 

we de remmende werking van alkylfosfolipiden op angiogenese (het proces dat 

leidt tot de vorming van nieuwe bloedvaten). Deze eigenschap is gebaseerd op 

een selectieve opname van deze stoffen door delende endotheelcellen, een 

conditie die belangrijk is tijdens angiogenese. In 2 in vitro modellen vertonen alle 

geteste alkylfosfolipiden een remmende werking op de uitgroei van een tubulair 

netwerk van endotheelcellen, hetgeen erop duidt dat de remming van 

bloedvatvorming een mogelijk mechanisme is dat bijdraagt aan het anti-kanker 

effect van alkylfosfolipiden. 

Hoofdstuk 3 omvat voornamelijk de proefdierexperimenten van dit proefschrift. In 

hoofdstuk 3.1 is de farmacokinetiek van perifosine bepaald in de muis na orale 

toediening. Bovendien hebben we het tijdsverloop van perifosine-ophoping 

bepaald in 3 verschillende subcutane plaveiselcel carcinomen (KB, A431 en 

HNXOE). Perifosine blijkt niet afbreekbaar en heeft een lange halfwaardetijd in het 

lichaam. Relatief veel perifosine wordt teruggevonden in de geteste tumoren, 

vooral in het KB tumor model. Het effect van perifosine behandeling in combinatie 

met bestraling is bestudeerd in hoofdstuk 3.2. Het blijkt dat perifosine niet alleen 

het celdodend vermogen van bestraling versterkt op KB cellen in kweek, maar ook 

op KB tumoren geïnduceerd in naakte muizen. Terwijl perifosine behandeling en 

bestraling afzonderlijk slechts tijdelijk de tumorgroei remde, bleek een combinatie 

van beiden te leiden tot een complete en langdurige tumorremissie. Hoe de 

tumorcellen dood gaan is voor een groot deel nog onduidelijk; wel blijken er 

duidelijk meer apoptotische cellen aanwezig te zijn in tumoren na een 

combinatiebehandeling. 

Tenslotte rapporteren we in hoofdstuk 4 de eerste klinische studie naar een 

combinatiebehandeling van radiotherapie en perifosine. Kankerpatiënten met 

tumoren in een vergevorderd stadium (voornamelijk longkanker) bleken de 

behandeling goed te tolereren. De plasma concentraties perifosine die we bij deze 

patiënten hebben gemeten liggen in dezelfde orde van grootte als die gemeten zijn 

bij de dierexperimenten en die gebruikt worden in celkweekexperimenten. Een 

gerandomiseerde fase II studie is inmiddels gestart om te bepalen of de 

combinatiebehandeling daadwerkelijk effectiever is dan bestraling alleen. 
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Dankwoord 

Op het moment dat het proefschrift bijna af is en je slechts nog wat piekert over de 

ludieke inhoud van het dankwoord, mag je niet meer klagen. Dat ga ik dan ook niet 

doen. Met erg veel plezier denk ik terug aan mijn periode bij het NKI, waarvoor ik 

de volgende mensen wil bedanken: 

 

Als eerste noem ik hier natuurlijk mijn promotor en mijn copromotor. Marcel, 

bedankt voor dit veelzijdige promotieonderzoek, waar ik met grote vrijheid en 

vertrouwen aan heb kunnen werken. Via jouw speciale link tussen kliniek en 

onderzoek ben ik bovendien betrokken geweest bij nog diverse andere 

interessante projecten. Het in dit proefschrift beschreven onderzoek is tot stand 

gekomen in nauwe samenwerking met de groep van mijn copromotor. Wim, de 

discussies tijdens de werkbesprekingen op maandag en je commentaar op de 

manuscripten waren verhelderend. Vooral in de laatste fase heb ik zeer veel aan je 

gehad wat betreft het afronden van het opname werk en mijn proefschrift. 

 

Martijn, mijn paranimf, ging me voor in alle ellende en hielp me daarmee tegen wil 

en dank aan een voorbeeld. Ik heb misschien wel als één van de weinigen genoten 

van de cynische (of toch gewoon negatieve?) humor. Ook het darten en de borrels 

waar jij al eerder naar refereerde, vaak gevolgd door ritjes in het koekblik (†), zal ik 

niet vergeten. Helaas heb ik je uiteindelijk toch geen acceptabele muzieksmaak 

kunnen bijbrengen (nog steeds ‘an inch deep, an inch wide’!). 

 

Vrijwel alle (oud-)leden van de groep Schellens, met name Monique, Marije, 

(t)huisapotheker Sander, Natalie, Roos, Saskia, Dickmeister, Karin en Maarten wil 

ik bedanken voor de gezellige tijd op het kleine werkkamertje tegenover de 

koffiemachine, rondom de labs en af en toe ook in de kroeg. Monique, mijn andere 

paranimf, was tevens zeer streng kweeklab-beheerster (‘denk je aan het 

logboek?’): 5 jaar naast jou op de kamer was geen zeker geen straf. Jammer dat je 

op vrijdag zo vaak vrij was. Ik heb genoten van alle discussies, maar niet van die 

plastic gloeilamp die ik uiteindelijk vaak naar mijn hoofd kreeg. Iets later zat jouw 

wederhelft Marije aan mijn rechterkant te gamen, al heb ik haar snel moeten 

afschermen door middel van een anti-virusscherm. Het gekwetter van beide kanten 

kwam precies bij mijn bureau samen, gek genoeg zal ik daar toch wel met plezier 

aan terugdenken. Ik waardeer het verder ook dat jullie, tegen de richtlijnen in, me 
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aan het einde van de rit nog een handje geholpen hebben. FieldCamp, onze 

gezamenlijke liefde voor André H., het gerstenat en andere mooie zaken won het 

toch ruim van onze (maar vooral j☺uw) onhebbelijkheden. Jan tenslotte, bedankt 

voor de ruimte in jouw groep om op H6 dit onderzoek te kunnen doen. 

 

H3, met de ‘ALP/APC/APL’-groep (Arnold, Jeffrey, Menno, Shuraila, Robert Jan 

(de ‘Lipid Man’), Marianne, Gerald), was toch een soort 2
e
 huis voor mij. Ik kwam 

er af en toe chemicaliën, medium, serum (‘op H6 weer niet uitgevuld’), 

antilichamen etc. bietsen, maar ik heb er ook vele proefjes mogen doen. Arnold, 

het opname werk is in grote mate door jou een belangrijk hoofdstuk van dit 

proefschrift geworden. Met plezier herinner ik me onze gesprekken en discussies, 

de ‘quick & dirty’ proefjes en niet te vergeten… je koffie. Jeffrey, je hebt enorm 

geholpen met het publiceren van de laatste 2 papers. Na mijn afscheid lag mijn lot 

zelfs in jouw handen, gelukkig deed je vanaf dat moment de ene na de andere 

mooie proef (waarmee ik niet wil suggereren dat de proeven daarvoor minder mooi 

waren). Ik zal dan ook hier, als handballer, geen flauwe opmerking maken over het 

korfballen. 

 

Na eerst een maand door het NKI te hebben gezworven, kwam ik dan uiteindelijk 

toch terecht op H6. En gelukkig maar, het was een zeer prettige afdeling om te 

werken. Adrian en Fiona (en hun groepen) namen me bovendien ook nog eens op 

in hun radiobiologie ‘club’. Nuttig commentaar kwam vaak uit deze hoek tijdens de 

‘(vaak geen) soep’-besprekingen. Adrian, bedankt voor de tijd die je 

onvoorwaardelijk in dit onderzoek hebt gestoken. Sommige H6 collega’s hebben 

me wat extra bijgestaan, met me geluncht, of waren gewoon erg gezellig en wil ik 

hier dan ook met naam noemen: Jacqueline, Saske, Hans, Thea, Hilde, Ben, 

Ingrid, Els, Teun, Debbie. 

 

Leerzaam waren ook de besprekingen op H7, die ik helaas lang niet vaak genoeg 

heb kunnen volgen. Jannie, Esther en Inge, bedankt voor jullie interesse en input 

in mijn onderzoek. Esther, ondanks af en toe wat ongerief (ook bij jou), vond ik het 

toch best gezellig bij de muizen.  

 

Ze staan wat onderaan in het dankwoord, maar wellicht zijn ze voor de resultaten 

het meest belangrijk geweest: de research faciliteiten. Menig uur heb ik samen met 

mijn naakte muisjes doorgebracht in de kelder van het radionucliden-lab. Henny & 
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Theo hielpen me de ‘actieve’ proeven soepeltjes te laten verlopen (zélfs die 

vreselijke 
99m

Tc-annexin V scan!). Hetzelfde geldt voor Anita & Frank en Lenny & 

Lauran, met betrekking tot proeven met respectievelijk flow cytometrie en 

microscopie. Uiteraard vergeet ik niet de mensen van de proefdierfaciliteit die me 

in al die jaren het meest met de dieren geholpen hebben: Henk G., Henk S., Dick, 

Louis, Sjaak, Martin, Ton. 

 

Dan daar waar het allemaal begonnen is: bij Mike, Ron en niet te vergeten de rest 

van het Microarray Lab. Ook na mijn stage kon ik altijd bij jullie binnenlopen, niet 

alleen met betrekking tot microarray-experimenten, maar ook software problemen 

en andere zaken (zoals een filmavondje). 

 

Het is niet opgehouden bij het NKI, fijne collega’s vind je gelukkig ook ergens 

anders zoals bij de toxicologen van TNO. Prof. Mulder (Sylvius Laboratories, 

Leiden) ben ik erkentelijk voor zijn rol als opleider met betrekking tot de registratie 

als toxicoloog. 

 

Tenslotte een woord van dank aan mijn ouders die me alle mogelijkheden hebben 

geboden om mijn eigen weg te volgen. En lieve Esther, jij hebt aan den lijve 

ondervonden hoe deze promotie tot stand is gekomen (en we zijn nog steeds gek 

op elkaar!). Bedankt voor je steun en eindeloze geduld. 


