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Abbreviations and symbols

2PG 2-phosphoglycerate

3PG 3-phosphoglycerate

AA aminoacids synthesis pathways

ACE acetaldehyde

ADH alcohol dehydrogenase –E.C. 1.1.1.1

ALD fluctose bisphosphate aldolase –E.C. 4.1.2.13

BPG 1,3-bisphosphoglycerate

CJ
ei

flux control coefficient of enzyme i

C
xj
ei concentration control coefficient of enzyme i on metabolite xj

DHAP dihydroxyacetonephosphate

εvi
xj

elasticity of the rate vi for the metabolite xj

ENO enolase –E.C. 2.7.1.40

EtOH ethanol

F6P fructose-6-phosphate

F16P fructose-1,6-bisphosphate

Γ mass-actio ratio

G6P glucose-6-phosphate

GAP glyceraldehyde-3-phosphate

GAPDH glyceraldehyde-3-phosphate dehydrogenase –E.C.1.2.1.12

GLC glucose

GLCi intracellular glucose

GLT glucose transporter

HK hexokinase –E.C. 2.7.1.1

J steady-state flux

kcat catalytic constant of an enzyme

kdeg first order kinetic constant of the rate of protein degradation

KEq equilibrium constant

Km Michaelis-Menten constant



ii Abbreviations and symbols

ktrans first order kinetic constant of the rate of translation

P reaction of pathway product
vP J

xi
partitioned response coefficient for the metabolite xi

PEP phosphoenolpyruvate

PDC pyruvate decarboxylase –E.C. 4.1.1.1

PFK 6-phosphofructokinase –E.C. 2.7.1.11

PGI glucose-6-phosphate isomerase –E.C. 5.3.1.9

PGK phosphoglycerate kinase –E.C. 2.7.2.3

PGM phosphoglycerate mutase –E.C. 5.4.2.1

PK pyruvate kinase –E.C. 2.7.1.40

PKA protein kinase A –E.C. 2.7.11.11

PPP pentose phosphate pathway

PYR pyruvate

ρdd,protein degradation/dilution regulation coefficient for a protein

ρdd,Vmax
degradation/dilution regulation coefficient for Vmax

ρh hierarchical regulation coefficient

ρm metabolic regualtion coefficient

ρmRNA,flux transcriptional regulation coefficient for an enzyme flux

ρmRNA,protein transcriptional regulation coefficient for a protein

ρmRNA,Vmax
transcriptional regulation coefficient for Vmax

ρPT,V max posttranslational regulation coefficient for Vmax

ρtrans,Vmax
translational regulation coeffcient for Vmax

ρtrans,protein translational regulation coefficient for a protein

Rj
i response coefficent of the variable or parameter i on the variable j

S reaction or pathway substrate

SD standard deviation

SEM standard error of the mean

SC storage carbohydrates –glycogen and trehalose

TPI triose-phosphate isomerase –E.C. 5.3.1.1.

v enzyme rate

vtrans rate of translation

vdeg rate of protein degradation

vdil rate of protein dilution due to growth







Summary

This thesis is concerned with the study of the regulatory processes involved in the
adaptation of metabolic systems to environmental and genetic changes. The study of
regulation is an endeavor unique to biology. It addresses systems of a complexity that
is unparalleled in the inanimate realm. More importantly, these systems are adaptive:
living cells modulate their system properties in response to environmental changes.
These modulations are governed by yet unknown drives and constraints.

In the introductory chapter (Chapter 1) it is argued that our understanding of reg-
ulatory processes is hindered by the lack of a precise definition of the term regulation
and of appropriate methodologies to describe regulatory process in an unambiguous
and quantitative manner. Chapters 2 to 5 report the implementation, evaluation and
further development of Regulation Analysis, a method that enables the quantitative
description of the regulation of enzyme rates and their catalytic capacities. This
method was implemented, tested and elaborated in a series of investigations upon
the regulation of Saccharomyces cerevisiae’s glycolysis to nutrient starvation, oxygen
deprivation, increased free-energy dissipation by addition of benzoic acid, or deletion
of the gene HXK2 encoding hexokinase II. The experimental findings and analyses
reported in this thesis yielded new insights into the complexity of the regulation of
metabolic fluxes and the catalytic capacities of the enzymes catalyzing their reactions.

In the past, several efforts have been made to devise a quantitative framework
for the study of metabolic regulation. Of these, Regulation Analysis stands out as a
method suitable for the experimental study of regulatory processes. Regulation Anal-
ysis quantitatively dissects the contributions of changes in enzyme capacities (Vmax

–called hierarchical regulation) and changes in the way enzymes interact with the rest
of metabolism (called metabolic regulation) to the local regulation of enzyme rates.
This dissection is based on a property of most enzyme-catalyzed reactions: the rate of
catalysis is directly proportional to the amount of active enzyme. Regulation Analysis
introduces the possibility of making unambiguous and quantitative descriptions of the
regulation of fluxes through individual enzymes embedded in biochemical networks of
any complexity, in response to any number or kind of simultaneous perturbations.

Regulation Analysis is used throughout this thesis to describe the regulation of
fluxes through individual glycolytic and fermentative enzymes in the yeast Saccharo-
myces cerevisiae when it adapts to a variety of environmental and genetic changes.
Chapter 2 gives a detailed description of the method and introduces precise biochem-
ical interpretations for all possible numerical outcomes of the analysis. Further, it
refines the original interpretation of both hierarchical and metabolic regulation so
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as to accommodate the common feature of differential expression of isoenzymes with
different kinetic properties.

In Chapter 3, Regulation Analysis is used to formulate testable predictions of three
hypotheses on the global regulation of pathway fluxes in terms of the local regulation
of the enzyme rates in that pathway. These hypotheses were: exclusive metabolic
regulation, single-site modulation and multi-site modulation. The first hypothesis
predicts that all enzyme rates are regulated metabolically (i.e. the absence of hierar-
chical regulation); the second hypothesis, predicts that a single “key” metabolic step
is regulated hierarchically while all other steps are regulated metabolically. The third
hypothesis, predicts exclusive hierarchical regulation of all the enzymes rates in the
pathway so as to ensure the homeostasis of metabolite concentrations. Chapters 3 , 4
and 5 describe the regulation of fluxes through individual glycolytic and fermentative
enzymes when cultures of Saccharomyces cerevisiae adapted to: nitrogen or carbon
starvation, oxygen deprivation, increased free-energy dissipation by addition of ben-
zoic acid and the deletion of the gene HXK2 encoding hexokinase II. These studies
taken together allow the following conclusions: (i) metabolic regulation is often an
important contributor to the local regulation of enzyme rates, (ii) living yeast cells
use all possible combinations of hierarchical and metabolic regulation to modulate the
rates of individual enzymes, (iii) fluxes through enzymes in a common pathway are
regulated in different ways, suggesting that they play different regulatory roles in the
regulation of the pathway’s flux, (iv) the same metabolic step is often regulated differ-
ently when cells adapt to different perturbations, (v) the suggested hypotheses on the
global regulation of metabolic pathway fluxes were falsified for the conditions tested,
implying that they are not general, and (vi) the regulation of glycolytic and fermen-
tative fluxes is often regulated by changes within as well as without the pathway’s
enzymes. These findings suggest that pathway fluxes are regulated in a subtle way
with different enzymes playing different regulatory roles and show that the regulation
of pathway fluxes need not to be governed by single drives or constraints. They also
urge the formulation of new hypotheses on the global regulation of pathway fluxes.

An extension of the scope of Regulation Analysis to quantify the regulation of
enzyme amounts and catalytic capacities in terms of the contributions of changes
in mRNA concentration, translation and protein degradation rates, and posttransla-
tional modifications is developed in Chapter 4. The analysis is based on the assump-
tions that protein concentrations are at steady-state and that the rates of translation
and degradation of individual protein species are directly proportional to the corre-
sponding concentrations of mRNA and protein. While the former assumption is likely
to be warranted by the use of chemostat cultures, the latter two still require experi-
mental verification, which will require increased precision of the available analytical
techniques. The assumptions of direct proportionality of translation and protein
degradation rates with respect to the concentrations of the corresponding mRNA and
protein are based on the expectation that the machineries involved (ribosomes and
proteasome) are unspecific and that the concentration of any single mRNA or protein
species represents a minority in the population of all other mRNA or protein species.

In Chapter 4 this extended Regulation Analysis is applied to study the regulation
of glycolytic enzyme amounts and capacities when S. cerevisiae adapts to anaerobiosis
or to the presence of benzoic acid. Experiments showed that mRNA concentration
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changes correlate poorly with the changes of enzyme amounts and capacities. The
analysis suggests that mRNA changes account for less than 50% of the regulation
of the glycolytic enzyme amounts and capacities and that changes in the rates of
translation and/or protein degradation are the main regulators of protein amounts.
Attempts to quantify the contributions of posttranslational modifications to the reg-
ulation of enzyme capacities highlighted the need for more accurate and reproducible
proteomics. Although the standard errors of the mean were too large to be decisive,
the occurrence of posttranslational modifications affecting the catalytic capacities of
triosephosphate isomerase and phosphoglycerate kinase is suggested.

The methodologies used and developed in this thesis provide a quantitative frame-
work with which experimental testing of hypotheses on the drives and constraints
governing regulatory processes is made possible. Application of these methodologies
to describe real regulatory processes in living cells has provided insights into a pre-
viously undescribed complexity of metabolic regulatory processes. It has shown that
processes that have received relatively little attention such as metabolic regulation of
fluxes, translation and protein degradation rates, are likely to play a major role in
the regulation of metabolic systems.
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Chapter 1

General Introduction

This thesis is concerned with the study of regulatory processes involved in the adap-
tation of glycolysis in the bakers’ yeast Saccharomyces cerevisiae to environmental
and genetic changes. The study of regulation requires a precise definition of the term.
This definition should distinguish regulation from control, which is a different but
related concept, the two concepts often being confounded in the literature. Further,
it is necessary to develop methodologies to describe regulatory processes in a quan-
titative and unambiguous manner. These two aspects are addressed in this thesis.
Regulation Analysis, a method to describe the regulation of enzyme rates in a quan-
titative manner, is refined, extended and used to propose both a precise definition of
regulation and a methodology for its study in metabolic systems.

The study of regulation is an endeavor unique to biology. First, it involves the
study of systems with a complexity that is unparalleled in the inanimate realm. Sec-
ond, these complex systems are adaptive. For instance, metabolism responds to en-
vironmental perturbations by changing its system properties (fluxes and metabolite
concentrations in this case). Frequently, the adapted state cannot be explained by
the kinetic properties of the system before the perturbation because also these kinetic
properties are actively modulated by the cell. These modulations are determined by
yet unknown drives and constraints.

In the following sections, the main sources of metabolic complexity are outlined
together with a description of several methodologies that have been developed to
study various aspects of this complexity.

1.1 The Complexity of Metabolic Networks

One aspect hindering the understanding of metabolic systems and their regulation is
their complexity. Metabolic systems comprise a large number of enzyme-catalyzed
reactions that interact non-linearly through metabolic intermediates. In this section,
these two sources of complexity, i.e. the topology and the non-linearity of the inter-
actions, are described.
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1.1.1 Size and structural organization of metabolic networks

Metabolic networks typically comprise hundreds of metabolites involved in a larger
number of reactions (cf. Palsson, 2006). The number of reactions in which metabolites
participate is not uniformly or normally distributed (Edwards & Palsson, 1999; Fell
& Wagner, 2000; Wagner & Fell, 2001). Instead, a small number of metabolites
is involved in a large number of reactions, while a larger number of metabolites is
involved in only a few reactions. The distribution follows a power law (Fell & Wagner,
2000; Wagner & Fell, 2001). Networks with this type of connectivity distribution
are called “small-world” networks and share the property that any two nodes are
separated by a small number of links.

The biological significance of the small-world architecture of metabolic networks
is unclear. Barabasi & Albert (1999) showed that one way of constructing scale free
networks is by accretion, where new nodes (e.g. metabolites) are connected (e.g via
reactions) preferentially to nodes that are already highly connected. Such a construc-
tion algorithm could have taken place in the early evolution of life (Fell & Wagner,
2000; Wagner & Fell, 2001). On the other hand, Watts & Strogatz (1998) showed
that the small-world architecture speeds up the transition between steady-states after
a perturbation. Fell and Wagner, however, warn that metabolic dynamics are more
complicated than suggested by the simple kinetics used by Watts and Strogatz (Fell
& Wagner, 2000; Wagner & Fell, 2001).

1.1.2 Non-linearity of enzyme kinetics

The great majority of chemical reactions in metabolic networks is catalyzed by en-
zymes. In contrast to the linear kinetics observed in chemical kinetics, the rates of
enzyme-catalyzed reactions depend non-linearly on the concentrations of substrates
and products and exhibit saturation at high concentrations (Fell, 1997).

The simplest kinetic equation that has been shown to adequately describe the in
vitro kinetic behavior of some enzymes is the reversible Michaelis-Menten equation:

v =

Vmax

Km,S

(

S −
P

KEq

)

1 +
S

Km,S
+

P

Km,P

(1.1)

where Vmax is the rate of catalysis at very high (infinite) concentrations of the sub-
strate S, and in the absence of the product P ; KEq is the equilibrium constant of the
chemical reaction, Km is the Michaelis-Menten constant (and equals the substrate
concentration at which the enzyme is half-saturated with substrate in the absence of
product), and the subscripts S and P refer to the substrate and product respectively.

The dependence of the enzyme rate on the concentration of the substrate and the
product as described by Eq. (1.1) is shown in Figure 1.1. The relation between
S and the rate is hyperbolic with an asymptote located at Vmax. The curvature of
the hyperbola depends upon Km,S and upon the concentration of the product. This
curvature can be further modified by inhibitors. Description of the latter modification
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Figure 1.1: An instance of a reversible Michaelis-Menten rate equation. The rate de-
pendence upon the concentration of substrate and product given by Eq. (1.1) is shown
(Vmax = 10, KEq = 4, Km,S = 1, Km,P = 2). Modified from Fell (1997).

requires inclusion of the inhibitor concentration and one or two inhibition constants
(depending on the type of inhibition) describing its binding affinity to the enzyme.

Most enzymes have, however, more than one substrate and product. Approxi-
mately three quarters of the enzymes reported in public databases have two substrates
(Fell, 1997). The kinetics of most of these enzymes can be adequately described by
variants of Eq. (1.1) that include concentrations and affinity constants for two sub-
strates and products and, often, the concentrations and affinity constants of one or
more inhibitors. These variants are far more complicated than Eq. (1.1) comprising
10 or more kinetic constants (e.g. Segel, 1993; Cornish-Bowden, 1995) but are still
hyperbolic functions of the substrate concentrations.

A significant minority of enzymes exist that do not show hyperbolic dependencies
of the rate as function of substrate concentrations (Fell, 1997). The most common
non-hyperbolic enzymes are described by cooperative kinetics comprising several, in-
teracting binding sites. The key characteristic of these descriptions is that the binding
affinity of one site depends on whether the other sites are occupied. In the case of
positive cooperativity, the affinity for the substrate is enhanced when other binding
sites are occupied. Positive cooperativity is diagnosed by a sigmoidal dependence of
the rate upon the concentration of the substrate (cf. Figure 1.2).

In the 1950s, allosteric inhibition was discovered. A group of enzymes at the
beginning of metabolic pathways were found to be inhibited by metabolites further
downstream. The significance of this was that the inhibitor bore no chemical re-
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Figure 1.2: An instance of a cooperative kinetics with an allosteric activator. The rate
dependence of phosphofructokinase (PFK) on its substrate fructose-6-phosphate (F6P)
is shown for different concentrations of PFK’s activator frucose-2,6-bisphosphate (F26P).
Dashed line (F26P = 1µM), dotted line (F26P = 5µM) and solid line (F26P = 100µM).
Modified from Teusink et al. (2000).

semblance to either substrates or products and therefore was expected to act on a
site other than the active site (Fell, 1997). Monod, Changeux and Jacob proposed
a number of generalizations based on the available evidence on allosteric enzymes
(Monod et al., 1963): i) allosteric enzymes are multimeric, ii) the modifier (inhibitor
or activator) acts by binding to the enzyme at a site different from the active site
(these authors coined the term allosteric), iii) in general, the rate dependence on at
least one of the substrates is sigmoidal, and iv) in most cases, the modifier affects the
half-saturation constant of the enzyme (cf. Figure 1.2).

The non-linearity and complexity of enzyme kinetics precludes analytical solutions
of metabolic balances even in simple models including only a few reactions. When
enzyme kinetics is considered jointly with the magnitude and connectivity of real
metabolic networks, the complexity of the description is greatly increased. Only nu-
merical solutions are feasible and multiple solutions for the same parameter set may
exist. At the same time, the description is mined with uncertainties concerning not
only the kinetic mechanisms and parameters describing enzyme-catalyzed reactions
but even the precise topology of the network. In order to identify and evaluate the
gravity of these uncertainties, the system’s description needs to be explored exten-
sively. The difficulties involved in this exploration increase with the complexity of the
system’s description. The complexity of the description, in turn, increases with the
accuracy with which the description aims to mimic the real system. This is perhaps
one of the greatest challenges of contemporary biology, the development of methods
and approaches to study the complexity of living systems and ways to explore these
descriptions so that they can be confronted with the biological reality.
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1.2 Theoretical Approaches to the Study of Metab-
olism

In the previous section, two important sources of the complexity of metabolic systems
were described. In this section, some of the theoretical methodologies that are used to
study those aspects of metabolic networks are outlined. The theoretical approaches
to the study of metabolism are based on adaptations of methodologies originally
developed in non-biological disciplines such as physics, engineering and economics.
An important step in those methodologies is the construction of mathematical mod-
els. These are simplifying abstractions of reality that serve as complex hypotheses
enounced in an unambiguous and quantitative manner.

1.2.1 The mathematical description of metabolic systems

The mathematical description of metabolic systems is often performed by means of
time-dependent balance equations of the metabolite pools in terms of the fluxes that
produce or remove them (Heinrich et al., 1977).

dxi

dt
=

m∑

j=1

cij vj , i = 1, . . . , n (1.2)

where xi represents the concentration of a metabolite i, n the number of different
metabolite species, vj the rates of enzymes producing or removing the metabolite
and m the number of reactions in the system. cij represents the stoichiometric coef-
ficient for a metabolite i in reaction j. The stoichiometric coefficient will be positive
if the reaction j produces the metabolite, negative if it removes it and zero if the
metabolite does not participate in reaction j. The system of n equations in Eq. (1.2)
can alternatively be expressed in matrix notation as:

dx

dt
= N · v (1.3)

here x represents a vector with the concentrations of all metabolites in the system,
N is the stoichiometric matrix containing all the stoichiometric coefficients (encoding
the structure or topology of the metabolic network), and v is a vector containing the
values of the rates of all reactions in the system. Since v depends on x, Eq. (1.3)
represents a system of ordinary differential equations.

The structure of metabolic networks

Knowledge of the structure of metabolic networks is prerequisite to any simulation of
biochemical networks (Heinrich et al., 1977). The structure of a metabolic network is
determined by the stoichiometry of reactions and by the presence and specificity of its
enzymes. This information is encoded in the stoichiometric matrix, N. The rows of
N represent metabolite balances and its columns the metabolites that participate in
each reaction. If the concentrations of metabolites do not change in time, the system
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is said to be in steady state. In this condition the system of differential equations
Eq. (1.3) is reduced to a system of algebraic equations:

N · v = 0 (1.4)

Although in general the rate equations that determine the rates in the vector v,
are non-linear with respect to metabolite concentrations and kinetic parameters, the
system of equations Eq. (1.4) is linear if the rates (and not the metabolite concen-
trations) are considered. Then, Eq. (1.4) can be studied using common functions of
linear algebra (e.g. Strang, 1986).

Non-zero v vectors satisfying Eq. (1.4) exist only if N contains linearly dependent
columns, i.e. if the rank of N is smaller than the number of reactions in the system.
The linear dependencies among the columns of N can be identified by computing its
null space. The dimension of the null space is the number of columns minus the rank
of N (m− rank) and it represents the number of linearly independent vectors v that
are solutions to Eq. (1.4). Any combination of rates in v that satisfies Eq. (1.4) can
be computed as a linear combination of the columns of the null space. Therefore, the
null space spans all possible rate combinations that result in a steady state (Strang,
1986).

Also of interest are the linear dependencies among the rows of N. These can be
identified by computing the null space of the transpose of N, also called the left null
space of N (Strang, 1986). The existence of linear dependent metabolite balances
(encoded in the rows of N) means that linear combinations of these metabolites are
constant and that they share a common chemical moiety that neither enters nor leaves
the network (Heinrich & Schuster, 1996). As in the case of the null space, the dimen-
sions of the null space of the transpose of N equals the number of rows minus the
rank of N (n − rank) and its columns represent independent conserved moieties.

Applications of structural analysis. The structure of metabolic networks, as encoded in
the stoichiometric matrix, can be combined with the measurement of external fluxes
to calculate the magnitudes of internal fluxes. In the 1980s, stoichiometric models of
the central carbon and free-energy metabolism of Saccharomyces cerevisiae (Bonnet
et al., 1980) and Escherichia coli (Holms, 1986) were constructed. These models were
used to compute the intracellular fluxes from measured in- and effluxes.

The stoichiometry of metabolic networks imposes definite limits to the material ef-
ficiency of metabolic processes. The amount of a byproduct or biomass produced per
unit of substrate consumed has a maximum value that is imposed by the stoichiometry
of the network. Considerable effort has been invested in the calculation of maximal
biomass yields (cf. Stouthamer, 1979). A prerequisite for maximal biomass yield calcu-
lations is the determination of the biomass composition in terms of polymers (Lange &
Heijnen, 2001, and references therein). For simplicity, biomass is commonly described
as consisting of five groups of macromolecules: proteins, carbohydrates, lipids, RNA
and DNA. Together with water and metals these macromolecules are the constituents
of biomass (Lange & Heijnen, 2001). The biomass composition can be combined with
the average polymer compositions in terms of monomers (i.e. amino acids, sugars,
nucleotides, etc.) and with the biosynthetic pathways of these monomers to calculate
an assimilation equation describing the synthesis of biomass from mineral substrates.
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An assimilation equation for S. cerevisiae growing anaerobically on glucose was com-
puted by Verduyn et al. The stoichiometric coefficients of this assimilation equation
were adjusted to accommodate the observed biomass yield (Verduyn et al., 1990b).

Based on the assimilation equation and previously published estimates of ATP re-
quirements for the polymerization of macromolecules, Verduyn et al. summarized the
known processes involved in ATP utilization and calculated a ‘theoretical’ ATP yield
of 28.3 g biomass (mol ATP)−1 (Verduyn et al., 1990a). An experimental estimation
of the ATP yield was made based upon an ATP balance. The ATP production was es-
timated to be equal to the specific production of ethanol minus the specific production
of glycerol. ATP production or consumption due to the formation of other byproducts
was neglected on the basis of their low fluxes. The experimental estimate reported
was 15.8 g biomass (mol ATP)−1, which is much lower than the theoretical estimate
quoted above (Verduyn et al., 1991). This large discrepancy between the theoretical
and experimental estimations of ATP yields has also been reported for other microor-
ganisms (Stouthamer, 1979). The gap is assumed to be filled by additional ATP
utilizing processes such as the transport of metabolites or macromolecules across in-
tracellular membranes, the proofreading of polymerization reactions, the degradation
of proteins and mRNA and by signal transduction pathways. However, the quantifi-
cation of the amount of ATP consumed by these processes is very difficult and little
progress has been made in their estimation (Verduyn et al., 1990a).

Constraint-based models and linear programming. Linear metabolite balances can be
further constrained by including inequalities in the linear equations indicating the
presence of irreversible reactions. These inequalities form a plane in the flux space
that intersects the null space dividing the latter into two cones, one of which is compat-
ible with the positive direction of irreversible reactions (Clark, 1980; Schuster et al.,
2000; Schilling et al., 2000).

Savinell & Palsson (1992a,b) proposed the assumption that the biomass yield is
maximized. They used Linear Programming to choose among alternative flux distri-
butions in underdetermined metabolic networks. This approach has been employed
to predict growth and by-product formation rates (e.g. Varma & Palsson, 1994; van
Gulik & Heijnen, 1995) and for the estimation of the P/O ratio and growth-related
maintenance (Vanrolleghem et al., 1996). Constrained stoichiometric models that
include the stoichiometric relations of all known metabolic reactions of a particular
organism have been constructed and optimized for biomass yield (Edwards & Palsson,
1999, 2000; Schilling et al., 2002; Famili et al., 2003). Despite the “genome-scale” of
these network reconstructions, the gap between theoretical and experimental ATP
yields remained. However, once these genome-scale models are fitted by introducing
a fixed ATP consuming flux to accommodate the experimental ATP yield gap (as
proposed by Verduyn et al. (1991)), and maximized for biomass yield, they reproduce
well the changes in specific fluxes observed in chemostat cultures with varying dilu-
tion rates. However, when flux changes as functions of dilution rates deviate from
linearity, as in the case of aerobic glucose limited cultures of S. cerevisiae, the models
fail to reproduce the experimental results (Famili et al., 2003).



8 General Introduction

The dynamics of metabolic systems

The dynamics of metabolic systems are often described by systems of differential
equations that describe metabolite balances in time, Eqs. (1.2) and (1.3). Most of-
ten it is assumed that metabolites are homogenously distributed in space (which gives
rise to ordinary differential equations) and that enzymes are internally at steady state
(i.e. the kinetics of the formation of enzyme-metabolite complexes are not included
explicitly) (Heinrich et al., 1977).

Stability analysis. If the environmental conditions are stable, metabolic systems of-
ten evolve towards a steady state, which is defined by constant values of flux and
metabolite concentrations (Heinrich et al., 1977). Steady states may be dynamically
stable or unstable. A steady state is globally stable if the system returns to its original
steady state after any perturbation. Global stability is, however, very hard to identify
(Heinrich et al., 1977). Only the evaluation of local stability will be discussed here.
A steady state is said to be locally stable if the system returns to its original steady
state after a small perturbation.

The procedure to evaluate the local stability of a steady-state will be illustrated
for a two-component system. The local stability of systems of higher dimensions is
analyzed in essentially the same way (cf. Hubbard & West, 1995).

Consider a system of two non-linear differential equations:






dx

dt
= f(x, y)

dy

dt
= g(x, y)

(1.5)

for which it’s possible to find variable values x0 and y0 that satisfy the equilibrium
condition, i.e.: 





f(x0, y0) = 0

g(x0, y0) = 0
(1.6)

A linear approximation to the system of non-linear differential equations Eq. (1.5)
is made by a first order Taylor expansion arround the equilibrium-state:







dx

dt
≈ f(x0, y0) +

∂f

∂x

∣
∣
∣
∣
x=x0

y=y0

· (x − x0) +
∂f

∂y

∣
∣
∣
∣
x=x0

y=y0

· (y − y0)

dy

dt
≈ g(x0, y0) +

∂g

∂x

∣
∣
∣
∣
x=x0

y=y0

· (x − x0) +
∂g

∂y

∣
∣
∣
∣
x=x0

y=y0

· (y − y0)

(1.7)

The system of equations Eq. (1.7) can be expressed in matrix form as:

[
ẋ
ẏ

]

≈







∂f

∂x

∂f

∂y

∂g

∂x

∂g

∂y







∣
∣
∣
∣
∣
∣
∣
∣
x=x0

y=y0

·





x − x0

y − y0



 (1.8)
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where







∂f

∂x

∂f

∂y

∂g

∂x

∂g

∂y







is the Jacobi matrix.

With the change of variables:

u = (x − x0) ∴
du

dt
=

dx

dt

v = (y − y0) ∴
dv

dt
=

dy

dt
(1.9)

the system of linear differential equations Eq. (1.7) may be expressed as:

[
u̇
v̇

]

≈

[
a b
c d

]

·

[
u
v

]

(1.10)

where a, b, c and d represent the partial derivatives ∂f/∂x, ∂f/∂y, ∂g/∂x and ∂g/∂y,
respectively, evaluated in the equilibrium-state.

Systems of linear differential equations, such as Eq. (1.10) have the well known
solution: [

u
v

]

=

[
Cu

Cv

]

· eλ t
∴

[
u̇
v̇

]

= λ · eλ t ·

[
Cu

Cv

]

(1.11)

Substituting Eq. (1.11) into Eq. (1.10) and using matrix notation one obtains:

λ · c = A · c ∴ (A − λ · I) · c = 0 (1.12)

where λ represents the eigenvalues of the Jacobi matrix and c its eigenvectors, A is
the matrix of evaluated partial derivatives shown in Eq. (1.10), i.e. the Jacobi matrix
evaluated in the equilibrium-state, and I is the identity matrix.

Non-trivial solutions for Eq. (1.12) exist (i.e. solutions with c 6= 0) if the matrix
(A−λ ·I) has linearly dependent columns, that is, if the matrix’s determinant is zero.
This fact is used to compute the eigenvalues by solving:

det |A − λ · I| = 0 (1.13)

which yields the characterisitic equation, which for 2 component systems is:

a2 λ2 + a1 λ + a0 = 0 (1.14)

Equation (1.14) has two roots, which are the eigenvalues of the Jacobi matrix. If
both eigenvalues are real and positive, the equilibrium is locally unstable (called a
source), if they are both real and negative, the equilibrium is locally stable (called a
sink). It may happen that the eigenvalues are real and have opposite signs. Then the
equilibrium is a saddle point (a sink in one dimension and and source in the other).
In the case where one or more eigenvalues are zero, the system is said to be critical,
statements on the equilibrium’s stability can only be made based on consideration of
quadratic of higher terms in the Taylor expansion.
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The eigenvalues of the Jacobi matrix may be complex, in which case the system
will oscillate. The stability of the equilibrium, however, depends only upon the real
part of the complex eigenvalues. The equilibrium is a source if the real part of the
eigenvalues is possitive and a sink if its negative. If the eigenvalues are complex and
their real part is zero, the system is said to be upon a Hopf bifurcation. In such
cases, the stability of the system can be changed through small adjustments of one
of the parameters in Eq. (1.5). Often, when the equilibrium transits form a sink to
a source through parameter adjutments; in the vecinity of the Hopf bifurcation, a
special kind of sink is formed that is called a “limit cycle” in which the system shows
stable oscillations.

The formation of a limit cycle does not depend only upon the local stability of
the equilibrium but also on the gobal stability of the non-linear system of differential
equations Eq. (1.5). Limit cycles are formed near Hopf biffurcations where, locally,
the equilibrium is a weak source but globally its a strong sink. Trajectories from
without the limit cycle have the tendency to converge to its center but, locally, the
center is a source. Therefore the trajectories are “trapped” in the limit cycle.

Limit cycles have been observed experimentally as autonomous biochemical os-
cillations, these were first observed in intact yeast glycolysis with typical periods in
the order of minutes (Ghosh & Chance, 1964; Chance et al., 1964a,b). Thereafter,
glycolytic oscillations have been studied in cell-free extracts (Hess & Boiteux, 1968).

Metabolic Control Analysis. If a steady state is locally stable, it is possible to study the
sensitivity of its system properties towards changes in the system parameters using
Metabolic Control Analysis (MCA). MCA is a sensitivity analysis for metabolic sys-
tems. It relates sensitivities of system components (i.e. enzymes) to the sensitivities
of metabolic system properties (i.e. fluxes and metabolite concentrations) (Kacser &
Burns, 1973; Heinrich & Rapoport, 1974). The former sensitivities are called elastic-
ities. They quantify the extent to which a property of a component (e.g. the rate
of catalysis of a given enzyme) is changed in response to a change in a parameter
or variable that affects that component directly. The latter sensitivities are called
control coefficients and they quantify the extent to which the system properties of the
metabolic system change in response to a change of a parameter of the system. The
definitions of elasticity and control coefficients and the relations between them are
more easily introduced with the aid of a simple example. The following derivation is
based on Reder’s structural approach to MCA (Reder, 1988). In this example, matrix
notation has been avoided for the sake of mathematical ease.

S
e1

x
e2

P

Figure 1.3: Linear pathway with one intermediate.

Consider a linear pathway composed of two enzymes converting S into P with a
unique intermediate x (Figure 1.3). In the steady state, the following equations are
satisfied:

dx

dt
= 0 = v1 − v2 ∴ v1 = v2 ≡ J (1.15)
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The system can be perturbed by an infinitesimal change in e1. This change affects
v1 both directly as well as through the change in the intermediate x, while it affects
v2 through x. Thus:

d

(
dx

dt

)

de1
= 0 =

∂v1

∂e1
+

∂v1

∂x

dx

de1
−

∂v2

∂x

dx

de1
(1.16)

Normalizing Eq. (1.16) so that it becomes dimensionless, results in:

0 =
∂ ln v1

∂ ln e1
+

∂ ln v1

∂ lnx

d ln x

d ln e1
−

∂ ln v2

∂ lnx

d lnx

d ln e1
(1.17)

In the MCA notation Eq. (1.17) is re-written as:

0 = εv1

e1
+ εv1

x Cx
e1

− εv2

x Cx
e1

(1.18)

Equation (1.18) shows that the elasticities ε, are scaled partial derivatives of com-
ponent properties (here enzyme rates) with respect to system variables or parameters
(here the enzyme concentration in εv1

e1
or the concentration of x in εx

v1
). In contrast,

control coefficients C are scaled total derivatives of metabolic system properties [in
Eq. (1.18) the concentration of x ] with respect to system parameters (here enzyme
concentrations).

Because most enzyme rates are proportional to the concentration of enzyme,
the first term on the right hand side of Eq. (1.17) usually equals unity. Therefore
Eq. (1.18) can alternatively be written as:

Cx
e1

= −
1

εv1

x − εv2

x
(1.19)

Equation (1.19) illustrates the fact that sensitivities of system properties (i.e.
control coefficients) can be written as functions of the sensitivities of system compo-
nents (i.e. elasticities). i.e. the properties of the components together determine the
properties of the system.

With the definition of flux J in Eq. (1.15) the total derivative of the flux with
respect to e1 can be computed:

dJ

de1
=

dv1

de1
=

∂v1

∂e1
+

∂v1

∂x

dx

de1
(1.20)

which, after scaling, can be expressed in MCA notation as:

CJ
e1

= 1 + εv1

x Cx
e1

(1.21)

The equation above shows that the flux control coefficient,CJ
e1

, can be written as
a function of the elasticity of the enzyme’s rate towards the concentration of x and
the concentration control coefficient of x with respect to the concentration of the first
enzyme. Combining Eqs. (1.19) and (1.21) one obtains:

CJ
e1

= 1 −
εv1

x

εv1

x − εv2

x
(1.22)
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As in the case of Eq. (1.19), Eq. (1.22) illustrates the fact that a control coefficient
can be expressed as a function of the elasticity coefficients. Eq. (1.22) also shows that
a change of an enzyme concentration initially produces a proportional change in the
enzyme rate that is counteracted by the response of the system to this perturbation
[as described the second term on the right hand side of Eq. (1.22)].

The procedure described above can be repeated by perturbing e2 which results in
the following control coefficients:

Cx
e2

=
1

εv1

x − εv2

x
(1.23)

CJ
e1

= 1 + εv2

x Cx
e2

= 1 +
εv2

x

εv1

x − εv2

x
(1.24)

The development of MCA was not limited to the adaptation of sensitivity analysis
to metabolic systems but also discovered theorems of metabolic control (Kacser &
Burns, 1973; Heinrich & Rapoport, 1974). The proofs of these theorems for general
systems are beyond the scope of this introduction. The reader is referred to Reder
(1988) for a general proof of all MCA theorems. In this section, MCA theorems will
be enounced and then shown to apply to the system illustrated here.

The first set of theorems contains the summation theorems:

n∑

i=1

CJ
ei

= 1 (1.25)

n∑

i=1

CJ
ei

= 0 j = 1, . . . ,m (1.26)

Equation (1.25) enounces the summation theorem for flux control coefficients,
which can easily be shown to hold for our example by summing Eqs. (1.22) and
(1.24). This theorem implies that if all flux control coefficients are non-negative, then
they must all be smaller than 1. Therefore, in linear pathways control coefficients are
expected to be all smaller than 1. Flux control coefficients bigger than unity can only
occur if negative control coefficients also occur, which may happen, for instance, in
branched pathways.

Equation (1.26) enounces the summation theorem for concentration control co-
efficients that for our example can be shown to hold by summing Eqs. (1.19) and
(1.23). This theorem imposes a balance between positive and negative concentration
control coefficients and illustrates the fact that if consuming and producing reac-
tions are changed proportionally, the concentration of the intermediate must remain
unchanged.

The second set of MCA theorems are the connectivity theorems.

n∑

i=1

CJ
ei

εvi
xj

= 0 j = 1, . . . ,m (1.27)

n∑

i=1

Cxj
ei

εvi
xk

= −δjk δjk ≡

{

1, if j = k

0, if j 6= k
(1.28)
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Equation (1.27) enounces the connectivity theorem for flux control coefficients. It
implies that if two enzymes in a linear pathway are connected via a common metabo-
lite, the relative control that those enzymes have on the pathway’s flux is determined
by their relative elasticities towards that metabolite. Eq. (1.27) can alternatively be
interpreted as showing the fact that the sum of flux responses (RJ

xj
= CJ

ei
εvi
xj

) of
all individual enzymes to a change in the concentration of their common metabo-
lite xj is zero. This means that the flux through the pathway cannot be changed
by perturbations of internal metabolites, which are variables, not parameters of the
system.

The second connectivity theorem, Eq. (1.28), can be proven true for our example
by substituting Eqs. (1.21) and (1.22) into the summation theorem for flux control
coefficients, Eq. (1.25). Eq. (1.28) shows that the sum of concentration responses
(Rxk

xj
= C

xj
ei εvi

xk
) to a change in the concentration of the intermediate xk are such as

to exactly counter act the perturbation.

1.3 Regulation of Metabolic Networks

Section 1.2 described how metabolic system properties (fluxes, metabolite concentra-
tions and control coefficients) are determined by the properties of the components of
the system. Another important determinant of these system properties is the inter-
action of the metabolic network with its environment. It is often observed that living
cells adapt to environmental changes by regulating their metabolic system proper-
ties. When environmental changes are imposed by Nature or by an experimenter,
the interaction between the metabolic network and the environment is perturbed.
The perturbation propagates into the network via direct effects on enzymes that
are transmitted via intermediate metabolite concentrations, and via indirect effects
through signal transduction and gene expression, eventually affecting metabolic fluxes
and metabolite concentrations. The direct effect of an external perturbation upon the
system properties of a network is constrained by the kinetic properties of the enzymes,
i.e. the kinetic properties of the enzymes regulate the initial response of the system
to an external perturbation. This initial perturbed state is often short-lived. The cell
further regulates its fluxes and metabolite concentrations through the modulation of
enzyme activities and their kinetic properties.

In this section, efforts to define regulation in a quantitative manner and some hy-
potheses upon the constraints of regulatory processes are delineated. In a later section
(Section 1.4), the mechanisms through which the activities and kinetic properties of
enzymes are modulated will be described.

1.3.1 Definitions of regulation

The term “regulation” is not well defined in biology. Arguably, the failure to define
regulation unambiguously is one of the difficulties hindering progress in our under-
standing of biological regulation. In the past, the terms regulation and control were
used interchangeably and statements upon regulation and control were often qualita-
tive and vague (Fell, 1997; Sauro, 1989). The term control has been given a precise
and quantitative definition through the development of Metabolic Control Analysis



14 General Introduction

(cf Fell, 1997). Several efforts to define regulation quantitatively are based on or
inspired by Metabolic Control Analysis as well.

Westerhoff & Chen (1984) and Westerhoff & Van Dam (1987) focused on the reg-
ulation of metabolic fluxes or metabolite concentrations in response to a perturbation
of the concentration of a given metabolite, also called a fluctuation. They described
the response of the system to the addition of an amount of metabolite xk as:

δy

y
=

n∑

i=1

Cy
ei
· εvi

xk
·
δxk

xk
(1.29)

where y represents a system variable, i.e. a metabolic flux or a metabolite concentra-
tion. Eq. (1.29) enounces that the response of a system variable y to a fluctuation in
the concentration of metabolite xk depends upon the sensitivities of all enzymes to-
wards the changing metabolite and the sensitivity of the system property y to changes
in the rates of those enzymes. These authors noted that if the system was in an asymp-
totically stable steady-state, the magnitude

∑n
i=1 Cy

ei
· εvi

xk
should be zero if y 6= xk

and -1 if y = xk. This then constituted a new proof of the connectivity theorems,
Eqs. (1.27) and (1.28). The terms Cy

ei
·εvi

xk
in Eq. (1.29) function as internal responses

(Westerhoff & Van Dam, 1987) or regulatory strengths (Kahn & Westerhoff, 1993)

and they correspond to the Response Coefficients R
J (or xj)
xk that were introduced in

the Metabolic Control Analysis paragraph in Section 1.2.1
By contrast, Hofmeyr and Cornish-Bowden focused on the regulation by external

factors (Hofmeyr & Cornish-Bowden, 1991). They started by defining internal and
external parameters. The former are invariant at the time-scale of interest (e.g.
Vmax, Km and Keq) and the latter are environmental (e.g. the concentration of the
substrate). According to these authors, a system can only be regulated by changes in
external parameters, which they call regulators. How effectively a system is regulated
depends upon the degree to which the activity of the regulatory enzyme, the enzyme
with which the regulator interacts directly, can be altered by the regulator (named
its regulability) and on the ability of the regulatory enzyme to transmit the changes
to the rest of the system (named its regulatory capacity). In MCA notation, this can
be expressed as a response coefficient:

R
J(or x)
S = εvi

S CJ(or x)
vi

(1.30)

where R
J(or x)
S is the response coefficient of the flux J or the concentration of the

metabolic intermediate x, εvi

S is the elasticity of the regulatory enzyme i, towards

the regulator S and quantifies its regulability. C
J(or x)
vi is the flux or concentration

control coefficient of the regulatory enzyme i, it quantifies the regulatory capacity of
the regulatory enzyme i.

Sauro approached the study and definition of regulation from a yet different point
of view. He foucused on the regulation of enzyme rates by the many factors affecting
them (Sauro, 1989). He noted that local rates and fluxes, although quantitatively
identical in the steady state, are conceptually very different because fluxes are de-
termined by the whole system whereas local rates are determined by the kinetic
properties of a single enzyme and the concentrations of metabolites affecting the rate
of that enzyme.
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The local rates of enzyme-catalyzed reactions depend upon their capacities, the
concentrations of metabolic effectors affecting their rate and the affinity constants that
parametrize the strengths with which metabolic effectors interact with the enzymes:

v = ϕ(e,x,k) (1.31)

in which v is the rate of the enzyme of interest, e is the concentration of this enzyme, x
is a vector of concentrations of substrates, products and other metabolic effectors, and
k is a vector of interactions constants of this enzyme with its substrates, products and
other metabolic effectors. Sauro defined regulation as the response of the system to
changes in its environment and proposes a quantitative description of the regulation of
local rates. Since not all enzymes interact directly with the environment the regulation
of the majority of enzymes will depend only on the concentrations in the vector x
(i.e. when only short times after the perturbation are considered). It is then possible
to dissect the contributions of the changes of each of the metabolite concentrations
in x to the regulation of the local flux. Sauro’s argument is best expounded using his
own example. Consider the linear pathway in Figure 1.4. Let the rate of the fifth step

S
e1 e2 e3 e4 e5x1 x2 x3 x4 P

Figure 1.4: Linear pathway with feedback inhibition. Modified from Sauro (1989).

(e5) be modified by an environmental or genetic perturbation. The total derivative
of the local rate with respect to the perturbation of e5 is given by:

dv2 =
∂v2

∂x1

dx1

de5
de5 +

∂v2

∂x2

dx2

de5
de5 +

∂v2

∂x4

dx4

de5
de5 (1.32)

which after normalization can be written in MCA notation as:

dv2

v2
= εv2

x1
Cx1

v5

de5

e5
+ εv2

x2
Cx2

v5

de5

e5
+ εv2

x4
Cx4

v5

de5

e5
(1.33)

In the steady state the relative change in the pathway flux (dJ/J) equals the
change in the local rate (dv2/v2). Dividing both sides of Eq. (1.33) by dJ/J gives:

1 = εv2

x1

Cx1

v5

CJ2

v5

+ εv2

x2

Cx2

v5

CJ2

v5

+ εv2

x4

Cx4

v5

CJ2

v5

≡ v5P J2

x1
+ v5P J2

x2
+ v5P J2

x4
(1.34)

where v5P J2

xi
are the partitioned response coefficients for the metabolite x i. The

partitioned response coefficients sum up to one. Therefore, the contributions of each
of the metabolite concentration changes to the regulation of the local rate can be
dissected quantitatively.

The definitions of regulation by Westerhoff & Chen (1984), Westerhoff & Van Dam
(1987), Kahn & Westerhoff (1993), Hofmeyr & Cornish-Bowden (1991) and Sauro
(1989) are mathematically very similar. The concentration response coefficient, Eq.
(1.30), equals the partitioned response coefficient times the concentration control
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coefficient of the enzyme in question. They are conceptually, however, different.
Sauro quantitatively dissects the regulation of local rates by changes in the metabolite
concentrations that affect that rate. While the others quantify the regulation of
system properties by changes in internal (Westerhoff & Chen, 1984; Westerhoff &
Van Dam, 1987; Kahn & Westerhoff, 1993) and external metabolite concentrations
(Hofmeyr & Cornish-Bowden, 1991).

Later Hofmeyr proposed another definition of regulation. He defined regulation as
the alteration of reaction properties to augment or counteract the mass-action trend in
a network of reactions (Hofmeyr, 1995). The response of the system to perturbations
of any kind depends both on the intrinsic mass-action trend and the kinetic properties
of enzymes. Hofmeyr used Reich and Sel’kov’s (Reich & Sel’kov, 1981) argument that
any physiologically realizable rate equation can be written as a product of the rate
constant, f ; a saturation term, θ; and a thermodynamic term, ξ.

v = f(e) · θ(x,k) · ξ(Γ(x)/KEq) (1.35)

where Γ is the mass-action ratio (i.e. the actual ratio of product and substrate
concentrations), KEq is the equilibrium constant of the reaction and e, x and k have
the same interpretation as in Eq. (1.31). Note that ξ is a function of the displacement
of the reaction from equilibrium, it has the form (1-Γ/KEq) and equals zero at the
equilibrium. Translating Eq. (1.35) into logarithmic space and deriving the resulting
function with respect to ln(x i), where x i is concentration of a substrate or product
(not of an allosteric activator or inhibitor) of the reaction, gives:

εv
xi

=
d ln v

d ln xi
=

d ln θ

d lnxi
+

d ln ξ

d lnxi
(1.36)

Note that since f(e) is usually independent of the metabolite concentrations,
df/dxi is zero. For an allosteric effector the last term of Eq. (1.36) is zero. Eq. (1.36)
shows that elasticities towards substrates or products can be expressed as the sum
of a kinetic term and a thermodynamic term. The latter becomes extremely high
whenever the reaction is colise to equilibrium (Westerhoff & Van Dam, 1987). This
interesting concept is, however, limited to local properties of metabolic systems (i.e.
elasticities). For system properties such as flux and concentration control coefficients,
it is not possible to dissect the contributions by kinetic and thermodynamic proper-
ties.

The last effort to quantify regulation that will be discussed here, is that of Wester-
hoff (Westerhoff et al., 2000; ter Kuile & Westerhoff, 2001), which is called Regulation
Analysis. Like Sauro’s method, Regulation Analysis is concerned with the local regu-
lation of enzyme rates. However, it departs form MCA’s restriction to infinitesimally
small changes through Reich and Sel’kov’s identification of a general property of en-
zyme catalyzed reactions (Reich & Sel’kov, 1981). Because enzymes are catalyst and
not substrates, rate equations are usually of the form:

v = f(e) · g(x,k) (1.37)

The important characteristic of Eq. (1.37) is that the two multipliers on the right-
hand side are cross-independent. This means that f does not depend upon x and k,
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and g does not depend upon e. f (e) describes the dependency of the rate upon the
enzyme concentration, while g(x,k) describes the interaction of the enzyme with the
rest of metabolism through metabolite concentrations and the corresponding affinity
constants. Eq. (1.37) can be translated into logarithmic space and if two different
steady states are considered, the difference between their local steady state rates is
then given by:

∆ ln v = ∆ ln f(e) + ∆ ln g(x,k) (1.38)

The crux of Regulation Analysis is that since the multipliers in Eq. (1.37) are
cross-independent, Eq. (1.38) remains valid for small as well as large changes. As
already pointed out by Sauro, at steady state the flux J equals the enzyme rate v.
Dividing both sides of Eq. (1.38) by the flux change in logarithmic space (∆ ln J)
results in:

1 =
∆ ln f(e)

∆ ln J
+

∆ ln g(x,k)

∆ ln J
= ρh + ρm (1.39)

in which ρh is the ‘hierarchical regulation coefficient’, quantifying the relative contri-
bution of changes in enzyme concentration to the regulation of its flux, and ρm is the
‘metabolic regulation coefficient’, quantifying the relative contribution of changes in
the interaction of the enzyme with the rest of metabolism to the regulation of the the
flux. The two regulation coefficients sum up to one (summation theorem for the reg-
ulation of flux) implying that determination of one will yield the other automatically.
In practice, the hierarchical regulation coefficient is more readily determined, since
f(e) usually equals Vmax, and the Vmax as well as the flux J through the enzyme can
be measured or estimated in most cases. Regulation Analysis introduces the possibil-
ity of making unambiguous and quantitative descriptions of the regulation of fluxes
through individual enzymes embedded in biochemical networks of any complexity, in
response to any number or kind of simultaneous perturbations.

The essential difference between the methods of Sauro and Westerhoff is that the
latter includes adaptations through gene expression (ρh), while the former does not.
Actually, Sauro’s analysis can be used to dissect the metabolic regulation coefficient
ρm into the contributions by each individual metabolite. Since the metabolite con-
centrations usually do not enter enzymatic rate equations as independent multipliers,
Sauro’s analysis can only be applied to small changes. Similarly, the hierarchical regu-
lation coefficient ρh can be dissected into the contributions by the various processes in
the gene-expression cascade. The dissection of the hierarchical regulation coefficient
into terms that relate to various levels of gene expression is expounded in Chapter 4.

The different quantitative descriptions of regulation described above are not theo-
ries of regulation but ways to describe regulatory processes quantitatively. Regulation
is often associated with homeostasis (Fell, 1997; Hofmeyr & Cornish-Bowden, 1991).
Hofmeyr and Cornish-Bowden proposed that the performance of a metabolic system
can be judged in terms of how sensitively the fluxes respond to external stimuli and
to what degree homeostasis in the concentrations of “key” metabolites is maintained.
Key metabolites were defined as those that divide the metabolic system in supply
and demand blocks (Hofmeyr & Cornish-Bowden, 1991). The reality of such blocks
in actual metabolic networks is, however, disputable due the very high connectivity
of coenzymes. Fell also proposed that regulatory responses are constrained to main-
tain homeostasis of all metabolites in the pathway while changing fluxes. He argued
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that this is achieved through the simultaneous modulation of all enzyme activities in
a pathway. This hypothesis of multi-site modulation has met supporting examples,
such as lipogenesis in mice, the urea cycle in rats, and photosynthesis in green plants
(Fell & Thomas, 1995). It may be questioned, however, how general this mecha-
nism is, and whether indeed even in these examples all enzyme activities changed in
proportion to the flux. This issue is discussed in Chapter 3.

An older, and very different, hypothesis on metabolic regulation is that of economy
of protein synthesis, which was taken to imply the modulation of fluxes through mod-
ulation of rate limiting steps. Experimental investigations based on MCA suggest that
often the control of flux is distributed over many enzymes in a pathway (Groen et al.,
1986; Fell, 1992). Therefore, modulation of a single enzyme may be an ineffective
mechanism for changing the flux through a pathway. Indeed, attempts to correlate
flux changes with changes in single enzyme activities or levels have failed consistently
(Daran-Lapujade et al., 2004; Nilsson et al., 2001b; van Hoek et al., 1998b).

1.4 Glycolysis and Carbon Metabolism in Saccha-

romyces cerevisiae

Although the methodological developments reported in this thesis are not limited to
any given organism, the experimental investigations focus on the regulatory processes
involved in the adaptation of the glycolytic pathway in Saccharomyces cerevisiae to
environmental and genetic perturbations. Particular emphasis is put on conditions
and perturbations that are related to the industrial production and the utilization of
bakers’ yeast.

The yeast Saccharomyces cerevisiae is the best-characterized eukaryote today.
The extraordinary attention devoted to this yeast by the scientific community has
undoubtedly been motivated by its association with the wine, beer and bakers’ in-
dustries (e.g. Gancedo & Serrano, 1989), while the fruits of scientific inquiry in turn
constitute further incentives to new research on this organism.

There are also intrinsic advantages favouring S. cerevisiae as a model organism.
First, it is a eukaryote and therefore to a large extent representative of other eukary-
otes, including the cells of multicellular organisms. Second, it is a non-pathogenic
microorganism that grows rapidly and reproducibly on rich as well as mineral media.
Third, it is particularly suited for genetic studies for numerous reasons. It grows as
dispersed cells, which facilitates mutant isolation. Its haploid and diploid states are
stable, which enables the isolation and expression of mutants as well as complemen-
tation tests. Plasmids can be introduced as replicating molecules or integrated into
the genome. Plasmid integration proceeds exclusively via homologous recombination.
Finally, bakers’ yeast is viable with numerous markers (Sherman, 1997).

1.4.1 The Glycolytic Pathway in Saccharomyces cerevisiae

S.cerevisiae is a heterotrophic organism that derives its free energy from the oxidation
of carbohydrates. Consequently, carbon and energy metabolisms are closely intercon-
nected in this organism (Gancedo & Serrano, 1989). Glucose is the preferred growth
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substrate for many microorganisms and ideed all yeast species studied so far can grow
on glucose (Pronk et al., 1996).

Sugars do not permeate freely through lipid membranes. Therefore, the first
catalysed step in glucose metabolism is its transport across the plasmamembrane
(Kotyk, 1967; Lang & Cirillo, 1987; Fuhrmann et al., 1989; Lagunas, 1993). In S.
cerevisiae, glucose transport is facilitated by a family of hexose transporters (HXT1-
HXT17), which have different affinities for glucose (Wieczorke et al., 1999; Boles &
Hollenberg, 1997; Kruckeberg, 1996). Of the seven dominant hexose transporters,
HXT1 and HXT3 have a low affinity (50 – 100 mM), HXT6 and HXT7 have a higher
affinity (1-2 mM) and HXT2 and HXT4 have intermediate affinities (Reifenberger
et al., 1997). Despite the large number of different transporters, glucose transport
can usually be satisfactorily described by a high affinity and a low affinity component
(Bisson & Fraenkel, 1983). The appearance of these components and the expression of
the HXT genes depends upon the extracellular glucose concentration and is modulated
during growth (Diderich et al., 1999a; Walsh et al., 1994). Kinetic models of glycolysis
in S. cerevisiae suggest that the glucose transporters have a high control upon the
glycolytic flux (Galazzo & Bailey, 1990; Reijenga et al., 2005). These suggestions
are supported by experimental measurements of the control coefficient of the glucose
transporter in a related yeast species, Saccharomyces bayanus (Diderich et al., 1999b).

The glycolytic pathway as is operates in bakers’ yeast is shown in Figure 1.5. The
conversion of glucose into ethanol is catalysed by 12 enzymes and involves 17 metabo-
lites. The rate of fermentation is expected to depend upon the kinetic properties of
and the interactions between these enzymes (Boiteux & Hess, 1981) and upon the
thermodynamic properties of the chemical reactions catalysed by these enzymes. The
glycolytic and fermentative pathways of S. cerevisiae are perhaps the most extensively
studied metabolic pathways. Research on these pathways gave birth to the discipline
of Biochemistry in the second half of the 19th century with the passionate contro-
versy about the mechanism of alcoholic fermentation (Gancedo & Serrano, 1989). All
the enzymes involved in alcoholic fermentation have been characterized kinetically
in vitro and the genes encoding them have been identified. One might then expect
that, given the engineering possibilities introduced by molecular biology, it should be
possible to rationally engineer the fermentative flux. Such efforts, however, have so
far proven fruitless (Schaaff et al., 1989; Heinisch, 1986; van Hoek et al., 1998a; Hauf
et al., 2000).

Traditional approaches to flux engineering were devoted to the search of rate-
limiting steps (Fell, 1997). In the glycolytic pathway three reactions have large equi-
librium constants (Reich & Sel’kov, 1981): hexokinase (HK), phosphofructokinase
(PFK) and pyruvate kinase (PK). They are far from equilibrium in vivo (e.g. Mashego
et al., 2006; Teusink et al., 2000). Displacement from equilibrium was thought to be
a diagnose of control points in metabolic pathways. Indeed, it has been shown that
near equilibrium reactions have little control on fluxes. Near equilibrium, the ξ term
in Eq. (1.35) is very small, close to zero, and therefore, changes in f or θ have lit-
tle effect on the rate (Heinrich & Rapoport, 1973). Moreover, the thermodynamic
component d ln ξ

d ln xi
, of the elasticities towards substrates and products [Eq. (1.36)] be-

comes extremely high near the equilibrium, which means that the rate of catalysis
is extremely sensitive to the concentrations of its susbtrates and products and is de-
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Figure 1.5: The glycolytic pathway. Metabolites are shown in bold, enzymes in ital-
ics and branching pathways are underlined. Abbreviations: i) enzymes: HK (hexoki-
nase), PGI (phosphoglucose isomerase), PFK (phosphofructokinase), ALD (aldolase), TPI
(triosephosphate isomerase), GAPDH (glyceraldehyde-3-phosphate dehydrogenase), PGK
(phosphoglycerate kinase), PGM (phosphoglycerate mutase), ENO (enolase), PK (pyru-
vate kinase), PDC (pyruvate decarboxylase), ADH (alcohol dehydrogenase). ii) metabolites:
Glc (glucose), G6P (glucose-6-phosphate), F6P (fructose-6-phosphate), F16P (fructose-1,6-
bisphosphate), DHAP (dihydroxyacetone phosphate), GAP (glyceraldehyde-3-phosphate),
BPG (1,3-bisphosphoglycerate), 3PG (3-phosphoglycerate), 2PG (2-phosphoglycerate), PEP
(phosphoenolpyruvate), PYR (pyruvate), ACE (acetaldehyde), EtOH (ethanol). iii) path-
ways: PPP (pentose phosphate pathway), TCA (tricarboxylic acid pathway), AA (aminoacid
synthesis pathways). Note that trehalose-6-phosphate, the inhibitor of hexokinase is an
intermediate in the storage carbohydrate branch. Similarly fructose-2,6-bisphosphate, an
activator of phosphofructokinase is an intermediate in the fructose and mannose synthesis
branch.
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termined by their ratio. However, the statement that enzymes far from equilibrium
have high flux control is not true in general (Fell, 1997). The control of a metabolic
step depends not only upon the thermodynamics of the reaction but also upon the
kinetic properties of the catalyzing enzyme (Reich & Sel’kov, 1981; Hofmeyr, 1995).
The rational engineering of metabolic fluxes requires, in addition to knowledge of
the thermodynamics of the reactions, the investigation of the kinetic properties of
its enzymes. Interactions between enzymes through metabolites are not limited to
substrates and products but may also include inhibitors and allosteric modulators. In
yeast glycolysis, the kinetic behavior of three enzymes has been reported to be affected
by metabolites other than their substrates and products: HK, PFK and PK. Note
that these enzymes happen to catalyse the reactions that are far from equilibrium.

Hexokinase phosphorylates glucose and produces glucose-6-phosphate
with the phosphate deriving from ATP. In yeast, three isoenzymes can catalyse
the hexokinase reaction: hexokinase I and II and glucokinase. Hexokinase I and
II have been reported to be competitively inhibited in vitro by trehalose-6-phosphate
(Blazquez et al., 1993). The reported inhibition constant for trehalose-6-phosphrate
was 0.04 mM for hexokinase II and 0.2 mM for hexokinase I. Glucokinase appears
not to be inhibited by trehalose-6-phosphate. PFK is a multimodulated enzyme
(Sols, 1981). In yeast it is activated by AMP (Ramaiah, 1974), ammonium ions
(Sols & Salas, 1966), phosphate (Banuelos et al., 1977) and fructose-2,6-bisphosphate
(Bartrons et al., 1982). PFK has long been thought of as the rate-limiting step of gly-
colysis (cf. Fell, 1997). However, its overproduction did not change the fermentation
flux (Heinisch, 1986; Schaaff et al., 1989). Davies and Brindle showed that overex-
pression of PFK was accompanied by a decrease in the concentration of its activator
fructose-2,6-bisphosphate, which compensated for the increased concentration of the
enzyme (Davies & Brindle, 1992). This is beautiful example of a mechanism through
which an enzyme catalysing a reaction far from equilibrium looses flux control due to
its kinetic properties. Pyruvate kinase catalyses the hydrolysis of phosphoenol pyru-
vate into pyruvate coupled to the phosphorylation of ADP. PK is strongly activated
allosterically by fructose-1,6-bisphosphate, the product of PFK (Murcott et al., 1992).

Kinetic regulation of enzymes by metabolites other than their substrates and prod-
ucts introduces an additional layer of kinetic regulation of a pathway. Rational ap-
proaches to flux engineering must take these interactions into account. Figure 1.5
also shows two other important aspects of the glycolytic and fermentative pathways:
six of its reactions involve coenzymes (ATP and NADH) and seven of the thirteen
metabolic intermediates (excluding coenzymes) are branching points, i.e. they par-
ticipate in reactions outside glycolysis. Therefore, the glycolytic pathway is not an
independent metabolic unit. The reactions that it comprises are embedded in a large
and highly connected network.

1.4.2 Kinetic models of glycolysis

A number of kinetic computer models of the glycolytic pathway of S. cerevisiae have
been constructed over the last 30 years. The earliest of these modeling efforts were
concerned with the stability of steady states and in particular with the stoichiomet-
ric and regulatory structures of the glycolytic pathway to which the experimentally
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observed phenomenon of sustained oscillations in yeast cultures and extracts could
be ascribed (Betz & Chance, 1965; Boiteux et al., 1975; Boiteux & Busse, 1989; Hess
& Boiteux, 1968; Richter et al., 1975) (see Section 1.2.1). The development of MCA
stimulated the construction of kinetic models to investigate the distribution of flux
control in glycolysis with the aim of amplifying or redirecting its flux (Aon & Cor-
tassa, 1994; Delgado et al., 1993; Galazzo & Bailey, 1990; Schlosser et al., 1994). The
more recent models of yeast glycolysis are detailed kinetic models based on in vitro
determined kinetic equations (Rizzi et al., 1997; Teusink et al., 2000; Hynne et al.,
2001). Each of these detailed kinetic models was constructed with a different aim.

Rizzi et al. constructed a detailed kinetic model of yeast glycolysis based on
published kinetic mechanisms and affinity constants. Dynamic experiments were used
as input to fit the enzyme capacities in an attempt to determine these parameters
in vivo instead of relying on in vitro determinations (Rizzi et al., 1997). Teusink et
al also constructed a detailed model, which was similar to that of Rizzi et al. Their
objective, however, was not to fit parameters from in vivo data but to investigate
the extent to which biochemical knowledge from in vitro studies could be used to
predict the glycolytic flux and the concentrations of glycolytic intermediates (Teusink
et al., 2000). Hynne et al. constructed a detailed kinetic model with yet another aim,
i.e. to use the dynamic characteristics of oscillating yeast cultures to estimate the
parameters of the detailed kinetic model. Like Rizzi et al., Hynne et al. aimed at
in vivo parameter estimation. The approach of Hynne et al., however, allowed the
estimation of not only the enzyme capacities but also of the affinity constants (Hynne
et al., 2001).

These kinetic models share the unfortunate feature that their predictions are very
poor for conditions that are different from those used in their construction. In con-
trast to phenomenological models, detailed models aim at the prediction of metabolic
system properties (fluxes and metabolite concentrations) based on the characteristic
of the components of the system (enzyme amounts, specificities and kinetics). The
current paradigm is that knowledge of the properties of the parts should enable the
prediction of the properties of the system. The construction of detailed kinetic models
faces difficult challenges. First, the catalogue of enzyme properties of any real meta-
bolic system is, at the time being, incomplete. Second, there are uncertainties on the
available kinetic mechanisms and parameters and in particular upon the validity of
these in vitro determined properties to predict the behavior of the enzymes in vivo.
But perhaps the greatest challenge derives from the fact that living cells adapt to
environmental changes by modulating the kinetic properties of their enzymes. There-
fore, the kinetic parameters mesured in a given condition and used to construct a
detailed kinetic model are likely to differ from those when the cells have adapted to
a another, different condition.

Although detailed kinetic models should in principle provide a way of predicting
the properties and behavior of metabolic systems, the demands on their construction
are enormous. The performance of detailed kinetic models discussed above indicate
that the available information upon enzyme properties is insuffcient or inadequate
for the quantitative prediction of fluxes and metabolite concentrations even for yeast
glycolysis, which is, perhaps, the most extensively studied pathway today.
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1.4.3 Mechanisms of enzyme activity modulation

In the section “Regulation of Metabolic Networks” (Section 1.3), the concept of regu-
lation was introduced and methods to quantify the local regulation enzyme rates were
described. Enzyme rates depend upon the catalytic capacity of enzymes (Vmax) and
upon the interaction of these enzymes with the rest of metabolism. In this section,
attention is given to the processes involved in the modulation of enzyme activities.
At the same time, the section introduces an important and extensively studied adap-
tation to an external perturbation known as catabolite repression.

Cultures of S. cerevisiae that are glucose-limited, in stationary phase or growing on
non-fermentable carbon sources are characterized by a fully oxidative metabolism of
carbohydrates. Upon transfer of such cultures to glucose-rich conditions, a metabolic
shift towards profuse alcoholic fermentation is observed. This phenomenon is caused
by a number of mechanisms involving sensing of the external glucose concentration,
signaling and modulation of enzyme activities in different ways. Together, these
mechanisms are associated with the term catabolite repression (for reviews cf. Rolland
et al., 2002; Gancedo, 1998). Often the terms repressed and derepressed are used to
refer to cultures with or without catabolite repression, respectively.

Covalent modification of enzymes

Allosteric modulations and covalent modifications are among the fastest enzyme-
activity modulation processes (Fell, 1997). In Regulation Analysis as it was intro-
duced above, allosteric modulations would be classified as a part of the metabolic
regulation, while covalent modifications that affect Vmax, would be scored as hierar-
chical regulation. The latter type of regulation is mediated by signal transduction
pathways and often results in phosphorylation of the target enzyme.

The Ras-cAMP signaling pathway. A major glucose-signaling pathway involved in
post-translational regulation of enzymes involved in carbon metabolism is the Ras-
cAMP pathway (Rolland et al., 2002). cAMP is synthesized from ATP in a reaction
catalyzed by adenylate cyclase. cAMP then activates cAMP-dependent protein ki-
nase A (PKA). Transfer of derepressed cells to sugar excess triggers a rapid, transient
increase in cAMP, which initiates a phosphorylation cascade. It appears that the path-
way plays a role in regulating the transition from the derepressed to the repressed
state by means of transient PKA dependent phosphorylation of metabolic enzymes
(Rolland et al., 2002). This is consistent with the observation that PKA activity does
not correlate with steady-state levels of cAMP and with the fact that glucose-induced
activation of adenylate cyclase is followed by the repression of its expression (Rolland
et al., 2002).

Among the glycolytic enzymes, pyruvate kinase has been reported to be activated
through PKA dependent phosphorylation (Portela et al., 2002). Hexokinase I and II
have also been reported to be phosphorylated in vivo but apparently not by PKA.
The kinase responsible for the latter modification has not yet been identified (Kriegel
et al., 1994; Vojtek & Fraenkel, 1990).
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Control of gene transcription

On longer time scales (minutes to hours) enzyme capacities are regulated by changing
the concentrations of enzymes via changes in gene expression and protein degrada-
tion. The first process in the gene-expression cascade, transcription, has been studied
extensively.

Transfer of derepressed yeast cultures to glucose rich conditions results in the
repression of the transcription of many genes and the induction of others. Glucose-
repressed genes include those encoding proteins involved in respiration (tricarboxylic
acid cycle and electron-transport system), gluconeogenesis, the glyoxylate cycle, the
uptake of alternative carbon sources, the high-affinity glucose transporters and a large
group of stress response element (STRE)–controlled genes. The pathways involved
in the regulation of these genes are the main glucose repression pathway and the so-
called glucose induction pathway (Rolland et al., 2002).

The main glucose-repression pathway. The main glucose-repression pathway is involved
in the regulation of genes encoding proteins involved in respiration, gluconeogenesis,
the glyoxylate cycle, the uptake of alternative carbon sources and the glucose trans-
porters. The central components of this pathway are the Mig1 transcriptional repres-
sor complex, the Snf1-protein kinase complex and protein phosphatase 1 (Rolland
et al., 2002).

Mig1 is a transcription regulator that binds to the promoters of glucose-repressible
genes. Its function is dependent on its intracellular localization, which is regulated
by phosphorylation (DeVit & Johnston, 1999; Ostling & Ronne, 1998). The Snf1-
protein kinase is thought to be responsible for the phosphorylation of Mig1 (DeVit
& Johnston, 1999; Ostling & Ronne, 1998; Treitel et al., 1998) thereby causing its
translocation from the nucleus to the cytoplasm. Snf1 activity is in turn inhibited
by glucose (Wilson et al., 1996; Woods et al., 1994). Consequently genes, of which
the expression is inhibited by Mig1, are repressed in glucose-excess conditions. The
sensitivity of Snf1 to glucose inhibition is, however, modulated by its phosphorylation
by a yet unidentified kinase (Wilson et al., 1996; Woods et al., 1994; Ludin et al.,
1998; Estruch et al., 1992). Protein phosphatase 1 acts antagonistically to Snf1 in
glucose repression, presumably by dephosphorylating Snf1 and thereby favoring its
inhibition by glucose (Sanz et al., 2000a,b; Ludin et al., 1998). It is, however, unclear
whether the protein phosphatase or the unidentified kinase are regulated by glucose
and diminish or enforce the inhibition of Snf1 by glucose (Rolland et al., 2002).

The gene HXK2, which encodes the glycolytic enzyme hexokinase II, has been
shown to be involved in glucose repression (Zimmermann & Scheel, 1977; Entian &
Zimmermann, 1980; Michels & Romanowski, 1980). Deletion of the gene HXK2 re-
sults in alleviation of glucose repression (Diderich et al., 2001; Raamsdonk et al.,
2001; Petit et al., 2000) but the mechanisms through which hexokinase II triggers
glucose repression is not fully understood. Although phosphorylating capacity (i.e.
the summed capacity of the hexose phosphorilating enzymes) correlates with glucose
repression (Ma et al., 1989; Rose et al., 1991), it is not the sole determinant of glucose
repression (Rose et al., 1991). It has been shown that Hexokinase II resides partly
in the nucleus (Randez-Gil et al., 1998) and that this nuclear localization depends
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upon Mig1 (Ahuatzi et al., 2004). The role of hexokinase II in glucose repression and
glycolytic fluxes in starved and unstarved yeast cells is discussed in Chapter 5.

Induction of glycoytic genes. Glucose repression is accompanied by an increase in
the glycolytic capacity. The latter is ascribed to the induction of glycolytic genes
and the regulation of glucose transporters. This induction is thought to be triggered
partially by a transient increase of the concentrations of some glycolytic intermediates
(Boles et al., 1993), but how these metabolic signals are transmitted is unclear. It
has been shown that the GCR1/GCR2/RAP1 system is involved in the global regu-
lation of the transcription of glycolytic genes. This complex is a trans-acting positive
regulator of transcription that binds to a motif which is conserved in most glycolytic
genes (Clifton & Fraenkel, 1981; Uemura et al., 1997).

Transcription of some glycolytic genes, i.e. PGK (phosphoglycerate kinase), ENO2
(enolase), PYK1 (pyruvate kinase), PDC1 (pyruvate decarboxylase) and ADH1 (al-
cohol dehydrogenase), has been shown to be controlled by the GCR1/GCR2/RAP1
system and to be induced up to 20-fold in the presence of fermentable sugars (Cham-
bers et al., 1995).

Regulation of the expression of hexose transporters. S. cerevisiae has 18 hexose trans-
porter homologues displaying different substrate affinities (Hxt1-17 and Gal2). Gal2
is a galactose transporter that also transports glucose (Boles & Hollenberg, 1997;
Kruckeberg, 1996). Rgt3 and Snf3 are also homologues, but they have been shown
not to participate directly in glucose transport but rather to act as glucose sensors
(Reifenberger et al., 1995; Lang & Cirillo, 1987). Snf3 is required for the induction of
transcription of HXT2, HXT3 and HXT4 by low glucose levels (Skowyra et al., 1997)
while Rgt2 is responsible to the constitutive i.e. glucose-independent expression of
HXT1 and the full induction of the latter by high glucose concentrations (Ozcan et al.,
1998). The sensing mechanism and the signalling routes of Snf3 and Rgt2 have not
been completely elucidated (but see Ozcan & Johnston, 1999).

Studies upon the regulation of hexose transporters distinguish three conditions:
absence of glucose (e.g. during growth on non-fermentable sugars), low, and high glu-
cose concentrations. In the absence of glucose, the expression of low and intermediate
affinity transporters (Hxt1-4) is repressed by Rgt1. Rgt1 is a zinc-finger-containing
DNA-binding protein that binds to and inactivates the promoters of several genes
(Ozcan et al., 1996). In the presence of glucose, the repression function of Rgt1 is
repressed by Snf3, leading to de-repression of low and intermediate affinity hexose
transporters (Ozcan et al., 1996). At high glucose concentrations, the expression of
high affinity transporters (Hxt6 and Hxt7) is repressed by the main glucose repression
pathway through Mig1 and the expression of Hxt1 is induced by Rgt2. These regu-
lations result in the expression of: the high-affinity transporters (Hxt6 and Hxt7) in
the absence or at low concentrations of glucose, the expression of intermediate-affinity
transporters (Hxt2 and Hxt4) at low glucose concentrations but not in its absence
or excess, and additional, full induction of the constitutively expressed low affinity
transporter Hxt1 under glucose excess.
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Posttranscriptional regulation

The regulation of transcription has received substantial attention in the last decades.
However, it is becoming more and more evident that transcription is an important but
not unique determinant of protein levels. The processes of mRNA decay, translation
and protein degradation are likely to play an important role in the regulation of
protein concentrations (Vilela & McCarthy, 2003; Smirnova et al., 2005; Tucker &
Parker, 2000; Wilusz & Wilusz, 2004, see also Chapter 4).

Little is known about the translational regulation of the glycolytic and fermen-
tative proteins. One way of regulating translation in S. cerevisiae is via upstream
open-reading frames (uORFs) that can partly or completely disable the initiation
of the translation machinery (McCarthy, 1998). uORFs are probably restricted to
a small number of mRNAs that are expressed at low levels and encode regulatory
proteins (Vilela & McCarthy, 2003). This type of regulation has, however, also been
reported for the enzyme carbamoyl phosphate synthetase in S. cerevisiae (Gaba et al.,
2001). Regulation of glycolytic proteins at the level of translation has not yet been
reported. Recently, however, the mRNA translation status (bound or unbound to
ribosomes) has been measured genome-wide (Arava et al., 2003). Hopefully, more
insights in the translational regulation will be gained in the near future.

Even less is known about degradation of glycolytic enzymes. Although targeted
degradation of enolase 2 has already been reported (Larsen et al., 2001), regulatory
mechanisms involved in the targeted degradation of glycolytic enzymes have not been
systematically investigated. As in the case of translation, recent developments have
achieved high-throughput measurements of protein turnovers (Pratt et al., 2002) and
new insights into protein degradation may become available in the near future.

The high-affinity glucose transporters HXT6 and HXT7 have been shown to be
rapidly degraded during nitrogen starvation in the presence of high concentrations
of fermentable sugars. Under these conditions, the degradation of these high-affinity
glucose transporters takes place in the vacoule and is preceeded by their internalization
by endocytosis and the delivery of the endosome’s content to the vacoule (Krampe &
Boles, 2002)

1.4.4 The bakers’ yeast industry

The bakers’ yeast industry aims at producing high quality yeast at a low price. Fer-
mentative capacity is a particularly important quality parameter. It is defined as the
rate of CO2 production immediately upon transfer to the bread dough. The dough
environment is considered to be anaerobic, saturated with CO2 and containing an
excess amount of fermentable sugars like glucose, fructose, maltose and sucrose (van
Hoek, 2000). In the laboratory, dough conditions are mimicked in anaerobic vessels
to which an excess of sugar is added. Fermentative capacity is then measured by
monitoring the concentration of CO2 or ethanol over a period of 0.5 to 1 hour (van
Hoek et al., 1998b).

Commercial production of bakers’ yeast is performed in large reactors (> 100m3).
Molasses is used as the main source of carbon and free energy and ammonia or urea
are used as nitrogen source. The final stage of the production is a “maturation”
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period aimed at improving the storage stability through accumulation of storage car-
bohydrates induced by nitrogen deprivation. The production process yields a broth
containing between 40 and 80 grams of dry biomass per liter (van Hoek, 2000).

The cultivation conditions determine the quality parameters of the bakers’ yeast.
Often, different quality parameters and the cost effectiveness of the production process
cannot be optimized simultaneously and compromises are unavoidable. For instance,
production at high growth rates leads to high fermentative capacities, but also results
in a low biomass yield and a poor storage stability (Burrows, 1979; van Hoek et al.,
1998b).

Nutrient starvation

Starvation for nutrients is perhaps one of the most common stress conditions ex-
perienced by microorganisms in their natural habitat and may affect them most of
their life span. Nutrient starvation is also a relevant phenomenon in the bakers’
yeast industry. At the final stages of the production and during storage the cells are
starved. Starvation affects several quality parameters, of which the most important
are the storage stability and the fermentative capacity. Nutrient starvation has been
reported to decrease the fermentative capacity (Nilsson et al., 2001b; Rossell et al.,
2002; Thomsson et al., 2003). The severity of the reduction depends upon the type
of starvation as well as upon the initial physiological state of the cells (Nilsson et al.,
2001b). Fermentative capacity changes in response to nutrient starvation are accom-
panied by a myriad of changes in enzyme levels that differ in magnitude and direction
(Nilsson et al., 2001b; Rossell et al., 2002; Thomsson et al., 2003). The precise mech-
anism by which these changes are brought about is not known. It has been reported
that during nitrogen starvation non-specific protein degradation via autophagy is
enhanced (Abeliovich & Klionsky, 2001). The process of nutrient depletion and adap-
tation to the exhausted medium occurs in phases, each marked by characteristic gene
expression changes. Gene expression has been measured in batch cultures that were
monitored beyond the point of carbon depletion. These experiments indicated that at
the diauxic shift (i.e. the shift from respiro-fermentative catabolism of glucose to the
respirative catabolism of ethanol upon glucose exhaution) cells induce the expression
of genes involved in respiration, fatty acid metabolism and the glyoxylate cycle. These
changes persist through the post-diauxic phase, but many subside slightly as the cells
enter the stationary phase. In the late stationary phase the expression of many genes
is decreased, including that of genes involved in secretion, membrane and cell wall
synthesis, amino acid metabolism, cell-cycle progression and other process required
for growth and division. For a review of the transcriptome responses to nutrient star-
vation see citetGasch02. However, the interpretation of these transcriptome analyses
in the context of changes of fermentative capacity is hindered by the differences be-
tween starvation protocols in different studies. While in most studies of the effect
of nutrient starvation on fermentative capacity the cells were deprived suddenly of a
certain nutrient, the gene-expression studies were performed on cultures in which the
nutrient was depleted gradually by consumption.
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1.5 Outline of the Thesis

The study of metabolic regulation is not underpinned by a theory explaining how cells
will respond to a given stimulus. Such a theory will have to be built by induction
based on a body of observations. In this thesis, Regulation Analysis is used to organize
experimental observations in an unambiguous and quantitative manner. Not only
is the method applied to the analysis of experimental observations, also its scope
and biochemical interpretations is clarified. An effort made to extend the scope
of Regulation Analysis to the dissection of the regulation of enzyme capacities by
the different processes in the gene-expression cascade, from transcription to catalytic
activity. Further, with the benefit of the unambiguous description, the biological
significance of our experimental findings is discussed from a novel point of view.

In Chapter 2, Regulation Analysis is expounded in terms of the biochemical in-
terpretation of the possible numerical outcomes of the regulation coefficients. The
method is then applied to quantify the metabolic and hierarchical regulation of glu-
cose uptake upon nitrogen or carbon starvation of S. cerevisiae. This is the first
instance of unambiguous and quantitative statements upon the regulation of glucose
uptake.

Further, experiments revealed that the affinity of glucose transport was modulated
during starvation, presumably through changes in the isoenzyme distribution of the
transporters (cf. also Diderich et al., 1999a). This feature of biological complexity
required a refinement of the interpretation of Regulation Analysis.

In Chapter 3 two aspects of the regulation of metabolic fluxes are distinguished: (i)
the local regulation of the fluxes through the individual steps of the pathway and (ii)
the regulation of the global flux through the pathway. Regulation analysis quantifies
the former. In this chapter the local regulation of the fluxes through individual
enzymes of glycolysis and alcoholic fermentation is quantified for the adaptation of
S. cerevisiae to nitrogen or carbon starvation. This description is used to evaluate
experimentally the predictions of three hypotheses proposed for the global regulation
of fluxes: metabolic, single- and multi-site modulation.

In Chapter 4 the hierarchical regulation of local fluxes is further dissected into con-
tributions by the various processes involved in the gene-expression cascade. The Vmax

changes that constitute the hierarchical component of the regulation, are brought
about by a number of processes that potentially include the regulation of transcription,
mRNA decay, translation, protein degradation and posttranslational modifications.
This chapter describes the refinement of Regulation Analysis aiming at the dissection
of the contributions of all these processes to the regulation of enzyme capacities. The
method is applied to dissect the regulation of fluxes through the glycolytic enzymes
when S. cerevisiae is challenged by the absence of oxygen and the presence of the
uncoupler benzoic acid.

Chapter 5 describes the regulation of glycolytic and fermentative fluxes in response
to the deletion of the HXK2 gene encoding hexokinase II. The regulation of fluxes
is described from two different points of view. First, Regulation Analysis is applied
to dissect the contributions of hierarchical and metabolic regulation. Experiments
and analysis evidence the pleiotropy of the HXK2 gene at the level of active enzyme
concentrations and local fluxes. Second, the effect of the deletion of HXK2 is described
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in terms of its effects on fermentative capacity and its response to nutrient starvation.
These findings and others reported in the literature suggest an inverse correlation
between glucose repression and the resilience of fermentative capacity towards nutrient
starvation.

Finally, Chapter 6 contains a general discussion of the methodologies, experiments
and conclusions reported in this thesis.





Chapter 2

The Regulation of Glucose
Influx

A novel method dissecting the regulation of a cellular function into direct
metabolic regulation and hierarchical (e.g. gene-expression) regulation is
applied to yeast starved for nitrogen or carbon. Upon nitrogen starvation
glucose influx is down-regulated hierarchically. Upon carbon starvation it
is down-regulated both metabolically and hierarchically. The method is
expounded in terms of its implications for diverse types of regulation. It
is also fine-tuned for cases where isoenzymes catalyze the flux through a
single metabolic step.

2.1 Introduction

Biology has changed with the advent of methods in genomics, proteomics and meta-
bolomics. These technologies enable scientists to monitor simultaneously the concen-
trations of thousands of components. Moreover, they do so for various categories of
compounds, such as mRNA’s, proteins and metabolites. The complexity of biological
processes is reflected in the resulting datasets. Transcriptome analysis has taught us
that the expression of many genes at the level of mRNA is up- or down-regulated
when the internal or external environment of the cell is changed. Less and less fre-
quently however, mRNA levels are taken to represent gene expression per se. For,
changes at the transcriptome level are not always transmitted to the proteome level
and perhaps not to the metabolic or physiomic level either (Daran-Lapujade et al.,
2004; ter Kuile & Westerhoff, 2001).

Indeed, a fundamental issue is the extent to which mRNA and protein concentra-
tions determine functional properties of the cell such as metabolic fluxes. Research
on the transcriptional regulation of cellular properties has clearly dominated the re-
cent literature, perhaps because of the relative novelty and ease of the hybridization

This Chapter has been published previously: S. Rossell, C. C. van der Weijden, A.L. Kruckeberg,

B.M. Bakker and H.V. Westerhoff. FEMS Yeast Research, 5, 611-619
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array technology (Castrillo & Oliver, 2004). Metabolic flux can however, be regulated
simultaneously at the levels of transcription, translation and metabolism, or even at
the metabolic level only. When it is regulated at either of the two latter levels, then
correlating the transcriptome with function would seem to lose its meaning. All of
this being recognized in principle, little has been done to deal with this complication.
Perhaps it is not altogether clear how one should determine the relative contributions
of transcription, translation and metabolism to the overall regulation of flux.

Mathematical analysis of biochemical systems has been successful in quantifying
the control exerted by component properties upon system variables such as flux and
metabolite concentrations (Savageau, 1969a,b; Heinrich & Rapoport, 1973; Kacser
& Burns, 1973). These frameworks, however, do not address the question upon how
living systems actually regulate their system properties when challenged with an envi-
ronmental change. It is not always clear which are the constraints and drives governing
the regulation of cellular system, but its outcomes are often accessible to experimen-
tal determination. Ter Kuile and Westerhoff proposed a method called “Regulation
analysis”, in order to disentangle quantitatively “hierarchical” from “metabolic” reg-
ulation of flux (Westerhoff et al., 2000; ter Kuile & Westerhoff, 2001). Their term
“hierarchical” refers to all processes that determine the active enzyme concentration
(e.g. transcription, translation and post-transcriptional modifications), while the term
“metabolic” includes all metabolic processes that alter enzyme activity through sub-
strate, product and effector concentrations. In a further refinement these two types
of regulation can later be analyzed in more detail, e.g. to dissect transcriptional from
translational control. Although Regulation Analysis is compatible with and comple-
mentary to Metabolic Control Analysis (Heinrich & Rapoport, 1973; Kacser & Burns,
1973) and its extension Hierarchical Control Analysis (Kahn & Westerhoff, 1991), it
has the special advantage of being applicable not only to small changes but also to
large changes of flux. This makes it much more accessible to experimentation.

The idea is as follows. Usually enzyme rate equations are of the kind:

v = v(e,x,k) = f(e) · g(x,k) (2.1)

in which v is the rate,e is the concentration of the enzyme, x is the vector of substrate,
product and other effector concentrations and k is a vector of constants parametrizing
the strength with which the enzymes interact with their substrates, products and
allosteric effectors. The important point of the above equation is that g does not
depend on the enzyme concentration. This reflects the virtually universal feature
that enzymes function as catalyst only, i.e. neither as substrate nor product. In
logarithmic space this becomes:

ln v = ln f(e) + ln g(x,k) (2.2)

This dissects the rate equation into a term that only depends on the enzyme
concentration and a term that only depends on the concentrations of metabolites and
effectors. At steady state, the pathway flux J through the enzyme equals the rate v
at which the enzyme catalyses the reaction. When one wishes to ask to what extent
J is regulated by the enzyme concentration and to what extent it is regulated by the
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metabolic term g(x,k), it is useful to divide as follows:

1 =
∆ ln v

∆ln J
=

∆[ln f(e) + ln g(x,k)]

∆ ln J
=

∆ ln f(e)

∆ ln J
+

∆ ln g(x,k)

∆ ln J
= ρh + ρm (2.3)

in which ρh is the hierarchical regulation coefficient and ρh is the metabolic regulation
coefficient. The fact that the two regulation coefficients sum to 1 is referred to as the
summation theorem for the regulation of flux.

Experimentally, the hierarchical regulation coefficient is the one that is more read-
ily determined, as the function f(e) usually equals the maximum enzyme rate Vmax.
The hierarchical regulation coefficient then becomes:

ρh =
∆ ln Vmax

∆ln J
(2.4)

Determination of ρh then depends on the possibility of measuring the Vmax and the
flux through the enzyme. This is often possible, albeit technically challenging. First,
the Vmax should be measured under physiologically relevant conditions. Secondly,
when the metabolic network is complex without a single major flux routing, it may
require flux analysis to resolve the intracellular fluxes (Christensen & Nielsen, 2000;
Stephanopoulos, 1999). Thirdly, when isoenzymes with different substrate affinities
are active at the same time, it might seem necessary to do the analysis for each isoen-
zyme independently. However, in the discussion section we demonstrate that this
limitation can often be overcome by a precise interpretation of the coefficients. Yet,
if these considerations are made, the hierarchical regulation coefficient can be deter-
mined experimentally. As soon as the hierarchical regulation coefficient is known, the
metabolic regulation coefficient follows automatically from the summation theorem.

In this paper, we wish to explore the potential of Regulation Analysis and to
apply it to the case of glycolytic flux in starved Saccharomyces cerevisiae. In many
industrial applications of this yeast, periods of starvation occur and it is known that
these influence the rate of alcoholic fermentation (Nilsson et al., 2001b; Rossell et al.,
2002; Thomsson et al., 2003). Also it is known that proteins are actively degraded un-
der starvation conditions (Abeliovich & Klionsky, 2001), among which glucose trans-
porters are no exception (Krampe & Boles, 2002).

Here we address the question to what extent a change in glucose flux due to nutri-
ent starvation should be attributed to “hierarchical regulation” including alterations
in gene expression and degradation of the glucose transporters, and to what extent
it should be attributed to changes in the interaction of the transporters with the rest
of metabolism. The kinetic behavior of the glucose transporters can be described by
rate equation for a symmetric carrier (Stein, 1986).

v = Vmax

(
[Glc]out

Km,out
−

[Glc]in
Km,in

)

1 +
[Glc]out

Km,out
+

[Glc]in
Km,in

+ α ·
[Glc]out

Km,out
·
[Glc]in
Km,in

(2.5)
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in which Km,out and Km,in are the Michaelis-Menten constants for extra- and intra-
cellular glucose respectively and α is a factor that depends on the relative mobility of
the loaded and the unloaded carrier protein.

Substituting Eq. (2.5) in Eq. (2.3) gives:

∆ ln v

∆ln J
=

∆ ln Vmax

∆ln J
+

∆ ln g([Glc]out, [Glc]in,Km,out,Km,in, α)

∆ ln J
= ρh + ρm = 1 (2.6)

This equation emphasizes on two points. First, g is a function that describes the
enzyme’s interaction with the rest of metabolism, and it depends not only on the
concentrations of metabolic modifiers, but also on the enzyme’s affinity for them.
Second, it is the cross-independence of the multipliers in the kinetic equation that
allows Regulation Analysis to be performed over large changes.

In this study we quantified precisely the effect of either carbon or nitrogen star-
vation on the steady-state glucose influx as well as on the zero-trans rate of glucose
uptake, and used these data to determine the hierarchical and metabolic regulation
coefficients. We will show that nitrogen and carbon starvation give rise to different
regulation of glucose flux. Furthermore we wish to use to use this study as an example
to show that Regulation Analysis allows unambiguous and quantitative statements
about how the cell achieves large changes of flux when it faces new conditions.

2.2 Materials and Methods

2.2.1 Growth and starvations

Saccharomyces cerevisiae strain CEN-PK 113-7D (MATa MAL2-8 c SUC2 ) was grown
in controlled batch cultures of 1.5 liters at a stirrer speed of 800 rpm and at 30◦C
in defined mineral medium containing 101 mM glucose (Verduyn et al., 1992). The
culture was kept at pH 5.0 by titration with 2 N KOH and aerated by flushing air at
45 l h−1 through the culture. Cells were harvested by centrifugation at an OD600nm

of 1.0 (exponential phase). For starvation experiments, the pellets were washed with
equal volumes of ice-cold growth medium lacking either glucose or ammonium, and
resuspended in their corresponding medium to a cell density of 0.75% wet weight
(approximately 1g dry weight l−1) at pH 6.0. The suspensions, of approximately
300 ml, were kept in 2-liter shake flasks on a rotary shaker at 30◦C and 200 rpm
without pH control for 24 hours. To avoid dual starvation, the growth medium lacking
ammonium contained 177 mM glucose. After 24 hours the glucose concentration in
the supernatant of nitrogen-starved culture was about 100 mM. It was checked, by
chemical analysis, that all chemical elements present in the growth medium (N –in
carbon starvation–, K, Na, Ca, Mg, Cl, SO4, P, Fe, Mn, Zn, B, Cu, Mo) were still
in excess after 24 hours of starvation. For the measurement of steady-state glucose
influx, the cells were harvested by centrifugation and resuspended in growth medium
without a carbon source. Unstarved cells were resuspended to 3% wet weight (5 g
dry weight l−1) while nitrogen starved and carbon starved cells were resuspended to a
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Figure 2.1: Comparison of steady-state glucose consumption flux with the capacity of the
glucose transporters at 0.1 M as determined by zero-trans influx experiments. Steady-state
glucose consumption flux (black bars) and zero-trans influx glucose transport capacity (white
bars). The error bars represent the standard deviation of two independent experiments
carried out with different batches of cells.

density of 6% wet weight (10 and 5 g dry weight l−1 respectively) and kept on ice for
at most 1 hour. Similarly, for the measurement of zero-trans influx of glucose, cells
were harvested by centrifugation and resuspended in growth medium without carbon
nor nitrogen source, all cultures were resuspended to 7.5% wet weight (resulting in
10 g dry weight l−1 for unstarved and carbon starved and 15 g dry weight l−1 for
nitrogen starved) and kept on ice for at most 1 hour.

2.2.2 Steady-state glucose influx

Steady-state glucose influx was measured in a cell suspension kept anaerobic at 30
C in a setup described by van Hoek et al. for determination of the fermentative
capacity (van Hoek et al., 1998b), with the following modifications: cells were washed
and resuspended in growth medium without a carbon source. The headspace was
flushed with N2 instead of with CO2, and glucose was measured by HPLC (300mm x
7.8 mm Ion exchange column Aminex-HPX 87H (Biorad), with 22.5 mM H2SO4 kept
at 55 ◦C as eluent at the flow rate of 0.5 ml min−1)

2.2.3 Zero-trans influx of glucose

Zero-trans influx of 14C radiolabelled glucose was determined in a 5 second uptake
assay at 30 C according to Walsh et al. (1994), with the modifications: (1) that
the uptake assay was carried out in the growth medium (see above) and (2) that
the cells were aerated during preincubation at 30 C for 4 minutes prior to the uptake
assay. The range of glucose concentrations was between 0.25 and 225 mM. Irreversible
Michaelis-Menten equations were fitted to the results by non-linear regressing using
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Table 2.1: Kinetic parameters of the irreversible Michaelis-Menten equations after fitting
to the dependence of rate on glucose concentration (cf. Figure 2.2). Vmax units are nmol
min−1 mg protein−1 and Km units are mM. Errors represent standard deviations based on
two independent experiments with different cell batches.

Condition Vmax Km

Unstarved 737 ± 104 38 ± 2
N-Starved 150 ± 1 7.7 ± 2.5
C-Starved 407 ± 8 32 ± 11

SigmaPlot 2001 version 7.0 (SPSS Inc.).

2.3 Results

2.3.1 Nutrient starvation leads to a decrease of the glucose
influx

The aim of our study was to quantify to what extent the decrease of glucose consump-
tion due to starvation is regulated by expression or degradation of the transporters
and to what extent it is regulated by the interaction of these transporters with the
rest of metabolism. To this end we first quantified the decrease of the steady-state
glucose influx under standardized conditions of growth and starvation. S. cerevisiae
CEN.PK 113-7D was grown in a well-aerated and pH-controlled batch culture. An
aliquot of cells was harvested during exponential growth and split in three parts. One
part was washed and transferred to an anaerobic vessel with fresh medium with excess
of glucose (101 mM). Under those conditions (referred to as “unstarved”) the glucose
flux was measured over a period of 30 minutes. The other two batches of cells were
washed and transferred to fresh medium, lacking either ammonium (N-starved cells)
or glucose (C-starved cells). After 24 hours these cells were again harvested and sub-
sequently treated as the unstarved cells had been, now to quantify the glucose influx
under glucose-excess conditions. Importantly, throughout the duration of all assays,
glucose concentration remained in excess. Estimations using the kinetic parameters
in Table 2.1 predict negligible changes in glucose transport rate due to the changes in
external glucose measured in this assay. The rate of glucose consumption was constant
throughout the assay although in some occasions an initial lag phase of a few minutes
was observed. This phenomenon proved not to be reproducible and we cannot give a
causal explanation. The rate was decreased by 75% and 80%, respectively, after N-
and C-starvation (Figure 2.1). The difference between N- and C-starvation was not
statistically significant. Protein and dry weight measurements indicated that there
was no substantial growth during the assay (30 minutes) in any of the conditions (not
shown).

2.3.2 Zero-trans influx of glucose

Subsequently we investigated to what extent the observed decrease of the steady-
state glucose consumption flux was paralleled by a changed capacity of the glucose
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Figure 2.2: Dependence of glucose uptake rate upon glucose concentration as measured in
zero-trans influx experiments. The rate of glucose uptake at different glucose concentrations
was measured for three conditions: unstarved (circles), nitrogen starved (triangles) and car-
bon starved (squares). Symbols represent averages of two independent experiments carried
out with different batches of cells. Lines represent fits of irreversible Michaelis-Menten equa-
tions (for fitted parameters see Table 2.1). The inset illustrates the rate dependence upon
glucose concentration at the lower glucose concentrations.

transporters. To quantify the zero-trans uptake kinetics of glucose, the uptake of
radio-labeled glucose was measured during 5 seconds at glucose concentrations be-
tween 0.25 and 225 mM and irreversible Michaelis-Menten equations were fitted to
the results. Both types of nutrient starvation led to a decrease of glucose transport
capacity. The decrease was more severe in nitrogen-starved cells (Figure 2.2). Dur-
ing N-starvation a decrease in Km was observed, while the affinity during carbon
starvation was unchanged within statistical error (Table 2.1).

We then compared the steady-state glucose consumption flux to the transport
capacity at 0.1 M (i.e.the concentration at which the flux had been measured, Fig-
ure 2.2). In unstarved and nitrogen-starved cells the steady-state rate of glucose
consumption was similar to the transport capacity, indicating that the transporter
worked at maximum capacity and that product inhibition by intracellular glucose
(Teusink et al., 1998) was negligible, i.e. internal glucose was and remained low. In
contrast, carbon-starved cells possessed a 3- to 4- fold excess glucose transport ca-
pacity compared to the actual glucose consumption. This difference is probably due
to product inhibition of the glucose transporters by a relatively high internal glucose
concentration in the steady-state situation. Accumulation of internal glucose can also
affect the zero-trans influx rate by decreasing the apparent rate of glucose uptake. In
order to estimate the magnitude of this underestimation, we simulated our 5 s glucose
uptake assay for the carbon-starved cells, assuming that glucose accumulated in the
cell without further metabolism (maximum internal glucose accumulation possible).
In the simulation we used the rate equation for a symmetrical carrier (Stein, 1986,
Eq. (2.5)) with the parameters reported for carbon starved cells (Table 2.1) and using
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Figure 2.3: Biochemical interpretations of regulation coefficients: the dependence on the
substrate concentration is depicted for two enzymes described by irreversible Michaelis-
Menten kinetics. Both enzymes have a Km of 1 (concentration units). They differ in their
Vmax-values (concentration/time units), of Vmax 30 (solid line) and Vmax 15 (dashed line).
Arrows represent changes in Vmax and/or substrate concentration that result in a change in
rate. Arrow labels correspond to categories of biochemical interpretations explained in the
main text.

an estimated cell volume of 3.75 µl per mg protein (de Koning & van Dam, 1992).
The rate of glucose consumption with unrestricted internal glucose accumulation was
about 10% lower than the zero-trans rate; therefore we expect that the underestima-
tion of glucose transport capacity due to product inhibition by internal glucose is at
most 10%. This result seems to contradict the findings by Smits et al. (1996), who
studied glucose transport in a triple hexose-kinase deletion mutant and found that
absence of further metabolism of glucose severely impaired the accuracy of 5 s zero-
trans influx determinations. They also showed that this difficulty could be overcome
by measuring in the much shorter time scale of 200 ms. The apparent contradiction is
resolved when it is realized that the affinity of the glucose transporter in the glycerol
grown triple hexose-kinase deletion strain was found to be much higher than in our
carbon-starved cells (2.1 mM compared to 32 mM). Under the assumption that the
glucose carrier is symmetrical, a high affinity transporter is much more sensitive to
product inhibition by internal glucose than a low affinity transporter. We made a
similar simulation using the kinetic parameters reported by Smits et al. and found
that the rate of glucose consumption with unrestricted internal glucose accumulation
during 5 s was about 35% lower than the 200 ms zero-trans rate.
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2.3.3 Regulation Analysis of glucose influx

The hierarchical regulation coefficient ρh, is a quotient that relates the relative change
in Vmax with the relative change in flux and its numerical value may be any real
number. We have classified its possible numerical values into five distinct categories,
each with a precise biochemical interpretation. Figure 2.3 illustrates the biochemical
interpretation of each of these five categories. In this figure (Figure 2.3), the relation
between the rate and the substrate concentration is drawn for an enzyme described
by irreversible Michaelis-Menten kinetics. The two curves have the same Km, but
different Vmax-values, which correspond to a change in the amount of the enzyme.
The arrows represent changes in Vmax and/or substrate concentration that result in
a change in rate. The arrows are labeled with boxed numbers that identify them as
pertaining to one of the categories listed below: (the nominal numbers correspond to
the arrow numbers):

• ρh = 1 means that the relative change of Vmax equals that of the flux. This
implies that there is no metabolic regulation. In the example on Figure 2.3 this
is obvious from the fact that the substrate concentration does not change (see
arrow 1, Figure 2.3). In more complex cases, metabolite concentrations and Km

values may change, but such that there is no net change of the function that
expresses the interaction of the enzyme with the rest of metabolism. In such
cases the internal changes in the composition of the metabolic function do not
contribute to a change of flux and therefore we say that there is no metabolic
regulation.

• ρh = 0 means that Vmax remains unchanged. The decrease in flux is caused
solely by a change of the metabolic function, i.e.in this example by a reduction in
the substrate concentration. This is a case of exclusively metabolic regulation.

• 0 < ρh < 1 means that the relative increase in Vmax is smaller than the
relative increase in flux. From the summation theorem, Eq. (2.6) it follows that
the metabolic regulation coefficient also takes a value between 0 and 1. Thus
the flux is changed by both a change in Vmax and a change in the metabolic
function. In the example, the latter is achieved by an increase of the substrate
concentration (Figure 2.3).

• ρh > 1 means that the relative change in Vmax is larger than the relative change
in flux. The changes in Vmax and substrate concentration have antagonistic
effects on the flux: the increase in Vmax, for instance due to an increase in
transcription, hauls the flux to increase, the decrease in substrate concentration
keeping the flux back. The net result is a change of the flux in the same direction
but not quite as much as the change in Vmax. Here hierarchical regulation is
dominant and metabolic regulation homeostatic. This case is expected when
an organism overexpresses a step in a pathway with a low/intermediate flux
control coefficient. The substrate of that step will then decrease in the product
concentration will go up, making metabolic regulation buffer away the regulation
through gene expression.
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Figure 2.4: Graphical representation of the different modes of steady-state flux through an
enzyme. This coordinate system with axes corresponding to the relative changes in flux and
Vmax allows a graphical representation of any process, in which these properties are changed,
in a common plot. Furthermore, the slope of the line connecting any data point to the origin
represents the metabolic regulation coefficient, ρh, of the represented process. The plot
includes a diagonal line with slope 1 (referred to by a boxed 1) that represents all processes
in which ρh is 1, i.e. where regulation is completely hierarchical. All other possible slopes
are grouped in the differently shaded areas and their biochemical interpretation is explained
in the main text.

• ρh < 0 means that the Vmax and the flux change in opposite directions. As in
category 4, the changes in Vmax and substrate concentration have antagonistic
effects on the flux. In this case, however, the flux changes in the direction of
the metabolic function and therefore metabolic regulation is dominant.

To illustrate the principle, ρh can be represented graphically in a coordinate sys-
tem with axes “∆ ln flux” and “∆ ln Vmax and flux through a specific enzyme that
results from whatever change in the internal or external environment of the cell. The
slope of the line through the data-point and the origin equals ρh. The numbers in
Figure 2.4 correspond to the different categories distinguished above. This illustration
(Figure 2.4) highlights the possibility of positive as well as negative changes in flux
and Vmax, and any combination thereof. It also introduces the possibility of repre-
senting simultaneously the regulation of different enzymatic reactions in response to
a given perturbation, and/or the regulation of a single enzymatic reaction in response
to different perturbations, facilitating comparison and classification.

In order to apply Regulation Analysis to our experimental results, the relative
change in glucose transport capacity (∆ ln Vmax) was divided by the relative change
in glucose consumption (∆ ln flux), during either type of nutrient starvation. The
relative change in glucose consumption during nitrogen starvation was similar to the
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Figure 2.5: Regulation of glucose flux by glucose transport capacity upon starvation. A
graphical representation of ρh in a coordinate system with “∆ ln flux” and “∆ ln Vmax” as
axes. Nitrogen (closed circle) and carbon (open circle) starvations are represented, error
bars correspond to the standard deviation. The diagonal line with slope 1 represents all
processes in which ρh is 1. The nitrogen starvation results lie somewhat below the diagonal
line in the area corresponding to slopes exceeding one and denoted in Figure 2.1 as category
4 (antagonistically regulated by hierarchical an metabolic processes and dominated by the
former). Carbon starvation results populate the area corresponding to category 3, this is of
slopes between 0 and 1 (simultaneous regulation by hierarchical and metabolic processes).

relative change in the capacity of the glucose transporters, with a ρh of 1.1 ± 0.2
(dimensionless, error indicates standard deviation). This implies that regulation is
classified best in category 1 (Figures 2.4 and 2.5, pure Vmax regulation). However, it is
possible that there is a small contribution of metabolic regulation, counteracting the
Vmax regulation (ρm = 1 − 1.1 ± 0.2 = −0.1 ± 0.2). In contrast, in carbon starvation
the relative change in glucose consumption exceeded the relative change in glucose
transport capacity, with resulting ρh of 0.4 ± 0.1. This meant that the change in
flux was brought about both by the change in capacity and by the interaction of the
enzyme with the rest of metabolism. From the summation theorem it follows that
the metabolic regulation coefficient ρm is 1 − 0.4 ± 0.1 = 0.6 ± 0.1 in this case. This
is a typical example of cooperative regulation (category 3, Figures 2.4 and 2.5), in
which both the change in Vmax and the interaction of the enzyme with the rest of
metabolism contribute positively to the change of flux.
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2.4 Discussion

Regulation analysis was devised to disentangle the relative contributions of “gene-
expression” and “metabolic” processes to the regulation of functional processes in
the living cell (ter Kuile & Westerhoff, 2001; Westerhoff et al., 2000). In this paper
we have applied Regulation Analysis to the regulation of glucose flux through glu-
cose transporters during nutrient starvation. In this section we will, based on our
experimental findings, discuss the scope and limitations of Regulation Analysis.

Nutrient starvation has been reported previously to result in a decreased glu-
cose consumption, which is accompanied by a decrease in glucose transport activity
(Rossell et al., 2002; Thomsson et al., 2003, Figure 2.1), but the correlation between
flux and transport activity was not unequivocal. Authors have expressed this in qual-
itative statements such as: “the reduction in flux is partly explained by the reduction
in transport capacity” (Rossell et al., 2002) or “the changes in flux were not reflected
by the changes in glucose transport capacity” (Thomsson et al., 2003). These state-
ments were true, yet vague. Unambiguous and quantitative statements are to be
preferred and Regulation Analysis has been proposed as a method to accomplish this
(Westerhoff et al., 2000).

We have studied the effects of carbon and nitrogen starvation on glucose consump-
tion flux and on glucose transport capacity and its detailed kinetics. Consistently with
previous studies, we have found that both glucose consumption and transport capacity
were decreased during starvation. However, the decrease of glucose transport relative
to glucose flux was very different in the two types of starvation (Figure 2.1). We
applied Regulation Analysis to our data and found that during nitrogen starvation
the ρh was 1.1± 0.2, meaning that the flux was regulated mostly hierarchically, with
at most a small and antagonistic contribution by metabolism (ρm = −0.1 ± 0.2). A
minor contribution of the change in the metabolic function to the regulation of the
flux does not imply that the changes in the individual variables of this function are
small. Instead, it means that these changes taken together have little overall effect
on the flux and thereby hardly contribute to its regulation, i.e. the total metabolic
regulation is small.

In the case of carbon starvation we found a ρh of 0.4 ± 0.1. From the summation
theorem it followed that the metabolic regulation coefficient (ρm) was 0.6±0.1, mean-
ing that the change in flux was brought about for some 40% by hierarchical and some
60% by metabolic regulation. We have now, for the first time, made unambiguous
and quantitative statements regarding the regulation of the glucose consumption flux
by changes in the capacity of its transporters. Moreover we have reinforced a novel
method in which this can be done for many other cases and systems as well.

It must be acknowledged that the measurement of the glucose flux and that of
the glucose uptake rate are at different time scales (30 minutes versus 5 seconds). It
cannot be excluded that the transporter kinetics change throughout the flux assay.
This will be the subject of further studies.

The detailed kinetic study revealed that during nitrogen starvation not only the
transport capacity but also the apparent Km of the transporters was decreased (Fig-
ure 2.2 and Table 2.1). Changes in the apparent affinity of transporters when cells
are challenged by an environmental change are well known (Walsh et al., 1994) and
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they can be ascribed to changes in the isoenzyme distribution of the transporters (Di-
derich et al., 1999a). S. cerevisiae contains 17, genes homologous to genes encoding
glucose transporters. Seven of these genes (HXT1-7 ) and GAL2 are considered as the
most important glucose transporter genes, since deletion of these genes is sufficient
to abolish growth on glucose (Kruckeberg, 1996; Ozcan & Johnston, 1999; Boles &
Hollenberg, 1997). Differential expression of the HXT genes has been shown to be an
important mechanism to modulate the apparent overall affinity of glucose transport
for its substrate, extracellular glucose (Diderich et al., 1999a).

In our own study we found that the overall kinetics of zero-trans glucose influx
could be described by a single Michaelis-Menten equation. Thus, although transport
is catalysed by a population of different transporters, they behave as a single, sat-
urable enzyme. From our derivation of the regulation coefficients (Introduction) it
is apparent that changes of the Km of glucose transport affect the metabolic regu-
lation coefficient, rather than the hierarchical regulation coefficient. The metabolic
regulation coefficient expresses the regulation through the interaction with the rest
of metabolism. If there is a change in Vmax without a change in Km, it is classified as
hierarchical regulation. If, through the expression of different isoenzymes, there is a
change in effective Km without a change in Vmax this is classified as metabolic regula-
tion, even though also in this case the mechanism by which the metabolic regulation
is effected involves changes in gene expression.

More generally, isoenzymes with different kinetic properties that can be differ-
entially expressed in response to environmental changes, introduce the possibility of
regulating both the quantity and quality of enzyme populations through hierarchical
processes (e.g. gene expression, directed degradation of specific proteins, etc.). This
feature of biological complexity is reflected in a more complicated interpretation of
Regulation Analysis results, because gene-expression processes may influence both
sides around the multiplication sign in Eq. (2.1), and there is no longer cross inde-
pendence between the multipliers. However there is still cross independence between
the capacity (Vmax) of the enzyme and a function describing its interaction with the
rest of metabolism g([Glc]out, [Glc]in,Km,out,Km,in, α), in the case of a symmetrical
carrier, Eqs. (2.5) and (2.6). Regulation analysis remains useful therefore, be it that
more generally ρh describes the regulation of the flux through changes in enzyme ca-
pacity and ρm describes the regulation of the flux through changes in the interaction
of the enzyme with the rest of metabolism (here regulation can be due to a change in
metabolism, or through e.g. through changes in Km due to isoenzyme expression or
due to stable phosphorylation of the enzyme).

Moreover, in the case in which there are two isoenzymes, of which the overall kinet-
ics cannot be described by a single component Michaelis-Menten equation, Eq. (2.1)
becomes:

v = v1(e1,x) + v2(e2,x)

= f1(e1) · g1(x) + f2(e2) · g2(x)
(2.7)

Equating the functions of the enzyme concentrations with the corresponding Vmax’s
this can be written as:

v = V ′

max · g′(x, Vmax1
/Vmax2

) (2.8)
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with:
V ′

max = Vmax1
+ Vmax2

and

g′
(

x,
Vmax1

Vmax2

)

=
Vmax1

Vmax1
+ Vmax2

· g1(x) +
Vmax2

Vmax1
+ Vmax2

· g1(x)

=

Vmax1

Vmax2

Vmax1

Vmax2

+ 1
· g1(x) +

1
Vmax1

Vmax2

+ 1
· g2(x)

(2.9)

The usual Regulation Analysis can now be applied, where the hierarchical regu-
lation coefficient retains its meaning as the only term expressing the dependence on
total Vmax, whilst the metabolic regulation coefficients now comprises not only the
classical type of metabolic regulation, but also regulation through a possible shift in
kinetic properties due to a shift in isoenzyme expression.

Until now we have only separated regulation by changes of Vmax (catalytic capac-
ity) from changes in metabolism. Changes in Vmax are the outcome of regulation at
various levels, including transcription, translation, mRNA and protein degradation,
and post-translational modifications that affect the activity of enzymes. Currently we
are developing an extension of Regulation Analysis that allows quantifying the rela-
tive contributions of these processes. Thus, regulation can be dissected quantitatively
into its separate mechanisms. First, metabolic regulation should be dissected from
hierarchical regulation, and only if hierarchical regulation is important, the different
processes in the hierarchy need to be analyzed in full detail. In this light, we think
that our study may be a first step towards a comprehensive analysis of regulation of
cell function.
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Chapter 3

The Regulation of Enzyme
Rates and the Glycolytic Flux

An important question is to what extent metabolic fluxes are regulated
by gene-expression or by metabolic regulation. There are two distinct as-
pects to this question: (i) the local regulation of the fluxes through the
individual steps in the pathway, and (ii) the influence of such local regula-
tion upon the pathway’s flux. We developed Regulation Analysis so as to
address the former aspect, for all steps in a pathway. We demonstrate the
new method for the issue of how Saccharomyces cerevisiae regulates the
fluxes through its individual glycolytic and fermentative enzymes when
confronted with nutrient starvation. Regulation was dissected quantita-
tively into: (i) changes in maximum enzyme activity (Vmax – called hier-
archical regulation), and (ii) changes in the interaction of the enzyme with
the rest of metabolism (called metabolic regulation). Within a single path-
way, the regulation of the fluxes through individual steps varied from fully
hierarchical to exclusively metabolic. Existing paradigms of flux regula-
tion (such as single- and multi-site modulation, and exclusively metabolic
regulation) were tested for the first time for a complete pathway, and fal-
sified for a major pathway in an important model organism. We propose
a subtler mechanism of flux regulation, with different roles for different
enzymes, i.e. “leader”, “follower” or “conservative”, the latter attempting
to hold back the change in flux. This study makes the subtlety, so typical
for biological systems, tractable experimentally, and invites reformulation
of the questions concerning the drives and constraints governing metabolic
flux regulation.

This Chapter has been published previously: S. Rossell, C. C. van der Weijden, A. Lindenbergh, A.

van Tuijl, C. Francke, B.M. Bakker and H.V. Westerhoff. Proc Natl Acad Sci U S A, 103, 2166-71
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3.1 Introduction

The flux through a metabolic pathway is determined by the activities of its enzymes
and by their interactions with other enzymes. Metabolic flux changes have often been
observed in response to environmental or genetic changes. In the yeast Saccharomyces
cerevisiae, for example, changes in glycolytic flux have frequently been found to be
accompanied by a myriad of changes in glycolytic enzyme activities (Daran-Lapujade
et al., 2004; van Hoek et al., 1998b, this work) or amounts (Nilsson et al., 2001b),
which varied in magnitude and direction. The complexity of interactions between
enzymes translates into a vast possibility space of combinations of enzyme activity
modulations leading to the same flux change. We wondered how the cell actually
regulates its fluxes.

Among the proposed mechanisms for metabolic flux changes, the two clearest
hypotheses are: (i) modulation of single rate-limiting enzymes, and (ii) multi-site
modulation, i.e. simultaneous and proportional modulation of all enzymes in the
pathway, thus causing a change in flux while leaving metabolite concentrations un-
changed (Fell & Thomas, 1995). Although single rate-limiting enzymes exist, control
of flux is quite often distributed over several enzymes (Fell, 1992). In the latter case,
modulation of a single enzyme is likely to be an ineffective mechanism for changing a
pathway’s flux. Indeed, attempts to correlate flux changes with changes in single en-
zyme activities or levels have failed consistently (Daran-Lapujade et al., 2004; Nilsson
et al., 2001b; van Hoek et al., 1998b). In contrast, the opposing theory of multi-site
modulation has met supporting examples, such as lipogenesis in mice, the urea cycle
in rats, and photosynthesis in green plants (Fell & Thomas, 1995). It is not clear,
however, how general this mechanism is, and whether indeed all enzyme activities
changed in proportion to the flux.

An important question is to what extent metabolic fluxes are regulated by en-
zyme capacity Vmax and to what extent by metabolic regulation. According to one
paradigm, metabolic fluxes at steady-state are regulated through enzyme capacity
changes (e.g. achieved through changes in gene expression). An orthogonal paradigm
has metabolic regulation as dominant. Single- and multi-site modulations assume
that flux changes are regulated through changes in the capacity of enzymes within
the pathway, e.g. through transcription regulation and/or through covalent modi-
fication. The single-enzyme modulation hypothesis does not exclude the possibility
of metabolic regulation, but it does assume a leading role of gene expression. In
its strongest form, multi-site modulation, on the other hand, excludes the possibil-
ity of metabolic regulation, and proposes metabolite homeostasis as a constraint to
regulatory processes. In fact, strong metabolite homeostasis of the glycolytic inter-
mediate glucose-6-phosphate has been demonstrated in rat and human muscle during
large changes in glucose consumption and the mechanism through which metabolite
homeostasis was attained has been clearly elucidated (Shulman et al., 1995).

The idea is as follows. Because enzymes are catalysts (and not substrates), enzyme
rate equations are usually of the shape:

v = v (e,x,k) = f(e) · g(x,k) (3.1)

in which v is the rate, e is the concentration of enzyme, x is a vector of concentrations
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of substrates, products and other metabolic effectors, and k is a vector of constants
parametrizing the strength with which the enzymes interact with their substrates,
products and allosteric effectors. The important characteristic of the above equation
is that the multipliers are cross-independent. This means that f does not depend
upon x and k, and g does not depend upon e. Exceptions to Eq. (3.1) exist, for
instance in some cases of strong substrate channeling, and in this sense this is a first
approach. f(e) describes the dependency of the rate upon the enzyme concentration
and can be taken to equal Vmax, while g(x,k) describes the interaction of the enzyme
with the rest of metabolism through metabolite concentrations and the corresponding
affinity constants.

The dissection and quantification of f and g is achieved by translating Eq. (3.1)
into logarithmic space, considering a change between two steady states, and dividing
both sides of the equation by the relative change in steady-state flux J . Since at
steady state the flux J equals the enzyme rate i v, this results in:

1 =
∆ ln f(e)

∆ ln J
+

∆ ln g(x,k)

∆ ln J
= ρh + ρm (3.2)

ρh is the “hierarchical regulation coefficient”, quantifying the relative contribution
of changes in active enzyme concentration to the regulation of the enzyme’s flux.
ρm is the “metabolic regulation coefficient”, quantifying the relative contribution of
changes in the interaction of the enzyme with the rest of metabolism to the regulation
of the enzyme’s flux. For a more elaborate description and discussion of the method
see Chapter 2. The term “hierarchical regulation coefficient” was introduced by ter
Kuile & Westerhoff (2001) because the Vmax depends on the complete gene-expres-
sion cascade of transcription, translation, posttranslational modification, and mRNA
and protein degradation. The two regulation coefficients sum up to one (summation
theorem for the regulation of flux) implying that determination of one will yield
the other automatically (ter Kuile & Westerhoff, 2001, Chapter 2). In practice the
hierarchical regulation coefficient is more readily determined, since f(e) usually can
be taken to equal Vmax, and the Vmax as well as the flux J through the enzyme can be
measured or estimated in most cases. Regulation Analysis introduces the possibility of
making unambiguous and quantitative descriptions of the regulation of fluxes through
individual enzymes embedded in biochemical networks of any complexity, in response
to any number or kind of simultaneous perturbations.

In this study, Regulation Analysis is applied to the regulation of the flux through
individual glycolytic and fermentative enzymes in S. cerevisiae during nutrient star-
vation. Starvation for nutrients is perhaps one of the most common stress conditions
experienced by microorganisms in their natural habitat and it may affect most of the
organisms’ life span. Nutrient starvation is also relevant for the industrial produc-
tion of baker’s yeast. At the final stages of production and during storage cells are
starved, and this affects several quality parameters among which the fermentative
capacity (Nilsson et al., 2001b; Rossell et al., 2002) (the specific rate of CO2 produc-
tion under anaerobic conditions with excess of sugar, which almost equals the rate of
ethanol formation (van Hoek et al., 1998b)).

Using Regulation Analysis we here dissect quantitatively the regulation of fluxes
through individual glycolytic and fermentative enzymes in response to nutrient star-
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vation. Our experimental results served to test three regulatory paradigms (i.e. single
enzyme, multi-site, all metabolic). The results evidence a more subtle regulation of
cell function and show that the new method allows delineating experimentally the
regulation of flux. Our results suggest that different enzymes in a common pathway
play different roles in the regulation of the pathway’s flux.

3.2 Materials and Methods

3.2.1 Growth and starvations

The growth and starvation procedures have been described in detail in Chapter 2.
Briefly, Saccharomyces cerevisiae strain CEN-PK 113-7D (MATa MAL2-8 c SUC2 )
was grown in pH controlled batch cultures at 30◦C in defined mineral medium con-
taining 101 mM glucose (Verduyn et al., 1992) kept at pH 5.0. Cells were harvested by
centrifugation at an OD600nm of 1.0 (exponential phase). For starvation experiments,
the pellets were washed with equal volumes of ice-cold growth medium lacking either
glucose or ammonium, and resuspended in the corresponding medium to a cell density
of 0.75% wet weight (approximately 1g dry weight l−1) at pH 6.0. The suspensions,
of approximately 300 ml, were kept in 2-liter shake flasks on a rotary shaker at 30◦C
and 200 rpm without pH control for 24 hours. For the measurement of steady-state
fluxes, the cells were harvested by centrifugation and resuspended in growth medium
without a carbon source and kept on ice for at most 1 hour. Similarly, for the mea-
surement of zero-trans influx of glucose, cells were harvested by centrifugation and
resuspended in growth medium lacking carbon and nitrogen sources, and kept on ice
for at most 1 hour.

3.2.2 Steady-state fluxes

Steady-state fluxes were measured for 30 minutes in a cell suspension kept anaerobic
at 30◦C in a setup described by van Hoek et al. (1998b) for the determination of
fermentative capacity, with the modification that the headspace was flushed with N2

instead of with CO2. Ethanol, glucose, glycerol, succinate, acetate and trehalose
were measured by HPLC (300 mm x 7.8 mm Ion exchange column Aminex-HPX 87H
(Biorad), with 22.5 mM H2SO4 kept at 55◦C as eluent at the flow rate of 0.5 ml
min−1). Glycogen was assayed according to Parrou & Francois (1997). The rate of
carbon dioxide production was calculated from the production rates of ethanol and
acetate.

The flux through the glucose transporter (GLT) was taken as equal to the mea-
sured glucose consumption flux. The fluxes through enzymes downstream hexoki-
nase (HK) were calculated from the steady-state rates of ethanol and glycerol pro-
duction. Figure 3.1 shows a scheme of the pathway. Enzymes with the same flux
are boxed together. The flux through HK, glucose-6-phosphate isomerase (PGI), 6-
phosphofructokinase (PFK) and aldolase (ALD) was calculated by dividing the sum
of the glycerol and ethanol fluxes by two. The flux through triose-phosphate iso-
merase (TPI) was calculated by subtracting the rate of glycerol from the flux through
the previous block (HK until ALD), and the flux through the enzymes downstream
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Figure 3.1: Schematic representation the glycolytic and fermentative pathways. In this
simplified scheme of the glycolytic and fermentative pathways, enzymes are boxed and those
with the same flux are boxed together. Measured fluxes are depicted in bold letters and
branching metabolites connect the boxes. Numbers represent the flux percentages of starved
cultures with respect to the unstarved condition. Underlined numbers are the percentage
flux of nitrogen-starved cultures, and numbers without underline are the corresponding per-
centages for carbon-starved cultures. Measured fluxes are distinguished from calculated
fluxes by being represented in bold letters. GLC: glucose flux; SC: steady-state degradation
of storage carbohydrates; EtOH: ethanol flux; DHAP: Dihydroxyacetonephosphate; GAP:
Glyceraldehyde-3-phosphate, GLCi: intracellular glucose; SC: storage carbohydrates . En-
zyme abbreviations are in the main text.

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was taken as equal to the mea-
sured ethanol flux.

3.2.3 Glucose transport activity measurements

Zero-trans influx (the initial rate of transport before the product, intracellular glu-
cose, builds up) of 14C radiolabelled glucose was measured in a 5 second uptake assay
at 30◦C according to Walsh et al. (1994), with the modifications introduced in Chap-
ter 2. The range of glucose concentrations was between 0.25 and 225 mM. Irreversible
Michaelis-Menten equations were fitted to the results by non-linear regressing using
SigmaPlot 2001 version 7.0 (SPSS Inc.).
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3.2.4 Enzyme activity measurements

Enzyme extracts were prepared by sonication with glass beads at 0◦C as described
by van Hoek et al. (1998b). Enzyme activity assays were carried out on four dilutions
of freshly prepared extracts through NAD(P)H-linked assays as described by van
Hoek et al. (1998b), using a COBAS BIO (Roche, Basel) automated analyzer for
spectroscopic measurements. As a control, an extraction was done in the presence
and in the absence of phosphatase inhibitors (10 mM sodium fluoride and 5 mM
sodium pyrophosphate), Vmax changes were small and within the expected statistical
variation.

3.2.5 Regulation Analysis

Hierarchical regulation coefficients (ρh) were calculated as follows:

ρh =
lnVmax,starved − lnVmax,unstarved

lnJstarved − lnJunstarved
(3.3)

where the subscripts starved and unstarved refer to starved (for nitrogen or carbon)
or unstarved cell suspensions respectively. Each starvation experiment provided three
cell suspensions, one for each condition. We performed four independent starvation
experiments to measure Vmax-values and other four to estimate fluxes through in-
dividual enzymes. The numerator of Eq. (3.3) was calculated for each starvation
experiment, the values were averaged and their standard deviation computed. The
average and standard deviation of the denominator was computed in the same way.
Dividing average numerator and denominator yielded the average ρh. The metabolic
regulation coefficient was calculated by subtracting ρh from 1.

3.3 Results

3.3.1 Steady-state fluxes

We first measured the overall steady-state fluxes of glucose, ethanol, glycerol, acetate,
succinate, glycogen and trehalose, under standardized conditions of growth and star-
vation. Subsequently, these data were used to calculate the intracellular fluxes through
the individual enzymes. S. cerevisiae CEN.PK 113-7D was grown in a well-aerated
and pH-controlled batch culture. An aliquot of cells was harvested during exponential
growth and split in three parts. One part (referred to as “unnstarved”) was washed
and transferred to an anaerobic vessel with a fresh and complete medium with excess
of glucose (101 mM). This condition was meant to mimic the situation of baker’s
yeast in dough (van Hoek et al., 1998b). The above-mentioned fluxes were then mea-
sured over a period of 30 minutes. The other two batches of cells were washed and
transferred to fresh medium, lacking either ammonium (“nitrogen-starved cells”) or
glucose (“carbon-starved cells”). After 24 hours the starved cells were harvested and
the fluxes were measured in a complete medium, in the same way as was done for the
unstarved cells.
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Figure 3.2: Carbon flux balances. The carbon fluxes for each condition are represented with
two columns: one depicting the consumed carbon (white) and the other the produced carbon
(shaded). Columns are divided into fluxes: glucose (white), storage carbohydrates (white
with diagonal lines), glycerol (black), ethanol (light grey) and CO2 (calculated from the
ethanol and acetate production –dark grey). Error bars represent standard errors of the mean
of the sum of consumed or produced carbon fluxes of four independent experiments carried
out with different batches of cells. Glycogen was measured in only two of the experiments,
their average was used as the glycogen degradation rate of the other two, in which glycogen
was not measured.

Figure 3.2 and Table 3.1 show the measured fluxes. In all conditions the consumed
carbon matched the produced carbon within experimental error. The production
fluxes of acetate and succinate were always below 1% of the rate of glucose consump-
tion (not shown). Nitrogen as well as carbon starvation resulted in a significant and
substantial decrease of both the consumption of glucose and the production of ethanol
and glycerol under the abundance conditions of the steady-state measurements assay
(Student’s t-test, α = 5%). During the starvation period, nitrogen-starved cells ac-
cumulated trehalose and glycogen. Upon transfer to complete medium, these storage
carbohydrates were degraded, fueling glycolysis and contributing to the production
of ethanol and glycerol.

The measured steady-state fluxes of ethanol, glycerol and glucose were used to
calculate fluxes through individual enzymes in the manner detailed in the Materials
and Methods section. Figure 3.1 shows the resulting fluxes of nitrogen- (underlined)
and carbon-starved cultures as a percentage of those in unstarved cultures. Nutrient
starvation resulted in a substantial down-regulation of the fluxes through all gly-
colytic and fermentative enzymes, up to more than 70 % in the case of the glucose
transporters.

3.3.2 Enzyme activities

Next we asked to what extent the observed decrease of the fluxes through the gly-
colytic enzymes was regulated through changes of their maximum activities (Vmax).
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Table 3.1: Measured fluxes. Experimentally measured fluxes are reported in mol of the
compound per minute per mg protein for each condition. Negative values represent fluxes
feeding the pathway and positive values represent outgoing fluxes. Errors are standard
errors of the mean for four independent experiments carried out with different batches of
cells, except for glycogen. Glycogen errors are standard deviations for two independent
experiments carried out with different batches of cells.

Unstarved N-starved C-starved
Glucose -0.62 ± 0.03 -0.16 ± 0.02 -0.17 ± 0.03
Glycerol 0.13 ± 0.01 0.06 ± 0.01 0.04 ± 0.00
Ethanol 1.04 ± 0.03 0.49 ± 0.05 0.33 ± 0.05

Trehalose 0.00 ± 0.00 -0.01 ± 0.00 0.00 ± 0.00
Glycogen 0.00 ± 0.00 -0.03 ± 0.01 0.00 ± 0.00

Therefore, we measured the maximum enzyme activities in unstarved cells and after
24 hours of nitrogen or carbon starvation.
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Figure 3.3: Vmax-values as a percentage of those in unstarved cells. The percentage of
Vmax-values with respect to the unstarved condition of glycolytic and fermentative enzymes,
and of the glucose transporter are shown: unstarved (black columns), nitrogen-starved (di-
agonally striped columns) and carbon starved (grey columns). Error bars of glycolytic and
fermentative enzymes represent the percentage standard error of the mean with respect to
their corresponding unstarved mean Vmax-value, of four independent experiments carried
out on different batches of cells. Error bars of the glucose transporter represent the percent-
age standard deviation with respect to the unstarved mean Vmax-value of two independent
experiments carried out on different batches of cells.

Nutrient starvation resulted in changes of Vmax that varied in extent and direction
(Figure 3.3). The cells responded in a very different way to the two types of starvation.
During nitrogen starvation, the activities of GLT, HK, PGI, ALD, phosphoglycerate
mutase (PGM), pyruvate kinase (PK), pyruvate decarboxylase (PDC) and alcohol
dehydrogenase (ADH) were down-regulated (Student’s t-test α = 5%), while the
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other enzyme activities remained unchanged within statistical error. During carbon
starvation, on the other hand, only the Vmax of the glucose transporter decreased
significantly, while the maximum activities of triosephosphate isomerase (TPI) and
ADH increased (Student’s t-test α = 5%).

3.3.3 Regulation Analysis

Table 3.2: Hierarchical and metabolic regulation coefficients of nitrogen and carbon starva-
tions. Hierarchical and metabolic regulation coefficients were calculated as described in the
Materials and Methods section. Errors are standard errors of the mean (SEM) calculated for
four independent Vmax measurements and four independent flux estimations, all performed
upon independent batches of cells.

Nitrogen starvation Carbon starvation
Enzyme ρh SEM ρm ρm SEM ρm

GLT 1.2 0.1 -0.2 0.4 0.1 0.6
HK 1.0 0.2 0.0 0.1 0.0 0.9
PGI 0.8 0.3 0.2 0.0 0.0 1.0
PFK 0.4 0.2 0.6 0.4 0.4 0.6
ALD 1.1 0.5 -0.1 0.0 0.2 1.0
TPI 0.1 0.9 0.9 -0.4 0.2 1.4

GAPDH 0.7 0.5 0.3 0.1 0.0 0.9
PGK 0.0 0.2 1.0 -0.3 0.1 1.3
PGM 1.0 0.4 0.0 0.0 0.0 1.0
ENO 0.4 0.5 0.6 0.3 0.1 0.7
PK 1.4 0.3 -0.4 0.1 0.0 0.9

PDC 2.3 0.6 -1.3 0.1 0.0 0.9
ADH 1.7 0.4 -0.7 -1.3 0.2 2.3

Nutrient starvation resulted in decreased fluxes and a variety of Vmax changes. In
order to dissect the extent to which the changes of Vmax were responsible for the flux
changes from the extent to which the fluxes were rather regulated by changes in their
interaction with the rest of metabolism, we calculated the hierarchical and metabolic
regulation coefficients (cf. Eqs. (3.2) and (3.3). The results are shown in Table 3.2.
The hierarchical regulation coefficients, ρh, ranged between -1.3 and 2.2, spanning all
categories of regulation (cf Chapter 2). This wide variation of iρh is not a matter of
statistical variation (cf. Table 3.2).

We distinguish the following categories of regulation:

• Purely hierarchical regulation: During nitrogen starvation the hierarchical
regulation coefficient (ρh) of a number of enzymes was not significantly different
from 1. Since the metabolic and the hierarchical regulation coefficients sum up
to 1 [Eq. (3.1)], these enzymes had a metabolic regulation coefficient (ρh) not
significantly different from 0. This implied that the change of flux was regulated
predominantly by the change in Vmax, while the interaction with the rest of
metabolism made a negligible contribution. HK and PGM were the clearest
examples of this type of regulation.
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• Purely metabolic regulation: Enzymes with ρh not significantly different
from zero were found in both types of starvation. For these enzymes, the flux was
predominantly regulated by the interaction with the rest of metabolism without
any significant contribution of changes in Vmax. PGK in nitrogen starvation,
and PGI, ALD and PGM in carbon starvation were the clearest examples of
this category.

• Cooperative regulation: a number of enzymes were regulated cooperatively
by changes in Vmax and changes in their interaction with the rest of metabolism.
This was reflected by a ρh value between 0 and 1 and significantly different from
both 0 and 1. PFK was regulated in this way during nitrogen starvation, and
so were GLT and ENO during carbon starvation.

• Antagonistic regulation, directed by metabolism: Negative ρh values
result when the flux changes in opposite direction to the Vmax. In these cases
ρm was larger than 1, implying that the metabolic regulation dominated and
was counteracted by hierarchical regulation, which acted “conservatively” in
that it attempted to keep to antagonize the flux change. The regulation of
ADH during carbon starvation was an outstanding instance of this category.

• Antagonistic regulation, directed by Vmax: This category is the opposite
of the previous. ρh exceeded 1 and ρm was therefore negative. In these cases,
the changes in the interaction with the rest of metabolism and the changes of
Vmax again counteracted each other, but now the change of Vmax dominated
the outcome, with the metabolic regulation acting conservatively. Only nitrogen
starvation showed enzyme fluxes regulated in this way. PDC and ADH were the
most conspicuous cases. Also GLT was classified in this category, but it should
be noticed that its ρh was very close to 1, meaning that its regulation was pre-
dominantly hierarchical with a small, but significant, antagonistic contribution
of the interaction with the rest of metabolism.

3.4 Discussion

Nutrient starvation of the yeast S. cerevisiae resulted in decreased glucose consump-
tion and decreased ethanol and glycerol production (Nilsson et al., 2001b; Rossell
et al., 2002; Thomsson et al., 2003, this study). These flux decreases were accom-
panied by a limited variety of changes in the maximum activities of glycolytic and
fermentative enzymes. The changes differed in magnitude and direction among en-
zymes, and the profile of these changes differed between starvation types (Nilsson
et al., 2001b; Thomsson et al., 2003, this study). Similar findings have been reported
for other transitions, such as changes of dilutions rates in chemostat cultures (van
Hoek et al., 1998b) or shifts between different growth limitations (Daran-Lapujade
et al., 2004).

Our goal was to understand the regulation of metabolic fluxes by the concerted
action of gene expression and metabolic interactions. There are two related, but dif-
ferent aspects to this problem. On the one hand, there is the local regulation of fluxes
through individual enzymes, and on the other hand, there is the extent to which
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this local regulation influences the pathway’s (global) flux. In this contribution we
expound how the first aspect can be understood. Using Regulation Analysis, we de-
termined experimentally the type of regulation of fluxes through individual glycolytic
and fermentative enzymes, as yeast was responding to nutrient starvation. Others
and we have applied this method previously to the regulation of flux through some
steps in a pathway (ter Kuile & Westerhoff, 2001; Even et al., 2003, Chapter 2). The
present paper reports the first comprehensive study extending Regulation Analysis to
all enzymes in a complete metabolic pathway. It is therefore the first time that we
could address the validity of a number of existing paradigms of metabolic regulation
of pathway flux.

In the Introduction we distinguished three regulatory paradigms, i.e. single en-
zyme, multi-site, or all metabolic. If we translate these paradigms to the terminology
of Regulation Analysis, single-enzyme regulation implies that one enzyme is regu-
lated in a purely hierarchical manner (ρh = 1), while all the others are regulated only
through metabolism (ρh = 0). Neither our results nor that of others are compatible
with single-enzyme regulation (Nilsson et al., 2001b; Thomsson et al., 2003; van Hoek
et al., 1998b; Daran-Lapujade et al., 2004).

The hypothesis of multi-site modulation proposes metabolite homeostasis as a con-
straint to metabolic flux regulation, excluding the possibility of metabolic regulation.
This corresponds to a situation where ρh = 1 for all enzymes. In our carbon starvation
experiments, however, a number of fluxes through individual enzymes was regulated
exclusively by the interaction of the enzyme with the rest of metabolism (ρh = 0).
Among these enzymes, PGI and ALD have a unique isoenzyme form, excluding that
this apparent metabolic regulation is actually caused by Km changes through the
expression of isoenzymes. During nitrogen starvation, unspecific degradation of pro-
teins via autophagy is enhanced (Abeliovich & Klionsky, 2001) and therefore one
might have expected a proportional decrease of all enzyme amounts (corresponding
to multi-site modulation). We observed, however, disproportional changes in enzyme
activities (ρh’s unequal to each other and 6= 1). Protein degradation is therefore
unlikely to be the sole cause of these enzyme activity changes.

The third paradigm, exclusively metabolic regulation, would correspond to all
ρh = 0. Our results are incompatible with this hypothesis.

If none of these three regulatory paradigms holds true, how should we then en-
visage regulation? Within a single pathway, fluxes through individual enzymes were
regulated in different ways, suggesting that enzymes play different roles in the regu-
lation of the pathway’s flux. Changes in fluxes through some enzymes were caused
predominantly by changes in enzyme activities (ρh close to or above 1). The interac-
tion with the rest of metabolism either complied (ρm = 0) or antagonized, diminishing
the effect of the enzyme activity change on the local flux (ρm < 0). In these cases, en-
zyme activity changes seemed to “lead” the regulatory response, while the compliance
or antagonism of the interaction with the rest of metabolism constituted the system’s
response to this “lead”. Other enzyme fluxes were regulated with small or no change
in enzyme activities (0 < ρh < 1 and ρh = 0, respectively). These enzymes seemed to
”follow” the “leader” enzymes by adjusting their rate through their interaction with
the rest of metabolism. Yet other enzymes changed their maximum activity in oppo-
site direction to the change in flux (ρh < 0). These “conservative” enzymes seemed
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to “pull back”, to restrain the regulation by the leading enzymes. Interestingly, the
pathway’s regulation profile differed radically between the two types of starvation.
The sets of enzymes leading the regulatory response, as well as those following or
pulling back, differed between starvation types. Apparently, the regulatory roles of
enzymes are not fixed properties, but rather change when cells are challenged in dif-
ferent ways. And this finding is what we should like to propose as a new paradigm
for metabolic regulation, regulation is diverse within a pathway, some enzymes taking
the lead, others helping and yet others acting conservatively.

Several experimental limitations limit further conclusions from and indeed the
accuracy of our analysis. For one, some of the calculated regulation coefficients pre-
sented in Table 3.2 have relatively high standard errors of the mean. This is due to
the necessary (because we are studying regulation) consideration of changes of fluxes
and enzyme activities instead of absolute values in their calculation. The large errors
limit the application of Regulation Analysis, at this moment, to the analysis of per-
turbations that cause relatively large changes of flux and stresses upon the necessity
to further develop the reproducibility of analytical techniques as well as of cultivation
and sampling procedures. However, the large errors do not impede an unambiguous
classification of most enzymes in different regulation categories, proving that these
classifications are not just theoretical possibilities, but actual ways by which living
cells regulate fluxes through individual enzymes. And here Regulation Analysis dif-
fers from Metabolic Control Analysis in that Regulation Analysis does not require
changes to be small.

Another crucial issue is a correct estimation of the local fluxes. Based on measured
fluxes (Table 3.1) we calculated the fluxes through individual glycolytic and fermen-
tative enzymes using the simplified scheme depicted in Figure 3.1. We neglected the
branching fluxes through the pentose phosphate pathway as well as through the an-
abolic pathways. Although the differences between produced and consumed carbon
are not statistically significant (Figure 3.2), mean consumed carbon was in excess with
respect to produced carbon in unstarved cultures, while the reverse was suggested for
starved cultures. Since absolute growth during our 30 minutes assay is undetectable,
we estimated the fraction of glycolytic flux diverged into biomass. As the biomass
yield for optimal anaerobic growth is 0.1 g biomass per g glucose and the carbon
content of biomass is 40 % (Verduyn et al., 1991), at most 10 % of the glucose may be
incorporated into biomass. Because S. cerevisiae lacks a transhydrogenase, the pools
of NADPH and NADH are not linked (Bakker et al., 2001). For each mole of glu-
cose going into biomass, one mole of NADPH is required (Verduyn et al., 1990b). If
10% of the glucose is utilized for biomass production, then at most 5% of the glucose
flows through the phosphogluconate pathway (2 NADPH are produced per glucose
6-phosphate rerouted). Based on these calculations we neglected the branches into
the pentose phosphate pathway and into anabolism: Taking them into account would
not change our regulation coefficients such that our above conclusions would change.

Another simplification in Figure 3.1 was the exclusion of fructose-1,6-bisphospha-
tase. This enzyme may cause substantial futile cycling, particularly in the transition
from carbon starved media to complete media (Shulman & den Hollander, 2004).
However, in our experimental conditions the activity of fructose-1,6-bisphosphatase
was very low in all cultures (below 0.002 µmol min−1 mg protein−1). In contrast to



The Regulation of Enzyme Rates and the Glycolytic Flux 59

Shulman & den Hollander (2004), our starved cells were not adapted to growth on
acetate or another gluconeogenic substrate: The required stimuli for triggering the ex-
pression of fructose-1,6-bisphosphatase may have been absent under our experimental
conditions.

It is possible to extend Regulation Analysis to dissect the different processes within
the hierarchical component further (Westerhoff et al., 2000). Such a comprehensive
study is underway. In a pilot experiment, we investigated whether any change in Vmax

occurred at 15 minutes after the transfer of starved cells into complete medium, the
timescale at which covalent modifications may occur. The changes in Vmax we mea-
sured were not beyond what was to be expected on the bases of statistical variation,
with the exception of PK. We observed an activation of PK in nitrogen and carbon
starved cultures, 6 and 16 fold, respectively (result not shown). Indeed PK has been
reported to be activated through phosphorylation by protein kinase A (Portela et al.,
2002).

Concerning the regulation of the pathway’s flux, our results suggest that changes
outside glycolysis contributed to the decrease of glycolytic flux in carbon starved cells,
regulating glycolytic enzymes metabolically. The only Vmax that decreased signifi-
cantly was that of the glucose transporter. However, the decrease of the transporter
Vmax was only 40% of the decrease of the flux. The remaining 60% of metabolic
regulation is unlikely to be initiated by any of the other enzymes in the pathway,
since no other Vmax decreased significantly. Thus, part of the metabolic regulation of
glycolytic and fermentative enzymes during carbon starvation must have originated
outside the pathway. We measured the concentrations of two obvious candidates,
ATP and ADP (not shown). Their ratio did not change (0.7), but changes in the
total concentration of the summed adenine nucleotides (ATP + ADP + AMP) may
still be involved in the decrease of glycolytic flux.

Our results and analysis have shown that pathway fluxes may be regulated not
only through expression of enzymes within the pathway, but also through metabolic
regulation that may be elicited by changes foreign to the pathway in study. Thus,
our findings highlight the need to integrate transcriptome and proteome analyses with
other levels of regulation, including the metabolic, and to do this quantitatively. Using
Regulation Analysis we have described the regulation of steady-state fluxes through
individual enzymes unraveling a previously undescribed complexity of flux regulation.
The diversity of regulation within a common pathway suggests that enzymes play a
limited number of different regulatory roles. We suggest an alternative mechanism for
flux modulation. A mechanism in which regulation is not exclusively hierarchical as in
multi-site modulation nor effected by a single regulatory enzyme, but involves different
regulatory roles for each enzyme, and a plasticity that allows these roles to shift
between enzymes when the cell is confronted with different challenges. Our findings
invite to reconsider our views on regulatory processes. Regulation of metabolic fluxes
needs not to be governed by single drives or constraints, but may result from a
combination of them and their relative importance may well vary between challenges.
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Chapter 4

The Regulation of Enzyme
Rates and Catalytic
Capacities

Metabolic fluxes may be regulated “hierarchically”, e.g. by
changes of gene expression that adjust enzyme capacities (Vmax), and/or
“metabolically” by interactions of enzymes with substrates, products and
allosteric effectors. In the present study a method is developed to dissect
the hierarchical regulation into contributions by transcription, translation,
protein degradation and posttranslational modification. The method was
applied to the regulation of fluxes through individual glycolytic enzymes
when the yeast Saccharomyces cerevisiae was confronted with the absence
of oxygen and the presence of benzoic acid depleting its ATP. The more
than 10-fold increase in the fluxes through the glycolytic enzymes was for
50 – 80% due to metabolic regulation, the percentages varying between the
various steps of glycolysis and between the cultivation conditions tested.
Within the 50 – 20% hierarchical regulation of fluxes, transcription played
a minor role while regulation of protein synthesis or degradation was pre-
dicted to be the most important. These were also predicted to account
for 75% - 100% to the regulation of protein levels.

4.1 Introduction

The 1990s have witnessed a revolution in molecular cell biology. Nucleotide sequences
of complete genomes were elucidated and new techniques enabled genome-wide analy-
sis of mRNA and protein concentrations as well as accurate estimates of metabolic flux
distributions (deRisi et al., 1997; Washburn et al., 2001; Forster et al., 2003). The
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central dogma of molecular biology is that DNA encodes mRNA and that mRNA
encodes proteins, which in turn fulfill the many functions in the cell. Therefore, a
strong correlation was anticipated between mRNA concentrations, protein concen-
trations and metabolic fluxes. However, subsequent gene expression studies led to
the paradoxical conclusion that correlations between mRNA levels and protein levels
(Griffin et al., 2002; Ideker et al., 2001; Greenbaum et al., 2003; Bro et al., 2003),
between mRNA and in vivo fluxes (Even et al., 2003; Daran-Lapujade et al., 2004;
Yang et al., 2002) and between enzyme activities and fluxes (ter Kuile & Westerhoff,
2001, Chapter 3) were far from perfect.

There are several explanations for the lack of correlation between the different
levels of gene expression. Clearly, defined and strictly controlled cultivation methods
are required to obtain high-quality datasets (Piper et al., 2002; Bro et al., 2003). Fur-
thermore, there should be a time delay between changes at the mRNA level and the
corresponding changes of protein concentrations and enzyme activities. However, even
in steady-state chemostat cultures, in which the cells are growing in a constant envi-
ronment for prolonged periods of time, mRNA levels, protein concentrations/activities
and fluxes correlated poorly (ter Kuile & Westerhoff, 2001; Daran-Lapujade et al.,
2004; Kolkman et al., 2006). A remaining explanation might be that much of the reg-
ulation of gene expression is posttranscriptional. Indeed, regulatory mechanisms that
affect translation, protein degradation, posttranslational modification of proteins and
enzymes directly have been documented extensively. High-throughput measurements
of translation rates and protein turn-over in Saccharomyces cerevisiae, showed that
these varied significantly between proteins and conditions (Arava et al., 2003; Pratt
et al., 2002; Smirnova et al., 2005). Posttranslational modifications of proteins and
metabolic regulation need to be considered as well (Chapters 2 and 3).

The question then becomes how one should quantify and integrate all these differ-
ent levels of regulation so as to come to a coherent understanding of the regulation of
cell function. This question is addressed by Regulation Analysis (ter Kuile & West-
erhoff, 2001, Chapters 2 and 3). In its original version, Regulation Analysis enables a
quantitative dissection of the regulation of in vivo enzyme fluxes by gene expression
on the one hand and metabolism on the other as follows:

∆ ln f(e)

∆ ln J
+

∆ ln g(x,k)

∆ ln J
= ρh + ρm = 1 (4.1)

where e is the concentration of the enzyme, x is a vector of concentrations of sub-
strates, products and other metabolic effectors, k is a vector of affinity constants
parameterizing the strength with which the enzyme interacts with its substrates,
products and allosteric effectors and J is the steady-state flux. The function f(e)
usually equals the maximum capacity (Vmax) of the enzyme and the function g(x,k)
describes its interaction with the rest of metabolism.

In Eq. (4.1), ρh is the “hierarchical regulation coefficient” that quantifies to which
extent the local flux through the enzyme is regulated by a change in enzyme capacity
(Vmax). Such a change may be effected by the “hierarchical” cascade of gene expres-
sion, all the way from transcription to posttranslational modification. ρm is the “met-
abolic regulation coefficient”, which quantifies the relative contribution of changes in
the interaction of the enzyme with the rest of metabolism to the regulation of the



The Regulation of Enzyme Rates and Catalytic Capacities 65

enzyme’s local flux. ρm includes regulation through changes in metabolite concen-
trations as well as through changes in the affinity of the isoenzymes, e.g. through
shifts in isoenzyme expression (Chapter 2). In practice, the hierarchical regulation
coefficient ρh is readily determined whenever the Vmax as well as the flux J through
the enzyme can be measured or estimated. The metabolic regulation coefficient ρm

then follows from the summation theorem expressed in Eq. (4.1).

As presented, this method does not enable the quantification of the contribution
of transcription, mRNA degradation, translation, protein degradation or posttrans-
lational modification to the regulation of Vmax. The aim of the present study is
to demonstrate that the hierarchical regulation can be dissected in terms of the rela-
tive contributions of these different regulatory mechanisms. This extended Regulation
Analysis is applied to glycolysis in the yeast Saccharomyces cerevisiae. Although yeast
glycolysis is one of the most extensively studied metabolic pathways, it is largely un-
resolved how yeast regulates the Vmax of its enzymes. Regulation of the expression of
the glycolytic enzymes will be investigated in two important situations that result in
drastic changes in the glycolytic fluxes: (i) the shift from respiratory to fermentative
metabolism resulting from the presence or absence of oxygen, and (ii) the energetic
workload imposed by an uncoupling agent, i.e. benzoic acid. To quantify the regu-
lation of the Vmax’s and enzyme rates by the different levels of gene expression, we
measured the changes of glycolytic enzyme rates, Vmax values, protein concentrations
and mRNA concentrations when yeast was exposed to these challenges.

4.2 Materials and Methods

4.2.1 Strain and growth conditions

The haploid, prototrophic Saccharomyces cerevisiae strain CEN.PK113-7D (MATa,
MAL2-8 c, SUC2, obtained from P. Kötter, Frankfurt, Germany) was grown at 30◦C
in 2-liter fermenters (Applikon) as described in (Verduyn et al., 1992). Briefly the
chemostats were fed with a defined mineral medium (Verduyn et al., 1992) in which
glucose was the growth-limiting nutrient with all other nutrients in excess. The dilu-
tion rate (equal to the specific growth rate in steady-state cultures) was set at 0.10
h−1. The pH was kept constant at 5.0. Aerobic cultures were flushed with air while
anaerobic cultures were flushed with pure nitrogen gas (5.0; Hoekloos). For anaerobic
cultivations, the medium was supplemented with Tween-80 and ergosterol (0.42 g l−1

and 10 mg l−1 respectively), which are essential for anaerobic growth (Andreassen
& Stier, 1953). For the anaerobic chemostats with benzoic acid, 2 mM sodium ben-
zoate were added to the feed medium. Chemostat cultures were assumed to be in
steady state when, after at least five volume changes, the culture dry weight, specific
carbon-dioxide production rate, oxygen-consumption rate (for aerobic cultures) and
production rate of extracellular metabolites (for anaerobic cultures) changed by less
than 2% during 24 hours. Steady-state samples were taken after 10 to 14 volume
changes to avoid strain adaptation due to long-term cultivation (Jansen et al., 2005).
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Table 4.1: Main physiological characterisitics of the cultures used in this study. Entries
represent the average and standard error of the mean of the indicated amount of independent
chemostat steady states. YSX the yield of biomass (g dry biomass per g glucose consumed).
q indicate biomass specific rates with the units mmol(g dry biomass)−1 h−1. The carbon
recoveries were calculted using the yields of biomass, ethanol, carbon dioxide and glycerol.
BDL stands for “below detection limit”.

Aerobic Anaerobic Benzoate
Glucose in feed (mM) 41.4 ± 0.1 138 ± 2 143 ± 1

Residual Glucose (mM) BDL 0.26 ± 0.05 1.8 ± 0.2
YSX (g g−1) 0.49 ± 0.02 0.094 ± 0.001 0.045 ± 0.001

qglucose 1.15 ± 0.0 6.2 ± 0.1 12.3 ± 0.2
qethanol BDL 9.6 ± 0.2 21.5 ± 0.6
qglycerol BDL 0.8 ± 0.0 0.9 ± 0.1

qO2
2.47 ± 0.00 BDL BDL

qCO2
2.85 ± 0.1 10.3 ± 0.3 22.9 ± 0.3

Carbon recovery (%) 101 ± 1 99 ± 0 100 ± 1

4.2.2 Analytical methods

Culture supernatants and media were analyzed by HPLC and culture dry weights
were determined as described by Postma et al. (1989).

4.2.3 Microarray analysis

Sampling of cells from chemostats, probe preparation and hybridization to Affymetrix
GeneChip microarrays were performed as previously described (Piper et al., 2002).
The results were derived from five independent aerobic cultures, four independent
anaerobic cultures and three independent anaerobic cultures with benzoic acid. Ac-
quisition and quantification of array images was performed using the Affymetrix soft-
ware package Microarray Suite v5.0.

4.2.4 Proteins analysis by LC/MS-MS

The detailed protocol and statistical analysis can be found in de Groot et al. (submit-
ted to Microbiology). Briefly aerobic and anaerobic chemostats were grown both with
14N- and 15N-labelled ammonium sulphate as the sole nitrogen source as described
above. Proteins from 14N- and 15N-metabolically labelled yeasts were extracted and
mixed. An SDS-page gel was ran to separate the proteins and cut in 40 slices. After in-
gel protein digestion using trypsin, the resulting tryptic digests were analyzed in trip-
licate by nanoflow-LC-MS/MS. Proteins were identified using MS/MS. Subsequently
the relative protein expression levels were obtained by comparing the extracted ion
chromatograms of the co-eluting 14N and 15N labelled peptide pairs. Proteins were
quantified based on two independent culture replicates and three analytical replicates.
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Table 4.2: Regulation of glycolytic fluxes and Vmax’s in yeast in anaerobic compared to
aerobic glucose-limited chemostats. Hierarchical (ρh) and metabolic (ρm) regulation coeffi-
cients were calculated as described in the Materials and Methods section. The regulation of
Vmax by mRNA changes (ρmRNA,Vmax) where calculated as indicated by the corresponding
term in Eq. (4.11). The regulation of fluxes through individual enzymes by mRNA changes
(ρmRNA,flux) was calculated accoridnt to Eq. (4.12). The regulation of Vmax by posttransla-
tional modifications was calculated according to its corresponding term in Eq. (4.11). Errors
are standard errors of the mean (SEM) calculated for the corresponding number of indepen-
dent measurements indicated in the Materials and Methdods section.
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HK 0.5 0.06 0.5 0.45 0.07 0.23 0.02

PGI 0.28 0.03 0.72 0.22 0.11 0.06 0.03 -1.51 0.28

PFK 0.15 0.02 0.85 1.48 0.22 0.22 0.02

ALD -0.24 0.05 1.24 0.25 0.28 -0.06 0.07 2.2 0.73

TPI -0.72 0.07 1.72 0.16 0.13 -0.11 0.1 1.13 0.63

GAPDH 0.42 0.03 0.58 -0.14 0.11 -0.06 0.05 0.18 0.04

PGK 0.38 0.05 0.62 -0.16 0.21 -0.06 0.08 1.78 0.52

PGM 0.35 0.03 0.65 -0.02 0.11 -0.01 0.04 -0.08 0.01

ENO 0.23 0.06 0.77 0.18 0.15 0.04 0.03 -1.18 0.41

PK 0.45 0.03 0.55 0.25 0.12 0.11 0.05

PDC 0.19 0.02 0.81 0.31 0.16 0.06 0.03 -1.55 0.21

ADH 0.34 0.05

Table 4.3: Regulation of glycolytic Vmax’s and fluxes in anaerobic, glucose-limited
chemostats with versus without benzoic acid. Hierarchical (ρh) and metabolic (ρm) reg-
ulation coefficients were calculated as described in the Materials and Methods section. The
regualtion of Vmax by mRNA changes (ρmRNA,Vmax) were calculated as indicated by the
corresponding term in Eq. (4.11). The regulation of fluxes through individual enzymes by
mRNA changes (ρmRNA,flux) was calculated according to Eq. (4.12). Errors are standard
errors of the mean (SEM) calculated for the corresponding number of independent measure-
ments indicated in the Materials and Methdods section.
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HK -0.43 0.09 1.43 0.26 0.16 -0.11 0.06

PGI -0.11 0.05 1.11 -0.12 0.48 0.01 0.05

PFK 0.74 0.08 0.26 0.29 0.06 0.21 0.04

ALD 0.93 0.15 0.07 0.35 0.2 0.32 0.18

TPI 2.12 0.16 -1.12 0.12 0.08 0.26 0.18

GAPDH -0.13 0.07 1.13 -1.59 1.05 0.21 0.08

PGK 0.17 0.11 0.83 1.94 1.73 0.32 0.2

PGM 0.17 0.1 0.83 1.07 0.78 0.18 0.08

ENO 0.27 0.08 0.73 0.73 0.34 0.2 0.07

PK 0.95 0.11 0.05 0.27 0.1 0.26 0.09

PDC 0.54 0.09 0.46 0.46 0.26 0.25 0.13

ADH -0.28 0.22 1.28 -0.36 0.36 0.1 0.06
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4.2.5 Enzyme assays

Glycolytic enzyme activities and protein concentrations in freshly prepared cell ex-
tracts were assayed according to Jansen et al. (2005), with the exception of triose-
phosphate isomerase for which the assay mixture contained Triethanolamine-HCl
buffer (pH 8.2), 200 mM; NADH, 0.15 mM; glycerol-3P-dehydrogenase (Roche),
8.5 U.ml−1; glyceraldehyde-3-phosphate, 17.4 mM. The enzyme activities presented in
this work are the average of measurements in samples from at least three independent
culture replicates.

4.2.6 Metabolic flux distribution

Intracellular metabolic fluxes in growing cells were calculated through metabolic
flux balancing using the compartmented stoichiometric model described in (Daran-
Lapujade et al., 2004).

4.2.7 Regulation Analysis

For any reaction step in glycolysis, hierarchical regulation coefficients ρh (ter Kuile &
Westerhoff, 2001, Chapter 2) were calculated as follows:

ρh =
ln〈Vmax,i〉 − ln〈Vmax,j〉

ln〈Ji〉 − ln〈Jj〉
(4.2)

where angel brackets enclose mean values, the subscripts i and j refer to different
growth conditions and J refers to steady-state fluxes. The mean fluxes through in-
dividual glycolytic enzymes and their standard deviations (n > 4) and the mean
Vmax-values and the standard deviations of all individual glycolytic enzymes were
computed (n > 3). The mean values were translated into logarithmic space and the
hierarchical regulation coefficient was computed as shown in Eq. (4.2).

Calculation of the standard deviation and standard error of the mean of
hierarchical regulation coefficients

The calculation of intracellular fluxes using a compartmentalized model uses mean
measured extracellular concentrations and flows with their standard deviations. Be-
cause the calculated intracellular fluxes are reported as mean values with their stan-
dard deviations, the calculation of the standard deviations of the hierarchical reg-
ulation coefficient requires additional computations. The standard deviation of the
numerator of Eq. (4.2) was calculated as follows:

SDnum =

√
[

ln〈Vmax,i〉

ln(〈Vmax,i〉 − SDVmax,i
)

]2

+

[
ln〈Vmax,j〉

ln(〈Vmax,j〉 − SDVmax,j
)

]2

(4.3)

where the subscript num refers to the numerator of Eq. (4.2), SDVmax,i
and SDVmax,j

are the standard deviations, in Cartesian space, of the Vmax values of conditions i and
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Figure 4.1: in vivo fluxes of S. cerevisiae’s glycolysis cultivated in glucose-limited chemostats
in aerobiosis or anaerobiosis in the presence or absence of benzoic acid calculated from
measured external metabolites using the stoichiometric model described in (Daran-Lapujade
et al., 2004). White bars represent aerobic cultures, grey bars anaerobic cultures and black
bars anaerobic cultures with benzoate.

j, respectively. Similarly the standard deviation of the denominator was calculated
with:

SDdeno =

√
[

ln〈Ji〉

ln(〈Ji〉 − SDJi
)

]2

+

[
ln〈Jj〉

ln(〈Jj〉 − SDJj
)

]2

(4.4)

where the subscript deno refers to the denominator of Eq. (4.2), SDJi
and SDJj

are the standard deviations, in Cartesian space, of the flux values of conditions i,
and j, respectively. Since symmetric error bars become asymmetric in logarithmic
space and the lower bound error is larger than the upper one, this procedure leads to
an overestimation of the standard deviation in the positive direction. The standard
deviation of the hierarchical regulation coefficient can be computed in the following
way:

SDρh
= ρh ·

√
(

SDnum

num

)2

+

(
SDdeno

deno

)2

(4.5)

where num and deno represent the values of the numerator and denominator of
Eq. (4.1), respectively. The standard error of the mean (SEM, Tables 4.2 and 4.3)
were calculated by dividing the standard deviation by the square root of 3.

4.3 Results

4.3.1 Hierarchical and metabolic regulation of glycolytic en-
zyme rates

In all steady-state glucose-limited chemostat experiments, S. cerevisiae was culti-
vated at the same dilution rate, and thus specific growth rate, of 0.10 h−1. The
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Figure 4.2: in vitro determined enzyme capicities (Vmax) of the glycolytic enzymes of
S. cerevisiae cultivated in glucose-limited chemostats in aerobiosis or anaerobiosis with or
without benzoic acid. White bars represent aerobic cultures, grey bars anaerobic cultures
and black bars anaerobic cultures with benzoate.

three different cultivation conditions applied (aerobic, anaerobic and anaerobic in the
presence of benzoic acid) were chosen with the specific aim of covering a wide range
of glycolytic fluxes. In aerobic, glucose-limited chemostat cultures, glucose was dis-
similated fully respiratorily into biomass and carbon dioxide (Table 4.1), while in the
anaerobic glucose-limited chemostat cultures at the same dilution rate, S. cerevisiae
displayed a fully fermentative metabolism producing ethanol, glycerol, carbon diox-
ide and biomass formation (Table 4.1).This of course implied drastic changes for the
calculated in vivo fluxes through pyruvate decarboxylase and alcohol dehydrogenase,
the two enzymes of alcoholic fermentation. Furthermore, the ATP yield from alco-
holic fermentation is much lower than that from respiratory glucose dissimilation. To
compensate for this lower yield, the carbon fluxes through the glycolytic enzymes
were 5 to 11-fold higher in the anaerobic than in the aerobic cultures (Figure 4.1).
To further increase the carbon fluxes in glycolysis, the non-metabolizable weak acid
benzoate was added. Weak acids cause an increased ATP requirement that is met by
increased rates of glucose dissimilation (Verduyn et al., 1992). This was reflected in
a two-fold increase in the fluxes through the glycolytic enzymes when 2 mM benzoic
acid was added to anaerobic cultures (Figure 4.1).

In order to define to what extent the observed flux changes were caused by changes
in Vmax via regulation of the hierarchical events leading from gene transcription to
active enzyme, the contribution of the change in Vmax to the change in flux through
each enzyme (so-called hierarchical regulation coefficient ρh) was determined using
Regulation Analysis (Tables 4.2 and 4.3, column 1). A reaction that is purely regu-
lated by the cascade of gene expression would have a ρh of 1. Conversely a reaction
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Figure 4.3: Transcript levels of the mRNAs of glycolytic enzymes of S. cerevisiae cultivated
in glucose-limited chemostats in aerobiosis or anaerobiosis with or without benzoic acid.
White bars represent aerobic cultures, grey bars anaerobic cultures and black bars anaerobic
cultures with benzoate.

that is solely metabolically regulated would have a ρh of 0, see Eq. (4.1). In most
cases, the changes in fluxes resulted from both hierarchical and metabolic regulatory
mechanisms, but their respective contribution was clearly depending on the reaction
considered and on the culture conditions (Table 4.2 and 4.3, columns 1 and 3). When
comparing aerobic and anaerobic cultures, we obtained ρh values between 0.2 and
0.5, meaning that hierarchical regulation was involved but was responsible for at
most 50% of the enzyme rate regulation (Table 4.2, column 1). The remaining 50 –
80% of the flux changes was caused by metabolic regulation (Table 4.2, third column).
In response to the presence of benzoic acid, causing an increased utilization of ATP,
most of the fluxes through the glycolytic reactions doubled while most Vmax values
hardly changed (Figure 4.1 and 4.2). This resulted in small ρh values and ρm values
close to 1 for most enzymes, indicating that these enzymes were predominantly regu-
lated by metabolism (Table 4.3). There were a few notable exceptions. The Vmax of
PFK, ALD, TPI and PK increased strongly resulting in large hierarchical regulation
coefficients for these enzymes.

4.3.2 Dissecting hierarchical regulation into contributions by
transcription, translation, protein degradation and post-
translational modification: the method

For those enzymes with a high ρh, i.e. the enzymes that were to a large extent
regulated hierarchically, we were interested in quantifying the contributions of the
various processes in the gene expression cascade to that regulation. To analyse the
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Figure 4.4: Ratio of the protein concentrations measured in aerobic and anaerobic cultures
without benzoic acid of glycolytic proteins from S. cerevisiae.

hierarchical regulation of Vmax in more detail Regulation Analysis was extended as
follows.

The measured Vmax of an enzyme depends on its concentration and on its turnover
number kcat:

Vmax = kcat[protein] (4.6)

Since the cultures under study were at steady state, the rate of translation vtrans

should equal the rate of protein degradation plus the dilution of proteins due to cell
growth i.e.:

d[protein]

dt
= vtrans − vdeg − vdil = 0 (4.7)

where vtrans represents the rate of translation, vdeg the rate of protein degradation
and vdil the rate of protein dilution due to growth.

The rate of synthesis of any specific protein vtrans was approximated by:

vtrans = ktrans · [ribosome] · [mRNA] (4.8)

where ktrans a first order kinetic constant of the rate of translation, which represents
a function of various variables, including the GTP/GDP ratio and the concentrations
of aminoacyl tRNAs, but it should be independent of the concentration of ribosomes
and the concentrations of the mRNAs encoding glycolytic proteins. The rates of
dilution and degradation of each protein were taken proportional to the concentration
of that protein with proportionality constants µ (the specific growth rate) and kdeg,
respectively, i.e.:

d[protein]

dt
= ktrans · [ribosome] · [mRNA]

− kdeg · [protein] − µ · [protein] = 0 (4.9)
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Combining Eq. (4.9) with Eq. (4.6) yields:

Vmax =
kcat ktrans [ribosome] [mRNA]

µ + kdeg
(4.10)

The contribution of each of the components in Eq. (4.10) to an overall change of
Vmax of the enzyme was determined by taking its logarithm, calculating the difference
between two conditions and dividing by ∆ lnVmax:

1 =
∆ ln kcat

∆ln Vmax
︸ ︷︷ ︸

PT modification

+

(
∆ln ktrans

∆ln Vmax
+

∆ ln[ribosome]

∆ ln Vmax

)

︸ ︷︷ ︸

translation

+
∆ ln[mRNA]

∆ ln Vmax
︸ ︷︷ ︸

transcription

−
∆ln(µ + kdeg)

∆ ln Vmax
︸ ︷︷ ︸

degradation/dilution

≡ ρPT,Vmax
+ ρmRNA,Vmax

+ ρtrans,Vmax
+ ρdd,Vmax

(4.11)

in which ρPT,Vmax
quantifies the regulation of Vmax by posttranslational modifications,

ρtrans,Vmax
the regulation of Vmax by translation activity, ρmRNA,Vmax

quantifies the
regulation of Vmax by the mRNA concentration, and ρdd,Vmax

the regulation of Vmax

by protein degradation and dilution due to growth. The sum of these four coefficients
must be 1. The hierarchical regulation of the flux through each glycolytic enzyme
can thus be dissected. For simplicity the effect of the apparent rate constant of
translation and the ribosome concentration were here grouped in ρtrans,Vmax

. In
principle, however, they can be measured separately. The only processes that could
not be separated in this way were protein degradation and dilution due to growth.
Since the specific growth rate is measured easily, it can be incorporated explicitly in
the determination of ρdd,Vmax

.

4.3.3 Regulation of enzyme rates and Vmax’s by mRNA con-
centration changes

In order to quantify the importance of transcriptional regulation within the gene ex-
pression cascade (ρmRNA,Vmax

) the mRNA levels of the 27 genes encoding the isoen-
zymes of glycolysis and fermentation were measured by microarray analysis (Figure
4.3). The adaptation to anaerobiosis in the presence or absence of benzoic acid did
not result in significant changes in the expression of 9 of the 27 genes glcolytic genes
(GLK1, PGI1, FBA1, TPI1, THD2, THD3, PGK2, GPM1 and ENO2 ). ADH2 and
PDC6 were significantly down-regulated in the presence and in the absence of ben-
zoic acid. HXK2 was upregulated only in the absence of benzoic acid, while TDH1,
ENO1, PYK1, PDC1, ADH1 and PDC5 were upregulated only in its presence. The
remaining genes (HXK1, PFK1, PFK2, ADH3, ADH5, GPM2, GPM3, PYK2 and
ADH4 ) were up-regulated both in the presence and in the absence of benzoic acid
(Student’s t test α = 1%). For most reactions the increase in mRNA concentra-
tions was smaller than the increase in in vivo Vmax values. We focused on those
enzymes that displayed a substantial change in Vmax (ρh of 0.3 or higher). Among
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these enzymes only HK displayed a substantial ρmRNA,Vmax
(0.45) when comparing

aerobic and anaerobic conditions, indicating that transcription was for 45% regulating
its Vmax (Table 4.2, column 4). To evaluate the overall regulation of the fluxes by
mRNA levels, we calculated ρmRNA,flux, defined by:

ρmRNA,flux ≡
∆ln[mRNA]

∆ ln flux
= ρh · ρmRNA,Vmax

(4.12)

In the comparison of aerobic and anaerobic cultures ρmRNA,flux was at most 0.2 (HK
and PFK, Table 4.2, column 6), implying that the flux was regulated for 20% by the
mRNA level in these cases. In all other cases Vmax’s and fluxes were hardly regulated
by mRNA levels as reflected by low mRNA regulation coefficients (Table 4.2, columns
4 and 6).

When comparing anaerobic conditions with and without benzoic acid, the changes
in Vmax and in mRNA abundances were much smaller than between aerobicity and
anaerobicity without benzoate (Figure 4.2 and 4.3), which resulted in relatively high
errors in the ρmRNA,Vmax

(Table 4.3, columns 4 and 5). The coefficients with rea-
sonably good standard errors of the mean were low, with the exception of ENO and
PDC (0.73 and 0.46 respectively).

The poor contribution of transcription to the regulation of Vmax revealed that the
regulation within the gene expression cascade was exerted further downstream.

4.3.4 Regulation of protein levels by translation and protein
degradation

Above it was shown that, apart from a few exceptions, the mRNA levels hardly regu-
lated the overall fluxes and enzyme capacities (Vmax). This, however, does not exclude
that specific isoenzyme concentrations are regulated by changes at the mRNA level.
To examine this possibility, concentrations of the glycolytic proteins were measured
by LC-MS/MS. By comparing proteins from in vivo 15N- and 14N-labelled aerobic
and anaerobic chemostats, we could reliably identify and quantify 21 out of the 27
glycolytic proteins (Figure 4.4). Five proteins (Pfk2p, Pyk1p, Pdc5p, Adh5p and
Adh2p) were identified in only one of the conditions and could not be considered
for Regulation Analysis. Most proteins were significantly up-regulated under anaer-
obic conditions as compared to aerobic conditions, exceptions where: Glk1p, Fba1p,
Tpi1p and Pgk1p which concentrations hardly changed. The regulation of the level
of a protein by the corresponding mRNA level was quantified as follows:

ρmRNA,protein =
∆ ln[mRNA]

∆ ln[protein]
(4.13)

For the large majority of the proteins the contribution of the change in corre-
sponding mRNA level to the regulation of their concentration was below 30% (Table
4.4, ρmRNA,protein < 0.3). This included proteins displaying 6-fold changes in con-
centration between aerobic and anaerobic chemostats (i.e. Pgi1p, Pfk1p, and Pdc1p).
Proteins that were only detected under anaerobic conditions (Pfk2p, Pyk1p and Pdc5)
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Table 4.4: Transcription and translation/degradation regulation of the concentrations of
glycolytic enzymes in anaerobic versus aerobic glucose-limited chemostats. The regulation
of protein concentrations by changes in mRNA levels (ρmRNA,protein) were calculated as
indicated in Eq. (4.13). The sum nof the contributions of changes in the rate of translation
and degradation (ρtrans,protein +ρdd,protein) as calculated by subtracting ρmRNA,protein from
1, cf Eq. (4.15).

ρmRNA,protein SEM ρtrans,protein+

ρdd,protein

Hxk1p 0.3 0.1 0.7

Hxk2p 0.65 0.17 0.35

Glk1p -0.14 0.45 1.14

Pgi1p 0.09 0.05 0.91

Pfk1p 0.25 0.07 0.75

Fba1p -0.2 0.27 1.2

Tpi1p -1.25 7.19 2.25

Tdh1p 0.24 0.09 0.76

Tdh2p -0.12 0.08 1.12

Tdh3p -0.44 0.42 1.44

Pgk1p 0.21 0.52 0.79

Gpm1p -0.09 0.13 1.09

Eno1p 0.11 0.09 0.89

Eno2p 0.04 0.06 0.96

Pdc1p 0.15 0.06 0.85

Adh1p 0.13 0.07 0.87

and could not be used for Regulation Analysis, were clearly not regulated by transcrip-
tion: under aerobic conditions their mRNAs were present and almost as abundant as
under anaerobic conditions, whereas the corresponding proteins could not be detected
under aerobic conditions (cf. Figure 4.3 and 4.4). The only two proteins that were
regulated substantially by their mRNA levels were Hxk2p (ρmRNA,protein = 0.65) and
Adh2p. Of the latter neither protein nor mRNA could be detected under anaerobic
conditions.

Since the glycolytic protein concentrations were hardly regulated by
mRNA levels, the ones that did change must have been regulated at the levels of
translation and/or protein degradation. Revisiting Eqs. (4.7) and (4.8), one finds:

[protein] = ktrans · [ribosome] ·
[mRNA]

kdeg + µ
(4.14)

and therefore:

1 =

(
∆ln ktrans

∆ln[protein]
+

∆ ln[ribosome]

∆ ln[protein]

)

︸ ︷︷ ︸

translation

+
∆ ln[mRNA]

∆ ln[protein]
︸ ︷︷ ︸

transcription

−
∆ln(µ + kdeg)

∆ ln[protein]
︸ ︷︷ ︸

degradation/dilution

≡ ρtrans,protein + ρmRNA,protein + ρdd,protein (4.15)

Since the specific growth rate and therefore the dilution of proteins is constant in
the present study, it follows that the regulation of the concentration of any protein
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through translation and degradation together (ρtrans,protein+ρdd,protein) can be calcu-
lated by subtracting the regulation through mRNA concentrations from 1. The final
column of Table 4.4 gives the results of this calculation and shows that the regulation
of the concentration of the glycolytic proteins appears to be regulated by translation
or protein degradation much more than by transcription.

4.3.5 Posttranslational regulation

We have shown that the hierarchical regulation of Vmax did not occur at the tran-
scription level and therefore must have occured post-transcriptionally. Changes in
Vmax could result from (i) tuning of protein concentration by translation and/or
degradation, or (ii) from modification of the kinetic properties of the enzymes by
post-translational modification. We have also shown that protein concentrations are
regulated to a large extent by protein translation and/or degradation. In order to
investigate the contribution of post-translational processes to the regulation of Vmax,
ρPT,V max was calculated, cf. Eq. (4.11). This calculation requires the concentration
ratio of the sum of all isoenzymes for each reaction, rather than the concentration
ratio of individual isoenzymes. For all reactions catalyzed by multiple isoenzymes
(PGI, ALD, TPI and PGK are catalyzed by a single isoenzyme) the relative contri-
butions of these isoenzymes were estimated from 2D gels or from the transcript levels
when the proteins were not found on the gels (not shown) and the coefficients were
calculated as follows:

ρPT,Vmax
≡

∆ln kcat

∆ln Vmax
= 1 −

∆ln[protein]

∆ ln Vmax
(4.16)

For most of the resulting regulation coefficients for posttranslational modification
ρPT,Vmax

the standard deviation of the mean was unfortunately too large to con-
clude anything about the occurrence of protein modifications. However, two enzymes
with relatively low standard deviations (GAPDH and PGM) were only marginally
regulated by posttranslational processes.

4.4 Discussion

In this study we developed a method to quantitatively dissect the regulation of gene
expression into contributions by each of the processes in the gene-expression cascade.
Using this method, we investigated the regulatory events responsible for the tuning
of the capacity and activity of the glycolytic enzymes in bakers’ yeast under three
growth conditions under which the local glycolytic fluxes covered a complete order
of magnitude. Our main conclusion is that - to the extent that the fluxes through
glycolytic enzymes are regulated by gene-expression at all - regulation by mRNA lev-
els plays a marginal role. Rather, most of the gene-expression regulation is exerted
at the level of protein synthesis and/or degradation, and possibly also at the level of
posttranslational modification of enzymes. This is the first time that the regulation
of a complete metabolic pathway has been dissected into contributions of the vari-
ous processes in the gene-expression cascade. The results put the importance that
biologists attach to transcriptome analysis into a new perspective.
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First, we determined the quantitative importance of gene-expression regulation of
the glycolytic flux upon removal of oxygen and addition of benzoic acid. In accordance
with the results that were obtained for trypanosomes (ter Kuile & Westerhoff, 2001)
and starving yeast cells (Chapter 3), the whole spectrum of regulation strategies was
observed, including purely hierarchical regulation (ρh close to 1), purely metabolic
regulation (ρm close to 1), cooperative regulation (both ρh and ρm between 0 and 1)
and antagonistic regulation (either ρh or ρm negative). The new results substantiate
the earlier conclusion (Chapter 3) that simple strategies of regulation, like multisite
modulation (all enzymes purely and equally hierarchical), single enzyme regulation
(one enzyme purely hierarchical and the others metabolic) or purely metabolic regu-
lation (no hierarchical regulation at all) are not the rule. Regulation was the result of
a more complex mixture of gene expression and metabolic effects, which may reflect
that the cell needs to optimize a number of different variables (fluxes, metabolite con-
centrations, protein concentrations) simultaneously and there is no single optimiza-
tion criterion like metabolite homeostasis or protein economy. In line with previous
studies (ter Kuile & Westerhoff, 2001, Chapter 3) we observed that: (i) metabolic
regulation was a substantial component of almost all regulation observed, (ii) differ-
ent enzymes in the pathway tended to be regulated differently, (iii) in many cases
there was both metabolic and gene-expression regulation but to different extents, (iv)
for some enzymes in some conditions metabolic and gene-expression regulation were
antagonistic, and (v) the same enzyme was often regulated differently in response to
different challenges.

The principle of Regulation Analysis was then broadened to integrate new cellular
levels and to discriminate between the various regulatory processes involved in the
hierarchical regulation. The new analysis considers regulation of gene expression in
terms of the dependence of the translation rate on mRNA concentration, the depen-
dence of the protein degradation rate on the protein concentration and the occurrence
of posttranslational modifications that affect the specific turnover rate kcat. It also
accomodates the effects of changes in specific growth rate. In the specific elaboration
of this analysis method, we assumed that the protein concentrations were at steady
state, a condition that is met in steady-state chemostats. Because the amount of any
particular protein is low compared to the sum of the amounts of all protein species
in the cell, we considered it likely that the rate of degradation of a protein was first
order with respect to its concentration. Protein turn-over measurements in chemostat
cultures of S. cerevisiae support this hypothesis (Pratt et al., 2002). Furthermore we
assumed the rate of translation to depend proportionally on the concentration of the
mRNA of interest, Eq. (4.8). This may seem a very strong assumption since ribosomes
are catalysts that could become saturated. A single type of mRNA, however, has to
compete with a large pool of other mRNA molecules. This decreases the apparent
affinity of the mRNA for the ribosome, which should lead to a proportional depen-
dence even if the ribosomes are saturated with total mRNA. To then calculate the
regulation of Vmax by the mRNA’ concentration the expression levels of mRNA’s en-
coding isoenzymes were summed. This is a simplification since isoenzymes often have
different kinetic characteristics and translation yield may well differ between mRNAs
encoding isoenzymes. In the present study this simplification was necessary, but in
future more detailed studies it could be avoided by explicitly taking into account the
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catalytic turnover numbers (kcat) of the isoenzymes. Another such simplification was
the description of the activity of each step in the glycolytic pathway in terms of a
single Vmax. In reality each isoenzyme has its own Vmax, and also here a higher
resolution analysis should be useful. Since the focus of this paper is on the essence of
the method, we leave such further analysis for a future study.

The attempt to identify the potential regulation of Vmax by post-translational
processes highlighted the requirement of highly accurate data. Protein quantification
based on 2D-gel analysis resulted in standard errors exceeding the regulation coeffi-
cients themselves (data not shown). The protein expression ratios generated by the
nano-LC/MS-MS approach were more accurate (Figure 4.4). Yet, among the 12 coef-
ficients assessing the contribution of post-translational processes to the regulation of
enzyme capacities, only two could be estimated reliably (GAPDH and PGM) and they
were small, implying that in these cases posttranslational modifications contributed
little to Vmax regulation. So far potential post-translational modifications have not
been investigated systematically for all glycolytic enzymes. Among the few reports,
phosphorylation seems to be the predominant mechanism for protein modification. A
few proteins have been demonstrated to be phosphorylated in vitro and/or in vivo
(Hxk1 and 2, Pyk1 and 2, Eno1 and 2 and Gpm1p (Vojtek & Fraenkel, 1990; Portela
et al., 2002; Rayner et al., 2002; Ficarro et al., 2002; Ptacek et al., 2005)) but the
impact of phosphorylation on the activity has not been assessed in all cases. Un-
fortunately, our data were insufficient to estimate the regulation of hexokinase and
pyruvate kinase by posttranslational modification. Enolase was hardly regulated by
gene expression at all (ρh < 0.3), while phosphoglycerate mutase was not regulated
by posttranslational modification (Table 4.2, column 8).

If Vmax is hardly regulated by transcript levels, and for most enzymes not by post-
translational activation either, we can only conclude that most of the Vmax regulation
is at the level of translation and protein degradation rates. Actually our data were
accurate enough to firmly establish that the regulation of protein concentrations was
mainly at the the level of translation and degradation and hardly at the mRNA level
(Table 4.4). Little is known about the mechanisms of translational regulation of the
glycolytic and fermentative proteins. Of the few reports of translational regulation
of specific protein, most address transcription factors (Gcn4p, Yap1p and Yap2p)
(Hinnebusch, 2005; Vilela et al., 1998). In Saccharomyces cerevisiae, Cpa1p is the
only enzyme experimentally shown up to date to be regulated translationally (Gaba
et al., 2001). All the mRNAs encoding these proteins contain upstream open-reading
frames that can partly or completely disable the initiation of translation (McCarthy,
1998). However, how the translation of the glycolytic proteins is regulated, is un-
known and all the mechanisms that have been described previously in yeast, such as
the presence of uORFs or mRNA binding proteins, should be considered (McCarthy,
1998). Even less is known about degradation of glycolytic enzymes. Although targeted
degradation of enolase 2 has already been reported (Larsen et al., 2001), regulatory
mechanisms involving targeted degradation of glycolytic enzymes have not been sys-
tematically investigated. However recent studies demonstrated that translation rates
can be measured at the genome-scale using microarrays and suggested that regulation
of translation rate to adjust protein concentration is a mechanism more widely spread
in yeast that anticipated (Arava et al., 2003; Shenton et al., 2006; Smirnova et al.,
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2005). Our results urge further studies in which translation and degradation rates
of individual proteins will be measured directly to quantitate their regulation more
precisely.

For decades, attempts have been made to increase the fermentative capacity (i.e.
the glycolytic rate) of bakers’ yeast via genetic engineering (Schaaff et al., 1989;
Smits et al., 2000; Davies & Brindle, 1992). So far all these attempts have failed. The
present in-depth analysis of the glycolytic pathway reveals a complex and intricate
regulation of the glycolytic flux. Regulation of glycolysis is not only exerted by
expression of the glycolytic genes, but resides to a large extent in the interactions of
the glycolytic proteins with their environment. The latter observation may, at least
partly, clarify the past failures of genetic engineering through manipulation of gene
expression and suggests that metabolic engineers face a major challenge to further
enhance fermentative capacity in bakers’ yeast.

More generally, the demonstration that such a central process as yeast glycolysis
is regulated much less by transcription than perhaps anticipated, and in fact through
many regulatory mechanisms at the same time, suggests that this might also be the
case for other pathways, organisms and conditions. Perhaps, identification of where
the more important regulatory mechanisms are, deserves to be prioritized as compared
to an immediate or exclusive focus on transcriptomics or proteomics.
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Chapter 5

The Regulation of Enzyme
Rates and Pathway fluxes in
Response to a Gene Deletion

In S. cerevisiae the HXK2 gene, which encodes the glycolytic enzyme
hexokinase II, is involved in the regulatory mechanism known as “glucose
repression”. Its deletion leads to fully respiratory growth at high glucose
concentrations where the wild type ferments profusely. Here we describe
that deletion of the HXK2 gene resulted in a 75% reduction in fermenta-
tive capacity, i.e. the specific rate of CO2 production under glucose excess
and anaerobic conditions. Using Regulation Analysis we found that the
fluxes through most glycolytic and fermentative enzymes were regulated
cooperatively by changes in their capacities (Vmax) and by changes in the
way they interacted with the rest of metabolism. Glucose transport and
phosphofructokinase were regulated purely at the metabolic level.

The reduction of fermentative capacity in the mutant was accompanied
by a remarkable resilience of the remaining capacity to nutrient starva-
tion. After starvation, the fermentative capacity of the hxk2∆ mutant
was similar to that of the wild type. Based on our results and previous
reports, we suggest an inverse correlation between glucose repression and
the resilience of fermentative capacity towards nutrient starvation.

5.1 Introduction

Glucose-limited cultures of the yeast Saccharomyces cerevisiae show different physio-
logical characteristics and gene expression profiles as compared to cultures grown at
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glucose-excess. While glucose-limited cultures are characterized by a fully respiratory
metabolism, glucose-excess cultures show a mixed respiro-fermentative metabolism
(e.g. van Hoek et al., 2000). Glucose-repressed genes include genes encoding proteins
involved in respiration, gluconeogenesis, the glyoxylate cycle, high-affinity glucose
transport and the utilization of alternative carbon sources, as well as a large group
of stress-response-element (STRE) controlled genes. On the other hand, the genes
of some glycolytic enzymes are induced by high glucose concentrations (reviewed in
Rolland et al., 2002).

In order to achieve a high biomass yield during bakers’ yeast production, a com-
pletely respiratory metabolism is required. Fermentation (i.e. ethanol production)
is avoided during the production phase by ensuring a high aeration rate and a low
glucose influx. At the same time, fermentative capacity is an important quality pa-
rameter in the bakers’ yeast industry. It is defined as the specific rate of carbon
dioxide production under sugar-excess and anaerobic conditions (van Hoek et al.,
1998b). Cells harvested from glucose-limited cultures have a lower fermentative ca-
pacity than cells grown under glucose excess conditions (van Hoek et al., 2000, 1998b).
Fermentative capacity has been reported to decrease in response to nutrient starvation
(Nilsson et al., 2001b). The severity of this detrimental effect depended on the type
of starvation (e.g. starvation for nitrogen versus carbon) and on the physiological
state of the cultures prior to starvation. Post-diauxic shift cultures respiring ethanol
preserved better their fermentative capacity than cultures respiro-fermenting glucose
when challenged with nutrient starvation (Nilsson et al., 2001a,b). Nutrient starva-
tion is a relevant phenomenon for the bakers’ yeast industry, since at the final stages
of production and during storage, cells are starved. In general, nutrient starvation is
perhaps one of the most common stresses experienced by microorganisms.

Many of the adaptations to glucose excess conditions are regulated through the
“main glucose repression pathway”. This signaling pathway senses the concentration
of extracellular glucose and transmits this information to the transcription appara-
tus. Deletion of the HXK2 gene, which encodes the glucose phosphorylating enzyme
hexokinase II, alleviated glucose repression (Zimmermann & Scheel, 1977; Entian &
Zimmermann, 1980; Michels & Romanowski, 1980) as evidenced by fully respiratory
growth at high glucose concentrations (Diderich et al., 2001), co-consumption of glu-
cose with other sugars (Raamsdonk et al., 2001), derepression of high affinity hexose
transporters (Petit et al., 2000) and increased plasma-membrane H+-ATPase activity
(Diderich et al., 2001).

Although many components of the main glucose repression pathway are known and
a sensing role of hexokinase II has been proposed, the mechanism through which hex-
okinase II triggers glucose repression is not fully understood. Although early studies
suggested a correlation between glucose phosphorilating capacity and glucose repres-
sion (Ma et al., 1989; Rose et al., 1991), specific point mutations in the HXK2 gene
had differential effects on phosphorylating capacity and glucose repression (Hohmann
et al., 1999; Kraakman et al., 1999). Deletion of HXK1, encoding hexokinase I, in an
hxk2∆ mutant further alleviated glucose repression while its overexpression restored
it to some extent. However, overexpression of GLK1, encoding glucokinase (which
also catalyzes glucose phosphorylation) in a hxk2∆ mutant, had no effect (Rose et al.,
1991). Evidently, glucose-phosphorylation capacity is not the sole determinant of glu-
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cose repression. In addition, hexokinase II was reported to reside partly in the nucleus
(Randez-Gil et al., 1998). This nuclear localization was shown to depend upon Mig1
(Ahuatzi et al., 2004), a transcription factor responsible for the repression of many
glucose-repressible genes (DeVit & Johnston, 1999; Ostling & Ronne, 1998). These
findings led to the suggestion that hexokinase II forms a repressor complex with Mig1
that is located in the nucleus during growth on glucose (Ahuatzi et al., 2004).

Most studies about the respiration-fermentation switch of yeast focus on the tran-
scriptional regulation of the respiratory pathway. However, recent studies suggest
that in yeast, gene-expression and in particular transcription correlates poorly with
glycolytic enzyme capacities and fluxes (Daran-Lapujade et al., 2004) and is often
a minor component of the local regulation of glycolytic enzyme rates (Chapters 3
and 4). These studies show that metabolic regulation of enzyme rates was just as
or even more important than their regulation by enzyme capacity changes. In the
present study, we investigated the alleviation of glucose repression by the deletion of
HXK2 from the point of view of the regulation of glycolytic and fermentative fluxes.
Rather than focusing on transcriptional regulation alone, we investigated the extent
to which the rates of glycolytic and fermentative enzymes were regulated by changes
in enzyme capacities (brought about by the hierarchical cascade of gene-expression)
and the extent to which they were regulated through metabolic interactions. To this
end we used Regulation Analysis (ter Kuile & Westerhoff, 2001). Its idea is as fol-
lows. Because enzymes are catalysts (and not substrates), enzyme rate equations are
usually of the form:

v = f(e) · g(x,k) (5.1)

in which v is the rate, f is a function of e, which is the concentration of the enzyme
catalyzing the reaction and g is a function of x and k, in which x is a vector of
concentrations of substrates, products and other metabolic effectors, and k is a vector
of constants parametrizing the strength with which the enzymes interact with their
substrates, products and allosteric effectors. The important characteristic of the above
equation is that f does not depend upon x and k, and g does not depend upon e.
f(e) describes the dependency of the rate upon the enzyme concentration and can be
taken to equal Vmax. Alterations of g(x,k) are regulated through the interaction of
the enzyme with the rest of metabolism. Alterations of f reflect the regulation of the
capacity of the enzyme of interest, brought about exclusively through gene-expression.
Stable covalent modification of the enzyme also falls in this category. The dissection
and quantification of f and g is achieved by projecting Eq. (5.1) into logarithmic
space, considering a change between two steady states, and dividing both sides of the
equation by the relative change in steady-state flux J . Since at steady state the flux
J equals the enzyme rate v, this results in:

1 =
∆ ln f(e)

∆ ln J
+

∆ ln g(x,k)

∆ ln J
= ρh + ρm (5.2)

Here ρh is the “hierarchical regulation coefficient”, quantifying the relative con-
tribution of changes in enzyme capacity (Vmax) to the regulation of the enzyme’s
flux. ρh is the “metabolic regulation coefficient”, quantifying the relative contribu-
tion of changes in the interaction of the enzyme with the rest of metabolism to the
regulation of the enzyme’s flux. For a more elaborate description and discussion of
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the method see Chapter 3. The term “hierarchical regulation coefficient” was intro-
duced by ter Kuile & Westerhoff (2001), because the Vmax depends on the complete
gene-expression cascade of transcription, translation, posttranslational modification,
and mRNA and protein degradation. The two regulation coefficients sum up to one
(summation theorem for the regulation of flux) implying that determination of one
coefficient will yield the other automatically (ter Kuile & Westerhoff, 2001, Chap-
ter 2). In practice the hierarchical regulation coefficient is more readily determined,
since f(e) usually can be taken to equal Vmax, and changes in the Vmax as well as in
the flux J through the enzyme can often be measured or estimated.

In this study we investigate the regulation of the glycolytic and fermentative ca-
pacity upon deletion of HXK2. To our knowledge this is the first study in which
the anaerobic metabolism of this mutant is considered. Using Regulation Analysis,
we will first dissect the regulation of the rates of glcolytic and fermentative enzymes
into the contributions of changes in enzyme capacities (ρh) and the contributions of
changes in the enzymes’ interaction with the rest of metabolism (ρm) in response to
the deletion of the HXK2 gene. We shall do this for the regulation of fluxes through
the individual glycolytic and fermentative enzymes. Subsequently we shall then exam-
ine how hexokinase II deletion impacts on the regulation of the fermentative capacity
during starvation. We will show that the mutant exhibits a remarkable resilience to-
wards nutrient starvation in terms of its fermentative capacity. Based on our results
and previous reports, we suggest an inverse correlation between glucose repression
and the resilience of fermentative capacity towards nutrient starvation. Further, the
resilience of the hxk2∆ mutant towards nutrient starvation in combination with its
higher biomass yield and the unavoidability of nutrient starvation during the indus-
trial production and the storage of baker’s yeast, makes this strain an attractive
phenotype for the baker’s yeast industry.

5.2 Materials and Methods

5.2.1 Growth and starvations

The growth and starvation procedures have been described in detail in Chapter 2.
Briefly, Saccharomyces cerevisiae strains CEN-PK 113-7D (MATa MAL2-8 c SUC2 )
and KY116 (MATa MAL2-8 c SUC hxk2∆::KanMX4 ) (Diderich et al., 2001) were
grown in well-aerated batch cultures at 30◦C in defined mineral medium containing
101 mM glucose (Verduyn et al., 1992) kept at pH 5.0 by automatic addition of
KOH. Cells were harvested at an OD600 of 1.0 (exponential phase) and concentrated
by centrifugation. Raamsdonk (2000) reported that the hxk2∆ mutant (KY116)
grown on mineral medium containing 20 µg/l of biotin showed biotin deficiency in
late exponential growth phase (OD600 of 4.0) but not earlier. Our studies were carried
out on cells grown on a mineral medium containing 50 µg/l of biotin (Verduyn et al.,
1992) and harvested at an OD600 of 1.0. In these conditions, we confirmed that
addition of higher concentrations of biotin did not affect the culture’s growth rate
(results not shown) and therefore we discarded the possibility of biotin deficiency.

For starvation experiments, the pellets were washed with equal volumes of ice-
cold growth medium lacking either glucose or ammonium, and resuspended in the
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corresponding medium at 30 oC to a cell density of 7.5 g/l wet weight (approximately
1g dry weight l−1) at pH 6.0. The suspensions, of approximately 0.30 l, were kept
in 2-liter shake flasks on a rotary shaker at 30 oC and 200 rpm without pH control
for 24 hours. For the measurement of steady-state fluxes, the cells were harvested by
centrifugation and resuspended in growth medium without a carbon source and kept
on ice for at most 1 hour prior to measurement. Similarly, for the measurement of
zero-trans influx of glucose, cells were harvested by centrifugation and resuspended
in growth medium lacking carbon and nitrogen sources, and kept on ice for at most
1 hour prior to measurement.

5.2.2 Steady-state fluxes

For the measurement of fermentative capacity and other steady-state fluxes the cells
were resuspended in medium lacking glucose at 30 C, kept anaerobic in a setup de-
scribed by van Hoek et al. (1998b) with the modification that the headspace was
flushed with N2 instead of CO2 as described in Chapter 2. At time zero 101 mM
of glucose was added. Ethanol, glucose, glycerol, succinate, acetate and trehalose
were monitored for 30 minutes by PCA extraction (Chapter 2) followed by HPLC
(300mm x 7.8 mm Ion exchange column Aminex-HPX 87H (Biorad), with 22.5 mM
H2SO4 kept at 55 oC as eluent at a flow rate of 0.5 ml min−1). Glycogen was assayed
according to Parrou & Francois (1997). The summed rates of production of acetate
and succinate were always below 1% of the consumed glucose and are not reported.
The fermentative capacity is defined as the specific rate of carbon dioxide production.
Here the specific rate of ethanol production, which equals the CO2 specific rate if
the minor (i.e. less than 1%) production of acetate is neglected, was measured. In a
control experiment it had been verified that ethanol evaporation was negligible under
these conditions.

The measured extracellular fluxes were used to calculate the fluxes through each
enzyme in the glycolytic and fermentative pathways. The flux through the glucose
transporter (GLT) was taken as equal to the measured glucose consumption flux.
The fluxes through enzymes downstream of hexokinase (HK) were calculated from the
steady-state rates of ethanol and glycerol production. The fluxes through HK, glucose-
6-phosphate isomerase (PGI), 6-phosphofructokinase (PFK) and aldolase (ALD) were
calculated by dividing the sum of the glycerol and ethanol fluxes by two. The flux
through triose-phosphate isomerase (TPI) was calculated by subtracting the rate of
glycerol production from the flux through the previous block (HK through ALD).
The fluxes through glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the
enzymes downstream were taken as equal to the measured ethanol flux. The consumed
carbon matched the produced carbon within experimental error (Figure 5.1) and their
means differed by 5% and 0.5% in the wild type and hxk2∆ mutant, respectively.
Our calculation of fluxes through individual enzymes implicitly assumes that these
small gaps in the carbon balances are filled by synthesis or mobilization of storage
carbohydrates. Such an assumption is justified since the measured glycogen flux was
small, but inherently difficult to quantify accurately due to uncertainties of extraction
and calibration.



86 Chapter 5

C
ar

b
on

fl
u
x
es

µ
m

ol
C

m
in

−
1

m
g

p
ro

te
in

−
1

Wild Type Mutant
0

1

2

3

4

5

Figure 5.1: Carbon-flux balances in the wild type and hxk2∆ mutant. Carbon fluxes for
each strain are represented with two columns: one depicting the consumed carbon (open
column) and the other the produced carbon (dark shaded areas). Columns are divided
into fluxes: glucose (open columns), glycerol (black areas), ethanol (light shaded areas),
and CO2 (calculated from the production of ethanol) (dark shaded areas). Other measured
fluxes were negligible (see text). Error bars represent the standard error of the mean of the
sum of consumed or produced carbon fluxes of four independent experiments carried out
with different batches of cells. The carbon-flux balance of the wild type has been published
previously (Chapter 3).

5.2.3 Zero-trans influx of glucose

Zero-trans influx of 14C radiolabelled glucose was determined in a 5 second uptake
assay at 30 C according to Walsh et al. (1994), with the modifications introduced in
Chapter 2. The range of glucose concentrations was between 0.25 and 225 mM. Irre-
versible Michaelis-Menten equations were fitted to the results by non-linear regression
using SigmaPlot 2001 version 7.0 (SPSS Inc.).

5.2.4 Enzyme activity measurements

Enzyme extractions and activity assays were performed as described by van Hoek
et al. (1998b). Enzyme activities (Vmax) were measured in freshly prepared extracts
through NAD(P)H-linked assays, using a COBAS BIO (Roche, Basel) automated
analyzer for spectroscopic measurements. All enzyme assays were performed with
four concentrations of cell extract to confirm that reaction rates were proportional to
the amount of cell extract added.

5.2.5 Regulation Analysis

Hierarchical regulation coefficients (ρh) to quantify the local flux regulation of gly-
colytic and fermentative enzymes (ter Kuile & Westerhoff, 2001, Chapter 3) in re-
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sponse to deletion of the HXK2 gene were calculated as follows:

ρh =
lnVmax,Mutant − lnVmax,WildType

lnJMutant − lnJWildType
(5.3)

in which the J refers to the in vivo flux through the enzyme (see section Steady-state
fluxes) and the subscripts Mutant and WildType refer to the hxk2∆ mutant and the
wild type strain, respectively. We performed at least three independent measurements
of the Vmax-values for each of the glycolytic and fermentative enzymes in the wild type
and hxk2∆ mutant. The Vmax-values were translated into logarithmic space and the
mean and standard deviation (SD) of lnVmax were computed. For each enzyme, the
mean ln Vmax-value of the wild type was subtracted from that of the mutant yielding
the numerator of Eq. (5.3). The SD of the numerator of Eq. (5.3) was computed
as the square root of the sum of variances of the wild type and mutant lnVmax-
values. The denominator of Eq. (5.3) and its standard deviation were computed
similarly, based on four independent determinations of the flux through the enzyme
of interest (see above). The ratio of the numerator and denominator of Eq. (5.3) equals
the hierarchical regulation coefficient. The metabolic regulation coefficient was then
calculated from ρm = 1 − ρh. The SD of the hierarchical regulation coefficient was
calculated by multiplying ρh and the square root of the sum of squared coefficients
of variations (Cv = σ/µ) of the numerator and denominator. The standard error of
the mean (SEM) of ρh was computed by dividing the SD by the square root of 3.
Note that ρh and ρm share the same SD in view of the summation theorem for the
regulation of flux.

5.3 Results

5.3.1 The fermentative capacity is decreased in the hxk2∆ mu-
tant, but stable during starvation

We first measured the overall steady-state fluxes of glucose, ethanol, glycerol, acetate,
succinate, glycogen and trehalose under standardized conditions in the mutant and
the wild type. To this end, S. cerevisiae strains CEN.PK 113-7D and the hxk2∆
mutant (KY116) were grown in well-aerated and pH-controlled batch cultures. In each
starvation experiment, an aliquot of cells was harvested during exponential growth and
split in three parts. One part (referred to as “unstarved”) was washed and transferred
to an anaerobic vessel with a fresh and complete medium with excess of glucose (101
mM). This condition was meant to mimic the situation of bakers’ yeast in dough (van
Hoek et al., 1998b). The above-mentioned fluxes were then measured over a period of
30 minutes. The other two batches of cells were washed and transferred to the same
fresh medium, except that it lacked either ammonium (“nitrogen-starved cells”) or
glucose (“carbon-starved cells”). After 24 hours the starved cells were harvested and
the fluxes were measured in a complete medium, in the same way as was done for the
unstarved cells.

Figure 5.1 depicts the measured carbon fluxes for the unstarved cultures of the
wild type and mutant strains. In both strains glucose was converted predominantly
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Table 5.1: Fermentative capacities of the wild type and hxk2∆ mutant. Fermentative
capacities (measured as the specific rate of ethanol production under glucose-excess and
anaerobic conditions) of both strains in unstarved, nitrogen- and carbon-starved cultures
are presented in mmol min−1 g −1 protein or mmol min−1 g −1 dry weight. Errors represent
standard errors of the mean of four independent experiments carried out on different batches
of cells.

Wild Type Mutant

FC per FC per FC per FC per

unit protein unit DW unit protein unit DW

Unstarved 1.04 ± 0.03 0.392 ± 0.013 0.25 ± 0.04 0.081 ± 0.016

Nitrogen starved 0.49 ± 0.05 0.072 ± 0.003 0.36 ± 0.04 0.058 ± 0.005

Carbon starved 0.33 ± 0.05 0.094 ± 0.01 0.23 ± 0.02 0.072 ± 0.005

to ethanol, glycerol and CO2. The production fluxes of acetate and succinate and the
mobilization of storage carbohydrates were always below 1% of the rate of glucose
consumption (not shown). The produced carbon could be accounted for by the con-
sumed carbon within experimental error. In the unstarved hxk2∆ mutant the glucose
consumption flux was decreased by 75% as compared to the flux in the unstarved
wild type, and this was reflected in a proportional decrease of the production fluxes
of ethanol, glycerol and CO2.

Table 5.1 shows the fermentative capacities of the wild type and mutant strains
in the unstarved and starved cultures. The fermentative capacity is defined as the
specific rate of CO2 production under the dough-like conditions specified above. Here
it was measured as the specific ethanol flux, which should equal the CO2 flux under
anaerobic conditions if we neglect the small acetate production. Deletion of the
HXK2 gene resulted in a 75% reduction of the fermentative capacity. The responses
of the fermentative capacities of the wild type and the hxk2 null mutant to nutrient
starvation were very different. In the wild type, both types of nutrient starvation led
to a substantial loss of fermentative capacity (between 50 and 70%), as was shown
before (Chapter 3), while the hxk2∆ mutant showed no loss of fermentative capacity
during 24 hours of deprivation of either carbon or nitrogen. When expressed per
unit protein, the fermentative capacity of nitrogen starved cultures was even slightly
increased in the mutant. The latter was not observed when fluxes were expressed
per unit dry weight, since the cells accumulated carbohydrates and increased their
dry-weight-to-protein ratio.

Like the wild type (Chapter 3), the mutant accumulated storage carbohydrates
during nitrogen starvation and mobilized this pool during the fermentative capac-
ity assay (results not shown). Indeed, after nitrogen starvation, the mean rate of
ethanol production in the fermentative capacity assay (0.36 µmol min−1 mg protein−1

–Table 5.1) exceeded the mean glucose influx (i.e. two times 0.15 µmol min−1 mg
protein−1) and even the glucose transport capacity (i.e. two times 0.17 µmol min−1

mg protein−1).
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Figure 5.2: In vitro maximum activities of glycolytic and fermentative enzymes. The in

vitro determined Vmax-values of the wild type (closed columns) are compared to those of the
hxk2∆ mutant (open columns). Error bars represent the standard errors of the mean of four
(wild type) and three (mutant) independent enzyme activity measurements carried out on
different batches of cells. Error bars of the GLT represent the standard errors of the mean
of two independent experiments carried out on different batches of cells.

5.3.2 Enzyme activities

Deletion of the HXK2 gene resulted in decreased fluxes through the glycolytic and
fermentative enzymes. In order to investigate whether these flux reductions could be
understood in terms of changes in the activities of the glucokinase and hexokinases
and/or of the other enzymes in the glycolytic and fermentative pathways, we measured
the maximum enzyme activities (Vmax) in extracts from unstarved cultures of the wild
type and the mutant. The absolute values are shown in Figure 5.2. Deletion of the
HXK2 gene resulted in an 80% reduction of hexokinase capacity (Vmax), consistent
with earlier results (Diderich et al., 2001). This is a surprisingly strong reduction,
since HXK1 has been shown to be upregulated substantially at the mRNA level
in a hxk2∆ mutant (Lin et al., 2002). It seems that the expression of the HXK1
is gene is regulated also by posttranscriptional mechanisms which counteract the
strong transcriptional regulation. This reduction was accompanied by significant
reductions in the Vmax-values of PGI, ALD, TPI, PGK, PGM and PDC (Student’s t
test α = 5%). The reduction of PDC activity was already reported by Diderich et al.
(2001). None of the enzyme activities was increased.
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Figure 5.3: V max-values of the hxk2∆ mutant as a percentage of those in unstarved hxk2∆
cultures. Unstarved (black columns), nitrogen-starved (diagonally striped columns), and
carbon-starved (grey columns). Error bars of glycolytic and fermentative enzymes represent
the percentage standard error of the mean, with respect to their corresponding unstarved
mean V max-value, of three independent experiments carried out on different batches of cells.
Exceptions are GLT and PK for which two independent experiments were carried out.

5.3.3 Regulation Analysis

Deletion of the HXK2 gene resulted in a reduced hexokinase activity that was accom-
panied by the reduction in the activities of PGI, ALD, TPI, PGK and PDC. These
coincided with reduction of the rates of glycolytic and fermentative enzymes. In order
to dissect to what extent the changes of Vmax were responsible for the enzyme rate
changes and to what extent these rates were rather regulated by changes in enzyme
interactions with the rest of metabolism, we calculated the hierarchical (ρh) and meta-
bolic (ρm) regulation coefficients for the comparison of the wild type and the mutant
in unstarved cultures (cf. Introduction). These are summarized in Table 5.2. All
the hierarchical regulation coefficients have values below 1, meaning that the relative
changes in the steady-state rates of all glycolytic and fermentative enzymes are larger
than the relative changes in enzyme capacities. The highest ρh value (0.9) was, not
surprisingly, obtained for hexokinase of which one of the genes was deleted. Indeed
the “gene-expression” regulation reported by this coefficient in this case is more than
the response by the organism; it comprises the regulatory act by the experimenter.
Aldolase and enolase were largely hierarchically regulated (ρh = 0.8). A number of
enzymes were regulated cooperatively by enzyme capacity changes and changes in
their interaction with the rest of metabolism. Notably GAPDH, PGK, PGM and
PDC were regulated with almost equal contributions of enzyme capacity changes and
changes in the way enzymes interacted with the rest of metabolism. One of the hi-
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Table 5.2: Hierarchical and metabolic regulation coefficients of the regulation ensuing from
the deletion of the HXK2 gene. Hierarchical (ρh) and metabolic (ρh) regulation coefficients
were calculated as described in the Materials and Methods section. Errors were quantified
with standard errors of the mean (SEM) calculated for four (wild type) and three (mutant)
independent Vmax measurements and four independent flux estimations, all performed on
independent batches of cells.

ρh SEM ρm

GLT 0.0 0.1 1
HK 0.9 0.2 0.1
PGI 0.2 0.1 0.8
PFK 0.0 0.2 1
ALD 0.8 0.4 0.2
TPI 0.3 0.1 0.7

GAPDH 0.4 0.2 0.6
PGK 0.6 0.2 0.4
PGM 0.5 0.1 0.5
ENO 0.8 0.2 0.2
PK 0.2 0.2 0.8

PDC 0.5 0.1 0.5
ADH -0.2 0.3 1.2

erarchical regulation coefficients was negative (ADH), indicating that the flux and
the enzyme activity changed in opposite direction. However, the value of this coeffi-
cient did not differ significantly from zero and we interpreted this as a predominantly
metabolic regulation. Glucose transport and PFK were regulated exclusively at the
metabolic level (ρm = 1.0), without any significant hierarchical regulation. Also PGI
and PK were predominantly regulated by metabolism (ρm = 0.8). Significant an-
tagonistic regulation (cf. Chapter 3) was not observed (the negative but statistically
insignificant ρh of ADH not withstanding).

5.4 Discussion

We investigated how the rates of the glycolytic and fermentative enzymes was regu-
lated upon deletion of hxk2 and upon starvation. This is a part of a larger research
programme in which we quantitatively investigate the interplay of metabolism and
gene expression, with glycolysis in bakers’ yeast as our model system. Previous studies
focused on the regulation of flux in response to environmental perturbations (Chap-
ters 3 and 4). These studies showed that existing paradigms of multi- or single-site
regulation did not apply to the regulation of yeast glycolysis. In multisite modulation
all Vmax values would be regulated proportionally, leading to metabolite homeostasis
upon large flux changes (Fell & Thomas, 1995). Single-site modulation assumes that
only one rate-controlling enzyme is regulated hierarchically.

The present study is the first example in which Regulation Analysis was applied
to regulation in response to a gene deletion. HXK2 is a special gene in that it en-
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codes a protein that acts both as an enzyme catalyzing a glycolytic reaction and as
a component of the main glucose-repression pathway. Upon deletion of HXK2 we
found a broad range of combinations of metabolic and hierarchical regulation, from
purely metabolic (ρh = 0) to purely hierarchical (ρh = 1). The majority of hierarchi-
cal regulation coefficients ranged between 0 and 1. This means that the regulation of
the fluxes through those enzymes was brought about cooperatively by changes in the
Vmax’s of the enzymes and their interactions with the rest of metabolism (Chapter 2).
The finding that another type of perturbation again resulted in a broad range of com-
binations of metabolic and hierarchical regulation, corroborates our earlier conclusion
that the regulation of glycolytic fluxes in bakers’ yeast is variegated and may not be
driven by single drives or constraints as suggested by single- or multi-site regulation
hypotheses.

It is known that several genes encoding glycolytic enzymes are under the tran-
scriptional control of the GCR1/GCR2/RAP2 system (Chambers et al., 1995). The
deletion of gcr1 and/or gcr2 results in decreased in vitro activities of the majority
of glycolytic enzymes in cells that are grown on glucose but not in those grown on
non-fermentable carbon sources (Clifton & Fraenkel, 1981; Uemura & Fraenkel, 1990).
The fact that in our study the glycolytic enzyme activities were regulated differentially
(Figure 5.2), some remaining constant and others decreasing to variable extents in the
mutant, suggests that the glycolytic genes are not simply co-regulated at the tran-
scriptional level. Moreover, if we compare the regulation of glycolysis upon different
perturbations, such as the transition from aerobic to anaerobic conditions (Chapter 4)
or the starvation of the wild type for nitrogen or carbon (Chapter 3), it becomes clear
that the distribution of regulation between metabolism and gene expression differs be-
tween conditions. This further suggests that the glycolytic genes are regulated more
subtly by other mechanisms on top of or interacting with the GCR1/GCR2/RAP2
system. For instance, the gene SGC1 has been described as a suppressor of the GCR
system (Sato et al., 1999). Furthermore, regulation of mRNA stability has been im-
plicated in glucose repression and could therefore be involved in the response of the
hxk2∆ mutant (de la Cruz et al., 2002). The interactions between the main glu-
cose repression pathway in which Hxk2p functions, the GCR1/GCR2/RAP2 system,
and possible other mechanisms such as regulation of mRNA stability, require further
study, and in view of the above, a quantitative study.

At high sugar concentrations the hxk2∆ strain has an almost completely respira-
tory metabolism (Diderich et al., 2001) and therefore a much higher biomass yield
than the wild type. This would alleviate the need for a restricted glucose influx and
thorough mixing of glucose in the bakers’ yeast production phase. The finding that
the fermentative capacity of the mutant was much lower than that of the wild type
at first sight seemed to disqualify the mutant for application purposes. However, also
the wild type has a much lower fermentative capacity when grown under respiratory
conditions. Moreover, after starvation, an integral part of the overall bakers’ yeast
production process, the wild type and the mutant had similar fermentative capacities.
This makes the hxk2∆ an interesting starting point for growing yeast at faster rates
in (fed-)batch cultures and with more efficient substrate utilization.

The constancy of the fermentative capacity in the hxk2∆ mutant during both
types of starvation in spite of a strong decrease in its glucose transport capacity to-
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gether with the observation that among the glycolytic and fermentative enzymes the
glucose transport activity was the only one that decreased significantly, suggest that
the glucose transporter had no control on the fermentative capacity in the mutant.
Quantification of the control of the glucose transporter upon the glycolytic flux has
been attained through titration of the glucose transport capacity by addition of mal-
tose, a competitive inhibitor of the glucose transporter (Diderich et al., 1999b). The
inhibition constant of maltose for the glucose transporters is between 32 and 42 mM
(Reijenga et al., 2005). In order to estimate the extent of the inhibition a high con-
centration (250 mM) of maltose would have on glucose transporter, we measured the
affinity of the hxk2∆ mutant transporters for glucose (Km = 5.4 mM) and calculated
the rate of glucose transport in the presence and absence of maltose with an external
glucose concentration of 101 mM, neglecting the intracellular glucose concentration.
These calculations yielded the estimation that 250 mM of maltose should exert a
23-28% inhibition of the glucose transporter in the mutant. However, the standard
deviation of the ethanol flux in the unstarved hxk2∆ mutant is 32% of its mean, which
implies that if the glucose transporter would have a control coefficient of 1 and the
ethanol production would decrease in proportion to the decreased glucose transport
rate, the change in ethanol flux would not be distinguishable from statistical vari-
ation. Thus titration with maltose is an unviable option for the assessment of the
control of the glucose transporter upon ethanol production in the hxk2∆ mutant in
our experimental setup.

The resilience of the hxk2 null mutant towards nutrient starvation is consistent
with results obtained for other respiratory yeast cultures. Nilsson et al. reported
that post-diauxic shift cultures respiring ethanol preserved their fermentative capacity
better than cells growing on glucose when challenged by nutrient starvation (Nilsson
et al., 2001b). Analogously, the fermentative capacity of fully respiratory, glucose-
limited chemostat cultures of S. cerevisiae at low dilution rates was also resilient to
nitrogen or carbon starvation (Van Eunen and Bakker, unpublished). These find-
ings together suggest that the stability of the fermentative capacity upon nutrient
starvation is inversely correlated with glucose repression.
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Chapter 6

General Discussion

This thesis is concerned with the study of the regulatory processes involved in the
adaptations of metabolic systems to environmental and genetic changes. In the first
Chapter of this thesis it was argued that the study of regulation is an endeavor unique
to biology and that our understanding of regulatory processes is hindered by the lack
of a precise definition of the term regulation and of appropriate methodologies to
describe regulatory process in an unambiguous and quantitative manner. The chap-
ters in this thesis report the implementation, evaluation and further development of
a method that enables a quantitative description of the regulation of enzyme rates
and their catalytic capacites. This method was implemented, tested and elaborated
in a series of investigations upon the regulation of Saccharomyces cerevisiae’s glycol-
ysis to nutrient starvation, oxygen deprivation, increased free-energy dissipation by
addition of benzoic acid, and deletion of the gene HXK2 encoding hexokinase II. The
experimental findings and analyses yielded new insights in to the complexity of the
regulation of metabolic fluxes and the catalytic capacities of the enzymes catalyzing
their reactions.

The study of regulation requires a precise definition of the term and the termi-
nology to describe regulatory processes unambiguously. As outlined in the General
Introduction, several efforts to convey a precise and quantitative definition of met-
abolic regulation were based on Metabolic Control Analysis (MCA) and addressed
the study of the regulation of enzyme rates by the metabolites that affected them
(Sauro, 1989) or the regulation of metabolic system properties by changes in ex-
ternal or internal metabolite concentrations (Westerhoff & Chen, 1984; Hofmeyr &
Cornish-Bowden, 1991; Kahn & Westerhoff, 1993; Hofmeyr, 1995), all disregarding
the regulation by gene-expression. These studies were explorations of the MCA the-
oretical framework without experimental investigation of real biological systems. In
contrast, Regulation Analysis was devised to aid the experimental investigation of the
regulation of enzyme-catalyzed rates by gene-expression and metabolic interactions.

It is important to stress the descriptive nature of Regulation Analysis and its
association with and dependence on experimentation. In contrast to MCA-based ap-
proaches, Regulation Analysis does not require a complete kinetic characterization of
the metabolic network but relies on direct measurement of enzyme rates and amounts.
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By being extricated from the need of a complete kinetic description of the metabolic
system, Regulation Analysis is restricted to the description of the local regulation
of enzyme rates and is therefore devoid of predictive capacity. Its association with
experiments, on the other hand, makes it more appropriate for the study of biological
systems for which a complete kinetic characterization is not yet available.

In this chapter, Regulation Analysis is discussed in terms of its scope, the as-
sumptions used in its derivation and the interpretation of its numerical outcomes.
This methodological discussion is followed by a discussion of the experimental results
reported in this thesis, with an emphasis on the quantitative description provided by
Regulation Analysis.

6.1 Hierarchical and Metabolic Regulation of En-
zyme Rates

Throughout this thesis Regulation Analysis has been used to dissect the regulation of
fluxes through individual metabolic enzymes into its “hierarchical” and “metabolic”
components. Ter Kuile and Westerhoff defined hierarchical regulation as the compo-
nent of regulation that acts via the gene-expression cascade and metabolic regulation
as the component that affects the way in which enzymes interact with the rest of
metabolism (ter Kuile, 1996). The dissection of the hierarchical and metabolic com-
ponents is possible thanks to the fact that enzymes are catalysts, of which the amounts
are unchanged by the reaction which they catalyze. Therefore, enzyme-catalyzed rates
are most often proportional to the amount of enzymes present, cf. Eqs. (1.37) – (1.39).
Importantly, the amount of enzyme present is not a function of the concentrations of
metabolites that interact with that enzyme and the interactions of the enzyme with
these metabolites is not a function of the amount of enzyme. This cross-independence
between the amount of catalyst and the way it interacts with the rest of the system
permits the dissection of the contributions of these two factors to the regulation of
the enzyme-catalyzed rates for arbitrarily large changes in the amount of enzyme. It
is this feature of Regulation Analysis that distinguishes it as a method suitable for
the experimental investigation of the regulation of enzyme-catalyzed rates.

Regulation Analysis requires the experimental determination of the
amount of enzyme catalyzing the reaction studied. Because changes in enzyme
amounts rather than absolute values are considered in Regulation Analysis accuracy
is of utmost importance. Vmax measurements are highly specific and their precision
and reproducibilitly is far better than direct measurement of enzyme amounts by
state-of-the-art proteomics. Following Ter Kuile and Westerhoff’s original presenta-
tion of the method, in this thesis relative changes in enzyme capacities (Vmax) have
been used as a measure of relative changes in enzyme amounts and used for the cal-
culation of hierarchical regulation coefficients. However, the subtlety with which real
cells regulate fluxes through individual metabolic steps and a number experimental
limitations warrant examination of the appropriateness of the use of Vmax changes
as a measure of changes in enzyme amount and the interpretation of hierarchical
regulation coefficients calculated using Vmax measurements.
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6.1.1 Enzyme capacities (Vmax) as a measure of enzyme amounts

Relative changes in Vmax are exactly equal to relative changes in enzyme amounts
if the enzyme’s kcat does not change between the conditions considered. However, if
kcat changes between the conditions considered the relative change in Vmax may be
very different from the relative changes in enzyme amounts.

The kcat of an enzyme may change due to covalent modifications. Chapter 3
discussed the modulation of Vmax by phosphorylation during transfer of starved cul-
tures to a complete medium as it occurs during the fermentative capacity assay. In
a subsequent pilot experiment, the Vmax of glycolytic and fermentative enzymes was
measured in starved and unstarved cultures harvested 15 minutes after their transfer
to complete medium. For each condition two batches of cells were taken for Vmax

measurements. In one batch, enzyme extraction and the Vmax measurements were
performed in the presence of phosphatase inhibitors, in the other batch enzymes were
extracted and their Vmax was measured in the absence of phosphatase inhibitors.
The differences in Vmax observed between the two extraction procedures were not
beyond what was expected on the bases of statistical variation with the exception of
pyruvate kinase, which has been reported to be activated through phosphorylation
by protein kinase A (Portela et al., 2002). Figure 6.1 shows the Vmax measurements
of pyruvate kinase extracted and assayed in the presence or absence of phosphatase
inhibitors when samples were harvested 15 minutes after the transfer of cells to com-
plete medium. The Vmax value of pyruvate kinase in nitrogen or carbon starved,
but not in unstarved, cultures was many times higher when dephosphorylation was
prevented by addition of phosphatase inhibitors. The deviation of relative changes
in Vmax from that of enzyme amounts is apparent in both types of starvation where
the measured pyruvate kinase Vmax change suggested a decrease in enzyme amounts
when assayed in the absence of phosphatase inhibitors and an increase when assayed
in their presence. While among S. cerevisiae’s glycolytic and fermentative enzymes,
activity modulation by phosphorylation has only been reported for pyruvate kinase,
other covalent modifications may still affect the catalytic constants of other glycolytic
enzymes. The occurrence of posttranslational modifications affecting the catalytic
constants of triosephosphate isomerase and phosphoglycerate kinase is suggested by
the protein measurements reported in Chapter 4, although the standard errors of the
mean were too large for the experiments to be decisive.

6.1.2 Differential expression of isoenzymes

One metabolic reaction may be catalyzed by different proteins which are products of
different genes. Different enzymes that catalyze the same reaction are called isoen-
zymes. In fact, the majority of reactions in the glycolytic and fermentative pathways
in S. cerevisiae are catalyzed by two or more isoenzymes. Since isoenzymes are dif-
ferent proteins they may have different catalytic properties. Their catalytic constants
kcat may differ as well as their affinities for substrates, products and other metabolic
effectors. Isoenzymes may be expressed differentially in such a way that the apparent
catalytic properties of the isoenzyme pool will vary between conditions. This feature
of modulation of apparent catalytic properties of an isoenzyme pool is particularly
apparent in yeast glucose transport, where the apparent affinity of the transporters
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Figure 6.1: Vmax-values of pyruvate kinase assayed in the presence or absence of phosphatase
inhibitors. Vmax-values in µmol min−1 mg protein−1 are plotted. The measurements were
made in an experiment where the cells were harvested 15 minutes after being transferred to
a complete medium. For each condition, one batch of these cells was extracted and assayed
in the presence of phosphatase inhibitors (black bars) and another batch in absence of the
latter(open bars). Unstarved refers to cells harvested during the exponetial phase (OD = 0.1)
of a batch culture. The starved cultures were harvested during the exponential phase of the
batch culture and subsequently deprived of nitrogen (N-starved) or carbon (C-starved) for
24 hours.

for glucose is modulated through the differential expression of hexose transporters
with different glucose affinities (Diderich et al., 1999a). In Chapter 2, it was dis-
cussed that differential expression of isoenzymes with different metabolite affinities
modulates the interaction of the isoenzyme population with the rest of metabolism.
If the hierarchical regulation coefficient is then calculated from overall Vmax change
of the isoenzyme pool, the analysis does not dissect gene-expression regulation from
metabolic regulation, since the expression of genes affects both the Vmax and the way
in which the enzyme population interacts with the rest of metabolism. In such cases,
the hierarchical regulation coefficient measures the regulation by Vmax changes, which
are effected exclusively by gene expression, and the metabolic regulation coefficient
measures the regulation by changes in the way the enzyme population interacts with
the rest of metabolism, which may be effected by both gene expression and metabolite
concentration changes.

In principle it is possible to disentangle the contributions of gene expression and
metabolic changes for metabolic reactions catalyzed by populations of isoenzymes
with different kinetic properties. This dissection would require the direct quantifi-
cation of single isoenzyme amounts and the fluxes through single isoenzymes. The
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former requirement may be fulfilled, though it is technically very challenging in view
of the accuracy required (cf. Chapter 4). However, the latter requirement, the mea-
surement of fluxes through individual isoenzymes, is impossible to fulfill. It may,
however, be possible to calculate the fluxes through individual isoenzymes provided
that the kinetic characterization of each isoenzyme is complete and that the concen-
trations of all metabolites affecting their rates of catalysis are known with sufficient
precision.

6.1.3 Protein-protein interactions

Protein-protein interactions may affect the kinetic properties of enzymes. For in-
stance, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
has been shown to form monomers, trimers and tetramers all with the same spe-
cific activity when assayed in substrate excess conditions (implying that the kcat of
GAPDH was unaffected by the formation of oligomers), but with different specific
activities in the presence of subsaturating concentrations of substrates (suggesting
that the formation of oligomers affects the enzyme’s metabolite affinities) (Ashma-
rina et al., 1982). From the viewpoint of Regulation Analysis, the fact that enzyme
amounts may affect both the enzyme’s Vmax capacity and the way it interacts with
the rest of metabolism, disrupts the cross-independence on which the analysis is based
and impedes in these cases the dissection of hierarchical and metabolic contributions
to the regulation of enzyme rates.

If a protein-protein interaction would affect the kcat of an enzyme, relative changes
of the Vmax relative would deviate from relative changes of the enzyme concentration.
Because protein-protein interactions depend upon the concentrations of the proteins
involved, those affecting the catalytic constants of the enzyme may be identified by
assaying the Vmax in samples with different dilutions. This was routinely done in
the experiments reported in this thesis and modifications of catalytic constants by
protein-protein associations, if any, could not be distinguished from the experimental
statistical variation.

6.1.4 The interpretation of ρh calculated from Vmax measure-
ments

The subsections above have highlighted that relative changes of Vmax may deviate
from relative changes of enzyme amount due to posttranslational modifications or
protein-protein interactions, and that the interaction of the enzyme with the rest of
metabolism may be modulated through the differential expression of genes encoding
isoenzymes. Clearly, in these cases, Regulation Analysis using Vmax measurements
does not dissect the contributions of gene-expression and metabolic interactions to
the regulation of enzyme catalyzed rates. The hierarchical regulation coefficient cal-
culated using Vmax measurements quantifies the contribution of Vmax changes and
distinguishes it from the regulation by all changes affecting the way the enzyme in-
teracts with the rest of metabolism. This interpretation of the hierarchical regulation
coefficient was assumed throughout this thesis. It may be argued that modulations of
kcat can be considered as part of the gene-expression cascade and included in the hi-
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erarchical component of the regulation. If it is chosen to include modulations of kcat

in the hierarchical regulation, then Regulation Analysis using Vmax measurements
dissects the contributions of gene-expression and metabolic interactions to the regu-
lation of enzyme-catalyzed rates in the cases where there is no differential expression
of isoenzymes. However, it cannot be discarded that kcat modulations may depend
on metabolite concentrations. For instance, a metabolite concentration may influence
the equilibrium between oligomeric forms of the protein which may exhibit different
kcat’s. For example, pyruvate decarboxylase in yeast is a multimeric enzyme that
may form dimers or tetramers. The specific activity of the tetramer form is much
higher than that of the dimer form and the ratio of tetramers to dimers is affected by
the pH. At low pH (6.2-7.5) the tetramer is more abundant than the dimer while at
higher pH (7.5-8.4) the dimer is more abundant. An increase in the concentration of
pyruvate is likely to be accompained by a reduction of pH and hence an increase in
the concentration of the catalytically more active tetramer. Therefore, it is plausible
that changes in the concentration of pyruvate can modulate the catalytic capacity of
the pyruvate decarboxylase without affecting its concentration. (Koenig et al., 1992).

The fact that in practice gene-expression regulation cannot always be dissected
from metabolic regulation should not distract from the value of dissecting the reg-
ulation of enzyme rates into the contributions of a measured property (Vmax) and
the contributions by the many, difficult to measure, changes affecting the enzyme’s
interaction with the rest of metabolism.

6.2 Dissection of the Regulation of Vmax

The standard Regulation Analysis is based on the feature that the rates of most
enzyme-catalyzed reactions are directly proportional to the amount of enzyme and
on the frequent cross-independence between the enzyme amount and the function
describing the interactions of the enzyme with its metabolic effectors. The dissection
of the contributions of the multipliers in the rate equation is achieved by transform-
ing the equation into logarithmic space and normalizing the resulting expression. In
Chapter 4, a similar method was applied in order to dissect the contributions of the
various processes in the gene-expression cascade, to the regulation of enzyme capac-
ities (Vmax). In order to express enzyme capacities as a multiplicative function two
assumptions are made. First, it is assumed that the protein concentration is in steady-
state, Eq. (4.7). This assumption is likely to be warranted by the use of chemostats
(but see Jansen et al., 2005). Second, it is assumed that the rate of degradation of a
specific protein is directly proportional to the concentration of that protein [Eq. (4.8)]
or that the rate of protein degradation is negligible compared to the rate of dilution
by growth. In contrast to the relation between enzyme amounts and the rate of catal-
ysis, the protein concentration referred to here is that of the substrate rather than
that of the catalyst of the degradation reaction. Therefore the assumption of direct
proportionality cannot be made on the same basis as in the former case. For the rate
of protein degradation, the assumption of direct proportionality is an approximation
based on another assumption: that the protein concentration is much lower than the
half-saturation constant of the proteolytic machinery for that protein. This assump-
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tion of an unsaturated proteolytic machinery for a particular protein species may be
appropriate if the concentration of the protein in question is indeed very low or if
the proteolytic machinery is unspecific and degrades many different protein species of
which the species in question constitutes but a small fraction whilst the sum of the all
other protein concentrations does not change. It must be emphasized that these two
assumptions of protein concentration being in steady-state and direct proportionality
between protein degradation rate and protein concentrations (or that protein degra-
dation rates are negligible compared to the dilution rate) are indispensable for the
analysis. Without them it is not possible to express enzyme capacities as a multi-
plicative function of translation, degradation and dilution rates, and posttranslational
modifications and this would impede the dissection of these contributions, cf. Eqs.
(4.10) and (4.11). A fact that argues against the validity of the assumption of direct
proportionality between protein degradation rates and glycolytic protein concentra-
tions is that the latter are highly abundant proteins in yeast, constituting under some
conditions up to 65% of the cytosolic proteins (Boiteux & Hess, 1981). However, sin-
gle glycolytic enzymes may still constitute minorities among the total pool of proteins
degraded. Elucidating whether the approximation of direct proportionality of degra-
dation of specific proteins and the concentration of that protein is valid will require
higher precision in the measurements of protein turnovers. Existing measurements do
not highlight glycolytic enzymes as being degraded differently than other, less abun-
dant proteins (Pratt et al., 2002). The results of the aforementioned protein turnover
measurements are compatible with a direct proportionality of the rates of degradation
and the protein concentrations, but their accuracy is not sufficient to definitively rule
out hyperbolic or sigmoidal dependencies.

A third assumption used in the derivation of the extension of Regulation Analysis
to study the regulation of enzyme capacities is that the rate of translation of a partic-
ular mRNA is directly proportional to its concentration. This assumption is based on
the same reasoning as that explained for the rate of protein degradation, but it is not
essential. Without it the expression of enzyme capacities as multiplicative functions
is still possible, if regulation of the rate of translation is measured directly by, for
instance pulse chase experiments with labeled amino acids.

6.3 Summary and Discussion of the Experimental
Findings

In the previous sections the methodological aspects of Regulation Analysis were dis-
cussed. The aim of the previous section was to clarify the interpretation of the
numerical outcomes of Regulation Analysis and to raise awareness of subtleties that
may confuse their interpretation. In this section, the experimental findings reported
in this thesis are discussed with emphasis on the unambiguous statements that are
possible when a quantitative description is provided.
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6.3.1 The regulation of enzyme rates in S. cerevisiae’s glycol-
ysis

In Chapter 2 it was argued that, in principle, enzyme rates could be regulated in
five different modes each with a precise biochemical interpretation and associated
with precise numerical values or ranges of the hierarchical regulation coefficient. It
was hypothesized that enzyme rates may be regulated exclusively by Vmax changes
(ρh = 1), exclusively by changes in the way the enzyme interacts with the rest of
metabolism, (ρh = 0) or by a combination of changes of both Vmax and metabolic
interactions, which could elicit the rate change synergistically (0 < ρh < 1) or have
antagonistic influences that may be either dominated by the Vmax change (ρh > 1) or
by the changes in the way the enzyme interacts with the rest of metabolism (ρh < 0).
Chapters 2 to 5 show that every one of the hypothesized modes of regulation is in
fact realized in real cells when adapting to environmental or genetic changes.

All the experiments presented in this thesis taken together suggest that hierarchi-
cal and metabolic contributions to the regulation of enzyme-catalyzed rates depend
upon the localization of the enzyme in the metabolic network and upon the envi-
ronmental or genetic change challenging the system. The regulation of enzyme rates
within the glycolytic pathway was shown to be variegated both in terms of differ-
ent enzymes in the pathway being regulated differently in response to a particular
challenge, and in terms of a particular enzyme being regulated differently when the
system responded to different challenges.

The results and analyses presented in this thesis permit the unequivocal assertion
that enzyme rates are locally regulated by the cell through changes in the amount
of catalyst but also through changes in the way enzymes interact with the rest of
the metabolic network. The latter changes may be in turn be elicited by changes
in the amount of other enzymes in the network as well as by changes in the cell’s
environment (e.g. a substrate concentration change).

The unequal distribution of the hierarchical regulation in a single pathway suggests
that enzymes play different roles in the regulation of fluxes. Those enzymes with large
positive hierarchical regulation coefficients appear to “lead” the flux change while
those with positive and small hierarchical regulation coefficients appear to “follow”
the leading enzymes. Still other enzymes appear to actively oppose the ensuing flux
change by changing their activities in opposite direction, presumably fulfilling other
regulatory functions than flux changes.

An interesting observation made both when exponentially growing cultures adapted
to carbon deprivation and when the wild type strain adapted to deletion of the HXK2
gene, was that the relative change in rate through each glycolytic enzyme was larger
than the measured relative change in its Vmax value, i.e. all ρh’s were smaller than
1. This implies that in all cases the rate change could not be attributed to the Vmax

change alone but must have been partly elicited by changes in the way enzymes in-
teracted with the rest of metabolism. From the point of view of the hypothesized
roles of enzymes in the regulation of pathway fluxes, it appears that the “leading”
enzymes were situated outside the glycolytic pathway and that all glycolytic enzymes
“followed” a foreign lead.

A similar observation was made when glucose-limited cultures adapted to anaer-
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obiosis. In this case, the fluxes were measured in the cultures and a part of the flux
change may be ascribed to a difference in the residual glucose concentrations between
aerobic and anaerobic cultures. In Chapters 2, 3 and 5 however, fluxes were mea-
sured off-line in fresh medium with a saturating glucose concentration. i.e. the flux
changes were ascribable to the differences in the history of the cultures and not to an
environmental factor such as glucose concentration.

The variegated regulation of glycolytic enzyme rates in terms of their position in
the pathway has also been observed in the eukaryotic human parasites Trypanosoma
brucei, Leishmania donovani and Trichomonas vaginalis when grown in chemostats
at various dilution rates (ter Kuile & Westerhoff, 2001), which suggests that this
observation is not a peculiarity of S. cerevisiea’s glycolytic pathway but is a feature
shared by other microorganisms. It is possible, however, that the variegated regulation
of enzyme rates is a peculiarity of glycolysis, perhaps associated with being in the core
of primary metabolism and its numerous interactions with the rest of the network (cf
section 1.4 General Introduction). There are few studies in which the activities of all
enzymes in a pathway and the in vivo rates of these enzymes have been measured
when cells respond to a variety of conditions. Such studies would be necessary to
investigate whether other pathways are regulated in a similar, variegated fashion as
glycolysis.

6.3.2 The complexity of Vmax regulation

In Chapter 4 it is reported that mRNA concentration changes correlate poorly with
changes in enzyme amounts or capacities. Using the extended version of Regulation
Analysis it is suggested that mRNA changes account for less than 50% of the regula-
tion of enzyme amounts and capacities. The analysis, with the assumptions outlined
in the previous section, predicts that the regulation of enzyme amounts is effected
predominantly by changes in the rate of translation, the rate of protein degradation
or both.

Since measured mRNA changes cannot account for the observed changes in enzyme
capacities and amounts, it is clear that other processes in the gene-expression cascade
need to be investigated quantitatively and in more detail. The analysis presented
in Chapter 4 suggests as a starting point to investigate whether translation rates
and protein degradation rates are directly proportional to the concentrations of the
corresponding mRNA and protein. If these assumptions are supported, then the
prediction that changes in the kinetics of translation and degradation of proteins are
major contributors to the regulation of enzyme capacities can be tested.

6.4 Concluding Remarks and Future Directions

In the General Introduction of this thesis it was argued that important obstacles in
the advancement of our understanding of regulation of metabolic systems are the
complexity of biological systems, and the lack of a precise definition of regulation and
of methodologies appropriate for its study. In accordance with this view, a method to
study regulatory processes has been proposed. The method contrasts with approaches
based on Metabolic Control Analysis in that it is extricated from the need of a detailed
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description of the complexity of real metabolic systems but also in that it is limited
to a description of regulation of local enzyme rates. The description of the regulation
of enzyme rates using Regulation Analysis implements a view of regulation distinct
from the concept of control. It focuses on the processes occurring when real cells
adapt to different challenges, rather than on the potential response that a completely
characterized system with fixed kinetic parameters may exhibit, which is what MCA
based approaches focus on.

The efforts to describe regulatory processes unambiguously and quantitatively
have led to the recognition of the importance of a number of aspects of enzyme-
catalyzed rates that are important in the functioning of enzymes in real cells, but have
been overlooked in purely theoretical approaches. At the same time, experimental
limitations have obliged the refinement of the interpretation of the outcomes of the
method so that it remains useful in the aid of the explanation and communication of
experimental results.

At present, a theory that explains and predicts the metabolic responses of living
cells to given stimuli does not exist. Such theory will have to be built by induction
based on a body of observations. This thesis reports a number of experimental obser-
vations that have been organized and expressed in a quantitative and unambiguous
manner using Regulation Analysis. These findings and analyses have unravelled a pre-
viously undescribed complexity of the regulation of metabolic systems. They prove
that the regulation of metabolic fluxes is not governed by single drives or constraints
and that the regulation of system properties may not rely on the modulation of the
properties of a single component or process. Perhaps the most important contribution
of the work presented in this thesis is the proposal of a strategy for the collection,
organization and unambiguous expression of experimental observations on regulatory
processes in metabolic systems. It is my hope that this strategy will prove of use in the
assemblage of the body of observations upon which a theory of metabolic regulation
can be built.

Future directions for improving our understanding of metabolic regulatory pro-
cesses are suggested by the work presented in Chapter 3 where several hypotheses on
the global regulation of fluxes are expounded and their predictions in terms of the
local regulation of the rates of the pathway’s constitutive enzymes are formulated.
The aforementioned hypotheses each suggest a different drive or constraint as direc-
tor of the regulation of pathway fluxes, they were formulated in such a way that their
predictions could be subject to experimental verification. The falsification of these
hypotheses for the regulation of the glycolytic flux in Saccharomyces cerevisiae led
to the realization that flux regulation is exerted in a more subtle way than previ-
ously suggested. At the same time, it highlighted the need for new hypotheses upon
what are the drives and constraints governing the regulation of metabolic systems.
The predictions of these new hypotheses should be formulated explicitely in terms
of the experimental procedures required for their falsification. Preferably the predic-
tions should be formulated with the experimental limitations and the complexity of
biological systems in mind.
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Samenvatting

Dit proefschrift gaat over de regulatieprocessen die en rol spelen in de aanpassing
van metabole systemen aan hun omgeving en aan genetische veranderingen. Onder-
zoek aan regulatiemechanismen is uniek voor de biologie. Het richt zich op systemen
waarvan de complexiteit ongeëvenaard is in niet-biologische systemen. Biologische
systemen kunnen zich aanpassen: levende cellen moduleren de eigenschappen van
hun systemen als reactie op veranderingen in hun omgeving. Deze aanpassingen zijn
onderworpen aan tot dusverre onbekende drijevende krachten en beperkingen.

In het inleidende hoofdstuk (Hoofdstuk 1) wordt betoogd dat ons begrip van
regulatieprocessen wordt beperkt door het ontbreken van een precieze definitie van het
begrip regulatie en door het ontbreken van geschikte methodes om regulatie-processen
op een eenduidige en kwantitatieve manier te beschijven. De hoofdstukken 2 en 5
bescrijven de implementatie, evaluatie en verdere ontwikkeling van Regulatie Analyse,
een methode die een kwantitatieve beschrijving van de regulatie van enzymsnelheden
en hun katalytische capaciteiten mogelijk maakt. Deze methode is gëımplementeerd,
getest en uitgewerkt in een serie van onderzoeken naar de regulatie van de glycolyse in
Saccharomyces cerevisiae tijdens nutriënt-starvatie, zuurstof-deprivatie, toegenomen
dissipatie van vrije energie door toevoeging van benzoëzuur, of na deletie van het
HXK2 gen dat codeert voor hexokinase II. De experimentele bevindingen en analyses,
die in dit proefschrift beschreven worden, brengen nieuwe inzichten in de complexiteit
van de regulatie van de metabole flux en de katalytische capaciteiten van de enzymen
die de reacties katalyseren.

In het verleden zijn er verscheidene pogingen gedaan om een kwantitatief kader te
ontwerpen voor de studie naar metabole regulatie. Daaruit is Regulatie Analyse naar
voren gekomen als de methode die het meest passend is voor experimenteel onderzoek
naar regulatieprocessen. Regulatie Analyse ontleedt kwantitatief de bijdragen van
veranderingen in enzym-capaciteiten (Vmax -hiërarchische regulatie genoemd) en ve-
randeringen in de interactie van enzymen met de rest van het metabolisme (metabole
regulatie genoemd) op de lokale regulatie van de enzymsnelheden. Deze verdeling is
gebaseerd op een eigenschap van de meeste enzymgekatalyseerde reacties: de snelheid
van de katalyse is recht evenredig met de hoeveelheid van het actieve enzym. Reg-
ulatie Analyse maakt het mogelijk om eenduidige en kwantitatieve beschrijvingen te
geven van de regulatie van de flux door de betrokken enzymen, onafhankelijk van de
complexiteit van het systeem of het type verstoring.

Regulatie Analyse wordt door dit gehele proefschrift gebruikt om de regulatie van
de flux door de individuele enzymen betrokken bij de glycolyse en fermentatie in de
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gist Saccharmoyces cerevisiae te beschrijven wanneer de gist zich aanpast aan ver-
scheidene veranderingen van de omgeving en van zijn eigen genetische samenstelling.
Hoofdstuk 2 geeft een gedetailleerde beschrijving van de methode en introduceert
precieze biochemische interpretaties voor alle mogelijke numerieke uitkomsten van de
analyse. Verder verfijnt het de oorspronkelijke interpretatie van de hiërarchische en
metabole regulatie zodanig dat ook de differentiële expressie van iso-enzymen met
verschillende kinetische eigenschappen is ondergebracht.

In Hoofdstuk 3 is Regulatie Analyse gebruikt om drie toetsbare hypotheses over
de globale regulatie van de flux door de gehele route te formuleren in termen van de
lokale regulatie van de enzymsnelheden in die route. De eerste hypothese voorspelt dat
alle enzymsnelheden metabool worden gereguleerd (d.w.z. volledige afwezigheid van
hiërarchische regulatie), De tweede hypothese voorspelt dat een enkel ‘sleutelenzym’
in de route hiërarchisch wordt gereguleerd terwijl alle andere stappen metabool wor-
den gereguleerd. De derde hypothese voorspelt uitsluitend hiërarchische regulatie van
alle enzymsnelheden in de route om de homeostase van de metaboliet-concentraties
te garanderen. De hoofdstukken 3, 4 en 5 beschrijven de regulatie van de flux door
de individuele enzymen betrokken bij de glycolyse en fermentatie wanneer Saccharo-
myces cerevisiae zich aanpast aan: stikstof- of koolstof-starvatie, zuurstof-deprivatie,
toegenomen dissipatie van vrije energie door toevoeging van benzoëzuur en tenslotte
aan de deletie van het gen HXK2 dat codeert voor hexokinase II. Gezamenlijk lei-
den deze studies tot de volgende conclusies: (i) metabole regulatie levert vaak een
belangrijke bijdrage aan de lokale regulatie van de enzymsnelheden, (ii) levende gist-
cellen gebruiken alle mogelijke combinaties van hiërarchische en metabole regulatie
om de snelheden van de individuele enzymen te moduleren, (iii) de flux door enzymen
in dezelfde route wordt vaak op verschillende manieren gereguleerd, wat suggereert
dat de enzymen verschillende rollen spelen in de regulatie van de flux door de gehele
route, (iv) dezelfde metabole stap is vaak verschillend gereguleerd wanneer de cellen
zich aanpassen aan verschillende verstoringen, (v) alle voorgestelde hypotheses over
de globale regulatie van de flux door de gehele route zijn weerlegd voor de onder-
zocht kweekomstandigheden, wat impliceert dat ze niet algemeen geldig zijn, en (vi)
de regulatie van de glycolytische en fermentatieve flux is vaak gereguleerd door ve-
randeringen van enzyme binnen èn buiten de route. Deze bevindingen suggereren
dat de flux door de gehele route op een subtiele manier wordt gereguleerd, -waarbij
de verschillende enzymen een verschillende regulerende rol spelen. Ze laten zien dat
de regulatie van de flux door de gehele route niet noodzakerwijs wordt bepaald door
een enkele drijvende kracht of beperking. Ze maken het ook noodzakelijk on nieuwe
hypotheses te formuleren over de globale regulatie van de flux door de gehele route.

Een uitbreiding van de Regulatie Analyse wordt beschreven in Hoofdstuk 4. Hi-
ermee kan de regulatie van enzymhoeveelheden en katalytische capaciteiten worden
beschreven in termen van de bijdragen van veranderingen in mRNA concentraties,
translatie- en eiwit-degradatie snelheden en posttranslationele modificaties. De anal-
yse is gebaseerd op de aanname dat eiwitconcentraties in steady-state zijn en dat
de snelheden van translatie en degradatie van individuele eiwitten recht evenredig
zijn met de corresponderende concentraties van mRNA en eiwit. De eerste aan-
name is waarschijnlijk gegarandeerd door het gebruik van chemostaat-cultures, maar
de andere dient nog experimenteel geverifieerd te woorden. Hiertoe is een grotere
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nauwkeurigheid van beschikbare analytische technieken vereist. De aanname dat
translatie- en eiwit-degradatie-snelheden recht evenredig zijn met de concentraties
van respectievelijk het corresponderend mRNA en het eiwit, zijn gebaseerd op de
verwachting dat de betrokken enzymcomplexen (ribosomen en proteasoom) niet spec-
ifiek zijn en dat de concentratie van een enkel mRNA of eiwit een minderheid verte-
genwoordigt in de populaties van alle mRNAs of eiwitten.

In Hoofdstuk 4 wordt deze uitgebreide Regulatie Analyse toegepast op de regulatie
van de hoeveelheden en capaciteiten van glycolytisch enzymen, wanneer S. cerevisiae
zich aanpast aan anarobiosis of de aanwezigheid van benzoëzuur. De experimenten
laten zien dat veranderingen in mRNA concentraties slecht overeenkomen met de ve-
randeringen in hoeveelheden en capaciteiten van de enzymen. De analyse suggereert
dat veranderingen in mRNA voor minder dan 50% bijdragen aan de regulatie van de
hoeveelheden en capaciteiten van de glycolytische enzymen en dat veranderingen in
de snelheden van translatie en/of eiwit-degradatie de belangrijkste regulatoren van de
hoeveelheden eiwit zijn. Pogingen om de bijdrage van posttranslationele modificaties
aan de regulatie van enzym-capaciteiten te kwantificeren, tonen aan dat een meer
nauwkeurige en reproduceerbare proteoom-analyse noodzakelijk is. Hoewel de exper-
imentele onzekerheid te groot was om definitieve om conclusies kunnen te trekken,
geven de data de indruk dat er posttranslationele modificaties plaatsvinden die de
katalytische capaciteit van triosefosfaat-isomerase en fosfoglyceraat-kinase bëınvloe-
den.

De methoden die zijn ontwikkeld en gebruikt in dit proefschrift, leveren een kwan-
titatief kader op waarmee hypotheses over regulatieprocessen experimenteel kunnen
worden getoest. De toepassing van deze methoden om de werkelijke regulatieprocessen
in levende cellen te beschrijven heeft ons inzicht gegeven in een eerder onbeschreven
complexiteit van de processen die het metabolisme reguleren. Deze studie laat zien
dat processen waaraan relatief weinig aandacht is besteed, zoals metabole regulatie en
translatie- en eiwit-degradatie, waarschijnlijk een belangrijke rol spelen in de regulatie
van metabole systemen.
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