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Preface

The subject of this thesis is the mathematical study of a combustion-
radiation model for flame balls.

In the introductory Chapter 1 we recapitulate the motivations and
physical considerations leading to this study. The governing equations
for combustion are revisited and coupled with an appropriate model
for radiation phenomena, the free boundary problem to be studied is
derived.

Chapter 2 has been published in [53] and is joint work with J.B.
van den Berg and J. Hulshof. It deals with the existence of stationary
solutions.

The content of Chapter 3, are rigorous instability results. It is joint
work with Luca Lorenzi and published in [27].

The results of Chapter 4 were obtained in collaboration with Pascal
Noble and it appeared in [28]. An integro-differential equation describ-
ing the evolution of the flame ball radius is derived and analysed.

Finally, Chapter 5 concerns stability results for the flame ball prob-
lem, and is joint work with J.B. van den Berg and J. Hulshof.

ix





Acknowledgements

This thesis would not exist without the contribution and support of
many people and it is time for me to thank them.

I would first like to thank my advisors, Joost and Claude-Michel for
giving me the opportunity to write this thesis, to work on a challeng-
ing subject, but also to create new contacts and to travel. Thank you
for sharing with enthusiasm your knowledge. But I cannot forget to
mention my last supervisor Jan Bouwe who followed carefully all the
details of my thesis. When I had questions, you were always available
to answer them, giving good advice. Thank you for this.

This thesis is a joint doctoral thesis between the Vrije Universiteit
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évidemment, je ne peux oublier Béatrice toujours aussi heureuse de
vivre et avec qui j’espère refouler bientôt les tatamis. Je ne serais com-
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CHAPTER 1

Introduction

Humans have dealt with combustion since prehistoric times, with-
out understanding its exact mechanism. Scientific efforts to understand
combustion processes started with the industrial development occur-
ring in Europe during the XIX-th century. Indeed, the first experimen-
tal studies of flame propagation in a gaseous mixture were performed
around 1880 by Vieille, Mallard, Le Châtelier and Berthelot amongst
other people (see [20]). Their motivation was to understand the causes
of firedamp explosions in coal mines. Their main interests concerned
the velocity of explosion-waves for different gaseous mixtures. It was
noticed that the velocity depends on the (maximum) temperature of the
flame. In order to relate the temperature and the velocity of explosion-
waves, they assumed these waves were propagated as sound waves.
In that case, knowing the specific heats, it was possible to relate the
velocity and the temperature via an algebraic equation. Moreover,
these studies revealed that after an explosion, there exists a deflagra-
tion wave corresponding to slower velocities. The first known model to
describe the co-existence of such phenomena was derived by Chapman
and Jouguet at the beginning of the XX-th century, assuming the flame
could be considered as a shock wave. This analogy leads to Rankine-
Hugoniot relations from which one can explain the observed phenom-
ena described above.

Half a century later, man’s venture into space naturally led to an
active scientific interest in physical and other processes in microgravity
environments, starting with fundamental physical and biology experi-
ments. In particular, an unexplained spacecraft fire led to experiments
with flames. In this thesis we are interested in describing flames in a
microgravity environment.
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1. INTRODUCTION

fuel mass
fraction y

temperature θ

R radius r

Reaction zone

Interior filled with combustion

products Fuel and oxygen diffuse inward

Heat and products diffuse outward

Figure 1.1: Profile of the temperature and the fuel mass fraction variables
in the adiabatic case. The radius of the flame ball is denoted by R, corre-
sponding to the flame front.

1.1. Introduction of the physical problem
Flame balls are tiny, stable, stationary, spherically symmetric flames

that occur in combustible gas mixtures (such as lean hydrogen-air mix-
tures), having low Lewis numbers. They are visible only in a micro-
gravity environment. The Lewis number is a measure of the rate of dif-
fusion of fuel into the flame ball relative to the rate of diffusion of heat
away from the flame ball. Hydrogen and methane are the only fuels
that provide low enough Lewis numbers to produce stable flame balls,
even for very weak, barely flammable mixtures. Figure 1.1 provides a
sketch of a flame ball and as one can notice, all the combustion takes
place in a thin reaction zone. Because the mixture is lean and has a low
Lewis number, the flame does not spread across the mixture. It forms
a spherical shell filled with combustion products. Fuel and oxygen dif-
fuse inward, while heat and combustion products diffuse outward, and
it can only be observed in a microgravity environment, in the absence
of buoyant flow that would overwhelm diffusion.

Spherical flame balls are mainly characterised by their radius R(t),
which may vary in time. Physicists and mathematicians are interested
in describing the behavior of two other quantities, namely the temper-
ature θ and the fuel mass fraction y. As shown in Figure 1.1, these two
quantities are supposed to be constant inside the flame ball, in partic-
ular the fuel mass fraction is supposed to vanish, meaning that all the

2



1.1 INTRODUCTION OF THE PHYSICAL PROBLEM

fuel has been burnt. Outside the flame ball, in the fresh region, the
temperature is decreasing to reach the ambient (or fresh) temperature,
while the fuel mass fraction converges to yf , the initial mass fraction,
far away from the flame.

This specific shape of solutions corresponds to the solutions of the
first model describing flame balls. This model was derived by Zel-
dovich [56] in 1944. It is quite remarkable that, before scientists knew
about the existence of physical flame balls, Zeldovich looked for this
special shape of solutions. He showed that the steady heat and mass
conservation equations admit a solution corresponding to a stationary
spherical flame, just as the same governing equations in a planar geom-
etry admit a steadily propagating flame as a solution for every mixture.
The detailed description of the model leading to the explicit expressions
of the solutions is discussed in Section 1.3. Zeldovich then studied the
stability properties of such solutions. He proved that such flames were
unstable. Therefore, he predicted that flame balls would probably not
be observable, just as planar flames are frequently subject to instabili-
ties which prevent them from remaining planar.

This was until 1984, when Ronney from NASA (see [46]) discov-
ered, during drop tower experiments, the existence of flame balls. From
this observation, a physical stabilising effect had to be found. Zel-
dovich [56] had noted the possibility of heat losses stabilising flame
balls. The effects of volumetric radiative losses (e.g., due to gas radi-
ation) on flame balls were analysed by Buckmaster and collaborators
[16, 17]. Noting that the total heat release is proportional to the flame
ball surface area and that the total radiative heat loss is proportional
to the flame ball volume, one can give a heuristic argument for the
stabilisation of flame balls. If the flame radius increases, the surface
area to volume ratio decreases, thus the ratio of total heat release to
total radiative heat loss increases, thus the flame ball becomes weaker
and shrinks. Conversely, if the radius decreases, the flame ball grows
stronger and expands. Hence, flame balls with sufficient volumetric
losses can be stable to radial disturbances.

It has also been predicted [34] that stable flame balls can only exist
for mixtures having a Lewis number less than a critical value which is
less than unity, which explains why flame balls are not observed for
mixtures with Lewis number less than but close to unity (e.g. methane-
air) or larger than unity (e.g. propane-air), even for near-extinction mix-
tures at microgravity.
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1. INTRODUCTION

Flame balls have several unique and interesting properties which
indicate a number of practical applications. Since they are quasi one-
dimensional, steady and convection-free, they are the simplest possi-
ble type of premixed flame structure and therefore provide a useful
theoretical and numerical model of the interaction between chemical
and transport processes in flames, especially near flammability lim-
its. Flame balls may also be relevant to the turbulent combustion of
mixtures with low Lewis number because flame balls are more robust
than planar flames. Consequently, sufficiently strong turbulence may
extinguish planar flames, whereas flame balls could persist under the
same conditions. Hence, structures reminiscent of flame balls could
be the prevalent ones in near-extinction turbulent combustion of lean
hydrogen-air mixtures in engines. In other words, it may lead to pro-
duce lean-burning car engines, mixing in more air and less fuel, and
therefore is more environment friendly. But it can also help to under-
stand fire and explosion hazards in mine shafts, oil refineries and chem-
ical plants. Finally, it can improve spacecraft safety where gases from
waste systems or fuel cells could provide a fuel source for long-lived
flame balls.

1.2. Governing equations for combustion
To give some background informations, we present a derivation of

the mathematical models for flame balls studied in this thesis. More
details may be found in [7, 18, 55], to name just a few references of a
huge list. In the next section we will couple this mathematical model to
models with radiative transfer.

The model

As most chemical reactions, flames in gaseous mixtures may in-
volve a large number of reactants and a complicated reaction network.
In this study however, we will work with the assumption of simple
chemistry. That is, we consider a mixture of only two reactants A1 and
B, and the chemical reaction

A1 +B → A2 + heat .

If we assume furthermore the species B to be abundant compared to
A1, meaning its concentration does not vary much during the chemical
reaction, then we get the simplified chemical reaction

A1 → A2 + heat . (1.1)

4



1.2 GOVERNING EQUATIONS FOR COMBUSTION

A mathematical model for (1.1) has to take into account, for each
position �x and at each instant of time t, two densities ρk(�x, t), two ve-
locities �vk(�x, t), two pressures pk(�x, t) and temperature θ. We introduce
the total mass density ρ, the total velocity �v, and the total pressure p,
via the relations

ρ(�x, t) =
∑

k

ρk(�x, t),

ρ�v =
∑

k

ρk�vk,

p =
∑

k

pk.

Following Truesdell [52], ones writes the equations for ρ, �v and the total
energy E per volume as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ �∇ · (ρ�v) = 0,

∂(ρvi)
∂t

+ �∇ · (viρ�v) = ρFi +
3∑

j=1

∂σij

∂xj
, 1 ≤ i ≤ 3,

∂E

∂t
+ �∇ · (E�v) =

3∑
i=1

∂

∂xi

⎛⎝ 3∑
j=1

σijvj

⎞⎠− �∇ · �q + �F · ρ�v,

(1.2)

provided no momentum and energy are created by the chemical reac-
tions. Moreover, it is assumed that the work of the interaction forces is
negligible. Here (σij)1≤i,j≤3 is the tensor of the viscous forces, �q is the
energy flux, �F is the exterior force per unit of mass. Denoting by ρ̇k the
rate of variation of ρk due to the reaction, the system is completed by

∂ρk

∂t
+ �∇ · (ρk�v) = −�∇ · (ρk

�Vk) + ρ̇k, k = 1, 2,

in which �Vk = �vk − �v is the diffusion velocity of species Ak.
The total pressure p appears in the viscosity tensor

σij = −
(
p+

2
3
μ�∇ · �v

)
δij + μ

(
∂vi

∂xj
+
∂vj

∂xi

)
,

the gaseous mixture being Newtonian. Introducing the mass fraction
Yk of Ak by

ρk = ρYk,

5



1. INTRODUCTION

the perfect gas law rewrites as

p =
∑

k

pk = ρRθ
∑

k

Yk

mk
,

whereR is the universal gas constant andmk the molecular mass ofAk.
The internal energy

e =
∑

k

Ykek =
∑
Yk

(
hk − pk

ρk

)

=
∑

k

Ykh
0
k +

∑
k

Yk

∫ θ

θ0

Ck
pdθ −

p

ρ
,

involves the individual enthalpies hk,

hk = h0
k +

∫ θ

θ0

Ck
p (θ)dθ,

with Ck
p the specific heat at constant pressure.

We neglect the exterior forces (in particular gravity) and assume
μ = 0 in the viscosity tensor. The energy flux �q reads

�q = −λ�∇θ +
2∑

k=1

ρkhk
�Vk,

in other words, �q is the sum of a conductive flux given by a Fourier law
(λ is the thermal conductivity of the mixture) and diffusive fluxes with
the enthalpy of each species. Concerning the mass flux ρk

�Vk, it is given
by Fick’s law

ρk
�Vk = −ρD�∇Yk,

where D > 0 is a diffusion coefficient.
The remaining term to express is the term of reaction ρ̇k. Let us

denote by ω the global rate of the reaction (1.1). We suppose that the
chemical reaction follows an Arrhenius law of the first order, which
reads

ω = B(θ) exp
(
− E
Rθ

)
.

The quantity B(θ) is the pre-exponential term and the constant E is the
activation energy of the reaction.

Under the simple chemistry hypothesis and due to the simplifica-
tions explained above, writing Y = Y1, System (1.2) can be rewritten

6



1.2 GOVERNING EQUATIONS FOR COMBUSTION

as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ �∇ · (ρ�v) = 0,

∂(ρvi)
∂t

+ �∇ · (ρvi�v) = − ∂p

∂xi
, 1 ≤ i ≤ 3,

∂E

∂t
+ �∇ · (E�v + p�v) = �∇ · (λ�∇θ) + �∇ · (ρD(h1 − h2)�∇Y )

∂ρY

∂t
+ �∇ · (ρY �v) = −ρY ω + �∇ · (ρD�∇Y ).

Moreover, we assume A1 and A2 to have the same molecular mass M .
In addition, the specific heat at constant pressure Cp and the specific
heat at constant volume Cv, are supposed to be independent of θ, and
related to each other by Mayer’s relation

M(Cp − Cv) = R,

so that E can be written as

E =
1
2
ρv2 +QρY + ρ(h0

2 − Cpθ0) + ρCvθ.

This implies the following coupled system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ �∇ · (ρ�v) = 0,

∂(ρvi)
∂t

+ �∇ · (ρvi�v) = − ∂p

∂xi
, 1 ≤ i ≤ 3,

∂ρCvθ

∂t
+ �∇ · (ρCpθ�v) = QρY ω + �∇ · (λ�∇θ)

∂ρY

∂t
+ ρ�v · �∇Y = −ρY ω + �∇ · (ρD�∇Y ),

where he constant Q = h0
1 − h0

2 > 0 corresponds to the heat produced
by the reaction (1.1) per unit of mass of the reactant. Note that, in the
temperature equation, we can replace Cv by Cp via Mayer’s relation. In
that case, two extra terms appear in the right hand side of the temper-
ature equation, namely ∂p

∂t and �v · �∇p. Thus, we need to consider an
extra hypothesis, namely that the pressure is approximatly constant.
This simplification is classical in combustion and is refered to as the
combustion approximation or isobaric approximation. The two extra
terms will then vanish. Justifications can be found for example in [18].

A second hypothesis allows us to decouple the hydrodynamic
equations, namely the constant density approximation. This is often

7



1. INTRODUCTION

used to simplify physical models, even if it is harder to justify on the
theoretical level.

As we are looking for flame balls, we will assume our problem to
be radially symmetric. Introducing the radial coordinates, the system
to consider reads⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρc(∂tθ + v∂rθ) =
λ

r2
∂r(r2∂rθ) +QρY ω,

ρ(∂tY + v∂rY ) =
1
r2
ρD∂r(r2∂rY ) − ρY ω,

ω = B(θ) exp(− E
Rθ

),

where c = Cv. We take the asymptotic conditions

θ → θf , ρ→ ρf , Y → yf , for r → ∞.

Moreover, we will make the assumption that there is almost no convec-
tion, meaning that the terms v∂rθ and v∂tY are negligible compared to
the Laplacians and the time derivatives ∂tY and ∂tθ. Then we are led
to the system ⎧⎪⎪⎨⎪⎪⎩

ρc∂tθ = λΔrθ +QρY ω,

ρ∂tY = ρDΔrY − ρY ω,

ω = B(θ) exp(− E
Rθ

),

where Δr is the radial Laplacian in R
3, i.e. Δrg = g′′ + 2

rg
′, where g′ is

the derivative of g with respect to the radial variable r.

Nondimensionalisation

The next step is to nondimensionalise the equations derived in the
previous section. For this purpose, we define

r̄ =
r

R0
, t̄ =

λt

ρcR2
0

, θ̄ = θ
Cv

Q
, B̄ = B

R2
0c

λ
, ξ =

Ec
RQ

,

where R0 is a suitable reference flame radius. The variable ξ is the acti-
vation energy. We define ε = 1

ξ , and in view of the high activation limit
assumption, ε will be small. Dropping the bars, the resulting system
reads ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tθ = Δθ + Y ω,

∂tY =
1
Le

ΔY − Y ω,

ω = B exp(− 1
εθ

).

(1.3)

8



1.2 GOVERNING EQUATIONS FOR COMBUSTION

Here the parameter Le = λ
ρDc is the Lewis number, a classical parame-

ter in combustion theory which plays an important role in the stability
analysis. It measures the ratio between the thermal and molecular dif-
fusions.

The flame sheet model

In the previous subsection we derived the common formulation
of the (simplified) combustion model as a system of coupled reaction-
diffusion equations.

The major consequence of the assumption of high activation energy
is that it limits the region in which reaction is significant. In our context,
it implies that the reaction occurs in an exponentially (in terms of ε) thin
zone located at the flame ball radius R(t). It is therefore reasonable to
derive from System (1.3) a free boundary problem.

Physicist and mathematicians have considered both the reaction-
diffusion model and the free boundary problem, each approach having
its own advantages and disadvantages.

From a modelling point of view, one may start from the assumption
that the reaction may be modelled by a balance between (fuel) mass
flux going into the flame and heat flux coming out of the flame, where
these fluxes will certainly be temperature dependent. Thus we look for
a free boundary formulation in which at the free boundary, Y = 0, the
temperature θ is continuous, and, in case of a flame ball,

1
Le

[Yr] = −[θr] = F (θ∗),

where θ∗ is the temperature of the flame front (i.e. the temperature at
r = R(t)). The function F (θ∗) is again a reaction rate and a formula
for F (θ∗) has to be derived by means of a formal asymptotic analysis
starting from the reaction-diffusion formulation and a high activation
energy assumption in which ε is sufficiently small. The analysis is non
trivial and, from a mathematical point of view, it is a combination of
formal asymptotics and modelling, see [18, 55] and also [22].

Following [14], we will simply impose a reaction rate F = F (θ∗),
which we allow to be of a general form, e.g.

F (θ∗) = B exp(− 1
εθ∗

).

In [18, 22, 55], the authors derive, formally, a free boundary problem
obtained from the reaction-diffusion system considering some specific
expressions of the reaction rate. In order to obtain such a derivation,

9



1. INTRODUCTION

several high order effects have been neglected such as, for example,
the curvature. A detailed analysis of those effects is performed in [23].
To summarise, the free boundary problem derived from the reaction-
diffusion system (1.3), reads

Yt =
1
Le

ΔY for r �= R(t), (1.4a)

θt = Δθ for r �= R(t). (1.4b)

The jump conditions at r = R(t) are

[θ] = Y = 0, −[θr] =
1
Le

[Yr] = F (θ∗). (1.4c)

The asymptotic boundary conditions are

Y → yf , θ → θf , as r → ∞. (1.4d)

1.3. Radiative transfer models
In Section 1.2, we introduced the flame ball model which is known

in the literature as the adiabatic model (System (1.4)). It was formulated
in 1944 by Zeldovich, who computed the explicit stationary solutions,
namely

Y (r) =

⎧⎨⎩
0 for r ≤ R,

yf

(
1 − R

r

)
for r > R,

(1.5)

and

θ(r) =

⎧⎪⎨⎪⎩
θf +

yf

Le
for r ≤ R,

θf +
yf

Le

(
1 − R

r

)
for r > R,

(1.6)

where yf (resp. θf ) denotes the mass fraction (resp. temperature) in the
fresh region far away. Linearising around these stationary solutions
leads to an unexpected stability analysis. Unexpected in the sense that
all solutions were proved to be unstable.

The discovery of existing physical flame balls by Ronney in 1984 re-
quired reconsideration of this model. It has been argued [44] that radia-
tive effects play, on a physical level, an important role for combustion
processes in a microgravity environment.

At first, ad hoc heat loss mechanisms were considered and added
to System (1.4). We mention the work of Joulin et al. [16, 17] and Dold
et al. [22] for example. In [16], the authors considered heat losses to
occur in the volume enclosed by the flame sheet only. In this particular

10



1.3 RADIATIVE TRANSFER MODELS

situation, bifurcation diagrams were obtained showing the existence of
two branches of stationary solutions. These two branches corresponds
to two flame balls, one with small radius and one with large radius.
The stability analysis performed lead to the following result: provided
the Lewis number is less than 1, the solutions related to the small radii
are unstable to one- and three-dimensional perturbations. On the other
hand, part of the branch corresponding to larger radii consists of solu-
tions stable under three-dimensional perturbations. In [17], the authors
extend this result by including the effects of heat loss in the far field
(fresh gas), and they conclude that far fields losses do not qualitatively
change the (stability) properties of the solutions. In [22], flame balls
are studied in a porous medium that serves to exchange heat with the
gas, and two heat loss models are considered. One of these treats the
heat loss as being constant in the burnt region and linear in the fresh
region. The other does not distinguish between burnt and unburnt gas
and is based on a (nonlinear) Stefan’s law. For both heat loss models,
the authors find, again, two branches of solutions of small and large
flame balls, respectively. For Lewis number greater than unity both so-
lutions are unstable, while at Lewis number less than unity, part of the
branch of large flame balls becomes stable, solutions with the nonlin-
ear radiative law being stable over a smaller range of parameters. The
stable parameter region increases when the heat capacity of the porous
medium is increased.

A different approach in the heat loss case was introduce by Rouzaud
and al. [5, 47]. From a reaction-diffusion heat loss model, the authors
derive an integro-differential equation describing the radius long time
behavior of flame balls. They are able to show, for an input energy
sufficiently large and the Lewis number less than 1, that a flame ball
stabilises to a constant radius.

The Eddington model for radiation

Despite these very interesting results, radiation cannot be reduced
only to heat loss mechanisms. Radiation involves both the emission
and absorption of photons. Emphasising this difference from the heat
loss models discussed so far, we speak of radiative transfer models.
To model radiative transfer, let us start with a microscopic description
given by the equation

1
c
∂tI + Ω · ∇I = σ(B(ν, θ) − I). (1.7)

11
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Here I = I(x, t,Ω, ν) is the total radiative intensity, x the position, t
the time, Ω the direction of emission, ν the frequency, c the speed of
light, σ the opacity of the medium and B(ν, θ) the Planck distribution:
B(ν, θ) = 2hν3

c2
(exp(hν

kθ ) − 1)−1. Unfortunately, Equation (1.7) is too dif-
ficult to analyse even from a numerical point of view. Therefore it is
common to consider simplified models such as the (Milne-)Eddington
diffusion equations, valid in the limit of isotropic radiation, the Rosse-
land model, valid for high opacity media, or the optically thin model,
valid for nonabsorbent media ([40, 43]).

Our goal in this thesis is to study System (1.4) coupled with a sim-
plified radiative transfer equation, namely we deal with the Eddington
diffusion model ([24, 40, 41, 42, 43, 49]), also known as the P1 model. It
reads

−∇(∇ · q) + 3α2q = −α∇θ4, (1.8)

where q is the radiative flux and α the opacity of the medium. Cou-
pling the Eddington equation to Problem (1.4), we follow the approach
of Buckmaster and Joulin [14, 31, 32] in which the divergence of the ra-
diative flux appears with coupling constant β, the Boltzmann constant.
Thus β is a measure of the ratio between the radiative and the diffusive
flux. By setting u = −β∇ · q, it leads to the problem

yt =
1
Le

Δy for r �= R(t), (1.9a)

θt = Δθ + u for r �= R(t), (1.9b)

0 = Δu− 3α2u+ χΔθk, (1.9c)

where χ = αβ, and we will take k to be either k = 4 (black-body ra-
diation) or k = 1 (linearised radiation model). Equation (1.9c) is satis-
fied in the whole space (in the sense of distributions and classically for
r �= R(t)). The jump conditions at r = R(t) are

[θ] = y = 0, −[θr] =
1
Le

[yr] = F (θ(R(t))), (1.9d)

with u + χθk being smooth (i.e. C1). The asymptotic boundary condi-
tions are

y → yf , θ → θf , u→ 0 as r → ∞. (1.9e)

As mentioned before, the analysis of this problem is the purpose of this
thesis. We will first prove the existence of stationary solutions, the mul-
tiplicity of such solutions being illustrated via bifurcation diagrams. In

12



1.3 RADIATIVE TRANSFER MODELS

order to study stability, we linearise System (1.9) around a fixed station-
ary solution and then study its spectral properties. More details about
the strategy to tackle this problem can be found in Section 1.4.

Hierarchy of models for the radiative transfer equation

The P1 model is only the first in a hierarchy of models with in-
creasing physical accuracy. From the microscopic description (Equa-
tion (1.7)) it is possible, using the moment closure method for kinetic
equations, to derive a hierarchy of macroscopic models which are hy-
perbolic and locally dissipate the entropy [35]. Introducing the radia-
tive intensity, flux and pressure (ER, FR and PR) by

ER = 〈I〉 =
1
c

∫ ∞

0

∫
S2

φ(ν,Ω) dΩ dν,

FR = c 〈Ω I〉,
and

PR = 〈Ω ⊗ Ω I〉,
the first model of this hierarchy, the M1 model, is based on the closure
assumption

PR = DRER,

and can be written as:⎧⎪⎪⎨⎪⎪⎩
∂ER

∂t
+ ∇ · FR = σc(aT 4 − ER),

1
c

∂FR

∂t
+ c∇(DRER) = −σFR.

The closure assumption contains the Eddington tensor DR,

DR =
1 − χ

2
Id +

3χ− 1
2

n⊗ n, (1.10)

with n = f
‖f‖ , f = FR

cER
, and in which the factor χ is given by

χ =
3 + 4‖f‖2

5 + 2
√

4 − 3‖f‖2
·

Since energy does not travel faster than the speed of light, one always
has ‖f‖ ≤ 1. This model takes into account the anisotropy of the emis-
sion; it is a more realistic model than the Eddington model where the
emission is isotropic and time derivatives are neglected, see Dubroca
et al. [24] for a derivation of this model, numerical simulations and
discussions on the effects of the anisotropy.

13
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Note that setting χ = 1
3 and δ = 0, we recover the Eddington equa-

tion (1.8). An intermediate model between the Eddington andM1 mod-
els is to considerχ = 1

3 and δ �= 0 (i.e. the time derivatives are taken into
account), named the P1 isotropic model. Coupling first this radiation
model to System (1.4) and then the M1 model would be an interesting
extension of the work produced in this thesis.

1.4. Outline of the thesis
The thesis is devoted to the study of System (1.9). First, we are in-

terested in proving the existence of stationary solutions associated to
System (1.9). This is the subject of Chapter 2. We do not only prove
existence, but also exhibit the multiplicity of existing solutions via bi-
furcation diagrams. In order to get these diagrams, we will consider
mainly two parameters, β and yf . Limit cases of the radiative parame-
ters are also discussed. We consider four different cases, the limit case
α→ ∞ with β fixed, the transparent limit α→ 0 with β fixed, as well as
large Boltzmann numbers β → ∞ withα fixed, and finally the transpar-
ent limit combined with large Boltzmann numbers, α → 0 and αβ = χ
fixed.

Since we have multiple solutions, a natural next step is then to per-
form a stability analysis. For this purpose, one needs first to linearise
System (1.9) around a fixed stationary solution and then study the asso-
ciated eigenvalue problem. In order to get information about the point
spectrum, we construct an Evans function D(λ). The zeros of this func-
tion are the eigenvalues of the problem we consider. For radial pertur-
bations we are able to show that, under a specific range of parameters
and provided the Lewis number is less than 1, part of a branch of the
bifurcation diagrams obtained in Chapter 2 corresponds to stable solu-
tions. All this is done in Chapter 5.

Chapter 3 is devoted to proving rigorously via analytic semigroups
techniques, instability results. After linearising System (1.9) we are able
to write such a system in the canonical form{

Dtu(t, ·) = Au(t, ·) + f(t, ·), t > 0,

B(u(t, ·)) = (0, g1(t, ·), g2(t, ·)), t > 0.

where gj (j = 1, 2) are given (continuous) functions. One can prove that
the realisation A of the operator A defined in a proper Hölder space
generates an analytic semigroup. This allows us to prove instability
results for part of a branch of the bifurcations diagrams obtained pre-
viously. This chapter was written in collaboration with Luca Lorenzi.

14
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Finally Chapter 4 deals with a different approach of the problem.
This chapter was written in collaboration with Pascal Noble. We derive
from System (1.9) an integro-differential equation describing the long
time evolution of the radius R(t) of the flame ball, namely the equation
we considered is of the form

μR∂1/2R = R logR+ Eq − λR, t ∈ R
+, R(0) = 0,

where μ > 0, λ > 0 and

∂1/2R =
1√
π

∫ t

0

Ṙ(s)√
t− s

ds =
1√
π

d

dt

∫ t

0

R(s)√
t− s

ds.

This flame is initiated by a point source energy input Eq(t), to which
heat losses of radiative nature are applied, represented by the param-
eter λ. The intensity of this energy input is measured by the positive
constant E , and its time evolution is described by the function q. We
prove that when the energy input is sufficiently high, the flame ball
stabilises to a constant radius for large time.
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CHAPTER 2

Flame balls for a free boundary
combustion model with radiative

transfer

2.1. Introduction
Combustion processes in gaseous mixtures exhibit a variety of phe-

nomena, such as propagating flame fronts, and, in zero- or micrograv-
ity situations, flame balls. The latter are perhaps harder to observe, but
the advantage is that they are stationary. From a mathematical point
of view they are easier to understand, namely as equilibria rather than
traveling wave solutions of the mathematical models used to describe
the combustion processes. From a physical point of view, because of
the force and speed of the reaction, it is hard to do controlled exper-
iments on flame fronts, whereas the combustion is much less violent
in flame balls, which can be observed for prolonged periods of time at
the costs of having to transfer the experiment to a microgravity envi-
ronment. In any case, the high costs and experimental difficulties in
combustion research highlight the need for a thorough understanding
of the mathematical models.

Since the work of Zeldovich [56], flame balls are known to exist for
models of combustion with simple chemistry, such as a one step reac-
tion in which a gaseous reactant is converted into a gaseous product.
Figure 2.1 is a sketch of a flame ball in the non-radiative case. Note
that, in this particular situation, the burnt temperature θb is constant
inside the ball. In this model, commonly referred to as the adiabatic
case, flame balls are linearly unstable, in apparent agreement with the
absence of experimentally observed flame balls. That was, until 1984,
when Ronney discovered, by surprise, the existence, during drop tower

17



2. FLAME BALLS WITH RADIATIVE TRANSFER

fuel mass
fraction y

temperature θ

R radius r

Reaction zone

Interior filled with combustion

products Fuel and oxygen diffuse inward

Heat and products diffuse outward

Figure 2.1: Profile of the temperature and the mass fraction variables in the
adiabatic case. The radius of the flame ball is denoted byR, corresponding
to the flame front.

experiments, of physical flame balls, later confirmed by experiments in
the Space Shuttle. Since then, several effects have been taken into ac-
count in combustion models to explain stabilization of flame balls, in
particular (radiative) heat losses from the combustion products inside
the flame ball. We refer to [46] and references therein, see also the SOF-
BALL (Structure of Flame Balls at Low Lewis number) link on Paul
Ronney’s NASA home page [1].

In fact, the radiative transfer of heat in combustion processes tak-
ing place in inert, not fully transparent media (e.g. dust, porous me-
dia, . . . ), involves both emission and absorption of radiation, and may
significantly influence the flame temperature (see Figure 2.2), its prop-
agation speed, and the flammability of the medium itself. This occurs
for instance in forest fires and fires in confined spaces, such as tunnels,
and the importance of radiative transfer has been noted and stressed
in [14, 31, 32]. In this paper, we concentrate on the effects of radiative
transfer on flame balls.

There are two common formulations to model combustion pro-
cesses: the reaction -diffusion and the free boundary formulation. Al-
though both formulations are widely used in the combustion literature,
the relation between the two approaches has so far largely been based
on numerical simulation and heuristic arguments.
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radius rRZeld Rrad

adiabatic profile

radiative profile

Figure 2.2: Difference of temperature profiles in the adiabatic and in the
radiative case.

The basic thermo-diffusive model of combustion with simple chem-
istry is a Reaction Diffusion System (RDS) that is written as:

Yt =
1
Le

ΔY − Y F (θ), (2.1a)

θt = Δθ + Y F (θ), (2.1b)

where Y denotes the mass fraction of the reactant, θ the temperature,
and Le the Lewis number (ratio between conductivity and diffusivity).
The function F is an Arrhenius type reaction rate involving a small pa-
rameter ε which is the inverse of the activation energy. The Arrhenius
law is often modified by the choice of an ignition temperature, below
which the reaction rate is taken to be zero. In this framework, (linearly)
unstable flame balls are known to exist. For Lewis number close to
unity, the growth of the radius has been described using an integro-
differential equation which has been derived formally by Joulin [16]
and rigorously validated by Roquejoffre et al. [33].

When one assumes that the flame occurs in a very thin region, it is
quite natural to define a Free Boundary Problem (FBP). Its derivation
from the RDS formulation has been justified formally in [22] under the
assumption of high activation energy. Its validity is also confirmed by
numerical simulations on the RDS, and its great advantage is that sev-
eral analytical aspects are simpler to treat. The FBP read as follows:

19



2. FLAME BALLS WITH RADIATIVE TRANSFER

Yt =
1
Le

ΔY for x �∈ R(t), (2.2a)

θt = Δθ for x �∈ R(t), (2.2b)

with

[θ] = Y = 0, −[θn] =
1
Le

[Yn] = F (θ), for x ∈ R(t), (2.2c)

whereR(t) represent the location of the free boundary (the flame front),
and brackets denote jumps across the free boundary (in the direction of
the normal n). The mass flux into the flame is balanced by (reaction)
heat flux coming out of the flame, with a (predominantly) temperature
dependent reaction rate. Note that at the flame front we impose the
condition that Y = 0. Usually, one imposes only that the jump [Y ] =
0, silently assuming that Y ≡ 0 on the burnt side of the flame front.
Without such an assumption, the FBP formulation with [Y ] = 0 instead
of Y = 0 is underdetermined. As a free boundary problem this model
should not be confused with the well-studied NEF model for nearly
equidiffusional flames, which was derived by Sivashinsky by means
of an asymptotic analysis, in which he coupled the deviation of the
Lewis number from unity to ε, the inverse of the activation energy, see
[12, 50], and derived what is now known as the Kuramoto-Sivashinsky
equation.

The remaining step is to incorporate a model for the radiative ef-
fects. The first models developed by Joulin et al. [16, 17] and Dold et
al. [22] for example, are based on rather ad hoc heat loss assumptions
(whereas in the present paper we will consider a more thorough radia-
tive transfer model). We would like to recall at this point some results
obtained in this context. In [16], heat losses are assumed to occur in
the volume enclosed by the flame sheet only. In this framework two
stationary solution branches exist, corresponding to small and large
radius. Concerning the ensuing stability issues, the authors showed
that, provided the Lewis number is less than unity, all small flames
are unstable to one-dimensional (radial) perturbations. Large flames
are unstable to three-dimensional perturbations, but only if they have
a radius greater than some critical value. Thus there is a band of large
flames, lying between the quenching point and unstable flames, that
are stable. In [17], the authors extend this result by including the effects
of heat loss in the far field (unburned gas), and they conclude that far
fields losses do not qualitatively change the (stability) properties of the
solutions. Finally, in [22], flame balls are studied in a porous medium
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that serves to exchange heat with the gas, and two heat loss models
are considered. One of these treats the heat loss as being constant in
the burnt region and linear in the unburned region. The other does not
distinguish between burnt and unburnt gas and is based on a (nonlin-
ear) Stefan’s law. For both heat loss models, the authors find, again,
two branches of solutions of small and large flame balls, respectively.
For Lewis number greater than unity the solutions are unstable, while
at Lewis number less than unity part of the branch of large flame balls
becomes stable, solutions with the nonlinear radiative law being stable
over a smaller range of parameters. The stable parameter region in-
creases when the heat capacity of the porous medium is increased. It is
clear from the considerations in [16, 17, 22] that the stability properties
depend strongly on the Lewis number. More details and a comparison
with our model can be found in Section 2.4.

In this paper, we would like to go one step further in the description
of the radiative effects and introduce a physically more realistic radia-
tive transfer model. Let us start with a microscopic description of the
radiative transfer, which is given by the equation

1
c
∂tI + Ω · ∇I = σ(B(ν, θ) − I),

where I = I(x, t,Ω, ν) is a total radiative intensity, x the position, t
the time, Ω the direction of emission vector, ν the frequency, σ the
opacity of the medium and B(ν, θ) the Planck distribution: B(ν, θ) =
2hν3

c2
(exp(hν

kθ ) − 1)−1. Since numerical simulations of this model are
very cumbersome, radiation is most commonly described by simpli-
fied models, such as the (Milne-)Eddington diffusion equations, valid
in the limit of isotropic radiation, the Rosseland model, valid for high
opacity media, or the optically thin model, valid for nonabsorbent me-
dia ([40, 43]).

In this paper we adopt the Eddington diffusion model ([24, 40, 41,
42, 43, 49]), namely,

−∇(∇ · q) + 3α2q = −α∇θ4, (2.3)

where q is the radiative flux. Thus, the radiative effects are a direct con-
sequence of temperature variations. Following Joulin and Buckmaster
[14, 31, 32], these radiative effects couple back to the temperature equa-
tion, in which the divergence of the radiative flux appears with cou-
pling constant β, the Boltzmann constant. Thus β is a measure of the
ratio between the radiative and the diffusive flux. For flame fronts, this
extended model was proposed and studied in [14, 31, 32], and in [6, 10].
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In this paper we study equilibria of the resulting FBP in the radially
symmetric case, i.e. steady spherically symmetric flame balls. If we set
r = |x|, we may thus write the Laplacian operator as Δ = ∂rr + 2

r∂r,
so that the problem can be viewed as a system of ordinary differential
equations. Hence, throughout the paper all functions depend on the
radial coordinate r only, and they all have zero derivative at r = 0.
To make the mathematical analysis easier, we do not use the vector
equation (2.3) but work with the scalar equation

−Δu+ 3α2u− αΔθ4 = 0,

where −u = ∇ · q, the divergence of the radiation flux as it appears
in the modified temperature equation. This equation is nonlinear and
therefore does not allow us to compute explicit solutions for the full
problem defined below. On the other hand, if one would consider θ
instead of θ4, i.e. the “linear” problem, one can write down explicitly
the solution, and in Section 2.4 we compare the solutions of the linear
and nonlinear equations. The free boundary problem reads

1
Le

ΔY = 0 for r �= R, (2.4a)

−Δθ − βu = 0 for r �= R, (2.4b)

−Δu+ 3α2u− αΔθ4 = 0. (2.4c)

Equation (2.4c) is satisfied in the whole space in the sense of the dis-
tributions (and classically for r �= R). The jump conditions at r = R
are

[θ] = Y = 0, −[θr] =
1
Le

[Yr] = F (θ(R)), (2.4d)

with u being continuous, while the size of the jump in ur follows auto-
matically from (2.4c) and (2.4d). The asymptotic boundary conditions
are

Y → Yf , θ → θf , u→ 0 as r → ∞. (2.4e)

The parameters θf and Yf denote the temperature and the mass frac-
tion far away in the fresh region. We recall that R is the free boundary
variable corresponding to the flame front and that F (θ(R)) is the reac-
tion rate evaluated at r = R. Note that we will not specify the reaction
rate and work only with general reaction rates F . The reason is that, to
prove existence properties, we only need to know that F is a positive
function of the temperature at the flame front. The main result of this
paper is the following:
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THEOREM 2.1 (Existence). Let α ≥ 0, β ≥ 0, let F be continuous
and positive and let θf > 0, Yf > 0. Then there exists a radial solution
(θ(r), Y (r), u(r), R) to (2.4). Moreover, for generic choices of the parameters
the number of solutions is odd.

Let us briefly outline the method of the proof. We first observe that
the FBP formulation, with the Arrhenius law only acting on the flame
front, allows to decouple equation (2.4a) for Y from the two others,
(2.4b) and (2.4c). The only bounded function Y which solves (2.4a) and
satisfies Y = 0 at r = R and Y → Yf as r → ∞, is given by

Y (r) =
{

0 for r ≤ R,
Yf

(
1 − R

r

)
for r > R.

(2.5)

Here R is still unknown. We now drop one of the free boundary con-
dition, namely the last equality in (2.4d), and solve the problem with
R as a parameter. In other words, we drop the reaction rate and fix
R. The next theorem provides us with a unique solution of the result-
ing reduced problem, parameterized by the now prescribed flame ball
radius R.

THEOREM 2.2 (Uniqueness and existence for R fixed). Fix R > 0
and let α ≥ 0, β ≥ 0, θf > 0, Yf > 0. Then there exists a unique solution
(θR(r), YR(r), uR(r)) to (2.4), with θ > 0.

To prove this theorem, we will first decompose the temperature as
θ = θh + w where θh is an adiabatic profile with an arbitrary fixed
radius R. Because we seek radial solutions, we can explicitly compute
θh, namely

θh = θf +
Yf

Le
min

(
1,
R

r

)
. (2.6)

Then, we show that w satisfies a nonlinear elliptic equation defined on
all R. Thus θh is the temperature component of the solution of the re-
duced problem with given R, in the case that β = 0. The subscript h
stands for “homogeneous”, because θh is the solution of the homoge-
neous part of (2.4b) which satisfies the jump condition. The other part
w in the splitting will then be the solution of the full inhomogeneous
equation (2.4b) which is smooth (i.e. [w] = [wr] = 0) across r = R.
Hence w satisfies the equation −Δw = u globally, just as u solves (2.4c)
globally, in the sense of the distributions. To solve this equation, we
consider the problem on a bounded domain, more precisely on a ball
Bρ = B(0, ρ) ⊂ R

3, with ρ > R large. Using sub- and supersolution
arguments, one obtains a solution on the bounded domain. Then we
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R

Yf

Le
1
R

F (θf )

F (θf + Yf

Le )

Possible shapes
for F (θR(R))

Rmin Rmax

Figure 2.3: Sketch of the graphs occurring in Equation (2.7). The dashed
lines are the bounds on F (θR(R)); they are depicted here for the case of
increasing F .

let ρ → ∞, and, by a diagonal process, this leads to a solution on R
3.

Uniqueness is proved using classical arguments (see Section 2.2 for de-
tails).

Remark 2.1.3. We only consider positive θ, the solution θR(r) depends
continuously on R, and θR is bounded between θf and θf + Yf

Le .

Going back to the proof of Theorem 2.1, we need to find a value of
R for which θR(r) satisfies the final free boundary condition in (2.4d).
As we know Y explicitly, we are left with one “algebraic” equation

Yf

Le
1
R

= F (θR(R)). (2.7)

Thus only at this final stage the reaction rate F plays a role in the anal-
ysis. From Figure 2.3 we can easily see that Equation (2.7) has at least
one solution (see Section 2.2 for more details). This ends the proof of
Theorem 2.1.

Remark 2.1.4. When solving Equation (2.7), one can easily see from Re-
mark 2.1.3 and Figure 2.3 that the radiative radius Rrad is bounded
between two values. If the reaction rate F is an increasing function
of the temperature, as it is usually the case, the lower bound on the
flame radius is given by the adiabatic or Zeldovich radius RZeld =
Yf

Le
1

F (θf +Yf/Le) (i.e. the radius in absence of radiative effects, see Sec-

tion 2.2 for more details), whereas the upper bound is Yf

Le
1

F (θf ) .
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Figure 2.4: Bifurcation curves exhibiting turning points: (a) with β used
as bifurcation parameter; (b) with Yf as the parameter.

In Section 2.3 we examine limit cases of Problem (2.4). The cases
α → ∞ with β fixed, and α → 0 (or transparent limit) lead to the adia-
batic case and are the easiest to justify. A more subtle analysis is needed
to treat the cases β → ∞ (large Boltzmann limit) and α → 0 suppos-
ing αβ = χ fixed (transparent limit combined with large Boltzmann
numbers). In the large Boltzmann limit, we prove that the temperature
profile converge to a constant profile, namely to the fresh temperature
θf . On the other hand, in the transparent limit combined with large
Boltzmann numbers, the temperature profile does not converge to a
constant profile, but to a radiative one (cf. Figure 2.2).

Finally, in Section 2.4 we compare the analytic expressions in the
asymptotic limits to numerical computations for the full problem. We
also make a comparison with analytic calculations for a “linearized”
system, see Section 2.4 for details. As an example, in Figure 2.4a we
depict a typical bifurcation diagram, where β is used as the bifurca-
tion parameter. For a range of parameter values there are three distinct
flame ball solutions (for the adiabatic (non-radiative) problem there is
always only one solution). Examining the corresponding solution pro-
files, the upper branch turns out to be physically irrelevant, since the
temperature profile is almost identically equal to θf . In Figure 2.4b the
fuel mass fraction Yf in the fresh region is used as a bifurcation pa-
rameter. Again, multiple solutions are obtained, on two disconnected
branches.
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2.2. Existence of solutions
In this section we sketch the arguments that lead to Theorem 2.2

and subsequently to Theorem 2.1. All remaining details of the proofs
are provided in Appendix 2.6. We recall that in order to fix R, we con-
sider Problem (2.4) and we drop the equation involving the reaction
rate F in (2.4d). The expression for Y is of course given by (2.5). The-
orem 2.1 follows immediately from Theorem 2.2 when we combine it
with the fact that the algebraic equation (2.7) has a solution.

To begin with, we reduce equations (2.4b) and (2.4c) to one elliptic
equation. To do so, we first need to introduce a splitting of the solution
θ we are looking for, writing

θ = θR
h + w. (2.8)

Here θR
h is the solution of

−ΔθR
h = 0 for r �= R, (2.9a)

with jumps conditions

[θR
h ] = 0, −[

∂θR
h

∂r
] =

1
Le

[
∂Y

∂r
], at r = R, (2.9b)

and the asymptotic boundary condition

θR
h → θf as r → ∞. (2.9c)

We note that (2.9) can be solved explicitly, where θR
h is given by (2.6).

The advantage of the splitting (2.8) is that w must have zero jumps:

[w] = [wr] = 0,

and w → 0 as r → ∞. Hence it must be a solution of

−Δw = βu (2.10)

on the whole space in the sense of the distributions.
Next we observe that (2.4c) implies that

u = α(3α2 − Δ)−1Δθ4,

which expresses u in terms of θ4 by means of the bounded operator

α(3α2 − Δ)−1Δ = αΔ(3α2 − Δ)−1,

which operates from L∞ → L∞. Note that the Laplacian and its re-
solvent commute because 3α2 > 0. Combining with (2.10), it follows
that

Δ
(
w + αβ(3α2 − Δ)−1θ4

)
= 0,
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2.2 EXISTENCE OF SOLUTIONS

whence, since both w and θ4 are bounded, w + αβ(3α2 − Δ)−1θ4 must
be a constant:

w + αβ(3α2 − Δ)−1θ4 = C.

Subtracting θ4
f from θ4 only changes the constant. Moreover, θ4 − θ4

f

has zero limit at infinity (r → ∞), a property which is preserved by the
resolvent (3α2 − Δ)−1, and also w → 0 as r → ∞. Thus w + αβ(3α2 −
Δ)−1(θ4 − θ4

f ) = 0. Applying (3α2 − Δ)−1 to both sides, we arrive at

(3α2 − Δ)w + αβ
(
(w + θR

h )4 − θ4
f

)
= 0, (2.11a)

which again should hold globally, with asymptotic boundary condition

w → 0 as r → ∞. (2.11b)

We note that w(r) is a solution of a second order ordinary differen-
tial equation (globally). Thus it has zero jumps [w] and [wr] at r = R.
We have split the problem for θ, which was inhomogeneous because of
the jump in r = R and the nonzero limit as r → ∞ on the one hand, and
the presence of βu in (2.4b) on the other, into two parts. The first part,
θR
h , takes care of the jumps and limits, while the second,w, corresponds

to the inhomogeneous term βu in (2.4b).
The crucial idea in the existence proof is the above redution of the

system of two equations (2.4b) and (2.4c) to one elliptic equation (2.11a).
Therefore, existence of a solution pair (θ, u) for (2.4b) and (2.4c) is
equivalent to the existence of a solution w for Problem (2.11). In or-
der to solve this problem, we first consider (2.11a) on a ball Bρ ⊂ R

3,
with the boundary condition (2.11b) being replaced by w = 0 on ∂Bρ.
Then, using classical momotone iteration methods, we can prove exis-
tence on this finite domain. Finally, we take the limit ρ→ ∞ and arrive
at

LEMMA 2.5. For R fixed, there exists a unique solution wR of Problem
(2.11) satisfying the bound

−Yf

Le
min

(
1,
R

|x|
)

≤ w ≤ 0. (2.12)

The solution wR is C2(R), radially symmetric, monotonically increasing in
|x|, and depends continuously on R.

Thus, this proves Theorem 2.2 and shows that, omitting the reac-
tion rate from the problem formulation, there exists for every R > 0
a unique solution triple (θ, Y, u) with θ > 0. It remains, in order to
prove Theorem 2.1, to solve (2.7) with θR(R) given by Theorem 2.2.
Lemma 2.5 shows that θR(R) depends continuously on R. Moreover,
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2. FLAME BALLS WITH RADIATIVE TRANSFER

in view of estimate (2.12), θf ≤ θR(R) ≤ θf + Yf

Le . Hence, Theorem 2.1
is an easy consequence of the intermediate value theorem applied to
Equation (2.7). All details of the proof, as well as additional estimates,
can be found in the appendix.

2.3. Limit cases of the radiative parameters
In this section we examine some singular limit cases. We recall that

we introduced the splitting θ = θR
h + w. Throughout this section, we

consider a couple (θpar, Rpar) depending on some parameters, and we
seek a limit. Let us start by the following:

Remark 2.3.6. As Rpar lies in a compact set, see Remark 2.6.19, one can
extract a subsequence converging to a limit, called R. Along the subse-
quence, θRpar

h converges to θR
h (uniformly).

The limit case α → ∞ with β fixed

The limit α → ∞, β fixed is usually called the optically thick limit
for an opaque medium. In this limit the effect of the radiation is lost.
Indeed, we have

LEMMA 2.7. The solution w of Problem (2.11) converges to zero uni-
formly as α/β → ∞.

As a consequence of this lemma, and in view of (2.19), the flame ball
solution has a temperature profile that converges to the Zeldovich so-
lution, and also the flame ball radius converges to the Zeldovich radius
as α/β → ∞.

PROOF. We simply modify the subsolution in the proof of Lemma
2.14 in such a way that it pushes the solution obtained in Lemma 2.5
and thereby w itself, to zero. A negative constant w is a subsolution
provided

3α2w + βα
(
(θR

h + w)4 − θ4
f

) ≤ 0.
this is certainly the case if(

θf +
Yf

Le
+ w

)4

− θ4
f = −3α

β
w,

which has a unique solution w ∈ (−Yf

Le , 0), which is easily seen to con-
verge to zero as α/β → ∞. This completes the proof. �
Remark 2.3.8. Note that the limit is the same as the one for α fixed and
β → 0, i.e. radiative flux negligible with respect to convective flux.
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2.3 LIMIT CASES OF THE RADIATIVE PARAMETERS

The transparent limit α → 0 with β fixed

Surprisingly, as opposed to the traveling wave case, see [10], this
limit also reproduces the adiabatic (Zeldovich) flames. As in the previ-
ous section we have

LEMMA 2.9. The solution w of Problem (2.11) converges to zero uni-
formly if α→ 0 with β fixed.

PROOF. We have, in view of (2.12),

−Δw = −3α2w − αβ
(
(θR

h + w)4 − θ4
f

) → 0

uniformly, as α→ 0 and αβ → 0. Also, again because of (2.12), w is uni-
formly small for large r. By the maximum principle for the Laplacian
this implies that w → 0 uniformly as α→ 0 and αβ → 0. �

Large Boltzmann numbers β → ∞ with α fixed

With large Boltzmann numbers the solution loses its physical mean-
ing because the temperature profile becomes flat. We have

LEMMA 2.10. For α fixed and β → ∞ the temperature profile θ converges
to θf uniformly.

PROOF. Let us set wn = wβn , with βn → ∞ as n → ∞. We are
looking for a limit of the problem

−Δwn = −3α2wn − αβ((θRn
h + wn)4 − θ4

f ). (2.13)

with asymptotic boundary condition wn → 0 as |x| → ∞.
Writing the weak formulation of (2.13) and dividing by βn we find

that, for any test function ϕ ∈ C∞
c ([0,∞)), in view of (2.12),∫ (

(θRn
h + wn)4 − θ4

f

)
ϕ = − 1

βn

∫
3α2wnϕ+

1
αβn

∫
wnΔϕ→ 0,

as n→ ∞. By the bound (2.12), the functions

(θRn
h +wn)4 − θ4

f (2.14)

are nonnegative. Thus we may conclude that they converge to the zero
function in L1

loc strongly. Next, we rewrite (2.14) as

G(ZRn + wn),

where G(ξ) = (θf + ξ)4 − θ4
f and ZR(r) = Yf

Le min
(
1, R

r

)
.

Again in view of (2.12), the variable ξ = ZR + w ranges between 0
and ZR. In this range G′ is positive and bounded away from zero and
infinity. Consequently, the functions ZRn +wn also converge strongly to
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2. FLAME BALLS WITH RADIATIVE TRANSFER

zero in L1
loc. But ZRn converges if we restrict to a further subsequence,

along which Rn converges, not only in L1
loc but also in L∞.

We claim that for any sequence Rn bounded away from zero and
infinity, and for any sequence βn → ∞, the corresponding solutions
wn of (2.11) have the property that θn = θRn

h + wn → θf , uniformly on
[0,∞). To prove this, we apply the following simple lemma.

LEMMA 2.11. Let fn and gn be functions on R+ such that
• fn + gn ≥ 0,
• fn + gn → 0 in L1(0, ρ) for all ρ > 0,
• f ′n ≥ −C in a weak sense,
• g′n ≥ 0,

then fn + gn → 0 in L∞(0, ρ) for all ρ > 0.

PROOF. Immediate from the estimate

fn(r) + gn(r) ≥ fn(r0) + gn(r0) − C(r − r0),

if r > r0 > 0. �
This lemma applies to fn = ZRn and gn = wn, which is monotone by
Lemma 2.5. As before, we conclude that θn − θf → 0 in L∞(R). �

The transparent limit combined with large Boltzmann num-
bers: α → 0 with αβ = χ fixed

Finally, we consider the limit α → 0, αβ = χ > 0 fixed, which
was also treated in the traveling wave context, see [10, 6]. We show
that in this limit solutions of the radiative transfer problem converge to
solutions of a radiative heat loss problem, where θ solves

Δθ − χ(θ4 − θ4
f ) = 0 r �= R,

and R is the flame radius of the limit solution. This will follow along
the same lines in the previous sections from

LEMMA 2.12. In the limit α→ 0 with αβ = χ > 0 fixed, the solution w
of (2.11) converges along subsequences to a solution of

−Δw + χ((θR
h + w)4 − θ4

f ) = 0, (2.15)

with w → 0 as r → ∞.

PROOF. In view of the a priori bounds onw and onR, and in view of
Remark 2.6.16 we know that w, w′ and w′′ are (uniformly) equicontinu-
ous on bounded balls. This suffices again to conclude that, as α → 0, a
subsequence converges in C2(Bρ), for any ρ > 0, to a solution of (2.15).
As before, a diagonal process finishes the proof. �
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Remark 2.3.13. In this limit w remains non-trivial in the sense that it
does not coincide with one of the bounds in (2.12). Thus, in the limit
we will have a bifurcation diagram given by

Yf

LeR
= F

(
θf +

Yf

Le
+ w(R)

)
,

and the right hand side truly depends on R.

2.4. Numerical calculations
In this section we examine the flame balls numerically. We will

compare the outcome of the computations with analytic formulas for
the “linearized” problem, which we present below.

Analytic solutions for the linear case

In this first part, we derive a bifurcation diagram equation for the
linear case. Namely, we still consider Problem (2.4), except that (2.4c) is
replaced by the linear equation

−Δu+ 3α2u− αΔθ = 0. (2.16)

We can compute explicit formulas for the temperature θ and the vari-
able u. To simplify the notation we introduce

μ = μαβ =
√

3α2 + αβ.

Then

θ(r) =

⎧⎪⎪⎨⎪⎪⎩
B1

r
sinh(μr) +B3 + θf for r ≤ R,

B2

r
exp(−μr) +

B3R

r
+ θf for r > R,

where the constants are given by

B1 =
αβYf

Leμ3
exp(−μR), B2 =

αβYf

Leμ3
sinh(μR), B3 =

3α2Yf

Leμ2
.

The expression for u is

u(r) =

⎧⎪⎪⎨⎪⎪⎩
−B1μ

2

βr
sinh(μr) for r ≤ R,

−B2μ
2

βr
exp(−μr) for r > R.
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2. FLAME BALLS WITH RADIATIVE TRANSFER

Finally, the equation that fixes the flame radius R, and that determines
the bifurcation diagrams, reads

F

(
αβYf

2μ3LeR
[
1 − 2μR − e−2μR

]
+
Yf

Le
+ θf

)
=

Yf

LeR
. (2.17)

Bifurcation diagrams

Let us turn to the numerical investigation of the problem. Since we
know from Theorem 2.1 that a solution is uniquely determined by its
flame radius R, we exhibit diagrams in which the flame ball is repre-
sented by R along the vertical axis, and the horizontal axis is reserved
for a control parameter, such as Yf or one of the radiative parameters α
or β.

We can only do numerical simulations on bounded domains, so we
choose a large ball Bρ on which we impose Dirichlet boundary condi-
tions, as used in the existence proof. From the proof of Lemma 2.5 we
know that the solution on the bounded ball Bρ approaches the solution
on R

3 as ρ → ∞, and in the numerical calculations we always make
sure that ρ� R. Since the flame balls are radially symmetric, the prob-
lem is thus reduced to a boundary value problem for an ODE, and we
use the continuation software [21] to compute the bifurcation diagrams.

We need an explicit expression for the reaction rate. Following the
literature, e.g. [55, 18], we choose a simple Arrhenius law

F (θ(R)) = A exp
(
− 1
εθ(R)

)
, (2.18)

where ε is a normalized inverse activation energy and A > 0 is the pre-
exponential factor. Next we must choose values for the parameters.
Unless mentioned otherwise, in all computations we take

θf = 1, Yf = 1, Le = 1, ε = 0.1, A = 40, α = 10−4, β = 2.

In fact, the parameters Yf and Le appear in the stationary problem only
in the combination Yf/Le, so we will use this ratio as a parameter in
what follows.

In Figure 2.5 bifurcation diagrams are shown with β as the bifur-
cation parameter, for various values of the pre-exponential constant A.
We see that a turning point appears in the bifurcation diagram as we in-
crease A. Hence, for A sufficiently large there is a range of values of the
Boltzmann number β for which there exist multiple stationary flame
balls. IncreasingA corresponds to making the function in the Arrhenius
law (2.18) steeper. In the context of traveling wave solutions (moving
flame fronts) it was already observed (and extensively analyzed) that

32



2.4 NUMERICAL CALCULATIONS

0 0.0005 0.001
0

50000

100000

150000

β

R

(a)

0 0.001 0.002
0

10000

20000

30000

40000

50000

β

R

(b)

0 0.0005 0.001 0.0015 0.002
0

5000

10000

15000

20000

25000

β

R

(c)

0 2 4 6 8 10
0

100

200

300

400

500

β

R

(d)

Figure 2.5: Bifurcation diagrams with β as the bifurcation parameter for
(a) A = 0.1; (b) A = 0.3; (c) A = 0.5; (d) A = 40.

a steeper Arrhenius law may lead to turning points in bifurcation di-
agrams, see [6]. We note that the presence of turning points is due to
the radiative effects being incorporated in the model, since uniqueness
of the adiabatic flame ball implies the absence of turning points in the
adiabatic problem.

Figure 2.5 also corroborates the study of the limit cases in Sec-
tion 2.3. In the limit β → 0 the flame radius R converges to the
Zeldovich radius (the minimal possible radius), see Remarks 2.1.4
and 2.3.8. On the other hand, as proved in Lemma 2.10, in the limit
β → ∞ the temperature profile converges to θf , which corresponds to
the maximal radius (see again Remark 2.1.4).

To make a useful comparison between the full, nonlinear prob-
lem and the “linearized” equation (2.16) from Section 2.4, we need to
linearize the term θ4 around some characteristic temperature θc: θ4 ≈
θ4
c + 4θ3

c (θ − θc). Introducing the rescaled variable ũ = βu, we then
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Figure 2.6: Comparison between the nonlinear problem (solid line) and
the linearized one (dashed line) with (a) β and (b) α as the bifurcation
parameter.

arrive at the system{
Δθ + ũ = 0,
Δũ− 3α2ũ+ 4αβθ3

cΔθ = 0.

Therefore, solutions of the full problem should be compared to solu-
tions of the linearized problem for β̃ = 4βθ3

c . Hence, in all figures,
for the (dashed) curves representing the analytic expression (2.17) for
the linearized problem, the scaling factor 4θ3

c is taken into account. As
characteristic temperature we simply adopt θc = θf throughout.

In Figure 2.6 we compare the outcome of the numerical compu-
tations on the nonlinear problem with the analytic expression for the
linearized one, using both α and β as bifurcation parameters. In Fig-
ure 2.6a we see that the nonlinear and linear problems are qualitatively
very similar. In the limit β → ∞ we know from Lemma 2.10 that θ → θf

uniformly, so our choice of θc = θf leads to quantitative agreement for
large β. In the adiabatic limit, i.e. β → 0, the solution becomes indepen-
dent of the radiative effect, irrespective of the equations being linear or
not.

Figure 2.6b is, up to a scaling in the horizontal direction, the same
as Figure 2.6a. The reason is that α is so small that α2 is negligible
compared to αβ, so that to good approximation the solution in this pa-
rameter regime only depends on the combination αβ.

From Lemma 2.7 we know that for large α the solution converges
to the adiabatic one, and the radius decreases towards the Zeldovich
radius. Indeed, when we continue the bifurcation curve of Figure 2.6b
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Figure 2.7: The complete (α,R) bifurcation diagram, on three different
scales.

for larger values of α we obtain Figure 2.7, where we need three dif-
ferent scales to be able to see the full picture. In accordance with Lem-
mas 2.7 and 2.9 the flame radius R tends to the Yf

Le
1

F (θf +Yf/Le) in both

limits α → 0 and α → ∞, while it makes an excursion near Yf

Le
1

F (θf ) in
between.

In Figure 2.8 we employ Yf/Le as the bifurcation parameter. For
Yf/Le sufficiently large there are again three solutions, and we need to
examine two different scales to see them. The linearized problem does
not mimic the nonlinear one too closely, since for large values of Yf/Le
the temperature varies too much to be adequately represented by the
characteristic temperature θc.

The linear behavior of the curves in Figure 2.8 can be understood
from the fact that α is chosen very small. In this asymptotic regime it
is not hard to calculate the slopes for the linearized problem. In fact
R ∼ Ci

Yf

Le , where the two slopes C1,2 in Figure 2.8a are approximately
given by the two largest solutions of F ( 1

2
√

αβ
C−1+θf ) = C−1, while the

slope C3 in Figure 2.8b is approximately equal to A−1. Of course, the
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Figure 2.8: Comparison between the nonlinear problem (solid line) and
the linearized one (dashed line) with Yf/Le as bifurcation parameter, de-
picted at two different scales.
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Figure 2.9: The global picture of the (Yf/Le, R) bifurcation diagram. Note
that there is a branch of solutions (almost) coinciding with the horizontal
axis.

reason we can determine these slopes is that we have the explicit ex-
pression (2.17) for the bifurcation curve in the linearized problem. For
the nonlinear problem, determining the slopes is an exercise in asymp-
totic analysis that falls outside the scope of this paper. Note that near
the origin the slope is given by F (θf )−1 for both the linearized and the
nonlinear problem.

Finally, while Figure 2.8a suggests that there are two disconnected
solution branches, the global bifurcation diagram depicted in Figure 2.9
shows that these branches are in fact connected to each other for large
values of R and Yf/Le.
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2.5 CONCLUSION

The multiplicity of flame ball solutions, also found in heat loss mod-
els [16, 22, 17], leads to questions about stability, which we intend to
study in future work. As in the heat loss case, it is in these stability
issues that the Lewis number, which plays a somewhat subdued role in
the analysis of the stationary problem, will be crucial.

Multiplicity of solutions and stability in the heat loss case are dis-
cussed in the introduction. At this point we would like to make some
comparisons with our results using the Eddington equation for radia-
tive transfer. One may notice that for some range of parameter values
there are three branches of stationary solutions compared to two in the
heat loss models, see for example Figure 2.5. Here one needs to keep
in mind that for large R (i.e. the extreme part of the upper branch) the
temperature profile is almost flat and therefore does not correspond to
a physical flame ball. On the other hand, near the turning point, there
are truly three stationary flame balls, of which we expect the middle
one (see also Figure 2.6) to be stable, at least in some range of the pa-
rameters. In the bifurcation diagram in Figure 2.8 we may also expect
stability of the middle branch. Detailed analysis of stability is the sub-
ject of current research. Some preliminary instablity results have been
obtained in [27].

2.5. Conclusion
Radiation can significantly influence combustion processes. In

this paper we investigate a free boundary model for combustion in a
gaseous mixture, where we couple the usual diffusion equations to the
radiation field. The radiation itself is described by the Eddington equa-
tion, which models radiative transfer in a dusty medium under (near)
isotropic conditions. This model thus incorporates both emission and
absorption of radiation, in contrast to the usual simplified heat loss
models, cf. [31, 22]. Mathematically, this leads to the addition of an
elliptic equation describing the radiation field, which is coupled to the
(parabolic) diffusion equations.

In this context we prove the existence of radially symmetric station-
ary solutions, or flame balls, which are physically observed in micro-
gravity environments [46]. We find that a solution exists for any combi-
nation of the parameters in the model. Since we consider a free bound-
ary model, determining the radius of the flame is part of the problem.
Our strategy is to split the analysis in two parts. First we fix the free
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boundary and solve an elliptic problem on a fixed domain. Subse-
quently, we solve the remaining algebraic equation to select the correct
flame radius.

Having proved the existence of stationary flame balls, we then
turn our attention to asymptotic regimes of the radiative parameters,
namely the opacity α of the medium and the Boltzmann number β.
In both the limits α → 0 and α → ∞ we recover the adiabatic (non-
radiative, or “Zeldovich”) flames. The same limit is obtained in the
limit β → 0, whereas when β → ∞ the temperature profile becomes
flat. The limit α → 0, β → ∞ with fixed αβ, leads to a nontrivial limit
problem with a truly radiative asymptotic profile.

Finally, by using numerical computations and by examining ana-
lytically a “linearized” problem, we investigate the multiplicity of so-
lutions (for fixed parameter values). We find large parameter regimes
where multiple stationary flame balls exist. This of course raises inter-
esting stability questions, which we plan to address in a forthcoming
paper (extending the work of Joulin et al. [16] on the heat loss case).
We expect the Lewis number Le, which is of minor importance for the
stationary problem, to play a crucial role in the stability issues for ra-
diative flame balls.

2.6. Appendix: Existence proof
In this appendix we collect the details of the proofs of the state-

ments in Section 2.2, in particular Lemma 2.5. We also provide addi-
tional uniform estimates on the function w.

Existence on a bounded domain

Let us consider (2.11) on a ball Bρ = B(0, ρ) ⊂ R
3, the boundary

condition (2.11b) being replaced by w = 0 on ∂Bρ. We assume ρ > R.

LEMMA 2.14. For fixed 0 < R < ρ, there is a unique solution w of
(2.11a) with θ = θR

h + w ≥ 0 on Bρ and w = 0 on ∂Bρ. The solution is
radial and as such it belongs to C2([0, ρ]) as well as to C2(Bρ). It satisfies the
bounds

−Yf

Le
min

(
1,
R

|x|
)

≤ w ≤ 0.

Remark 2.6.15. The estimate (2.12) is independent of the parameters
α and β. It provides us with a uniform estimate on the decay rate of w
towards zero as r → ∞.
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2.6 APPENDIX: EXISTENCE PROOF

PROOF. We first establish the existence of w. The function w ≡ 0 is
a supersolution of (2.11a) with zero Dirichlet boundary data, because
substituting w = w ≡ 0 in (2.11a), we end up with αβ((θR

h )4 − θ4
f ) > 0.

On the other hand, the function w = −Yf

Le min(1, R
r ) is a subsolution: it

is negative in r = ρ, and substituting w = w we obtain 3α2w − Δw.
The first term is negative, the latter too, but in the sense of the distri-
butions. More precisely, −Δw is a negative “Dirac” measure supported
on r = R. It is straightforward to mollify w into a family of smooth
subsolutions wε with wε → w uniformly as ε → 0, and wε ≡ w outside
the interval (R − ε,R + ε). By standard arguments, e.g. [25], it follows
that there is a solution of (2.11a) withw = 0 in r = ρwhich lies between
w and w. This solution is obtained using an iteration argument starting
from either the sub- or the supersolution, both of which are radial. As
a consequence, the constructed solution is also radial. The regularity of
w, i.e. w ∈ C2(Bρ), follows directly from ODE arguments. In fact the
bounded solutions w of (2.11a) with w = 0 on ∂Bρ are in C2(Bρ), see
again [25].

If w1 and w2 are two such solutions, then we set

f(x,w) = αβ
(
(w + θR

h (x))4 − θ4
f

)
,

and

c(x) =
∫ 1

0

∂f

∂w
(x, tw1(x) + (1 − t)w2(x))dt.

The function v = w1 − w2 is a solution of{ −Δv + (3α2 + c(x))v = 0 in Bρ,
v = 0 on ∂Bρ,

where c ∈ C(Bρ). By the maximum principle, see [25], v ≡ 0 if c is non-
negative. Thus we have uniqueness in the class of functions w which
satisfy w(x)+ θR

h (x) ≥ 0, i.e., the functions w for which the correspond-
ing temperature profile θ is positive, and it is natural to restrict to this
class. This completes the proof. �

Remark 2.6.16. Writing (2.11a) as an ODE, i.e.,

w′′ = −2
r
w′ + 3α2w + αβ

((
w + θR

h (r)
)4 − θ4

f

)
,

with initial conditions w(0) = w0 and w′(0) = 0, this initial value
problem is well-posed and behaves nicely in terms of continuous de-
pendence on parameters. In particular, w, w′, w′′ and w′′′ are uni-
formly bounded on bounded intervals (for bounded ranges of α2 and
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αβ). Alternatively, to examine regularity, one could proceed from the
PDE (2.11a) directly using bootstrap arguments and Hölder estimates
for elliptic equations, see e.g. [25].

Remark 2.6.17. We emphasize that w is defined for 0 ≤ r ≤ ρ and that
ρ as well as R are parameters with 0 < R < ρ. Thus we write w = wR

ρ .

Solutions on the whole space

In this section we take the limit ρ → ∞ to prove existence of a
solution w of Problem (2.11).

LEMMA 2.18. For R fixed, there exists a solution w of Problem (2.11)
which satisfies the bound (2.12). The solution belongs to C2(R) and is unique
in the class of radial and nonradial functions.

PROOF. Take a sequence ρn → ∞ as n → ∞, and set wn = wR
ρn

, so
wn is a solution of{

−Δwn + 3α2wn = −αβ
(
(wn + θR

h )4 − θ4
f

)
in Bρn ,

wn = 0 on ∂Bρn ,

as constructed in Section 2.6. We extendwn to the whole of R
3 by setting

wn ≡ 0 for r ≥ ρn. Clearly estimate (2.12) continues to hold for wn.
Now fix some ρ = ρ̄ and consider the solutions wn with ρn > ρ̄,

and in particular their restrictions to Bρ̄. It follows directly from Re-
mark 2.6.16 that wn and its first and second order derivatives are
bounded and equicontinuous. Note that the nonlinear term in (2.11)
is Lipschitz continuous if w is. Thus, we may extract a subsequence
along which wn converges in C2(Bρ̄). Choosing ρ̄ = 1, 2, 3, . . . a stan-
dard diagonal argument now produces a subsequence along which wn

converges in C2(Bρ̄) for every ρ̄ > 0. It follows that the limit w exists on
the whole space, and that it satisfies (2.11a) as well as the bound (2.12).
Clearly w corresponds to a temperature profile θ = θR

h + w > 0 on R
3.

Now suppose we have two such profiles. Reasoning as in the
uniqueness proof in Lemma 2.14 we find that v = w1 − w2 is bounded
and satisfies

−Δv + (3α2 + c(x))v = 0 in R
3.

When v → 0 as |x| → ∞ (uniformly) the maximum principle implies
that v ≡ 0, provided the coefficient 3α2 + c(x) of v is nonnegative. Thus
we have uniqueness in the class of solutionsw which have w(x) → 0 as
|x| → ∞ uniformly. �
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Proof of Theorem 2.1

In the previous section we proved Theorem 2.2 and showed that,
omitting the reaction rate from the problem formulation, there exists
for every R > 0 a unique solution triple (θ, Y, u) with θ > 0. It remains
to solve (2.7) with θR(R) given by Theorem 2.2.

Remark 2.6.19. In view of the estimate (2.12) the flame temperature
θ(R) is bounded between θf and θf + Yf

Le . As F is a continuous positive
function, let us define the positive numbers

m = min
θ∈[θf , θf+Yf /Le]

F (θ) and M = max
θ∈[θf , θf+Yf /Le]

F (θ).

Then any solution of the full flame ball problem must satisfy
Yf

Le
1
M

≤ R ≤ Yf

Le
1
m
. (2.19)

Equation (2.7) has a left hand side which goes from +∞ to 0 as R
goes from 0 to ∞. Its right hand side is bounded between m and M .
Thus the existence of the solution in Theorem 2.1 is immediate once
we know that Remark 2.1.3 (about continuity of θR(R)) is true. More
precisely:

LEMMA 2.20. If Rn → R > 0, then the corresponding functions θRn

converge uniformly to θR on [0,∞).

PROOF. Clearly this will follow from the same statement for wR,
wherewR is the solution of (2.11) obtained in Lemma 2.5. In view of the
bound (2.12), uniform convergence on bounded subsets implies uni-
form convergence on [0,∞). By exactly the same arguments as in the
proof of Lemma 2.5 in Section 2.6, it follows that along a subsequence
of n → ∞, wRn (as well as its first and second order derivatives) con-
verges uniformly on any bounded interval to a solution of (2.11) satis-
fying (2.12). Since this solution is unique, it follows that wRn → wR,
along this subsequence. In fact, every sequence of n → ∞ has a subse-
quence for which this is the case. But then there cannot be a sequence of
n for which ||wRn −wR||∞ is bounded away from zero. This completes
the proof of Lemma 2.20 and thereby of Theorem 2.1. �
Remark 2.6.21. Instead of using this sequence argument, one could
also invoke an implicit function argument to conclude that R→ θR(R)
(or R → wR(R)) is smooth. Furthermore, assuming the derivatives of
left and right hand sides of (2.7) to be different at solutions, it follows
immediately that the number of solutions is odd. This is the statement
that in general situations the number of solutions is odd.
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Uniform estimates

As we have seen, solutions of the flame ball problem are given by
θ = θR

h + wR, where R is such that (2.7) holds, and where wR is a C2-
function (of course θR

h is not). Moreover, wR satisfies (2.11). In this
section we show that w is monotone in r

LEMMA 2.22. The solution w = wR of (2.11) has w′ ≥ 0.

PROOF. w solves

−w′′ − 2
r
w′ = g(r, w) = −3α2w − αβ

(
(w + θR

h (r))4 − θ4
f

)
, (2.20)

where g satisfies
∂g

∂w
< 0 and

∂g

∂r
≥ 0,

the latter being discontinuous in r = R of course, but with limits exist-
ing from both sides. Moreover, w′(0) = 0 by symmetry.

If w′ is negative somewhere, then there must be points r1 and r2
such that w′(r1) = w′(r2) = 0, while w′ < 0 on (r1, r2). This follows
from w′(0) = 0 and 0 > w(r) → 0 as r → ∞.

Clearly then g(r1, w1(r1)) = −w′′(r1) ≥ 0 and g(r2, w1(r2)) =
−w′′(r2) ≤ 0, contradicting

d

dr
g(r, w(r)) =

∂g

∂r
+
∂g

∂w

∂w

∂r
> 0 on (r1, r2).

�
LEMMA 2.23. There exists a constant C depending on α2 and αβ such

that ∫ ∞

0
w′(r)2dr < C.

PROOF. Multiplying (2.20) by w and integrating from r1 to r2 (0 <
r1 < r2 <∞) we obtain

−
∫ r2

r1

w′′wdr =
∫ r2

r1

2
r
w′wdr +

∫ r2

r1

g(r, w)wdr,

so that∫ r2

r1

|w′|2dr+w′(r1)w(r1) = w′(r2)w(r2)+
∫ r2

r1

2
r
w′wdr+

∫ r2

r1

g(r, w)wdr.

Letting r1 → 0 and using w′ ≥ 0, w < 0, it follows that, also using
(2.12), ∫ r2

0
|w′|2dr ≤

∫ r2

0
g(r, w(r))w(r)dr ≤ C,
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where C is a constant depending linearly on α2 and αβ, but not on r2.
This proves the claim. �

Going one step further, we get the following.

LEMMA 2.24. w belongs to H2(0,∞).

PROOF. Multiplying (2.20) by −w′′ and integrating from r1 to r2 we
find ∫ r2

r1

|w′′|2dr +
∫ r2

r1

2
r
w′w′′dr +

∫ r2

r1

g(r, w)w′′dr = 0.

Hence, with e.g. r1 = 2,∫ r2

2
|w′′|2dr ≤

(∫ r2

2
|w′|2dr

) 1
2
(∫ r2

2
|w′′|2dr

) 1
2

+
(∫ r2

2
|g(r, w(r))|2dr

)1
2
(∫ r2

2
|w′′|2dr

)1
2

.

In view of (2.12), (2.20) and Lemma 2.23 we conclude that∫ ∞

2
|w′′|2dr ≤ C,

where C depends on α2 and αβ. The fact that w is C2 implies that
also

∫∞
0 |w′′|2 is bounded. Lemma 2.23 and inequality (2.12) finish the

proof. �
Remark 2.6.25. If we consider the problem in R

3, one can easily check
that w belongs to W 2,p(R3) if p > 3.
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CHAPTER 3

Instability in a flame ball problem

3.1. Introduction
In this paper, we deal with a mathematical model, proposed in [53],

to describe the evolution of flame balls. Before going into mathematical
considerations, let us first briefly introduce the physical problem.

It is well known that combustion processes in gravity or in micro-
gravity environments exhibit different features: the most known one is
the appearance of flame balls in microgravity, which differently from
flame fronts, are stationary states.

The first models in which flame balls are taken into account, have
been proposed by Zeldovich (see [56]) to describe combustion pro-
cesses with simple chemistry (such as a one step reaction in which the
gaseous reactant is converted into a gaseous product). In such (non
radiative) models, the combustion processes are described in terms of
two main quantities: the temperature θ and the mass fraction y of the
reactant. These two quantities are assumed to be constant inside the
flame ball. In particular, y identically vanishes inside the flame ball.
The following figure provides us with a sketch of the situation. In
such models, flame balls are shown to be unstable, which is in seeming
agreement with the absence of experimentally observed flame balls.

In 1984, P.D. Ronney discovered, surprisingly, the existence of phys-
ical flame balls, and this fact was later confirmed by experiments in
Space Shuttle. Since then, several effects have been taken into account
in combustion models to explain stabilization of flame balls, in par-
ticular (radiative) heat losses from the combustion products inside the
flame ball. Indeed, the radiative transfer of heat in combustion pro-
cesses, taking place in inert, not fully transparent media (e.g. dust,
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fuel mass
fraction y

temperature θ

R radius r

Reaction zone

Interior filled with combustion

products Fuel and oxygen diffuse inward

Heat and products diffuse outward

Figure 3.1: Profile of the temperature and the mass fraction variables in the
adiabatic case. The radius of the flame ball is denoted byR, corresponding
to the flame front.

porous media, etc.), involves both emission and absorption of radia-
tion. Such phenomena may significantly influence the temperature of
the flame, its propagation speed (see e.g. [10]) and the flammability
of the medium itself. And, of course, these facts may be responsible
for the stability of flame balls. For more physical details, we refer the
reader to [46] and the references therein. See also the SOFBALL (Struc-
ture of Flame Balls at Low Lewis number) link on Paul Ronney’s NASA
home page [1].

Here, we focus our attention on the model proposed in [53], which
takes into account the effects of the radiative transfer on the flame balls.
To derive their model, the authors consider a derivation of a radiative
transfer equation, known as the Eddington equation (see e.g. [24, 40]),
coupled with the usual Reaction Diffusion System for the temperature
and mass fraction of the reactant, under the assumption that the reac-
tion occurs in a very thin region which bounds the burnt region Ω(t).
This leads them to the following free boundary problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

yt(t, x) =
1
Le

Δy(t, x), t > 0, x ∈ R
3 \ Ω(t),

y(t, x) = 0, t > 0, x ∈ Ω(t),

θt(t, x) = Δθ(t, x) + βu(t, x), t > 0, x /∈ ∂Ω(t),

Δu(t, x) − 3α2u(t, x) + αΔθ4(t, x) = 0, t > 0, x /∈ ∂Ω(t),
(3.1)
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associated with the jump conditions on ∂Ω(t):

[θ(t, ·)] = [y(t, ·)] = 0, −
[
∂θ

∂ν
(t, ·)

]
=

1
Le

[
∂y

∂ν
(t, ·)

]
, t > 0,

(3.2)
1
Le

[
∂y

∂ν
(t, ·)

]
= F (θ(t, ·)) u(t, ·) + αθ(t, ·) smooth, t > 0.

(3.3)
We note that the later condition amounts to posing the last equation in
(3.1) on R

3 in the sense of the distributions. The asymptotic conditions
at infinity, inherited from the initial conditions for Y and θ, are

y(t, x) → Yf , θ(t, x) → Θf , u(t, x) → 0 as |x| → ∞, t > 0.
(3.4)

As above, the variables θ and y correspond, respectively, to the temper-
ature and the fuel mass fraction, whereas u is a measure of the radiation
flux. Θf and Yf denote the temperature and the mass fraction away in
the fresh region. The parameters Le (Lewis number), α and β denote
respectively the ratio between conductivity and diffusivity, the opacity
of the medium and the ratio between the radiative and the diffusive
flux. The space variable x belongs to R

3, ∂Ω(t) is the free boundary
variable corresponding to the flame front and F (θ(t, ·)) is the reaction
rate evaluated at ∂Ω(t), a simplified Arrhenius law, F being a smooth
positive and increasing function. Finally, ν denotes the unit outward
normal to ∂Ω(t).

Here, we deal only with the case α > 0. If α = 0 the equation for u
in System (3.1) reduces to Δu = 0, so that u is zero. Hence, we are then
left with the nonradiative problem. However, if we scale u with β and
take αβ fixed, the limit α → 0 does make sense and leads to a heat loss
combustion model. See also [6, 15, 22, 32].

From a mathematical and also from a physical viewpoint, it is in-
teresting to understand if the steady state radial solutions to Problem
(3.1)-(3.4), determined in [53] (see the forthcoming Theorem 3.3), are
stable or unstable with respect to small perturbations. In this paper
we give a partial answer to this question. More precisely, we deter-
mine a set of values of the parameters (α, β,Le), which imply that such
radial steady state solutions are unstable with respect to smooth ra-
dial perturbations. Of course, looking for radial solutions simplifies
the analysis of the problem. We follow the approach considered in [6],
where the authors consider travelling wave solutions in a free bound-
ary combustion-radiation problem. Numerical investigations show
that the main features of the problem are preserved in the case when
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the term θ4 in the last equation of Problem (3.1)-(3.4) is replaced with
θ. Therefore, in this paper we do such a reduction. This simplification
will imply some nice consequences, the most significant one is that it
allows us to write an explicit Evans function, whose knowledge is a
fundamental tool to prove stability/instability results.

Since we look for radial solutions, with this simplification, System
(3.1)-(3.4) can be reduced to the following 1D problem for the radial
unknowns (y, θ, u) and for the free boundary R:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yt(t, r) =
1
Le

(
yrr(t, r) +

2
r
yr(t, r)

)
, t > 0, r > R(t),

y(t, r) = 0, t > 0, r < R(t),

θt(t, r) = θrr(t, r) +
2
r
θr(t, r) + βu(t, r), t > 0, r �= R(t),

urr(t, r) +
2
r
ur(t, r) − 3α2u(t, r)

+α
(
θrr(t, r) +

2
r
θr(t, r)

)
= 0, t > 0, r �= R(t),

(3.5)
associated with the jump conditions at r = R(t):⎧⎪⎪⎨⎪⎪⎩

[θ(t, ·)] = [y(t, ·)] = 0,

[θr(t, ·)] = − 1
Le

[yr(t, ·)] = −F (θ(R(t))),

u(t, ·) + αθ(t, ·) smooth,

(3.6)

for any t > 0, and the asymptotic conditions inherited from the initial
data:

y(t, r) → yf , θ(t, r) → θf , u(t, r) → 0 as r → +∞, t > 0.
(3.7)

The paper is structured as follows. In Section 3.2 we introduce the
Banach spaces we deal with in this paper, which are spaces of (Hölder)
continuous functions. Moreover, we transform our problem into an
equivalent one in a fixed domain. We are so led to the study of the
problem ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Dtu(t, ·) = Au(t, ·) + F(u(t, ·),p(t, ·)), t > 0,
L(u(t, ·),p(t, ·)) = 0, t > 0,
B(u(t, ·),p(t, ·)) = G(u(t, ·),p(t, ·)), t > 0,
u(0, ·) = u0,

(3.8)
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A and L being second-order elliptic operators, B being a first-order
boundary differential operator, F being a fully nonlinear and non-local
operator depending not only on u but also on its space derivatives up
to the second-order, and G being a nonlinear boundary differential op-
erator depending on u, p and their first-order derivatives. In Section
3.3 we prove that the realization A of A in a suitable space of bounded
and continuous functions generates an analytic semigroup. We show
that, for any values of the parameters α and β, the halfline (−∞, 0] lies
in σ(A). In particular, when α and β satisfy (3.49), σ(A) contains at
least one positive eigenvalue. We also provide Schauder type estimates
that will be basic tools to prove, in Section 3.4, the existence and some
regularity properties of the solution to Problem (3.8). In Section 3.5, we
prove the instability results. Finally, in Appendices A and B, we prove
some technical results and the existence of positive eigenvalues of A,
under condition (3.49).

Notation: For any k > 0 and any interval I ⊂ R, we denote by
Ck

b (I) the set of bounded functions f : I → K (K being either R or C)
which are differentiable up to the [k]-th order inside I , with bounded
derivatives, and such that f [k] is α-Hölder continuous in I . When I is
bounded we simply write Ck(I) instead of Ck

b (I). The previous spaces
are normed with the classical Euclidean norms. By C∞

c (I), we denote
the space of functions f which are infinitely many times differentiable
in I and are compactly supported in I .

For any γ, θ > 0 and any pair of intervals I, J ⊂ R, we denote by
Cγ,θ

b (I × J) the set of functions f : I × J → R such that f(t, ·) ∈ Cθ
b (J)

for any t ∈ I , f(·, x) ∈ Cγ
b (I) for any x ∈ J and ‖f‖

Cγ,θ
b (I×J)

< +∞,
where

‖f‖
Cγ,θ

b (I×J)
:= sup

t∈I
‖u(t, ·)‖Cθ

b (J) + sup
x∈J

[u(·, x)]Cγ
b (I).

Further, given a Banach space X and r > 0, we denote by B(0, r) ⊂
X the open ball with centre at x = 0 and radius r, and by B(0, r) its
closure. If X and Y are two Banach spaces, we denote by L(X,Y ) the
set of all linear bounded operators from X in Y . We simply write L(X)
when X = Y . If M is a linear operator (not necessarily bounded),
we denote by σ(M) its spectrum and, when M is bounded, we denote
by r its spectral radius, i.e. r = sup{|λ| : λ ∈ σ(M)}. Given three
Banach spaces Y ⊂ Z ⊂ X (where the embeddings are continuous),
we say that Z belongs to the class Jθ (θ ∈ [0, 1]) between X and Y

49



3. INSTABILITY IN A FLAME BALL PROBLEM

(shortly, Z ∈ Jθ(X,Y )) if there exists a positive constant C , such that
‖x‖Z ≤ C‖x‖1−θ

X ‖x‖θ
Y for any x ∈ Y .

Finally, we set I−1 = [0, 1] and I+
1 = [1,+∞) and denote by

√
λ the

principal root of λ ∈ C \ (−∞, 0].

3.2. Function spaces and linearisation
We split this section into several subsections.

Function spaces

DEFINITION 3.1. For any k ∈ [0, 3) and any fixed R > 0, we denote by
Xk the space defined by

Xk =
{
f = (f1, f2, f3) : f1, f3 ∈ Ck

b ([R,+∞)), f2 ∈ Ck([0, R]),

lim
x→+∞(|f1(x)| + |f3(x)|) = 0

}
,

endowed with the Euclidean norm, i.e.

‖f‖Xk
= ‖f1‖Ck

b ([R,+∞)) + ‖f2‖Ck([0,R]) + ‖f3‖Ck
b ([R,+∞)).

When k = 0, we simply write X instead of X0. Similarly, for any k ≥ 1,
we denote by X 0

k the subset of Xk of functions f such that Dxf2(0) = 0. We
endow X 0

k with the norm of Xk.
Moreover, for any θ ∈ (0, 1) and any T > 0, we denote by Xθ/2,θ(0, T )

the set of functions u = (v,w1, w2) such that u(t, ·) ∈ Xθ for any t ∈ [0, T ],

sup
0≤t≤T

‖u(t, ·)‖Xθ
< +∞,

v(·, x), w1(·, y), w2(·, x) ∈ Cθ/2([0, T ]) for any x ∈ I+
R and any y ∈ I−R , and

[[u]]θ := sup
x∈I+

R

‖v(·, x)‖Cθ/2([0,T ]) + sup
x∈I−R

‖w1(·, x)‖Cθ/2([0,T ])

+ sup
x∈I+

R

‖w2(·, x)‖Cθ/2([0,T ]) < +∞.

Similarly, we set

X1+θ/2,2+θ(0, T ) =
{
u : Dα1

t Dα2
x u ∈ Xθ/2,θ(0, T ), for 2α1 + α2 ≤ 2

}·
The spaces Xθ/2,θ(0, T ) and X1+θ/2,2+θ(0, T ) are Banach spaces when en-
dowed with the norms

‖u‖Xθ/2,θ(0,T ) = sup
0≤t≤T

‖u(t, ·)‖Xθ
+ [[u]]θ,
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for u ∈ Xθ/2,θ(0, T ), and

‖u‖X1+θ/2,2+θ(0,T ) =
∑

2α1+α2≤2

‖Dα1
t Dα2

x u‖Xθ/2,θ(0,T ),

for u ∈ X1+θ/2,2+θ(0, T ).

DEFINITION 3.2. For any k ∈ [0, 3) and any fixed R > 0, we de-
note by Yk the set of functions f = (f1, f2) such that f1 ∈ Ck([0, R]),
f2 ∈ Ck

b ([R,+∞)) and limx→+∞ f2(x) = 0. We endow this space with
the Euclidean norm, i.e. ‖f‖Yk

= ‖f1‖Ck([0,R]) + ‖f2‖Ck
b ([R,+∞)) for any

f ∈ Yk.
For any γ, θ ∈ [0, 1) and any T > 0, we set

Yγ,θ(0, T ) =
{
f ∈ Y0 : f1 ∈ Cγ,θ([0, T ] × [0, R]),

f2 ∈ Cγ,θ
b ([0, T ] × [R,+∞))

}
,

and we norm it by setting

‖f‖Yγ,θ(0,T ) := ‖f1‖Cγ,θ([0,T ]×[0,R]) + sup
t∈[0,T ]

[f2(t, ·)]Cθ
b ([R,+∞))

+ sup
x∈[R,+∞)

[f2(·, x)]Cγ ([0,T ]),

for any f ∈ Yγ,θ(0, T ). Similarly, for any θ ∈ (0, 1), we denote by
Yθ/2,2+θ(0, T ), the space of functions f such that Dj

xf := (Dj
xf1,D

j
xf2) ∈

Yθ/2,θ(0, T ) for any j = 0, 1, 2. We endow Yθ/2,2+θ(0, T ) with the norm

‖f‖Yθ/2,2+θ(0,T ) =
2∑

j=0

‖Dj
xf‖Yθ/2,θ(0,T ), f ∈ Yθ/2,2+θ(0, T ).

Existence of stationary solutions

Here, we recall the main result obtained in [53].

THEOREM 3.3 (Existence of steady state solutions). Let α, β ≥ 0, let
F be continuous, positive and increasing, and let Θf > 0, Yf > 0. Then there
exists a radial solution (Y (r),Θ(r), U(r), R) to (3.5), (3.6) and (3.7). Such a
solution for the Y equation is given by

Y (r) = Yf

(
1 − R

r

)
, r > R.

To simplify the notation we introduce

μ = μαβ =
√

3α2 + αβ.
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Then

Θ(r) =

⎧⎪⎪⎨⎪⎪⎩
B1

r
sinh(μr) +B3 + Θf for r ≤ R,

B2

r
exp(−μr) +

B3R

r
+ Θf for r > R,

where the constants are given by

B1 =
αβYf

Leμ3
exp(−μR), B2 =

αβYf

Leμ3
sinh(μR), B3 =

3α2Yf

Leμ2
.

The expression for u is

u(r) =

⎧⎪⎪⎨⎪⎪⎩
−B1μ

2

βr
sinh(μr) for r ≤ R,

−B2μ
2

βr
exp(−μr) for r > R.

where R is determined through the equation

F

(
αβYf

2μ3LeR
[
1 − 2μR− e−2μR

]
+
Yf

Le
+ Θf

)
=

Yf

LeR
. (3.9)

Moreover, for generic choices of the parameters, the number of steady state
solutions to Problem (3.5), (3.6) and (3.7) is odd.

Linearisation of the parabolic equations

Let us now fix a stationary solution (Θ, Y, U,R) of system (3.5)-
(3.7). To linearize the system around this equilibrium, we follow the
method developed in [13, 11, 12]. For this purpose, first of all we intro-
duce the function Ỹ , Θ̃, Ũ defined by Ỹ (x) = Y (Rx), Θ̃(x) = Θ(Rx),
Ũ(x) = RU(Rx). Note that the triplet (Ỹ , Θ̃, Ũ) is a stationary solution
of Problem (3.5)-(3.7) corresponding to R(·) ≡ 1 and with α, β, F being
replaced with α̃ = Rα, β̃ = Rβ and RF .

Now, we assume that (y, θ, u) is a smooth radial solution to Problem
(3.5)-(3.7). As a first step, we make the front steady by setting

τ =
t

R2
, x =

r

R(t)
, R(t) = R(1 + s(τ)), (3.10)

when r varies in [0, R(t)] and

τ =
t

R2
, x =

r −R(t) +R

R
, R(t) = R(1 + s(τ)), (3.11)

when r varies in [R(t),+∞). The change of coordinates and unknowns
in (3.10) is convenient for radial problems in bounded domains: x is a
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new radial variable which varies from x = 0 to x = 1. On the contrary,
this change of unknowns is not useful when r varies in [R(t),+∞).
This is the reason why we use (3.11) to fix the boundary at x = 1 when
r varies in [R(t),+∞). Next we set, for r ∈ [R(t),+∞)⎧⎪⎨⎪⎩

(i) y(t, r) = Ỹ (x) + s(τ)Ỹx(x) + v(τ, x),

(ii) θ+(t, r) = Θ̃+(x) + s(τ)Θ̃+
x (x) + w+(τ, x),

(iii) Ru+(t, r) = Ũ+(x) + s(τ)Ũ+
x (x) + p+(τ, x),

(3.12a)

and for r ∈ [0, R(t)]{
(iv) θ−(t, r) = Θ̃−(x) + s(τ)xΘ̃−

x (x) + w−(τ, x),

(v) Ru−(t, r) = Ũ−(x) + s(τ)xŨ−
x (x) + p−(τ, x),

(3.12b)

where θ− and θ+ are obtained extending by continuity θ|[0,R(t)) and
θ|(R(t),+∞) up to r = R(t). In the same way, we define the func-
tions u+, u−, Θ̃+, Θ̃−, Ũ+ and Ũ−. The splitting in (3.12)(ii) and
(3.12)(iv) is adapted from a similar trick in [13] and is suitable for prob-
lems in bounded domains. A similar argument, already considered in
[12, 29, 37, 36, 38], is used to obtain the splitting in (3.12)(i), (3.12)(iii)
and (3.12)(v).

The final equation for v. For notation convenience, we write every-
where t instead of τ . Note that evaluating (3.12)(i) at x = 1 and observ-
ing that Ỹ (1) = 0 and Ỹx(1) = Yf , allows us to write s in terms of v. In
fact,

s(t)Ỹx(1) + v(t, 1) = s(t)Yf + v(t, 1) = 0, t > 0. (3.13)

Replacing the expressions of y, given by (3.12), in the first differen-
tial equation in (3.5), recalling that Ỹ is a stationary solution of the first
differential equation in Problem (3.5) (with R = 1), and taking (3.13)
into account, we can show that the function v turns out to solve the
differential equation

vt(t, x) =
1
Le

(
vxx(t, x) +

2
x
vx(t, x)

)
+ (F̃1(v(t, ·)))(x), (3.14)

for any t > 0 and any x ∈ I+
1 , where

(F̃1(v(t, ·)))(x) =
{
− vt(t, 1)

Yf
+

2v(t, 1)
Le(Yfx− v(t, 1))x

}
×
(
vx(t, x) − v(t, 1)

Yf
Ỹxx(x)

)
+

2(v(t, 1))2

LeYfx2(Yfx− v(t, 1))
Ỹx(x), (3.15)
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3. INSTABILITY IN A FLAME BALL PROBLEM

for t > 0, x ∈ I+
1 . Evaluating the differential equation (3.14) at x = 1,

we can get rid of the term vt(t, 1) in the right-hand side of (3.15). In fact,
we get

vt(t, 1) =
1
Le

(
1 +

vx(t, 1)
Yf

+
2v(t, 1)
Yf

)−1

×
{
vxx(t, 1) + 2vx(t, 1) +

2v(t, 1)
Yf − v(t, 1)

(
vx(t, 1) + 3v(t, 1)

)}
, (3.16)

for any t > 0, so that we can replace the function F̃1(v(t, ·)) in (3.15)
with the function F1(v(t, ·)) defined by

(F1(v(t, ·)))(x) =
{
− 1

Le

[
vxx(t, 1) + 2vx(t, 1)

+
2v(t, 1)

Yf − v(t, 1)

(
vx(t, 1) + 3v(t, 1)

)]
× (

Yf + vx(t, 1) + 2v(t, 1)
)−1

+
2
Le

v(t, 1)
x(Yfx− v(t, 1))

}(
vx(t, x) − 1

Yf
v(t, 1)Ỹxx(x)

)
+

2
Le

(v(t, 1))2

Yfx2(Yfx− v(t, 1))
Ỹx(x), (3.17)

for any x ∈ I+
1 .

The final equations for w− and w+. Arguing similarly and taking
(3.16) into account whenever it is necessary, one can check that the func-
tions w± and p± solve the differential equations

w±
t (t, x) = w±

xx(t, x) + 2x−1w±
x (t, x) + β̃p±(t, x)

+(F̂±
2 (v(t, ·), w±(t, ·)))(x), (3.18)

and

3α̃2p±(t, x) = p±xx(t, x) + 2x−1p±x (t, x) + α̃
(
w±

xx(t, x) + 2x−1w±
x (t, x)

)
+(F3(v(t, ·), w±(t, ·), p±(t, ·)))(x), (3.19)

for any t > 0 and any x ∈ I±1 , and

(F̂−
2 (v(t, ·), w−(t, ·)))(x) = − 1

Le

(
1 +

1
Yf
vx(t, 1) +

2
Yf
v(t, 1)

)−1

× x

Yf − v(t, 1)

(
w−

x (t, x) − v(t, 1)
Yf

xΘ−
xx(x)

)
×
{
vxx(t, 1) + 2vx(t, 1) + 2

v(t, 1)
Yf − v(t, 1)

(
vx(t, 1) + 3v(t, 1)

)}
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− (v(t, 1))2

(Yf − v(t, 1))2

(
Θ̃−

xx(x) +
2
x

Θ̃−
x (x)

)
−β̃ (v(t, 1))3 − 2Yf (v(t, 1))2

Yf (Yf − v(t, 1))2
xŨ−

x (x)

−(v(t, 1))2 − 2Yfv(t, 1)
(Yf − v(t, 1))2

(
w−

xx(t, x) +
2
x
w−

x (t, x)
)
, (3.20a)

for t > 0 and x ∈ I−1 . We also get

(F̂+
2 (v(t, ·), w+(t, ·)))(x) ={

− 1
Le

[
vxx(t, 1) + 2vx(t, 1) +

2v(t, 1)
Yf − v(t, 1)

(
vx(t, 1) + 3v(t, 1)

)]
×(Yf + vx(t, 1) + 2v(t, 1)

)−1 +
2v(t, 1)

x(Yfx− v(t, 1))

}
×
(
w+

x (t, x) − 1
Yf
v(t, 1)Θ̃+

xx(x)
)

+
2(v(t, 1))2

Yfx2(Yfx− v(t, 1))
Θ̃+

x (x), (3.20b)

for any t > 0 and any x ∈ I+
1 , whereas

(F−
3 (v(t, ·), w−(t, ·), p−(t, ·)))(x) = −(v(t, 1))2 − 2Yfv(t, 1)

(Yf − v(t, 1))2

×
{
p−xx(t, x) +

2
x
p−x (t, x) + α̃

(
w−

xx(t, x) +
2
x
w−

x (t, x)
)}

− (v(t, 1))2

(Yf − v(t, 1))2

{
Ũ−

xx(x) +
2
x
Ũ−

x (x) + α̃

(
Θ̃−

xx(x) +
2
x

Θ̃−
x (x)

)}
+3α̃2 (v(t, 1))3 − 2Yf (v(t, 1))2

Yf (Yf − v(t, 1))2
xŨ−

x (x), t > 0, x ∈ I−1 , (3.21a)

and
(F+

3 (v(t, ·), w+(t, ·), p+(t, ·)))(x) =

2(v(t, 1))2

Yfx2(Yfx− v(t, 1))
(
Ũ+

x (x) + α̃Θ̃+
x (x)

)
− 2(v(t, 1))2

Yfx(Yfx− v(t, 1))
(
Ũ+

xx(x) + α̃Θ̃+
xx(x)

)
+

2v(t, 1)
x(Yfx− v(t, 1))

(
p+

x (t, x) + α̃w+
x (t, x)

)
, (3.21b)
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for any t > 0 and any x ∈ I+
1 .

Linearisation of the jump conditions

Now, we rewrite the jump conditions in (3.6) in terms of the new
unknowns v,w±, p±. Recalling that

Ỹx(1) = −Le
(
Θ̃+

x (1) − Θ̃−
x (1)

)
(3.22)

and, taking (3.13) into account, we can transform the condition [θ] = 0
into the following equivalent condition for v and w:

w+(t, 1) − w−(t, 1) = −(Le)−1v(t, 1), t > 0. (3.23)

As far as the condition [θr(t, ·)] = −(Le)−1yr(t, R(t)), is concerned, we
preliminarily observe that, using (3.12)(ii) and (3.12)(iii), we can rewrite
it as follows:

w+
x (t, 1) − w−

x (t, 1) +
1
Le
vx(t, 1) = −s(t)

(
Θ̃+

xx(1) − Θ̃−
xx(1) +

1
Le
Ỹxx(1)

)
− s(t)

1 + s(t)
(
Θ̃−

xx(1)s(t) + w−
x (t, 1)

)
. (3.24)

Now, we observe that, since Θ̃− ∈ C2([0, 1]), Θ̃+ ∈ C2
b ([1,+∞)) and

Θ̃±
xx(x) = −2x−1Θ̃±

x (x) − β̃Ũ±(x), for any x ∈ I±1 , we get Θ̃+
xx(1) −

Θ̃−
xx(1) = −2(Θ̃+

x (1) − Θ̃−
x (1)) − β̃(Ũ+(1) − Ũ−(1)). The continuity of

the functions Θ̃ and Θ̃ + α̃Ũ at x = 1 implies that Ũ is continuous at
x = 1 as well. Therefore,

Θ̃+
xx(1) − Θ̃−

xx(1) = −2
(
Θ̃+

x (1) − Θ̃−
x (1)

)
. (3.25)

Similarly, Ỹxx(1) = −2Ỹx(1). Therefore, taking (3.13) into account, the
condition (3.24) reduces to

w+
x (t, 1) − w−

x (t, 1) + (Le)−1vx(t, 1) = F4(v(t, ·), w−(t, ·)), (3.26)

for t > 0, where

(F4(v(t, ·), w−(t, ·)) =
v(t, 1)

Yf (Yf − v(t, 1))
(
Yfw

−
x (t, 1) − Θ̃−

xx(1)v(t, 1)
)
,

(3.27)
and t > 0. To write the condition y(t, R(t)) = −LeF (θ(R(t))) in terms
of v,w, we begin by observing that

F (θ(t, R(t))) = F (Θ̃+(1) + s(t)Θ̃+
x (1) + w+(t, 1))

= F (Θ̃+(1)) + F ′(Θ̃+(1))(s(t)Θ̃+
x (1) + w+(t, 1)) +Q(s(t), w+(t, ·)),

(3.28)
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for any t > 0, where (ξ, ζ) �→ Q(ξ, ζ) is a smooth function, quadratic
with respect to the pair (ξ, ζ). Taking (3.13), (3.22) and (3.23) into ac-
count, we easily deduce that

s(t)
(
Θ̃+

x (1) − Θ̃−
x (1)

)
= −w+(t, 1) + w−(t, 1). (3.29)

Replacing this expression of s(t) in the last side of (3.28) and recalling
that Θ̃+

x (1) − Θ̃−
x (1) = −RF (Θ̃(1)), we get

F (θ(t, R(t))) = F (Θ̃+(1))

+
F ′(Θ̃+(1))
RF (Θ̃+(1))

(
Θ̃−

x (1)w+(t, 1) − Θ̃+
x (1)w−(t, 1)

)
+Q(s(t), w+(t, ·)),

(3.30)
for any t > 0. Therefore, the jump condition yr(t, R(t)) = LeF (θ(R(t))),
reads (in terms of v and w) as follows:

vx(t, 1) + 2v(t, 1) = Le
F ′(Θ̃(1))
F (Θ̃(1))

(
Θ̃−

x (1)w+(t, 1) − Θ̃+
x (1)w−(t, 1)

)
+F5(v(t, ·), w±(t, ·)), (3.31)

for any t > 0, where

F5(v(t, ·), w±(t, ·)) = LeRF
(

Θ̃+(1) − v(t, 1)
Yf

Θ̃+
x (1) +w+(t, 1)

)

−LeRF (Θ̃(1))−Le
F ′(Θ̃+(1))
F (Θ̃+(1))

(
Θ̃−

x (1)w+(t, 1)−Θ̃+
x (1)w−(t, 1)

)
. (3.32)

Let us now compute the jump conditions for u. For this purpose, we
observe that the continuity of the function Ũ at x = 1, the equali-
ties [Ũx] = −α̃[Θ̃x] and (3.29) allow us to rewrite the jump condition
[u(t, ·)] = 0, for any t > 0 as follows:

p+(t, 1) − p−(t, 1) = −α̃(w+(t, 1) − w−(t, 1)
)
, t > 0. (3.33)

Finally, arguing as in the proof of (3.26), and observing that Ũ+
xx(1) +

α̃Θ̃+
xx(1) − Ũ−

xx(1) − α̃Θ̃−
xx(1) = 0, we can rewrite the jump condition

[ur(t, ·)] = −α̃[θr(t, ·)] as follows:

p+
x (t, 1) − p−x (t, 1) = −α̃(w+

x (t, 1) − w−
x (t, 1)

)
+F6(v(t, ·), w−(t, ·), p−(t, ·)), (3.34)

for any t > 0, where

F6(v(t, ·), w−(t, ·), p−(t, ·)) = − (v(t, 1))2

Yf (Yf − v(t, 1))
(
Ũ−

xx(1) + α̃Θ̃−
xx(1)

)
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+
v(t, 1)

Yf − v(t, 1)
(
p−x (t, 1) + α̃w−

x (t, 1)
)
.

The problem for (v, w±, p±): summary

Summing up, the problem for the unknowns (v,w±, p±) reads as
follows for t > 0⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt(t, x) = (Le)−1
(
vxx(t, x) + 2x−1vx(t, x)

)
+ (F1(v(t, ·)))(x),

x ∈ I+
1 ,

w±
t (t, x) = w±

xx(t, x) + 2x−1w±
x (t, x) + β̃p±(t, x)

+(F̂±
2 (v(t, ·), w±(t, ·)))(x), x ∈ I±1 ,

3α̃2p±(t, x) = p±xx(t, x) + 2x−1p±x (t, x)

+α̃
(
w±

xx(t, x) + 2x−1w±
x (t, x)

)
+(F±

3 (v(t, ·), w±(t, ·), p±(t, ·)))(x), x ∈ I±1 ,
(3.35)

with the boundary conditions:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

B(v(t, ·), w−(t, ·), w+(t, ·)) =
(0,F4(v(t, ·), w−(t, ·)),F5(v(t, ·), w±(t, ·))),

B4(w−(t, ·), w+(t, ·), p−(t, ·), p+(t, ·)) = 0,

B5(w−(t, ·), w+(t, ·), p−(t, ·), p+(t, ·)) =

F6(v(t, ·), w−(t, ·), p−(t, ·)),
(3.36)

for any t > 0, where the nonlinear terms F1, F̂2 and Fj (j = 3, . . . , 6)
are given by (3.17), (3.20), (3.21), (3.27), (3.32) and (3.35),

B(v,w−, w+) = (B1(v,w−, w+), B2(v,w−, w+), B3(v,w−, w+)), (3.37)

with

Bj+1(v,w−, w+) = Dj
xw

+(1) −Dj
xw

−(1) + (Le)−1Dj
xv(1), j = 0, 1,

(3.38)
B3(v,w−, w+) = vx(1) + 2v(1) − Le

(
aw+(1) + bw−(1)

)
, (3.39)

B4+j(w−, w+, p−, p+) = Dj
xp

+(1)+ α̃ Dj
xw

+(1)−Dj
xp

−(1)− α̃ Dj
xw

−(1),
(3.40)

for j = 0, 1 and

a :=
F ′(Θ̃(1))
F (Θ̃(1))

Θ̃−
x (1), b := −F

′(Θ̃(1))
F (Θ̃(1))

Θ̃+
x (1). (3.41)
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Since F is an Arrhenius function, we know that it is a positive increas-
ing function. Moreover, as the profile of the temperature in the radia-
tive case indicates (see [53]), Θ̃−

x (1) is positive, whereas Θ̃+
x (1) is nega-

tive. As a consequence, the two quantities a and b are nonnegative.

Let us simplify a bit more Problem (3.35)-(3.36). For this purpose,
we observe that, from the third differential equation in (3.35) coupled
with the last two boundary conditions in (3.36), we immediately see
that the function z defined by

z(t, x) = (p−(t, x) + α̃w−(t, x))χ[0,1](x)

+(p+(t, x) + α̃w+(t, x) − ψ(x)F6(v(t, ·), w−(t, ·), p−(t, ·)))χ(1,+∞)(x),
for any t > 0 and any x ∈ [0,+∞), where ψ ∈ C∞

c ((0,+∞)) is any
smooth function such that ψ(1) = 0 and ψ′(1) = 1, satisfies (for any
fixed t) the assumptions of Lemma 3.14 and solves the differential equa-
tion (3.91) with γ = 3α̃2 and

g(t, x) = (3α̃3w−(t, x) + (F−
3 (v(t, x), w−(t, x), p−(t, ·)))(x))χ[0,1](x)

+(3α̃3w+(t, x) + (F+
3 (v(t, ·), w+(t, ·), p+(t, ·)))(x))χ(1,+∞)(x)

+F6(v(t, ·), w−(t, ·), p−(t, ·)) (ψ′′(x) + 2x−1ψ′(x) − 3α̃2ψ(x)
)
χ[1,+∞)(x)

:= 3α̃3w(t, x) + (F7(v(t, ·), w±(t, ·), p±(t, ·)))(x), (3.42)
for any t > 0 and any x ∈ [0,+∞). Therefore,

p±(t, x) =
√

3α̃2

2x

∫ +∞

x
ye

√
3α̃(x−y)w(t, y)dy

−
√

3α̃2

2x

∫ +∞

0
ye−

√
3α̃(x+y)w(t, y)dy +

√
3α̃2

2x

∫ x

0
ye

√
3α̃(y−x)w(t, y)dy

−α̃w±(x) + ψ±(x)F6(v(t, ·), w−(t, ·), p−(t, ·))
+

1
2
√

3α̃x

∫ +∞

x
ye

√
3α̃(x−y)(F7(v(t, ·), w±(t, ·), p±(t, ·)))(y)dy

− 1
2
√

3α̃x

∫ +∞

0
ye−

√
3α̃(x+y)(F7(v(t, ·), w±(t, ·), p±(t, ·)))(y)dy

+
1

2
√

3α̃x

∫ x

0
ye

√
3α̃(y−x)(F7(v(t, ·), w±(t, ·), p±(t, ·)))(y)dy

:= (Γ±(w−(t, ·), w+(t, ·)))(x)
+(F±

8 (v(t, ·), w−(t, ·), w+(t, ·), p−(t, ·), p+(t, ·)))(x), (3.43)
for any t > 0 and any x ∈ I±1 , where Γ± is the linearization at zero
of the operator in the right-hand side of (3.43), ψ− = 0, ψ+ = ψ and
w = w−χ[0,R) +w+χ[R,+∞). Replacing (3.43) in the first two differential
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equations in (3.35), and writing u := (v,w−, w+), we obtain the follow-
ing system for t > 0⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dtu(t, ·) = Au(t, ·) + F(u(t, ·), p−(t, ·), p+(t, ·)),
B(u(t, ·)) = G(u(t, ·)),
3α̃2p±(t, x) = p±xx(t, x) + 2x−1p±x (t, x)

+α̃
(
w±

xx(t, x) + 2x−1w±
x (t, x)

)
+(F±

3 (v(t, ·), w±(t, ·), p±(t, ·)))(x), x ∈ I±1 ,

B4+j(w−, w+, p−, p+) = j F6(v(t, ·), w−(t, ·), p−(t, ·)), j = 0, 1,
(3.44)

where

(Au)(x) =
(
vxx(x) + 2x−1vx(x)

Le
,

w−
xx(x) + 2x−1w−

x (x) + β̃(Γ−(w−, w+))(x),

w+
xx(x) + 2x−1w+

x (x) + β̃(Γ+(w−, w+))(x)
)
, (3.45)

F(u, p−, p+) = (F1(u),F−
2 (u, p−, p+),F+

2 (u, p−, p+)),

G(u) = (0,G1(u),G2(u))

and

F1(u) = F1(v), F±
2 (u) = F̂±

2 (v,w±) + β̃F±
8 (v,w−, w+, p−, p+),

(3.46)

G1(u) = F4(v), G2(u) = F5(v,w−, w+) (3.47)

and the operator B is given by (3.37)-(3.39).

Remark 3.2.4. In view of the formulas (3.12), it is immediate to check
that the stability/instability of the steady state solution (Y,Θ, U) of
Problem (3.5)-(3.7) is equivalent to the stability/instability of the null
solution of Problem (3.35)-(3.36).

3.3. The linear problem
In this section we study the main properties of the linearized prob-

lem (at (u, p−, p+) = (0, 0, 0)) associated with Problem (3.44), i.e. with
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the problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Dtu(t, ·) = Au(t, ·) + f(t, ·), t > 0,

B(u(t, ·)) = (0, g1(t, ·), g2(t, ·)), t > 0,

3α̃2p±(t, x) = p±xx(t, x) + 2x−1p±x (t, x)
+α̃

(
w±

xx(t, x) + 2x−1w±
x (t, x)

)
+ f±3 (t, x), t > 0, x ∈ I±1 ,

B4+j(w−, w+, p−, p+) = j g3(t, ·), t > 0, j = 0, 1,
(3.48)

where f = (f1, f
−
2 , f

+
2 ), f−3 , f+

3 and gj (j = 1, 2, 3) are given (continu-
ous) functions.

Since Problem (3.48) is easily decoupled, taking Lemma 3.14 into
account, it is immediate to check that we can limit ourselves to study
the linear problem{

Dtu(t, ·) = Au(t, ·) + f(t, ·), t > 0,

B(u(t, ·)) = (0, g1(t, ·), g2(t, ·)), t > 0.

Analyzing the realization of the operator A in X . Part I: a gen-
eration result

In this subsection, we prove that the realization A of the operator A
in (3.45) in X , with domain D(A) =

{
u ∈ X 0

2 : Au ∈ X , B(u) = 0
}

,
generates an analytic semigroup.

THEOREM 3.5. For any α > 0 and any β, a, b ≥ 0, the operator
(A,D(A)) generates an analytic semigroup in X . Moreover, σ(A) ⊃ (−∞, 0]
and, if (α, β,R) satisfies the condition

1 +
(2Rμ + 1) exp(−2Rμ) − 1

2μ3
αβF ′(Θ(R)) > 0, (3.49)

where μ =
√

3α2 + αβ, then σ(A) contains positive real eigenvalues and
σ(A) ∩ {λ ∈ C : Reλ > 0} consists of eigenvalues of A. Any of such
eigenvalues admits a corresponding eigenfunction u = (v,w−, w+) ∈ D(A)
with v never vanishing in I+

1 .

PROOF. Here, we limit ourselves to proving that the operator
(A,D(A)) generates an analytic semigroup in X . We postpone to Ap-
pendix 3.8 the proofs of the properties of the spectrum of A, since they
are rather technical. Of course, to prove that A generates an analytic
semigroup in X , it suffices to consider the case when β = 0. Indeed,
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3. INSTABILITY IN A FLAME BALL PROBLEM

the general case then will follow by a straightforward perturbation ar-
gument.

For notational convenience, throughout the proof, we denote by C
positive constants, independent of λ, f and u, which may vary from
line to line. We stress that the functions we deal with throughout this
proof are complex-valued functions.

Let us fix λ ∈ C. We are going to show that, if Reλ is sufficiently
large, then, for any f = (f1, f

−
2 , f

+
2 ) ∈ X , the equation λu − Au = f

admits a unique solution in D(A) and

‖u‖∞ ≤ C|λ|−1‖f‖∞. (3.50)

According to [39, Proposition 2.1.11], this will imply that (A,D(A))
generates an analytic semigroup in X .

Let us begin by solving the differential equations for v, w− and w+

in (3.48). Arguing as in the proof of Lemma 3.14, it is immediate to
check that, if λ /∈ (−∞, 0], the more general solution u = (v,w−, w+) in
X2 of the differential equations in (3.48) is given by

v(x) =
(

1
2
√
λLe

∫ +∞

x
te−

√
λLe tf1(t)dt

)
e
√

λLe x

x

+
(
c+

1
2
√
λLe

∫ x

1
te

√
λLe tf1(t)dt

)
e−

√
λLe x

x
, x ∈ I+

1 ,

w−(x) =
1

2
√
λx

∫ 1

0
te

√
λ (x+t)f−2 (t)dt − 1

2
√
λx

∫ x

0
te

√
λ (x−t)f−2 (t)dt

− 1
2
√
λx

∫ 1

x
te

√
λ (t−x)f−2 (t)dt − 2

sinh(
√
λx)

x
d−, x ∈ I−1 ,

w+(x) =
1

2
√
λ

(∫ +∞

x
te−

√
λ tf+

2 (t)dt
)
e
√

λ x

x

+
(
d+ +

1
2
√
λ

∫ x

1
te

√
λ tf+

2 (t)dt
)
e−

√
λ x

x
, x ∈ I+

1 ,

c, d−, d+ being arbitrary complex constants.
Let us now impose the boundary conditions in (3.48). Since we are

interested in proving (3.50) for λ ∈ C with sufficiently large real parts,
we can assume that

√
λLe �= 1.

In such a case, the condition B3(v,w−, w+) = 0 allows us to
uniquely write the constant c in terms of d− and d+. So, finally, we
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get

v(x) =
e
√

λLe x

2x
√
λLe

∫ +∞

x
te−

√
λLe tf1(t)dt +

e−
√

λLe x

2x
√
λLe

∫ x

1
te

√
λLe tf1(t)dt

+
(
√
λLe + 1)e(2−x)

√
λLe

2x(
√
λLe − 1)

√
λLe

∫ +∞

1
te−

√
λLe tf1(t)dt

+
Le e

√
λLe

1 −√
λLe

(aw+(1) + bw−(1))
e−

√
λLe x

x
, x ∈ I+

1 . (3.51)

We recall that a and b are defined by (3.41).
To determine the constants d− and d+, we compute the boundary

conditions Bj(v,w−, w+) = 0 (j = 1, 2). A long but straightforward
computation shows that such constants can be uniquely determined if
and only if λ is not a zero of the Evans function E defined by

E(λ, a, b,Le) = −2
√
λ− a(

√
λLe +

√
λ)

1 −√
λLe

+
a(
√
λLe −√

λ)
1 −√

λLe
e−2

√
λ

+
b(
√
λ−√

λLe)
1 −√

λLe
(1 − e−2

√
λ). (3.52)

In such a case,

d− =
1

E(λ, a, b,Le)
×{

−
(

2 +
a(
√

Le + 1)
(1 −√

λLe)
− b(1 −√

Le)
(1 −√

λLe)

)∫ 1

0
t sinh(

√
λ t)f−2 (t)dt

+

√
λ− 1 − a

(
√
λLe − 1)Le

(∫ +∞

1
te−

√
λLe tf1(t)dt

)
e(

√
λLe−√

λ)

+
1 −√

λLe + a

1 −√
λLe

∫ +∞

1
te−

√
λ tf+

2 (t)dt
}

and
d+ =

1
E(λ, a, b,Le)

×{
− 2

1 −√
λLe − b

1 −√
λLe

∫ 1

0
t sinh(

√
λ t)f−2 (t)dt

+
[ √

λ+ 1
Le (

√
λLe − 1)

e(
√

λLe+
√

λ) +

√
λ− 1

Le (
√
λLe − 1)

e(
√

λLe−√
λ)

+
2b

Le (1 −√
λLe)

e
√

λLe sinh(
√
λ)
] ∫ +∞

1
te−

√
λLe tf1(t)dt
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+
(

1 +
(
√

Le + 1)e2
√

λ + 1−√
Le

2(1 −√
λLe)

a+
(
√

Le + 1)(e2
√

λ − 1)
2(1 −√

λLe)
b

)
×
∫ +∞

1
te−

√
λ tf+

2 (t)dt
}
.

Let us now estimate the sup-norm of the functions v, w− and w+.
To begin with, we observe that, for any fixed a, b and Le, |E(λ, a, b,Le)|
behaves as 2|λ|1/2 as |λ| tends to +∞ and Reλ is positive. Therefore,
there exists M = M(a, b,Le) > 0 such that the function E(·, a, b,Le)
does not admit roots with real part greater than M and, consequently,
the functions v, w− and w+ are well defined for such λ’s.

To estimate the function v in (3.51), we observe that a straightfor-
ward computation shows that

‖v‖∞ ≤
{

1
(Re

√
λLe)2

(
1 +

1
2Re

√
λLe

)

+
1
2
|√λLe + 1|
|√λLe − 1|

(Re
√
λLe) + 1

(Re
√
λLe)3

}
‖f1‖∞

+
Le

|1 −√
λLe|(a |w

+(1)| + b |w−(1)|). (3.53)

Moreover,∣∣∣∣d− − 1√
λ

∫ 1

0
t sinh(

√
λ t)f−2 (t)dt

∣∣∣∣ ≤ C

|λ|e
−Re

√
λ‖f‖X ,

and

|d+| ≤ C

|λ|e
Re

√
λ‖f‖X ,

for any λ ∈ C with sufficiently large real part. Therefore,

|w−(1)| + ‖w+‖∞ ≤ C|λ|−1‖f‖X , (3.54)

for such λ’s. Hence, from (3.53) and (3.54) we deduce that

‖v‖∞ ≤ C|λ|−1‖f‖X , (3.55)

for any λ ∈ C with sufficiently large real part.
To estimate the sup-norm of w−, we use a slight different technique

based on well-known estimates for the Laplacian in the whole of R
3.

For this purpose, we introduce the function u defined as follows for
x ∈ [0,+∞),

u(x) = w−(x)χ[0,1](x) +
(
w+(x) + (Le)−1v(x)

)
χ(1,+∞)(x). (3.56)
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All the above results show that

u ∈ C1
b ([0,+∞)) ∩ C2([0, 1]) ∩C2

b ([1,+∞)).

Moreover, if we denote by ũ : R
3 → C the function defined by ũ(x) =

u(|x|) for any x ∈ R
3, it is immediate to check that ũ ∈ C1(R3) (since

u′(0) = 0) and ũ ∈W 2,p
loc (R3) for any p ∈ [1,+∞). Moreover, ũ solves the

elliptic equation λũ− Δũ = f̃λ, in R
3, where the function f̃λ ∈ L∞(R3)

is defined by
f̃λ(x) = f−2 (|x|)χB(0,1)(x)

+
{
f+
2 (|x|) + λ

(
1
Le

− 1
)
v(|x|) + f1(|x|)

}
χR3\B(0,1)(x),

for any x ∈ R
3. The estimate (3.55) implies that supx∈R3 |f̃λ(x)| ≤

C‖f‖X , for any λ ∈ C with a sufficiently large real part. Now, [39,
Proposition 2.1.11] shows that

sup
x∈R3

|ũ(x)| ≤ C|λ|−1 sup
x∈R3

|f̃λ(x)| ≤ C‖f‖X ,

for any λ as above. Hence, taking (3.54) into account, we get

‖w−‖∞ ≤ C|λ|−1‖f‖X , (3.57)

for λ ∈ C with sufficiently large real part. Now, from (3.54), (3.55) and
(3.57), we get (3.50). �

The following proposition shows that the set of the parameter α
and β satisfying (3.49) is not empty.

PROPOSITION 3.6. For any choice of a smooth, positive and increasing
function F , and any Yf > 0, Θf > 0, there exist positive values of the param-
eters α and β satisfying (3.49).

PROOF. We split the proof into three steps. For notation conve-
nience, throughout the proof, we denote by C positive constants, in-
dependent of α, that may vary from line to line

Step 1. Here, we prove that, ifR = R(α, β) is an arbitrary solution of
(3.9), then the function Θ(R) stays bounded when (α, β) tends to (0, 0).
Indeed, from (3.3) it follows that if R = R(α, β) is a solution of (3.9),
then Θ(R) satisfies the estimate

Θ(R) ≤ Yf

Le

(
sinh(z)
zez

+ 1
)

+ Θf , (3.58)

where z = (3α2 + αβ)1/2R(α, β). A straightforward computation now
shows that the function defined by the right-hand side of (3.58) is
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bounded in R and this, of course, implies that Θ(R) is bounded itself
by a positive constant which is independent of α, β and of the solution
of (3.9) corresponding to such a choice of (α, β).

Step 2. Now, we show that if we take β = ακ for some κ > 5/2,
then any function (α, β) �→ R(α,ακ), implicitly defined through (3.9),
is such that

lim
α→0

(3α2 + ακ+1)1/2R(α,ακ) = 0.

Indeed, if this was not the case, up to a subsequence we can assume
that the previous limit (say L) belongs to (0,+∞]. This, in particular,
would imply that R(α,ακ) blows up as α tends to 0. It follows that the
modulus of the term

ακYf (1 − 2(3α2 + ακ+1)1/2R− e−2(3α2+ακ+1)1/2R)
2α2(3α + ακ)3/2LeR

(3.59)

could be estimated by

C
ακ−1/2(3α2 + ακ+1)R2

(3α2 + ακ+1)3/2R
= C

ακ−1/2

3α2 + ακ+1
(3α2 + ακ+1)1/2R

≤ 2CLακ−5/2,

if L ∈ (0,+∞) and α is sufficiently small. Therefore, taking the limit as
α tends to 0 in both the sides of (3.9), gives

F

(
Yf

Le
+ Θf

)
= 0, (3.60)

which, combined with the positivity of F , leads us to a contradiction.
Similarly, we can argue when L = +∞. Indeed, in such a case, we

can estimate (3.59) by

C
ακ−1/2

(3α2 + ακ+1)
≤ Cακ−5/2,

as α tends to 0. As above, this leads us to (3.60).

Step 3. Now, we are almost done. Indeed, since F is a smooth
function, from the above results it follows that the term F ′(Θ(R)) is
bounded uniformly with respect to (α, β) and the particular solution of
(3.9) that we consider. Therefore,

1 +
(2R

√
3α2 + ακ+1 + 1) exp(−2R

√
3α2 + αβ) − 1

2(3α2 + αβ)3/2
αβF ′(Θ(R)) > 0

≥ 1 − C
R2(3α2 + ακ+1)ακ+1

(3α2 + ακ+1)3/2
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≥ 1 − Cακ−2. (3.61)
It follows that, the left-hand side of (3.49) is positive if we take β = ακ

(for some κ > 5/2) and, then, α sufficiently small. �

Analyzing the realization of the operator A in X . Part II: char-
acterization of some interpolation spaces

In this subsection we characterize the interpolation spacesDA(θ/2,∞),
DA(1/2,∞) and DA(1 + θ/2,∞), θ ∈ (0, 1). This characterization will
provide us with a fundamental tool to prove the forthcoming Theorem
3.8.

PROPOSITION 3.7. For any θ ∈ (0, 1) the following characterizations
hold:

DA(θ/2,∞) = {u ∈ Xθ : B1u = 0}, (3.62a)

DA(1 + θ/2,∞) = {u ∈ X 0
2+θ : Bu = 0, B1Au = 0}, (3.62b)

with equivalence of the respective norms. Moreover,{
u ∈ X1 : B1u = 0

} ⊂ DA(1/2,∞), (3.63)

with continuous embedding.

PROOF. The proof we provide is similar to that in [12, Theorem 5.5]
and is based on the method developed in [2] in the case of a single
equation. Throughout the proof, we denote by C positive constants,
independent of u, w, λ, k1, k2 and t, which may vary from line to line.

We begin by proving the inclusion “⊃” in (3.62a), and (3.63). For
this purpose, we fix u = (v,w−, w+) in the space defined by the right-
hand side of (3.62a) (resp. in the left-hand side of (3.63)). Next, we
extend the functions v, w− and w+ to the whole of R with the func-
tions v̂, ŵ− and ŵ+ defined as follows: v̂ is obtained extending w+

by symmetry with respect to the point x = 1, whereas ŵ− is ob-
tained, first extending w− to (−∞, 0] by setting ŵ−(x) = w−(−x), if
x ∈ [−1, 0], and ŵ−(x) = ŵ−(−1)max{x + 2, 0}, if x ∈ (−∞,−1], and
then extending the so obtained function by symmetry (with respect
to x = 1) to the whole of R. Finally, ŵ+ is extended to R by setting
ŵ+(x) = 2ŵ−(2−x)− ŵ+(2−x)−2(Le)−1v(2−x) for any x ∈ (−∞, 1].
By construction, v̂, ŵ−, ŵ+ belong to Cθ

b (R) and

‖v̂‖Cθ
b (R) + ‖ŵ−‖Cθ

b (R) + ‖ŵ+‖Cθ
b (R) ≤ C‖u‖Xθ

.

Now, we regularize the previous three functions by convolution setting

vξ(x) =
∫

R

v̂(x+ ξy)ϕ(y)dy, w±
ξ (x) =

∫
R

ŵ±(x+ ξy)ϕ(y)dy, x ∈ R,
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for any ξ ∈ (0, 1). Here, ϕ ∈ C∞
c (R) is any smooth, positive and even

function, compactly supported in (−1, 1) and such that ‖ϕ‖L1(R) = 1.
As it is immediately seen, the function uξ := (vξ, w

−
ξ , w

+
ξ ) is smooth and

satisfies B1uξ = 0 for any ξ ∈ (0, 1). Moreover, the following estimates
are satisfied:

‖uξ−u‖X ≤ Cξθ‖u‖Xθ
, ‖uξ‖X1 ≤ C

ξ1−θ
‖u‖Xθ

, ‖uξ‖X2 ≤ C

ξ2−θ
‖u‖Xθ

,

(3.64)
for any ξ ∈ (0, 1) and some positive constant C , independent of ξ. Fi-
nally, vξ and w+

ξ vanish as x tends to +∞ and, since ŵ− is even in
[−1, 1], then Dxw

−
ξ (0) = 0 for any ξ ∈ (0, 1). This implies that the

function ((vξ)∣∣[1,+∞)
, (w−

ξ )∣∣[0,1]
, (w+

ξ )∣∣[1,+∞)
) belongs to D(A).

Let now λ0 > max{1, R2} and M be two positive constants such
that

‖AR(λ,A)‖X ≤M, λ > λ0. (3.65)

Taking (3.64) and (3.65) into account, it is immediate to check that

‖λθ/2AR(λ,A)u‖X
≤ ‖λθ/2AR(λ,A)(u − uλ−1/2)‖X + ‖λθ/2AR(λ,A)uλ−1/2‖X

≤Mλθ/2‖u − uλ−1/2‖X + ‖λθ/2AR(λ,A)uλ−1/2‖X
≤MC‖u‖Xθ

+ ‖λθ/2AR(λ,A)uλ−1/2‖X . (3.66)

To estimate the X -norm of the function

v := AR(λ,A)uλ−1/2 = −uλ−1/2 + λR(λ,A)uλ−1/2 ,

we observe that such a function solves the problem{
λv −Av = Auλ−1/2 ,

Bv = (0,−B2uλ−1/2 ,−B3uλ−1/2).
(3.67)

Hence, it suffices to show that any solution w ∈ X 0
2 of the problem{

λw −Aw = f ,

Bw = (0, k1, k2),
(3.68)

where f ∈ X and k1, k2 ∈ R, satisfies, for λ large, the estimate

λ‖w‖X ≤ C
{‖f‖X + λ1/2(|k1| + |k2|)

}
. (3.69)
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Indeed, applying (3.69) to Problem (3.67) and taking (3.64) into account,
we get

λ‖v‖X ≤ C
{‖Auλ−1/2‖X + λ1/2(|B2uλ−1/2 | + |B3uλ−1/2 |)

}
≤ C

{‖uλ−1/2‖X2 + λ1/2‖uλ−1/2‖X1

}
≤ Cλ1−θ/2‖u‖Xθ

.

Therefore, we can complete the estimate (3.66), obtaining that

λθ/2‖AR(λ,A)u‖X ≤ C‖u‖Xθ
, (3.70)

for λ large. Now, (3.70) implies that u ∈ DA(θ/2,∞) and (see [2]),

‖u‖DA(θ/2,∞) ≤ C‖u‖Xθ
.

The inclusion “⊃” in (3.62a), and (3.63) follow. So, to conclude this part
of the proof, let us check the estimate (3.69). We begin by proving it
in the case when β̃ = 0. For notational convenience we denote by A0

the operators A corresponding to β̃ = 0. Arguing as in the proof of the
quoted theorem, it is not an hard task to show that the (unique) solution
to Problem (3.68) (with A being replaced with A0) which belongs to X 0

2
is given by w = R(λ,A0)f + z, for λ real and sufficiently large, where
z = (z1, z−2 , z

+
2 ) is defined by

z1(x) =
(a+ b)Le (1 − e−2

√
λ)k1 − 2

√
λk2

(1 −√
λLe)E(λ)

· e
−√

λLe(x−1)

x
, (3.71)

for any x ∈ I+
1 ,

z−2 (x) = − 2
E(λ)

sinh(
√
λx)

x
e−

√
λ

×
(

1 −√
λLe + a

(
√
λLe − 1)

k1 +

√
λLe −√

λ

(
√
λLe − 1)Le

k2

)
, (3.72)

for any x ∈ I−1 ,

z+
2 (x) =

2
E(λ)

e−
√

λx

x
(3.73)

×
(

(b− 1 +
√
λLe) sinh(

√
λ)

(
√
λLe − 1)

k1 −
√
λLe sinh(

√
λ) +

√
λ cosh(

√
λ)

(
√
λLe − 1)Le

k2

)
for any x ∈ I+

1 , where E(λ) = E(λ, a, b,Le) is given by (3.52). Now,
from (3.50), (3.71)-(3.73) and recalling that |E(λ)| behaves like λ−1/2 as
λ tends to +∞, we immediately obtain (3.69) in this case.
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To prove the estimate (3.69) in the general case when the operator
A0 is replaced with the operator A, it suffices to observe that the so-
lution to Problem (3.68) is a fixed point of the operator Λ : X → X 0

2
defined by

Λ(u) = R(λ,A0)f − β̃R(λ,A0)(0,Γ−(w−, w+),Γ+(w−, w+)) + z,

where u = (v,w−, w+), the function z is as above and the operators Γ−,
Γ+ are given by (3.43). A straightforward computation shows that Λ
is a contraction in X , provided that λ is sufficiently large. Therefore,
for such λ’s, Problem (3.68) admits a unique solution w ∈ D(A) and
satisfies

‖w‖X ≤ ‖R(λ,A0)f‖X
+β̃‖R(λ,A0)(0,Γ−(w−, w+),Γ+(w−, w+))‖X + ‖z‖X

≤ C

λ
‖f‖X +

1
2
‖u‖X +

C√
λ

(|k1| + |k2|),
from which the estimate (3.69) follows immediately.

Now, we check the inclusion “⊂” in (3.62a). Since X ⊂ C0 :=
Cb([1,+∞))×C([0, 1])×Cb([1,+∞)) and D(A) ⊂ C2 := C2

b ([1,+∞))×
C2([0, 1])×Cb([1,+∞)) with continuous embedding, from a general re-
sult in interpolation theory (see, e.g. [51]), it follows that DA(θ/2,∞) ⊂
(C0, C2)θ/2,∞. Now, observing that (X1 ×X2, Y1 × Y2) = (X1, Y1)θ,∞ ×
(X2, Y2)θ,∞, with equivalence of the corresponding norms, for any
quadruplet of Banach spaces Yi ⊂ Xi (i = 1, 2) (see again [51]), we
can easily show that

DA(θ/2,∞) ⊂ (Cb([1,+∞)), C1
b ([1,+∞)))θ,∞×(Cb([0, 1]), C1

b ([0, 1]))θ,∞
×(Cb([1,+∞)), C1

b ([1,+∞)))θ,∞
= Cθ

b ([1,+∞)) × Cθ
b ([0, 1]) × Cθ

b ([1,+∞)),
with equivalence of the corresponding norms, where the last equality
follows from [39, Theorem 1.2.17]. Moreover, since DA(θ/2,∞) is con-
tained in the closure (with respect to the X -norm) of the space X2, it
follows that, if u = (v,w−, w+) belongs to DA(θ/2,∞), then B1u = 0
and limx→+∞ v(x) = limx→+∞w+(x) = 0. The inclusion “⊂” in (3.62a)
now follows.

To conclude the proof of the proposition, let us check the set equal-
ity (3.62b). Showing the embedding “⊃” is immediate in view of
(3.62a), observing that, if z ∈ C2+θ([0, 1]), then the function x �→
zx(x)/x belongs toCθ([0, 1]) and itsCθ-norm is bounded from above by
C‖z‖C2+θ([0,1]). To prove the other inclusion, we fix u ∈ DA(1 + θ/2,∞)
and write u = R(λ,A)(λu − Au) for some λ sufficiently large. Taking
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(3.62a) into account, it is immediate to check that the function λu−Au
belongs to Xθ and

‖λu −Au‖Xθ
≤ C‖u‖DA(1+θ/2,∞).

Now, arguing as in the proof of the estimate (3.94), it is easy to check
that the function u belongs to X2+θ and

‖u‖X 0
2+θ

≤ C‖u‖DA(1+θ/2,∞).

Therefore, the inclusion “⊂” in (3.62b) follows. This completes the
proof. �

Solving the nonhomogeneous linear Problem (3.48)

Now, arguing as in the proof of [39, Theorem 5.1.18(iii)] and taking
Proposition 3.7 and Lemma 3.15 into account, the following theorem,
which is the main result of this subsection, can be proved.

THEOREM 3.8. Fix T > 0, α̃, β̃, a, b ≥ 0 and θ ∈ (0, 1), and suppose
that f ∈ Xθ/2,θ(0, T ), u0 ∈ X 0

2+θ and g1, g2 ∈ C(1+θ)/2([0, T ]). Further,
assume that the following compatibility conditions hold:

Bu0 = (0, g1(0), g2(0)), B1(Au0 + f(0, ·)) = 0. (3.74)

Then, Problem (3.48) admits a unique solution u ∈ X1+θ/2,2+θ(0, T ). The
function u can be represented by

u(t, ·) = etAu0 +
∫ t

0
e(t−s)A

(
f(s, ·) + AN (g1(s), g2(s))

)
ds

−A
∫ t

0
e(t−s)AN (g1(s), g2(s))ds, (3.75)

for any t ∈ (0, T ], where N (c, d) = M(0, c, d, 0) for any c, d ∈ R, and M
is the lifting operator defined in Lemma 3.15. Moreover, there exists a positive
constant C0, independent of u0, f , g1 and g2, such that

‖u‖X1+θ/2,2+θ(0,T ) ≤ C0

{‖u0‖X2+θ
+ ‖f‖Xθ/2,θ(0,T )

+‖g1‖C(1+θ)/2([0,T ]) + ‖g2‖C(1+θ)/2([0,T ])

}
. (3.76)

3.4. The nonlinear problem
We are now in a position to solve Problem (3.44). For notational con-

venience, throughout this section we denote by p the vector function
p = (p−, p+). In view of the formula (3.43) and Theorem 3.8, under suit-
able assumptions on u0, any solution (u,p) to Problem (3.44), belong-
ing to the space Zθ(0, T ) := X1+θ/2,2+θ(0, T ) × Yθ/2,2+θ(0, T ) (endowed
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3. INSTABILITY IN A FLAME BALL PROBLEM

with the norm ‖(u,p)‖Zθ(0,T ) := ‖u‖X1+θ/2,2+θ(0,T ) + ‖p‖Yθ/2,2+θ(0,T ), for
any (u,p) ∈ Zθ(0, T )) and satisfying the following conditions

u(0, ·) = u0, Dxw
−(t, 0) = 0, t ≥ 0,

is a fixed point of the operator R = (R1,R2) defined by

(R1(u,p))(t, ·) = etAu0

+
∫ t

0
e(t−s)A

{F(u(s, ·),p(s, ·)) + ANG(u(s, ·))}ds
−A

∫ t

0
e(t−s)ANG(u(s, ·))ds,

(R2(u,p))(t, ·) = ((R21(u,p))(t, ·), (R22(u,p))(t, ·))
where

(R21(u,p))(t, ·) = Γ−((R1(u,p))(t, ·)) + F−
8 (u(t, ·),p(t, ·)),

(R22(u,p))(t, ·) = Γ+((R1(u,p))(t, ·)) + F+
8 (u(t, ·),p(t, ·)),

for any t ∈ [0, T ], any u ∈ X1+θ/2,2+θ(0, T ), with a sufficiently small
norm, and any p ∈ Yθ,2+θ(0, T ). Here, the operators Γ−, Γ+, F±

8 , F and
G are given, respectively, by (3.43), (3.46) and (3.47).

If not otherwise specified, throughout this section we assume that
α̃ > 0, β̃, a, b ∈ [0,+∞). To begin with, let us prove the following
lemma.

LEMMA 3.9. There exists ρ̂0 > 0 such that, if u0 ∈ B(0, ρ̂0) ⊂ X 0
2+θ, the

equation r = R2(r,u0) admits a unique solution r ∈ Y2+θ and there exists a
positive constant C , independent of u0, such that

‖r‖Y2+θ
≤ C‖u0‖X2+θ

.

PROOF. Taking (3.94), Lemma 3.16 and the definitions of the op-
erators F±

3 , F6 and F7 into account (see (3.21), (3.35) and (3.42)), it is
immediate to check that R2(·,u0) maps Y2+θ into itself and

‖R2(r2,u0) −R2(r1,u0)‖Y2+θ(0,T )

≤ C1

(‖F7(u0, r2) −F7(u0, r1)‖Yθ

+‖ψ‖C4+θ
b ([1,+∞))|F6(u0, r2) −F6(u0, r1)|)

≤ C2

(‖F3(u0, r2) −F3(u0, r1)‖Yθ

+‖ψ‖C4+θ
b ([1,+∞))|F6(u0, r2) −F6(u0, r1)|)
≤ C3‖u0‖X2+θ

‖r2 − r1‖Y2+θ
,
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for any r1, r2 ∈ Y2+θ and some positive constants C1, C2 and C3, in-
dependent of u0, r1 and r2. It follows that R2(·,u0) is a contraction in
Y2+θ provided that ρ̂0 < max{L−1

2 , Yf}. This completes the proof. �

We can now prove the main result of this section. For this purpose
we denote by p0(u0) the fixed point of the operator r �→ R2(r,u0) pro-
vided by the previous lemma.

THEOREM 3.10. For any T > 0 and any θ ∈ (0, 1), there exists ρ0 =
ρ0(T ) such that, for any u0 ∈ B(0, ρ0) ⊂ X 0

2+θ satisfying the following
compatibility conditions:

Bu0 = G(u0), B1(Au0 + F(u0,p0(u0))) = 0, (3.77)

Problem (3.44) admits a unique solution (u,p) ∈ Zθ(0, T ) such that u(0, ·) =
u0. Moreover, there exists a positive constant C > 0, independent of u0, such
that

‖(u,p)‖Zθ(0,T ) ≤ C‖u0‖X2+θ
. (3.78)

PROOF. We limit ourselves to proving that there exist ρ0, ρ > 0,
with ρ0 ≤ ρ̂0 (where ρ̂0 is as in the statement of Lemma 3.9) such that,
for any u0 ∈ B(0, ρ) ⊂ X 0

2+θ satisfying (3.77), Problem (3.44) admits a
unique solution (u,p) ∈ B(0, ρ) ⊂ Zθ(0, T ). Then, a standard argu-
ment will show that the previous one is, actually, the unique solution
to Problem (3.44) belonging to Zθ(0, T ). For more details we refer the
reader, e.g., to [37, Theorem 4.2].

Throughout the proof, we denote by Kj (j ∈ N) positive functions
of ρ, which may depend also on T , but are independent of u0 and u,
such that limρ→0Kj(ρ) = 0. Similarly, we denote by Cj (j ∈ N) positive
constants, independent of u0 and u.

We are going to show that the operator R is a contraction in the
closed set

B(0,u0, ρ) =
{
(u,p) ∈ Zθ(0, T ) :

‖(u,p)‖Zθ(0,T ) ≤ ρ, u(0, ·) = u0, p(0, ·) = p0(u0)
}·

For this purpose, we observe that a long but straightforward com-
putation and Lemmas 3.14 and 3.16 show that, if ρ < 3−1Yf , then
F(u,p) ∈ Xθ/2,θ for any (u,p) ∈ B(0,u0, ρ) and

‖F(u,p)‖Xθ/2,θ (0,T ) ≤ K1(ρ)‖(u,p)‖Zθ (0,T ). (3.79)

Similarly,

‖F(u2,p2) −F(u1,p1)‖Xθ/2,θ(0,T ) ≤ K2(ρ)‖(u2,p2) − (u1,p1)‖Zθ(0,T ),

(3.80)
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for any (u1,p1) and any (u2,p2) ∈ B(0,u0, ρ).
To estimate the function G, we first show that X1+θ/2,2+θ(0, T ) is

embedded in C(1+θ)/2([0, T ];X1) and

‖u‖C(1+θ)/2([0,T ];X1)
≤ C1‖u‖X1+θ/2,1+θ(0,T ), u ∈ X1+θ/2,2+θ(0, T ).

(3.81)
Once (3.81) is proved, it is immediate to show that

G(u) ∈ C(1+θ)/2([0, T ]) × C(1+θ)/2([0, T ]),

for any u ∈ B(0, ρ) ⊂ X1+θ/2,2+θ(0, T ) and

‖G(u2) − G(u1)‖C(1+θ)/2([0,T ])2 ≤ K3(ρ)‖u2 − u1‖X1+θ/2,2+θ(0,T ), (3.82)

for any u1,u2 ∈ B(0, ρ) ⊂ X1+θ/2,2+θ(0, T ), (j = 1, 2).
To prove (3.81) we can take advantage of [39, Lemma 5.1.1]. To

apply the quoted lemma to our situation, we just need to show that
X1 ∈ J(1−θ)/2(Xθ,X2+θ). This can be done easily observing that C1

b (I) ∈
J(1−θ)/2(Cθ

b (I), C2+θ
b (I)) for any closed interval I ⊂ R (see e.g. [39,

Proposition 1.1.3]). Hence, C1 ∈ J(1−θ)/2(Cθ, C2+θ). Here, for any γ ≥ 0,
Cγ = Cγ

b ([1,+∞))×Cγ([0, 1])×Cγ
b ([1,+∞)) (endowed with the product

norm). The claim now follows, observing that the norms of Xγ and Cγ

(γ = θ, 1, 2 + θ) coincide.
Since, by (3.77), the triplet (u0,F(u,p0(u0)),G(u0)) satisfies the

compatibility conditions (3.74), Theorem 3.8 and the estimates (3.79)
and (3.82) show that the function R1(u,p) belongs to X1+θ/2,2+θ(0, T )
and

‖R1(u,p)‖X1+θ/2,2+θ(0,T )

≤ C0

(‖u0‖X2+θ
+ ‖F(u,p)‖Xθ/2,θ (0,T ) + ‖G(u,p)‖C(1+θ)/2([0,T ])2

)
≤ C0

(‖u0‖X2+θ
+K4(ρ)‖(u,p)‖Zθ(0,T )

)
, (3.83)

for any (u,p) ∈ B(0,u0, ρ), where C0 is the constant in (3.76). The
same argument, applied to the triplet (0,F(u2,p2)−F(u1,p1),G(u2)−
G(u1)), and the estimates (3.80) and (3.82) show that

‖R1(u2,p2) −R1(u1,p1)‖X1+θ/2,2+θ(0,T )

≤ K5(ρ)‖(u2,p2) − (u1,p1)‖Zθ(0,T ), (3.84)

for any (uj ,pj) ∈ B(0,u0, ρ), (j = 1, 2).
As far as the function R2 is concerned, we observe that Lemma

3.14 and the estimate (3.83) imply that R2(u,p) belongs to Y0,2+θ(0, T ).
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Moreover,

‖R2(u,p)‖Y0,2+θ(0,T ) ≤ L2

(‖R1(u,p)‖X0,θ(0,T ) + ‖F8(u,p)‖Y0,θ(0,T )

)
≤ C2

(‖u0‖X2+θ
+K6(ρ)‖(u,p)‖Zθ (0,T )

)
and

‖(R2(u,p))(t, ·) − (R2(u,p))(s, ·)‖Y2

≤ L1

(‖(R1(u,p))(t, ·) − (R1(u,p))(s, ·)‖X
+‖F8(u(t, ·),p(t, ·)) −F8(u(s, ·),p(s, ·))‖X

)
≤ K7(ρ)‖(u,p)‖Zθ (0,T )|t− s|θ/2,

for any t, s ∈ [0, T ], where the constants L1 and L2 are given by (3.93)
and (3.94). Therefore,

‖R2(u,p)‖Yθ,2+θ(0,T ) ≤ C3

(‖u0‖X2+θ
+K8(ρ)‖(u,p)‖Zθ(0,T )

)
.

Similarly, taking (3.84) into account, we get

‖R2(u2,p2) −R2(u1,p1)‖Yθ/2,2+θ(0,T )

≤ K9(ρ)‖(u2,p2) − (u1,p1)‖Zθ(0,T ), (3.85)

for any (uj ,pj) ∈ B(0,u0, ρ), (j = 1, 2). Now, from the estimates (3.83)-
(3.85) it follows immediately that the operator R is a contraction in
B(0,u0, ρ) provided that{

ρ0 < min{ρ, ρ̂0}, ρ < Yf ,(
C0 + C3

)
ρ0 +

(
C0K4(ρ) + C3K8(ρ)

)
ρ ≤ ρ, K5(ρ) +K9(ρ) ≤ 1

2 .
(3.86)

This completes the proof. �

Remark 3.4.11. We stress that there exist initial data u0 = (v,w−, w+) ∈
X2+θ which satisfy the compatibility conditions (3.77). For instance, in
the case when v(1) = vx(1) = vxx(1) = 0 the nonlinear terms Fj(u0,p)
(j = 1, 2, 3) identically vanish for any choice of p ∈ Y2+θ. Therefore,
(3.77) reduces to Bu = G(u0) and B1Au0 = 0, which is satisfied, for
instance, when w−(1) = w+(1) = 0 and w−

x (1) = w+
x (1) = w−

xx(1) =
w+

xx(1).
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3.5. Instability results
In this section, the main body of the paper, we prove the instability

results. We recall that, according to Remark 3.2.4, solutions of Prob-
lem (3.35)-(3.36) close to 0 correspond to solutions of Problem (3.5)-
(3.7) close to the steady-state solution (Θ, Y, U,R) provided by Theo-
rem 3.3. Therefore, to prove the instability of the steady state solution
(Y,Θ, U,R), with respect to smooth (radial) perturbations, we just need
to prove the instability of the trivial solution of Problem (3.35)-(3.36).

As Theorem 3.5 shows, in the case when the parameters a, b, α̃, β̃
satisfy (3.49), the spectrum of the operatorA contains points with posi-
tive real parts. The difficulty of having a complete analysis of the Evans
function (i.e. of the set of the eigenvalues of the operator A), prevents
us from applying the Linearized Stability Principle (see e.g. [39, Section
9.1.1]) to prove our results 1. To overcome this problem we will show
that the argument in [12, Section 5] can be adapted to our situation.
Such an argument is a bit more technical than the Linearized Stabil-
ity Principle, but it provides stronger results, see the forthcoming Main
Theorem. This is another reason explaining why we choose to follow
this way to prove our instability results.

The main tool we use to prove the instability results is provided by
the following proposition from [12, Theorem 4.6]. To state it, we need to
introduce some quantities. Let X, η, K and {Tn} be, respectively a real
Banach space, two positive numbers and a family of operators defined
in B(0, η) with the following property: there exist M ∈ L(X) and two
constants L > 0, p > 1 such that

‖Tn(x) −Mx‖ ≤ L‖x‖p, x ∈ B(0, η).

Moreover, assume that the spectral radius r of the operatorM is greater
than 1 and is an eigenvalue of M . Finally, let K and σ be positive con-
stants such that

‖Mn‖L(X) ≤ K

(
rp + r

2

)n

, n ∈ N, (3.87a)

σ =
1
2

min
{
η

2
,

(
rp − r

2p+2LK

)1/(p−1) }
. (3.87b)

PROPOSITION 3.12. Let {Tn}, M and σ be as above. Then, for any δ ∈
(0, η), there exists u ∈ X with the following properties: there exist N ∈ N

1Indeed, since the subset of σ(A) with positive real part is, a priori, not a spec-
tral set (and it does not contain any spectral set), there is no hope of constructing an
unstable manifold. This difficulty arises typically in problems in unbounded domains.
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(depending on δ) and x0 ∈ B(0, δ) ⊂ X, such that the sequence xn+1 =
Tn(xn), is well defined for any n ≤ N − 1 and x′(xN ) ≥ σ|x′(u)|p/(p−1)/2
for any operator x′ ∈ L(X,R) such that |x′(u)| �= 0 and ‖x′‖ ≤ 1.

In order to apply Proposition 3.12 to our situation, let us now define
the operator P ∈ L(X 0

2+θ) by setting

Pu = u−M(Bu, B1Au), u ∈ X 0
2+θ, (3.88)

where M is the lifting operator defined in Lemma 3.15. By construc-
tion, Pu ∈ X 0

2+θ, BPu = 0 and B1APu = 0, so that Pu ∈ DA(1+ θ/2,∞)
(see (3.63)). Moreover, since P is a projection, then X 0

2+θ = DA(1 +
θ/2,∞) ⊕ (I − P)(X 0

2+θ). It follows that the restriction of the oper-
ator u �→ (Bu, B1Au) to (I − P)(X 0

2+θ) is an isomorphism between
(I − P)(X 0

2+θ) and R
4.

Let us now denote by Iρ the set

Iρ =
{
u ∈ X 0

2+θ :

‖u‖X2+θ
≤ ρ, B(u) = G(u), B1(Au + F(u,p0(u))) = 0

}
,

where the operator p0 is defined before Theorem 3.10, and ρ < Yf .
Of course, Iρ = F−1(0), where the (smooth) function F : B(0, ρ) ⊂
X 0

2+θ → R
4 is given by

F (u) = (B(u) − G(u), B1(Au + F(u,p0(u)))).

Since F ′(0) = (B, B1A), applying the Implicit Function Theorem, it
follows that there exist ρ1, η > 0 and a smooth function Φ : B(0, η) ⊂
DA(1+θ/2,∞) → (I−P)(X 0

2+θ) with Φ′(0) = 0 and such that Iρ1 is the
graph of Φ.

MAIN THEOREM.

THEOREM 3.13. Suppose that the quintuplet (a, b,Le) satisfies (3.49).
Then, the null solution of Problem (3.35)-(3.36) is unstable with respect to
X2+θ-smooth perturbations (θ ∈ (0, 1)) in the following sense: there exists
C > 0 such that for any ρ0 > 0, there exist an initial datum u0 ∈ B(0, ρ0) ⊂
X2+θ and N ∈ N such that the solution (u,p) of Problem (3.35)-(3.36) exists
(at least) in the time domain [0, N ] and ‖Pu(N, ·)‖X ≥ C . In the particular
case when a, b �= 0, it follows that |v(N, 1)| ≥ C , where, as usually, we have
set u = (v,w−, w+). This, in view of the formulas (3.10) and (3.13), implies
the instability of the front t �→ R(t) in Problem (3.5)-(3.7).

PROOF. To begin with, we observe that, in view of formula (3.13),
we can limit ourselves to proving the instability of the function v(·, 1).
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We fix ρ ≤ min{ρ0(1), ρ1}, where ρ0(1) is given by Theorem 3.10 and
ρ1 is as above. With this choice of ρ it follows that for any u0 ∈ X 0

2+θ,
satisfying the compatibility conditions (3.77), the initial value problem
u(0, ·) = u0 associated with Problem (3.35)-(3.36) admits a unique so-
lution (u(·,u0, 0),p(·,u0, 0)) ∈ X1+θ/2,2+θ(0, 1) × Yθ/2,2+θ(0, 1). Since
Problem (3.35)-(3.36), is autonomous, for any n ∈ N and any u0 ∈
B(0, η) ⊂ DA(1 + θ/2,∞) such a problem with initial condition
u(n− 1, ·) = u0 + Φ(u0) admits a unique solution (u(·,u0 + Φ(u0), n−
1),p(·,u0 + Φ(u0), n − 1)) ∈ X1+θ/2,2+θ(n − 1, n) × Yθ/2,2+θ(n − 1, n),
provided that (1 + ‖Φ‖L(X2+θ))η ≤ ρ0(1). Moreover, for t ∈ [n− 1, n],

(u(t, ·,u0 + Φ(u0), n − 1),p(t, ·,u0 + Φ(u0), n − 1)) =

(u(t− n+ 1, ·,u0 + Φ(u0), 0),p(t − n+ 1, ·,u0 + Φ(u0), 0)).
Therefore, the operator

u0 �→ Tn(u0) = P(u(n, ·,u0 + Φ(u0), n − 1))

= P(u(1, ·,u0 + Φ(u0), 0)),
is well defined in B(0, η) ⊂ DA(1 + θ/2,∞) with values in DA(1 +
θ/2,∞), for any n ∈ N. Here, P is the projection defined in (3.88). Now,
we observe that the Fréchet derivative of Tn at u0 = 0 is the restriction
to DA(1 + θ/2,+∞) of the operator eA. For this purpose, we observe
that, according to the previous remarks and Formula (3.75), it follows
that

u(n, ·,u0 + Φ(u0), n − 1)

= eA(u0 + Φ(u0)) −A

∫ 1

0
e(1−s)AMG(u(s,u0 + Φ(u0), 0))ds

+
∫ 1

0
e(1−s)A

{F(u(s, ·,u0 + Φ(u0), 0),p(s,u0 + Φ(u0), 0))

+AMG(u(s,u0 + Φ(u0), 0))
}
ds,

and
p(n, ·,u0 + Φ(u0), n − 1) =

R2(u(1, ·,u0 + Φ(u0), 0),p(1, ·,u0 + Φ(u0), 0)).
Taking the estimate (3.78) into account and recalling that F , G and Φ
are quadratic near 0 and PeA = eA on DA(1 + θ/2,∞), it is immediate
to check that

‖Tn(u0) − eAu0‖X2+θ
≤

‖P‖L(DA(1+θ/2,∞))‖u(1, ·,u0 + Φ(u0), 0) − eAu0‖X2+θ

≤ L‖u0‖2
X2+θ

, (3.89)
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for any n ∈ N and some positive constant L, independent of u0. Since,
according to Theorem 3.5, the operatorA admits eigenvalues with pos-
itive real part when the condition (3.49) is satisfied, it follows that for
such values of the parameters a, b, α̃, β̃,Le, the spectral radius r of the
operator eA is larger than 1. Moreover, from the spectral mapping the-
orem (see e.g. [39, Corollary 2.3.7]) and Theorem 3.5, we easily deduce
that there exists an eigenvalue λ0 of A such that r = eReλ0 .

We first assume that λ0 > 0. According to Theorem 3.5, there exists
an eigenfunction u = (v,w−, w+) corresponding to λ0 with v never
vanishing on [1,+∞). As a byproduct, u is an eigenfunction of eA

corresponding to eλ. Therefore, we can apply Proposition 3.12 with
x′ being given by x′(z) = z1(1) (z = (z1, z−2 , z

+
2 )). It follows that for

any δ > 0 there exists a function u0 ∈ B(0, δ) ⊂ DA(1 + θ/2,∞),
(u0 = (v0, w−

0 , w
+
0 )) such that the sequence xn = Tn−1(xn−1) is well de-

fined for any n = 0, . . . , N (for some N ∈ N) and |x′(xN )| ≥ σ|v0(1)|/2,
where σ is given by (3.87b) with L being given by (3.89) and K being
defined according to (3.87a). Note that u(1, ·,u0 + Φ(u0), 0) ∈ Iρ1 and
(I − P)u(1, ·,u0 + Φ(u0), 0) = Φ(T0(u0)). By the arguments in the first
part of the proof, it follows that, ifN > 1, x2 is the projection on P(X2+θ)
of the value at t = 2 of the solution of Problem (3.35)-(3.36), with datum
u0 + Φ(u0). Iterating this argument shows that the solution of Problem
(3.35)-(3.36) with datum u0 + Φ(u0) at t = 0 exists at least in the time
domain [0, N ] and xN = Pu(N, ·,u0 + Φ(u0), 0). By Proposition 3.12,
with p = 2, it follows that

‖Pu(N, ·,u0 + Φ(u0), 0)‖X ≥ |vP(N,R,u0 + Φ(u0), 0)|
= |x′(Pu(N, ·,u0 + Φ(u0), 0))| ≥ σ

2
|v0(1)|,

where vP(·,u0 +Φ(u0)) is the first component of the function Pu(·,u0 +
Φ(u0)). Now, the first part of the assertion follows in this case. In partic-
ular, when a and b differ from 0, vP(·,u0 +Φ(u0)) is the first component
of u(·,u0 + Φ(u0)). Hence, the instability of the front follows.

Now, suppose that λ0 ∈ C \R. Arguing as above, it is immediate to
check that there exists an eigenfunction ũ0 = (ṽ0, w̃−

0 , w̃
+
0 ) of the oper-

ator eA (viewed as an operator defined on complex-valued functions)
corresponding to eλ0 , such that ṽ0 never vanishes in I+

1 . Since ũ0 is a
complex-valued function and we are interested in real-valued solutions
to Problem (3.35)-(3.36), we cannot apply directly Proposition 3.12. To
overcome this difficulty, we begin by observing that we can fix N ∈ N

such that N Imλ /∈ π/2 + πZ. Indeed, if mIm(λ) ∈ π/2 + πZ, for some
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m ∈ N, then (m+ 1)Im(λ) /∈ π/2 + πZ, since (m+ 1)Im(λ) ∈ π/2 + πZ

would imply that Im(λ) ∈ πZ and, consequently, mIm(λ) would be-
long to πZ, which is a contradiction. Choosing properly the constant
c ∈ C \ {0}, we can assume that the function û0 := cũ0 = (v̂0, ŵ−

0 , ŵ
+
0 )

satisfies eλ0N v̂0(1) = ξ ∈ R \ {0} and ‖Re(û0)‖X + ‖Im(û0)‖X ≤ 1.
Writing v̂0(1) = e−λ0Nξ and recalling the choice ofN , it is immediate to
check that Re(v̂0(1)) �= 0.

Now, we set u0 = Re(û0) := (v0, w−
0 , w

+
0 ) and take x′ as above.

Of course, u0 �= 0 (since v0(1) �= 0) and u0 ∈ DA(1 + θ/2,∞).
Moreover, since Re(etAû0) = etAu0 for any t > 0, it follows that
Mnu0 = Re(eλ0nû0) for any n ∈ N, so that

|x′(MNu0)| = |eλ0N v̂0(1)| = eNRe λ0 |v̂0(1)|
≥ eNRe λ0 |v0(1)| = eNRe λ0 |x′(u0)| = rN |x′(u0)|.(3.90)

Now, we can apply the proof of Proposition 3.12 (as given in [12]) with
Tn as above and x0 = σ0e

−Reλ Nu0, and taking (3.90) into account, we
can easily show that the sequence xn = Tn−1(xn−1) is well defined for
any n = 1, . . . , N . Moreover, since

|x′(MNu0)| = Re(eλnv̂(1)) = |eλnv̂(1)| = eReλN |v(1)|,
it follows that |x′(xN )| ≥ 2−1σ0|v(1)|. Hence, the conclusion follows as
in previous case. �

3.6. Concluding remarks
Let us make a few remarks on the instability results and relate them

to the bifurcation diagrams obtained in [53] (Figure 3.2 below repro-
duces some bifurcation diagrams for different continuation parame-
ters). Note that the curve in Figure (3.2b) closes for big values of R,
so that the two branches are not disconnected. Let us suppose that the
bifurcation diagram equation (3.9) defines a curve, then one can check
(via the implicit function theorem) that the vertical turning points oc-
cur when the Evans function D(λ) in 0 is 0. Note that D(0) is exactly
the expression on the right-hand side of Condition (3.49). Starting from
R = Yf = 0 in Figure (3.2b) for example, it is positive and remains
positive until the first vertical turning point, which is not visible in Fig-
ure (3.2b). All along this part of the bifurcation curve, there is one un-
stable mode. This suggests that flames with a slightly perturbed larger
R will have R(t) → ∞, while a smaller R gives a flame with either
R(t) → 0 or converging to a solution on the middle branch, provided
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such a solution is stable. In both figures, stability can only occur be-
tween the two vertical turning points. As β → 0 in Figure (3.2a), we
recover the instability of the adiabatic solution.
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Figure 3.2: Bifurcation diagrams with (a) β and (b) Yf/Le as the bifurca-
tion parameters.

3.7. Appendix A: Technical tools
In this appendix, we collect some results which have been used in

the paper.

LEMMA 3.14. Suppose that z ∈ C1
b ([0,+∞))∩C2([0, 1])∩C2

b ([1,+∞))
satisfies the differential equation

γz(x) − zxx(x) − 2x−1zx(x) = g(x), (3.91)

for any x ∈ [0,+∞), some γ > 0 and g ∈ L∞((0,+∞)) such that g ∈
C([0, 1]) ∩Cb([1,+∞)). Then,

z(x) =
1

2
√
γ x

∫ +∞

x
te

√
γ(x−t)g(t)dt − 1

2
√
γ x

∫ +∞

0
te−

√
γ(t+x)g(t)dt

+
1

2
√
γ x

∫ x

0
te

√
γ(t−x)g(t)dt, (3.92)

for any x ∈ [0,+∞). Moreover, z goes to 0 at infinity, if g does, and there
exists a positive constant L1, independent of g, such that

‖z‖C2([0,1]) + ‖z‖C2
b ([1,+∞)) ≤ L1‖g‖L∞((0,+∞)). (3.93)

Further, if f belongs to Cθ([0, 1]) ∩ Cθ
b ([1,+∞)) for some θ ∈ (0, 1),

then z ∈ C2+θ([0, 1]) ∩ C2+θ
b ([1,+∞)) and there exists a positive constant
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L2, independent of g, such that

‖z‖C2+θ([0,1])+‖z‖C2+θ
b ([1,+∞)) ≤ L2

{‖g‖Cθ([0,1])+‖g‖Cθ
b ([1,+∞))

}
. (3.94)

PROOF. Setting z̃(x) = xz(x) for any x > 0, the differential equation
for z in (3.48) transforms into the equation

γz̃(x) − z̃xx(x) = xg(x), x ∈ [0, 1) ∪ (1,+∞),

which can be easily solved. Coming back to z, we deduce that the more
general solution z ∈ C2((0, 1])∩C2

b ([1,+∞)) of the differential equation
(3.91), which vanishes at infinity, is given by

z(x) =
(
d−1 − 1

2
√
γ

∫ x

1
te−

√
γ tg(t)dt

)
e
√

γ x

x

+
(
d−2 +

1
2
√
γ

∫ x

1
te

√
γ tg(t)dt

)
e−

√
γ x

x
,

for any x ∈ (0, 1) and

z(x) =
(

1
2
√
γ

∫ +∞

x
te−

√
γ tg(t)dt

)
e
√

γ x

x

+
(
d+
1 +

1
2
√
γ

∫ x

1
te

√
γ tg(t)dt

)
e−

√
γ x

x
,

for any x ∈ (1,+∞), where d−1 , d+
2 and d+

1 are arbitrary constants. Note
that z vanishes at infinity if g does. Imposing that z is twice continu-
ously differentiable at x = 0 and z′(0) = 0, yields

z(x) =
1

2
√
γ x

(∫ 1

0
te

√
γ (t+x)g(t)dt −

∫ x

0
te

√
γ (x−t)g(t)dt

+
∫ x

1
te

√
γ (t−x)g(t)dt

)
− 2d−2

sinh(
√
λx)

x
, (3.95)

for any x ∈ I−1 . Moreover, imposing the continuity of z and z′ at x = 1,
leads us immediately to the formula (3.92).

Next, a straightforward computation shows the estimate (3.93).
Finally, let us assume that g ∈ Cθ([0, 1]) ∩ Cθ

b ([1,+∞)). Since z
satisfies the differential equation in (3.91), then it is immediate to see
that zxx ∈ Cθ

b ([1,+∞)). So, we just need to show that zxx ∈ Cθ([0, 1]).
For this purpose, it suffices to prove that the second order derivative of
the function in (3.95), where we take d−2 = 0, belongs to Cθ([0, 1]). We
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still denote by z such a function. A straightforward computation and
an asymptotic analysis near x = 0, show that

zxx(x) =
2√
γ

1
x3

∫ x

0
t sinh(

√
γt)g(t)dt − g(x)

+
1

2
√
γ

(∫ x

1
t e

√
γtg(t)dt

)
h1(x)

+
(

1
2
√
γ

∫ 1

0
te

√
γtg(t)dt − 1

2
√
γ

∫ x

0
t e−

√
γtg(t)dt

)
h2(x), (3.96)

for any x ∈ I−1 , where h1 and h2 belong to C1([0, 1]). Therefore, we
can limit ourselves to showing that the first term in the right-hand side
of (3.96) defines a function q ∈ Cθ([0, 1]). For this purpose, for any
x ∈ (0, 1], we split q(x) as follows:

q(x) =
2g(0)
γ3/2

(√
γ

cosh(
√
γx)

x2
− sinh(

√
γx)

x3

)

+
2√
γ

1
x3

∫ x

0
t sinh(

√
γt)(g(t) − g(0))dt. (3.97)

The first term in the right-hand side of (3.97) is smooth in [0, 1], whereas
the latter one is differentiable in [0, 1] and its first-order derivative can
be estimated by C[g]Cθ([0,1])x

θ−1 for any x ∈ (0, 1]. It follows that q
belongs to Cθ([0, 1]) and

‖q‖Cθ([0,1]) ≤ C‖g‖Cθ([0,1]), (3.98)

for some positive constant C . ¿From (3.96) and the estimate (3.98) we
deduce that zxx ∈ Cθ([0, 1]) and satisfies (3.98) (with, possibly, a differ-
ent constant). �

LEMMA 3.15. There exists a lifting operator M : R
4 → X∞ such that

BM(q1, q2, q3, q4) = (q1, q2, q3), B1AM(q1, q2, q3, q4) = q4,

for any (q1, q2, q3, q4) ∈ R
4.

PROOF. To determine the operator M, we fix a quadruplet (qi),
i = 1, .., 4 belonging to R

4 and set M(q1, q2, q3, q4) = (v,w−, w+). Ob-
serving that

Γ+(w−, w+)(1) − Γ−(w−, w+)(1) = α̃(w+(1) − w−(1)),
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where Γ− and Γ+ are the operators defined by (3.43), we easily see that
the triplet (v,w−, w+) needs to solve the linear system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Dj
xw

+(1) −Dj
xw

−(1) + (Le)−1Dj
xv(1) = qj+1, j = 0, 1,

vx(1) + 2v(1) − Le
(
aw+(1) + bw−(1)

)
= q3,

w+
xx(1) + 2w+

x (1) + α̃β̃w+(1) −w−
xx(1) − 2w−

x (1)

−α̃β̃w−(1) + (Le)−2
(
vxx(1) + 2vx(1)

)
= q4.

(3.99)

In the case when a and b differ from 0, we can look for a triplet
(v,w−, w+) of the type

v(x) = 0, w−(x) = w−
0 , x ∈ I−1 ,

w+(x) = (w+
0 + w+

1 (x− 1) + w+
2 (x− 1)2)φ(x), x ∈ I+

1 ,

where φ ∈ C∞
c ((0,+∞)) (j = 1, 2) is any smooth function such that

φ ≡ 1 in a neighborhood of x = 1. A straightforward computation
shows that we can take

w−
0 = −aLe q1 + q3

Le(a+ b)
, w+

0 =
bLe q1 − q3
Le(a+ b)

,

w+
1 = q2, w+

2 =
1
2

(
q4 − α̃β̃q1 − 2

R
q2

)
.

Finally, in the case when a = b = 0, we can look for a solution of the
system (3.99) of the type

v(x) = v0φ(x), x ∈ I+
1 ,

w+(x) = (w+
0 +w+

1 (x− 1) + w+
2 (x− 1)2)φ(x), x ∈ I+

1 ,

w−(x) = 0, x ∈ I−1 .

We find

v0 =
1
2
q3, w+

0 = q1 − 1
2Le

q3,

w+
1 = q2, w+

2 =
1
2

{
q4 − 2q2 − α̃β̃

(
q1 − 1

2Le
q3

)}
·

�

LEMMA 3.16. Suppose that u belongs to C2+θ
b ([1,+∞)), for some θ ∈

(0, 1), and satisfies lim
x→+∞u(x) = 0. Then, lim

x→+∞u′(x) = lim
x→+∞u′′(x) = 0.
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PROOF. The proof follows by an interpolation argument. It suffices
to observe that there exists a positive constant C , independent of v,
such that

‖v‖C2
b ([0,+∞)) ≤ C‖v‖θ/(2+θ)

Cb([0,+∞))‖v‖
2/(2+θ)

C2+θ
b ([0,+∞))

, v ∈ C2+θ
b ([0,+∞)),

(see [39, Proposition 1.1.3]) and to apply such an estimate to the func-
tion x �→ v(x) := u(x+M), letting, then, M go to +∞. �

3.8. Appendix B: Proof of Theorem 3.5 (continued)
In this appendix, we conclude the proof of Theorem 3.5. More pre-

cisely we prove that
(a) for any choice of the parameters a, b, α, β,Le and R, it holds that

σ(A) ⊃ (−∞, 0];
(b) if condition (3.49) is satisfied, then A admits a positive eigenvalue.

Moreover, any λ ∈ σ(A) with positive real part is an eigenvalue
of A. Finally, if λ is an eigenvalue of A with positive real part, then
there exists a corresponding eigenfunction u = (v,w−, w+) such that
v(x) �= 0 for any x ∈ I+

1 .

Proof of (a)

Of course, we can limit ourselves to proving that (−∞, 0) ⊂ σ(A).
For this purpose, we look for nontrivial solutions u ∈ D(A) of the equa-
tion λu −Au = 0. In view of Lemma 3.14, this is equivalent to looking
for nontrivial solutions (v,w−, w+, p−, p+) ∈ X2 × Y2 of the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λv(x) − (Le)−1
(
vxx(x) + 2x−1vx(x)

)
= 0, x ∈ I+

1 ,

λw±(x) − w±
xx(x) − 2x−1w±

x (x) − β̃p±(x) = 0, x ∈ I±1 ,

3α̃2p±(x) − p±xx(x) − 2x−1p±x (x)

−α̃ (w±
xx(x) + 2x−1w±

x (x)
)

= 0, x ∈ I±1 ,

B(v,w±) = 0, Bj(w±, p±) = 0, j = 4, 5,

(3.100)

which satisfy the additional conditionsw−
x (0)=p−x (0) = 0. Arguing as in

the proof of Lemma 3.14, it is immediate to check that the more general
solution of the first differential equation in (3.100) is given by

v(x) = c1
e
√

λLe x

x
+ c2

e−
√

λLe x

x
, x ∈ I+

1 ,

where c1 and c2 are arbitrary complex constants. As far as the other
two equations in (3.100) are concerned, setting, as usually, w±(x) =
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w̃±(x)/x and p(x) = p̃(x)/x, we get the following system of equations
for w± and p±: {

λw̃± − w̃±
xx − β̃p̃± = 0, in I±1 ,

3α̃2p̃± − p̃±xx − α̃w̃±
xx = 0, in I±1 .

(3.101)

By the first equation, we can write p± in terms ofw± and, replacing into
the second equation, we finally get the following fourth order equa-
tions for w− and w+:

w̃±
xxxx(x)−(α̃β̃+λ+3α̃2)w̃±

xx(x)+3α̃2λw̃±(x) = 0, x ∈ I±1 , (3.102)

whose characteristic polynomial is P (μ) = μ4−(α̃β̃+λ+3α̃2)μ2+3α̃2λ.
Let us denote by μj (j = 1, . . . , 4) the four roots of the polynomial P .
Since, λ < 0, we have μj = (−1)j

√
ξ1 (j = 1, 2) and μj = (−1)j

√
ξ2

(j = 3, 4) for some ξ1, ξ2 ∈ R with ξ1 �= ξ2. Now, a straightforward
computation shows that the functions w− and w+ solving the equation
(3.102) (with w−

x (0) = 0) are uniquely determined up to four complex
constants (if Reμj > 0 for j = 1, 3) and up to five complex constants
(if 0 = Reμ3 < Reμ1). Using the first differential equation in (3.101),
allows us to determine explicitly the function p− and p+ in terms of
w− and w+. In particular, we see that p−x (0) = 0. Next, computing
the boundary conditions in (3.100), we are led to a system of five equa-
tions in (at least) six unknowns which, of course, cannot be uniquely
solvable. Hence (−∞, 0) ∈ σ(A).

Proof of (b)

Let us now show that if λ ∈ σ(A) has positive real part, then λ is
an eigenvalue of A. So, we fix f ∈ X (f = (f1, f

−
2 , f

+
2 )) and we look for

nontrivial solutions of the system (3.100) (where we replace the right-
hand sides of the differential equations, respectively, with f1 and f±2 ),
corresponding to λ ∈ C with positive real part. Let us first assume that
f ∈ X2. Since the more general solution of the equation for v, which
goes to 0 at infinity, is given by

v(x) = c
e−

√
λLex

x
, x ∈ I+

1 ,

where c is a complex constant, we just need to pay attention to the equa-
tions for w± and p±. Arguing as usually, we are led to solving the sys-
tem {

λw̃±(x) − w̃±
xx(x) − β̃p̃±(x) = xf±2 (x), x ∈ I±1 ,

3α̃2p̃±(x) − p̃±xx(x) − α̃w̃±
xx(x) = 0, x ∈ I±1 .

(3.103)
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Since, by assumption, f±2 is twice continuously differentiable in I±1 ,
we can differentiate twice the first differential equation in (3.103), and,
plugging the so obtained expression for p̃ and p̃xx into the second dif-
ferential equation, we get the equations w̃±

xxxx − (α̃β̃ + λ + 3α̃2)w̃±
xx +

3α̃2λw̃± = 3α̃2xf± − 2f±x − xf±xx in I±1 . Denote by ±μ1 and ±μ3 the
roots of the polynomial P . Let us first assume that μ1 = μ3, where
μ1 and μ3 are as in the proof of point (a). This is the case when

λ = λ0 := α̃(
√

3α̃± i
√
β̃)2 and μ2

1 = μ2
1,0 := α̃

√
3α̃(

√
3α̃± i

√
β̃). Hence,

Reμ1,0 > 0. Then, the more general solutions w− ∈ C2((0, 1]) and
w+ ∈ C2([1,+∞)) to the previous differential equations are given by

w±(x) =
(
d±1 − 1

4μ3
1,0

∫ x

1
(μ1,0t+ 1)e−μ1,0tg±(t)dt

)
eμ1,0x

x

+
(
d±2 +

1
4μ2

1,0

∫ x

1
e−μ1,0tg±(t)dt

)
eμ1,0x

+
(
d±3 +

1
4μ3

1,0

∫ x

1
eμ1,0t(1 − μ1,0t)g±(t)dt

)
e−μ1,0x

x

+
(
d±4 +

1
4μ2

1,0

∫ x

1
eμ1,0tg±(t)dt

)
e−μ1,0x,

where d±j j = 1, . . . , 4 are arbitrary complex constants and g±(x) =
3α̃2xf±2 (x) − 2Dxf

±
2 (x) − xDxxf

±
2 (x), for any x ∈ I±1 . Integrating by

parts the terms containing the derivatives of the functions f±2 and im-
posing that w− is twice continuously differentiable in x = 0 and w+ is
bounded at infinity, we finally get the following formula for w±:

w−(x) = −
(
d−1 +

3α̃2 − μ2
1,0

2μ2
1,0

∫ 1

0
t2 cosh(μ1,0t)f−2 (t)dt

−3α̃2 − μ2
1,0

2μ2
1,0

∫ 1

0
t sinh(μ1,0t)f−2 (t)dt

− 3α̃2

4μ3
1,0

∫ 1

x
t(μ1,0t+ 1)e−μ1,0tf−2 (t)dt

− 1
4μ1,0

∫ 1

x
t(1 − μ1,0t)e−μ1,0tf−2 (t)dt

)
eμ1,0x

x

+
(
d−1 − 3α̃2

4μ3
1,0

∫ 1

x
t(1 − μ1,0t)eμ1,0tf−2 (t)dt
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− 1
4μ1,0

∫ 1

x
t(1 + μ1,0t)eμ1,0tf−2 (t)dt

)
e−μ1,0x

x

+
(
d−2 − 3α̃2 − μ2

1,0

2μ2
1,0

∫ 1

0
t sinh(μ1,0t)f−2 (t)dt

−3α̃2 − μ2
1,0

4μ2
1,0

∫ 1

x
te−μ1,0tf−2 (t)dt

)
eμ1,0x

+
(
d−2 − 3α̃2 − μ2

1,0

4μ2
1,0

∫ 1

x
teμ1,0tf−2 (t)dt

)
e−μ1,0x, (3.104)

and

w+(x) =
(

3α̃2

4μ3
1,0

∫ +∞

x
t(μ1,0t+ 1)e−μ1,0tf+

2 (t)dt

+
1

4μ1,0

∫ +∞

x
t(1 − μ1,0t)e−μ1,0tf+

2 (t)dt
)
eμ1,0x

x

−
(

3α̃2 − μ2
1,0

4μ2
1,0

∫ +∞

x
te−μ1,0tf+

2 (t)dt
)
eμ1,0x

+
(
d+
2 +

3α̃2 − μ2
1,0

4μ2
1,0

∫ x

1
teμ1,0tf+

2 (t)dt
)
e−μ1,0x

+
(
d+
1 +

3α̃2

4μ3
1,0

∫ x

1
t(1 − μ1,0t)eμ1,0tf+

2 (t)dt

+
1

4μ1,0

∫ x

1
t(1 + μ1,0t)eμ1,0tf+

2 (t)dt
)
e−μ1,0x

x
, (3.105)

where d±1 and d±2 are arbitrary complex constants. Then, replacing the
expressions of w± so far obtained in the first differential equation in
(3.103), we get

p−(x) =
μ2

1,0 − λ

β̃
w−(x)+2μ1,0

(
d−2 − 3α̃2 − μ2

1,0

2μ2
1,0

∫ 1

0
t sinh(μ1,0t)f−2 (t)dt

+
3α̃2 − μ2

1,0

4μ2
1,0

∫ x

1
te−μ1,0tf−2 (t)dt

)
eμ1,0x

x

−2μ1,0

(
d−2 +

3α̃2 − μ2
1,0

4μ2
1,0

∫ x

1
teμ1,0tf−2 (t)dt

)
e−μ1,0x

x
, x ∈ I−1 , (3.106)

and

p+(x) =
μ2

1,0 − λ

β̃
w+(x) −

(
3α̃2 − μ2

1,0

2μ1,0β̃

∫ +∞

x
te−μ1,0tf+

2 (t)dt
)
eμ1,0x

x
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−2
μ1,0

β̃

(
d+
2 +

3α̃2 − μ2
1,0

4μ2
1,0

∫ x

1
teμ1,0tf+

2 (t)dt
)
e−μ1x

x
, x ∈ I+

1 . (3.107)

Now, a density argument shows that the formulas (3.104)-(3.107) define
the solution of the system (3.100) (with the right-hand side of the differ-
ential equations for v and w, being replaced with the functions f1 and
f±2 , respectively) also in the case when f ∈ X . Imposing the boundary
conditions, we are led to a linear system of five equations in five un-
knowns that is uniquely solvable if and only if the matrix M (1) defined
by

M (1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

m
(1)
11 e

−√
λ0Le m

(1)
12 e

−μ1,0 m
(1)
13 e

−μ1,0 m
(1)
14 m

(1)
15

m
(1)
21 e

−√
λ0Le m

(1)
22 e

−μ1,0 m
(1)
23 e

−μ1,0 m
(1)
24 m

(1)
25

m
(1)
31 e

−√
λ0Le m

(1)
32 e

−μ1,0 m
(1)
33 e

−μ1,0 m
(1)
34 m

(1)
35

0 m
(1)
42 e

−μ1,0 m
(1)
43 e

−μ1,0 m
(1)
44 m

(1)
45

0 m
(1)
52 e

−μ1,0 m
(1)
53 e

−μ1,0 m
(1)
54 m

(1)
55

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where
Lem(1)

11 = m
(1)
12 = m

(1)
13 = 1, m

(1)
14 = − sinh(μ1,0),

m
(1)
15 = − cosh(μ1,0), Lem(1)

21 =
√
λ0Le + 1,

m
(1)
22 = μ1,0 + 1, m

(1)
23 = μ1,0,

m
(1)
24 = μ1,0 cosh(μ1,0) − sinh(μ1,0), m

(1)
25 = μ1,0 sinh(μ1,0),

m
(1)
31 =

√
λ0Le − 1, m

(1)
32 = m

(1)
33 = Le a,

m
(1)
34 = Le b sinh(μ1,0), m

(1)
35 = Le b cosh(μ1,0),

m
(1)
42 = ±iα̃

√
3α̃β̃, m

(1)
43 = ±iα̃

√
3α̃β̃ + 2μ1,0,

m
(1)
44 = ∓iα̃

√
3α̃β̃ sinh(μ1,0),

m
(1)
45 = ∓iα̃

√
3α̃β̃ cosh(μ1,0) + 2μ1,0 sinh(μ1,0),

m
(1)
52 = ±iα

√
3α̃β̃(μ1,0 + 1), m

(1)
53 = {±iα̃

√
3α̃β̃ + 2(μ1,0 + 1)}μ1,0,

m
(1)
54 = ±iα̃

√
3α̃β̃{μ1,0 cosh(μ1,0) − sinh(μ1,0)},

m
(1)
55 = μ1,0{±iα̃

√
3α̃β̃ sinh(μ1,0) − 2μ1,0 cosh(μ1,0) + 2 sinh(μ1,0)},

is not singular. Therefore, if λ0 is in σ(A), then λ0 is an eigenvalue of A.

89
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Let us now suppose that μ2
1 �= μ2

3. Then, Reμ1 ≥ Reμ3 > 0. Ar-
guing as above, we can easily show that the solutions w± and p± of
System (3.103) are given by:

w−(x) = −
(
d−1 +

3α̃2 − μ2
1

μ1(μ2
1 − μ2

3)

∫ 1

0
t sinh(μ1t)f−2 (t)dt

+
3α̃2 − μ2

1

2μ1(μ2
1 − μ2

3)

∫ 1

x
te−μ1tf−2 (t)dt

)
eμ1x

x

+
(
d−1 +

3α̃2 − μ2
1

2μ1(μ2
1 − μ2

3)

∫ 1

x
teμ1tf−2 (t)dt

)
e−μ1x

x

+
(
d−2 − 3α̃2 − μ2

3

2μ3(μ2
1 − μ2

3)

∫ 1

x
teμ3tf−2 (t)dt

)
e−μ3x

x

−
(
d−2 − 3α̃2 − μ2

3

μ3(μ2
1 − μ2

3)

∫ 1

0
t sinh(μ3t)f−2 (t)dt

− 3α̃2 − μ2
3

2μ3(μ2
1 − μ2

3)

∫ 1

x
te−μ3tf−2 (t)dt

)
eμ3x

x

:= w−
1 (x) + w−

2 (x) + w−
3 (x) + w−

4 (x),

for any x ∈ I−1 ,

w+(x) =
(
d+
1 − 3α̃2 − μ2

1

2μ1(μ2
1 − μ2

3)

∫ x

1
teμ1tf+

2 (t)dt
)
e−μ1x

x

− 3α̃2 − μ2
1

2μ1(μ2
1 − μ2

3)

(∫ +∞

x
te−μ1tf+

2 (t)dt
)
eμ1x

x

+
(
d+
2 +

3α̃2 − μ2
3

2μ3(μ2
1 − μ2

3)

∫ x

1
teμ3tf+

2 (t)dt
)
e−μ3x

x

+
3α̃2 − μ2

3

2μ3(μ2
1 − μ2

3)

(∫ +∞

x
te−μ3tf+

2 (t)dt
)
eμ3x

x

:= w+
1 (x) + w+

2 (x) + w+
3 (x) + w+

4 (x),

for any x ∈ I+
1 ,

p± =
μ2

1 − λ

β̃
(w±

1 + w±
2 ) +

μ2
3 − λ

β̃
(w±

3 + w±
4 ),
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where d±1 and d±2 are arbitrary complex constants. Imposing the bound-
ary conditions we are led to a system of five equations in the unknowns
(c, d+

1 , d
+
2 , d

−
1 , d

−
2 ), whose associated matrix M (2)

λ is given by

M
(2)
λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

m
(2)
11 e

−√
λLe m

(2)
12 e

−μ1 m
(2)
13 e

−μ3 m
(2)
14 m

(2)
15

m
(2)
21 e

−√
λLe m

(2)
22 e

−μ1 m
(2)
23 e

−μ3 m
(2)
24 m

(2)
25

m
(2)
31 e

−√
λLe m

(2)
32 e

−μ1 m
(2)
33 e

−μ3 m
(2)
34 m

(2)
35

0 m
(2)
42 e

−μ1 m
(2)
43 e

−μ3 m
(2)
44 m

(2)
45

0 m
(2)
52 e

−μ1 m
(2)
53 e

−μ3 m
(2)
54 m

(2)
55

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where

Lem(2)
11 = m

(2)
12 = m

(2)
13 = 1, m

(2)
1 4+j = − sinh(μ2j+1), (j = 0, 1),

Lem(2)
21 =

√
λLe + 1, m

(2)
2 2+j = μ2j+1 + 1,

m
(2)
2 4+j = μ2j+1 cosh(μ2j+1) − sinh(μ2j+1), (j = 0, 1),

m
(2)
31 =

√
λLe − 1, m

(2)
32 = m

(2)
33 = Le a,

m
(2)
3 4+j = Le b sinh(μ2j+1), m

(2)
4 2+j = λ− μ2

2j+1 + α̃β̃, (j = 0, 1),

m
(2)
4 4+j = (μ2

2j+1 − λ− α̃β̃) sinh(μ2j+1), (j = 0, 1),

m
(2)
5 2+j = −(μ2

2j+1 − λ− α̃β̃)(μ2j+1 + 1), (j = 0, 1),

m
(2)
5 4+j = −(μ2

2j+1−λ−α̃β̃){μ2j+1 cosh(μ2j+1)−sinh(μ2j+1)}, (j = 0, 1).

It follows that λ ∈ σ(A) if and only if λ is a root of the Evans function
E : {λ ∈ C : Reλ > 0} \ {λ0} → C, defined by E(λ) = detMλ, where
Mλ = M

(2)
λ , if μ2

1 �= μ3
2, and Mλ = M (1) otherwise.

Summing up, we have proved that if λ ∈ σ(A) has positive real
part, then it is an eigenvalue of A.

To conclude this point of the proof, let us observe that E(λ) =
μ1μ3(μ2

1 − μ2
3)

2e−
√

λLeẼ(λ) for any λ ∈ C with positive real part and
some function Ẽ . Since μ1 �= μ3 and they both differ from 0, we can
limit ourselves to showing that, under the condition (3.49), the func-
tion Ẽ has a positive zero. For this purpose, it suffices to observe that
Ẽ(λ) tends to +∞ as λ tends to +∞ and

Ẽ(λ) = −1 − (2Rμ+ 1) exp(−2Rμ) − 1
2μ3

αβF ′(Θ(R)) + o(1),
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3. INSTABILITY IN A FLAME BALL PROBLEM

where μ =
√

3α2 + αβ, as λ tends to 0+. Therefore, if the condition
(3.49) is satisfied, the function Ẽ should admit a positive root λ1. Equiv-
alently, the matrix Mλ1 is singular, so that λ1 is in the spectrum of A.

Finally, showing that, if λ ∈ σ(A) has positive real part, then there
exists a eigenfunction u = (v,w−, w+) corresponding to such λ, with
v(x) �= 0 for any x ∈ I+

1 , is an immediate consequence of the previous
computations. Indeed, the matrices M̃ (1) and M̃ (2)

λ (for any λ with pos-
itive real part), obtained, respectively, from M (1) and M

(2)
λ by erasing

the first column and the third row are invertible since their determinant
are given, respectively, by

detM (1) = 4μ4
1e

2μ1 , detM (2)
λ = −μ1μ3(μ2

1 − μ2
3)

2eμ1+μ3 .

This means that we can uniquely determine the constants d±1 and d±2
in terms of c or, equivalently, that there exists an eigenfunction u with
v �= 0. This completes the proof of Theorem 3.5.
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CHAPTER 4

On a model of flame ball with
radiative transfer

4.1. Introduction
Spherical flame balls have been found to exist as stable objects for

small enough Lewis number during some experiments carried out at
microgravity [45, 46]. Since Zeldovich, ”adiabatic” flame balls are un-
stable to one-dimensional radial perturbations, a stabilizing effect has
to be identified. It has been argued [44] that radiation is physically im-
portant in near limit combustion at low gravity. Then, it is natural to
consider a heat loss mechanism through radiation as a stabilizing effect.
Moreover it is worth noting that halon (CF3Br) is added to experimen-
tal mixtures (to increase the luminosity of flame balls) which augment
the radiation through soot formation.
Buckmaster et al. [16, 17] proposed different models to take into ac-
count the heat loss through radiation. They considered first constant
heat losses in the burnt gases [16]: when the heat losses are not too
large, they proved the existence of two possible steady flame balls: a
small one and a large one. It is proved that they have different lin-
ear stability properties: the small flame ball, similar to the Zeldovich
flame is unstable under radial perturbations whereas the large flame
ball is stable under radial perturbations but unstable under three di-
mensional perturbation if its radius is too large. Similar results have
been obtained for a refined version of the previous model where lin-
ear far field heat loss are considered [17]. Using matched asymptotic
expansions for large activation energy, Buckmaster et al. [16, 17] de-
rived an integro-differential model for the nonlinear radial motion of
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the flame when Le < 1:

∂1/2R(τ) = logR(τ) − λR(τ)2 +
Eq(τ)
R(τ)

, R(0) = 0,

with ∂1/2R = d
dt

∫ t
0

R(s)√
π(t−s)

ds and Eq(τ) represents the amount of en-

ergy injected in the system. Numerical simulations of this model sug-
gested that the small flame ball is unstable and the large one is stable.
Recently, Rouzaud [47] carried out a rigorous study of the long time be-
haviour of flame balls for this equation which confirms this qualitative
behaviour. Moreover, Rouzaud et al. developed adaptated numerical
schemes for this kind of equations that possess similar mathematical
properties and exhibit the same type of asymptotic behaviour [5].

More refined models have been considered with reaction taking
place within an unbounded medium that contains a small volume frac-
tion of porous solid which only exchange heat with the gas [22]. Heat
losses through radiation are modeled in two different ways: either they
are constant in the burnt gas and linear in the unburnt gas (similarly to
Buckmaster et al. studies) either they are a continuous dimensionless
form of Stefan’s law having a linear part that dominates close to am-
bient temperatures and a fourth power that dominates at higher tem-
peratures. Similarly, two branches of solutions are found, the branch of
large flame balls being linearly stable and the smaller one being unsta-
ble.

Recently, Guyonne et al. [53] proposed an other mechanism to take
into account the radiation and considered a model of flame with radia-
tive transfer. Indeed the presence of particles in the mixture generates a
radiation field approximated by the well known Eddington equation

−∇∇ · q + 3α2q + α∇θ4 = 0,

where q represents the radiative flux, θ the temperature and α the opac-
ity of the medium. This system is coupled with a classical free bound-
ary combustion model with simple chemistry F → B, where F is the
fresh gas and B the burnt gas. This model is derived in the high activa-
tion limit, the reaction occurring in a reaction sheet located at r = R(t)
and can be written:

∂tY − 1
Le

ΔY = 0, r > R(t), Y = 0, r < R(t),

∂tθ − Δθ = −β∇ · q, r �= R(t),
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with the jump conditions at r = R(t)

[θ] = [y] = 0,
1
Le

[Yr] = −[θr] = Fε(θ(R(t))),

where Fε(θ) is the reaction rate modeled by an Arrhenius law. It is
proved that there exists steady flame balls for this model. Moreover,
numerical simulations with numerical continuation software show that
for the same set of parameters there exist several steady flames. Then
the question of their stability arises. Even in the simpler case where a
linearized Eddington law is considered:

−∇∇ · q + 3α2q + α∇θ = 0,

the question of the linear and nonlinear stability of steady flame ball is
far from being understood: we shall mention here the works of Guy-
onne, Hulshof and Van den Berg [54] on the numerical analysis of the
Evans function for the linear and nonlinear Eddington law and the pa-
per of Guyonne and Lorenzi [27] which proves that spectral instability
implies nonlinear instability with semi-group techniques. Getting non-
linear stability within this framework is quite a hard problem and is an
open problem.

The purpose of this paper is to analyze the stabilizing effect of radia-
tive transfer with the view point developed by Buckmaster et al. [16, 17].
Indeed to study the nonlinear growth of radial solutions, they derived
an integro-differential equation using matched asymptotic expansions.
This approach has been justified rigorously by Roquejoffre et al. [33] for
the adiabatic model with a direct derivation from the reaction diffusion
system. Moreover the asymptotic behaviour of this kind of integro-
differential equations is now well understood and efficient numerical
schemes are available. The aim of this paper is two fold: through the
formal derivation of the same type of integro-differential equations for
the flame balls growth, the mathematical and numerical analysis of this
model, we want, on the one hand, to study the stabilizing effect of the
radiative transfer in the formation of flame balls. On the other hand,
for this particular model of radiative transfer (the linearized Eddington
equation), we want to discuss directly the dynamic of flame balls and
the stability of steady flame balls under radial perturbations obtained in
[53]. We are not concerned here with the stability of flame balls under
three dimensional perturbations. It is worth noting that the approach
proposed is very complementary to the indirect approach which con-
sists in studying the linear stability and then getting informations for
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the full nonlinear free boundary problem problem. Moreover, if it is
possible to justify rigorously this formal derivation similarly to the pa-
per of Roquejoffre et al. [33], this should give a complete answer on the
nonlinear stability of flame balls under radial perturbations in the pres-
ence of radiative transfer, but this justification is a hard issue.

The paper is organized as follow: in Section 4.2, we derive an inte-
gro differential equation for the nonlinear radial motion of a flame ball
using matched asymptotic expansions:

∂1/2R(τ) = logR(τ) − λR(τ) +
Eq(τ)
R(τ)

· (4.1)

The dynamic is articulated around the two steady flame balls with ra-
dius R1 < R2 solutions of logR = λR, provided that λ < 1

e . In Sec-
tion 4.3 we study mathematically the asymptotic behaviour of the so-
lutions of (4.1) and discuss the stability of the ”large” flame ball with
radius R2 and instability of the ”small” flame ball with radius R1. In
Section 4.4, we carry out numerical computations on Equation (4.1) us-
ing the numerical schemes designed by Rouzaud et al.

4.2. Growth model for the radius of flame balls
We consider the following model of combustion with simple chem-

istry coupled with the linearized Eddington equation:

∂ty − 1
Le

Δy = 0, r > R(t), y = 0, r < R(t),

∂tθ − Δθ = βu, −Δu+ 3α2u = αΔθ, r �= R(t),
(4.2)

where u denotes u = −∇ · q, supplemented with the jump conditions
at r = R(t)

[u] = [θ] = [y] = 0,

[ur] = −α[θr],
1
Le

[yr] = −[θr] = Fε(θ(R(t))).
(4.3)

Moreover the functions (y, θ, u) must satisfy the conditions at infinity

lim
r→∞(y(r), θ(r), u(r)) = (1, 0, 0). (4.4)

The reaction rate Fε is given by an Arrhenius law Fε(θ) = A exp− 1
εθ :

the constant A is a pre-exponential factor and ε−1 is the activation en-
ergy which is assumed to be large (0 < ε << 1). In order to derive an
equation for the growth of a flame ball, we follow the methodology in-
troduced by G. Joulin and divide the space into two concentric regions:
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a quasi-stationary zone where time derivatives are neglected where the
combustion occurs and a far field zone where the only phenomenons
that are taken into account are diffusion of the reactant and the tem-
perature. The radiative effects are considered both in the reaction zone
and the far field zone. We then obtain an equation for the radius by
matching the derivatives of the inner quasi-stationary solution and the
outer solution.

Steady solutions

Before computing quasi-steady solutions, let us first compute the
steady solutions of (4.2, 4.3, 4.4). Let us fix the radius R > 0 and define
η as η = ηαβ =

√
3α2 + αβ. Then there exists a unique steady solution

with the following analytic expression:

u(r) =

⎧⎪⎪⎨⎪⎪⎩
−B1η

2

βr
sinh(ηr) for r ≤ R,

−B2η
2

βr
exp(−ηr) for r > R.

(4.5)

where the constants are given by

B1 =
αβ

Leη3
exp(−ηR), B2 =

αβ

Leη3
sinh(ηR), B3 =

3α2

Leη2
.

The expression for θ is

θ(r) =

⎧⎪⎪⎨⎪⎪⎩
B1

r
sinh(ηr) +B3 for r ≤ R,

B2

r
exp(−ηr) +

B3R

r
for r > R,

(4.6)

Finally the solution for the mass fraction variable is expressed by

y(r) = max(0, 1 − R

r
). (4.7)

Then the temperature at the front is given by

Leθ(R) = 1 +
αβ

η2

(1 − exp(−2ηR)
2ηR

− 1
)
.

Note that the dependence of the temperature at the front with respect
to the flame radius in the case where radiative transfer is taken into
account is different from the case where heat loss radiative terms are
considered. In the latter case, the dependence is parabolic [16].
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Figure 4.1: Diagram of bifurcation of equation (4.9) in the (λ = βLe√
3
, R)

plane.

It is easily seen with equation (4.7) that [yr]|r=R = 1
R . Then the

steady flame balls are the steady solutions (y, θ, u) defined by (4.5, 4.6,
4.7) such that R is solution of

Fε(θ(R)) =
1

RLe
(4.8)

The case where α, β → 0 as ε → 0 is of particular interest: as a
matter of fact, Buckmaster et al. [16, 17] also considered vanishing heat
loss terms as ε → 0. As a consequence, in some asymptotic parameter
regimes, it is possible to simplify Equation (4.8). Under the scaling,
β = βε and α >> β (we can choose α = O(εμ) with 0 < μ < 1) and
0 < ε << 1, we find that

θ(R) =
1
Le

− βε

Le
√

3
R+O(ε2).

Inserting this relation into (4.8) and letting ε→ 0, one finds

log
R

Rad
=
βLe√

3
R, (4.9)

whereRad denotes the adiabatic radius. The set of solutions of equation
(4.9) is plotted in Figure 4.1 in the (R,λ)-plane where λ = βLe√

3
.
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We can see that for λ > λcr = 1
Rade , no solution exists and for

λ < λcr, there exists two solutions R1 < R2 which corresponds to
steady flame balls. The smaller flame ball converges to the flame ball
constructed by Zeldovich in the limit λ→ 0.

It is important to note the difference between the equation for
steady flame balls (4.9) when radiative transfer is taken into account and
the equation for steady flame balls when radiative heat losses are consid-
ered (which are constant in the burnt phase of order O(ε), linear in the
fresh phase and of order O(ε2)). In that case, the equation for steady
flame balls reads

log(
R

Rad
) = ΛR2,

where Λ is a constant depending on heat loss terms. The difference be-
tween the two equations is that, considering constant heat loss term in
the burnt gas, the temperature at the front θ(R) is a parabolic function of
the flame radius whereas in the case of radiative transfer, the tempera-
ture at the front is a linear function of the flame radius (in the parameter
regime considered previously).

Inner solutions

Now we consider the non stationary case and we suppose that the
flame has a spherical symmetry with a flame radius at r = R(t). The
purpose is to compute an equation satisfied by R(t). Let us denote
(Y,Θ, U) the steady solution computed at the previous section and fix
ν ∈ (0, 1). We are first going to compute an approximation of the solu-
tion (y, θ, u) on B(0, ε−ν), considering that it is a quasi steady solution
with a flame radius r = R(t) << ε−ν . We write the solution (y, θ, u) as

(y, θ, u) = (1 + εv(t))
(
Y,Θ, U

)
+ (0, εw(t), 0).

This solution satisfies the steady equations and the jump conditions
provided that

1 + εv(t)
RLe

= Fε

(
Θ(R) + ε(Θ(R)v + w)

)
.

This equation reads, up to order O(ε)

v +
w

Θ(R)
= − log(RLe) − log

(
Fε

(
Θ(R)

))
.
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The boundary conditions at r = ε−ν are given by:

θ(t, ε−ν) =
3α2

Le(3α2 + αβ)
Rεν + εw(t) +O(εν+1),

y(t, ε−ν) = 1 − ενR(t) + εv(t) +O(εν+1), (4.10)

u(t, ε−ν) =−α(1 + εv(t))εν

Le
√

3α2 + αβ
sinh(R

√
3α2 + αβ) exp(−

√
3α2 + αβ

εν
)

=O(εν+3).

The last estimate on u is valid provided that
√

3α2 + αβ = O(εμ) with
μ < ν.

Outer solution

We compute an approximate solution (y, θ, u) outside B(0, ε−ν) of

∂ty − 1
Le

Δy = 0, ∂tθ − Δθ = βu, −Δu+ 3α2u = αΔθ,

supplemented with the boundary conditions (4.10); the conditions at
infinity are given by limr→∞(y, θ, u) = (1, 0, 0) and the initial conditions
will be specified later. Following the derivation of Joulin, we rescale
time and space: τ = ε2t, ρ = εr and define

(y, θ, u)(τ, ρ) =
(y(t, r) − 1

ε
,
θ(t, r)
ε

,
u(t, r)
ε3

)
, R(τ) = R(t).

Then (y, θ, u) satisfies the rescaled system

∂τy − 1
Le

Δy = 0, ∂τθ − Δθ = βu, −ε2Δu+ 3α2u = αΔθ,

with the boundary conditions

y(τ, ε1−ν) = −εν−1R(τ) + v(τ) +O(εν),

θ(τ, ε1−ν) = εν−1 3α2

Le(3α2 + αβ)
R(τ) +w(τ) +O(εν),

u(τ, ε1−ν) = O(εν).

We are only interested in the jumps of the radial derivatives, namely
(ρy)ρ, (ρθ)ρ evaluated at the point ρ = ε1−ν . Let us start with
∂
∂ρ (ρy)|ρ=ε1−ν

+
and define Y = ρy for all ρ > ε1−ν . Then extend Y on

R by an odd function Y so that

Y (τ, ρ) =

⎧⎨⎩ Y (τ, 1√
Le
ρ+ ε1−ν) − Y (τ, ε1−ν), for ρ > 0,

−Y (τ,− 1√
Le
ρ+ ε1−ν) + Y (τ, ε1−ν), for ρ < 0.
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Denote ψ(τ) = Y (τ, ε1−ν) = −R(τ) +O(ε1−ν): Y satisfies the equation

Y τ − Y ρρ = ψ̇(τ)
(
1]−∞,0[(ρ) − 1]0,∞[(ρ)

)
,

with initial condition

Y (0, ρ) =

⎧⎨⎩ Y (0, 1√
Le
ρ+ ε1−ν) − ψ(0), for ρ > 0,

−Y (0,− 1√
Le
ρ+ ε1−ν) + ψ(0), for ρ < 0.

Then we find that

Y (τ, ρ) =
1√
4πτ

∫ ∞

0

(
Y (0,

x√
Le

+ ε1−ν) − ψ(0)
)(
e−

|x−ρ|2
4τ − e−

|x+ρ|2
4τ

)
dx

−
∫ τ

0

∫ ∞

0
ψ̇(s)

e
− |x−ρ|2

4(τ−s) − e
− |x+ρ|2

4(τ−s)√
4π(τ − s)

dxds.

Derive Y with respect to ρ and take the value at point ρ = 0:

∂

∂ρ
(ρy)|ρ=ε1−ν =

√
Le
∂Y

∂ρ |ρ=0

= −
√
Le∂1/2ψ(τ) + φy(τ),

where φy is only function of the initial data y(0, x), given by

φy(τ) =
Le

3
2√

4πτ

∫ ∞

ε1−ν

(
xy(0, x) − ε1−νy(0, ε1−ν)

)x− ε1−ν

τ
e−Le (x−ε1−ν)2

4τ ,

and the fractional derivative ∂1/2ψ(τ) is the function

∂1/2ψ(τ) =
d

dt

∫ t

0

ψ(s)√
π(t− s)

ds.

As a conclusion, we find that
∂

∂ρ
(ρy)+|ρ=ε1−ν =

√
Le∂1/2R+ φy(τ) +O(ε1−ν).

We compute the derivative of ρθ at point ρ = ε1−ν : following the anal-
ysis made previously, one introduces the functions T = ρθ, V = ρu and
defines

T (τ, ρ) =

{
T (τ, ρ+ ε1−ν) − T (τ, ε1−ν), for ρ > 0,

−T (τ,−ρ+ ε1−ν) + T (τ, ε1−ν), for ρ < 0,

and

V (τ, ρ) =

{
V (τ, ρ+ ε1−ν) − V (τ, ε1−ν), for ρ > 0,

−V (τ,−ρ+ ε1−ν) + V (τ, ε1−ν), for ρ < 0.
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4. ON A MODEL OF FLAME BALL WITH RADIATIVE TRANSFER

The functions T , V satisfy the system

∂τT − T ρρ = βV + Ṫ εH(ρ) − βV ε(τ)H(ρ),
−ε2V ρρ + 3α2V = αT ρρ + 3α2V ε(τ)H(ρ),

(4.11)

with H(ρ) = 1]−∞,0[(ρ) − 1]0,∞[ and (T ε, V ε) = ε1−ν(θ, u)(τ, ε1−ν). Take
the Fourier Transform of the system (4.11): this yields

∂τ T̂ + ξ2T̂ = βV̂ + Ṫ ε(τ)Ĥ(ξ) − βV ε(τ)Ĥ(ξ),
(3α2 + ε2ξ2)V̂ = −αξ2T̂ + 3α2V ε(τ)Ĥ(ξ).

(4.12)

Eliminating V̂ from (4.12) yields the equation on T̂ :

∂τ T̂ + ξ2(1 +
αβ

3α2 + ε2ξ2
)T̂ = Ṫ εĤ(ξ) + βV ε(τ)(

3α2

3α2 + ε2ξ2
− 1)Ĥ(ξ).

The function T̂ is given by

T̂ (τ, ξ) = e
−(1+ αβ

3α2+ε2ξ2
ξ2τ)

T̂ (0, ξ) +
∫ τ

0
e
−(1+ αβ

3α2+ε2ξ2
)ξ2(τ−s)

Ĥ(ξ)Ṫ ε(s)ds

−
∫ τ

0
V ε(s)

βε2ξ2

3α2 + ε2ξ2
Ĥ(ξ)e−(1+ αβ

3α2+ε2ξ2
)ξ2(τ−s)

ds.

The analysis is now completely similar to the case treated previously
for the derivative of ρy at the boundary: take the inverse Fourier trans-

form of T̂ and derive T with respect to ρ. There exists φθ which is only
a function of θ(0, .) such that

∂

∂ρ
(ρθ)|ρ=ε1−ν = − 1

Le(1 + αβ
3α2 )

3
2

∂1/2R+ φθ(τ) +O(ε1−ν).

Matching of the derivatives

Recall that the analysis of the outer solution yields

∂

∂ρ
(ρθ)+|ρ=ε1−ν = − 1

Le(1 + αβ
3α2 )

3
2

∂1/2R+ φθ(τ) +O(ε1−ν),

∂

∂ρ
(ρy)+|ρ=ε1−ν =

√
Le∂1/2R+ φy(τ) +O(ε1−ν). (4.13)

Moreover it is easily proved using the expression of the inner solution
that

∂

∂ρ
(ρθ)−|ρ=ε1−ν = w(τ),

∂

∂ρ
(ρy)−|ρ=ε1−ν = v(τ). (4.14)
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The jump conditions at the free boundary are given by

v(τ) +
w

Θ(R)
= − log(RLe) − log

(
Fε

(
Θ(R)

))
. (4.15)

Eliminating v,w from (4.13, 4.14, 4.15) and up to orderO(ε1−ν), we find
the equation for the radius R of the flame ball:(

(LeΘ(R))−1

(1 + αβ
3α2 )

3
2

−
√
Le

)
∂1/2R = log(RLe)

+ log(Fε(Θ(R))) +
φθ(τ)
Θ(R)

+ φy(τ).

This expansion is valid provided we have chosen
√

3α2 + αβ = O(εμ)
with μ < ν. This condition is satisfied when β, α are O(εμ).

Let us choose the scaling α = αεμ and β = βεwhich clearly satisfies
the hypothesis β, α = O(εμ). In this case, we can simplify the equation
of growth. The front temperature is given by

Θ(R) =
1
Le

− βε

Le
√

3
R+ (h.o.t).

Then the equation for the radius growth can be written

(1 −
√
Le)∂1/2R = log(

R

Rad
) − Leβ√

3
R+ Φ(τ).

where Rad is the adiabatic radius. The function Φ is only a function of
the initial data y(0, .) and θ(0, .).
It is remarkable to see the influence of the radiative transfer through
the term −λR instead of the heat loss term of radiation −λR2 derived
in other analysis [16, 17].

Now if we consider a reaction initiated by the input of energy of
order O(ε) at the origin, we choose initial conditions so that Φ(τ) = 0
and the only difference comes from the near field equations: we have
to solve the quasi stationary equations

−Δ θ = β u+ εQ(t)δ(r = 0),
−Δu+ 3α2 u = αΔ θ,

(4.16)

where Q represents the amount of energy input in the system at the
origin (see [30] for more details). This system is completed with jump
conditions detailed in Section 4.2. The stationary solution of (4.16)
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4. ON A MODEL OF FLAME BALL WITH RADIATIVE TRANSFER

with jump conditions is the sum of the stationary solution computed
in Section 4.2 and a particular solution (up, θp) which is smooth at point
r = R(t). It is a Fourier transform exercise to prove that a particular
solution (up, θp) of this system is given by

up = αεQ(t)
sh(

√
3α2 + αβ)r
4π r

,

and

θp =
εQ(t)
4π r

− αβεQ(t)
4π(3α2 + αβ)

sh
√

3α2 + αβr

r
.

Thus in the asymptotic α = O(εμ) with 0 < μ < 1 and β = βε, the
temperature at the front is given by

Θ(R) =
1
Le

− βε

Le
√

3
R+

εQ(t)
4π R

+ (h.o.t). (4.17)

As a consequence, we find the growth equation

(1 −
√
Le)∂1/2R = log

R

Rad
− Leβ√

3
R+

Le2

4π
Q(τ)
R

·

In the sequel, we put the last term concerning the energy input at
origin in the form Eq(τ)

R
. Here E represents the intensity of the energy

input and q(τ) corresponds to the time fluctuations of this energy in-
put. In the next sections, we are going to analyze mathematically and
numerically

(1 −
√
Le)∂1/2R = log

R

Rad
− Leβ√

3
R+

Eq(τ)
R

.

4.3. Mathematical Results
In this section, we consider the more generalized equation,

μR∂1/2R = R logR+ Eq − λR, t ∈ R
+, R(0) = 0, (4.18)

where μ > 0, λ > 0 and

∂1/2R =
1√
π

∫ t

0

Ṙ(s)√
t− s

ds =
1√
π

d

dt

∫ t

0

R(s)√
t− s

ds. (4.19)

It describes the evolution of a spherical flame, initiated by a point
source energy input Eq(t), at which are applied heat losses of radiative
nature, represented by the parameter λ. The intensity of this energy
input is measured by the positive constant E , and its time evolution is
described by the function q. This one is a smooth, nonnegative function,
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with connected support and unit total mass, its initial values satisfy the
following assumption,

q(t) ∼ q0t
β as t→ 0 with 0 ≤ β < 1/2, (4.20)

and as t → +∞, q tends to 0. Finally the parameter μ can be viewed as
a time rescaling (see Section 4.4), and is assumed, in this section, to be
a positive real number, fixed to 1.
Mathematical results of Equation (4.18) are, according to minor modi-
fications in the proofs, similar to the ones written in [4, 47]. Therefore
proofs are omitted, only comments are mentioned when necessary.

Let us begin to state existence results for the Cauchy problem.

PROPOSITION 4.1. Let us assume q positive on [0, t0], q(0) = q0. Then,
there exists t1 ∈]0, t0], such that (4.18) admits a solution in C3/2([0, t1]) sat-
isfying,

R(t) ∼ R0t
1/4, with R2

0 =
Eq0√
π

∫ 1

0
t−

1
4 (1 − t)−

1
2 dt.

In order to prove the existence of a unique maximal solution, the flame
radius is expressed as the trace at x = 0 of a function u(t, x), solution of
the following parabolic equation,{

ut − uxx = 2δx=0

(
log u+

Eq

u
− λu

)
for x ∈ R,

u(0, ·) = 0.
(4.21)

This formulation is essential to characterize the long-time behavior of
the flame. Then we consider more general Cauchy problems, such as{

ut − uxx = 2δx=0

(
log u+

Eq

u
− λu

)
for x ∈ R,

u(0, ·) = u0(x),
(4.22)

where u0 is even, Lipschitz, square-integrable, non-negative function.
This is equivalent to solving,⎧⎪⎨⎪⎩

ut − uxx = 0, x > 0

ux(t, 0) = −( log u+
Eq

u
− λu

)
for x ∈ R,

u(0, ·) = u0(x).

Such a writing allow us to prove the

THEOREM 4.2. Let q satisfy Condition (4.20). We suppose there exists
t0 > 0 such that q(t) > 0 on ]0, t0[, and q(t) = 0 if t ≥ t0, then
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i) if t0 = +∞, (4.22) has a unique global positive solution, except at t = 0.
Moreover u is C∞ on R

∗
+ × R

∗ and t �→ u(t, 0) is C∞ on R
∗
+.

ii) if t0 < +∞, (4.22) has a unique maximal solution u defined on an interval
[0, tmax[, positive, except at t = 0. Moreover u is C∞ on ]0, tmax[. If
tmax < +∞, there exists tn → tmax such that lim

n→+∞u(tn, 0) = 0.

In particular, a consequence of this theorem is the existence of a solu-
tion of Equation (4.18). The uniqueness of u is based on a comparison
principle (see [47] for more details).

These results now recalled, we may discuss different cases where
either quenching or stabilization of the flame occurs. For this purpose,
we denote uE the solution of (4.21) and RE(t) := uE(t, 0) the corre-
sponding radius of the flame. Let us turn to the asymptotic behavior of
the radius. In order to prove the following results, monotonicity meth-
ods (cf. [48]) are of major importance. Indeed, sub or supersolutions are
computed and create, therefore, an admissible range for the solutions.
At this stage, a comparison principle coupled to a relevant choice of the
bounds, tells us either quenching or stabilization of the flame.

Before going further, we make a remark on the role played by the
parameter λ. The stationary solutions of

ut − uxx = 2δx=0(log u− λu),

are the constants R satisfying,

logR = λR,

hence the values of λcr and the distinction we have to make between
the cases λ < λcr and λ > λcr. Please note that we do not consider the
case λ = λcr, the study being identical to [47]. Moreover λ is assumed
nonnegative in the sequel so that uE solution of (4.22) is a bounded
function.

We first consider the supercritical case, λ > λcr, corresponding to
high radiative heat losses. Then, the loss of energy is too important and
the flame quenches. We state the following proposition.

PROPOSITION 4.3. Assume λ > λcr.
i) If q > 0 on R

∗
+, then the solution of (4.21) is global and lim

t→+∞RE(t) = 0.

ii) If q is compactly supported, RE quenches on finite time.

We now consider the sub-critical case, λ < λcr. This situation leads to
different properties, more complex because depending on the quanti-
ties E and q, i.e. the amount of energy we input in the system and the
time length of this injection. We have
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THEOREM 4.4. Assume λ < λcr and q > 0 on R
∗
+. Then equation (4.18)

has a unique global solution RE(t) and there exists Ecr(q) > 0 such that

i) if E < Ecr(q), lim
t→+∞RE(t) = 0,

ii) if E > Ecr(q), lim
t→+∞RE(t) = R2,

iii) if E = Ecr(q), lim
t→+∞RE(t) = R1,

If q is compactly supported, with support ]0, t0[, then equation (4.18) has a
unique solution RE(t) and there exists Ecr(q) > 0 such that

i) if E < Ecr(q), RE quenches in finite time,
ii) if E ≥ Ecr(q), the previous result holds again.

This theorem can be proved with minor changes in the sub and super-
solutions in the proofs developed in [47]. For more details on the theo-
retical study on this type of equations, we refer the reader to [4, 47].

As a conclusion, we have verified that the equation derived in Sec-
tion 4.2,

(1 −
√
Le)∂1/2R = log

R

Rad
− Leβ√

3
R+

Eq(τ)
R

, (4.23)

is well posed provided that Le < 1 and the flame ball quenches if Leβ
exceed a threshold. When Leβ is small enough, there exists two steady
flame balls. The small one is unstable and the large one is stable under
radial perturbations. Since we have computed nonlinear evolutions of
radial perturbations, these results shall be understood as nonlinear sta-
bility properties of the steady flame balls.

There are different explanations to justify the assumption Le < 1.
From a mathematical point of view, Equation (4.23) is ill posed for
Lewis numbers greater than one. Indeed, in this case, we face a ret-
rograd parabolic equation in which instabilities can occur (see for ex-
ample [9, 8]). The special case Le = 1 with high activation energy has
been studied in [26]. From a physical point of view, as the Lewis num-
ber is the ratio between thermal and molecular diffusion, the condition
Le < 1 is equivalent saying gas molecules diffuse faster than heat. In
this configuration, flame balls are willing to exist, whereas for Lewis
numbers greater than one, flames vanish. Considering the experiments
performed by Ronney et al. (see for example [46]), flame balls are ob-
served only for lean reactants mixtures which Lewis number is between
0.06 and 0.5. So that the restriction Le < 1 is reasonable and in fact is a
necessary condition for stationary flame balls to exist.
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4.4. Numerics
In this section, we follow the methods developed in [5]. We first

present the numerical scheme and then turn to numerical investiga-
tions.

Presentation of the scheme

We recall that the radius R can be seen as the trace on the axis x = 0
of the solution u(x, t) of the diffusive problem (4.22). A suitable scheme
to study long time behaviour of such equations is an implicit Euler
scheme in time. The scheme reads,⎧⎪⎪⎪⎨⎪⎪⎪⎩

un+1 − un

τ
− un+1

xx = 0 for x > 0,

un+1
x (0) = − log un+1(0) − Eqn+1

un+1(0)
+ λun+1(0)

u0 = 0,

where τ denotes the time step and qn = q(nτ). The discretized heat
equations can be solved explicitly using Fourier transform so that sys-
tem (4.4) determines explicitly the quantity in which we are really in-
terested, i.e. the sequence Rn := un(0). Moreover by induction and
because of the maximum principle, we have un ≥ 0.
Before going further, we define two quantities needed later on by⎧⎪⎨⎪⎩ αn =

∫
R

ûn−1(ξ)dξ
1 + 4π2ξ2τ

=
√
τ

n−1∑
k=1

θn−k+1g
k, û0 = 0,

gn = fn(αn +
√
τgn), n ≥ 1,

where

θp+1 =
∫

R

2
√
τ

(1 + 4π2ξ2τ)p+1
dξ =

2p − 1
2p

θp =
Cp

2p−1

22p−1
θ1, with θ1 = 1.

The radius R is then expressed in term of these quantities, namely
Rn = αn +

√
τgn > 0. The unknown gn being determined by successive

resolutions of the following implicit equation

Φ(gn) := gn− log(αn +
√
τgn)− Eq(nτ)

αn +
√
τgn

+λ(αn +
√
τgn) = 0. (4.24)

In order to be consistent with Equation (4.18), we need to introduce the
parameter μ different from 1. It enters Equation (4.24) as

Φ(gn) := μgn−log(αn+
√
τgn)− Eq(nτ)

αn +
√
τgn

+λ(αn+
√
τgn) = 0. (4.25)
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Figure 4.2: Evolution of the radius when λ < λcr and E variable; from
extinction to stabilization.

This implicit equation is solved by a Newton method with initial data
gn−1.
The properties of this scheme remain unchanged so that by [5], the con-
vergence and comparison properties still hold. The numerical scheme
also sustained similar qualitative properties to the continuous model of
flame ball growth (see [5] for more details).

Numerical results

We now turn on the numerical investigation of the problem. For
this purpose, we consider an input energy q = χ[0,1]. In Figure 4.2, we
fix a value for the parameter λ, namely λ = 0.1 < λcr = 1/e and plot the
different radius evolution possibilities for different energy inputs. We
note that (picture on the left) we recover the expected behavior of the
radius: when E is small, the flame quenches whereas when it is larger,
the behavior cannot be guessed with this time scale and numerical sim-
ulations have to be performed for longer times. For this purpose, we
perform a time rescaling. Writing t = τ/ε in Formula (4.18) and di-
viding by R, implies a new expression μ̃∂1/2R, where μ̃ =

√
εμ. So

that, dropping the tilde, we are able to simulate large time scale t via a
smaller time scale τ only by taking values of μ less than one. Figure 4.2
(right), shows the stabilization towards the radius R2 in the time coor-
dinate τ .

Finally, in Figure 4.3, the energyE is fixed and we consider different
values for λ. For important radiative heat losses, the flame quenches,
whereas it stabilize to the corresponding critical radius, depending on
the value of λ.
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Figure 4.3: Evolution of the radius when E fixed and λ variable.

4.5. Conclusion
In this paper, we have studied the stabilizing effect of radiative trans-

fer on the formation of flame balls. In the formation of flame balls, ra-
diation is an important physical effect. Instead of considering radiative
heat loss, just as Buckmaster et al. did in [16, 17] through simplified
versions of Stefan’s law, we have considered radiative transfer using
the well known (linearized) Eddington law. In some asymptotic pa-
rameter regime, we obtain the existence of two steady flame balls. In
our study, the asymptotic equation for the radius of the steady flame
ball is logR = λR and it is different from the one obtained by Buck-
master et al, logR = ΛR2. The difference in the power of R comes
from the fact that the dependence of the front temperature with respect
to R is different whether we consider heat loss terms (in that case, the
dependence is parabolic) or radiative transfer (in that case it is linear).
This has an influence on the size of the steady flame balls.
For the linearized Eddington equation of radiative transfer, we have
derived, using an approach initiated by Buckmaster et al., an integro-
differential equation for the growth of a flame ball. This equation dif-
fers again from the one obtained by Buckmaster et al. with a loss term
proportional toR instead ofR2. The equation obtained in this paper de-
scribes the nonlinear evolution of radial perturbation of steady flame balls
and falls into a class of integro-differential equations that are mathe-
matically and numerically well understood [4, 5, 47]: we have used
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this framework to study mathematically and numerically the asymp-
totic behaviour of this equation. When two steady flame balls exist, the
smaller one is unstable (except for particular values of the parameters)
and the larger one is stable similarly to the results obtained in [16, 17].
This gives a partial answer to the stability properties of flame balls ob-
tained in [53] since the perturbations considered in the paper have the
radial symmetry. Finally, we shall mention that the derivation carried
out in this paper is only formal and it would be interesting to make this
derivation rigorously: for that purpose, instead of starting from the
free boundary problem, we shall consider the reaction diffusion sys-
tem with a singular reaction term and follow the method developed by
Roquejoffre et al. in the adiabatic case [33].
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CHAPTER 5

Stability properties for a flame ball
problem with radiative transfer

5.1. Introduction
The purpose of this thesis is to study stability properties for a flame

ball Free Boundary Problem (FBP) with radiative transfer. This chapter
deals with the stability issues of this FBP and is therefore the confluence
of all the previous work. To reach this goal, different steps were needed.
Let us then start this introduction by a recapitulation of these different
steps and then state the mathematical results obtained in this chapter.

The first mathematical model to describe such flames goes back
to Zeldovich [56] in 1944. This model leads to the existence of solu-
tions which are unstable under radially symmetric perturbations. This
model, known as the non-radiative or adiabatic model, describes com-
bustion processes with simple chemistry (such as a one step reaction
in which the gaseous reactant is converted into a gaseous product). In
such models, we are interested in two quantities: the temperature θ and
the fuel mass fraction y, which are assumed, in the adiabatic context, to
be constant inside the flame, in particular y ≡ 0, see Figure 5.1.

It was then believed that physical flame balls do not exist, until
1984, when, surprisingly, Ronney (see e.g. [16, 17]) discovered during
drop tower experiments the existence of physical flame balls. There-
fore, a stabilizing effect has to be identified. It has been argued [44] that
radiation is physically important in near limit combustion at low grav-
ity. Indeed, flame balls are, so far, the weakest flames known. They are
difficult to see and exist close to the extinction limit. Several models
were then established incorporating heat losses as radiative effects (see
e.g [16, 17, 22]). These heat-loss models only take into consideration
the loss of heat due to radiation. A more realistic physical model will
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fuel mass
fraction y

temperature θ

R radius r

Reaction zone

Interior filled with combustion

products Fuel and oxygen diffuse inward

Heat and products diffuse outward

Figure 5.1: Profile of the temperature and the mass fraction variables in the
adiabatic case. The radius of the flame ball is denoted byR, corresponding
to the flame front.

describe radiation effects by considering a radiative transfer equation.
Indeed, the radiative transfer of heat in combustion processes, taking
place in inert, not fully transparent media (e.g. dust, porous media,
etc.), involves both emission and absorption of radiation. Such phe-
nomena may significantly influence the temperature of the flame, its
propagation speed (see e.g. [10]) and the flammability of the medium
itself. For more physical details, we refer the reader to [46] and the ref-
erences therein. See also the SOFBALL (Structure of Flame Balls at Low
Lewis number) link on Paul Ronney’s NASA home page [1].

Throughout our study, we indeed go one step further in the de-
scription of the radiative effects and introduce a physically more realis-
tic radiative transfer model. Namely, we adopt the Eddington diffusion
model ([24, 40, 41, 42, 43, 49])

−∇(∇ · q) + 3α2q = −α∇θ4, (5.1)

where q is the radiative flux and α is the opacity of the medium. Thus,
the radiative effects are a direct consequence of temperature variations.
Following Joulin and Buckmaster [14, 31, 32], these radiative effects
couple back to the temperature equation, in which the divergence of
the radiative flux appears with coupling constant β, the so-called Boltz-
mann constant. Thus β is a measure of the ratio between the radiative
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and the diffusive flux. For flame fronts, this extended model was pro-
posed and studied in [14, 31, 32], and in [6, 10]. To streamline the math-
ematical analysis, we do not use the vector equation (5.1) but work with
the scalar equation for the divergence of the flux

−Δu+ 3α2u− αΔθ4 = 0,

where u = −β∇ · q is a suitable multiple of the divergence of the radia-
tion flux as it appears in the modified temperature equation. Assuming
our problem to be spherically symmetric, the free boundary problem
then reads

yt =
1
Le

Δy for r �= R(t), (5.2a)

θt = Δθ + u for r �= R(t), (5.2b)

0 = Δu− 3α2u+ χΔθk, (5.2c)

where χ = αβ. The artificial parameter k will be taken either k = 4
(black-body radiation) or k = 1 (linearised radiation model). Equa-
tion (5.2c) is satisfied in the whole space in the sense of the distributions
(and classically for r �= R(t)). The jump conditions at r = R(t) are

[θ] = y = 0, −[θr] =
1
Le

[yr] = F (θ(R(t))), (5.2d)

with u+χθk being continuously differentiable, as follows from (5.2c) if
θ is merely bounded. The asymptotic boundary conditions are

y → yf , θ → θf , u→ 0 as r → ∞. (5.2e)

The parameters θf and yf denote the temperature and the mass frac-
tion far away in the fresh region. We recall that R(t) is the free bound-
ary variable corresponding to the flame front and that F (θ(R)) is the
reaction rate evaluated at r = R. Note that, for the analytical results,
we will not specify the reaction rate and work only with general reac-
tion rates F . We only need to know that F is a positive function of the
temperature at the flame front. On the other hand, when performing
numerics, we will need to specify one reaction rate which will be taken
as an Arrhenius type law.
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Once the mathematical model is written down, the next step is to
prove existence of stationary solutions for Problem (5.2):

1
Le

ΔY = 0 for r �= R, (5.3a)

ΔΘ + U = 0 for r �= R, (5.3b)

ΔU − 3α2U + χΔΘk = 0. (5.3c)

Here R is a stationary flame radius, Equation (5.3c) is again satisfied
in the whole space in the sense of the distributions (and classically for
r �= R). The jump conditions at r = R are

[Θ] = Y = 0, −[Θr] =
1
Le

[Yr] = F (Θ(R)), (5.3d)

with, as above, U + χΘk smooth (i.e. C1). The asymptotic boundary
conditions are

Y → yf , Θ → θf , U → 0 as r → ∞. (5.3e)

Note that we are looking for radial solutions in R
3, therefore the Lapla-

cian can be written, for an arbitrary function f , as Δf = f ′′+ 2
rf

′, where
primes denote derivatives in the radial coordinate r. We recall the main
result obtained in [53]

THEOREM 5.1 (Existence). Let α ≥ 0, β ≥ 0, let F be continuous
and positive and let θf > 0, yf > 0. Then there exists a radial solution
(Θ(r), Y (r), U(r), R) to the stationary System (5.3). Moreover, for generic
choices of the parameters the number of solutions is odd.

Concerning the stationary problem, the mass fraction equation is
independent from the two others, and one can compute the explicit
formula

Y (r) =
{

0 for r ≤ R,

yf

(
1 − R

r

)
for r > R.

(5.4)

Different bifurcation diagrams are shown in [53], depending either on
the parameters β or yf , which give an example of multiplicity of sta-
tionary solutions, reproduced in Figure 5.2. The pictures suggest that
the bifurcation diagrams consist of curves, and for the linearised Ed-
dington equation (k = 1) we prove, in Section 5.3, that this is indeed
the case. Moreover one may ask whether Figures 5.2a and 5.2b depict
all solution curves. Again, for k = 1 we prove that the answer is affir-
mative, see Section 5.3.

From now on, let us fix a stationary solution (Y,Θ, U,R) of Prob-
lem (5.3). As we are interested in stability properties of System (5.2),
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Figure 5.2: Bifurcation curves exhibiting turning points: (a) with β used
as bifurcation parameter; (b) with Yf as the parameter.

we start by perturbing a fixed stationary solution. We consider ra-
dially symmetric perturbations. Thus the first task is to linearise the
FBP (5.2). Our analysis is based on [8] in which the authors derive a
general method to linearise such problems. As we are dealing with a
radially symmetric problem, we will also consider [11], in which a suit-
able change of variable for radial problems is obtained. We will derive
the linearised problem for our model in Section 5.2.

After proving the existence of stationary solutions and linearising
around a fixed one, we concentrate on the main body of this chapter,
namely the study of the stability issues. In order to understand the
point spectrum of our problem, we define an Evans function. Let us
explain briefly how one can derive such a function. Let λ be a candi-
date eigenvalue. As suggested in Figure 5.1, one can split the space into
two regions, namely the burnt region (inside the ball) corresponding to
the interval [0, R(t)] and the fresh region (outside the ball) correspond-
ing to the interval [R(t),+∞). Our goal is then to define and compute
eigenfunctions on each interval described above. In order to define an
eigenfunction on the whole space, one sees that the remaining step will
be to match the two eigenfunctions at the free boundary r = R. At this
point precisely, the two functions should satisfy the linearised jump
conditions. Therefore, we are left with a linear system to solve which
involves a matrix needing to have a nontrivial kernel. Note that this
matrix depends on the candidate eigenvalue λ. By definition, the de-
terminant of the matrix is called the Evans function, denoted D(λ) in
the literature. It is an analytic function in λ and its zeros give the point
spectrum of our problem.

117



5. STABILITY PROPERTIES FOR A FLAME BALL PROBLEM

On the one hand we consider a linearised Eddington equation (k =
1) for which we can derive explicit formulas for the Evans function.
On the other hand, when considering the black-body model (k = 4),
there is no hope to derive explicit formulas and numerical techniques
are needed to compute the Evans function.

In this thesis we only consider radially symmetric perturbations.
The “linear” case is treated in Section 5.4 while Section 5.5 concerns the
nonlinear one. In the “linear” case, the expression of the Evans function
is quite complicated and only a numerical study of the eigenvalues is
possible. The main result is summarised in Figure 5.3 and will briefly
be discussed now.

As we are interested in relating the stability results to the bifurca-
tion diagrams, we draw in Figure 5.3 a magnification around the first
vertical turning point of a bifurcation diagram, where β is the natural
bifurcation parameter. Let us explain Figure 5.3b, which is a catalogue
for the spectral radial radius R. We recall that, for every R there exists
a unique flame ball with radius R, if we leave the reaction rate F (θ∗)
unspecified in (5.3d). Scaling r and u byR, this stationary solution only
depends on α̃ = Rα, β̃ = Rβ, θf , yf and Le. In particular the flame tem-
perature θ∗ only depends on α̃, β̃, θf and yf

Le . Any reaction rate F with
F (θ∗) = F (θ(R)) = yf

RLe then makes this flame ball a stationary solu-
tion of the FBP (5.2). Then we can, for given values of yf , θf and Le, for
given flame ball radius R, and hence for given F (θ∗), F (θ∗) being just
a number, examine the spectral stability varying basically F ′(θ∗) (verti-
cally in the stability diagram) versus the scaled radiative parameters α̃
and β̃. The combustion parameters θf , yf , Le, or combinations thereof,
may also be varied.

We will do all the spectral stability analysis for R = 1, because of
the scaling

ỹ(r) = y(Rr), θ̃(r) = θ(Rr), ũ(r) = Ru(Rr), (5.5a)

α̃ = Rα, β̃ = Rβ, χ̃ = R2αβ. (5.5b)
Note that the reaction rate F (θ) also has to be scaled: F̃ (θ) = RF (θ).

As we trace the solution curve in the bifurcation diagram 5.3a, in
which only β is varied, the radius R, and hence both α̃ and β̃ vary, and
the spectral stability depends on F ′(θ∗), or more precisely on F̃ ′(θ∗),
as we shall see from the Evans function. The solution curve itself de-
fines a curve in the (α̃, β̃)-plane, which we put horizontally. Vertically
above each point of this curve, we put F̃ ′(θ∗) = RF ′(θ∗), where R is
the (unscaled) radius of the flame ball and F ′(θ∗) the derivative in θ∗ of
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Figure 5.3: Relation between the stability on the bifurcation diagram (a)
and the stable area (b) for Le = 0.7, A = 2.29.106, ε = 3.35.10−2 and k = 1

F (θ) = A exp(− 1
εθ ), the reaction rate function used to make the bifur-

cation diagram.
As χ̃ = R2αβ turns out to be monotone along the solution curve,

we sketch the resulting curve in Figure 5.3b in a diagram with χ̃ hori-
zontally and RF ′(θ∗) vertically. In this diagram we draw in fact three
curves

• dotted: bifurcation curve,
• dashed: D(0) = 0,
• solid: Hopf bifurcation curve (2 conjugate purely imaginary eigen-

values).

Turning points correspond to intersections of the dotted and dashed
curves. The interpretation is as follows. We start on the bifurcation di-
agram 5.3a at β = 0 and R small. We are moving along this curve until
we reach the vertical turning point. This branch of the diagram corre-
sponds to the dotted line, in 5.3b, for small values of χ̃ until it hits the
vertical turning point line. We go back to Picture 5.3a considering the
middle branch of the diagram. This middle branch corresponds to the
part of the dotted line in 5.3b located after the crossings with the turn-
ing point line. We see that we enter and leave the stable area. These
points are emphasized by the circles and correspond to the values of β
in Figure 5.3a. Therefore, the part between the two circles, corresponds
the stable branch of solutions. To conclude these observations, the dot-
ted line and the dashed line in Picture 5.3b will intersect again for large
values of χ̃ meaning that we reach the second vertical turning point,
not depicted in Figure 5.3a but visible in Figure 5.2a.
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Figure 5.4: Relation between the stability on the bifurcation diagram (a)
and the stable area (b) for Le = 0.7, A = 1.47.107, ε = 2.839.10−2 and
k = 4

As mentioned earlier, the Lewis number plays an important role in
the stability analysis. Indeed, we will see that the stable area exists only
for Le < 1, and the stable area becomes larger as Le → 0.

Finally, Section 5.5 deals with the black-body model (k = 4). As in
the linear case, we are interested in defining the Evans function. Un-
fortunately, it is harder to define the eigenfunctions on each side of the
point z = R(t). To overcome this difficulty, we will consider planes
spanned by solutions instead of lines, this analysis being based on [3].
Planes on each side are defined by wedging the two solutions on both
sides. Because of symmetry arguments, these planes are defined to be
with zero derivative in 0, and bounded at infinity. Then one may try
to find solutions in these planes which match at z = R through the lin-
earised jump conditions. This matching induces, as in the linear case,
the definition of the Evans function.

The analysis of the Evans function can only be done numerically;
the main result is shown in Figure 5.4. The interpretation is similar
to the linear case. Two main differences occur. The stable area in the
nonlinear case diminishes compared to the linear case. Nevertheless,
the property concerning the Lewis number still holds, namely the stable
area vanish for Le ≥ 1, and becomes bigger as Le → 0. The other
difference concerns the vertical turning point line (dashed line). This
curve becomes negative for some parameter value χ̃, meaning that, for
these particular values, there can be no turning points in the bifurcation
diagram 5.4a. Note that for large values of χ̃, the turning point curve
becomes positive again and tends to infinity.
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5.2. Linearisation of the free boundary problem
In this section we apply the linearisation technique for free bound-

ary problems with jump conditions, see [8]. One of the main advan-
tages of this technique is that, under the change of variables needed, it
does not denature the problem. In other words, the linear part defined
in the original formulation will be the same for the new linearised vari-
ables. Before going into the details of linearisation, we first need to fix
the free boundary. Strictly speaking, this step is not needed for the lin-
earisation itself, but in order to prove rigorously existence and/or sta-
bility properties, it is essential. A standard way to fix the free boundary
is to introduce a new variable z = r − R(t). In a traveling wave con-
text (cf [8]) this works well, but such a change of variable does not fit
in a radially symmetric problem. Indeed, our working interval reads
[0,+∞) and the variable z would lie in [−R(t),+∞), i.e. shifting time
dependence to the domain rather than the variable. One thus needs
to incorporate another way of dealing with such problems, as was de-
scribed in [11]. Instead of a translation argument, consider the follow-
ing change of variables, suitable for radial problems,

z =
Rr

R(t)
. (5.6)

Here R is the radius of the stationary flame ball, while R(t) is the radius
of the perturbed, evolving flame ball. The free boundary is now fixed
at z = R, and it is convenient to introduce the new variable

s(t) =
R(t) −R

R
,

hence we may write r = z(1 + s(t)). Our goal is, first to lin-
earise Problem (5.2) and its associated jump conditions (5.2d) around
a fixed stationary solution. Let us then fix a solution quadruplet
(Y (r),Θ(r), U(r), R) of Problem (5.3). Next we set

y(r, t) = Y (z) + s(τ)zY ′(z) +m(τ, z), (5.7a)

θ(r, t) = Θ(z) + s(τ)zΘ′(z) + n(τ, z), (5.7b)

u(r, t) = U(z) + s(τ)zU ′(z) + p(τ, z). (5.7c)

This splitting is adapted from a similar trick in [13] for travelling
waves. Linearising around the stationary solution and in view of
f(r) = f(z(1 + s)) = f(z) + szf ′(z) + O(s2), this splitting is naturally
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induced by the change of coordinates. In the following, we denote by

Δzw = wzz +
2
z
wz

the radial Laplacian in R
3 in the z variable. In the next subsections we

introduce an Evans function D(λ) to characterize the spectrum in the
case k = 1. Indeed in this case, computations are explicit while they are
of course not in the case k = 4. The Evans function for the latter case
will be discussed in Section 5.5.

Linearisation of the parabolic equations

Substituting (5.7) in (5.2), we obtain

mτ =
1
Le

Δzm+ F1(Δzm, s) + ṡF2(z, zmz , s), (5.8a)

nτ = Δzn+ p+ F3(z,Δzn, s) + ṡF4(z, znz , s), (5.8b)

3α2p = Δzp+ kχΔz(Θk−1n) + F5(Δzp, s) + ṡF6(z, zpz, s), (5.8c)

where all Fi for i = 1, ..., 6 are nonlinear terms in the (m,n, p) variables.
These terms can be written explicitly, see [27], where they were used
to rigorously prove instability results using semi-group techniques. In
our present work their exact form is irrelevant. Clearly these expres-
sions depend on the perturbation s(τ) and its time derivative ṡ(τ). The
linearisation of the the jump conditions [y] = [θ] = 0, (see Section 5.2)
allows us to express s and its time derivative in terms of m or n, so
that s and ṡ can be eliminated from System (5.8). Note that the triplet
(m,n, p) are supposed to be small variables. Hence, the linear part of
System (5.8) for z �= R reads, as expected

mτ =
1
Le

Δzm, (5.9a)

nτ = Δzn+ p, (5.9b)

0 = Δzp− 3α2p+ kχΔz(Θk−1n). (5.9c)

Linearisation of the jump conditions

We consider in the following each jump condition separately. More-
over, if not mentioned otherwise, as we are linearising, we omit all
terms that involve a product of two small quantities. By the square
brackets we mean the jump in z = R, e.g. [w] = w(R+) − w(R−).
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The jump condition [y] = [θ] = 0. This jump condition gives an ex-
pression for the perturbation s(τ) and its derivative ṡ(τ) in terms of m
or n. First it is good to remark that Θ+Y/Le isC2 since U is continuous.
Therefore [θ + y

Le ] = 0 implies the first linearised condition

[n] = − 1
Le

[m]· (5.10)

Moreover, since Y is explicitly given by (5.4) and yf

RLe = F (θ(R)),
[y] = 0 implies that, using (5.10),

s = − [m]
yf

=
Le
yf

[n] =
1

RF (θ(R)
[u]. (5.11)

This leads to an expression for s and ṡ, namely s = m(τ,R+)
yf

and ṡ =
mτ (τ,R+)

yf
.

The jump condition 1
Le [yr] = −[θr]. Again from the fact that θ + y/Le

is C2, we can conclude that the second linearised jump condition reads

[nz] = − 1
Le

[mz]. (5.12)

The jump condition [θr] = −F (θ(R)). Let us start by computing [θr].
Since [Θ′] = −F (Θ(R)) and [Θ′′] + 2

R [Θ′] = 0, we obtain using (5.11)

[θr] =
1

1 + s

(
[Θ′] + s[Θ′] + sR[Θ′′] + [nz]

)
= (1 − 2s)[Θ′] + [nz] = −F (Θ(R)) +

2
R

[n] + [nz],

up to higher other terms. On the other hand

F (θ(R)) = F
(
Θ(R) + sRΘ′(R) + n(R)

)
= F (Θ(R)) + F ′(Θ(R))

(
sRΘ′(R±) + n(R±)

)
.

Without loss of generality, we may choose a sign, say +, and using (5.11)
and [Θ′] = −F (Θ(R)), we see that [θr] = −F (θ(r))reduces to

[nz] = − 2
R

[n] − F ′(Θ(R))
F (Θ(R))

(
Θ′(R−)n(R+) − Θ′(R+)n(R−)

) · (5.14)

The jump conditions [u + χθk] = 0 and [ur + χ(θk)r] = 0. Let us
start with the condition [u + χθk] = 0. Since U + χΘk is C2 and θk =
Θk + kΘk−1(szΘ′ + n), it easily follows that

[p+ kχΘk−1n] = 0. (5.15)

123



5. STABILITY PROPERTIES FOR A FLAME BALL PROBLEM

Next, let us concentrate on the condition [ur + χ(θk)r] = 0, which is
equivalent to [ur] + kχθk−1[θr] = 0. Using again that U + χΘk is C2, a
straightforward computation leads to

[pz] = −kχΘk−1[nz] − k(k − 1)Θk−2[Θ′n].

It will be convenient to rewrite the term [Θ′n] as follows. From Equa-
tions (5.12) and (5.14), we can deduce

[Θ′n] = (Θ′(R−) + Θ′(R+))[n] +
F (Θ(R))
F ′(Θ(R))

([nz] +
2
R

[n]),

which leads to the linearised jump condition

[pz] = −kχΘk−1[nz] (5.16)

−χk(k − 1)Θk−2

{
(Θ′(R−) + Θ′(R+))[nz ] +

F (Θ(R)
F ′(Θ(R))

([nz] +
2
R

[n])
}
·

Summary. The linear problem thus becomes

mτ =
1
Le

Δzm for z �= R, (5.17a)

nτ = Δzn+ p for z �= R, (5.17b)

0 = Δzp− 3α2p+ kχΔz(Θk−1n), (5.17c)

with the jump conditions at z = R

[n] = − 1
Le

[m] (5.18a)

[nz] = − 1
Le

[mz] (5.18b)

[nz] = − 2
R

[n] − F ′(Θ(R))
F (Θ(R))

(
Θ′(R−)n(R+) − Θ′(R+)n(R−)

)
(5.18c)

[p] = −kχΘk−1[n] (5.18d)

[pz] = −kχΘk−1[nz] (5.18e)

−χk(k − 1)Θ2

{
(Θ′(R−) + Θ′(R+))[nz] +

F (Θ(R)
F ′(Θ(R))

([nz] +
2
R

[n])
}
·

The Evans function for k = 1

The Evans function is an efficient tool for understanding the spec-
tral properties of a problem. Having linearised Problem (5.2), we con-
sider the associated eigenvalue problem, the eigenvalue denoted by λ.

124



5.2 LINEARISATION OF THE FREE BOUNDARY PROBLEM

The first task consists of computing, in terms of λ, well-behaved solu-
tions near 0 and +∞. By symmetry considerations we are looking for
solutions with vanishing derivative in 0, whereas at infinity the solu-
tions should be bounded. Those solutions should then match in z = R
through the linear jump conditions. As we will see below, we end up
with a 5×5 matrix depending on λ. We compute its determinant (which
is by definition the Evans function) and study its zeros. The zeros of this
function are the eigenvalues of the problem. In this section, we derive
an explicit formulation for this function when k = 1.

Let us then consider the eigenvalue problem associated to Sys-
tem (5.17)-(5.18)

λm =
1
Le

Δm for z �= R, (5.19a)

λn = Δn+ p for z �= R, (5.19b)

0 = Δp− 3α2p+ χΔn. (5.19c)

with the jump conditions at z = R

[n] = − 1
Le

[m] (5.20a)

[nz] = − 1
Le

[mz] (5.20b)

[nz] = − 2
R

[n] − F ′(Θ(R))
F (Θ(R))

(
Θ′(R−)n(R+) − Θ′(R+)n(R−)

)
(5.20c)

[p] = −χ[n] (5.20d)

[pz] = −χ[nz]. (5.20e)

The radial Laplacian contains a singular 1/z term which can be re-
moved via the change of variables m = m̃

z , n = ñ
z and p = p̃

z . Indeed,
this leads to a system of second order ODEs with constant coefficients,
namely

λm̃ =
1
Le
m̃′′ for z �= R, (5.21a)

λñ = ñ′′ + p̃ for z �= R, (5.21b)

0 = p̃′′ − 3α2p̃+ χñ′′. (5.21c)

As mentioned above we are interested in well-behaved solutions, e.g.
bounded at z → ∞ and m̃′(0) = 0, ñ′(0) = 0 and p̃′(0) = 0. In order
to determine the exponential decay rate of the solutions (m̃, ñ, p̃), we
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need to set ⎛⎝ m̃
ñ
p̃

⎞⎠ =

⎛⎝ Ω1e
Az

Ω2e
Bz

Ω3e
Bz

⎞⎠ .

From (5.21a) one finds A =
√

Leλ, whereas (5.21b) and (5.21c) together
lead to a fourth order polynomial for B:

−B4 + (λ+ 3α2 + χ)B2 − 3α2λ = 0.

This polynomial can be solved explicitly, the roots being B1,2 = ±√
w1

and B3,4 = ±√
w2, where

w1 =
λ+ 3α2 + χ−√

Δ
2

, w2 =
λ+ 3α2 + χ+

√
Δ

2

and Δ = (λ+3α2 +χ)2−12α2λ. It is important to remark that A,Bi for
i = 1, . . . , 4 are analytic functions in λ for λ not belonging to the half-
line (−∞, 0]. This allows us to determine the eigenfunctions on each
side of z = R. For the eigenfunctions near +∞ we find, for z ≥ R,

m+ = C1
exp(−√

λLe z)
z

,

n+ = C2
exp(−√

w1 z)
z

+ C3
exp(−√

w2 z)
z

,

p+ = C2(λ− w1)
exp(−√

w1 z)
z

+ C3(λ− w2)
exp(−√

w2 z)
z

,

and near 0, for z ≤ R,

m− = 0,

n− = C4
sinh(

√
w1 z)
z

+ C5
sinh(

√
w2 z)
z

,

p− = C4(λ− w1)
sinh(

√
w1 z)
z

+ C5(λ− w2)
sinh(

√
w2 z)
z

,

where Ci, i = 1, . . . , 5 are constants.
Plugging these expressions in the jump conditions (5.20) we get,

after some simplifications, the following linear system⎛⎜⎜⎜⎜⎝
1 1 1 f1 f2

a1 + 1
R a2 + 1

R a3 + 1
R f3 f4

a1 − 1
R

F ′
F θ

′(R−) F ′
F θ

′(R−) f5 f6

0 λ− a2 + χ λ− a3 + χ f7 f8

0 f9 f10 f11 f12

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

C1

C2

C3

C4

C5

⎞⎟⎟⎟⎟⎠ = 0,
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where

f1 = − sinh(a2R), f2 = − sinh(a3R),

f3 = a2 cosh(a2R) − sinh(a2R)
R

, f4 = a3 cosh(a3R) − sinh(a3R)
R

,

f5 = −F
′(θ∗)
F (θ∗)

θ′(R+) sinh(a2R), f6 = −F
′(θ∗)
F (θ∗)

θ′(R+) sinh(a3R),

f7 = − sinh(a2R)(λ− a2 + χ), f8 = − sinh(a3R)(λ− a3 + χ),

f9 = (a2 +
1
R

)(λ− a2 + χ), f10 = (a3 +
1
R

)(λ− a3 + χ),

f11 =
{
a2 cosh(a2R) − sinh(a2R)

R

}
(λ− a2 + χ),

f12 =
{
a3 cosh(a3R) − sinh(a3R)

R

}
(λ− a3 + χ),

where F = F (θ∗) = F (θ(R)), and F ′ = F ′(θ∗) = F ′(θ(R)). By defini-
tion, the Evans function D(λ) is the determinant of this 5 × 5 matrix.
The remaining step is then to compute this determinant which reads,
after simplifications,

D(λ) = D0(λ) + F ′(Θ∗)D1(λ), (5.25)

where

D0(λ) =
1
R

− a1 =
1
R

−
√
λLe,

D1(λ) =
h

2(a2
2 − a2

3)
+

Θ′(R−)
F (Θ∗)

,

h = e−2Ra2

(
1 − a1

a2

)
(a2

2 − 3α2) + e−2Ra3

(
1 − a1

a3

)
(3α2 − a2

3)

+
a1

a2
(a2

2 − 3α2) − a2
2 +

a1

a3
(3α2 − a2

3) + a2
3

and a1 =
√
λLe, a2 =

√
w1, a3 =

√
w2, roots taken with positive real

part.
Again, we may scale the analysis to the case R = 1 by, in addition

to (5.5),

D̃(λ) = RD(λ), D0(λ) = RD0(λ), D1(λ) = D1(λ),

w̃ = R2w, λ̃ = R2λ, h̃ = R2h, ãi = Rai,

for i = 1, . . . , 3, to get

D̃(λ) = D̃0(λ) + F̃ ′(Θ∗)D̃1(λ), (5.26)
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where
D̃0(λ̃) = 1 − ã1 = 1 −

√
λ̃Le,

D̃1(λ̃) =
h̃

2(ã2
2 − ã2

3)
+

Θ′(1−)
F̃ (Θ∗)

,

h̃ = e−2ã2

(
1 − ã1

ã2

)
(ã2

2 − 3α̃2) + e−2ã3

(
1 − ã1

ã3

)
(3α̃2 − ã2

3)

+
ã1

ã2
(ã2

2 − 3α̃2) − ã2
2 +

ã1

ã3
(3α̃2 − ã2

3) + ã2
3

and ã1 =
√
λ̃Le, ã2 =

√
w̃1, ã3 =

√
w̃2, roots taken with positive real

part.

5.3. Bifurcation diagram analysis
Before going to the study of the Evans function and stability prop-

erties, we recall an analysis on the bifurcation diagrams from [53] and
we derive some additional properties. These bifurcation diagrams ex-
hibit the multiplicity of solutions one can get for different control pa-
rameters, as shown for example in Figure 5.2. Our purpose is to relate
the stability analysis to the bifurcation diagrams in order to determine
which branches are stable or unstable.

The bifurcation diagram with yf as the control parameter

In this section, and if not mentioned otherwise, by Ȳ , we consider
the ratio yf

Le . Since yf or Le never appear by themselves in the bifurca-
tion diagram, this simplifies the notation.

Figure 5.5 represents a sketch of a bifurcation diagram for the con-
trol parameter Ȳ . The scales are not preserved, the top part of the curve
concerns very large radii while the lower branch on the right of the pic-
ture concerns very small ones. The important characteristic here is the
shape of the curve. Note that, for some specific values of the parame-
ters, it is possible to obtain a curve without turning points. Moreover,
there are no restrictions on the numbers of vertical turning points, and
thus, there might be more wiggles. Nevertheless, such a situation did
not happen in the numerics we performed.

Let us recall from [53] that the bifurcation diagram curve is given
by the equation

F (Θ(R;R)) =
Ȳ

R
, (5.27)
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R

0
Ȳ

Figure 5.5: Full bifurcation diagram with Ȳ as a control parameter. The
arrows are indicating increasing flame temperature θ∗.

where Θ(R; r) is the flame temperature parametrised by the prescribed
flame ball radius R. For the linear Eddington equation, one can derive
an explicit formula for Θ(R;R) (see [53]). To simplify the notation we
introduce

μ = μαβ =
√

3α2 + χ.

Then

Θ(R; r) =

⎧⎪⎪⎨⎪⎪⎩
B1

r
sinh(μr) +B3 + θf for r ≤ R,

B2

r
exp(−μr) +

B3R

r
+ θf for r > R,

where the constants are given by

B1 =
χȲ

μ3
exp(−μR), B2 =

χȲ

μ3
sinh(μR), B3 =

3α2Ȳ

μ2
·

Therefore the problem reduces to the following system, where Θ∗ =
Θ(R;R),

F (Θ∗) − Ȳ

R
= 0, (5.28a)

Θ∗ − χȲ

2μ3R
[1 − 2μR− exp(−2μR)] − Ȳ − θf = 0. (5.28b)
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We denote by Θ̄ the expression

Θ̄ =
χȲ

2μ3R
[1 − 2μR− exp(−2μR)] + Ȳ + θf , (5.29)

in order to distinguish between this expression and Θ∗, which is also
used as a parameter for the bifurcation diagram curve. The implicit
function theorem gives a condition for the solutions of (5.28) to be a
curve in the (Ȳ , R)-plane, if we think of Ȳ as bifurcation parameter.
For control parameter Ȳ it reads

RΘ̄R + Ȳ Θ̄Ȳ �= 0, (5.30)

where the subscriptR (resp. Ȳ ) denotes the derivative of Θ̄ with respect
to R (resp. Ȳ ). If this condition is satisfied the solution set defines a
smooth curve parametrised by Θ∗. Due to the fact we have an explicit
formula for Θ̄, we can derive an expression for RΘ̄R + Ȳ Θ̄Ȳ given by
Equation (5.30), namely

RΘ̄R + Ȳ Θ̄Ȳ = Ȳ

{
χ

μ2
(exp(−2Rμ) − 1) + 1

}
,

which defines a strictly positive function and therefore does not vanish.
Thus Figure 5.5 defines a single curve, as we shall see.

The next step consists of finding the horizontal and vertical turning
points. By means of the implicit function theorem, one derives

dR

dΘ∗ =
R−R2Θ̄Ȳ F

′(Θ∗)
RΘ̄R + Ȳ Θ̄Ȳ

, (5.31)

dȲ

dΘ∗ =
R2Θ̄RF

′(Θ∗) + Ȳ

RΘ̄R + Ȳ Θ̄Ȳ

· (5.32)

From Equations (5.31) and (5.32), we conclude

LEMMA 5.2. We have
(1) The condition to have vertical turning points reads

F ′(Θ∗) = − Ȳ

R2Θ̄R
, (5.33)

where Θ̄R defines the (negative) derivative w.r.t. R.
(2) The condition to have horizontal turning points reads

F ′(Θ∗) =
1

RΘ̄Ȳ

, (5.34)

where Θ̄Ȳ defines the (positive) derivative w.r.t. Ȳ .
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F ′(Θ∗)

0 1
RΘ̄Ȳ

−Ȳ
R2Θ̄R

Figure 5.6: Varying Θ∗, the direction in which the bifurcation curve moves
in the (Ȳ , R)-plane depends on F ′(Θ∗).

Equations (5.31) and (5.32) also lead to Diagram 5.6, via a simple
sign inspection. This diagram has to be related to Figure 5.5 and gives
the direction along the curve as Θ∗ increases. We can prove using (5.28)
but also using the fact that F (Θ∗) is a bounded positive increasing func-
tion, the following

LEMMA 5.3. We have
(1) If Θ∗ > θf then Ȳ and R are positive,
(2) If Θ∗ is bounded then Ȳ and R are bounded,
(3) If Θ∗ → ∞ then Ȳ → ∞ and R→ ∞,
(4) If Θ∗ → θf then Ȳ → 0 and R→ 0.

PROOF. The conclusions are derived from System (5.28).
(1) Let us suppose Θ∗ > θf . Then from Equation (5.28b), as

χȲ
2μ3R [1 − 2μR− exp(−2μR)] is bounded, it implies Ȳ > 0. Finally, from

Equation (5.28a), we conclude R = Ȳ
F (Θ∗) > 0.

Considering similar arguments, one can easily prove (2), (3) and (4).
�

Lemma 5.3 insures that, assuming Θ∗ is greater than θf and is
bounded, Ȳ and R are positive and bounded, which means that the
bifurcation diagram curve cannot go to infinity for finite R or Ȳ . Con-
ditions (3) and (4) give the behavior of the curve in R and Ȳ in 0 and at
infinity. Therefore, bifurcation curves have to link these two points,
but at this point we do not have uniqueness of the bifurcation dia-
gram curve yet. In order to get this conclusion, it is enough to prove
that the implicit function theorem is valid at least for one of the ex-
trema. We choose to show that the implicit function theorem is valid
for R = Ȳ = 0 or equivalently for Θ∗ = θf .

After multiplying Equation (5.28a) by R to avoid the singularity in
R = 0, we apply the implicit function theorem to System (5.28), and
we see that Condition (5.30) is satisfied. Starting at Ȳ = R = 0 in
Θ∗ = θf , System (5.28) defines a unique bifurcation curve. We note that
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the number of vertical turning points is not restricted to the number
shown in Figure 5.5. Summarising:

PROPOSITION 5.4. The (Ȳ , R) bifurcation diagram defined by Sys-
tem (5.28) defines a unique curve parametrised by Θ∗ for every given set of
parameters.

Bifurcation diagram with χ as the control parameter

Let us consider the bifurcation diagram 5.2a. We proceed as in
the previous section and therefore we omit details and state only re-
sults. The implicit function theorem gives a condition for the solutions
of (5.28) to be a curve. For control parameter χ it reads

Θ̄χ �= 0. (5.35)

If this condition is satisfied the solution set defines a smooth curve
parametrised by Θ∗. Because Θ̄χ is a negative strictly decreasing func-
tion, this condition is always satisfied. By means of the implicit func-
tion theorem, one derives the following

dR

dΘ∗ = −R
2F ′(Θ∗)
Ȳ

, (5.36)

dχ

dΘ∗ =
R2Θ̄RF

′(Θ∗) + Ȳ

Ȳ Θ̄χ
· (5.37)

From Equations (5.36) and (5.37), we conclude the

LEMMA 5.5. We have
(1) The condition to have vertical turning points reads

F ′(Θ∗) = − Ȳ

R2Θ̄R
, (5.38)

where Θ̄R defines the (negative) derivative w.r.t. R.
(2) The condition to have horizontal turning points reads

dR

dΘ∗ = −R
2F ′(Θ∗)
Ȳ

· (5.39)

Note that the condition to have horizontal turning points is never
satisfied, thus, in the bifurcation diagram picture, only vertical turning
points can be observed. After studying the sign of Equations (5.36)
and (5.37), it leads to Diagram 5.8. The picture should be related to
Figure 5.7, in which the arrows indicate the direction of increasing Θ∗.

As in the previous subsection, we would like to understand the be-
havior of the bifurcation diagram for χ = R = 0 and χ, R → ∞, corre-
sponding respectively to Θ̄ = θf and Θ̄ = θf + Ȳ . Note that these two
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R

0 χ

Rad

Figure 5.7: Full bifurcation diagram with respect to χ as a control param-
eter.

number are natural bounds for Θ∗, which is indeed bounded, whereas
when considering Ȳ as control parameter, Θ∗ was only bounded be-
low. We denote by Rad the adiabatic radius defined by Equation (5.27),
when Θ∗ = θf + Ȳ . This radius is also known as the Zeldovich radius
and correspond to the combustion model without radiation (i.e. χ = 0).
We derive the following

LEMMA 5.6. We have
(1) If Θ∗ is bounded then χ and R are bounded,
(2) If Θ∗ → θf + Ȳ then χ→ 0 and R→ Rad,
(3) If Θ∗ → θf then χ→ 0 and R > Rad is bounded.

As before, Lemma 5.6 ensures that for finite Θ∗ between θf and θf +
Ȳ , the bifurcation curve cannot blow up. Moreover, as we know the
behavior of the bifurcation curve for Θ∗ = θf and Θ∗ = θf + Ȳ , one has
to apply the implicit function theorem to one chosen extrema in order to
get the conclusion that the bifurcation diagram defines a unique curve.
It can be easily done, as in the previous subsection. Note that once
again, there are no restrictions on the number of vertical turning points.
Summarizing

PROPOSITION 5.7. The (χ,R) bifurcation diagram defined by Sys-
tem (5.28) defines a unique curve parametrised by Θ∗ ∈ (θf , θf + Ȳ ) for
every given set of parameters.
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F ′(Θ̄)

0 −Ȳ
R2Θ̄R

Figure 5.8: Varying Θ∗, the direction in which the bifurcation curve moves
in the (χ,R)-plane depends on F ′(Θ∗).

Relation between the Evans function and the bifurcation dia-
grams

In this subsection, we determine the connection between the Evans
function D(λ) and the turning points. We expect that in order to have
vertical turning points in Figure 5.2, the conditionD(0) = 0 needs to be
satisfied.

Let us recall that the bifurcation diagram equation is given by Equa-
tion (5.27). As we are considering in this paragraph a linear Eddington
equation, Θ∗ can be explicitly computed, so that this equation can be
rewritten as

f := F

(
χȲ

2μ3R
[1 − 2μR− exp(−2μR) + Ȳ + θf ]

)
− Ȳ

R
= 0, (5.40)

where μ =
√

3α2 + χ. Irrespective of considering Ȳ or χ as a control
parameter, the implicit function theorem leads to (choosing χ),

fχ + fRR
′ = 0.

Hence, it suffices to show that D(0) = fR. We recall that the expres-
sion of the Evans function in the linear case is given by Equation (5.25),
and replacing λ = 0 in this expression, the roots simplify to a1 = 0,
a2 = 0 and a3 =

√
3α2 + χ. This expression can be easily compared to

the computation of fR, and one sees that the two expression are iden-
tical. Therefore, the vertical turning points, in the bifurcation diagram
curves, are indeed given by the condition D(0) = 0.

5.4. Stability analysis for the linear Eddington equa-
tion

In this section, we are interested in studying the Evans function
D(λ) for k = 1. We recall that the zeros of the Evans function are the
eigenvalues for the linearised problem. Thereby, if we can understand
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the zeros of D(λ), then we can deduce stability properties. Unfortu-
nately, an analytic analysis is extremely hard, hence the analysis will
mainly be numerical. Nevertheless, considering k = 1, we can put
α = 0 in the Evans function (5.25) and in the bifurcation diagram equa-
tion (5.27), and keeping χ > 0, we obtain a simplified expression of the
Evans function from which one explains analytically the main proper-
ties. This limit case was studied in Chapter 2, referred to as the heat
loss case. One notes that the heat losses in the temperature equation
enters in the form −(θ4− θ4

f ). We therefore start by describing the main
stability properties in the linear heat loss case.

A general overview

Starting from the simpler heat loss case α = 0, we take the remain-
ing radiation parameter χ as our main “variable”. As explained in the
introduction, see also (5.26), we examine stability in the (χ̃, F̃ ′(Θ∗))-
plane, having rescaled to R = 1.

The case α̃ = 0. This case is interesting to study because the expres-
sion of the Evans function is simpler and we can conclude properties of
the eigenvalues via an analytical analysis. The Evans function reads

D̃(λ̃) = D̃0(λ̃) + F̃ ′(Θ(R))D̃1(λ̃), (5.41)

where
D̃0(λ̃) = 1 −

√
λ̃Le,

D̃1(λ̃) =
1
2

⎛⎝√
λ̃Le
λ̃+ χ̃

− 1

⎞⎠(
1 − exp(−2

√
λ̃+ χ̃)

)
+ a(χ̃)

and

a(χ̃) =
1
2

(
1 + exp(−2

√
χ̃) +

exp(−2
√
χ̃) − 1√
χ̃

)
.

In order to study the “dynamics” of the eigenvalues, we are interested
in two particular values of λ̃. Namely we consider, first, λ̃ to be purely
imaginary, i.e. we are looking for Hopf bifurcations. Secondly, as we
will relate the stability pictures to the bifurcation diagrams, we are in-
terested in the special value λ̃ = 0, i.e. λ = 0, corresponding to vertical
turning points in the bifurcation diagrams (see Section 5.3). For a fixed
Lewis number, provided Le < 1, a sketch of the curves obtained is
shown in Figure 5.9. The solid line corresponds to the Hopf bifurca-
tions while the dashed line corresponds to D̃(0) = 0.

We start by explaining the “dynamics” of the eigenvalues when one
follows the parameter values given by the lines L1 and L2. A sketch of

135



5. STABILITY PROPERTIES FOR A FLAME BALL PROBLEM

F̃ ′

L1 L2 χ̃

Stable Area

λ = 0

Figure 5.9: General picture of stability in the plane (χ̃, F̃ ′)

(a) (b)

Re(λ̃)Re(λ̃)

Im(λ̃)Im(λ̃)

Figure 5.10: Sketch of the dynamic of the eigenvalues along the line (a) L1

and (b) L2

the situation is represented in Figure 5.10. Beginning from F̃ ′(Θ∗) = 0,
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D̃0

D̃1

λ̃

Figure 5.11: Behavior of the components D̃0 and D̃1

the analysis of the Evans function implies the existence of one posi-
tive real eigenvalue. As we cross the dashed curve, another positive
eigenvalue emerges from λ = 0. These two real eigenvalues meet and
continue in the complex plane. Their real part is then decreasing un-
til they cross the imaginary axis, and a Hopf bifurcation occurs. The
difference between the parameter lines L1 and L2 is simply that follow-
ing L1, the eigenvalues will keep negative real part, while following L2

eigenvalues turn back and become positive again.
Another interesting question is to know how the stable area be-

haves when varying the Lewis number. The answer to this question
is plotted in Figure 5.12. In order to explain this picture, we go back to
Figure 5.9 and explain the dynamics of the double-dot asymptote. This
asymptote depends on the value of D̃1(+∞). In Figure 5.11 we sketch

both D̃0 and D̃1. Note that D̃0(0) > 0, D̃1(0) < 0, D̃0(λ̃) ∼ −
√
λ̃ for

large λ̃, and

D̃1(+∞) = lim
λ̃→+∞

D̃1(λ̃) =
√

Le
2

+
e−2

√
χ

2
+
e−2

√
χ − 1

2
√
χ

·

The numerics suggest that, for large F̃ ′(Θ∗), the roots of the Evans func-
tion are real. Assuming this is valid in general, we can argue as follows.
For large F̃ ′(Θ∗), there are two positive roots of D̃(λ) if D̃1(+∞) > 0,
and no positive roots if D̃1(+∞) < 0. Thus the asymptote in Figure 5.9
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Figure 5.12: Asymptote dynamics in the heat loss case, stability vanish
when Le = 1

corresponds to D̃1(+∞) = 0. In Figure 5.12 we plot this curve. Recall-
ing that χ̃ = R2χ, this picture suggests that the stable area vanish when
Le ≥ 1 and become more and more important as Le → 0.

The case α̃ �= 0. Studying the heat loss case α̃ = 0 was a motivation
for the study of the general case α̃ �= 0. In the case k = 1, the sketch of
the situation shown in Figure 5.9 is still valid for α̃ > 0. The eigenvalues
behave similarly, and the stable area shrinks for Lewis numbers greater
or equal to 1, and grows as the Lewis number tends to 0.

Before moving to the numerics, we discuss the choice of the pa-
rameter χ̃ = R2αβ. In the following, we are interested in plotting the
bifurcation diagram 5.2a, for which β is the control parameter, in the
parameter plane (χ̃, F̃ ′(Θ∗)). The parameter χ̃ is a consistent parame-
ter if we can prove that χ̃ = R2χ is a decreasing function of Θ∗, since
Θ∗ parametrises the bifurcation curve.

To prove this monotonicity statement, we apply the implicit func-
tion theorem, and derive the formulas

dR

dΘ∗ = −R
2

Ȳ
F ′(Θ∗),

and
dχ

dΘ∗ =
R2Θ̄RF

′(Θ∗) + Ȳ

Ȳ Θ̄χ
,
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Figure 5.13: Bifurcation diagrams for k = 1, Le = 0.5 (solid line) and
Le = 0.7 (dashed line) (a) around the first vertical turning point and (b) a
more global picture

where the subscripts R and χ denotes the derivative of Θ̄ with respect
to R and χ, and Ȳ = yf

Le . Thus, we have

dR2χ

dΘ∗ = −2R3χ

Ȳ
F ′(Θ∗) +R2R

2Θ̄RF
′(Θ∗) + Ȳ

Ȳ Θ̄χ
·

As Equation (5.29) gives the expression of Θ̄, we can easily compute the
expressions of Θ̄R and Θ̄χ, and prove that right hand side is negative.

The numerical analysis

Let us turn to the numerical investigation of the problem. The fol-
lowing computations are performed using the continuation software
AUTO97, see [21].

We need an explicit expression for the reaction rate. Following the
literature, e.g. [55, 18], we choose a simple Arrhenius law

F (θ(R)) = A exp
(
− 1
εθ(R)

)
, (5.42)

where ε is a normalized inverse activation energy and A > 0 is the pre-
exponential factor. Next we must choose values for the parameters.
Unless mentioned otherwise, in all computations we take

θf = 1, yf = 1, ε = 0.1, A = 40, α = 10−3.

Figure 5.13 depicts the difference of the bifurcation diagrams we
consider for Le = 0.5 (solid line) and Le = 0.7 (dashed line). One
notices that the first vertical turning point occurs for bigger values of
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Figure 5.14: Relation between the stability on the bifurcation diagram (a)
and the stable area (b) for Le = 0.7, A = 2.29.106, ε = 3.35.10−2 and k = 1

β when Le = 0.5. As suggested by Equation (5.27), Figure 5.13 shows
that the bifurcation curve is strongly influenced by the Lewis number

The goal of this section is to relate the bifurcation diagram curves
and the stability pictures, as shown in Figure 5.14. We choose to give
an example of stability for Le = 0.7. We start by plotting the bifurcation
diagram 5.14a in the (χ̃, F̃ ′(θ∗))-plane, corresponding to the dotted line
in Figure 5.14b. Note that in order to hit the stable area, we needed
to consider a larger value of the pre-exponential term A and a smaller
value for the inverse of the activation energy ε.

The interpretation is similar to the description given in the in-
troduction of this chapter. We recall that, in Figure 5.14b, the solid
curve corresponds to Hopf bifurcations, the dashed curve to the ver-
tical turning points and the dotted curve is the plot of Figure 5.14a in
the (χ̃, F̃ ′(θ∗))-plane. The circles in the two pictures are related and
stability occurs only in between these two points.

Similar qualitative curves can be obtained following similar com-
putations for 0 < Le < 1. As soon as the Lewis number reach the
value 1, the Hopf bifurcation curve does not exist anymore and thus,
no points in the bifurcation diagram curve corresponds to stable solu-
tions, i.e. no stable flame balls.

5.5. The Evans function for the nonlinear Eddington
equation

In this section, we are interested in considering the nonlinear Ed-
dington equation, namely, we consider the linearised System (5.17)
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with the linearised jump conditions (5.18) for k = 4. In this case, it
is not possible anymore to derive explicit formulas for the Evans func-
tion, and the analysis can only be numerical. Let us explain where the
difficulties are and how one can overcome them. We consider the eigen-
value problem associated to System (5.17), namely

λm(z) =
1
Le

Δzm(z) for z �= R, (5.43a)

λn(z) = Δzn(z) + p(z) for z �= R, (5.43b)

0 = Δzp(z) − 3α2p(z) + kχΔz(Θk−1n(z)). (5.43c)

As in Section 5.2, one can easily compute an expression for m±. The
problem lies in computing the eigenfunctions for Equations (5.43b)
and (5.43c). Indeed, it is no longer possible to easily identify two well-
defined solutions which decay at infinity. To overcome this problem,
our analysis will be based on the paper by Allen and Bridges [3]. The
idea is as follows. As one cannot work with individual solutions, it
is easier to consider the wedge of the two solutions on both sides of
z = R. This leads to the definition of a plane of solutions on each side
i.e., with zero derivative in 0 and decaying at infinity. Once we have
defined these two planes, one may try to find solutions in these planes
which match at z = R via the jump conditions (5.18). After matching,
this gives us solutions in each plane, satisfying the jump conditions
and these are the eigenfunctions we are looking for. In this framework,
we extend the work by Allen and Bridges [3] in which they consider
smooth solutions (i.e. no jump conditions). After this sketch of the
general ideas, let us go into more detail.

Wedge formulation

Our first concern is to give a formulation in terms of wedges. For
this purpose, we first reduce Equations (5.43b) and (5.43c) into a system
of first order ODE’s, namely

ux = A(x, λ)u, u ∈ C
n, λ ∈ Λ ⊂ C, (5.44)

where u = (ñ, ñ′, p̃, p̃′) and

A(x, λ) =

⎛⎜⎜⎝
0 1 0 0
λ 0 −1 0
0 0 0 1

−B′′ − λB −2B′ 3α2 +B 0

⎞⎟⎟⎠ ,

where B = kχΘk−1. This system is obtained after a change of variables
to “remove” the singularity 1

z induced by the radial Laplacian, as in
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Section 5.2. Let us consider e1, . . . , e4 to be the standard basis for C
4 and

let ω1, . . . , ω6 be a basis for the wedge formulation in the lexicographical
ordering, namely

ω1 = e1 ∧ e2, ω2 = e1 ∧ e3, ω3 = e1 ∧ e4,

ω4 = e2 ∧ e3, ω5 = e2 ∧ e4, ω6 = e3 ∧ e4.
Then following [3] in which the authors derive a generic way to obtain
the induced 6 × 6 problem, we define

A(2) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 −1 0 0 0 0
0 0 1 1 0 0

−2B′ 3α2 +B 0 0 1 0
0 λ 0 0 1 0

B′′ + λB 0 λ 3α2 +B 0 −1
0 B′′ + λB 0 2B′ 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

We briefly explain the role of this matrix. Let us take two solutions of
System (5.44)

u1 =
4∑

i=1

ui
1ei, u2 =

4∑
j=1

uj
2ej .

The wedge product of u1 and u2 defines a 2-form w given by

w = u1 ∧ u2 =
∑

1≤i<j≤4

(ui
1u

j
2 − uj

1u
i
2)ei ∧ ej .

The product derivative of u1 and u2 satisfies

d

dx
(u1 ∧ u2) =

4∑
i,j=1

(
dui

1

dx
uj

2 + ui
1

duj
2

dx

)
ei ∧ ej ,

or equivalently using (5.44)

d

dx
(u1 ∧ u2) =

4∑
i,j,k=1

(
ai

ku
k
1u

j
2 + ui

1a
j
ku

k
2

)
ei ∧ ej ,

where ai
k are the components of the matrix A(x, λ). This leads to the

formulation

d

dx
(u1 ∧ u2) = Au1 ∧ u2 + u1 ∧Au2

def
= A(2)(u1 ∧ u2), (5.45)
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where A(2)(x, λ) ∈ C
6×6. By linearity, the coefficients of A(2)(x, λ) are

computed using

A(2)(ei ∧ ej) = Aei ∧ ej + ei ∧Aej =
4∑

k=1

ak
i ek ∧ ej + ak

j ei ∧ ek,

for 1 ≤ i < j ≤ 4. We define w− as the plane spanned by two inde-
pendent solutions for z < R with ñ(0) = p̃(0) = 0, and w+ as the plane
spanned by two independent solutions for z > R that decay as z → ∞.

Then from (5.45) it follows that the 2-forms w± ∈ C
6 satisfy

(w±)′ = A(2)(x, λ)w±, x �= R, w± ∈ C
6. (5.46)

The boundary conditions

Having defined the differential equations to be solved for the
wedge formulation, one needs to derive the boundary conditions
which must be satisfied. Once again, our derivation is widely inspired
by [3].

The boundary condition in 0. We defined the vector X = (xi)i=1,...,4,
which corresponds to the vector (n, n′, p, p′). In order to get two inde-
pendent solutions, one can consider e2 = (0, 1, 0, 0) and e4 = (0, 0, 0, 1),
where the constant 1 can be taken as any other constant. Then the
boundary condition in 0 is simply given by wedging e2 and e4 and
so we get a = (0, 0, 0, 0, 1, 0). Therefore in 0, we should solve Equa-
tion (5.46) with the initial condition

w−(0, λ) = a. (5.47)

The boundary condition at infinity. As one can notice, the matrix A(2)

is not a constant matrix, so that it is not straightforward to solve such a
problem. The technique proposed by [3] is as follows. When x = +∞,
the matrix A(x, λ) is asymptotically constant (independent of x):

lim
x→+∞A(x, λ) = A∞(λ), ∀λ ∈ Λ. (5.48)

We start with λ > 0, then A∞ has two positive eigenvalues and more
importantly, two negative ones, σ1 and σ2. The most negative eigen-
value of A(2)

∞ = limx→∞A(2)(x, λ) is σ+(λ) = σ1 + σ2. Let ξ+(λ) be an
eigenvector of A(2)

∞ (λ) associated to the eigenvalue σ+(λ),

A(2)
∞ (λ)ξ+(λ) = σ+(λ)ξ+(λ).

Since σ+(λ) is simple, the eigenvector ξ+(λ) can also be chosen to be an
analytic function.
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By standard arguments from the theory of differential equations
(see for example [19]), there exists a unique solution of the differential
equation (5.46) which satisfies

lim
x→+∞ e−σ+(λ)xU+(x, λ) = ξ+(λ).

Again, U+(x, λ) depends analytically on λ, and is the plane spanned by
solutions decaying to zero.

The Evans function

Having defined the solutionsw±, we now need to express the Evans
function in terms of the variables w± instead of individual solutions of
Equation (5.44). As Equation (5.4) provides an explicit solution for the
mass fraction, we can compute explicitly the jump conditions (5.18).
They read, after simplifications,

[n] = −1

[nz] =
√
λLe

1
R

−
√
λLe =

F ′(Θ(R))
F (Θ(R))

(
Θ′(R−)n(R+) − Θ′(R+)n(R−)

)
[p] = kχΘk−1

[pz] = −kχΘk−1
√
λLe − χk(k − 1)Θ2

√
λLe[Θ′(R−) + Θ′(R+)]

− F (Θ(R))
F ′(Θ(R))

k(k − 1)χΘ2
√
λLe

We define the vector q = (qi), i = 1, . . . , 6, to be⎛⎜⎜⎜⎜⎜⎜⎝
q1

q2

q3

q4

q5

q6

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

−1√
λLe

kχΘk−1

−kχΘk−1
√
λLe − χk(k − 1)Θ2

√
λLe[Θ′− + Θ′

+]
1
R −√

λLe
k(k − 1)χΘ2

√
λLe

⎞⎟⎟⎟⎟⎟⎟⎠ .

As w− = u1 ∧ u2 and w+ = u3 ∧ u4, for uj ∈ C
4, j = 1, ··, 4, we can

rewrite the jump conditions (5.18) as the following linear system

MC =

⎛⎜⎜⎜⎜⎝
−u1

1 −u1
2 u1

3 u1
4 −q1

−u2
1 −u2

2 u2
3 u2

4 −q2
−u3

1 −u3
2 u3

3 u3
4 −q3

−u4
1 −u4

2 u4
3 u4

4 −q4
−a−F ′u1

1 −a−F ′u1
2 a+F ′u1

3 a+F ′u1
4 −q5

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

C1

C2

C3

C4

C5

⎞⎟⎟⎟⎟⎠
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− F

F ′

⎛⎜⎜⎜⎜⎝
−u1

1 −u1
2 u1

3 u1
4 0

−u2
1 −u2

2 u2
3 u2

4 0
−u3

1 −u3
2 u3

3 u3
4 0

−u4
1 −u4

2 u4
3 u4

4 −q6
−a−F ′u1

1 −a−F ′u1
2 a+F ′u1

3 a+F ′u1
4 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

C1

C2

C3

C4

C5

⎞⎟⎟⎟⎟⎠ = 0,

where C = (C1, C2, C3, C4, C5)T is a constant vector, a− = Θ′(R−)
F (θ∗) ,

a+ = Θ′(R+)
F (θ∗) and F ′ denotes F ′(θ∗). In order to have a nontrivial solu-

tion of this system, the matrix M should have a non zero determinant.
This determinant is called the Evans function, and its zeros correspond
to the eigenvalues. Computing this determinant leads, after simplifica-
tions to the following expression of the Evans function

D(λ) = q5s+ Θ′
−s

−
1 + Θ′

+s
+
1 − LeR

Yf
F ′(θ∗)[Θ′

−s
− + Θ′

+s
+], (5.49)

where Θ′± = Θ′(R±). We denote by q̄ = (q1, q2, q3, q4) and p̄ =
(0, 0, 0, q6). The quantities s, s−, s+, s−1 and s+1 are then defined by

s = det(u1, u2, u3, u4),

s− = u1
1 det(q̄, u2, u3, u4) + u1

2 det(u1, q̄, u3, u4),

s+ = u1
3 det(u1, u2, q̄, u4) + u1

4 det(u1, u2, u3, q̄).

s−1 = u1
1 det(p̄, u2, u3, u4) + u1

2 det(u1, p̄, u3, u4),

s+1 = u1
3 det(u1, u2, p̄, u4) + u1

4 det(u1, u2, u3, p̄).

There is an easy way to compute these determinants in terms of
w± as explained below. Let us denote by δ(i) the permutation symbol
for i = (i1, i2, i3, i4). In the following we denote by il, l = 1, . . . , 4 the
different indexes for i. We recall that w− = u1 ∧ u2 and w+ = u3 ∧ u4,
so that we can write

s = det(u1, u2, u3, u4),

=
4∑

il=1

δ(i)ui1
1 u

i2
2 u

i3
3 u

i4
4 ,

=
∑

i1<i2,i3<i4

δ(i)(ui1
1 u

i2
2 − ui2

1 u
i1
2 )(ui3

3 u
i4
4 − ui4

3 u
i3
4 ),

=
∑

i1<i2,i3<i4

δ(i)w−
i1i2

w+
i3i4

,

= w−
12w

+
34 − w−

13w
+
24 + w−

14w
+
23 + w−

23w
+
14 − w−

24w
+
13 + w−

34w
+
12,
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where w−
ij denotes the component of w− associated to the vector basis

ei ∧ ej .
In the same way we compute the expression for s−:

s− =
4∑

il=1

δ(i)qi1ui2
2 u

i3
3 u

i4
4 u

1
1 + δ(i)ui1

1 q
i2ui3

3 u
i4
4 u

1
2,

=
4∑

il=1

δ(i)qi1ui3
3 u

i4
4 (u1

1u
i2
2 − u1

2u
i2
1 ),

=
∑
i3<i4

δ(i)qi1(ui3
3 u

i4
4 − ui4

3 u
i3
4 )(u1

1u
i2
2 − u1

2u
i2
1 ),

=
∑
i3<i4

δ(i)qi1w+
i3i4

w−
1i2
.

Similarly we find

s+ =
∑
i1<i2

δ(i)qi3(ui1
1 u

i2
2 − ui2

1 u
i1
2 )(u1

3u
i4
4 − u1

4u
i4
3 ),

=
∑
i1<i2

δ(i)qi3w+
i1i2

w−
1i4
.

Expanding the terms for s− and s+, we find

s− = q1(w−
34w

+
12 − w−

24w
+
13 + w−

23w
+
14) + q2(w−

14w
+
13 −w−

13w
+
14)

+ q3(w−
12w

+
14 −w−

14w
+
12) + q4(w−

13w
+
12 − w−

12w
+
13),

and

s+ = q1(w−
12w

+
34 − w−

13w
+
24 + w−

14w
+
23) + q2(w−

13w
+
14 −w−

14w
+
13)

+ q3(w−
14w

+
12 −w−

12w
+
14) + q4(w−

12w
+
13 − w−

13w
+
12)·

The expression for s−1 and s+1 are

s−1 = q6(w−
13w

+
12 − w−

12w
+
13),

s+1 = q6(w−
12w

+
13 − w−

13w
+
12)·

The numerical analysis

Since we have defined the Evans function, we are able to perform a
similar analysis as in Section 5.4. The reaction rate and the parameter
values we consider are, unless mentioned otherwise the same as the
ones defined in Section 5.4. We exhibit similar curves and comment
only on differences.
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Figure 5.15: Bifurcation diagrams for k = 4, Le = 0.5 (solid line) and
Le = 0.7 (dashed line) (a) around the first vertical turning point and (b) a
more general picture

0 1 2 3 4 5 6 7
0

2

4

6

8

10

(a)

β

R

0 0.01 0.02 0.03 0.04 0.05
−50

−25

0

25

50

(b)

χ̃

F̃ ′

Figure 5.16: Relation between the stability on the bifurcation diagram (a)
and the stable area (b) for Le = 0.7, A = 1.47.107, ε = 2.839.10−2 and
k = 4

Let us define a large interval lengthL∞ in order to reduce our prob-
lem to a bounded domain and to allow us to perform numerics. The
numerical strategy to compute the solution is to integrate the differen-
tial equation (5.46) from x = L∞ to x = R with ξ+(λ) as the starting
vector. Unfortunately, one can see that for large value of L∞ the solu-
tion w+ = ξ+eσ

+L∞ becomes almost zero. Therefore, we rescale w+ by
eσ

+x. Thus the problem to solve at infinity reads

(w̃+)′ = (A(2)(x, λ) − σ+(λ)I6)w̃+, x �= R, (5.50)
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where I6 denotes the identity 6 × 6-matrix. We can explicitly compute
ξ+(λ):

ξ+(λ) =

⎛⎜⎜⎜⎜⎜⎜⎝
a2 − a3

a2
2 − a2

3

−(a2 − a3)(a2
3 + a2a3 + a2

2 − λ)
(a3 − a2)(a2a3 + λ)
a2a3(a2

2 − a2
3)

(a2 − a3)(λ− a2
3)(λ− a2

2)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where a2 and a3 are defined in Section 5.2 and the associated eigenvalue
reads

σ+(λ) =
√
λ+ 3α2 + χB∞ + 2

√
λ(3α2 + χB∞),

where B∞ = kχθk−1
f .

As in the linear stability analysis, Figure 5.15 shows that the bifur-
cation diagram curve is Lewis dependent. Moreover, we can, for a fixed
value of the Lewis number relate the bifurcation diagram and the stabil-
ity curves as shown in Figure 5.16. The major difference occurring be-
tween the linear and nonlinear case concerns the vertical turning point
line (dashed curve). Indeed, in the nonlinear case, it becomes negative
for some parameter value (and tends to +∞ as χ̃→ ∞), whereas in the
linear case, this curve was always positive.
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Samenvatting

Wiskundige Modellen voor Bolvlammen

Dit proefschrift gaat over de analyse van wiskundige modellen
voor bolvormige vlammetjes. Deze bolvlammetjes, met een grootte van
enkele millimeters, worden waargenomen in gasmengels van bijvoor-
beeld aardgas en lucht, bij afwezigheid van zwaartekracht. De verhou-
ding tussen de diffusie coefficient van het brandbare gas en de warmte
diffusie coefficient speelt hierbij een belangrijke rol en wordt in de li-
teratuur het Lewis getal genoemd. In de wiskundige modelvorming
vinden we dit getal terug in de beschrijving van de balans tussen de
massa flux die de vlam voedt en de warmte flux die door de vlam ver-
spreid wordt.

De variabelen waarmee we de vlam beschrijven zijn de tempera-
tuur, de fractie brandbaar gas en de straal van de bolvlam. In Hoofd-
stuk 1 bespreken we de wiskundige modelvorming aan de hand van
een reactie-diffusie systeem. Omdat de vlam ruimtelijk beperkt is tot
een kleine bolschil, is het gebruikelijk dit model te vervangen door een
zogenaamd vrije rand probleem, waarbij de vrije rand het vlamfront is,
dat met de tijd varieert. De precieze correspondentie tussen beide mo-
dellen is nog steeds onderwerp van studie. In dit proefschift werken
we met de vrije rand formulering.

Dat deed ook Zeldovich, die in 1944, lang voor het ruimtevaarttijd-
perk en experimenten onder gewichtsloosheid, een eenvoudig model
opstelde dat weliswaar liet zien dat bolvlammen theoretisch kunnen
bestaan, maar dat ze altijd onstabiel zijn en dus niet waarneembaar.
Veertig jaar later werden ze echter toch waargenomen door Ronney.
De vraag was en is hoe dat kan. Een zeer heuristische verklaring is
dat via straling weglekkende warmte uit de vlambol en de op het bol-
oppervlak gegenereerde warmte met elkaar in evenwicht kunnen zijn,
waaruit een vaste verhouding tussen inhoud en oppervlakte van de bol
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volgt, een vaste diameter dus. Is de diameter groter, dan doet de weg-
lekkende energie de vlambol slinken, en bij kleine diameter is het juist
omgekeerd.

Het model van Zeldovich werd daarom aangepast met een term
in de warmte vergelijking van het model die de door straling weglek-
kende energie modelleert, via de Stefan-Boltzmann wet met daarin de
vierde macht van de temperatuur. Diverse varianten van dit gemodifi-
ceerde model laten wel stabiele bolvlammen toe, maar zijn fysisch ge-
zien toch minder correct, omdat bij straling niet alleen de emissie maar
ook de absorptie van fotonen een belangrijke rol speelt.

In dit proefschrift gebruiken we een beter fysisch model voor stra-
lingseffecten, waarbij straling zorgt voor een herverdeling van warmte
energie. We koppelen daartoe de Eddington vergelijking voor de stra-
lingsflux aan het verbrandingsmodel. Daarbij verschijnen twee para-
meters, een parameter in de Eddington vergelijking die de donkerheid,
veroorzaakt bijvoorbeeld door stofdeeltjes in het medium, karakteri-
seert, en het Boltzmann getal dat aangeeft hoe sterk de stralingseffecten
zijn in verhouding tot de gewone warmteflux ten gevolge van diffusie.
Ook dit model wordt behandeld in Hoofdstuk 1.

Het aldus verkregen vlammodel met stralingeffecten is het onder-
werp van dit proefschrift. We zoeken naar stationaire oplossingen en
bestuderen hoe eigenschappen, met name stabiliteit, van de diverse
parameters afhangen, waarbij we vooral naar het Lewis getal en het
Boltzmann getal kijken. In het proefschrift beschouwen we alleen nog
radieel symmetrische verstoringen.

In Hoofdstuk 2 bewijzen we eerst het bestaan van stationaire oplos-
singen, hetgeen nu niet meer vanzelfsprekend is. Als de reactiesnelheid
niet is vastgelegd en dus vrij te kiezen, dan bestaat voor elke waarde
van de parameters en voor elke voorgeschreven diameter precies één
bolvlam met die diameter. De vergelijking voor het profiel van de frac-
tie brandbaar gas ontkoppelt daarbij en is expliciet oplosbaar, net als
bij Zeldovich. De diameter van de vlam volgt daarna door te eisen dat
de voor het bestaan van de vlam benodigde reactiesnelheid consistent
is met de vlamtemperatuur. Dat laatste leidt tot bifurcatie diagrammen
waarbij generiek voor gegeven waarden van de parameters het aantal
stationaire oplossingen oneven is.

Daarna beschrijven we verstoringen van stationaire oplossingen
met een gelineairiseerde vergelijking die op een vernuftige manier
wordt afgeleid uit het vrije rand probleem. Dit stelt ons in staat de
zogenaamde spectrale stabiliteit van de oplossingen te bestuderen. Dit
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doen we met een Evans functie, een analytische functie gedefinieerd op
een deelverzameling van het complexe vlak. De nulpunten van deze
functie zijn bepalend voor de stabiliteit van de vlam. Ruwweg gezegd:
nulpunten met positief reëel deel maken de vlam onstabiel. Vandaar
dat we uitgebreid onderzoeken hoe nulpunten van de Evans functie
weg te drijven zijn uit het complexe rechter halfvlak door aan de (con-
trole) parameters/knoppen van ons model te draaien.

De Eddington vergelijking zelf bevat de vierde macht van de tem-
peratuur. In een eerste analyse wordt ook deze term gelineariseerd,
waarmee de Evans functie een semi-expliciete vorm krijgt die beter aan
te pakken is met exacte methoden. De zo verkregen resultaten worden
daarna numeriek gecontinueerd naar het model met de echte Edding-
ton vergelijking. We zien daarbij dat de tak van stabiele bolvlammen
wat kleiner wordt. De rol van het Lewis getal is steeds hetzelfde. Dit
getal moet klein genoeg zijn voor stabiliteit. Hoe dichter het bij de
waarde 1 komt, hoe minder waarschijnlijk het wordt dat bolvlammen
stabiel zijn, en voorbij 1 zijn er helemaal geen stabiele bolvlammen mo-
gelijk. Dit alles komt aan de orde in Hoofdtuk 5.

Hoofdstuk 3 is het meeste theoretische hoofdstuk, waarin we pro-
beren de stap van spectrale stabiliteit via gelineariseerde stabiliteit naar
niet-lineaire stabiliteit te maken. Dit lukt alleen voor instabiliteit. Voor
een gedeelte van het bifurcatiediagram bewijzen we met halfgroep
technieken dat de bolvlammen ook werkelijk onstabiel zijn. Dit ge-
beurt in de context van zogenaamde volledig niet-lineaire problemen.
Het grote open probleem hier blijft om hetzelfde te doen voor stabiele
oplossingen. De wezenlijke moeilijkheid hier is gerelateerd aan het feit
dat de Evans functie in nul een vertakkingspunt heeft.

In Hoofdstuk 4 tenslotte bekijken we het model met de gelineari-
seerde Eddington vergelijking en doen extra aannamen waarmee een
integraal-differentiaalvergelijking voor de diameter van een verande-
rende bolvlam is af te leiden. Stabiliteit van bolvlammen is dan meer
globaal te beschrijven. We laten numeriek zien dat als er twee statio-
naire oplossingen zijn, de grotere stabiel en de kleinere onstabiel is.
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Summary

This thesis is devoted to the analysis of mathematical models for
flame balls. Flame balls are tiny (4mm), stable, stationary, spherically
symmetric flames that occur in combustible gas mixtures (such as lean
hydrogen-air mixtures), having low Lewis numbers. They are visible
only in a microgravity environment. The Lewis number is a measure of
the rate of diffusion of fuel into the flame ball relative to the rate of dif-
fusion of heat away from the flame ball, and is an important parameter
throughout this thesis. The reaction zone, where the fuel is burning,
occurs at the boundary of the ball and is assumed to be thin. Through
this flame sheet, fuel and oxygen diffuse inward while heat and prod-
ucts diffuse outward.

The main variables we are interested in to describe the behavior, are
the temperature, the fuel mass fraction and the flame ball radius. The
classical governing equations for combustion are rederived in Chap-
ter 1 as a reaction-diffusion system (RDS). Since we assume the flame
to occur in a narrow region, it is possible to reduce this RDS to a
free boundary problem (FBP), the free boundary being the a priori un-
known radius, which may vary in time. Going from one formulation to
the other is a hard issue and requires involved asymptotic analysis. In
this thesis, we will consider the FBP formulation.

A first mathematical model to describe flame balls was derived in
1944 by Zeldovich, and he showed that such flames were unstable,
and hence certainly not observable. Nevertheless, forty years later,
flame balls were experimentaly found by Ronney. Therefore, a phys-
ical mechanism for stabilising the flame balls had to be sought. It has
been argued that radiative effects could strongly influence the stability
properties of flame balls. One can give an heuristic argument explain-
ing why radiation can stabilise flame balls. We remark first that the
total heat release is proportional to the flame ball surface area and that
the total radiative heat loss is proportional to the flame ball volume.
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Hence, if the flame radius is large, the surface area to volume ratio is
small, thus the ratio of total heat release to total radiative heat loss is
large, and the flame ball becomes weaker and shrinks. Conversely, if
the radius is small, the flame ball grows stronger and expands. Hence,
flame balls with volumetric heat losses could be stable to radial distur-
bances.

New models were then derived introducing heat loss terms in the
temperature equation, where the power radiated by a body is propor-
tional to the fourth power of the temperature (Stefan-Boltzmann law).
The analysis of such models leads to stability results.

In this thesis, we go one step further in describing the radiation
effects. Indeed, radiation does not involve only emission of photons
but also absorption. A more physical model of this phenomenon is de-
scribed by the Eddington equation (radiative transfer equation) which
we couple to the equations for the temperature and the fuel mass frac-
tion. Radiation is even more important when the medium is filled with
dust. The opacity of the medium is then another natural parameter to
consider. The model and more physical explanations are discussed in
Chapter 1.

Thus we are interested in studying the FBP involving the radiative
transfer equation and, more specifically, we would like to prove sta-
bility results. Throughout this thesis, we suppose that flame balls are
radially symmetric.

We start by proving the existence of stationary solutions. This is the
objective of Chapter 2, in which we first prove that for each fixed ra-
dius, there exist a unique associated temperature profile if the reaction
rate is not specified. The fuel mass fraction equation is decoupled from
the system, and therefore we can compute explicitly its solution. The
final step is to determine the radius of the flame given a specific temper-
ature dependent reaction rate. In this way we can prove that there exist
stationary solutions, and moreover, for a generic choice of the parame-
ters, the number of solutions is odd. The existence of multiple solution
is shown in various bifurcation diagrams.

In order to study stability properties, we are interested in perturb-
ing slightly a fixed stationary solution. The perturbations that we con-
sider in this thesis are radial (nonradial perturbations are part of work
still in progress). For this purpose, we consider the FBP and linearise
around a fixed stationary solution. It leads to a linear problem for
which spectral properties have to be derived. To understand the “dy-
namics” of the eigenvalues considering different parameter values, we
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construct a special function known as the Evans function. It is an ana-
lytical function and its zeros are the eigenvalues. The analysis consists
of two steps. We first consider the linearised Eddington equation and
show that, for some specific range of the parameters, a branch of solu-
tions of the bifurcation diagram is stable. This case is more accessible
because we can derive explicit formulas. We then extend these results
to the nonlinear Eddington equation (black body radiation model). In
this case there are no explicit formulas and the computations are more
involved but lead to similar stability results. Compared to the linear
case, a smaller branch of the bifurcation diagram is stable under radial
perturbations. We moreover show that stability depends strongly on
the Lewis number. More precisely, if the ratio of radiative and thermal
fluxes is greater or equal to 1, then stability cannot occur. This analysis
is performed in Chapter 5.

Chapter 3 is the most theoretical chapter of this thesis. We prove
rigorously instability results, using semi-group techniques. Part of a
branch of the bifurcation diagrams obtained in Chapter 2 corresponds
to unstable solutions. The analysis performed in this chapter relates
first the spectral stability to linear stability. Then, deriving proper esti-
mates, we can deduce instability results from the previous linear analy-
sis. Because the linearisation of the FBP leads to a fully nonlinear prob-
lem, it introduces theoretical difficulties. Indeed, instability results can
still be proved in this setting, but stability issues are, on the theoretical
level, an open problem.

Finally, Chapter 4 takes another approach. Considering the lin-
earised Eddington law, under suitable assumptions, it is possible, from
the initial FBP to derive an integro-differential equation describing the
growth of the radius of the flame ball. The analysis of this model equa-
tion allows us to understand the behavior of flame balls for long times.
After a mathematical analysis of this equation, we perform numerics
and show that, when two steady flame balls exist, the smaller one is
unstable while the larger one is stable.
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Modèles Mathématiques pour Flammes Sphériques

Cette thèse de cotutelle entre Amsterdam et Bordeaux, est con-
sacrée à l’étude de modèles mathématiques décrivant des flammes
sphériques. Ces flammes sont petites, de l’ordre de quelques mil-
limètres, stables, stationnaires, à symétrie sphérique, brûlant des mé-
langes gazeux (comme, par exemple, des mélanges air-hydrogène ap-
pauvris), à nombre de Lewis petit. Enfin, il est uniquement possible
de les observer en microgravité. La zone de réaction, dans laquelle le
carburant est brûlé, se trouve à la surface de la flamme et est supposée
être fine.

Les inconnues de ce modèle sont la température, la fraction mas-
sique du carburant et le rayon de la flamme sphérique. Les équations
générales décrivant l’écoulement d’un mélange gazeux réactif sont
écrites dans le chapitre 1 sous la forme d’un système de réaction-
diffusion (RDS). La zone de réaction étant mince, il est possible de
réduire ce RDS en un problème à frontière libre (FBP), la frontière li-
bre étant ici le rayon qui peut évoluer au cours du temps. Le passage
d’une formulation à l’autre est le résultat d’une analyse asymptotique.
Dans le cadre de cette thèse, nous considérons le FBP.

Le premier modèle décrivant des flammes sphériques est dû à Zel-
dovich en 1944. L’analyse qui en suivit révéla que ces flammes étaient
instables et donc qu’il ne serait a priori pas possible de les observer.
Cependant, quarante ans plus tard, des flammes sphériques ont été
observées expérimentalement par Ronney. De ce fait, un mécanisme
physique stabilisant ces flammes devait être trouvé. Des études ont
montré que les effets radiatifs pouvaient influencer de manière impor-
tante leur stabilité.

D’une manière heuristique, il est possible de comprendre pourquoi
les effets radiatifs peuvent rendre une flamme sphérique stable. Le
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dégagement total de chaleur de la flamme est proportionnelle à sa sur-
face et les pertes de chaleur totales sont, elles, proportionnelles au vo-
lume de la flamme sphérique. Ainsi, si la flamme possède un grand
rayon, le rapport entre surface et volume est petit, et donc le rapport
entre dégagement de chaleur et perte de chaleur est grand, avec pour
conséquence d’aller jusqu’à son extinction. Au contraire, si le rayon est
petit, la flamme croı̂t et s’étend. Ainsi, une flamme ayant des pertes de
chaleur volumétriques peut être stabilisée par des perturbations radi-
ales.

En conséquence de nouveaux modèles ont été dérivés, incorporant
un terme de pertes de chaleur dans l’équation de température, tout en
considérant que la puissance radiative d’un corps est proportionnelle à
T 4 (loi de Stefan- Boltzmann). Les analyses découlant de ces modèles
ont amené à l’existence de solutions stables.

Au cours de cette thèse, nous allons plus loin dans la descrip-
tion des effets radiatifs. En effet, ces phénomènes ne prennent pas en
compte seulement l’émission des photons mais aussi leur absorption.
L’équation d’Eddington est plus proche d’une description physique, et
nous la couplerons donc aux équations de température et de fraction
massique. La radiation est d’autant plus importante que le milieu est
opaque. Ainsi, il est naturel de considérer l’opacité du milieu comme
un paramètre du modèle. La présentation de ce dernier mais aussi une
description physique plus détaillée est le sujet du chapitre 1.

Ainsi, nous voulons étudier le FBP tout en y incorporant une
équation de transfert radiatif et plus précisément, nous voudrions
prouver des résultats de stabilité. Nous supposerons, tout au long de
cette thèse que les flammes sphériques sont à symétrie radiale.

Le point de départ est de prouver l’existence de solutions station-
naires et est l’objet du chapitre 2. Nous montrons tout d’abord, que,
pour tout rayon fixé, il existe un profil de température unique si le taux
de réaction n’est pas spécifié. L’équation sur la fraction massique est
découplée du système et donc il est possible de calculer de manière ex-
plicite son expression. Le dernier point consiste à déterminer le rayon
de la flamme après avoir fixé un taux de réaction qui est une fonction de
la température. Ainsi, nous prouvons qu’il existe des solutions station-
naires et de plus, pour un choix générique des paramètres, le nombre
de solutions est impair. Afin d’illustrer la non-unicité des solutions,
nous présentons différents diagrammes de bifurcation.

En vue d’étudier la stabilité, nous perturbons faiblement une so-
lution stationnaire fixée. Les perturbations considérées sont radiales

162
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(les perturbations non radiales font l’objet d’un travail en cours). Nous
linéarisons le FBP autour d’une solution stationnaire obtenant ainsi
un problème linéaire dont nous devons étudier les propriétés spec-
trales. Afin de mettre en évidence la “dynamique” des valeurs pro-
pres vis à vis des différents paramètres, nous construisons une fonc-
tion d’Evans. Cette dernière est analytique et ses racines sont les
valeurs propres. L’analyse se fait en deux étapes. Dans un premier
temps, nous considérons l’équation d’Eddington linéaire et montrons,
que pour certaines valeurs des paramètres, une partie du diagramme
de bifurcation correspond à des solutions stables. Ce cas simplifié est
plus accessible car il est possible d’écrire des formules explicites. Nous
étendons ensuite, ces résultats à l’analyse de l’équation d’Eddington
non linéaire. Dans ce cas précis, les formules ne sont pas explicites et,
de ce fait, l’étude numérique est plus poussée mais débouche sur des
résultats similaires. De plus, nous montrons que les résultats de sta-
bilité dépendent fortement du nombre de Lewis. En effet, si celui-ci
est supérieur ou égal à 1, il n’est pas possible de trouver de solutions
stables. Cette analyse est présenté dans le chapitre 5.

Le chapitre 3 présente des développements plus abstraits. Nous
prouvons rigoureusement des résultats d’instabilité, grâce à la théorie
des semi-groupes analytiques. Une partie du diagramme de bifurcation
obtenu au chapitre 2 correspond à des solutions instables. L’analyse
produite au cours de ce chapitre relie tout d’abord l’analyse spectrale
à une analyse de stabilité linéaire. Par la suite, obtenant des estima-
tions adéquates, il est possible de déduire des résultats d’instabilité
non linéaire à partir de l’analyse linéaire. Comme la linéarisation du
FBP aboutit à un problème totalement non linéaire, certaines difficultés
théoriques apparaissent cependant.

Enfin, le chapitre 4 est consacré à une approche différente. Prenant
en compte une version linéaire de l’équation d’Eddington, il est pos-
sible, à partir du FBP, de dériver une équation intégro-différentielle
décrivant l’évolution du rayon de la flamme sphérique. L’analyse de ce
modèle nous permet de mieux comprendre l’évolution du rayon pour
les temps long. Après une analyse mathématique de cette équation,
une étude numérique confirme que lorsque deux rayons stationnaires
existent, le plus petit est instable alors que le plus grand est stable.

Au cours de cette thèse, nous avons étudié un modèle de combus-
tion avec transfert radiatif. Des méthodes d’analyse différentes (que
ce soit d’un point de vue dynamique ou abstrait) nous ont amenés à
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des résultats globaux concernant la stabilité du FBP. Une extension na-
turelle de ces travaux est l’étude des perturbations non-radiales ainsi
que le couplage à d’autres moèles décrivant les effets radiatifs, comme
le modèle M1.
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