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1.1 Panta rhei: a focus on change 

 
The human brain is without doubt an intriguing and interesting scientific 
subject. It seems to conceal answers to vital questions that have puzzled 
mankind throughout history, such as “What is consciousness?”, and “How is 
language produced?” Apart from being the subject of endless research, the 
brain is simultaneously the instrument used for its own analysis, which 
imposes a fundamental epistemological question (cf. Yates, 1980): “What can 
the brain know about itself?” Given that in most parts of my thesis I consider 
the brain as the primary object of research, let me here take the opportunity to 
reflect on the role of the brain as vehicle for scientific research. 

In general, science is strongly influenced by positivism, a tradition based 
on empiricism that postulates experience as the sole source of knowledge. 
According to this tradition, strict methods of empirical science are the only 
means to acquire scientific knowledge and all knowledge should be based on 
logical inference from observable facts (Stent, 1975). This view agrees with the 
notion of the brain as a tabula rasa, i.e. a blank slate, whose entire knowledge 
base is gradually built up by merely combining simple and ultimate facts 
derived from sense experiences. Hence, from the positivist point of view, the 
objective nature of brain research is ensured, because the influence of the brain 
as an instrument of analysis is reduced to sheer associations of factual 
observations. However, the problem is that the number of properties of an 
object that may be perceived tends to infinity. Any two objects can thus be 
maximally similar to each other depending on the properties chosen for 
comparison. In consequence, differentiating between different classes of 
objects requires a selection of the to-be-compared properties (Keil et al., 1998). 
This problem of empiricism has been extensively discussed in the context of 
categorization theories in the field of psychology (Keil, 1981; Murphy and 
Medin, 1985), but has similar implications for a positivist position in science 
(cf. ter Hark, 2003). That is, classes as well as theories can only be formed if 
distinct properties of the objects are excluded a priori (Yates, 1980). Evidently, 
excluding or, more provocatively, ignoring properties is a subjective rather 
than an objective act. 

It therefore seems sensible to investigate the grounds for selecting the 
relevant properties of the object under study, in casu the brain. Despite the 
need for a pre-selection of properties to investigate, science is by no means an 
entirely subjective endeavor (cf. Walter, 1971; Popper, 1972; Davies, 1995). Its 
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recognition only denotes the focus of research and, given this focus, the 
properties of the system (brain) are observed and analyzed objectively. The 
role of, and need for, a focus or perspective in scientific research is discussed in 
depth by Kuhn (1962), who identified the focus of a particular scientific 
community as a paradigm, i.e. the set of recurrent and quasi-standard 
illustrations of various theories in their conceptual, observational, and 
instrumental applications as manifest in textbooks, lectures, and laboratory 
exercises. A paradigm restricts the focus of factual scientific investigation to a 
small range of relevant problems and instrumental applications and thus forces 
scientists to investigate some part of nature in detail and depth that would 
otherwise be unimaginable. As such, an a priori focus seems indeed necessary 
and even beneficial for any scientific process and progress.1  

What perspective or paradigm did I use for my thesis? To answer that 
question I shall thus discuss the essential concepts, observations, and 
instrumental applications that served to focus my research to a particular 
problem in the realm of neuroscience. Note that apart from limiting the field of 
research, a paradigm may also stipulate the approach needed to answer a 
certain question. Before discussing these more technical details, however, let 
me first step back and dwell on the scientific tradition the here chosen 
paradigm belongs to. In most general terms, the perspective of this thesis is on 
change. I assume that the brain can best be understood in terms of processes 
rather than compounds or things, i.e. in terms of modes of change instead of 
fixed constituents. This stance is part of the conceptions of process philosophy, 
which holds that processes are more fundamental than things (Rescher, 1996). 
In its more rigorous version, process philosophy regards all (physical) things 
reducible to (physical) processes, a position that goes all the way back to 

                        
1 Paradigmatic research is not the only modus operandi and there can be scientific 
research without paradigms, namely when there is not a firmly based agreement 
upon the scientific achievements that serve as the foundation of a particular 
research area. About the pre-paradigmatic period Kuhn (1962, p. 46-47) states 
“The pre-paradigm period, in particular, is regularly marked by frequent and deep 
debates over legitimate methods, problems, and standards of solution, though these 
serve rather to define schools than to produce agreement.” It may be argued that 
neuroscience is in its pre-paradigmatic period, inviting its contributors to describe 
their perspectives on the research topic and methods used. Alternatively, one might 
argue that the situation in neuroscience can be better captured by competing 
‘research traditions’ (Laudan, 1977), similar to the situation in psychology 
(Gholson and Barker, 1985). 
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Heraclitus’ famous aphorism panta rhei.2 In contrast, Parmenides (ca. 515-450 
BC) already stated that the reality of the world is an unchanging, ungenerated, 
indestructible whole. That is, at the very beginning of the western tradition of 
science, or arguably even before (cf. Heidegger and Fink, 1979), a dichotomy 
emerged regarding the nature of reality. This dissension of axioms is, however, 
not a relic of the past, but a recurrent theme in the history of philosophy and 
science. To indicate the relevance for modern-day neuroscience, let me discuss 
one of Heraclitus’ fragments: “We both step and do not step in the same rivers. 
We are and are not.” This poses the question how a river remains the same 
although its constituents change continuously. A river is clearly not defined 
solely by its constituents, i.e. water molecules, but particularly by the processes 
that organize the flow of the constituents in a more or less regular pattern – 
since the molecules themselves cause the flow pattern this relates to more 
recent ideas of self-organization (cf. Gare, 2002). Similarly, one may question 
how the brain is organized to function consistently and coherently despite, or 
because of, the continuous change of its components and/or environment. 

Fortunately, the opposition in neuroscience is not as extreme as that 
between Heraclitus and Parmenides. Most neuroscientists will acknowledge 
that the brain has both more static and more dynamic characteristics. 
However, the focus of researchers may differ considerably and is found along 
most part of the continuum. For instance, Gall (1758-1828), the founder of 
phrenology, suggested that the brain is divided into separate organs each 
corresponding to a discrete human faculty or function. He further assumed 
that these faculties are innate and that the brain is composed of as many 
particular organs as there are faculties, tendencies, and feelings (Zola-Morgan, 
1995). Accordingly, brain functioning can be explained by examining its 
constituents or parts, considering substance the primary grounds of 
description. In contrast to this atomistic view, James (1842-1910), for example, 
posited that human functions correspond to the entire activity of the brain 
(James, 1890), a stance that thus regards processes fundamental (cf. Rescher, 
1996). Both ideas have profoundly influenced psychology and neuroscience 
and several derivates appear in contemporary neuroscience. In the present 
context, these ideas merely serve as an example and I shall not discuss other 

                        
2 Although this statement has generally been ascribed to Heraclitus, this is 
probably erroneous (Russell, 1946). However, Heraclitus, as is apparent from his 
fragments cited by Plato and Aristotle, clearly acknowledged the universality of 
change and development through internal contradictions (Russell, 1946, Heidegger 
and Fink, 1979). 
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contributors to both standpoints. Such a discussion would most likely divert 
the argument made here, namely that the perspective of this thesis is a focus on 
change and stands in the scientific tradition that considers processes 
fundamental. Instead, I will focus on the concepts, empirical observations, and 
instrumental applications essential for investigating neural synchronization 
during human motor control and explain how it constrained the focus of my 
thesis. 
 

1.2 Concepts: a focus on physics 

 
Doing neuroscience with a focus on processes implies that the functioning of 
the human brain can be described best using concepts from the physics of 
complex systems. This relation to physics may seem trivial, but, when thinking 
of the more substance-oriented approach portrayed as exemplified by the 
afore-sketched ideas of Gall, it seems apparent that not all concepts in 
neuroscience are rooted in physics. For instance, if the state of each neuron is 
considered to be simply on or off, a system of multiple neurons could 
effectively be described by two-valued logic, i.e. on the basis of tertium non 
datur (like a conventional digital computer). Accordingly, the relations 
between different neuronal states can be captured just syntactically, i.e. in 
terms of formal relations, which has its roots in a so-called logical atomism 
(Churchland, 1980). In consequence, this approach cannot capture the 
dynamics of the system, because syntactic relations lack intrinsic temporality 
(cf. Clark, 1998). Note again, however, that this approach by no means denies 
the existence of dynamics in neuronal activity, it just regards it as belonging to 
a different level of organization which, as such, is irrelevant for describing 
human performance (Fodor, 1975; Newell and Simon, 1976; Marr and Poggio, 
1977). In contrast, by approaching neuroscience in terms of complex systems 
in physics one considers the neural dynamics fundamental and one has to 
determine how the dynamics of the system are capable of brain functioning, i.e. 
information processing. To do so, one has to apply tools to recover potential 
information-bearing vehicles from highly complex webs of interrelated neural 
activity and to discern intrinsically temporal features of the system which may 
play representational and computational roles (cf. Port and van Gelder, 1995; 
Clark, 1998; Varela et al., 2001). 

What seems important to note is that a complex systems approach in 
neuroscience does not imply a unidirectional reasoning from ‘low level’ 
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physical processes to ‘high level’ cognitive functions in terms of a troublesome 
reductionistic inference (Churchland, 1980). In fact, even in physics scientists 
seem to agree that microscopic processes may not necessarily yield the optimal 
or ultimate description of macroscopic processes. Instead, describing activity at 
a macroscopic level requires new concepts and generalizations supplementing 
the prevailing microscopic constraints. To find such concepts and 
generalization, so-called phase transitions form essential circumstances at 
which the system’s macroscopic state or phase changes qualitatively while 
microscopic symmetries are broken.3 Put differently, while the system’s parts 
or constituents are constrained to maintain certain fixed relationships with 
each other, the symmetry only allows to obey as a whole in response to 
external forces (Anderson, 1972). In consequence, the laws describing the 
system’s behavior at the microscopic level cover a range of states in which the 
system will never be present when the microscopic processes are grouped and 
constrained by a macroscopic process. Hence, the laws at the microscopic level 
do not always suffice to efficiently describe the system’s behavior at a higher 
level and may therefore require new concepts (Pattee, 1973; Laughlin and 
Pines, 2000). 

Concepts and tools used in the complex systems approach to 
neuroscience are mainly borrowed from non-equilibrium thermodynamics and 
nonlinear statistical mechanics (cf. Yates, 1980; Haken, 1996). In fact, concepts 
from these fields have been used across sciences and turned out to be 
interdisciplinary at heart, which becomes especially apparent when exploiting 
the common mathematical language of dynamical systems as formalized, e.g., 
in synergetics. Synergetics provides an interdisciplinary approach to principles 
underlying self-organizing processes by describing how microscopic features 
yield qualitative changes at the system’s dynamics at a macroscopic level. For 
this sake, the couplings or interactions between different subparts turn out to 
be essential as they enable macroscopic processes to enslave microscopic 
processes (Haken, 1983). Under specific circumstances the system’s qualitative 
properties are governed by so-called order parameters and, using these, the 
entire system can be described at the macroscopic level. In particular, in the 
immediate vicinity of the aforementioned phase transitions, the system’s 

                        
3 Noether's theorem is a central result in theoretical physics, which shows that a 
conservation law can be derived from any continuous symmetry. For every 
continuous symmetry there is a quantity which is conserved by its dynamics and, 
vice versa, symmetries are broken when this quantity is not conserved (Morrison, 
1995). 
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subcomponents formally partition into at least two distinct groups that differ 
in their intrinsic rate of change: slowly varying order parameters and quickly 
relaxing modes. The first ones undergo the macroscopic change and, thus, 
change their stability, while the latter remain stable and, because they can 
rapidly adapt to the altered order parameters, become enslaved modes. In most 
cases the dynamics of the order parameters, the order parameter equation, is 
low-dimensional compared to the entire high-dimensional system and can be 
treated mathematically using concepts of nonlinear dynamical systems (Haken, 
1983; Haken, 1996). As such, synergetics crucially builds on the formal 
separation of order parameters versus enslaved modes and the elimination of 
the latter from the system’s dynamics renders the dynamics of large-scale 
systems like the human brain tractable. Synergetics provides a general 
framework for describing the formation of higher-level processes from 
interacting subsystems and can be expediently applied to neuroscience (e.g., 
Haken, 1996; Tass, 1999; Haken, 2006).  

What is thus essential for the formation of a process at the macroscopic 
level, or macrostates (Freeman, 1975), is that the different microscopic 
processes are coupled: only when the microscopic processes are coupled is it 
possible for a macroscopic process to emerge. In biology, dynamical systems 
are always dissipative and, hence, systems settle onto an attractor, i.e. the part 
of the phase space of the dynamical system where the dissipation cancels out 
the driving force (Prigogine, 1978; Nicolis and Prigogine, 1981; Pikovsky et al., 
2001). The characteristics of the attractor are determined by the differential 
equations describing the evolution of the system: changing the parameters of a 
dynamical system will change the shape of the attractor landscape (Abraham 
and Shaw, 1984). The kind of coupling will thus determine the order 
parameters and hence the macroscopic behavior of the system, i.e. whether the 
behavior is determined by a point, periodic, quasi-periodic, or strange 
attractor. Because a point attractor typically describes a system that is 
stationary, brain dynamics should be rather captured by periodic, quasi-
periodic, or strange attractors that, by definition, display dynamical solutions. 
The simplest attractor of these is a stable limit cycle and the corresponding 
steady state behavior is periodic. A limit cycle can be described by a one-
dimensional order parameter equation and due to enslavement the whole 
system shows a coherent synchronized behavior. It is not expected that the 
entire brain behaves as a global limit cycle, because the representational and 
computational capacity of such a system is rather limited. Consequently, the 
global brain dynamics is likely to display (a plenitude of) multistable or even 
strange attractors (Kruse and Stadler, 1995; Le Van Quyen, 2003). The 
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question is, however, how to the brain is organized to prevent the spreading of 
coherent synchronization to the entire brain as any group of neurons is 
potentially connected to many other groups of neurons (cf. Tononi et al, 1998). 

In sum, a focus on processes calls for a physical or complex systems 
approach in neuroscience. The brain can be described as an open system, i.e. 
one that exchanges energy and information with is environment and consists of 
coupled processes. Using the mathematical tools of dynamical systems and 
synergetics, general properties of such a system can be determined. Specifically, 
because it is a dissipative system, the volume in state space captured by the 
behavior of the system will converge onto an attractor (cf. Stam, 2006). The 
attractor landscape of the system is determined by the parameters of the 
coupled differential equations and a small change in parameter value may result 
in large, qualitative changes in the attractor landscape, i.e. a phase transition. 
Particularly around such phase transitions, the behavior of the system can be 
described by a low-dimensional order parameter equation as the other modes 
become enslaved by the order parameters. The order parameters could thus 
operate as control constraints that limit the trajectory of the system in a regular 
way without a corresponding freezing out of its configurational degrees of 
freedom (Pattee, 1973). Hence, the response of microscopic processes to input 
from other processes, for instance perceptual input, will be changed and the 
qualitative change at the macroscopic level will therefore result in a change in 
its information processing capacities (cf. Koukkou and Lehmann, 1983; 
Lehmann, 1995; Tononi et al., 1998). 
 

1.3 Empirical observations: a focus on synchronization 

 
Synchronized neural processes are not only expected from a theoretical 
perspective, but have been shown extensively in empirical studies. Indeed, the 
formation of synchronized neural activation patterns is so widespread that 
Singer (1993) noted that neurons in cortical networks have a general tendency 
to engage in synchronous activity in different frequency bands whereby the 
probability of occurrence of synchronous activity in a particular frequency 
range depends on the central state of the brain, on the presence of sensory 
signals, and on the occurrence of motor acts. Hence, neural synchronization 
may play a functional role in information processing. In general, neural 
oscillations require the presence of both excitatory and inhibitory interactions 
between neural processes, either by coupling between excitatory and 
inhibitory membrane conductances within the same neuron or by network 
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architectures comprising inhibitory interneurons and feedback connections 
(e.g., Llinas, 1988; Singer, 1993; Pikovsky et al., 2001). Oscillations are thus a 
likely consequence of neural interactions and it actually becomes an important 
issue to understand how cortical networks can be prevented from entering 
states of global oscillation and, if they do, how these can be terminated (Singer, 
1993). An important reason why the brain dynamics will not be found in a 
state of global oscillation is that neural processes are not uniformly coupled, 
but show a strong tendency to couple locally. That is, the brain has a structural 
make-up that favors the coupling between adjacent neurons forming structures 
that have been termed cell assemblies (Hebb, 1949; Palm, 1981). Indeed, it is 
this property of the brain that led the structure-oriented neuroscientists to 
propose that the brain is made up of individual organs. However, this 
structural property is also a fundamental principle for the process-oriented 
approach as it facilitates the local coupling or synchronization of neural 
processes, providing the system with the necessary degrees of freedom and 
flexibility to perform a large array of information processing functions (cf. 
Fujii et al., 1996). Because the brain is structurally organized at different levels 
(neurons, columns, hyper-columns, etc.), neural processes also display such a 
scaled organization. The different levels of organization have been referred to 
as the micro-scale, meso-scale, and macro-scale, respectively (Wilson and 
Cowan, 1972; Freeman, 1975; Nunez, 1995; Haken, 1996; Basar, 1998; Varela 
et al., 2001). More specifically, the micro-scale refers to the molecular and 
cellular level, i.e. the coupling of cellular processes resulting in the firing 
pattern of a neuron. At the next level, that of the meso-scale, the firing patterns 
of multiple neurons interact mostly locally, e.g., within hyper-columns in 
visual cortex (Kandel et al., 1991), to form dynamic cell assemblies showing 
macroscopic activity. Finally, the macro-scale comprises the collective activities 
of multiple neural assemblies distributed over the whole brain or CNS related 
to perception, cognition, emotion, motor control, etc. Hence, instead of a 
global and uniform coupling, neural processes are mostly coupled locally 
favoring neural synchronization of neuronal assemblies instead of the whole 
brain activity. Or in terms of synergetics, many local (unstable) order 
parameters appear capable of enslaving the (stable) remainder of the system. 
These order parameters may compete, coexist or cooperate resulting in 
different kinds of macro-scale activity (Haken, 1995). 

Although the specific coupling and dynamics will be different at each 
scale, the dynamics at each scale can be described in a similar way (cf. 
McKenna et al., 1994). The specific form of the interactions resulting in 
macroscopic behavior has been studied most extensively at the micro-scale and 
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is understood in great depth. Numerous studies have been performed to 
examine how different cellular and molecular processes interact within a cell to 
predict the specific form of macroscopic behavior. In their pioneering work, 
Hodgkin and Huxley (1952) succeeded in casting the detailed empirical 
knowledge of the physiological properties of the giant squid axon into a 
dynamical systems framework. The Hodgkin-Huxley model is a set of 
conductance-based coupled differential equations incorporating sodium and 
potassium ion flows through their respective channels to accurately predict the 
action potential of a neuron. The seminal studies of Hodgkin and Huxley 
provided the appropriate conceptual framework for understanding spike 
propagation in axons and inspired others to extend and revise the original 
equations to describe the firing pattern of different neurons and for other ion 
channels (e.g., Llinas, 1988; Meunier and Segev, 2002; Breakspear and Jirsa, 
2006; Rabinovich et al., 2006). Hence, there is a general consensus that different 
cellular processes interact and synchronize to produce macroscopic activity, 
i.e. spike generation, and that this process, i.e. the micro-scale, can be captured 
as a dynamical system.  

Similarly, firing patterns of different neurons interact and result in meso-
scale oscillations that have, for instance, been revealed in the visual system. For 
the cat’s visual cortex, Gray and Singer (1989) showed that adjacent neurons 
have a strong tendency to synchronize resulting in oscillations of the local field 
potentials in the 35-50 Hz frequency band. Consequently, the local field 
potential reflects the synchronous activity of a population of neurons and may 
serve as a useful signal for analyzing the temporal dynamics of interacting 
populations of cells. Furthermore, the formation of oscillatory cell assemblies 
was stimulus specific, i.e. different combinations of neurons synchronize 
dependent on the orientation and direction of the visual stimulus. Hence, 
although anatomical connections are evidently a requirement for 
synchronization, they do not impose a certain synchronization pattern (Gray 
and Singer, 1989). Because formation of stimulus-specific synchronized cell 
assemblies has been generally confirmed, it is considered a solution to the 
binding problem (e.g., Eckhorn et al., 1988; Gray and Singer, 1989; Engel et al., 
1992; Singer, 1999, von der Malsburg, 1999, Fries et al., 2001). That is, 
synchronization might integrate activities of spatially distributed neurons, each 
of which relates only to partial aspects of a perceived object, into a single 
percept. The essential advantage of assembly coding is that individual cells can 
participate at different times in different neural assemblies of synchronized 
activity and that the significance of individual responses depends entirely on 
the context set by the other members of the assembly (Singer, 1993). 
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Irrespective of its functional role, the synchronization of oscillatory activities 
results in the formation of dynamic cell assemblies (Fujii et al., 1996), which 
can again be considered a single oscillator (Tass, 1999). 

Naturally, the next question that arises is whether the activities of 
different cell assemblies interact to form synchronized macro-scale activity (cf. 
Stam, 2006). As was already indicated, it is not expected that a single global 
oscillator entrains neural activity, but groups of cell assemblies might 
temporarily engage in synchronized activity. The formation of synchronized 
macro-scale activity has not received as much empirical support as neural 
synchronization at the micro- and meso-scale, but has recently attracted 
increasing attention. Different researchers have reported synchronized activity 
between distant cortical areas and between cortical and spinal activity. For 
instance in the visual cortex, neurons do not only synchronize between 
different columns, but also between neurons of the right and left cerebral 
cortex (Engel et al., 1991). Similarly, Rodriquez and colleagues (1999) showed 
that the perception of a face induced long-distance gamma synchronization 
corresponding to the moment of perception itself, whereas the perception of 
meaningless shapes did not induce such synchronization. Hence, this work 
supports the idea that neural synchronization acts as an integrative mechanism 
that may bring a widely distributed set of neurons together into a coherent 
ensemble underwriting the performance of a single cognitive act. Whereas 
neuronal synchronization related to perception generally occurs in the gamma 
frequency band, movement-related synchronization is particularly found in the 
beta band. For instance, the encephalographic activity recorded during 
movement production was found to be synchronized between different 
cortical areas (Gerloff et al., 1998a; Serrien and Brown, 2004), between cortical 
and motor unit activity (Conway et al., 1995; Salenius et al., 1997; Gross et al., 
2000; Kilner et al., 2000), and between different motor unit pools (Farmer et 
al., 1993; Kilner et al., 1999). Rhythmic synchronization of neural activity 
might thus provide a mechanism for integration of the distributed motor 
activity and have the same functional role for motor control as for perception 
(Farmer, 1998). 

The goal of my thesis is therefore to investigate how different neural 
assemblies at the meso-scale, i.e. coupled activity of multiple neurons resulting 
in a single neural oscillator, interact to form macroscopic dynamical processes 
that constrain human motor performance. More specifically, for effective 
hierarchical (motor) control to occur, the macroscopic neural process should 
constrain the individual elements, here end effectors, to force them into a 
collective behavior that is independent of the details of the dynamical behavior 
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of its elements (Pattee, 1973). According to Bernstein (1967), motor control 
can be defined as a problem of mastering the many, often redundant, degrees of 
freedom involved in any particular movement – of reducing the number of 
independent variables to be controlled. That is, the human body consists of 
multiple limbs whose relative positions are controlled by numerous muscles 
and hence involves numerous degrees of freedom. For effective motor control 
all these subsystems have to be coordinated, brought into proper relation to 
each other, such that the human body as a whole interacts with its environment 
in the intended way. The reduction of degrees of freedom may be 
accomplished if, following the pioneering work of von Holst (1937/1973), 
coordinated movement is achieved through coupled oscillators. Using the 
earlier explained mathematical tools it can be shown that coupled oscillators 
may behave under certain conditions as a single oscillator, thus reducing the 
number of independent degrees of freedom. Particularly, rhythmic movements 
have been modeled successfully in such a manner predicting many behavioral 
phenomena properly (e.g., Kelso, 1984; Haken et al., 1985; Turvey, 1990; 
Schmidt et al., 1991; Beek et al., 1995). Because the coupling between 
behavioral oscillators is considered mainly neural in origin and largely overlaps 
with the ideas on neural dynamics presented above, these two research fields 
might be merged. The question, then, can be formulated tentatively as “How 
does cortical motor activity modulate the coupling between these (spinal) 
oscillators?”, or “How are these (spinal) oscillators entrained by the neural 
dynamics at the macro-scale?” 
 

1.4 Instrumental applications: a focus on change 

 
To answer such questions, one has to capture these macroscopic patterns and 
processes and develop strategies for investigating how the macroscopic 
patterns influence the microscopic processes (cf. Thompson and Varela, 2001). 
The formation of macroscopic activity can be examined using a broad variety 
of neuroimaging techniques, but electroencephalography (EEG), 
magnetoencephalography (MEG) and electromyography (EMG) appear 
particularly suitable for this purpose. These techniques have a high temporal 
resolution and measure electromagnetic changes related to the activity of large 
groups of neurons. They allow for the simultaneous recording of macroscopic 
neural activity combined with techniques that enable assessment of neural 
synchronization with high temporal resolution. These techniques therefore 
provide the opportunity to test whether neural synchronization serves as a 
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code for neuronal processing, i.e. which causal relation can be established 
between the occurrence of response synchronization in defined subgroups of 
neurons and particular functions that need to be assessed at the behavioral level 
(Singer, 1993). 

In the work reported here, I used EMG and MEG to measure changes in 
synchronization at the meso- and macro-scale. With EMG one measures the 
action potentials of motoneurons traveling over a group of muscle fibers. The 
α-motoneuron together with the muscle fibers it innervates is summarized as a 
motor unit (MU). Such a MU is considered the functional unit of the 
neuromuscular system (Sherrington, 1925). The group of motor neurons in the 
spinal cord that innervates a single muscle is referred to as a MU pool and 
surface EMG measures the activity of the whole MU pool, or an extensive part 
of it. Because the recruitment of individual MUs is largely organized according 
to the size principle (Henneman, 1957), different MUs will have different fire 
frequencies given the same input. Hence, the MU pool does not have an 
intrinsic tendency to produce synchronized activity, in contrast to cortical 
neurons.  

MEG measures magnetic fields that derive from the flow of ionic 
currents in the cortical neurons’ dendrites (Hämäläinen et al., 1993). The local 
synchronized behavior of neural assemblies leads to fluctuations in local field 
potentials that can be measured using EEG and MEG (Lopes da Silva, 1991; 
Vrba and Robinson, 2001). Put differently, the fact that fluctuations of field 
potentials can be recorded with macro-electrodes from the scalp indicates that 
a large number of neurons must be engaged in synchronized rhythmic 
discharges at the oscillation frequency in question. Otherwise, the weak 
currents associated with synaptic activity and action potentials of individual 
neurons would not result in recordable macro-potentials or fields, but would 
cancel out (Singer, 1993). 

Because EMG and MEG measure signals related to large groups of 
neurons, elaborate data analysis techniques are required to uncover underlying 
processes. Furthermore, additional factors influence the recorded signal to 
further complicate the assessment of neural synchronization. The chosen type 
of data analysis will also influence the kind of neural activity that is extracted 
from the recorded data. For instance, temporal aspects received comparatively 
little attention as a dimension for coding when a neuron was thought to be 
defined entirely by the amplitude of the response and its provenance. This was 
reflected by the fact that neuronal responses to sensory stimuli or activities 
occurring in relation to motor acts were commonly averaged over successive 
trials in order to improve the signal-to-noise ratio. This averaging procedure 
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destroys any temporal structure in the activation pattern that is not precisely 
locked to the stimulus or motor response (Tass, 2003). Hence, temporal codes 
were either ignored or undiscovered with the commonly applied methods of 
single unit analysis (Singer, 1993). Similarly, event-related averaging of 
encephalographic data removes those brain responses that are not phase-locked 
to the event (e.g., Pfurtscheller and Lopes da Silva, 1999). 

 

1.5 Outline of the thesis 

 
In the preceding, I have described the paradigm or research tradition that 
served as focus for the experimental work that will be presented in the next 
chapters. To clarify what this implies it is useful to turn to Popper (1972) who, 
following Selz (see ter Hark, 2003), used the apt term ‘searchlight theory’ to 
characterize a theoretically motivated focus for studying part of reality: 
 

“This is what I have called the 'searchlight theory of science' – the 
view that science itself throws new light on things; that it not only 
solves problems, but that, in doing so, it creates many more; and that 
it not only profits from observations, but leads to new ones. If in this 
way we look out for new observations with the intention of probing 
into the truth of our myths, we need not be astonished if we find that 
myths handled in this rough manner change their character, and that 
in time they become what one might call more realistic or that they 
agree better with observable facts.” (p. 127-128) 

 
In the following chapters the motor-related brain dynamics are investigated in 
various experimental designs to gain insight into the functional role of neural 
synchronization in human motor control. These experiments were meant to 
explore the macroscopic patterns present during motor control and to relate 
these to different task parameters. Although the tasks, recording techniques 
and data analysis methods differed between studies, the rationale behind all 
studies is consistent. That is, by varying task parameters attempts were made to 
induce a change in neural synchronization in order to uncover its functional 
role. If the recorded neural synchronization is an artifact or an epiphenomenon 
without functional significance for the task at hand, it would not be modulated 
in a task-dependent manner. Moreover, by changing task parameters the state 
of the system was changed which might have induced sudden changes in 
synchronization pointing at reorganization of neural dynamics. The behavior 
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of the participants was recorded simultaneously with the neural activity to link 
the induced changes in neural synchronization with specific changes in 
behavior to identify the functional role of neural synchronization. 

To anticipate, in Chapters 2 and 3 neural synchronization between 
different MU pools was investigated using surface EMG during static isometric 
force production. During static isometric force production, synchronization 
between different MU pools was found (e.g., Farmer et al., 1993; Kilner et al., 
1999) and we used a similar task to investigate the relation between MU 
synchronization and common drive by inducing different levels of fatigue. If 
MU synchronization is caused by a common drive to different muscles, it is 
expected to increase during fatigue as the drive to muscles is expected to 
increase with fatigue. In Chapter 2, changes in MU synchronization between 
different quadriceps muscles were investigated, whereas in Chapter 3, MU 
synchronization between the bilateral biceps and triceps muscles was 
compared. In Chapters 4 to 6, neural synchronization during rhythmic 
movement was examined using MEG and EMG and the effect of behavioral 
stability on neural synchronization was studied by varying task parameters. In 
Chapter 4, a synchronization-syncopation paradigm was used that is known to 
result in differential changes in stability with increasing movement tempo 
(Kelso, 1984; Kelso et al., 1992; Daffertshofer et al., 2000a). In addition, 
participants were sleep-deprived to induce further changes in synchronization. 
In Chapter 5, encephalographic data recorded during paced and unpaced 
tapping were further analyzed to investigate the changes in amplitude and 
phase in different frequency bands related to motor performance and auditory 
perception at different movement tempos. This data analysis method was 
further exploited in Chapter 6 to investigate how the amplitude and phase 
dynamics in different frequency bands are affected by motor learning. To this 
end, participants had to learn a bimanual polyrhythm resulting in a gradual 
increase in behavioral stability (Summers et al., 1993a; Swinnen et al., 1993; 
Peper et al., 1995b). Both MEG and EMG were recorded during the learning 
process to address the changes in neural synchronization that underlie the 
increased performance. The results of these studies are summarized further in 
the epilogue to elucidate their relation with the paradigm put forward in this 
introduction. In particular, the methodical and conceptual implications of these 
studies are discussed to evaluate and adapt this paradigm in future studies. 
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Abstract 
 
In this chapter synchronization between different groups of muscles is 
investigated. If different muscles cooperate in a task, their MUs are expected to 
synchronize due to common input. To this end, two experiments were conducted 
that examined the effects of muscle fatigue on MU synchronization between the 
quadriceps muscles of both legs. Muscle fatigue was expected to result in an 
increased common drive to different MUs of synergists within a leg and, hence, 
to increased MU synchronization. It was further expected that fatigue-related 
motor overflow might cause MU synchronization of homologous muscles of 
both legs. MU synchronization, quantified in terms of coherence between 
surface EMG, was found in two distinct frequency bands (6-11 and 13-18 Hz), 
more prominently so within a leg than between legs. The inter-limb 
synchronization in the 6-11 Hz frequency band increased with fatigue and 
resembled the increased motor overflow during unimanual contractions. As 
such, the two phenomena may be related in that they both indicate a fatigue-
induced increase in bilateral coupling. MU synchronization at 13-18 Hz was 
clearly different and depended on posture.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Published as: T.W. Boonstra, A. Daffertshofer, J.C. van Ditshuizen, M.R.C. van 
den Heuvel, C. Hofman, N.W. Willigenburg and  P.J. Beek (2007). Fatigue-related 
changes in motor-unit synchronization of quadriceps muscles within and across 
legs. Journal of Electromyography and Kinesiology. DOI:10.1016/j.jelekin.2007.03. 
005. 
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2.1 Introduction 

 
The central nervous system exerts control over voluntary movements via the 
MUs of pertinent muscles and this control is considered oscillatory in nature 
(McAuley et al., 1997; Farmer, 1999; Morris et al., 2000; Gross et al., 2002). 
Apart from the cortical drive to the muscles, MU activity is influenced by 
several other neural factors at various levels along the neural axis, e.g., 
extracortical influences, reflex activity and various other sensory influences. 
Successful motor control can only be achieved by the properly orchestrated 
interplay of all participating neural subsystems. To gain insight into the 
corresponding neural interactions, we investigated MU activity using EMG 
recordings (see Farina et al., 2004, and references therein). The spectral 
decomposition of EMG has received much attention in studying the 
underlying physiology. For instance, conventional power spectra are known to 
be affected by the form of the MU action potential, the firing rate of MUs, and 
the correlation between firings of different MUs (De Luca and Forrest, 1973; 
Hagg, 1992). 

Physiological changes have been studied extensively in the context of 
muscular fatigue. It is generally accepted that the mean amplitude of EMG 
increases with the level of fatigue due to the recruitment of additional MUs to 
compensate for the fatigue-related reduction in muscle contractility (Lippold et 
al., 1960; Viitasalo and Komi, 1977). Notice that, more recently, other factors 
have been found that may influence the EMG amplitude (Dimitrova and 
Dimitrov, 2003). The increase in EMG amplitude is accompanied by a spectral 
compression of EMG towards lower frequencies, typically quantified by a 
drop of the EMG’s median frequency (Lippold et al., 1960; Kadefors et al., 
1968; Viitasalo and Komi, 1977; Bigland-Ritchie et al., 1981). Several 
physiological factors have been identified that may contribute to this decrease 
in median frequency (see Hagg, 1992, for a review). For instance, progressive 
slowing of the conduction of intracellular action potentials along the muscle 
fiber may elongate the shape of the action potential and, thus, may cause a 
spectral shift towards lower frequencies in surface EMG (Mortimer et al., 1970; 
Lindstrom et al., 1977). The (relative) decrease of median frequency, however, 
often exceeds the (relative) decrease of conduction velocity, hinting at other 
factors contributing to the decrease of the median frequency (Bigland-Ritchie 
et al., 1981; Krogh-Lund and Jorgensen, 1993; Dimitrova and Dimitrov, 2003). 
For instance, MU synchronization may result in large low-frequency EMG 
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oscillations and thus to an increase in the relative spectral power in lower 
frequency bands (Loscher et al., 1996; Kleine et al., 2001). 

MU synchronization can be quantified either by means of the cross-
correlation of discharge times of individual MUs (Harrison et al., 1991) or by 
using coherence as frequency domain equivalent of the cross-correlation 
(Miller and Sigvardt, 1998). The cross-correlation histogram of MUs of the 
same muscle often contains a narrow central peak, referred to as short-term 
synchronization, that is caused by common pre-synaptic input from branched 
axons (Sears and Stagg, 1976; Kirkwood and Sears, 1978). Interestingly, MU 
synchronization has also been found between MUs of different muscles, be 
they synergistic arm muscles (De Luca and Erim, 2002), bilateral axial muscles 
(Carr et al., 1994), or bilateral homologous leg muscles (Gibbs et al., 1995). 
MU synchronization between distant muscles is more likely to be caused by 
pre-synaptic synchronization (Kirkwood et al., 1982), which can be 
understood as a neural strategy to simplify the simultaneous control of 
multiple muscles (De Luca and Erim, 1994; Gibbs et al., 1995; Mellor and 
Hodges, 2005). Coherence analysis has been proven to be a very useful method 
to link the synchronization features of single or multi MU intramuscular 
needle recordings and corresponding surface recordings (Christakos, 1997; 
Grosse et al., 2002). For instance, with coherence as frequency-dependent 
measure, MU synchronization was found in the beta band, i.e. 15-30 Hz, 
between EMG recordings of different hand muscles using rectified surface 
EMG (Kilner et al., 1999) and intramuscular needle recordings (Farmer et al., 
1993).  

To examine whether MU synchronization increases during fatiguing 
contractions, we simultaneously measured the surface EMGs of quadriceps 
muscles from both legs. If MU synchronization increases during fatiguing 
contractions as a result of an increased common drive, then MU 
synchronization can be expected to increase between MUs receiving common 
input. Besides MUs belonging to synergist muscles within a limb, we also 
expected MUs of homologous muscles to increasingly synchronize during 
fatigue, because an increase of bilateral co-activation had been found during 
unilateral contractions at high force levels (e.g., Zijdewind and Kernell, 2001; 
Aranyi and Rosler, 2002). Fatigue was induced in two tasks in which the 
quadriceps muscles of both legs had to cooperate for proper task performance, 
i.e. they had to act as a single functional unit (cf. De Luca and Erim, 2002). The 
design was used to promote synchronization between quadriceps muscles 
within (intra-limb coherence) and between legs (inter-limb coherence).  
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In a first experiment, different levels of fatigue were induced by means of 
changes in posture (knee angle). We expected a fatigue-related increase of 
synchronization at a specific frequency, reflecting the frequency of the increase 
in common input to both muscles. To investigate the relation between MU 
synchronization and tremor activity, we conducted a second experiment in 
which participants performed isometric knee extensions against force sensors 
at different force levels. Both tasks allowed for investigating fatigue-related 
changes in MU synchronization within and across legs and we expected intra-
limb synchronization to be stronger than inter-limb synchronization. 
 

2.2 Methods and Materials 

 
Experiment 1 
 
PARTICIPANTS   Twelve healthy male students from VU University 
Amsterdam participated in the experiment (mean age: 22 years; range: 20-25 
years). All participants signed an informed consent after the experimental 
procedures and the accompanying instructions had been explained to them. 
The Ethical Committee of the Faculty of Human Movement Sciences, VU 
University Amsterdam, had approved the experimental protocol before the 
experiment was conducted. 
 
PROCEDURE   Participants were invited to stand with their back leaning 
against a vertical wall with a smooth surface to minimize friction. To induce 
distinct levels of fatigue, participants were positioned with knees flexed at 90º, 
120º, and 150º. Participants stood barefooted with their feet placed 20 cm apart 
and their lower legs in a vertical position. They were instructed to remain in 
contact with the supporting wall with both back and head while looking 
straight ahead (Fig. 2.1A). 

At the beginning of the experiment, participants were asked to stand 
with a knee angle of 90º for 10 s in order to define a scale factor gauging the 
EMG (similar to a maximal voluntary contraction, see also Experiment 2). 
Subsequently, participants conducted three trials for each knee angle. Trials 
lasted 90 s and the order of trials was counterbalanced across participants. All 
participants maintained the required position for the duration of the trial. 
Between trials, participants rested for three minutes. Knee angles were 
determined with a goniometer. 
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DATA ACQUISITION   Surface EMG was recorded from the rectus femoris 
(RF), vastus medialis (VM), tibialis anterior (TA), biceps femoris (BF), and 
gastrocnemius caput mediale (GM) of both legs. For the purpose of the present 
study, only data from VM and RF muscles were analyzed. The electrodes 
(Ambu® Blue Sensor N) were placed in a bipolar montage with an inter-
electrode distance of about 2 cm with locations following SENIAM guidelines 
(Hermens et al., 2000). Data were amplified, band-pass filtered, and stored on 
disk (3-1000 Hz band-pass, 22-bit sampling depth, 2 kHz sampling rate, Porti 
5-16/ASD, TMS International, Enschede, The Netherlands). 
 
DATA ANALYSIS   EMG data were filtered off-line (2nd order bidirectional 
Butterworth band-pass filter: 5-300 Hz4), full-wave rectified using the Hilbert 
transform (cf. Myers et al., 2003), and normalized using the calibration at the 
beginning of the experiment, i.e. divided by the averaged rectified value of the 
initial 10 s recording at 90º knee angle. Every 90 s trial was split into 9 
consecutive intervals lasting 10 s each. Per interval, mean power and median 
frequency were computed. The median frequency was calculated using the 
power spectral densities of the non-rectified EMG (Welch’s periodogram 
method, Hamming windows: 1024 samples; overlap: 768 samples). 

Power and coherence estimates for muscles belonging to the quadriceps 
group of both legs (VMleft, RFleft, VMright, RFright) were based on power spectral 
densities of the rectified EMG (again using Welch’s periodogram method with 
the window setting given above; note that the dc-value was removed for each 
window before computing the Fourier transform). The power spectra were 
log-transformed and Fisher’s transform was applied to the coherence spectra 
before conducting subsequent statistical tests (Halliday et al., 1995, Amjad et 
al., 1997). Both procedures ‘stabilize’ the variances of the underlying 
distributions and should be used before testing spectral estimates for statistical 
differences (Rosenberg et al., 1989; Farmer et al., 1993; Gerloff et al., 1998a). 
 
STATISTICAL ANALYSIS   Power and coherence spectra were compared using 
principal component analysis (PCA) to determine spectral components that 
were common across participants, conditions, and muscles. As mentioned 
above, we computed power and coherence spectra for different conditions, at 

                        
4 We also tested larger high-pass cut-off frequencies to omit possible tremor-
related movement artifacts potentially affecting subsequent coherence estimates. 
However, more rigorous high-pass filtering did not change the quality of 
coherence so that we decided to use this broad-band filter. 
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different time intervals, and for different muscles, which yielded many to-be-
compared spectra (see below). Thus, PCA appeared an excellent approach 
having the capacity for dimensionality reduction in huge multivariate data sets 
by extracting major components; principal components are ranked according 
to the explained variance of the original data (see Daffertshofer et al., 2004, and 
references therein).  

Applying PCA to sets of power and coherence spectra enabled us to 
quantify the strength of distinct frequency components in different conditions 
and muscles by comparing the corresponding coefficients of the major modes’ 
eigenvectors (cf. Boonstra et al., 2005b, and Appendix A for more detail)5. This 
specific application of PCA allowed for comparing spectra of all different 
conditions without an a priori selection of relevant frequencies and 
corresponding scalar power values needed when applying more conventional 
statistical analyses. The general advantage of such a combined PCA is that 
effects of experimental conditions can be evaluated in a concise and readily 
interpretable manner, even when effects are small. Hence, frequency spectra of 
all participants and conditions were combined into a single signal vector. This 
combination resulted in three different high-dimensional signal vectors: a 
vector for power spectra with 12 (participants) × 3 (conditions) × 9 (intervals) 
× 4 (muscles) = 1296 signals, a vector for intra-limb coherence with 12 × 3 × 9 
× 2 (VMleft-RFleft, VMright-RFright) = 648 signals, and a vector for the inter-limb 
coherence with 12 × 3 × 9 × 2 (VMleft-VMright, RFleft-RFright) = 648 signals. 

For comparison with more conventional statistical approaches, we also 
analyzed effects of fatigue on amplitude, median frequency, and coherence by 
performing a two-way ANOVA (3 × 2; knee angle × interval) with repeated 
measures on the first and last intervals per trial. The design was completely 
balanced with equal record lengths across conditions. Coherence was evaluated 
in two frequency bands. The choice of spectral components was based on the 
PCA results, which revealed the presence of a lower (6-11 Hz) and a higher 
(13-18 Hz) frequency band (see Results). To facilitate the interpretation of 
significant results obtained with the ANOVAs, effect sizes (ƒ) were calculated 
in terms of partial η2 (Cohen, 1988). Whenever Mauchly’s test of sphericity 

                        
5 In general, the original spectra can be reconstructed as sum of modes, i.e. the 
summation of the products of eigenvectors with their corresponding projections – 
cf. Appendix A, equation (1). Restricting this sum to a small number of modes 
yields (at least) approximations whose qualities can be judged via the (sum of) 
corresponding eigenvalues that represent the modes’ contributions to the total 
variance. 
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failed to indicate homogeneity of variance across conditions, the Huynh-
Feldt’s test was used. 
 
Experiment 2 
 
PARTICIPANTS   Ten healthy male students from VU University Amsterdam 
participated in the experiment (mean age, 24 years; range, 21-27 years). Two 
participants also participated in the first experiment. All participants signed an 
informed consent after receiving instructions. The Ethical Committee of the 
Faculty of Human Movement Sciences, VU University Amsterdam, had 
approved the protocol of the experiment before it was conducted. 
 
PROCEDURE   Participants were seated in an adjustable chair in upright 
position and securely strapped by two belts to minimize the number of 
participating mechanical degrees of freedom. For each participant the chair was 
adjusted such that both hip and knee joints were flexed at approximately 90º. 
The exerted forces of knee extension of both legs were recorded with two force 
transducers (type KAP-E, Bienfait, Haarlem, The Netherlands) placed at the 
shin (Fig. 2.1B).  

Figure 2.1   A) Set-up of 
Experiment 1: Participant 
is leaning against the wall 
in the 90º condition. B) 
Set-up of Experiment 2. 
Participant is sitting in an 
adjustable chair with force 
sensors at shin level. 
 

 
 

First, the maximum voluntary contraction (MVC) was determined based 
on two consecutive 10 s recordings during which participants were instructed 
to gradually build up force and were verbally reinforced to exert maximal 
force. The maximum force of both recordings was used as MVC reference. 
Subsequently, participants were asked to produce forces at 10%, 35%, and 
60% MVC to induce different levels of fatigue. Both the required and 
produced forces were displayed as horizontal lines on a screen located in front 
of the participants and they were instructed to tune their force output to the 
desired force level. To implicitly prompt participants to perform knee 
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extensions of both legs as a functional unit, the exerted force of both legs were 
summed and displayed as a single line. 

Each participant conducted 12 trials of 60 s each. Trials consisted of two 
30 s force plateaus with a different force level (10%, 35%, and 60% MVC). 
Participants were instructed to rapidly switch to the following force level and 
to stabilize there as fast as possible. Between trials participants were allowed to 
rest for two minutes. The order of force levels and trials was randomized over 
participants. The design allowed for analyzing effects of progressing fatigue on 
MU synchronization as function of force level and as function of preceding 
force level. For the latter we compared the effect of different force levels during 
the first plateau on the performance during the second plateau while keeping 
all other factors equal (cf. Statistical analysis). 
 
DATA ACQUISITION   Surface EMG was recorded from the rectus femoris 
(RF), vastus medialis (VM), and vastus lateralis (VL) of both legs. All technical 
settings were the same as in Experiment 1 except that the force signals were 
sampled at a rate of 1 kHz. Force and EMG data were synchronized using an 
additional trigger signal. 
 
DATA ANALYSIS   The two force plateaus of every trial were divided into 5 
intervals of 5 s each (the first three and last two seconds of each plateau were 
discarded to omit transients). All subsequent analyses were identical to 
Experiment 1 expect now also force data were investigated in terms of their 
spectral power. 
 
STATISTICAL ANALYSIS   The power and coherence spectra of different force 
levels were compared using PCA as explained in Experiment 1 (for the force 
signals we only analyzed the corresponding power spectra). The vector of 
power spectra contained 10 (participants) × 3 (conditions) × 5 (intervals) × 6 
(muscles) = 900 signals, while the vector of intra- and inter-limb coherence 
contained 10 × 3 × 5 × 6 (VLleft-VMleft, VLleft-RFleft, VMleft-RFleft, VLright-
VMright, VLright-RFright, VMright-RFright) = 900 and 10 × 3 × 5 × 3 (VLleft-VLright, 
VMleft-VMright, RFleft-RFright) = 450 signals, respectively.  

Two statistical tests were applied to evaluate effects of fatigue on 
amplitude, median frequency, and coherence. First, we addressed the 
progression of fatigue during a trial with a two-way ANOVA (3 × 2; force 
level × interval) over the first and last interval of each plateau (cf. Experiment 
1). Second, we eliminated temporal effects by comparing only the first interval 
of the second plateau after different force levels in the first plateau allowing for 
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a comparison between different levels of fatigue dependent on the force level 
history, while keeping all other factors constant. We used a two-way ANOVA 
(3 × 2; force level × history [low/high]) with repeated measures. The frequency 
bands, in which coherence was compared, matched those in Experiment 1 (i.e. 
6-11 Hz and 13-18 Hz). 
 

2.3 Results 

 
Experiment 1 
Amplitude and median frequency both showed marked effects of muscle 
fatigue. The EMG amplitude of the quadriceps muscles (RF and VM) increased 
significantly in time (Fig. 2.2, p < 0.01). This amplitude increase depended on 
condition, i.e. there was a significantly larger increase in the more difficult 
compared to the easier conditions as revealed by a significant angle by interval 
interaction for three out of four muscles (p < 0.05). As could be expected, 
EMG amplitudes were larger at lower knee angles, i.e. in more difficult 
conditions. Median frequencies of all muscles decreased significantly in time (p 
< 0.01). For the median frequency, the angle by interval interaction was not 
significant suggesting that the decrease was similar for different knee angles.  

 
Figure 2.2   Top panels: 
amplitude as percentage of 
reference measurement in the 
first and last 10 s interval for 
three conditions (left: RFleft; 
right: VMleft) of Experiment 1; 
lower panels: median 
frequency of the unrectified 
EMG in the first and last 
interval (left: RFleft; right: 
VMleft). 
 

The EMGs’ power and coherence spectra revealed pronounced peaks 
around 10 and 14 Hz. The normalized power in the 6-11 Hz frequency band 
averaged over participants was 6.50 ± 0.72%, 6.06 ± 0.77%, and 5.91 ± 0.98%, 
for the 90º, 120º, and 150º conditions, respectively, compared to 6.40 ± 1.18%, 
8.10 ± 3.16%, and 8.91 ± 4.09% in the 13-18 Hz frequency band (‘±’ refers to 
between-subject standard deviation; here, the normalized power denotes the 
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power in the 6-11 Hz as fraction of the total power). That is, the relative power 
in the 6-11 Hz frequency band was stronger in the 90º condition, whereas the 
relative power in the 13-18 Hz frequency bands was stronger at larger knee 
angles. The inter-subject variability was particularly high for the power in the 
13-18 Hz frequency band. Figure 2.3 shows the power and coherence spectra 
for two participants with strong power and intra-limb coherence in the 13-18 
Hz frequency band in the 150º condition (upper graph of each panel). 

 
Figure 2.3   Power and coherence spectra for two participants in Experiment 1. Top 
panels: the normalized power spectra of the rectified EMG for two muscles 
(bilateral RF) in three different conditions (from top to bottom: 150º, 120º and 90º 
knee angle) for the first (gray line) and last interval (black line). The graphs show 
the power at particular frequency as percentage of the total power. Lower panels: 
idem, but now for the coherence spectra. 

 
The PCA of the power spectra extracted the two frequency bands, i.e. 6-

11 and 13-18 Hz, in different modes. Recall that PCA modes yield eigenvector 
coefficients that signify the strength of these frequency components in the 
individual spectra and hence allow for a comparison between conditions. As 
such, the first mode represented a spectral distribution common for all four 
quadriceps muscles with a pronounced peak around 14 Hz (first mode 
contained 64% of the total variance). The strength of this component, as 
revealed by the corresponding eigenvector’s coefficients, increased with knee 
angle, i.e. it was strongest in the 150º condition. The second mode (which 
covered about 10% of the total variance) had spectral components located 
predominantly around 10, 20, and 40 Hz. In contrast to the first mode, these 
components clearly decreased with knee angle, that is, they were strongest in 
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the 90º condition. The first two modes hardly changed in time except in the 90º 
condition. 
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Figure 2.4.1   PCA of intra-limb coherence in Experiment 1: left column: first three 
principal coherence spectra (eigenvalues 82%, 9%, and 2%); central column: 
coefficients of corresponding eigenvectors for coherences RFleft-VMleft and RFright-
VMright at different knee angles; right column: mean coefficients for corresponding 
eigenvectors for knee angles 90º, 120º, and 150º at the nine time intervals 

 
Coherence was found between EMGs of a single leg as well as across legs 

in frequency regions that also displayed pronounced spectral power. Intra-
limb coherence was generally stronger than inter-limb coherence, which 
prompted us to analyze them separately (cf. Fig. 2.3). PCA of all intra-limb 
coherence spectra yielded a first mode that covered more than 80% of the total 
variance (Fig. 2.4.1; first row). It displayed a peak around 14 Hz that was 
strongest in the supposedly easiest condition (150º condition; Fig. 2.4.1; second 
column) and seemed to increase in time (third column). The second mode (Fig. 
2.4.1; second row) represented a modulation of the frequency of the peak of 
the first mode: the strength of this mode decreased with time corresponding to 
a shift of the 14 Hz peak towards lower frequencies. That shift was strongest 
for the 120º and 150º conditions (Fig. 2.4.1; third column). The third mode 
(Fig. 2.4.1; third row) exhibited a coherence peak around 10 Hz and a second 
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smaller peak around 20 Hz. This mode was strongest in the 90º condition and 
only in this condition the mode’s strength increased in time (Fig. 2.4.1; third 
column). 
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Figure 2.4.2   PCA of inter-limb coherence in Experiment 1: left column: first three 
principal coherence spectra with eigenvalues 28%, 8%, and 6%; central column: 
mean coefficients of corresponding eigenvectors for coherences RFleft-RFright and 
VMleft-VMright at different knee angles; right column: mean coefficients for 
corresponding eigenvectors for knee angles 90º, 120º, and 150º at the nine time 
intervals. 

 
The decomposition of inter-limb coherence into different principal 

components revealed that the first, second, and third mode explained 28%, 
8%, and 6% of the total variance, respectively. Complementary to the intra-
limb case, the first mode showed a peak around 14 Hz that was strongest at 
150º knee angle (Fig. 2.4.2; first row, second column). The second mode had a 
peak around 10 Hz and was strongest in the 90º condition. In this condition, 
the strength of the 10 Hz peak increased in time (Fig. 2.4.2; second row, third 
column). As the eigenvectors of the third mode did not display a comparably 
clear-cut structure, we abstained from further interpretation. 

ANOVA of the coherence spectra agreed with the PCA results. The 6-11 
Hz intra-limb coherence between RFright-VMright increased significantly in time 
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(F(1,11) = 5.98; p = 0.034; ƒ = 0.73; mean coherence: interval I, 0.031 ± 0.014; 
interval V, 0.048 ± 0.038) and this increase was strongest in the 90º condition 
(F(2,22) = 4.85; p = 0.018; ƒ = 0.66; mean coherence 90º: interval I, 0.031 ± 
0.009; interval V, 0.069 ± 0.049). In contrast, the 13-18 Hz intra-limb 
coherence was strongest in the 150º and weakest in the 90º condition in both 
legs (p < 0.010; mean coherence: 90º, 0.050 ± 0.039; 120º, 0.128 ± 0.122; 150º, 
0.153 ± 0.145). No significant changes in time were found, probably due to the 
high inter-subject variability of the frequency component in question. 
Coherence spectra of the single participants revealed that, although most 
participants showed coherence in the 13-18 Hz frequency band, its values 
varied between 0.02 and 0.6. For the inter-limb coherence in the 6-11 Hz 
frequency band, the effects were similar to those observed for the intra-limb 
coherence. Coherence of the RF increased significantly in the 90º condition as 
revealed by the corresponding interaction (F(2,22) = 3.47; p = 0.049; ƒ = 0.16; 
mean coherence 90º: interval I, 0.035 ± 0.017; interval V, 0.049 ± 0.030). There 
was also an almost significant effect of angle demonstrating largest coherence 
in the 90º condition (F(1.3,14) = 4.31; p = 0.050; ƒ = 0.63; mean coherence: 90º, 
0.042 ± 0.025; 120º, 0.029 ± 0.011; 150º, 0.030 ± 0.011). No significant effects in 
the 6-11 Hz frequency band were found for VM, although trends were similar 
to those for RF. The 13-18 Hz frequency band yielded no significant effects 
for inter-limb coherence. 
 
Experiment 2 
The EMG amplitude of the quadriceps muscles of interest showed similar 
effects of fatigue as in Experiment 1: amplitude increased in time and this 
increase was larger at higher force levels (Fig. 2.5A). Both effects were 
significant for all six quadriceps muscles (interval effect: p < 0.001, interaction 
effect: p < 0.001). However, effects of fatigue on median frequency were less 
obvious. Although the median frequency decreased over time in most 
conditions for most muscles, this effect was only significant for VLleft and RFleft 
(p < 0.05). The interaction between force level and interval was significant for 
VMleft: median frequency decreased at the 60% force level and increased at the 
10% force level (p = 0.001). Median frequency was significantly higher at 
higher force levels for all muscles (p < 0.01). As already stated, we also studied 
effects of fatigue at the same force level and interval by comparing different 
force level histories. As expected, amplitudes were higher after a higher force 
level during the first force plateau (Fig. 2.5B) and significant for 5 of the 6 
muscles (p < 0.02). The history effect was stronger for the 60% force level 
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during the second plateau (p < 0.05; same five muscles), i.e. the increase in 
amplitude after a higher force level of the first plateau was particularly strong 
in the 60% force condition of the second plateau. Again, effects for the median 
frequency were less clear-cut. For both VMs and VLleft , the median frequency 
was generally lower after a higher force level (p < 0.02; VMs and VLleft), 
whereas both RFs showed no history effect.  

 
Figure 2.5   A) Changes in 
mean amplitude (top panels) 
and median frequency of the 
unrectified EMG (lower 
panels) between interval I 
(gray) and V (black) of 
Experiment 2; the left column 
displays RFleft and right 
column VMleft; B) Mean 
amplitude and median 
frequency of interval I of 
plateau 2 after different force 
levels of plateau I (gray: low 
force, black: high force); 
similar to A the left column 
displays RFleft and right 
column VMleft. 
 
 
 
 
 

The power spectra of both the EMGs and force signals displayed peaks 
around 10 and 16 Hz. The mean normalized EMG power in the 6-11 Hz 
frequency band was 6.49 ± 0.59%, 6.12 ± 0.97%, and 6.27 ± 2.00%, for the 
10%, 35%, and 60% condition, respectively, compared to 5.25 ± 0.55%, 8.98 ± 
6.60%, and 10.69 ± 9.24% in the 13-18 Hz frequency band. The relative power 
in the 6-11 Hz frequency band remained steady across conditions, while the 
power in the 13-18 Hz frequency bands clearly increased at higher force levels. 
Again, the inter-subject variability was fairly high for the power in the 13-18 
Hz frequency band, particularly at higher force levels. Figure 2.6 shows the 
power and coherence spectra for two participants, one of them showing strong 
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intra-limb coherence in the 6-11 Hz and the other in the 13-18 Hz frequency 
band in the 60% force condition (lower graphs of each panel).  

 
Figure 2.6   Power and coherence spectra for two participants in Experiment 2. Top 
panels: the normalized power spectra of the rectified EMG for two muscles 
(bilateral RF) in three different conditions (from top to bottom: 10%, 35% and 
60% force level) for the first (gray line) and last interval (black line). The graphs 
show the power at particular frequencies as a percentage of the total power. Lower 
panels: idem, but now for the coherence spectra. 

 
For the spectral power of the EMG, the first PCA mode, accounting for 

51% of the total variance, displayed peaks at 10 and 16 Hz and was constant 
over conditions. The second mode (12% of the total variance) displayed a 
pronounced peak around 16 Hz and was stronger at higher force levels. The 
power spectra of the force signals were maximal around 2 Hz, but two peaks 
were clearly present around 10 and 16 Hz, particularly in the 60% condition. 
The mean normalized power in the 6-11 Hz frequency band was 5.40 ± 1.80%, 
6.93 ± 3.48%, and 10.63 ± 4.37%, for the 10%, 35%, and 60% condition, 
respectively, compared to 2.00 ± 0.62%, 3.48 ± 5.86%, and 4.20 ± 6.91% in the 
13-18 Hz frequency band, again showing high inter-subject variability in the 
13-18 Hz frequency band.  

Similar to Experiment 1, PCA of the coherence spectra revealed two 
distinct frequency bands in different modes: 6-11 and 13-18 Hz (Figs. 2.7). For 
intra-limb coherence, the first three PCA modes explained 60%, 15%, and 7% 
of the total variance (Fig. 2.7.1). The first mode exhibited coherence in the 13-
18 Hz frequency band and was stronger at higher force levels. The second 
mode was a modulation of the first mode, whose strength increased in time, 
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pointing at a shift of the first mode’s peak frequency towards higher 
frequencies in the course of a trial. The third mode covered the 6-11 Hz 
frequency band and was stronger at higher force levels. The ANOVA results 
were similar to those of PCA, revealing a significant increase of 6-11 Hz 
coherence at higher force levels in 5 out of 6 combinations (p < 0.05; mean 
coherence: 10%, 0.070 ± 0.026; 35%, 0.093 ± 0.064; 60%, 0.131 ± 0.093). The 
13-18 Hz intra-limb coherence did not show a main effect of force level, 
although coherence levels were high and differed considerably between force 
levels (mean coherence: 10%, 0.069 ± 0.027; 35%, 0.137 ± 0.155; 60%, 0.185 ± 
0.224). 
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Figure 2.7.1   PCA of intra-limb coherence in Experiment 2: left column: first three 
principal coherence spectra; central column: mean coefficients of corresponding 
eigenvectors for three coherences (left and right leg); right column: mean coefficients 
for corresponding eigenvectors for force levels 10%, 35%, and 60% at the five 
intervals. 

 
PCA of inter-limb coherence showed that the first, second, and third 

mode explained 19%, 8%, and 6% of the total variance, respectively (Fig. 
2.7.2). The first mode had a peak around 16 Hz that was strongest at higher 
force levels. The second mode displayed a peak around 10 Hz that was 
strongest in the 60% condition, during which its strength increased with time. 
The third mode represented a modulation of the peak frequency of the first 
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mode (the eigenvector’s coefficients were not clearly structured rendering their 
interpretation difficult). ANOVA confirmed the effects for the 6-11 Hz inter-
limb coherence: VMleft-VMright coherence was significantly higher at higher 
force levels (F(2,18) = 4.40; p = 0.028; ƒ = 0.70; mean coherence: 10%, 0.063 ± 
0.017; 35%, 0.062 ± 0.017; 60%, 0.082 ± 0.031) and increased in time in the 
60% condition (F(2,18) = 10.45; p = 0.001; ƒ = 0.54; mean coherence 60%: 
interval I, 0.066 ± 0.028; interval V, 0.097 ± 0.027). For RFleft-RFright coherence 
only a significant interaction was found, showing an increase in time for the 
60% condition (F(2,18) = 5.91; p = 0.011; ƒ = 0.40; mean coherence 60%: 
interval I, 0.074 ± 0.024; interval V, 0.091 ± 0.036). Similar to the intra-limb 
coherence, the higher inter-limb coherence in the 13-18 Hz band at higher 
force levels was not significant.  
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Figure 2.7.2   PCA of inter-limb coherence in Experiment 2: left column: first three 
principal coherence spectra; central column: mean coefficients of corresponding 
eigenvectors for coherences VMleft-VMright, RFleft-RFright, and VLleft-VLright at 
different force levels; right column: mean coefficients for corresponding eigenvectors 
for force flevels 10%, 35%, and 60% at the five intervals. 
 

The coherence spectra of the second force plateau were analyzed further 
in view of the different preceding force levels, i.e. the higher the force in 
plateau 1, the larger the resulting level of fatigue in plateau 2. A 3 × 2 ANOVA 
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(force level × history) revealed that 6-11 Hz inter-limb coherence was 
significantly higher after a higher force level during the first plateau for the 
VMs and the RFs (p < 0.02). For the VLs there was an equivalent trend that, 
however, failed to reach significance (p = 0.08). No significant main effect of 
force level or interaction was found for the 6-11 Hz inter-limb coherence. 
Statistical analysis of the 13-18 Hz frequency band and intra-limb coherence 
did not yield any significant effects, confirming that 13-18 Hz was not affected 
by muscle fatigue.  
 

2.4 Discussion 

 
Intra- and inter-limb coherence was found in two distinct frequency bands: 6-
11 and 13-18 Hz. As expected, intra-limb coherence was stronger than inter-
limb coherence, in accordance with the idea of a functional organization of 
muscle activation. Since high-pass filtering and inter-limb synchronization (i.e. 
between the legs) excluded the possibility of movement artifacts and simple 
volume conduction, respectively, the coherences found in the two frequency 
bands were, in all likelihood, caused by MU synchronization6. Note that a 
recent simulation study indicated that other factors, such as excitation level, 
muscle size and mean motor unit conduction velocity, can affect the cross-
correlation between surface EMGs (Keenan et al., 2006). Thus, one may argue 
that the increase in 6-11 Hz synchronization could have been caused by a 
fatigue-related change in these factors. However, the increase in 6-11 Hz 
synchronization with fatigue augments results by Christou and colleagues 
(2006), who showed that a higher MU discharge rate, putatively caused by a 
                        
6 In general, the here applied coherence analysis between surface EMGs differs 
from cross-correlation between individual MUs as measured with needle 
electrodes. Because surface EMG is a coarse-grained measure of MU activity, 
coherence between surface EMG provides only an indirect measure of 
synchronization of individual MUs. However, as was already indicated in the 
introduction, the estimation of MU synchronization by means of both methods are 
to a large degree compatible (cf. Grosse et al., 2002). That is, the amplitude of the 
surface EMG is related to the net MU activity and can thus be used as an index 
input level to the MU pool (e.g., Farina et al., 2004). The amplitude modulation of 
surface EMG is caused by rhythmically grouped discharges of individual MU 
spike trains (Elble and Randall, 1976) and coherence between surface EMGs can 
thus be seen as measure of the synchronization of the net activity of different MU 
pools pointing at common rhythmic input to both MU pools (cf. McAuley et al., 
1997, Grosse et al., 2002, Boonstra et al., 2007a). 
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larger descending drive onto the motor neuron pool, was accompanied by an 
increase in 8-13 Hz synchronization of different MUs as measured with needle 
electrodes. Indeed, these results confirm ours even though Christou and 
colleagues used needle electrodes and thus underscore the correspondence 
between both techniques. Hence, we submit that the here-reported increase in 
6-11 Hz coherence between surface EMGs was most likely caused by increased 
MU synchronization. 

Both experimental protocols appeared rather effective in inducing 
differential levels of fatigue as demonstrated by changes in EMG amplitude 
and median frequency. We did not measure the decrease in force generating 
capacity of the muscles, but the effect on EMG activity closely corresponded 
to those of other studies on muscle fatigue (cf. Introduction). That is, EMG 
amplitude increased during each trial and increased stronger at higher force 
levels and the median frequency of the EMGs tended to decrease in both 
experiments. The increase in muscle fatigue was associated with an increase of 
the 6-11 Hz inter-limb coherence, i.e. 6-11 Hz inter-limb coherence increased 
over time and more strongly so at higher force levels. In contrast, an 
ambiguous pattern in the 13-18 Hz band was found: while in the first 
experiment 13-18 Hz coherence was stronger at large knee angles (low force 
levels), it was stronger at higher force levels but remained unaffected by fatigue 
in the second experiment. Evidently, this discrepancy excluded a direct relation 
between force level or muscle fatigue with coherence around 13-18 Hz.  
 
MU synchronization and tremor activity 
Coherence in both frequency bands was accompanied by pronounced peaks in 
the EMGs’ power spectra as well as in the power spectra of the force sensors in 
Experiment 2. In all likelihood, these peaks in the spectra reflected tremor 
activity, which has been studied extensively, especially in the 6-11 Hz 
frequency band (e.g., McAuley and Marsden, 2000). Tremor around 10 Hz is 
well-documented and typically referred to as physiological or central tremor, 
be it when limbs are outstretched yielding postural tremor (Halliday and 
Redfearn, 1956; Elble and Randall, 1976; Hagbarth and Young, 1979) or during 
isometric contractions (Allum et al., 1978; McAuley et al., 1997). In view of the 
diversity of tremor manifestations, it is not surprising that various mechanisms 
have been proposed to account for 10 Hz oscillations. As it stands, 
physiological tremor appears multifactorial in origin (McAuley and Marsden, 
2000). To isolate some of the possible sources it is particularly interesting that 
physiological tremor is affected by muscle fatigue in that the tremor strength 
increases during isometric contractions at high force levels (Loscher et al., 
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1996; Cresswell and Loscher, 2000; Ebenbichler et al., 2000). Importantly, the 
presently observed changes in the 6-11 Hz frequency band are entirely 
consistent with these findings as the strength of the oscillations increased with 
increasing muscle fatigue and are likely related to physiological tremor. 

Compared to the 10 Hz region, oscillatory activity in the 13-18 Hz 
frequency band seems far less common. However, various studies have 
reported EMG-EMG coherence in the beta band (15-30 Hz), either between 
different hand muscles using needle electrodes (Farmer et al., 1993) or between 
rectified surface EMGs (Kilner et al., 1999). The motor cortex is most likely 
involved in the generation of this synchronized beta activity as EMG activity is 
also coherent with local field potentials in monkeys (Baker et al., 1997) and 
with MEG activity in humans (Conway et al., 1995; Salenius et al., 1997; Kilner 
et al., 2000; Mima et al., 2000). Although the 13-18 Hz interval is part of the 
lower beta band, the observed synchrony appears quite different from beta 
band coherence. First, beta band coherence is typically most pronounced 
around 20-25 Hz, instead of 13-18 Hz. Second, beta band coherence is usually 
broadband, i.e. it is not as sharp-peaked as the coherence spectra found in the 
present experiments. Third, 13-18 Hz coherence in a few participants reached 
values up to 0.8, which is much larger than typically reported for the beta 
band. Hence, it seems that the 13-18 Hz found in both experiments differs for 
the typically reported coherence in the beta band. 

In a similar experiment on bilateral MU synchronization between 
muscles of the upper arm, we found a fatigue-related synchronization increase 
in the 8-12 Hz frequency similar to the present findings (Boonstra et al., 
2007a). In contrast, however, synchronization between 13-18 Hz was absence 
in the upper arm implying that 13-18 Hz MU synchronization is specific for 
leg muscles. Interestingly, a pronounced 16 Hz synchronized bilateral 
oscillations have been reported in healthy participants during improper balance 
(Sharott et al., 2003). The relationship between balance control and 16 Hz 
activity is consistent with the results of Experiment 1 showing that the 16 Hz 
coherence was strongest at large knee angles, i.e. in a position close to upright 
stance. It remains an open question, however, why the strength of the 16 Hz 
rhythms differed strongly between participants and what caused the change in 
strength and the shift in peak frequency in both experiments. 
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Bilateral neural coupling 
Although physiological tremor may have many causes (McAuley and Marsden, 
2000), the fatigue-related increase in 6-11 Hz bilateral synchronization found 
in both experiments is more likely to have a central origin. In particular, the 
increase of inter-limb coherence signifies an increase in common input to both 
MU pools and afferent fibers have no direct effect on MUs of the homologous 
muscle, but act by modulating the excitability of interneurons (Harrison and 
Zytnicki, 1984; Arya et al., 1991; McCrea, 2001). Hence, while afferent 
feedback might modulate oscillatory activity, it seems unlikely that afferent 
feedback serves as a coupling mechanism causing MU synchronization 
between quadriceps muscles of both legs. However, because inter-limb 
coherence at 6-11 Hz was rather weak in both experiments, a single global 
oscillatory source causing tremor activity in different body segments appears 
unlikely (cf. Hurtado et al., 2000). Indeed, Marsden and coworkers (1969) 
already showed that physiological tremor activity was not synchronized 
between hands. Bilaterally independent tremor activity was also shown for 
enhanced physiological, essential, and Parkinsonian tremor (Lauk et al., 1999; 
Hurtado et al., 2000). All in all, it seems that there are at least two neural 
oscillators that are normally uncoupled, but can synchronize under specific 
conditions, such as fatigue. 

What caused the increase in 6-11 Hz bilateral coupling during fatiguing 
contractions? As already mentioned in the Introduction, there is a marked 
relationship between mirror movements and fatigue, as evidenced by an 
increase of bilateral co-activation during unilateral contractions at high force 
levels, referred to as motor irradiation or motor overflow (e.g., Zijdewind and 
Kernell, 2001; Aranyi and Rosler, 2002). Motor overflow parallels the increase 
in 6-11 Hz inter-limb coherence observed in both experiments in that both 
phenomena signify increased bilateral coupling during fatiguing contractions. 
Interestingly, bilateral, coherent tremor activity around 10 Hz has been found 
in patients with persistent mirror movements (Köster et al., 1998; O'Sullivan et 
al., 2002). However, no specific neural mechanisms have yet been identified, 
although the alleged cortical origin of this motor overflow has been extensively 
investigated (see Hoy et al., 2004, for a review). Unfortunately, most studies on 
motor irradiation did not examine the overlap in spectral content between 
EMGs. Nevertheless, the here-reported increase of inter-limb coherence at 6-
11 Hz reflects the increase in motor overflow during fatiguing contractions. 
Further studies are needed to substantiate this interpretation and pinpoint the 
neural mechanism underlying this phenomenon. 
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2.5 Conclusions 

 
The fatigue-related increase in 6-11 Hz inter-limb coherence signifies an 
increase in common bilateral input and resembles physiological tremor in 
terms of its frequency content and its fatigue-related increase in strength. The 
weak coherence between EMGs of homologous muscles agrees with previous 
studies on physiological tremor. The increase in bilateral synchronization 
mimics the increase of motor overflow during fatiguing unimanual 
contractions and both suggest increased bilateral coupling during fatiguing 
contractions. Although the neural mechanisms underlying these phenomena 
remain to be identified, it seems likely that fatigue-related changes in 
excitability along the neural axis, such as the increase or spread of cortical 
excitability, might facilitate the coupling of neural oscillators (cf. Glass, 2001). 
The 13-18 Hz synchronization, in contrast, did not correlate with fatigue. 
Given its frequency content and the strong synchronization between different 
MU pools, the 13-18 Hz synchronization hints at a physiological subsystem 
involved in balance-related postural responses (cf. Sharott et al., 2003). 
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Abstract 
 
In the previous chapter, two experiments were reported that revealed 
synchronization between homologous muscles in two distinct frequency bands 
indicating common rhythmic input. This chapter reports a similar experiment 
that was designed to compare the results for muscles of different extremities and 
further examine the relation between bilateral MU synchronization and motor 
overflow. The bilateral coupling between homologous arm muscles was 
compared during fatiguing elbow flexion and extension contractions. Similar to 
the results of Chapter 2, MU synchronization was found in the 8-12 Hz 
frequency band, more strongly so when fatigued. This fatigue-related increase 
in bilateral MU synchronization was stronger between extensor than between 
flexor muscles, which appeared consistent with the literature on mirror 
movements and supported the alleged link between mirror movements and 
fatigue-related motor overflow. In contrast to the study on leg muscles in 
Chapter 2, the arm muscles did not exhibit MU synchronization in the 13-18 
Hz frequency band, which seemed consistent with the hypothesis that MU 
synchronization in the higher frequency band, as described in Chapter 2, was 
linked to balance maintenance. The results are discussed in terms of common 
bilateral input and substantiate the idea that common input is functionally 
organized.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Published as: T.W. Boonstra, A. Daffertshofer, E. van As, S. van der Vlugt and  P.J. 
Beek (2007). Bilateral motor unit synchronization is functionally organized. 
Experimental Brain Research 178, 79-88. 
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3.1 Introduction 

 
During bilateral movements the participating limbs do not move 
independently but influence each other (e.g., Treffner and Turvey, 1996). Such 
mutual influences have been extensively investigated in bimanual rhythmic 
tasks involving finger oscillations and manual circle drawing (see, e.g., Kelso, 
1995, for an overview). Interlimb coordination is governed by interactions 
between limbs arising from various constraints residing at different levels of 
the motor system (Carson and Kelso, 2004) and several studies have been 
carried out to pinpoint the neural structures involved (see Carson, 2005, for a 
review). Recently, evidence has been presented that bilateral coupling primarily 
stems from shared efferent information (Ridderikhoff et al., 2005b; Spencer et 
al., 2005) and that afferent processes only play an ancillary role. For instance, 
muscles that are normally coactivated may share a common drive arising from 
branched presynaptic fibers or from presynaptic synchronization of last-order 
inputs (Carr et al., 1994). Similarly, bilateral coupling may arise from cortical 
neural crosstalk between bilateral motor areas through the corpus callosum 
(e.g., Franz et al., 1996; de Oliveira et al., 2001; Daffertshofer et al., 2005). 

To examine the interactions and processes underlying bimanual 
coordination, bilateral coupling has been probed by manipulating various 
parameters, including movement tempo and amplitude (Peper et al., 1995a; 
Post et al., 2000a; Post et al., 2000b), amount of torque applied (Peper and 
Carson, 1999), handedness (Treffner and Turvey, 1996), attention (Swinnen et 
al., 1996; Amazeen et al., 1997), and more. Remarkably, muscle fatigue has 
hardly been investigated in this context, even though it appears a particularly 
expedient vehicle to gain insight into the interactions governing interlimb 
coordination. The reason is that during unilateral fatiguing contractions there 
is an increase of contralateral coactivation of homologous muscles termed 
motor irradiation of motor overflow (Zijdewind and Kernell, 2001; Aranyi and 
Rosler, 2002), indicating increased bilateral coupling during fatigue and/or high 
effort contractions. In line with those findings, we observed in a previous 
study an increase in 6-11 Hz MU synchronization between homologous 
quadriceps muscles during fatiguing contractions (Boonstra et al., 2007b). 
Based on this result, we hypothesized that increased bilateral MU 
synchronization and increased motor overflow are different manifestations of 
the same underlying increase in bilateral coupling during fatiguing 
contractions. 
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MU synchronization at a certain frequency band implies a common, 
rhythmic input (McAuley et al., 1997) that can be quantified via conventional 
coherence analyses between surface EMGs (cf. Miller and Sigvardt, 1998). MU 
synchronization as indexed by coherence analyses differs from short-term 
synchronization as indexed by cross-correlation analyses, which typically 
result in a narrow central peak in the cross-correlation histogram signifying 
synchronous discharge times of two MUs caused by common presynaptic 
input from branched axons (Sears and Stagg, 1976; Kirkwood and Sears, 1978). 
That is, while cross-correlation analyses estimate the strength of the common 
input to two MUs, coherence analyses reveal details of the frequency of the 
common input (Farmer et al., 1993; Semmler, 2002). In the latter case, MU 
synchronization reflects periodicities in the firing of common presynaptic 
input to MUs that modulates the EMG amplitude and is likely caused by 
presynaptic synchronization (Kirkwood et al., 1982). Although rhythmically 
synchronized input to MUs may arise from various levels of the nervous 
system (see McAuley and Marsden, 2000, for a review), most researchers seem 
to agree that it arises at a supraspinal level (Farmer et al., 1993; McAuley et al., 
1997; Grosse et al., 2002; Semmler, 2002). As such, MU synchronization might 
be functionally organized and may act as a binding mechanism integrating 
spatially distributed, neural activity. In short, it may serve as a neural control 
mechanism (Farmer, 1998; Singer, 1999; Varela et al., 2001).  

To investigate the functional organization of bilateral coupling between 
homologous muscles, we investigated the difference in increase of MU 
synchronization during fatiguing elbow flexion and extension. In a recent 
study on mirror movements, bilateral coupling was stronger between extensor 
muscles than between flexor muscles (Ridderikhoff et al., 2005a). Similarly, we 
expected MU synchronization to increase more strongly for extensor than for 
flexor muscles. We further sought to determine whether earlier results 
regarding the synchronization between leg muscles (Boonstra et al., 2007b) 
also hold for arm muscles. In that previous study we did not only find bilateral 
MU synchronization around 10 Hz, but also around 16 Hz, which was not 
affected by fatigue. We hypothesized that the latter MU synchronization was 
related to balance maintenance (cf. Sharott et al., 2003), and thus did not expect 
to find it in homologous arm muscles. As in the leg muscles, however, we 
expected to find an increase in fatigue-related 10 Hz interlimb synchronization 
in the arm muscles. As mentioned before, in light of the study of Ridderikhoff 
and colleagues (2005a), a stronger increase in 10 Hz synchronization was 
expected for extensor than for flexor muscles. Such distinct effects on MU 
synchronization could indeed support the alleged link between fatigue-related 
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MU synchronization and mirror movements, as both forms of bilateral 
coupling are affected by fatigue and differ for extensor and flexor muscles. 

3.2 Methods and Materials 

 
PARTICIPANTS   Eleven healthy students (nine males and two females) from 
the VU University Amsterdam participated in the experiment (mean age 23 
years; range 22-27 years). All participants signed an informed consent after 
having been informed about the nature of the experiment. The Ethical 
Committee of the Faculty of Human Movement Sciences of the VU University 
Amsterdam had approved the experimental protocol before the experiment 
was conducted. 
 
PROCEDURE   Participants were seated in an adjustable chair in upright 
position and securely strapped in place by two belts to minimize the number of 
mechanical degrees of freedom that could be recruited in performing the 
experimental task, which was an isometric force production task (Fig. 3.1). For 
every participant the chair was adjusted such that both hip and knee joints 
were flexed at approximately 90º. Participants could exert isometric force, 
either by elbow flexion or extension, against a metal bar that was placed in 
front of the participants such that the upper arm was in vertical position and 
the lower arm in horizontal position with an elbow angle of approximately 90º. 
At both ends of the metal bar, a force transducer (STS Metric, capacity 200 kg, 
accuracy class C1) was attached to record the exerted force. Note that the use 
of the solid bar might have caused ‘cross-talk’ between the two force sensors 
potentially yielding finite synchronization values between the force signals. In 
the present study, however, force signals were only used to control the level of 
force exerted and synchronization was based solely on EMG recordings.  

Because the metal bar had to be adjusted for flexion and extension force 
production individually, the experiment was divided into two trial sets (flexion 
and extension), the order of which was counterbalanced across participants. 
Prior to the experimental trials, the maximum voluntary contraction (MVC) 
was determined based on two consecutive 10 s recordings, during which 
participants were instructed to gradually build up force and verbally reinforced 
to exert maximal force. The maximum force of both recordings was used as 
MVC reference. Subsequently, participants were asked to produce forces at 
20% or 40% MVC to induce different levels of fatigue. Both the required and 
produced forces were displayed as horizontal lines on a computer screen 



3.2 Methods and Materials 

 55

placed in front of the participants, who were instructed to tune their force 
output to the desired force level. In order to encourage and help participants to 
perform elbow flexions or extensions of both arms as a functional unit, the 
exerted force of both force sensors were summed and displayed as a single line. 

 
Figure 3.1   Experimental 
setup. Participants were 
sitting in an adjustable chair 
with a metal bar in front 
them with force sensors on 
both ends for recording the 
exerted force. 

 
 
 
 

Each participant conducted 2 (flexion/extension) × 2 (force level) × 3 
(repetitions) = 12 trials lasting 90 s each. All participants were able to maintain 
the required force level for the duration of the trial and participants rested for 
three minutes between trials. The order of force levels and trials was 
randomized across participants. By performing isometric contractions at 
different force levels, the effect of fatigue on MU synchronization could be 
examined when comparing the change of MU synchronization over time in the 
different force level conditions.  
 
DATA ACQUISITION   Surface EMG was recorded from m. biceps brachii caput 
longum (BL), m. biceps brachii caput breve (BB), m. brachioradialis (BR), m. 
brachialis (B), m. triceps brachii caput longum (TLo), m. triceps brachii caput 
laterale (TLa), and m. triceps brachii caput mediale (TM) of both arms. For the 
purpose of the present study only data from BL, BB, TLo, TLa and TM were 
analyzed. The electrodes (Ambu® Blue Sensor N) were placed in a bipolar 
montage with an interelectrode distance of about 2 cm with locations following 
SENIAM guidelines (Hermens et al., 2000). Data were amplified, band-pass 
filtered, digitized, and stored on disk (5-1000 Hz, 22-bit sampling depth, 2 
kHz sampling rate, Porti 5-16/ASD, TMS International, Enschede, The 
Netherlands). 
 
DATA ANALYSIS   EMG data were filtered off-line using a second-order 
bidirectional Butterworth high-pass filter (cutoff frequency 20 Hz) to 
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eliminate movement artifacts. EMG signals were further full-wave rectified 
using the Hilbert transform (cf. Myers et al., 2003) and normalized relative to 
the MVC as determined at the beginning of the experiment. Each trial was 
divided into six consecutive intervals (I, II, …, VI) of 15 s each. Per interval, 
mean power and median frequency of the EMGs were computed. The median 
frequency was calculated from the non-rectified EMG using Welch’s 
periodogram method with Hamming windows of 1024 samples length and 
overlapping 768 samples. The spectral power estimate per interval (I, II, …, VI) 
was thus based on 114 overlapping data segments with a frequency resolution 
of 0.98 Hz. 

We used identical settings when estimating the power spectral densities 
and coherence spectra of the EMG. In contrast to the calculation of the median 
frequency, these two analyses were based on the rectified EMG (the dc-value 
of each 1024 samples data window was removed before computing the Fourier 
transform). The resulting power spectral densities were log-transformed 
(Halliday et al., 1995) and Fisher’s transform was applied to the coherence 
spectra before conducting statistical tests (Amjad et al., 1997). Both rescaling 
procedures ‘stabilize’ the variances of the underlying distributions and were 
used before testing spectral estimates for statistical differences (Rosenberg et 
al., 1989; Farmer et al., 1993; Gerloff et al., 1998a). 
 
STATISTICAL ANALYSIS   Power and coherence spectra were submitted to a 
PCA to identify spectral components common across participants, conditions, 
and muscles. PCA was exploited in its capacity to reduce the dimensionality of 
the data by extracting major frequency components or modes and to quantify 
the strength of these frequency components in different conditions and 
muscles. The quality of the data reduction can be evaluated via the eigenvalues 
representing the contribution of the components extracted by the PCA to the 
total variance, while conditions can be compared in terms of the corresponding 
coefficients of the eigenvector (see Boonstra et al., 2005b; Boonstra et al., 
2007b, for similar applications). The advantage of such a combined analysis is 
that the effects of fatigue that are present in this high-dimensional signal vector 
can be examined in a concise and readily interpretable manner (even if the 
effects are small or the data are noisy). Hence, the spectra of all participants 
and conditions were combined into a single signal vector yielding three 
different high-dimensional signal vectors: a vector for the power spectra of the 
EMGs with 11 (participants) × 2 (tasks) × 2 (force levels) × 6 (intervals) × 10 
(muscles) = 2640 signals, a vector for interlimb coherence during flexion trials 
with 11 × 2 × 2 × 6 × 2 (BLleft-BLright, BBleft-BBright) = 528 signals, and a vector 
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for the interlimb coherence during extension trials with 11 × 2 × 2 × 6 × 3 
(TLoleft-TLoright, TLaleft-TLaright, TMleft-TMright) = 792 signals. 

To allow comparison with more conventional statistical approaches, we 
also analyzed the effects of fatigue on the amplitude, median frequency, and 
coherence by performing a four-way ANOVA (2 × 2 × 2 × 2; task × muscle × 
force level × interval) with repeated measures on the first and last intervals per 
trial (Boonstra et al., 2007b). This design was used to evaluate whether changes 
in amplitude, median frequency, or coherence were different between tasks 
(flexion, extension) or muscle groups (biceps, triceps). To keep the design 
compact, however, we averaged over the various biceps and triceps muscles (or 
combinations in the case of coherence) so that the factor muscle had two levels 
(biceps and triceps) – note that such averaging was not necessary for the PCA. 
The design was completely balanced with equal record lengths for all 
conditions. Coherence was evaluated in 8-12 Hz frequency bands; this choice 
was based on the PCA results (see Results). To facilitate the interpretation of 
significant results obtained with the ANOVAs, effect sizes (ƒ) were calculated 
in terms of partial η2 (Cohen, 1988). 

 

3.3 Results 

 
The maximal combined force exerted on both force sensors was 396 ± 112 N 
for elbow flexion and 341 ± 80 N for elbow extension. EMGmax during elbow 
flexion was 8.57 ± 2.89 mV and 0.80 ± 0.18 mV for the biceps and triceps 
muscles, respectively, and EMGmax during elbow extension was 0.84 ± 0.31 mV 
(biceps) and 6.91 ± 3.43 mV (triceps). Coactivation was 10.3 ± 3.9% during 
flexion MVC and 13.9 ± 7.1% during extension MVC. 

Both EMG amplitude and median frequency showed marked effects of 
muscle fatigue (Fig. 3.2). The EMG amplitude of all muscles increased 
significantly in time (F(1,10) = 68.4; p < 0.001; ƒ = 0.87). The increase of EMG 
amplitude was significantly greater at a 40% MVC force level compared to the 
20% force condition as revealed by a significant force by interval interaction 
(F(1,10) = 32.4; p < 0.001; ƒ = 0.76). There was no significant difference 
between the EMG amplitude of the biceps and triceps muscles, whereas the 
amplitude was slightly larger during flexion than during extension (F(1,10) = 
9.40; p = 0.012; ƒ = 0.48). As could be expected, the EMG amplitudes were 
larger in the 40% force condition. Interestingly, the effects of fatigue were 
similar for the agonist and antagonist muscles. Median frequencies of the 
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EMGs of all muscles decreased significantly in time (F(1,10) = 90.6; p < 0.001; ƒ 
= 0.90) and this decrease was greater in the 40% force condition (F(1,10) = 
62.5; p < 0.001; ƒ = 0.86). The EMGs’ median frequency showed significant 
main effects of muscle (F(1,10) = 9.60; p = 0.011; ƒ = 0.49), task (F(1,10) = 28.1; 
p < 0.001; ƒ = 0.74), and force level (F(1,10) = 12.2; p = 0.006; ƒ = 0.55) 
indicating that the median frequency was higher for the biceps during 
extension and at the low force condition, respectively. Again, the effect of 
fatigue on the EMGs’ median frequency was similar for agonist and antagonist 
muscles (Fig. 3.2). The decrease was even greater for the antagonist than for the 
agonist muscles (F(1,10) = 35.8; p < 0.001; ƒ = 0.78; decrease in median 
frequency: biceps flexion, 7.9 Hz; biceps extension, 13.1 Hz; triceps flexion, 
11.3 Hz; triceps extension, 9.1 Hz). 

 
Figure 3.2   Top panels: power as percentage MVC in the first and last 15 s interval 
for both tasks (flexion and extension) and averaged over different heads of the 
biceps and triceps; lower panels: idem, but for median frequency of the unrectified 
EMG. 
 

The power spectra of both force sensors revealed that the low-frequency 
range around 2 Hz contained most power with a second, smaller peak around 
10 Hz. The mean normalized power averaged over both force sensors in the 8-
12 Hz frequency band was larger in the high force condition and increased in 
time (flexion: interval I low force, 1.23 ± 0.88%; interval VI low force, 3.43 ± 
2.45%, interval I high force, 3.27 ± 2.53%, interval VI high force, 4.43 ± 
2.65%; and for extension: interval I low force, 1.45 ± 0.60%; interval VI low 
force, 2.77 ± 1.49%, interval I high force, 2.34 ± 1.41%, interval VI high force, 
5.25 ± 2.81%). The power of the rectified EMGs revealed a peak at a slightly 
higher frequency, i.e. between 10 and 20 Hz (Fig. 3.3). The first mode of the 
PCA of the power spectra of the EMG explained 83% (biceps) and 81% 
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(triceps) of the total variance and represented the spectral distribution common 
to all muscles irrespective of condition. It displayed a fairly broad spectral peak 
that was maximal around 15 Hz. The second mode (about 8% of the total 
variance) had a peak around 18 Hz and its strength decreased in time, 
particularly in the high force condition, as revealed by the coefficients of the 
corresponding eigenvector7. The third mode displayed a modulation of the 
peak frequency of the first mode: adding the third mode to the first caused a 
shift of the 15 Hz peak towards lower frequencies (subtracting it thus yielded a 
shift towards higher frequencies). For both biceps and triceps muscles, the 
strength of the third mode increased in time implying that the peak of the first 
mode shifted towards lower frequencies in the course of a trial. Although PCA 
did not extract the 8-12 Hz band as a separate frequency component, 8-12 Hz 
EMG power was higher in the high force condition and increased in time 
during each trial (Fig. 3.5). 

 
Figure 3.3   Power and coherence spectra for two participants. Top panels: the 
normalized power spectra of the rectified EMG for biceps and triceps (averaged 
over different heads of both arms) in four different conditions (from top to bottom: 
flexion low force, flexion high force, extension low force, extension high force) for 
the first (gray line) and last interval (black line). Lower panels: idem, but now for 
the interlimb coherence spectra. 
 

Coherence between EMGs of both arms displayed a clear peak around 
10 Hz, particularly in the high force condition, and appeared stronger for the 
                        
7 Recall that PCA modes yield eigenvector coefficients that signify the strength of 
these frequency components in the original spectra of different condition and thus 
allow for a comparison between conditions. 
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triceps muscles (Fig. 3.3). PCA of the interlimb coherence spectra yielded a 
first mode that covered 13% (biceps) and 23% (triceps) of the total variance 
(Fig. 3.4). For both muscle combinations, the first mode revealed a peak 
around 10 Hz that was indeed stronger for the triceps than for the biceps8. The 
interlimb coherence between the triceps was strongest during extension at high 
force and in this condition it increased over time. The structure of the 
eigenvector coefficients of the first mode of the interlimb coherence between 
the biceps was less clear-cut but coherence seemed to increase over time both 
during the high force flexion and extension contractions. The second mode 
represented a modulation of the frequency of the peak of the first mode similar 
to the third on the first mode of the power spectra (i.e. adding the second mode 
to the first caused a shift of the 10 Hz peak towards lower frequencies, whereas 
subtracting it yielded a shift towards higher frequencies). Again, the structure 
of eigenvector coefficients was most obvious for the triceps: during extension 
at high force, the strength of the mode increased considerably in time. This 
indicates that the peak frequency of the 10 Hz coherence decreased in 
frequency over time during extension at high force. 

 
Figure 3.4   First two PCA modes of interlimb coherence between biceps (left two 
columns) and triceps muscles (right two columns). First column: first two principal 
coherence spectra (eigenvalues 13%, 9%) of the biceps muscles; second column: 
mean coefficients for corresponding eigenvectors for flexion low force (FL), flexion 
high force (FH), extension low force (EL), and extension high force (EH) at the six 
intervals; column 3 and 4: idem, but now for the PCA of the interlimb coherence 
between the triceps muscles.  
 

                        
8 The original coherence spectra can be reconstructed by multiplying the 
projection of each mode with the coefficients of the eigenvector, cf. Appendix A. 
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By and large, the results of the ANOVA on the coherence spectra were 
in agreement with the PCA results. The 8-12 Hz intralimb coherence was 
significantly higher during the high force condition (F(1,10) = 8.90, p = 0.014, ƒ 
= 0.47; mean coherence: 20% MVC, 0.018 ± 0.004; 40% MVC, 0.025 ± 0.010) 
and increased in time (F(1,10) = 5.55, p = 0.040, ƒ = 0.36; mean coherence: 
interval I, 0.020 ± 0.006; interval VI, 0.023 ± 0.008). The force by interval 
interaction was almost significant (F(1,10) = 4.73, p = 0.055, ƒ = 0.32), reflecting 
a stronger increase in coherence in the high force condition (Fig. 3.5). Further, 
there was a main effect of task (F(1,10) = 5.43, p = 0.042, ƒ = 0.35; mean 
coherence: flexion, 0.020 ± 0.006; extension, 0.023 ± 0.007), but no main effect 
of muscle (p > 0.05), indicating that coherence was similar for biceps and 
triceps. Finally, there was a significant task by muscle interaction (F(1,10) = 
4.97, p = 0.050, ƒ = 0.33), which revealed that coherence between triceps 
muscles was higher during extension. 

 
Figure 3.5   Mean power and interlimb coherence in the 8-12 Hz frequency band. 
Upper panels: the grand average of the EMG power in the 8-12 Hz frequency 
band of the first and last interval in the four different conditions. Data are plotted 
on a log scale and the error bars indicate the between-subject standard deviation. 
Lower panels: idem, but now for the interlimb coherence in the 8-12 Hz frequency 
band. 
 

3.4 Discussion 

 
PCA revealed fatigue-related 8-12 Hz interlimb coherence for both the biceps 
and triceps muscles. As expected, 8-12 Hz synchronization was stronger 
during the high force condition and increased significantly over time. The 
increase in interlimb synchronization was particularly strong between the 
triceps muscles during high force extension. Interlimb synchronization was 
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associated with fatigue in that EMG amplitude increased and median 
frequency decreased as fatigue increased and these changes were stronger in the 
high force condition. However, although there were significant differences in 
interlimb coherence, absolute coherence levels were rather low and PCA 
converged only slowly, indicating that bilateral MU activity remained largely 
uncoupled (i.e. MU synchronization was weak). The 8-12 Hz interlimb 
coherence was accompanied by a similar peak in the power spectra of the force 
sensor showing tremor activity at 8-12 Hz. The 10 Hz peak in the coherence 
spectra shifted towards lower frequencies over time, particularly during flexion 
at high force. This changeover was accompanied by a similar shift towards 
lower frequencies in the power spectra of the rectified EMG. Given that 
participants were holding the bar with both hands, the increase in 8-12 Hz 
interlimb coherence with fatigue might have been related to an increase in 8-12 
Hz power in the force exerted on the bar via a common afferent feedback that, 
in principle, could have simultaneously influenced MU discharges in both 
limbs. The increase in 8-12 Hz synchronization, however, agreed with the 
results of an earlier study (Boonstra et al., 2007b) in which bilateral force was 
exerting against mechanically independent force sensors. That is, it seemed 
unlikely that mechanical cross-talk (in combination with afferent feedback) 
caused the here-observed coherence. In contrast to our previous study, no 
synchronized activity was found around 16 Hz, which is consistent with our 
hypothesis that 16 Hz activity is related to balance maintenance (cf. Sharott et 
al., 2003). 

We quantified muscle fatigue in terms of changes in EMG amplitude and 
median frequency. In all likelihood, fatigue-related increase in EMG amplitude 
is caused by the recruitment of additional MUs and the increase in firing 
frequency that are invoked to compensate for reduced muscle contractility 
(Lippold et al., 1960;  Viitasalo and Komi, 1977; Bigland-Ritchie et al., 1986). A 
decreasing median frequency, on the other hand, is thought to be related to the 
progressive slowing of the conduction velocity of action potentials along the 
muscle fiber resulting from an increase in extracellular metabolites (Mortimer 
et al., 1970; Lindstrom et al., 1977). However, because the relative decrease of 
the median frequency often exceeds the relative decrease of conduction 
velocity, other researchers have pointed at additional factors such as 
synchronization of MU firing (Bigland-Ritchie et al., 1981; Krogh-Lund and 
Jorgensen, 1993). Noteworthy in this regard is the here reported increase in 
EMG amplitude and decrease in median frequency of the antagonist muscles 
matching the change of the agonist muscles. It is unlikely that this decrease in 
median frequency of the antagonist muscles was caused by increased 
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extracellular metabolites because the cocontraction level was only about 10% 
of the agonist activity and peripheral fatigue was therefore not to be expected. 
Indeed, several studies have shown that the force generating capacity of the 
antagonist muscles remained equal after fatiguing contractions of the agonist 
muscles (e.g., Levenez et al., 2005). Although the effects on the EMG 
amplitude and median frequency of the antagonist muscle could, in principle, 
result from cross-talk, it is typically interpreted as an effect of a common drive 
to the agonist-antagonist couple (Psek and Cafarelli, 1993; Ebenbichler et al., 
1998; Mullany et al., 2002; Levenez et al., 2005). In support of this 
interpretation, an increase in amplitude and a decrease in median frequency 
have been found in the contralateral homologous muscle after unilateral muscle 
fatigue (Morrison et al., 2005). Note that common drive refers to a 
homogeneous input to MU pools (De Luca et al., 1982; De Luca and Erim, 
1994) and that antagonist cocontraction could be instrumental in maintaining 
joint stability (Solomonow et al., 1988).  

Similar to the 6-11 Hz interlimb synchronization between quadriceps 
muscles found in our previous study (Boonstra et al., 2007b), the increase in 8-
12 Hz interlimb coherence found in the present experiment seems related to 
physiological tremor. Most obviously, the 8-12 Hz MU rhythm resembles 
physiological tremor in its frequency content (see McAuley and Marsden, 
2000, for an overview). The relation between bilateral 8-12 Hz MU 
synchronization and physiological tremor is supported further by a 
contralateral increase in physiological tremor after unilateral muscle fatigue 
(Morrison et al., 2005). Similarly, the decrease in peak frequency of the 8-12 
Hz interlimb coherence over the course of a trial resembles the decrease in 
peak frequency of the acceleration in tremor activity during fatiguing 
contractions (Vaillancourt and Newell, 2000). As described in the introduction, 
MU synchronization at a certain frequency points at a common rhythmic 
input (cf. McAuley et al., 1997). That is, rhythmic MU synchronization, e.g., 
underlying tremor activity, reflects in-phase MU rhythms that are additional to 
those at the MU intrinsic firing rates (cf. Christakos et al., 2006). Put 
differently, there is not necessarily an entrapment of the firing rates of 
individual MUs into the 8-12 Hz rhythm, but MU synchronization, as 
measured by surface EMG, reflects rhythmic modulation of the total EMG 
amplitude and suggests rhythmic input. Note, however, that the amount of 
common bilateral input remained fairly small throughout the experiment in 
agreement with previous findings of bilateral independent tremor activity 
(Marsden et al., 1969; Lauk et al., 1999; Marsden et al., 1999; Hurtado et al., 
2000). There, MU synchronization was examined primarily between bilateral 
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hand muscles, whereas in the present experiment the increase in 8-12 Hz 
bilateral synchronization was found between upper-arm muscles. As such, our 
results support a distal-axial difference in bilateral synchronization, revealing 
synchronization in different frequency bands for different muscle groups 
(Marsden et al., 1999).  

The stronger increase in bilateral 8-12 Hz synchronization between 
extensor muscles compared to flexor muscles agrees with the stronger bilateral 
coupling found in a recent study on mirror movements from our research 
group (Ridderikhoff et al., 2005a). It thus strengthens the alleged link between 
8-12 Hz interlimb coherence and fatigue-related increase in motor overflow 
(Boonstra et al., 2007b). That is, there seems to be a fatigue-related increase in 
common bilateral input, which may be reflected either in increased 8-12 Hz 
MU synchronization or increased mirror movements (or both). As described 
in the Introduction, there are several neural pathways via which the fatigue-
related increase in bilateral coupling could come about, but several findings 
point at a supraspinal origin (cf. Carson, 2005). For instance, afferent fibers 
have no direct, crossed effect on MUs of homologous muscle but only 
modulate the excitability of interneurons (Harrison and Zytnicki, 1984; Arya 
et al., 1991; McCrea, 2001). Furthermore, behavioral data showed that afferent 
information plays only an ancillary role in bilateral coupling (Ridderikhoff et 
al., 2005b; Spencer et al., 2005). It was shown for both maximal and 
submaximal contractions that there is a common drive to homologous muscles 
that might be instigated by interneuronal connectivity between both motor 
areas (Oda, 1997).  

Interestingly, 8-12 Hz MU synchronization as well as mirror movements 
were stronger for extensor muscles than for flexors muscles, consistent with a 
functional organization of common drive. Put differently, most precisely 
controlled unimanual movements are made by using flexor muscles and it is 
therefore to be expected that flexor muscles are controlled more independently 
than extensor muscles (cf. Carson and Riek, 2001). This line of argument 
supports the idea that movements are, in principle, controlled bimanually and 
in order to achieve unimanual movements the contralateral side is inhibited 
(Daffertshofer et al., 2005). Such a control structure would imply that 
contralateral inhibition is less developed for extensors than for flexors as 
extensors appear to be hardly used in isolation. A decrease in the functional 
coupling between cortical motor areas was found during bimanual skill 
acquisition (Andres et al., 1999) and, in view of the present results, it would be 
rather interesting to investigate whether such changes in bilateral coupling 
differ between flexor and extensor movement. 
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Abstract 
 
In the last two chapters neural synchronization was investigated between 
EMGs of different muscles. In the following, an experiment is reported in which 
MEG and EMG signals were recorded during acoustically paced rhythmic force 
production. To manipulate neural synchronization both central and muscle 
fatigue were induced. The effects of force level on cortical activity are reported 
elsewhere (Daffertshofer et al., 2007); in this chapter the effects of sleep 
deprivation (SD) on cortical brain activity are reported. Effects of SD on brain 
activity were examined via spatial distribution of spectral power over the scalp 
at different frequency bands and via auditory- and motor-evoked fields. For 
the latter, principal component analysis revealed that auditory- and motor-
evoked fields were attenuated after SD. Furthermore, an anterior shift of alpha 
power towards more frontal channels was found. At the behavioral level, SD 
resulted in a reduction of the lag (negative asynchrony) between produced 
forces and acoustic stimuli at higher movement tempos. Conjointly, these results 
are interpreted in terms of a change of central processing of afferent sensory 
input due to SD. Apart from the effect of cortical synchronization, no consistent 
synchronization was found between cortical and spinal activity (Boonstra et al., 
2004). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Published as: T.W. Boonstra, A. Daffertshofer and P.J. Beek (2005). Effects of 
sleep deprivation on event-related fields and alpha activity during rhythmic force 
production. Neuroscience Letters 388, 27-32. 
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4.1 Introduction 

 
The effects of central fatigue on EEG activity have been studied extensively in 
the context of the sleep-wake cycle. During the transition from wakefulness to 
sleep EEG activity changes considerably across frequencies, particularly in the 
alpha band (Cantero et al., 2002). Near sleep onset, a posterior-anterior shift of 
alpha power occurs that corresponds with a decrease of alpha power above 
occipital areas and an increase above more frontal areas (Cantero et al., 1999; 
De Gennaro et al., 2001). To date, however, changes in alpha power lack a 
more functional interpretation, although they readily point at a link with 
attention (Suffczynski et al., 2001; Yamagishi et al., 2003).  

Apart from relations with fatigue or attention, oscillatory EEG activity 
in the alpha band (mu-rhythm) is thought to play an important role in motor 
tasks (Pfurtscheller and Aranibar, 1978; Mima et al., 1999). The mu-rhythm 
seems to reflect an information processing loop between motor cortices and 
sub-cortical structures, which entails reverberating activity in thalamo-cortical 
and cortical-cortical circuits (Lopes da Silva et al., 1980; Cantero et al., 2002).  

To uncover the role of alpha activity in motor functioning, we examined 
the effects of SD on the performance of a simple motor task and the 
accompanying MEG activity. In this task, participants had to produce 
isometric forces either in synchrony with auditory stimuli (synchronization) or 
in-between successive stimuli (syncopation). In a similar experimental setup, 
transitions from syncopation to synchronization occurred when the inter-
response interval was shortened (Kelso, 1984; Kelso et al., 1992; Daffertshofer 
et al., 2000a). Based on previous results obtained in experiments on the 
influence of attention on interlimb coordination (Monno et al., 2000), we 
expected SD to affect the (critical) frequency of these transitions. With regard 
to brain activity, SD was expected to have an effect on the motor-related mu 
activity. Since the transition from wakefulness to sleep is also known to alter 
the N1-P2 component of the auditory ERP (Campbell and Colrain, 2002; 
Ferrara et al., 2002), SD was further expected to affect event-related activity. 
 

4.2 Methods and Materials 

 
PARTICIPANTS   Four male participants (between 25 and 45 years of age) 
participated in the experiment that was conducted in accordance with the 
Declaration of Helsinki and the guidelines of the Medical Ethical Committee 
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of the VU medical center. All participants were self-proclaimed right-handers 
and signed an informed consent prior to participation. 
 
PROCEDURE   Neuromagnetic activity was recorded using a whole-head MEG 
(CTF Systems Inc., Vancouver, Canada). Participants were lying on a bed in a 
comfortable position to avoid artifacts due to head motion or involuntary 
contractions of head and shoulder muscles. Participants were instructed to 
produce isometric forces by adducting their thumb against a MEG-compatible 
force sensor (Boonstra et al., 2005a; Appendix B) that was fixed on the bed 
allowing for almost maximal arm extension. Adduction forces had to be 
produced either simultaneously with or in-between the acoustic stimuli that 
were delivered binaurally using EARTone 3A Insert Earphones (Cabot Safety 
Corporation). Stimulus trains consisted of 100 tones (pitch 400 Hz; 50 ms 
duration each) that were presented with decreasing inter-stimulus intervals 
(ISIs: ranging from 1000 to 357 ms over ten plateaus), i.e. with increasing 
tempo from 1 Hz to 2.8 Hz in steps of 0.2 Hz (Kelso et al., 1992; Daffertshofer 
et al., 2000a). Each trial lasted about one minute.  

Every participant participated in two experimental sessions at 
consecutive days, roughly starting at the same time of day. During those days 
participants had to abstain from drinking alcohol and coffee. On the second 
day, the participants were sleep deprived, as they had been kept awake for 24 
hours under the supervision of one of the experimenters. The recordings of the 
first day served as control condition. On both days, participants performed 2 × 
12 = 24 trials; total duration about 24 minutes per day. Synchronization and 
syncopation trials were randomized over participants. The produced force was 
monitored on-line and visually fed back by projecting it on the ceiling 
(feedback signals were low-pass filtered to eliminate oscillatory components; 
4th order Butterworth filter, cut-off 0.33 Hz). Participants were instructed to 
maintain the force level within a certain range indicated by two reference lines 
(2.5% and 7.5% of the maximum voluntary contraction, which was 
determined at the beginning of the experiment). To minimize eye movements, 
participants were further asked to fixate their gaze at a small cross that was 
displayed in the middle of the force-feedback region. 
 
DATA ACQUISITION   The MEG comprised of 151 SQuID sensors (3rd-order 
gradiometers) distributed homogeneously across the helmet surface. Two 
channels were not operational so that, effectively, 149 MEG signals were 
recorded. The voltages of force sensor and acoustic stimuli were sampled 
simultaneously with the MEG using two additional analogue-digital channels. 
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All signals were low-pass filtered at 415 Hz before digitization at a sampling 
rate of 1250 Hz.  
 
DATA PROCESSING   To quantify the effects of SD on motor performance, the 
relative phase between tone and force signals was determined via the Hilbert 
transform of the band-pass filtered signals (e.g., Rosenblum et al., 1996). Per 
movement tempo, we computed the mean relative phase (Mardia, 1972) and, 
for the syncopation trials, transition points were established as center of a 
sigmoid function that was determined by a least squares fit. 

Further, we estimated the frequency spectra of the MEG signals using 
Welch’s periodogram method providing a frequency resolution of 1 Hz 
(window size: 1250 samples; overlap: 625 samples). For all four conditions 
(synchronization vs. syncopation; fatigued vs. control), the log-power spectral 
densities were averaged on a sensor level over trials and participants for each 
movement tempo. Differences in frequency spectra between fatigued and 
control conditions were examined using PCA. For this sake, the frequency 
spectra at the ten movement tempos were concatenated for each MEG channel 
in both fatigued and control conditions, resulting in a set of 2 × 149 signals (for 
both the fatigued and control condition) of 10 × 60 frequency bins (0-60 Hz 
with resolution of 1 Hz).  

Principal components were calculated (Kelso et al., 1992; Daffertshofer 
et al., 2000a) and studied by analyzing the resulting eigenvalue distributions, 
the spatial modes (per condition) and the corresponding frequency spectra. 
Note that by concatenating frequency spectra we focused on persistent spatial 
activity patterns irrespective of movement tempo. Note further that, in this 
particular application, the PCA served as an unbiased multivariate clustering 
measure, classifying conditions similar to a (time-resolved) multivariate 
analysis of variance. 

Subsequently, both auditory- and motor-related fields were calculated 
using tone onsets and maxima of the force cycles, respectively, as event-
defining indices. Before averaging over events, MEG data were band-pass 
filtered (4th-order Butterworth: 0.5-60 Hz). For the auditory-evoked fields 
(AEFs), epochs were individually averaged for each movement tempo (1.0 … 
2.8 Hz) and condition over an interval from -100 to 300 ms (with 0 ms 
referring to the moment of tone onset). Similarly, motor-evoked fields (MEFs) 
were calculated by averaging over a -150 to 250 ms interval (with 0 ms 
referring to the moment of maximal force production for each cycle). Artifact-
contaminated epochs were excluded from averaging. Magnetic field distortions 
(e.g., elicited by eye movements and blinks) were marked as artifacts if the 
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amplitude of a MEG channel was larger than eight times the standard deviation 
for the entire trial. In total, 6.5% of the epochs were removed, leaving at least 
350 epochs for averaging for each movement tempo. To examine whether the 
event-related fields were different in the fatigued condition, PCA was used 
equivalently to the analysis of the frequency spectra. Both AEFs and MEFs 
were averaged over participants and concatenated for every MEG channel in 
each condition, resulting in a matrix of 2 × 149 channels by 10 × 400 ms 
duration for both the synchronization and the syncopation condition. Notice 
that given the consistency of the here reported features of the ERFs, we used 
grand averages to focus on the inter-subject commonalities. 

 
Figure 4.1    A) Mean relative 
Hilbert phase (Φ) between 
force and tone for all 10 
plateaus in the synchronization 
condition (0 and 2π represent 
in-phase force production). 
Error bars display the circular 
standard deviation of mean 
phases over trials and 
participants. B) Idem, but now 
for the syncopation condition. 

 

 

 

4.3 Results 

 
The relative Hilbert phase between produced forces and tones disclosed that, 
in the synchronization condition, the former anticipated the latter, that is, peak 
forces occurred prior to tone onsets (negative asynchrony). A 10 × 2 (tempo × 
fatigue) ANOVA of the relative Hilbert phase revealed that this anticipation 
was reduced at higher movement tempos (F(9,27) = 3.8, p < 0.005) and that this 
reduction was stronger in the fatigued than in the control condition (F(9,27) = 
3.0, p < 0.05; Fig. 4.1A). In the syncopation condition, a clear transition from 
syncopation to synchronization was found around a movement tempo of 2 Hz 
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(Fig. 4.1B). No significant effect of SD on the transition frequency was found: 
in the fatigued condition the transition occurred on average after 35.6 ± 10.0 s 
compared to 35.8 ± 12.0 s in the control condition (the end of the 1.8 Hz 
plateau).  
 

 
Figure 4.2   The first two modes of the PCA of the power spectral densities. From 
left to right: the part of the eigenvectors belonging to the fatigued condition and 
plotted on a 2D scalp (fatigued); the part of the eigenvectors belonging to the 
control condition (control); the difference between both parts of the eigenvector 
showing the difference between conditions (difference); PCA projections; the 
frequency spectra belonging to the first two modes sliced in parts corresponding to 
the different frequency plateaus. Top panels: first mode; lower panels: second mode 
 

PCA of the frequency spectra yielded a drastic reduction of the data as 
the first principal mode of the power spectral densities already covered more 
than 99% of the data’s spread, with the parts of the eigenvector corresponding 
to the fatigued and the control conditions being rather similar. The power 
spectra corresponding to the first mode turned out to be almost identical for 
every movement tempo. In other words, there was a dominant spectral 
distribution reflecting the consistency of the frequency content during the 
experiment. Interestingly, the spatial distribution of the power differed after 
SD (Fig. 4.2) in that the power was decreased at occipital and temporal 
channels (maximal at channel MLT32: -13% for synchronization and -11% for 
syncopation) and increased at frontal and central channels (maximal at channel 
LC31: +5.8% for synchronization and RC31: +7.8% for syncopation). The 
second principal mode (about 0.1% of the data’s spread) reflected the 
commonly reported concentration of alpha power around occipital channels. 
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This spatial pattern, however, was less pronounced after SD because of an 
anterior shift of alpha activity. The increase was maximal at channel RC41 in 
the synchronization condition and at channel RC42 in the syncopation 
condition. The frequency band extracted by mode two was roughly bounded 
between 9 and 13 Hz peaking at 11 Hz for all movement tempos.  

By and large, three principal modes sufficed to describe AEFs and MEFs 
(eigenvalues for AEFs: 0.53 + 0.18 + 0.08 = 0.79 for synchronization and 0.59 + 
0.08 + 0.08 = 0.75 for syncopation; similarly for MEFs: 0.6 + 0.21 + 0.05 = 0.86 
and 0.59 + 0.14 + 0.05 = 0.78). Importantly, AEF modes appeared to be 
permutated MEF modes (modes one and two were swapped, Fig. 4.3, first two 
rows). The first mode in the AEFs displayed two bipolar activity patterns 
(bilateral auditory cortices), whereas the first mode in the MEFs reflected a 
bipolar field above the left contralateral motor area. The observed averages 
always contained fields that originated from both auditory- and motor-related 
processes, although the auditory-related fields were clearly stronger in the 
auditory-related average due to better alignment and vice versa. The left/right 
symmetric mode three was similar in both averages but appeared more event-
locked in the case of AEFs (cf. sharp peak around t = 100 ms in Fig. 4.3).  

 
Figure 4.3   The first three PCA modes of the ERFs. Left panels: The parts of the 
eigenvectors belonging to the fatigued and control condition and the corresponding 
time-series (projections) of the MEFs. Right panels: Idem, but now for the PCA for 
the AEFs. 
 

The spatial distribution of the evoked fields was almost identical for 
synchronization and syncopation and did not change due to SD. In contrast, 
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the modes’ strengths differed significantly between the fatigued and control 
condition: the part of the eigenvector corresponding to the fatigued conditions 
was, in general, smaller than the part of the eigenvector corresponding to the 
control condition. A more detailed look at Figure 4.3 revealed that the 
eigenvector of the first mode of the AEFs had a maximal strength at a right 
temporal channel (RT32) and the MEFs were maximal at a left temporal 
channel (LT13) in all four conditions. At channel RT32 the strength of the 
eigenvector for the AEFs was 19% and 11% smaller in the fatigued compared 
to the control condition for synchronization and syncopation, respectively. In 
the synchronization condition, for instance, this decrease corresponded to an 
amplitude reduction of the N1 from 161 fT to 139 fT at an ISI of 1 s. Similarly, 
for the MEFs the strength at channel LT13 was 9% (synchronization) and 
19% (syncopation) weaker when sleep deprived. In the second modes, an even 
more pronounced decrease of amplitude was found in the fatigued condition. 
To investigate the difference in amplitude reductions in the fatigued condition 
between synchronization and syncopation, the ERFs of all four conditions 
were analyzed concurrently after concatenating ERFs of all four conditions 
into a ‘4 × 149 channels by 10 × 400 ms duration’ array. The resulting 
eigenvalues were rather similar (AEFs: 0.57 + 0.11 + 0.07 = 0.75; MEFs: 0.59 + 
0.16 + 0.06 = 0.81). Again, the first eigenvector was maximal at channel RT32 
for the AEFs and at channel LT13 for the MEFs across conditions. 
Interestingly, at these channels the first principal mode was almost identical to 
the original ERFs, that is, the reduction to a single PCA mode did preserve the 
primary structure of the ERFs (Fig. 4.4). The explained variance at this channel 
(covariance of PCA reconstruction and original data divided by the variance of 
the original data) was always above 86%, both for AEFs and MEFs. The 
reduction of the amplitude of ERFs after SD is shown in Figure 4.4 (left 
panels): both for synchronization and syncopation, amplitudes are reduced in 
the fatigued condition. Furthermore, there is a reduction of amplitude for 
syncopation compared to synchronization, for the AEFs only in the fatigued 
condition and for the MEFs only in the control condition.  

In addition to the amplitude reduction of the ERFs, the principal modes 
also revealed changes of ERFs related to movement tempo. While for different 
ISIs the MEFs did not alter, the AEFs changed considerably. The amplitude of 
the N1m decreased strongly with decreasing ISIs to disappear almost entirely 
at an ISI of 500 ms where it converged onto a later component peaking at 180 
ms after tone onset. The decreasing strength of the part of the first AEFs’ 
eigenvector corresponding to the fatigued condition might have been caused 
solely by the decrease of the N1m amplitude in the first five plateaus. To test 
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this, we finally examined whether the effect of SD on the AEF was indeed only 
present at long ISIs. For this purpose, two separate PCAs were conducted by 
dividing the data in subsets containing plateau 1 to 5 and plateau 6 to 10. If the 
effect of SD was restricted to the N1m component, one would expect the 
difference due to SD to be only present in the PCA of plateau 1 to 5. Instead, 
however, the effect was more pronounced in the first principal mode of the 
subset of plateau 6 to 10.  

 
Figure 4.4   Results of the PCA for the ERFs over all four conditions. Left panels: 
The strength of the eigenvector in all four conditions at the channels at which the 
ERFs were maximal (MEF: LT13; AEF: RT32) (1: synchronization; 2: syncopation; 
black: fatigued; grey: control). Differences between conditions are displayed as 
percentage change relative to the mean over all four conditions (100%). Right 
panels: the reconstruction of the first mode in the synchronization, non-fatigued 
condition at channel LT13 en RT32. Thin line displays the original ERFs. Upper 
panels: MEFs; lower panels: AEFs. 

4.4 Discussion 

 
In the present study, we examined the effects of SD on MEG activity during 
performance of an acoustically paced rhythmic force production task. 
Participants were instructed to either produce adduction forces at the tones 
(synchronization) or in-between the tones (syncopation). For synchronization, 
SD resulted in a stronger reduction of the negative asynchrony between the 
produced forces and the tones at higher movement tempos. Recently, Doumas 
and coworkers (2005) found a similar reduction of the negative asynchrony in 
a tapping task after rTMS stimulation of the motor cortex. In line with the 
suggestion that negative asynchrony reflects a difference in processing times of 
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somatosensory and auditory information (Aschersleben and Prinz, 1995), they 
hypothesized that the observed reduction was caused by altered processing of 
somatosensory input from each tap. Similarly, the present reduction of the 
negative asynchrony might imply that SD affected the processing of 
somatosensory information. Contrary to our expectation, SD did not lead to a 
change in the transition frequency in the syncopation condition. Perhaps, in 
the present experiment, the difficult syncopation task led to an increase of 
attention to compensate the detrimental effects of SD, whereas in the 
aforementioned study of Monno and colleagues (2000) attention was forced 
away from the coordination task by means of a second dual task. 

The effects of SD on MEG activity were twofold and consistent with our 
expectations. First, across all movement tempos the distribution of MEG 
power changed markedly. The overall power decreased at occipital and 
temporal channels and increased at central and frontal channels (cf. Drake et 
al., 2004), while the alpha band revealed an anterior shift of power towards 
central channels. This anterior shift might reflect an increase of motor-related 
mu-rhythm activity above central channels, because the mu-rhythm and 
occipital alpha activity have similar frequencies (Andrew and Pfurtscheller, 
1997). Since desynchronization of mu-rhythm has been associated with a 
functional alerting of motor areas (Babiloni et al., 1999), the observed anterior 
shift of alpha power could imply a reduction of this functional alerting of 
motor areas. An alternative interpretation of the observed changes in MEG 
activity along the anterior-posterior axis is that the effects of SD are local and 
pertain mostly to (pre-)frontal areas as these areas are most vulnerable to SD 
(Horne, 1993). SD is known to reduce the activity specially in the prefrontal 
cortex (e.g., Drummond et al., 1999) and previously reported sleep-related 
effects on EEG imaged brain activity have also been interpreted as a result of 
deactivation of frontal areas (Werth et al., 1996; Atienza et al., 2001; De 
Gennaro et al., 2001).  

Second, the amplitudes of both AEFs and MEFs were attenuated after 
SD. The decrease of AEF amplitude confirms previous studies (Atienza et al., 
2001; Ferrara et al., 2002), although, in contrast to the more traditional focus 
on the N1-P2 complex, we analyzed the AEF as a whole. N1 is typically 
related to timing aspects or to onset information of the auditory stimulus 
(Näätänen and Winkler, 1999), which agrees with the participants’ self-
reported difficulties in evaluating their performance when sleep deprived. 
Interestingly, the drop of AEF amplitude was also found at short ISIs for 
which the typical N1m was no longer present. Apparently, the effects of SD 
were not restricted to a reduction of the N1m component but also reduced 
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later AEF components found at shorter ISIs. In addition, we found a decrease 
in MEF amplitude. In general, motor-related fields observed in motor tasks 
reflect both motor outflow processes and sensory feedback, but several 
research groups have shown that the largest MEF component (MEF1) signifies 
sensory feedback from the periphery (Cheyne et al., 1997; Woldag et al., 2003; 
Oishi et al., 2004). Amplitude decreases after SD, similar to the ones seen here 
in AEFs and MEFs, have also been reported for event-related potentials in the 
visual cortex (Corsi-Cabrera et al., 1999) rendering the fatigue-related drop in 
amplitude canonical and suggesting that SD might be related with a change of 
central processing of sensory input.  

Besides effects of SD we also found effects of stimulus presentation. The 
N1m component of the AEF had the largest amplitude at long ISIs and 
decreased progressively with decreasing ISIs to transform into a later 
component at an ISI of 500 ms. This effect has been studied in depth and is 
thought to display the slow refractoriness of the neuronal population 
producing the N1 responses (Näätänen and Winkler, 1999). Although the 
separation of MEFs and AEFs appears quite successful, we cannot doubtlessly 
determine whether the reduction of the N1 amplitude is caused either by 
attenuation of the underlying neural activity or by a change in timing-related 
morphology of this component. Indeed, it has recently been shown that the 
N1 amplitude also depends on motor-related activity (Praamstra et al., 2003), 
which may have also affected the here reported reduction of N1m amplitude.  

In sum, the present experimental findings converge on the interpretation 
that SD causes a reduced ‘responsiveness’ of sensory areas to peripheral input. 
However, to examine the specifics of this general conclusion, future studies are 
needed that involve larger groups of participants. Such studies may help to 
uncover the neuronal mechanism(s) that link deactivation of frontal (or other) 
brain areas with the attenuation of ERF components. 
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Abstract 
 
In this chapter the event-related brain activity associated with the performance 
of an acoustically paced synchronization task is further examined. The data are 
from a previously conducted experiment on polyrhythmic performance of 
drummers (Daffertshofer et al., 2000). To gain insight into the neural dynamics 
causing the auditory- and motor-related activity, the amplitude and phase 
dynamics inherent in MEG signals were analyzed across frequency bands. By 
comparing amplitude and phase dynamics, a distinction was made between so-
called evoked and induced responses. Again, PCA was used, this time, however, 
to compare amplitude and phase changes during mere listening, paced and 
unpaced tapping. Using PCA allowed for a separation of brain activity related 
to motor and auditory processes, respectively. Motor performance was 
accompanied by phasic amplitude changes and increased phase locking in the 
beta band. Auditory processing of acoustic stimuli resulted in a simultaneous 
increase of amplitude and phase locking in the theta and alpha band. The 
temporal overlap of auditory-related amplitude changes and phase locking 
indicated an evoked response, in accordance with previous studies on auditory 
perception. The temporal difference of movement-related amplitude and phase 
dynamics in the beta band, on the other hand, suggested a change in ongoing 
brain activity, i.e. an induced response supporting previous results on motor-
related brain dynamics in the beta band. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Published as: T.W. Boonstra, A. Daffertshofer, C.E. Peper and P.J. Beek (2006). 
Amplitude and phase dynamics associated with acoustically-paced finger tapping. 
Brain Research 109, 60-69.  
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5.1 Introduction 

 
To investigate how the nervous system processes information to subserve 
human functioning, various techniques have been developed to study brain 
activity. Owing to its good temporal resolution and non-invasive nature, 
encephalography (EEG and MEG) is a suitable tool for studying information 
processing sequences in the human brain (Näätänen et al., 1994). By averaging 
encephalographic signals with respect to an event, brain activity related to 
cortical processing can be extracted with high signal-to-noise ratio. Recently, 
further progress has been made in identifying the neural processes associated 
with event-related activity (e.g., Cheyne et al., 2006; Serrien et al., 2006). In 
particular, it has become evident that differentiating between amplitude and 
phase changes allows for a distinction between evoked and induced changes 
(see Penny et al., 2002, for a review). The primary question governing this line 
of research is whether event-related components result from a stimulus-evoked 
activation that is superimposed on the ongoing background activity (evoked 
response), or whether the ongoing activity is altered by means of changes in 
amplitude and/or phase (induced response). The latter possibility is of 
particular interest, as it signifies interactions between response and ongoing 
brain activity, that is, genuine information processing (David et al., 2005). 

Similarly, encephalographic studies on motor behavior showed a shift in 
focus over the years (cf. Pollok et al., 2006, for a review). Early studies on the 
neural dynamics underlying action control focused on event-related potentials 
during motor tasks. A negative potential, the readiness potential, was measured 
above supplementary motor area prior to movement execution, which was 
followed by various reafferent potentials (Kornhuber and Deecke, 1965; 
Cheyne and Weinberg, 1989). More recently, event-related desynchronization 
(ERD) was found during motor performance (e.g., Pfurtscheller, 1981; Gerloff 
et al., 1998a) followed by event-related synchronization (ERS) after movement 
termination (Pfurtscheller et al., 1996), both reflecting other aspects of cortical 
activation than the readiness potential (Feige et al., 1996). ERD and ERS 
appear primarily in the beta band (15-30 Hz) and increase with task difficulty 
(Gross et al., 2005). Motor performance is also accompanied by ERD/ERS in 
the alpha band (Pfurtscheller and Aranibar, 1979), although the specific 
temporal and spatial properties of alpha and beta rhythms differ (Crone et al., 
1998b; Pfurtscheller and Lopes da Silva, 1999). In fact, induced changes in 
activity are neither restricted to alpha and beta oscillations nor to motor 
performance, but have been found across frequency regimes and could be 
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linked to various functional processes. For instance, gamma activity has often 
been related to attention (Tiitinen et al., 1993; Fries et al., 2001; Schoffelen et 
al., 2005).  

The rapidly accumulating evidence regarding the functional role of 
oscillatory activity suggests that different brain processes occur simultaneously 
in different frequency bands. However, since these activities intermingle 
continuously and share frequency components, one has to look for additional 
parameters such as amplitude enhancement, time locking, phase locking, and so 
on, to further identify the function of specific (oscillatory) brain activities 
(Basar, 1998; Makeig et al., 2004). Phase locking to stimuli was already 
demonstrated for auditory responses several decades ago (Sayers and Beagley, 
1974; Sayers et al., 1974), but regained interest when it became apparent that 
differences in event-related amplitude enhancement and (time-) locking of 
phases may help to discriminate between evoked and induced responses 
(Makeig et al., 2002; Penny et al., 2002; Fell et al., 2004; Hertrich et al., 2004; 
Klimesch et al., 2004; Mäkinen et al., 2005). Evoked responses generate 
simultaneous increases of amplitude and phase locking as they are 
superimposed on ongoing brain activity. Put differently, evoked responses are 
simply added onto ongoing brain activity so that the recorded event-related 
activity just displays the amplitude and phase of the response (apart from the 
background ‘noise’). Because these event-related responses occur at the same 
instance and with the same phase, they yield simultaneous increases of 
amplitude and phase locking. In contrast, whenever event-related activities 
induce separate changes in amplitude and phase locking (i.e. concurrent 
increases are absent), one can conclude that these activities do not reflect 
simple evoked responses but a change of ongoing brain activity (induced 
responses) (Klimesch et al., 2004). Note that we abandon the notion that all 
phase-locked responses are evoked responses (e.g., Tallon-Baudry and 
Bertrand, 1999) by differentiating between evoked responses and ‘pure’ phase 
resetting, which reflects different underlying neural processes (see above; 
Penny et al., 2002; Fell et al., 2004; Klimesch et al., 2004; Makeig et al., 2004). 

Against this background, we examined the phase and amplitude 
dynamics in brain activity associated with the performance of an acoustically-
paced synchronization task by reanalyzing data collected in an experiment on 
polyrhythmic tapping involving paced and unpaced unimanual fast repetitive 
finger movements as control conditions (Daffertshofer et al., 2000b). The 
primary objective of the study was to differentiate between auditory and 
motor-related processes by examining the phase and amplitude dynamics in 
the recorded MEG signals and to classify them in terms of evoked or induced 
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responses. To this end, we compared phase and amplitude dynamics in various 
frequency bands. In general, fast repetitive finger movements are accompanied 
by distinct and thus discernible movement-related fields: a motor field and a 
post-movement field similar to the cortical fields recorded during single 
movements (Gerloff et al., 1997; Gerloff et al., 1998b; Mayville et al., 2001; 
Pollok et al., 2003). Hence, we examined whether finger tapping was also 
associated with phasic changes in the beta band related with ERS/ERD during 
single movements. Because metronome pacing might interfere with movement-
related activity, particularly due to the sensitivity of MEG to tangential 
generators (Gerloff et al., 1998b), we first tried to differentiate between brain 
activity related to auditory and motor processes by means of PCA (Kelso et al., 
1992; Daffertshofer et al., 2000a; Mayville et al., 2001; Boonstra et al., 2005b). 
In view of the aforementioned studies, we expected that motor responses 
would be predominantly manifested as an integral modification of beta brain 
activity (i.e. induced responses), whereas auditory responses would be 
superimposed on ongoing brain activity (evoked responses). 

 

5.2 Methods and Materials 

 
Since the experiment has already been reported elsewhere (Daffertshofer et al., 
2000b), we here briefly summarize the most important features instead of 
providing a full description. 
 
PARTICIPANTS   Three right-handed male drummers (between 29 and 34 years 
of age) participated in the experiment. The experiment was conducted in full 
compliance with the guidelines of the Medical Ethical Committee of the VU 
medical center. All participants signed an informed consent form prior to 
participation. 
 
PROCEDURE   Neuromagnetic activity was recorded using whole-head MEG. 
Participants were seated in a comfortable position (head in helmet, eyes closed) 
and were instructed to tap with the index finger on the piezoelectric sensors 
mounted on the armrests. Participants performed three different tasks: 
listening to an acoustic pacing signal without making any movements, tapping 
in synchrony with the pacing signal, and tapping without pacing. The two 
tapping conditions were administered in compound trials, involving a 
synchronization part (with pacing) and a continuation part (without pacing), as 
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in the so-called continuation paradigm (Wing and Kristofferson, 1973; Kato 
and Konishi, 2006). Participants performed the tapping tasks with either the 
left or the right index finger (during the synchronization part the participants 
tapped along with auditory stimuli presented on the left or right ear, 
respectively). The auditory stimuli (duration: 50 ms; pitch: 200Hz left or 
400Hz right) were presented at different pacing frequencies (left: 1.2, 1.33, and 
2Hz; right: 2 and 3 Hz). Seven trials were recorded per condition; the trials 
lasted 35 s for listening only and 2 × 35 = 70 s for the tapping trials (35 s paced 
and 35 s unpaced tapping). 
 
DATA ACQUISITION   Brain activity was recorded using a 151-channel MEG 
(CTF Systems Inc., Vancouver, Canada) with 3rd order synthetic gradiometers. 
Two piezoelectric sensors (∅ 2 cm) were mounted on the armrests to record 
moments of tap onset simultaneously with acoustic stimuli and MEG. Prior to 
digitization at a sampling rate of 312.5 Hz, the data were on-line filtered using 
a 4th order Butterworth low-pass filter at 100 Hz and notch filters at k × 50 
Hz. 
 
DATA PROCESSING   Auditory- and movement-related fields (ARFs and 
MRFs) were calculated using tone and tap onsets, respectively, as event-
defining indices. This design yielded in total four event-related fields for the 
three experimental conditions, since in the paced tapping condition both ARFs 
and MRFs could be defined. Before averaging, MEG data were high-pass 
filtered (second order Butterworth; cut-off frequency 0.33 Hz). For ARFs and 
MRFs, epochs were averaged individually for each movement tempo (1.2, 1.33, 
and 2 Hz for the left index finger and 2 and 3 Hz for the right index finger) and 
condition (left vs. right; ARFs: listening vs. paced tapping; MRFs: paced vs. 
unpaced tapping) in an interval from -330 to 330 ms around tone or tap onset. 
Artifact-contaminated epochs were excluded from averaging. Magnetic field 
distortions (e.g., elicited by eye movements and blinks) were marked as 
artifacts if the amplitude of an MEG channel was larger than eight times its 
standard deviation for the entire trial.  

To examine the event-related changes in different frequency bands that 
might be hidden in event-related fields (cf. Tass, 2004), MEG data (single trials) 
were band-pass filtered in 10 different frequency bands (band width 6 Hz; 
overlap 3 Hz) in a range from 0 to 33 Hz. Amplitude and phase changes were 
examined separately via the analytical signal based on the Hilbert transform 
(Pikovsky et al., 2001; Bruns, 2004). First, amplitudes of the band-pass filtered 
data were averaged with respect to tone and tap onsets per movement tempo 
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and condition (grand average over participants, trials, and epochs) yielding 

event-related fields, i.e. 
  
amp t( )→ amp t( ) , where L  denotes the average 

over epochs. Then, for every frequency band we defined the event-related 
amplitude (ERFamp, i.e. ARFamp and MRFamp) as the relative deviation of the 

mean amplitude 
  
amp = 1

T
amp t( )dt

T

∫ , that is, we defined 

  
ERFamp t( )= amp t( )− amp amp  (the L  notation indicates an average over 

time). With this definition we analyzed amplitude changes from the mean 
amplitude rather than differences from a baseline reflecting a resting state, 
enabling us to focus on the dynamics within a movement cycle. The resulting 
values may thus differ slightly from those reported in traditional ERS/ERD 
studies. Second, to quantify synchrony with respect to the tone or tap onsets, 
we determined the event-related phase uniformity (ERFph, i.e. ARFph and 
MRFph) over all events relative to the tone and tap onsets. The phase 

uniformity, or 
  
circular variance = 1− eiφ  (Mardia, 1972; Fisher, 1993), 

quantifies to what extent the phase at each time point is similar over different 
epochs. To obtain large values for narrow phase distributions we used 

  
1− circular variance( )= eiφ  (Mardia, 1972), which is identical to the more 

recently discussed phase coherence (e.g., Mormann et al., 2000) and formally 
equivalent to the phase locking index used by Klimesch and colleagues (2004). 

In order to differentiate between components related to auditory 
processes and components related to movement execution or afferent feedback, 
the ERFsamp and the ERFsph were analyzed in terms of their principal 
components (cf. Chapman and McCrary, 1995; Daffertshofer et al., 2000a, 
Bernat et al., 2005; Boonstra et al., 2005b). PCA9 can be used for a ‘blind 
source separation’ of spatially fixed components from recorded (multivariate) 
encephalographic data, without the need for a direct specification of the 
sources’ locations (Makeig et al., 1997; Makeig et al., 1999; Hyvärinen et al., 
2001; Kayser and Tenke, 2005). For this purpose, we first concatenated the 
grand averages of different movement tempos yielding time series of 2 × 207 = 
414 and 3 × 207 = 621 samples (the interval from -330 to 330 ms contained 207 
samples) for right and left performance, respectively, for every MEG channel. 
Recall that for every channel we had calculated ERFs after filtering at ten 

                        
9 Here we chose PCA over ICA because PCA results can be easily ranked in terms 
of the explained variance. However, ICA yielded similar results. 
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different frequency bands that were combined into a 10-dimensional signal 
vector. Furthermore, the three different conditions were combined for which 
we had computed a total of four different event-related fields (two with respect 
to tone and two with respect to tap onsets). Per channel we thus obtained 4 × 
10 time series yielding sets of 151 × 10 × 4 = 6040 ERF-signals. Principal 
components were calculated separately for left and right side condition 
ERFsamp and ERFsph (i.e. a total of four PCAs) and investigated by analyzing 
the resulting eigenvalue distributions, the spatial modes, and the projected time 
series. Notice that, due to the aforementioned combination of the four ERFs 
into a large multivariate signal vector, we addressed both auditory- and motor-
related components per single PCA. The discrimination between auditory and 
motor activity can therefore be made by comparing the parts of the eigenvector 
belonging to the different conditions, i.e. the presence/absence of specific 
activity in either the listening or unpaced tapping will suffice to identify the 
activity as auditory- or motor-related (see Boonstra et al., 2005b, for a similar 
application of PCA). Hence, for the purpose of identifying such components 
and illustrating the applicability of the methods, no further statistical analyses 
are needed (cf. Makeig et al., 1997; Makeig et al., 1999). 

Besides studying condition and frequency effects on ERFsamp and 
ERFsph, we looked for possible (temporal) relations between amplitude and 
phase uniformity modulations. For this sake, the cross-covariance function 
between the original ERFsamp and ERFsph was examined. Recall that the 
absence of a match between amplitude and phase changes, i.e. an instantaneous 
covariance at lag zero, renders evoked responses unlikely and thus point to the 
presence of induced responses (Klimesch et al., 2004). 

 

5.3 Results 

 
In the unpaced tapping condition, participants were able to continue to tap at 
the required frequency. On average, the tapping frequencies in the unpaced 
tapping condition were 1.18, 1.33, and 1.99 Hz (left) and 2.00 and 3.07 Hz 
(right), compared to 1.20, 1.33, and 2.00 Hz (left) and 2.00 and 3.00 Hz (right) 
in the paced tapping condition. In the paced tapping condition, participants 
anticipated the stimuli in that tap onsets preceded tone onsets (negative 
asynchrony; left 1.2 Hz, -17 ms; left 1.3 Hz, -15 ms; left 2 Hz, -14 ms; right 2 
Hz, -15 ms; right 3 Hz, -17 ms; note that the anticipation is typically well-
pronounced in musically trained participants (cf. Lang et al., 1990; 
Aschersleben, 2002). 
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The ARFs in the listening and paced tapping condition yielded 
comparable fields. The N1-P2 amplitude was reduced at higher pacing 
frequencies (Fig. 5.1A). Simultaneous with the N1-P2 component, there was an 
increase in the ARFsamp and ARFsph in various frequency bands peaking 
roughly 100 ms after tone onset. The changes were present in a frequency 
range from 3-15 Hz and were most pronounced in the 3-9 Hz frequency band. 
At higher pacing frequencies, the increase of the ARFsamp and ARFsph around 
100 ms was reduced, corresponding to the reduced N1-P2 amplitude observed 
at these frequencies. In contrast, the MRFs were similar across tapping 
frequencies irrespective of condition (paced and unpaced). These effects of 
pacing frequency and movement tempo on the ERF amplitudes were 
consistent with the results of previous studies (Mayville et al., 2001; Boonstra 
et al., 2005b).  

 
Figure 5.1   Grand averages of event-related fields: A) Grand averages of different 
types of ARFs for three different tempos in the left listening condition for channel 
RT22 located above right auditory cortex (left: normal ARF; middle: ARFamp in the 
3-9 Hz frequency band (not normalized); right: ARFph in the 3-9 Hz frequency 
band). Note that standard CTF channel names are used (cf. Stam et al., 2002, for 
location of different channels); B) Grand averages of MRFs, as for the ARFs, but 
now for unpaced tapping; C) The first 10 eigenvalues and the projections of the first 
mode for the left side conditions (upper panels: amplitudes; lower panels: phases); 
D) Idem, but now for the right side condition. 
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PCA of the ERFamp and ERFph yielded a substantial reduction of the data 
to a few major principal modes (Figs. 5.1C and 5.1D): the first two eigenvalues 
combined always explained more than 50% of the variance. The data reduction 
was more effective for the ERFph than for the ERFamp and more effective for 
the left than for the right side. The projections of the first mode revealed a 
cyclical change of ERFamp with a minimum around the tap/tone onset and a 
maximum after about 200 ms (Figs. 5.1C and 5.1D). The projections of the first 
mode of the ERFph followed a different pattern showing a decrease in phase 
variance, which reached a peak between 50-100 ms after tap/tone onset. The 
projections were rather similar for the left and right condition and across 
movement tempos, although the cyclical changes of ERFamp were attenuated at 
higher movement tempos. 

 
Figure 5.2   Reconstruction of the first mode of the ERFamp: A) Distribution of 
power in the 18-24 Hz frequency band at 220 ms after tap/tone onset (left side; 
tempo: 2 Hz; from left to right: listening, paced tapping averaged to tone onset, 
paced tapping averaged to tap onset and unpaced tapping; yellow, positive 
coefficients; blue, negative coefficients); B) Time-frequency plot of channel RC31 
located above right motor cortex (at which the field was maximal) in the paced 
tapping condition averaged with respect to tap onset; C-D) Idem, but now for the 
right side condition at 2 Hz.  

 
To further assess the described changes, the first mode was reconstructed 

by multiplying projections with the first eigenvector. By dividing the resulting 
matrix precisely as it was concatenated, the different time series belonging to 
the different frequency bands, channels, and conditions were reconstructed. 
Figure 5.2 shows the reconstruction of the first mode of the ERFamp, revealing 
a modulation that was largely confined to the beta band. This modulation of 
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ERFamp was only present in the paced and unpaced tapping condition and had 
a dipolar distribution above the contralateral motor area, which indicated that 
the beta modulation was related to motor performance. The overlap of spatial 
distributions of beta power (Figs. 5.2A and 5.2C) for paced and unpaced 
tapping (both averaged with respect to tap onset) was 92% for left and 83% for 
right condition, whereas the overlap for listening and paced tapping (both 
averaged with respect to tone onset) was 1% for left and 4% for right 
condition. Because this pattern was almost identical in the paced and unpaced 
tapping task, the involvement of auditory processes can be excluded. Despite 
the large overlap of the spatial distributions between paced and unpaced 
tapping, the beta modulation was stronger in the paced than in the unpaced 
tapping condition as revealed by the length of the corresponding part of the 
eigenvector: 23% (left) and 9% (right) stronger in the paced tapping condition 
– note that such left/right asymmetries have been reported previously (Pollok 
et al., 2005). 

Figure 5.3   Reconstruction of 
second mode of ERFamp: A) 
Distribution of power in the 
frequency band 3-9 Hz at t = 
112 ms for left side conditions 
(tempo: 2 Hz; from left to 
right: listening; paced tapping 
averaged to tone onsets, paced 
tapping averaged to tap onsets 
and unpaced tapping; yellow, 
positive coefficients; blue, 
negative coefficients); B) 
Reconstruction of channel 

RT22 located above right auditory cortex (at which the field was maximal) in the 
paced tapping condition. 

 
As described in the preceding, the ERFamp was minimal at the time of 

tap/tone onset and peaked after about 200 ms. The strength of the amplitude 
change was dependent on movement tempo and was stronger at lower 
movement tempos. The maximal decrease of amplitude in the 21-17 Hz 
frequency band was -14%, -13%, -5% (paced tapping left; 1.2, 1.3, and 2 Hz, 
respectively), and -5%, -3% (paced tapping right; 2 and 3 Hz, respectively), 
compared to -16%, -13%, -5% (left) and -5%, -3% (right) for the unpaced 
tapping conditions. The maximal increase of amplitude, i.e. around 200 ms 
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after the tap onset, was 19%, 14%, 5% (paced tapping left; 1.2, 1.3, and 2 Hz, 
respectively) and 6%, 3% (paced tapping right; 2 and 3 Hz, respectively), 
compared to 15%, 13%, 5% (left) and 5%, 3% (right) in the unpaced tapping 
condition (cf. Fig. 5.1C). In the left side condition, the second mode of the 
ERFamp revealed an amplitude change that occurred mainly in the theta and 
alpha band. The amplitude peaked 110 ms after the tone or tap onset and 
displayed two dipolar distributions above the auditory cortices in the listening 
and paced tapping condition (Figs. 5.3A and 5.3B). The overlap of the spatial 
distributions of power in the listening and paced tapping condition (both 
averaged with respect to tone onset) was 71%. Consistent with previous 
findings (Virtanen et al., 1998; Woldorff et al., 1999), binaural activation 
patterns were present although acoustic pacing was presented monaurally. The 
separation of auditory-related fields was less clear in the right side condition 
where both auditory- and motor-related fields were mixed in mode two and 
three. 

The reconstruction of the first mode of the ERFph revealed combined 
effects related to auditory and motor processes. The increase of the ERFph in 
the lower frequency bands (3-15 Hz), peaking around 80-100 ms after tone/tap 
onset, was found only in the auditory-related fields (listening and paced 
tapping condition averaged with respect to tone onset; overlap of spatial 
distributions was 94%). This increase in ERFph had a dipolar pattern above the 
bilateral auditory areas (Fig. 5.4), which further pointed to a relation with 
auditory processes. Maximal phase locking values in the 3-9 Hz frequency 
band were 0.50, 0.47, 0.42 (listening left: 1.2, 1.3, and 2 Hz, respectively) and 
0.25, 0.24 (listening left: 2 and 3 Hz, respectively) compared to 0.55, 0.53, 0.48 
(left) and 0.40, 0.28 (right) for the paced tapping condition. Thus, auditory-
related phase locking appeared to decrease with increasing stimulation rates (cf. 
Figs. 5.1C and 5.1D). Recall that phase locking values are bounded between 0 
(no locking) and 1 (complete phase locking). Simultaneously, a smaller increase 
of the ERFph was found in the beta band above the contralateral motor area 
that was only present in the motor-related fields (paced and unpaced tapping 
condition averaged with respect to tap onset; overlap of spatial distributions 
was 92%), indicating a relation with motor performance instead of auditory 
processing. Maximal phase locking values in the 21-27 Hz frequency band 
were 0.24, 0.22, 0.20 (paced tapping left: 1.2, 1.3, and 2 Hz, respectively) and 
0.30, 0.29 (paced tapping right: 2 and 3 Hz, respectively) compared to 0.22, 
0.21, 0.20 (left) and 0.33, 0.28 (right) for the unpaced tapping condition.  
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Figure 5.4   Reconstruction of the first mode of the ERFph: A) Distribution of phase 
variance for the frequency band 6-12 Hz at 83 ms (from left to right: listening, 
paced tapping averaged to tone onsets, paced tapping averaged to tap onsets, 
unpaced tapping); B) Idem, but now for the frequency band 21-27 Hz; C) time-
frequency plot of the channel at which the field was maximal in the paced tapping 
condition (left: 6-12 Hz, right: 21-27 Hz). 

 
The cross-covariance between ERFamp and ERFph showed maxima in two 

frequency bands in the paced tapping condition (Figs. 5.5B and 5.5D). In the 3-
9 Hz frequency band, ERFamp and ERFph changed concurrently, i.e. the cross-
covariance was maximal at a time shift of 0 ms. That peak appeared to be 
associated with auditory processing because it was solely present in the 
listening and paced tapping condition and because it was localized above 
bilateral auditory areas (Fig. 5.5A). It was mainly visible in the 3-9 Hz 
frequency band and was reduced at higher (alpha) frequencies in which 
auditory-related changes of ERFph were also found. Another cross-covariance 
peak, found in the 21-27 Hz frequency band, was most likely related to motor 
processing because it was only present in the paced and unpaced tapping 
condition with a dipolar structure above the contralateral motor area (Fig. 
5.5C). This peak, however, was found at a time lag of about 200 ms implying 
that the increase of the ERFamp followed the ERFph, i.e. the cross-covariance 
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was maximal when the ERFamp was shifted 200 ms relative to the ERFph. 
Results were similar for different movement tempos and the left and right 
condition. 

Figure 5.5   Cross-covariance 
between ERFamp and ERFph in 
the paced tapping condition 
with the left hand at a tempo 
of 2 Hz. The time axis refers to 
the shift in time of amplitude 
relative to the phase changes. 
Positive covariance at a 
positive shift of time therefore 
implies that the amplitude 
change followed the phase 
change in time.  
A) Distribution of covariance 
in the frequency band 3-9 Hz 
at time t = 0; B) Time-

frequency plot of covariance at the channel above right auditory cortex at which the 
field was maximal (red, positive covariance; blue, negative covariance); C) 
Distribution of covariance in the frequency band 21-27 Hz at time t = 0.19 s; D) 
Time-frequency plot of covariance at channel RC31 located above right motor 
cortex at which the field was maximal. 

5.4 Discussion 

 
By analyzing the amplitude and phase dynamics in distinct frequency bands we 
were able to separate auditory- and motor-related activity during paced 
tapping and to classify the activity in question as either evoked or induced 
responses. The simultaneous change in amplitude and phase locking in the 
theta/alpha band related to auditory performance indicates an evoked response 
(Klimesch et al., 2004). The temporal difference of movement-related 
amplitude and phase dynamics in the beta band, on the other hand, suggests a 
change in ongoing brain activity, i.e. an induced response. 

As expected, motor-related activity was mainly manifested in the beta 
band as a change of event-related amplitude. PCA revealed that, whenever 
participants tapped (paced or unpaced), dipolar beta activity was clearly 
present above contralateral motor areas. This dipolar pattern was absent when 
participants only listened to acoustic stimuli. Hence, we concluded that this 
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activity was related exclusively to motor performance. The more detailed 
temporal features of these fields revealed that amplitudes were maximally 
decreased at the moment of tap onset and then increased rapidly to peak 
roughly after 200 ms. These findings support current interpretations of ERS 
and ERD during motor performance as summarized in the introduction (e.g., 
Pfurtscheller, 1981; Gerloff et al., 1998a), with the proviso that in the present 
experiment participants moved continuously (i.e. cyclically) and ERS and ERD 
were related to different phases of movement execution. As such, the 
continuous change of beta amplitude within a movement cycle contradicts the 
recent suggestion that event-related beta synchronization would be exclusively 
linked to the end of a (complex) motor process rather than to the end of 
(simple) tasks like the production of taps with a single finger (Alegre et al., 
2004). Instead, the continuous alteration of beta amplitude seems to suggest 
that ERD and ERS are not just reflections of movement initiation and 
termination but subserve distinct functional purposes. Interestingly, Feige et al. 
(1996) hypothesized that ERD and ERS are independent processes and that 
ERS may serve to tune (a part of) the network into a different mode of 
operation.  

Next to amplitude effects, we also found changes in phase variance. 
Rhythmic movements were accompanied by cortical beta activity that was 
phase-locked with the tap onsets. The corresponding spatial distribution again 
displayed dipolar activity patterns above contralateral motor areas during both 
paced and unpaced tapping. The latency for maximal phase locking was about 
80 ms after tap onset. Time-resolved covariance analysis revealed that phase 
locking preceded the amplitude changes in time. Similar temporal differences 
between amplitude changes and phase locking have been reported before in a 
study on conscious perception of threshold-intensity somatosensory stimuli10 
(Palva et al., 2005), as well as in a study on late ERP components in a visual 
oddball paradigm (Fell et al., 2004).  

Motor performance was also accompanied with conventional motor-
related fields. Although both slow motor-related fields and changes in the beta 
band could be related to motor performance, they appeared to reflect distinct 
aspects of cortical activation in accordance with previous results (e.g., Feige et 
al., 1996; Nagamine et al., 1996). That is, slow components of motor-related 
fields were invariant against changes in movement tempo as was reported 

                        
10 In this study the increase in phase locking with stimuli was followed by a 
decrease in amplitude (mainly in the alpha band) that coincided with a motor 
response suggesting a movement-related desynchronization. 
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before (Mayville et al., 2001; Boonstra et al., 2005b), whereas amplitude 
changes in the beta band decreased with increasing movement tempo. The slow 
motor-related field components reflected activity around the movement 
frequency and were probably related to efferent and (re-)afferent activity 
(Gerloff et al., 1997; Gerloff et al., 1998b), whereas the temporal difference 
between amplitude changes and phase locking in the beta band pointed at 
induced changes, i.e. changes of ongoing brain activity (Klimesch et al., 2004). 
Put differently, the delayed covariance ruled out a simple evoked response (see 
Introduction) and points at non-trivial interactions between input and ongoing 
brain activity, probably reflecting motor-related information processing, e.g., 
sensorimotor integration. 

Acoustic stimulation resulted in changes in both amplitude and phase 
dynamics. Event-related amplitude increased in the 3-15 Hz frequency band, 
i.e. the slow-wave components (Pantev et al., 1991), reaching a maximum 
around 100 ms after tone onset (cf. Mäkinen et al., 2004) and was accompanied 
by a similar decrease in phase variance (cf. Sayers and Beagley, 1974; Sayers et 
al., 1974). Both effects displayed a dipolar pattern above auditory cortices and 
were only present in the listening and paced tapping conditions. The 
covariance analysis revealed that the increase of event-related amplitude 
occurred simultaneously with the decrease of phase variance, reflecting an 
evoked response (Klimesch et al., 2004). Similarly, Mäkinen and colleagues 
(2005) showed that the auditory event-related activity underlying the N1m 
response was generated independently of ongoing brain activity, reflecting an 
evoked response. The decrease in amplitude changes and phase locking at 
higher pacing tempos (or shorter inter-stimulus intervals) further matched the 
decrease in the auditory- related fields (cf. Mayville et al., 2001; Boonstra et al., 
2005b). Note that, apart from the here discussed slow-wave components, 
auditory perception may also be accompanied by gamma band responses, 
which have been related to cognitive processing of auditory stimuli (Pantev et 
al., 1991; Joliot et al., 1994; Tallon-Baudry and Bertrand, 1999). 

In sum, using event-related frequency analyses we succeeded in 
pinpointing amplitude and phase effects within a movement cycle. PCA 
enabled us to discriminate between different conditions, that is, to separate 
auditory- and movement-related activity. While the power of auditory-related 
activity was primarily present at lower frequencies and located above auditory 
cortices, movement-related activity was found above motor areas with maximal 
amplitude changes in the beta band. The subsequent analyses of the 
corresponding phase distributions enabled us to distinguish between evoked 
and induced responses supporting earlier findings: the simultaneous changes 



Amplitude and phase dynamics  

 96

related with auditory processing suggest an evoked response, whereas the 
temporal difference in amplitude and phase changes related to motor 
performance points at a change of ongoing brain activity, i.e. an induced 
response. As described in the introduction, evoked and induced responses 
correspond to rather different forms of brain dynamics, as the former reflect 
activity added onto ongoing brain activity whereas the latter reflects a change 
of ongoing brain activity.  

In this regard, we would like to remark that the motor-related phase 
resetting in the beta band is particularly interesting as it may provide an 
additional mode for information processing and communication using 
oscillatory brain activity by means of frequency modulated and phase-locked 
interactions (e.g., Salinas and Sejnowski, 2001; Foffani et al., 2005). If two or 
more neural clusters are considered as self-sustaining oscillations that are 
weakly coupled, information can be exchanged via phase modulations 
(Hoppensteadt and Izhikevich, 1998; Breakspear et al., 2003; Tass, 2004). From 
this perspective, one might speculate that motor-related phase resetting in the 
beta band might relate to an information exchange between cortical and 
subcortical brain areas (Riecker et al., 2003). In fact, pyramidal tract 
stimulation has been shown to cause cortical phase resetting in the beta band 
(Jackson et al., 2002). Although a unique neural source of beta phase resetting 
has proven difficult to find (if it exists at all), its functional role for the control 
of motor behavior can be investigated by varying task parameters. The present 
study pursued this idea and showed that the modulation strength of beta 
amplitude seemed to decrease with increasing movement tempo. However, 
future studies are needed to address this issue in more detail. 
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Abstract 
 
The analysis method presented in the previous chapter is used further to 
examine the changes in neural synchronization during motor learning. To this 
end, MEG and EMG activity was recorded while participants learned to 
perform a 3:5 polyrhythm. As this task involved bimanual rhythmic activity at 
distinct movement tempos, it was expected to elicit neural activity in bilateral 
motor cortices that could be readily disentangled. Building on the results of 
Chapter 5 regarding motor-related fields, synthetic aperture magnetometry 
(SAM) analysis was used to focuse on the beta band to separate bilateral activity 
in both motor cortices. On a behavioral level, performance converged onto the 
to-be-learned 3:5 polyrhythm in the course of the experiment. The SAM-based 
reconstruction of the activity of the motor cortices revealed phasic changes in 
beta activity related to force production of the contralateral finger. The degree 
of beta modulation increased during the experiment and was positively 
correlated with motor performance, in particular for the motor cortex 
contralateral to the slow hand. These findings support the view that activity in 
motor cortex co-varies closely with behavioral changes in the course of learning. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Published as: T. W. Boonstra, A. Daffertshofer, M. Breakspear, P. J. Beek (2007). 
Multivariate time-frequency analysis of electromagnetic brain activity during 
bimanual motor learning. NeuroImage 36, 370-377. 
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6.1 Introduction 

 
Motor performance typically improves with repetition and practice. One 
would expect that the proficiency in a motor task requires a modulation of 
cortical motor output to accommodate the newly acquired ability. For the 
modulation of cortex output, the plasticity of the brain appears vital as it 
enables the neural system to reorganize and adapt to improve motor control. 
Indeed, skill acquisition is accompanied by changes in metabolism using 
functional imaging techniques (Schlaug et al., 1994; Karni et al., 1998; Toni et 
al., 1998), primarily indicating a reorganization of motor areas. Although the 
reorganization of cortical structures is generally thought to depend on, or to be 
caused by, changes in electromagnetic neural activity, relatively little is known 
about specific changes in neural activity during motor learning. 

Locally synchronized behavior of neural assemblies yields fluctuations in 
local field potentials that can be measured using EEG and MEG (Lopes da 
Silva, 1991; Nunez, 1995). Using these techniques, motor performance is 
usually found to be accompanied by beta activity, i.e. oscillatory 
encephalographic activity in a frequency range of about 15 to 30 Hz. Above 
contralateral motor areas the amplitude of this beta activity decreases during 
motor performance and increases after movement termination, referred to as 
event-related desynchronization (ERD) and synchronization (ERS), 
respectively11 (Pfurtscheller, 1981; Feige et al., 1996; Pfurtscheller et al., 1996; 
Crone et al., 1998b; Gerloff et al., 1998a; Pfurtscheller et al., 1998; Doyle et al., 
2005). The significance of beta activity in motor performance has been further 
underscored by studies on cortico-muscular synchronization in the beta band 
recorded during constant force production (Conway et al., 1995; Salenius et al., 
1997; Gross et al., 2000; Kilner et al., 2000; Mima et al., 2000). Apart from 
submitting a central role of beta activity per se, these results suggest that beta 
(de-)synchronization can serve as an effective mechanism of motor control, or 
in the least provides a direct index of such a mechanism (cf. Farmer, 1998).  

In the present study we examined changes in cortical activity during the 
acquisition of a new, demanding motor skill: a bimanual 3:5 polyrhythm. 
Polyrhythmic or multi-frequency performances are particularly useful for 
studying motor learning as the degree of difficulty can be easily manipulated 

                        
11 There is an inference concerning the coherence of neurons which we do not 
measure here. We are aware of this, but prefer to follow convention for the 
purpose of relating the findings to the established literature. 
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by altering task demands (Peters, 1985; Summers et al., 1993a; Peper et al., 
1995b; Monno et al., 2000). When examining the accompanying brain activity, 
polyrhythmic performance allows for an immediate separation of activity 
originating from the bilateral motor cortices due to the obvious difference in 
movement frequency between fingers or hands (Daffertshofer et al., 2000b). As 
with motor performance in general, rhythmic movements are also 
accompanied by changes in cortical beta amplitude (Toma et al., 2002; 
Boonstra et al., 2006; Daffertshofer et al., 2007). Hence we used this amplitude 
modulation to localize sources and reconstruct their time-dependent signals 
using synthetic aperture magnetometry (SAM) (cf. Cheyne et al., 2006; 
Houweling et al., 2007). SAM is a so-called beamformer technique that stresses 
signals originating from a certain region while suppressing residual activity 
from all other locations. In the present study SAM enhanced our focus on 
motor-related activity by suppressing activity related to other processes, e.g., 
activity caused by auditory pacing. The resulting signals were further studied 
via their event-related power (Boonstra et al., 2006) in order to identify 
learning-specific spectral changes in cortical activity. To achieve this, we 
employed PCA in the form of partial least squares (PLS) (McIntosh and 
Lobaugh, 2004) to quantify the co-variation between cortical activity and 
motor performance during motor learning 
 

6.2 Methods and Materials 

 
Nine participants (mean age: 28.5 years, range: 23-44, 7 male, 2 female) with no 
previous musical education took part in the experiment. Eight participants 
were self-reported right-handers. The experiment was conducted in full 
compliance with the guidelines of the medical ethical committee of the VU 
University medical center. All participants signed an informed consent form 
prior to participation. 

Participants were instructed to produce isometric forces by flexing left 
and right index fingers at a frequency ratio of 3:5 (cf. Fig. 6.1). To assist this 
difficult, bimanual performance, both hands were paced by auditory stimuli 
presented ipsilaterally using earphones (50 ms duration; pitch: 600 Hz fast 
finger, 400 Hz slow finger; EARTone 3A, Cabot Safety Corporation). The 
inter-stimulus interval of the pacing signal was 900 ms for the fast and 1500 ms 
for the slow finger (or 1.11 and 0.67 Hz, respectively). Participants performed 
two blocks of six trials each: in one block the right finger produced the fast and 
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the left finger the slow frequency and in the other block frequencies were 
swapped from left to right. The order of blocks was counterbalanced over 
participants. To optimize performance, a block always started with a trial in 
which participants were only required to listen passively to the rhythm. This 
was followed by five trials in which they were instructed to perform the 
polyrhythm to the best of their ability. Each trial lasted 45 s and consisted of 
ten complete rhythmical cycles, yielding a total of 50 and 30 stimuli for the fast 
and slow finger, respectively. Trials were interspersed by 15 s breaks during 
which participants received visual feedback about their performance. To 
achieve this, the produced force pattern averaged over the ten cycles was 
displayed in combination with the auditory pacing signal. 

 

 
Figure 6.1   Force traces of a single participant performing the 3:5 polyrhythm with 
the fast rhythm on the left side. Left panels show the first 20 seconds of the first 
trial, i.e. the first encounter with the 3:5 polyrhythm. The upper panel shows the 
force of the right finger (black line) and the auditory pacing signal (grey line); 
lower panel is identical but displays the left side. Clearly this participant did not 
perform the proper polyrhythm during trial 1 (see the slow, right hand). Right 
panels show the first 20 seconds of trial 5 after the participant had successfully 
learned the polyrhythmic performance. 
 

Brain activity was recorded using a 151-channel MEG (CTF Systems 
Inc., Vancouver, Canada) with 3rd-order synthetic gradiometers. One channel 
was not operational so that, effectively, 150 MEG signals were analyzed. The 
surface EMG was recorded from the flexor digitorum superficialis of both 
arms; electrodes (Ag-AgCl; ∅ 1 cm) were placed in a bipolar montage with an 
inter-electrode distance of approximately 1 cm. The voltages of both MEG-
compatible force transducers (Boonstra et al., 2005a; Appendix B) and acoustic 
stimuli were simultaneously sampled. All signals were low-pass filtered at 415 
Hz prior to digitization at a rate of 1250 Hz. 
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Motor performance was assessed by the frequency relationship between 
the force productions of both fingers. For this sake we determined the power 
spectra of the force signals using Welch’s periodogram method with Hamming 
windows of 13.5 s, i.e. the first cycle of each trial was omitted to eliminate 
transient behavior and the next nine cycles were divided into three consecutive 
segments of three movement cycles. The frequency relationship was 
determined using a rescaled cross-spectral overlap (Daffertshofer et al., 2000b) 
measuring the common spectral characteristics of fast and slow fingers after 
rescaling the frequency axis of the slow finger. More specifically, the overlap of 
the power spectra at a scaling factor of 3 : 5 = 0.6 was used to quantify the 
extent to which participants were performing the proper polyrhythm. The 
rescaled cross-spectral overlap was computed for each individual segment for 
scaling factors ranging from 0.1 to 2 in steps of 0.003. 

EMG signals were high-pass filtered using a second order Butterworth 
filter to eliminate movement artifacts (cut-off frequency, 20 Hz) and 
normalized to unit variance to correct for individual differences in signal 
strength. Next, EMGs were further full-wave rectified using the Hilbert 
transform (Myers et al., 2003). 

Sources of cortical activity were defined from the MEG data by means of 
SAM, which defines a spatial filtering technique based on a nonlinearly 
constrained minimum-variance beamformer (Vrba and Robinson, 2001; Gaetz 
and Cheyne, 2006). Volumetric source images were generated by applying 
SAM to each voxel in the region of interest (5 mm voxel resolution) defined via 
an average MRI (International Consortium of Brain Mapping, ICBM). 
Focusing on beta ERS/ERD, we filtered the signals (band-pass frequency, 15-
30 Hz) prior to computing covariance matrices (cf. Taniguchi et al., 2000). The 
SAM analysis was based on a comparison of beta activity between active and 
control states. Because cortical beta activity decreases during force production 
and increases afterwards, the active state was defined as time interval intervals 
of -200 to 200 ms relative to maximally produced force and the control state as 
the interval of 200 to 600 ms. Using the pseudo-T differences, a statistical 
parametric image was computed and single-trial time series (virtual sensors) 
were reconstructed for the peak location of activity in these images, enabling 
analysis of source activity as a function of time. Event-related power of these 
reconstructed source data and the EMG data were determined using a 
continuous wavelet transform that was applied to single trials. We used 
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complex Morlet wavelets12 at 1 Hz intervals in the 5 to 45 Hz range (cf. Duzel 
et al., 2003). The SAM source data were normalized to unit variance. The 
wavelet transform yielded complex wavelet coefficients whose squared 
modulus specified the signals’ time-dependent power at distinct frequencies. 
Power values were averaged with respect to the motor output, i.e. force 
maxima, separately for different data segments, trials, participants and sides, 
resulting in 3 × 5 × 9 × 2 = 270 time-resolved power spectra for each of the 
four channels (2 × EMG and 2 × MEG).  

Statistical analyses of the frequency coupling of motor output and time-
frequency decompositions of EMG and MEG data were realized with PCA in 
its capacity to extract major components from multivariate signals (see 
Appendix A). Notice that PCA can be seen as the basis of several other 
multivariate data analysis methods such as PLS (McIntosh et al., 1996; 
Lobaugh et al., 2001), whereby it is restricted to the brain-behavior covariate 
matrix. In these terms, our application of PCA matched McIntosh and 
Lobaugh’s spatiotemporal task PLS with mean centering (McIntosh and 
Lobaugh, 2004). In detail, we combined data of different conditions into a 
single matrix with (number of observations × number of conditions) rows and 
(number of signals × number of samples) columns. In all analyses, the number 
of observations was 3 (consecutive segments) and the number of conditions 
was trials × side × participants = 5 × 2 × 9 = 90. The performance-related 
signals of the fast and slow hands were pair-wise combined in order to 
compare the time-frequency signals of both left and right conditions. The 
number of elements and samples differed across analyses: for the rescaled 
cross-spectra there were 634 samples and 1 element, whereas for the wavelet 
spectra there were 1876 samples (1.5 s at 1250 Hz) and 41 elements 
(frequencies). Singular values of all seven matrices (2 × EMG, 2 × MEG, 3 × 
cross-spectra) were computed, yielding 90 eigenvalues with corresponding 
eigenvectors for each matrix. Apart from the first eigenvector all other 
eigenvalues were rather small so that we could restrict the subsequent analyses 
to the first mode in all PCAs. We further projected the data onto the first 
eigenvector to determine the time-frequency changes that were covered by the 

                        
12 Similar to the more common Gabor transform, a complex Morlet wavelet 
includes a sliding Gaussian window of width a, which defines time scales or a 
certain frequency band around a central frequency f0. It reads 
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first principal mode. Finally, multiplying these projections with the data 
yielded a matrix of so-called brain scores that were used to indicate the 
variation of task effects across observations, conditions, and participants 
(McIntosh and Lobaugh, 2004). 

For the subsequent statistical assessment of the so obtained principal 
modes we used a repeated measure ANOVA. Instead of testing for significance 
of principal modes against a null distribution with, e.g., permutation testing, 
jackknife, or bootstrapping estimates, we tested whether the variance of test 
effects was significantly different (p < 0.05) between conditions. In other 
words, we compared eigenvector coefficients of the first modes by performing 
a two-way ANOVA (trial × side = 5 × 2) with repeated measures. To address 
possible transfer effects of learning between sides, we added a between-subject 
variable order denoting whether a participant started the experiment either in 
the right or left side condition. Finally, to test whether changes in motor 
performance were directly related to changes in event-related power, we 
compared the brain scores of the frequency coupling of the force signals with 
those of the time-frequency power of the SAM channels by means of 
conventional Pearson correlations for individual participants. For subsequent 
group analysis, the correlation coefficients were Fisher-transformed and tested 
for significance using a one-sample T-test. 
 

6.3 Results 

 
Analysis of motor behavior 
Participants clearly learned the desired motor task (cf. Fig. 6.1). Their 
performance improved as signified by the convergence of the frequency 
locking between the force productions of both fingers towards the 3:5 
polyrhythm. PLS analysis of rescaled cross-spectral overlaps extracted the 3:5 
frequency locking in the first mode, which represented 88% of the variance 
(Fig. 6.2A, left panel). Apart from a peak at 3 : 5 = 0.6, the analysis also 
revealed small peaks at 0.3 (= 3 : 10) and 1.2 (= 6 : 5), i.e. at a higher harmonic 
and a subharmonic, presumably because the signals were not perfectly 
sinusoidal. As is evident from the right panels of Fig. 6.2A, the coefficients of 
the first eigenvector showed a significant increase in 3:5 frequency locking 
strength over trials (F(4,28) = 11.9, p < 0.001). The coefficients further revealed 
that participants who initiated the protocol with the fast frequency on the right 
side displayed a weaker frequency locking during that condition (Fig. 6.2A, 
most right panel), which was confirmed by a significant effect of side (F(1,7) = 
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9.96, p = 0.016) and a significant side × order interaction (F(1,7) = 44.1, p < 
0.001). In that condition, the improvement in performance over trials was 
stronger than in the other conditions (F(4,28) = 3.90, p = 0.012). The 
improvement in performance was mainly due to improved timing of the slow 
finger, that is, the fast hand followed the fast pacing signal almost correctly 
from the start of the experiment (cf. Fig. 6.1 and Summers et al., 1993b).  

 
Figure 6.2   Projections and 
eigenvectors of the first mode 
of PLS analyses of the 
frequency locking spectra: A) 
First PLS mode of frequency 
locking between the force 
production of the left and 
right side. Left panel: 
projection of the first mode 
revealing a peak in the 
frequency locking at 0.6 (3:5); 
the first mode explained 88% 
of the total variance. Right 
panels: eigenvector coefficients 
for trial 1 to 5 in both 
conditions (left: fast rhythm 
on left side; right: fast rhythm 
on right side). Circles refer to 

participants that started with the fast frequency on the right hand and triangles to 
participants that started with the fast frequency on the left side (error bars indicate 
the between-subject standard deviation); B) First PLS mode of frequency-locking 
between force production of the fast hand and the fast pacing signal explaining 
95% of the variance; C) First PLS mode of frequency-locking between force 
production of the slow hand and the slow pacing signal explaining 85% of the 
variance. 

 
The frequency locking between the fast finger and the fast pacing signal 

revealed a 1:1 frequency locking (Fig. 6.2B, left panel), and the strength of this 
frequency locking remained by and large constant during the experiment (see 
eigenvector coefficients in Fig. 6.2B, right panels). The steady performance of 
the fast finger was also underscored by the absence of any significant effect in 
the ANOVA. The slow finger, on the other hand, showed an obvious change 
in performance over trials as revealed by the frequency locking strength with 
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the slow pacing signal: frequencies were locked at a 1:1 ratio throughout the 
experiment, but the locking strength increased over trials (Fig. 6.2C). The 
ANOVA of the corresponding eigenvector coefficients showed a significant 
effect of trial (F(4,28) = 3.15, p = 0.029) and a significant trial × order 
interaction (F(4,28) = 2.92, p = 0.039), implying a stronger increase over trials 
for participants starting with the right finger at the fast frequency. Finally, a 
significant three-way interaction between trial, side, and order (F(4,28) = 6.24, 
p = 0.001) demonstrated that the strongest increase in performance occurred in 
the right side condition of participants that started with the fast frequency for 
the right side (cf. Fig 6.2C, right panel, circles). 

 
Analysis of brain data  
SAM analysis revealed a clear event-related decrease in beta power originating 
from the contralateral motor cortex. The maximal pseudo-T values averaged 
over participants were 10.6 and 11.1 for the left and right motor cortex, 
respectively (Fig. 6.3).  

Figure 6.3   Results of the SAM 
analysis: upper panels show the 
most prominent virtual channel 
(average pseudo-T, 11.1) when 
participants produced forces 
with their left index finger in 
coronal image A, sagittal image 
B, and axial image C; lower 
panels display the same 
information for the right index 
finger (average pseudo-T, 10.6). 

Coronal and axial views show left on left. 
 

As displayed in the time-frequency plots of Figures 6.4C and 6.4D, the 
wavelet power of the rectified EMG showed a broadband increase peaking 
about 100 ms before the maximum force output. Neither the force trajectories 
nor the change in EMG power changed across conditions as revealed by the 
corresponding eigenvector coefficients (Figs. 6.4A-6.4D, right panels). The 
event-related wavelet power of the reconstructed source data of both motor 
cortices revealed a clear modulation of power in the beta band with the 
maximum increase between 20 and 25 Hz (Figs. 6.4E & 6.4F). The beta power 
was inversely related to the produced force in that it was minimal during 
maximum force production and increased when the force decreased again. 
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Figure 6.4   Projections and eigenvectors of PLS analyses: A) First mode of PLS of 
the force trajectories of the fast hand averaged with respect to the force maxima 
explaining 97% of the variance. Left panel shows the projection and the right panels 
show the eigenvector coefficients of the corresponding conditions. Circles refer to 
participants that started with the fast frequency on the right hand and triangles to 
participants that started with the fast frequency on the left side (error bars indicate 
the between-subject standard deviation; x-axis, time in second; y-axis, force output); 
B) First PLS mode of the force trajectories of the slow hand explaining 98% of the 
variance; C) First PLS mode of the event-related wavelet power of the EMG of the 
fast hand explaining 82% of the variance. Left panel shows the time-frequency plot 
corresponding with the projection (red: increase in power, blue: decrease in power; 
x-axis, time in seconds; y-axis, frequency in Hz) and the right panels show the 
corresponding eigenvector coefficients; D) First PLS mode of the event-related 
wavelet power of the EMG of the slow hand explaining 85% of the variance; E) 
First PLS mode of the event-related wavelet power of the reconstructed source data 
of the contralateral motor cortex of the fast hand explaining 50% of the variance; F) 
First PLS mode of the event-related wavelet power of the reconstructed source data 
of the contralateral motor cortex of the slow hand explaining 54% of the variance. 
 
In the motor cortex contralateral to the fast finger the increase in beta power 
peaked around 400 ms after the force maximum (Fig. 6.4E), while in the motor 
cortex contralateral to the slow finger the increase occurred slightly later, at 
about 500 ms (Fig. 6.4F). The modulation of beta power was noticeably related 
to the force production of the contralateral hand as the event-related power 
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revealed no evident pattern when averaged with respect to the force maxima of 
the ipsilateral hand (results not shown here). 
 
Analysis of brain-behavior covariates during motor learning 
The eigenvector coefficients revealed a significant increase of the modulation 
of event-related beta power over trials both for the motor cortex contralateral 
to the fast (F(4,28) = 5.17, p = 0.003) and the slow finger (F(4,28) = 4.17, p = 
0.009), suggesting a relationship with motor performance (Figs. 6.4E and 6.4F, 
right panels). The ANOVA revealed no other significant effects. The direct 
comparison with the bimanual performance score, i.e. the Pearson correlation 
between brain scores of frequency locking in individual data segments and 
brain scores of event-related power in the motor cortices, showed that beta 
modulation was indeed positively correlated with motor performance. For the 
motor cortex contralateral to the fast finger the correlation was significant for 
two out of the nine participants (mean correlation: 0.13 ± 0.23), but grouped 
over all participants the correlations coefficients did not differ significantly 
from null (T(8) = 1.70, p = 0.127). For the motor cortex contralateral to the 
slow finger the correlation was significant for four out of the nine participants 
(mean correlation: 0.29 ± 0.30) and grouped over all participants the 
correlations differed significantly from null (T(8) = 2.91, p = 0.019). 
 

6.4 Discussion 

 
We studied learning-related changes in cortical activity during isometric, 
bimanual force production, coordinated as a 3:5 polyrhythm. Motor learning 
was evidenced as improved performance of the polyrhythm with practice, as 
quantified via the strength of frequency locking between the fingers’ force 
trajectories that increased at the 3:5 target ratio. The degree of beta modulation 
was directly correlated with the behavioral outcome, especially for the motor 
cortex contralateral to the finger performing the slow component of the 
polyrhythm. Put differently, our results clearly indicated that when 
participants learned to perform the bimanual polyrhythm, the accompanying 
event-related beta modulation was enhanced, in particular in the contralateral 
motor cortex of the more-difficult-to-adjust end-effector, here, the slow finger. 
Hence, these data suggest that motor learning was associated with a change in 
neural activity in cortical motor areas that differed across hemispheres. This 
suggestion is consistent with the insight gleaned from behavioral data that 
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learning a polyrhythm is achieved by interleaving the timing of the slow hand 
into that of the fast hand (Summers et al., 1993a).  

When moving voluntarily, neurons in the motor area have been 
proposed to shift from an activated state (∼ERD) to a resting state (∼ERS) 
following movement termination, or from a processing to an idling mode 
(Pfurtscheller et al., 1996). We have shown that this idea finds principal 
support during rhythmic motor production, as was also reported before (Toma 
et al., 2002; Boonstra et al., 2006). That is, beta amplitude was relatively lower 
during individual motor events and increased in between such movements (Fig. 
6.4). Importantly, however, rhythmic movement lacks movement termination 
as participants are in a continuously active motor state. Hence, we here submit 
that event-related beta synchronization is probably unrelated to movement 
termination. To strengthen that argument we note that post-movement beta 
rebound often exceeds the level of beta activity during rest and decreases back 
to base level 1 s after movement termination (Jurkiewicz et al., 2006). This 
suggests that event-related beta synchronization does not just reflect a passive 
shift back to a resting state, but is likely to have a more active role, such as 
active immobilization or inhibition of cortical networks (Salmelin et al., 1995; 
Cassim et al., 2001; Pfurtscheller et al., 2005).  

We analyzed the interdependence of brain and behavior via PLS, i.e. 
using the statistical co-variation between signals. Using this measure the 
causality in the relation between brain and behavior cannot be determined. To 
do so, we examined phase synchronization between MEG and EMG but failed 
to pinpoint a statistically significant coupling. Indeed, the absence of cortico-
muscular synchronization is in line with other studies reporting vanishing 
synchronization during dynamical movements (Kilner et al., 2000). Likewise, 
the presence of enhanced beta modulation during motor learning that we 
report is compatible with other studies on altered cortical activity during 
motor skill acquisition (Recanzone et al., 1992; Pascual-Leone et al., 1994; 
Sanes and Donoghue, 2000). Our results also complement reports on enhanced 
event-related alpha desynchronization during (implicit) motor learning 
(Zhuang et al., 1997), increased cortico-spinal beta synchronization following 
visuo-motor skill learning (Perez et al., 2006) and increased interhemispheric 
synchronization during the early stage of bilateral learning (Andres et al., 
1999). Taken together, these findings suggest that the change in beta 
modulation reflects a reorganization of neural activity in the motor cortex 
during skill acquisition. Interestingly, one finds a general consensus that event-
related beta synchronization is, at least primarily, generated in the contralateral 
motor area located anterior to the central sulcus (Salmelin et al., 1995; 
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Jurkiewicz et al., 2006) or near the postcentral sulcus (Parkes et al., 2006). 
Notice that our focus on activity in the primary motor cortex was not meant to 
imply that activity in other brain areas was not altered in the course of motor 
learning. Several studies showed various changes in, for instance, 
supplementary motor areas, premotor cortex, and singulate motor cortex 
(Sadato et al., 1997; Debaere et al., 2001; Schaefer et al., 2005). Here we simply 
have to conclude that these areas did not display significant changes in the 
frequency regimes under study. That is, concentrating on the beta band 
primarily extracts activity in primary motor areas. 
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7.1 Neural synchronization in human action control 

 
What insights did we gain from the present series of experiments into the 
neural implementation of motor control? Or, more specifically, which 
dynamical characteristics along the neural axis appeared relevant for proper 
motor functioning and how were these affected by physiological and cognitive 
factors? Before answering these questions, it is useful to first recapitulate the 
theoretical framework that was introduced in Chapter 1, allowing me to 
discuss more general features of the experimental findings within this 
framework. 

In Chapter 1 a searchlight theory was put forward promoting a rigorous 
focus on change: panta rhei. That theory belongs to a longstanding tradition in 
science in which processes rather than structures are considered fundamental. 
In neuroscience, ‘structure-oriented’ translates into network topology and 
structural anatomy, whereas ‘process-oriented’ refers to neural dynamics and 
the functioning of cells and cell networks. Surely, the spatial aspects of neural 
organization are important for understanding neural motor control, e.g., by 
pinpointing the neural structures that contribute to specific aspects of motor 
control. As explained in Chapter 1, the spatial organization also constrains the 
interacting processes within and between these structures. However, it is the 
information transfer through these interactions that defines neural functioning. 
In my thesis I therefore investigated motor-related information processing 
with a focus on temporal aspects of neural activity. To this end, measurement 
and analysis techniques were employed that allowed for extracting temporal 
features of neural activity patterns, as well as changes therein as a function of 
experimental manipulations. In this manner, dynamical aspects of the neural 
underpinnings of motor control were uncovered, which are complementary to 
the insights garnered in more structure-oriented approaches. As the specific 
outcomes were already discussed in the individual chapters, I only briefly 
reiterate the main findings and discuss their impact for the understanding of 
brain dynamics in general. 

A first compelling feature of the data is the omnipresence of 
synchronization in neural dynamics during the execution of motor tasks. In 
particular, two distinct synchronization patterns stood out across experiments: 
the 10 Hz synchronization between bilateral EMG reported in Chapters 2 and 
3 and the beta modulation above the contralateral motor cortex observed in 
Chapters 4 to 6, with the proviso that the beta modulation in the experiment of 
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Chapter 4 was reported elsewhere (Daffertshofer et al., 2007). This ubiquity of 
synchronized activity was anticipated from the perspective of complex 
dynamical systems that was put forward in Chapter 1. In general, the brain is 
considered an open system consisting of a huge number of interacting units. 
Collectively, these units generate neural activity that, dependent on the 
dynamical context, is shaped by underlying attractors that may be static, 
periodic, quasi-periodic or strange. My experimental results support that 
oscillatory dynamics is a fundamental mode of operation of meso-scale activity 
during motor performance. By this I mean that oscillatory activity in specific 
regions of the central nervous system was found across various frequency 
bands that could be related to distinct aspects of motor control. Moreover, 
neural synchronization was consistently modulated by various task 
parameters, in line with the alleged functional role of neural synchronization. 
For instance, the 10 Hz bilateral MU synchronization increased with fatigue 
pointing at increased bilateral coupling and cortical beta modulation was 
affected by movement tempo, force level (Daffertshofer et al., 2007), and 
learning. Although strictly speaking these findings do not prove a functional 
role of neural synchronization as only correlations between synchronization 
and aspects of motor control were reported, they are fully compatible with this 
notion. Indeed, synchronization appears to be a hallmark of the neural 
dynamics of motor control and thus an essential ingredient for understanding 
its temporal aspects. 

A second, equally persistent feature of the data is the diminution or 
absence of beta activity during rhythmic motor performance. On the meso-
scale, cortical beta amplitude was modulated over a movement cycle and 
increased beta activity may be interpreted as a measure of synchronization of 
groups of neurons into a dynamic cell assembly. Put differently, if individual 
neurons in the motor cortex synchronize at a beta frequency, beta amplitude of 
the magnetic field measured with MEG will increase and vice versa. In 
Chapters 4 to 6, beta amplitude was found to decrease during force production 
or around tap onsets and to increase between individual motor events. This 
pattern appeared to be also present at the macro-scale, i.e. in the interaction 
between cortical and spinal activity. In Chapters 4 and 6 the macro-scale 
displayed a lack of beta synchronization between the simultaneously recorded 
MEG and EMG activity, which will be discussed in depth in Section 7.2. At 
first glance, one may think that these findings contradict the abundance of 
corticospinal beta synchronization during static contractions as reported in the 
literature. However, in my experiments performance was not static but 
entailed the production of rhythmic movements or forces. Apparently, during 
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rhythmic motor performance the periodic mode, i.e. the beta oscillation, is less 
stable so that the neural dynamics become more erratic. A reason for this 
might be that the relaxation time of the corticospinal synchronization 
dynamics is large compared to the time scale of motor performance. As a 
result, the network cannot damp out or compensate for possible perturbations 
and, hence, synchronization patterns cannot come to the fore. 

A slow relaxation of the corticospinal dynamics towards or away from 
synchronous modes may have general implications for the functional role of 
neural synchronization in motor control. Although for static motor control 
neural synchronization may be an expedient vehicle for information transfer, 
its general attenuation during rhythmic motor control renders this 
interpretation in this context less convincing, at least as overarching 
mechanism. In my experiments, the desynchronization of beta activity was not 
accompanied by increased oscillatory activity at other frequencies up to 45 Hz, 
apart from neural activity around the movement frequency. As explained in 
Chapter 5, the very low frequency components were most likely caused by 
evoked activity and hence determined by task characteristics rather than by 
intrinsic neural dynamics. If, during rhythmic motor performance, 
synchronized neural activity does not serve as a means for motor-related 
information transfer between cortical and spinal areas, then what kind of 
dynamics are present during these desynchronized periods and what causes the 
desynchronization of corticospinal activity? As said, the adopted complex 
systems perspective suggests a reduced stability of the underlying, here 
periodic, dynamics. The eventual disappearance of stable oscillations may 
either yield complete instability or announce the emergence of other stable 
states. Before discussing this issue in greater length, I first present additional 
results of corticospinal synchronization as examined during bilateral motor 
learning. By relating these preliminary results with extant literature, I will draw 
new directions for further research and evaluate the merits of the theoretical 
perspective adopted in this thesis. 

 

7.2 Methodological considerations 

 
Throughout my thesis I applied several methods to quantify neural 
synchronization based on phase locking, i.e. a constant phase difference, at 
single fixed frequencies or, at least, within narrow bands. In Chapters 2 and 3, I 
started with conventional coherence analysis, i.e. the normalized cross-
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spectrum as frequency domain equivalent of the cross-correlation function 
(Chatfield, 2004). Since coherence integrates effects of the signals’ amplitude 
and phase variations in a single scalar value, I disentangled amplitude and phase 
in subsequent chapters using either the classical construction of the analytical 
signal through the Hilbert transform (Chapter 5) or the complex wavelet 
transform (Chapter 6) (cf. Rosenblum et al., 1996; Tass et al., 1998; Mormann 
et al., 2000; Stam et al., 2007). Although the Hilbert transform generally allows 
for estimating phase independent of frequency and is therefore seen as the 
most generic approach to study phase locking (Pikovsky et al., 2001), both 
EMG and MEG were band-pass filtered prior to the Hilbert transform. In 
doing so, the Hilbert phases were related to distinct frequency bands 
presupposing that the signals have common frequencies when studying their 
phase locking characteristics. There are alternative time-frequency analyses like 
the conventional short-time Fourier transform, but all of them estimate 
frequency locking between two signals at a fixed, common frequency. Indeed, 
all these measures turn out to be both formally and effectively equivalent (Le 
Van Quyen et al., 2001; Bruns, 2004). The assumption of a fixed frequency 
readily allows for subsequent statistics of the degree of phase locking between 
the two signals, which can be realized by several means like circular variation 
(Mardia, 1972), Shannon entropy (Tass et al., 1998), or average mutual 
information (Palus, 1997). Again, these statistical methods are largely 
equivalent and the similarity of the listed synchronization measures insures the 
consistency of results across approaches.  

In Chapter 6, I investigated changes in corticospinal synchronization 
during motor learning. EMG and MEG both showed alterations in terms of 
changes in their oscillatory activity. Building on these results, I further tested 
for equivalent effects at a more macroscopic scale, i.e. synchronization between 
EMG and MEG. To this end, I determined the time- and frequency-dependent 
phases of both signals by means of the angle of the complex wavelet 
coefficient, which, as said, is a quantity very comparable to the Hilbert phase 
exploited in Chapter 5. For every point in time, the synchronization at 
different frequencies was quantified based on the phase difference between 
EMG and MEG signals, i.e. as the uniformity of the phase difference over a 
sliding window of 100 ms. The resulting time-resolved phase uniformity was 
averaged with respect to motor events (peak forces of the corresponding 
finger) yielding event-related phase synchronization spectra for each 
participant, condition, and frequency band. As in Chapter 6, data were 
subsequently analyzed using partial least squares. The first EMG-MEG phase 
locking mode is shown in Figure 7.1 in the form of an event-related 
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modulation of phase locking in the frequencies around 20-40 Hz. This analysis 
revealed distinct parts in the movement cycle during which both signals 
synchronized or desynchronized. These results thus seem to support the 
previously discussed macroscopic synchronization between cortex and spinal 
cord. 

 
Figure 7.1   First mode of the PLS analysis of the phase-locking between the 
rectified EMG and reconstructed MEG data of the contralateral motor cortex. Left 
panel shows the time-frequency plot corresponding to the projection of the first 
mode. Phase locking is quantified as the uniformity of the phase difference over a 
100 ms window for each frequency separately. Phase-locking values are averaged 
over different movement cycles by aligning data with respect to the maximal force 
production of the corresponding finger. Right panel shows the eigenvector 
coefficients of the first mode. The eigenvectors indicate that the phase-locking 
pattern shown in the left panel remains stable over trials and for left and right hand 
condition. 

 
To test for statistical significance I employed a bootstrapping method 

and reshuffled the two signals by means of a random translation resulting in 
two sets of 99 surrogate data for which either the EMG or the MEG was 
shifted in time prior to computing their relative phase uniformity. Phase 
synchronization was considered significant if the original uniformity was 
either smaller or larger than that of 98% of the surrogates (data were assigned 
the values -1 and +1, respectively). Non-significant uniformities were assigned 
the value 0 yielding two sets of phase synchronization data with values of -1, 0, 
and 1, which were subsequently analyzed as described before. The results of 
the reshuffled EMG signals (Fig. 7.2, upper panels) revealed that the phase-
locking pattern displayed in Figure 7.1 was significant when tested against the 
distribution of the surrogates. The significance of the phase-locking pattern 
implies that the original data differed significantly from the surrogates, i.e. 
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misaligning the EMG data destroyed the phase-locking pattern between EMG 
and MEG signals. In contrast, when comparing the original data with the phase 
randomized MEG data, the phase-locking pattern did not differ significantly 
from the distribution of the surrogate data as no significant phase-locking 
pattern was present (Fig. 7.2, lower panels). Misaligning the MEG data did not 
disrupt the phase-locking pattern and it can therefore be concluded that the 
proper alignment of the MEG data was not necessary to reveal the phase-
locking pattern shown in Figure 7.1. That is, most likely the phase-locking 
pattern in question was not caused by a genuine interaction between EMG and 
MEG activity but simply by local changes in the EMG signal. Notice that the 
phase-locking pattern closely matched the change in EMG power (Figs. 6.4C 
and 6.4D) and the apparent synchronization pattern might be caused by the 
dynamical changes of the EMG signals, i.e. there was a strong change in 
amplitude and frequency content of the EMGs within each epoch that might 
have rendered the phase estimation ambiguous (cf. Chavez et al., 2006; Rudrauf 
et al., 2006). 

The absence of frequency-fixed synchronization between EMG and 
MEG activity during rhythmic movements does not necessarily imply that 
temporal correlations were completely absent. As was already discussed in 
Chapter 1, interacting subsystems may display various dynamical features 
depending on their coupling and intrinsic dynamics. Over the years various 
methods have been developed that capitalize on the concept of 
synchronization in order to quantify other forms of interaction dynamics 
(Pradhan and Dutt, 1993; Jansen, 1996; Stam, 2005). For instance, to quantify 
interactions between oscillators with different frequencies, existing 
synchronization measures have been generalized to capture the coupling 
between oscillators with a specific frequency ratio, e.g., bicoherence (Schanze 
and Eckhorn, 1997) and n:m phase coupling (Tass et al., 1998). The frequency 
ratio can be determined via cross-spectral estimates (Daffertshofer et al., 2000b) 
and the so-called generalized relative phase (accounting for the n:m ratio) can 
be treated by the same statistics as mentioned above. As said, the unfiltered 
Hilbert phase can also be used to determine more general synchronization 
dynamics, even when frequencies change at any rate (Pikovsky et al., 2001). 
However, the poor signal-to-noise ratio of neural data can be problematic 
when estimating the phase of a signal. To overcome these problems for signals 
with continuously varying frequencies, many alternatives are currently 
discussed like the so-called frequency flow analysis (Rudrauf et al., 2006), 
synchronization likelihood (Stam and van Dijk, 2002), and non-linear 
interdependence (Breakspear and Terry, 2002). 
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Figure 7.2   First modes of the PLS analysis of the surrogate data of phase locking 
between the rectified EMG and reconstructed MEG data. Upper panels: a set of 99 
surrogate data was constructed by shifting the EMG signal randomly in time before 
recomputing the uniformity of the phase difference. Original data points are 
assigned 1 if the uniformity was higher than 97 of the 99 surrogate data, -1 if it was 
lower than 97 of the 99 surrogate data, and 0 if otherwise. The lower panels show 
the results of a similar analysis, but with the MEG signal shifted in time. As in 
Figure 7.1, left panels show the time-frequency plot corresponding to the projection 
and right panels show the mean eigenvector coefficients of the first mode. 

 
In sum, the analyses employed in this thesis failed to show the presence 

of fixed-frequency synchronization, i.e. conventional synchronization, 
between spinal and cortical activity during rhythmic motor tasks. However, 
the absence of synchronization does not imply that all interdependencies were 
absent as different forms of synchronization might have been present, i.e. 
generalized synchronization (cf. Stam and van Dijk, 2002). 

 

7.3 Conceptual considerations 

 
There seems to be an essential difference between static and dynamic tasks, as 
bilateral MU synchronization was present during static isometric contractions 
(shown in Chapters 2 and 3), whereas macroscopic synchronization between 
EMG and MEG was largely absent during dynamic force production. These 
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results are consistent with other findings reported in the literature, e.g., cortical 
beta amplitude decreased during motor performance (ERD) and increased after 
motor termination (ERS) (Pfurtscheller and Lopes da Silva, 1999). Similarly, 
corticomuscular synchronization was absent during dynamic motor control 
(Kilner et al., 2000) and increased after termination of a phasic voluntary 
contraction (Feige et al., 2000), i.e. a rebound in corticospinal beta 
synchronization analogous to the rebound in cortical beta power. The 
similarity in the decrease of cortical beta activity and corticospinal beta 
synchronization suggests that both phenomena are not completely 
independent (cf. Kristeva et al., 2007). The difference between them can be 
explained if it is assumed that corticospinal phase entrainment has a longer 
relaxation time and therefore requires more time to reestablish in-between 
subsequent motor events. If beta synchronization is prominent during periods 
of static contractions and related with, for instance, the stabilization of an 
existing motor state, then how is cortical motor control established during 
phasic motor control and how is it manifested in the coupling between cortical 
and spinal activity? In the dynamic tasks discussed in this thesis it seems 
inevitable that cortical activity influenced spinal activity as neural information 
at the cortical level is used for motor control, e.g., to synchronize motor 
output with auditory pacing signals. Some kind of relationship between 
cortical and spinal activity is therefore to be expected. As already discussed, 
various forms of dynamics are possible and the coupling between cortical and 
spinal activity may change and cause a switch from a periodic to other 
dynamical modes during rhythmic motor control.  

A first possibility is that motor-related beta desynchronization coincides 
with increased synchronization in other frequency bands. For instance, Crone 
and colleagues (1998a) reported an increase in cortical gamma power during 
motor performance in conjunction with a decrease in alpha and beta power. 
Similarly, a shift from beta to gamma synchronization has been found between 
cortical and spinal activity during motor preparation (Schoffelen et al., 2005) as 
well as during periodically modulated dynamic isometric force output (Omlor 
et al., 2007). Such results can been interpreted as evidence for a functional 
segregation between frequency bands with a specific functional role of gamma 
synchronization in establishing effective neural communication (e.g., Munk et 
al., 1996; Fries, 2005; Schoffelen et al., 2005). The central role of gamma 
synchronization in cortical motor control has not received extensive empirical 
support yet, which may be partly due to the frequency range that has been 
examined most, i.e. from 0 to 45 Hz (e.g., Kilner et al., 2000, and Section 7.2). 
Nevertheless, the shift towards higher frequencies with increasing processing 
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demands seems to be a general phenomenon in brain functioning as similar 
shifts in frequency content are present, for instance during sleep-wake 
transitions (see, e.g., Boonstra et al., 2007c, for a review) and in various 
pathologies (e.g., Stam et al., 2002). Likewise, most low-frequency 
synchronization patterns during motor control are related to pathologies such 
as tremors, as discussed in Chapter 2.  

Alternatively, a transition to synchronization between different 
frequencies may occur during dynamic motor tasks. For instance, it has been 
proposed that functional integration of neuronal systems may proceed at the 
level of transient dynamics (Friston, 1997). In transient coding the incoming 
activity from one population exerts a modulatory influence not on the activity 
of units in the second population but on the interactions among these units to 
change the population’s intrinsic dynamics. In that case, the prevalence of 
certain frequency components in one cortical area will be associated with the 
expression of different frequencies in another area (Friston, 1997). Finally, a 
transition from periodic to erratic dynamics has been studied extensively in the 
field of complex systems. As described in Chapter 1, the coupling between 
interacting dynamical systems determines the overall dynamics. If control 
parameters are scaled beyond critical points, the entire system may undergo a 
phase transition resulting in a qualitative change in the macroscopic dynamics 
and reveal, for instance, erratic behavior. Systems on the edge of regular and 
chaotic behavior have been claimed to have features related to an optimal state 
of information processing (Tononi et al., 1998; Stam, 2004). For example, the 
neural system may be organized as scale-free networks displaying power-law 
scaling behavior of spontaneous oscillations that allows for quick 
reorganization during processing demands (Linkenkaer-Hansen et al., 2001). 
The balance between excitatory and inhibitory input appears crucial for the 
formation of scale-free dynamics (Shin and Kim, 2006). Interestingly, an 
experimental study by Berg and coworkers (2007) showed that the synaptic 
excitation and inhibition of motoneurons varies in phase during rhythmic 
scratch-like activity in turtles. That is, inhibition and excitation peak together 
during the depolarizing waves of scratch episodes, hampering regular firing by 
increasing membrane conductance and promoting irregular firing. 

In sum, consistent changes in neural synchronization were found in 
various experimental settings substantiating the theoretical framework that was 
put forward in Chapter 1. Specifically, beta activity desynchronized during 
rhythmic movements both within the motor cortex (meso-scale) and between 
cortex and spinal cord (macro-scale). These findings pose a challenge to 
theories that consider neural synchronization, as measured by fixed-frequency 
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phase locking, essential for achieving effective motor control. The transition 
from a synchronized to a desynchronized state might be due to different types 
of reorganization of neural dynamics. The different scenarios discussed above 
all point at a transition to a new state in which there are still temporal 
correlations between neural activities at different levels of the motor system, 
but which cannot be adequately quantified with the methods used in this 
thesis. As such, they are consistent with the general focus on change, and the 
dynamical system approach in particular, from which the work reported in this 
thesis was motivated. Only when the relation between cortical and spinal 
activity is robbed from all temporal correlations, i.e. as in the case of pure rate 
coding, this focus turned out to be misguided. 
 

7.4 Future directions 

 
In this thesis, I adopted a focus on change to uncover how the nervous system 
exerts control over the muscles. From this general framework a more specific 
prediction was derived, namely that neural synchronization plays a functional 
role in motor control. In particular, by forming macroscopic synchronization 
patterns appropriate motor control signals may be assembled and spinal 
activity may be entrained by cortical activity to achieve effective motor 
control. To investigate the plausibility of this scheme, various experiments 
were conducted in which neural synchronization was manipulated by varying 
task parameters. Neural synchronization was found in different frequency 
bands and the level of synchronization was affected by various task parameters 
consistent with the alleged functional role of neural synchronization. 
However, during rhythmic motor performance corticospinal synchronization 
could not be determined. The data presented in this thesis therefore renders the 
hypothesis that fixed-frequency phase locking between cortical and spinal 
activity serves as a general mechanism for achieving effective motor control 
unlikely. From the perspective of complex systems different macroscopic 
dynamics can be expected that may serve as means of corticospinal interaction 
and several methods have been discussed that may be able to quantify these 
instances of generalized synchronization. These possible extensions assume 
different temporal correlations between neural activities along the spinal tract 
during dynamic motor performance and are therefore in agreement with the 
core commitment of this paradigm or research program.  
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This research program appears therefore progressive and requires further 
support to evolve to a mature state resembling realism. According to Lakatos 
(1978) the appraisal of a research program is based on its recent performance in 
terms of empirical and theoretical progress and choices between programs are 
made based on this progress, not on the basis of a single critical experiment. 
Laudan (1977) posited that the preferable theory is one that maximizes 
empirical successes while minimizing conceptual liabilities. According to both 
philosophers, experimental evidence plays a crucial role in theory appraisal, 
and similar to Kuhn (1962), contradicting evidence does not lead to a rejection 
of a research program, but to modifications of the ontology and methodology 
common in the successive theories. In a similar vein, the experimental findings 
of this thesis, i.e. the absence of corticospinal synchronization during rhythmic 
movement, should not result in the abandonment of this paradigm, but to the 
formulation of new extensions of the theory. The adjustment of specific 
predictions to incorporate new experimental results indeed appears to be the 
natural course of scientific development (cf. Laudan, 1977; Lakatos, 1978). In 
particular, research programs are suggested to evolve from an initial state 
resembling instrumentalism to a mature state resembling realism (Lakatos, 
1978)13. 

If these ideas are applied to the research program embarked upon in the 
present thesis, it is evident that it is still largely in an instrumentalistic stage. 
The experimental findings that were obtained in the form of task-dependent 
changes in neural synchronization are consistent with other literature on 
neural synchronization as stipulated in the individual discussions. As such, 
scientists of different theoretical persuasions agree how to measure 
synchronization and the resulting outcomes are generally in accordance with 
each other. However, a consensus remains to be established on the underlying 
neural process that brings about these patterns of synchronization. Neural 
synchronization may be referred to as functional connectivity (Gerstein et al., 
1978; Friston, 1994; Tononi et al., 1998; Sporns et al., 2000), i.e. patterns of 
temporal correlations between distributed activity related to cognitive or 
behavioral functioning (cf. Cabeza and Kingstone, 2001). To establish a 
realistic, as opposed to an instrumental, understanding of neural 

                        
13 These ideas closely resemble Popper’s ideas on the searchlight theory (1972): “If 
in this way we look out for new observations with the intention of probing into 
the truth of our myths, we need not be astonished if we find that myths handled in 
this rough manner change their character, and that in time they become what one 
might call more realistic or that they agree better with observable facts.” 
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synchronization, the data on functional connectivity should be linked to other 
data on the neural organization of motor control. In particular, the integration 
of the different levels of observation, or organization, i.e. the micro-, meso-, 
and macro-scale, seems to be a prerequisite for a comprehensive description of 
neural dynamics (cf. Haken, 1996). The interaction between different levels can 
be rigorously investigated in the immediate vicinity of phase transitions. There, 
the system’s subcomponents partition into order parameters and enslaved 
modes and in most cases the dynamics of the order parameters are low 
dimensional compared to the entire high-dimensional system. Phase transitions 
can thus be used to identify a system’s macroscopic and microscopic dynamics. 
In this manner, the interaction between scales of organization can be captured 
to understand how meso-scale dynamics result in the formation and 
annihilation of corticospinal synchronization during motor performance. 

Based on the findings of this thesis, the neural dynamics along the 
corticospinal tract during dynamic motor tasks appear to be the prime 
candidate for future research. The transition between different motor states, 
such as static holding, readiness to respond and dynamic motor performance, 
seems to be a suitable experimental protocol to investigate the change in 
temporal correlations between spinal and cortical activity. These motor states 
are associated with distinct effects on the frequency content of neuronal 
activity and it is expected that a transition in motor state will be accompanied 
by qualitative changes in neural dynamics. That is, the switch to dynamic 
motor performance may be accompanied by a phase transition in the neural 
dynamics resulting in a qualitative change in macroscopic dynamics, e.g., from 
a periodic to a strange attractor. Furthermore, new data analysis methods can 
be applied to examine whether other forms of temporal correlations are present 
during dynamic motor performance or the total loss of stability. Finally, by 
gradually decreasing the movement frequency until it resembles static 
contraction, the frequency at which corticospinal beta synchronization 
reappears can be established. Similarly, the movement frequency can be 
gradually increased from very slow movement frequencies to examine whether 
the corticospinal synchronization disappears again at the same movement 
frequency or whether hysteresis is present providing further information about 
the stability of the observed dynamics. 

The adopted focus on change in general and neural synchronization in 
particular has proven to be a successful perspective to investigate neural 
activity. It has prompted several research questions that have been tested 
experimentally in this thesis. The resulting data largely agreed with the theory 
of this research program and deviating findings led to theoretical extensions in 
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the form of new hypotheses. Promising and exciting new directions were 
formulated to test the validity of these new hypotheses in future experimental 
work, which, no doubt, will lead to further theoretical developments, and so 
on, ad infinitum.  
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Appendix A 

Principal component analysis 
 
To further explain the key feature of the here applied PCA, we denote a finite 

set of N power or coherence spectra by sn fk( ){ } with n = 1,2,…,N. The 

arguments fk (k = 1,2,…,L) represent discrete frequencies resulting from a 
discrete Fourier transform. We further define a single spectrum’s mean over all 

frequencies as 
  

sn = 1
L sn fk( )k=1

L∑ . For the sake of simplicity, we omit the fk 

dependency whenever possible. As will be explained below, PCA qualifies 
signal combinations via their contribution to the entire set’s variance so that it 
is convenient to discuss the signals’ deviations from their mean rather than the 
original set. The major goal using PCA can thus be seen as finding a proper 
approximation of these deviations for all frequencies fk, which can be 
formalized as 

 
  
sn − sn ≈ vnqξqq=1

M∑ ; (1) 

vnq are scalar factors (or weights), while ξ q represent M distinct functions of 

frequency, that is, ξ q = ξ q(fk). Especially in the case of M < N , that is, 

whenever the N-dimensional set sn fk( ){ } is to be reduced to an M-

dimensional set 
 

ξq fk( ){ }, one may ask how to determine the factors vnq. To 

answer this question, least squares fits can be used under the constraint that the 

to-be-determined sets 
   

v11 , v 21 ,K , v N 1{ }, v12 ,v22 ,K,vN 2{ },…, v1M ,v2 M ,K,vNM{ } 

are linearly independent and orthogonal (see below). The fit can be cast in the 
form 

 

  
error = sn − sn( )− vnqξqq=1

M∑⎡
⎣⎢

⎤
⎦⎥

2

n=1

N∑ = min! (2) 
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That is, the sum of all mean (squared) Euclidean distances between signals and 
approximation is to be minimized. The aforementioned orthogonality reads 

 
  

vnpvnqn=1

N∑ = δ pq =
1 for p = q
0 otherwise
⎧
⎨
⎩

, (3) 

providing sufficient constraints for a unique solution of (2). Half a century ago 
(Loève, 1945; Karhunen, 1946; Loève, 1948) showed that the solution of (2) 
corresponds to eigenvectors of the original signals’ covariance matrix with 

elements 
 
Cnm = sn − sn( ) sm − sm( ) . That is, v1q ,v2q ,K,vNq{ } is identical to 

the q-th eigenvector of 
 

Cnm{ } allowing for an algebraic solution of (2) without 

the need for a time-consuming minimization procedure. Next to the 
eigenvectors, PCA yields two extra features that, in combination, define the 
principal modes. First, the eigenvalue, ξ q, which accompanies the eigenvector 

   
v1q ,v2q ,K,vNq{ } may serve as measure of the q-th mode’s contribution to the 

signal set’s total variance – we always sorted modes by the size of ξ q in 

descending order. Second, the mode’s frequency dependency is given by 
ξ q = ξ q(fk) that can be obtained by projecting the original data si(fk) onto the 

(orthogonal) eigenvectors like 

 
  

vnq sn − sn( )n=1

N∑ ≈
(1)

vnq vnpξnpp=1

M∑n=1

N∑ = vnpvnqξpp=1

M∑n=1

N∑ =
(3)

ξq . (4) 

Put differently, for every frequency the different ξq fk( ) are ‘weighted means’ 

of the original spectra 
 

sn fk( ){ } (after subtracting the mean). Examples for 

these projections are given, e.g., in the left panels of Figures 2.4 and 2.7. In 
these figures the axis titles show λ p – we always normalized the spectra to unit 

variance, that is, the total variance was equal or λpp=1

N∑ = 1; the figures’ right 

panels display different combinations of the weights (or eigenvector’s 
coefficients) vnq. 

Notice that with equation (1) the original data set sn{ } can be 

approximately reconstructed using the determined weights vnq{ } and 

projections 
 

ξq{ }. The quality of this approximation generally improves with 

an increasing number of incorporated modes, that is, the larger M, the smaller 
the error (2) unless the analyzed data are strictly redundant. 
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Appendix B 

MEG-compatible force sensor 
 

Introduction 

 
Over the years, MEG has proven to be a reliable tool in studying electro-
magnetic activity in the cortex. Despite the weakness of neural sources that 
generate magnetic fields of only a few hundred fT, superconducting quantum 
interference devices yield excellent signal-to-noise ratios. Especially when 
arranged as nth order gradiometers (Weinberg et al., 1984; Vrba et al., 1991), 
noise levels may become as low as 10 fT×rms/Hz½ (Fife et al., 1999; Vrba, 
2002). Given the sensitivity of MEG, however, additional hardware is difficult 
to integrate in experimental settings. In particular, electronic devices need to be 
shielded as they always generate magnetic fields. Metal in general will cause 
magnetic inductions when moved, which not only renders the use of metal-
based constructions difficult but may also hamper MEG recordings, for 
instance, in patients with metallic implants. Hence, it seems inevitable to avoid 
external (moving) metal constructions in MEG. Certain alloys in specific 
geometrical shapes, however, appear to be MEG-compatible and are used, for 
instance, to simultaneously record the electro-encephalogram and/or the 
electromyogram (Weinberg et al., 1990; Virtanen et al., 1996; Grosse et al., 
2002). 

In MEG studies, the motor system has been a primary focus of many 
research groups. Most of these studies involve active limb movements, 
especially finger and hand movements, to investigate corresponding activities 
in sensorimotor areas. By now, the movements themselves have been 
monitored by several means that can be classified in two categories: recordings 
of movement instances, i.e. specific points within the movement versus 
recordings of movement trajectories (e.g., velocity, force). Paradigmatic for the 
first category are piezoelectric-crystal based sensors (Benzel et al., 1993) and 
optical switches (Xiang et al., 1997). Optical switches are commonly used  
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because they produce the least artifacts and, in principle, allow for non-contact 
measurements. Realizing the second category, that is, recovering movement 
trajectories is seemingly more difficult. Presently used techniques range from 
air-inflated plastic pillows (Kelso et al., 1998) to opto-mechanical constructions 
(Kilner et al., 2000) that, unfortunately, all suffer from both practical and 
technical problems. Recording isometric forces with inflated pillows, for 
instance, (i) restricts the force that can be produced in view of material 
restrictions; (ii) confines the resolution of force recordings due to the elasticity 
of the pillow; (iii) causes significant delays due to the subsequent air-pressure 
transmission with finite velocities. Correcting for the latter requires rather 
accurate calibration, which might be difficult in the case of pressure-dependent 
transmission velocities. In any case, due to the delay, inflated pillows cannot be 
used when an instantaneous feedback of force production is required. 

 
Figure B1   Left upper panel: Mounted force sensor, here implemented for the 
recording of isometric thumb adduction. Left lower panel: idem but for the 
recording of finger tapping. Right upper panel: Blueprint of the force sensor (units 
mm) developed in T-design software (BLH®, Canton, Mass.). Right lower panel: 
the force/voltage relation is practically linear (deviation < 1‰). 
 

We developed a force sensor based on the reversed bending beam 
principle, as is commonly used in strain gauge based sensors. The special 
feature of the sensor described here, which makes it compatible with MEG, is 
the insulating, elastic material of which it is made. The material in question 
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consists of thermosetting resins, homogeneously reinforced with wood or 
cellulose fibers, and manufactured under high pressure and at high 
temperatures (Trespa International B.V. Weert, The Netherlands). 
Importantly, with this material one can cover a wide range of force strengths 
(Young’s modulus is about 18500 N/mm2) and it can be flexibly used to 
construct other kinds and forms of force sensors, such as the double bending 
beam. Depending on the chosen layout, various types of forces can be easily 
measured (in the left panels of Fig. B1 we illustrate implementations for the 
recording of isometric thumb adduction and for finger tapping allowing for 
forces up to 307 N). The force itself is converted to an electric potential by two 
strain gauges (BLH®, strain gauge type: FAE2-A6174J-35-S13E, 350 Ω) with 
sensitivity of 2.199 ± 0.0017 mV/V at 307 N (Hoffmann, 1989). 
 

Methods and Materials 

 
CALIBRATION   The force sensor was calibrated and tested for linearity using 
standard weights ranging from 0.1 to 1.9 kg (step size 0.1 kg) including a null 
measurement.  
 
PROCEDURE   To test for artifacts, the force sensor was mounted on a stool and 
placed at three different distances (0.6, 0.9, and 1.1 m) from the center of the 
dewar. A participant sat at about one meter distance and pressed the sensor at a 
self-paced frequency of about 2 Hz while the magnetic field was recorded. For 
comparison we added two control conditions. In the first control condition, a 
participant sat at about one meter distance from the MEG scanner without 
pressing the force sensor to obtain a baseline in terms of residual noise of the 
MEG. In the second control condition, the same participant was sitting next to 
the MEG and pressed the sensor while another, second participant was lying in 
the MEG with the instruction not to move – this enabled us to determine the 
strength (or weakness) of the magnetic field induced by the sensor relative to 
the baseline brain activity. Finally, the usability of the sensor was illustrated by 
a supplementary MEG recording during which a participant was lying in the 
MEG pressing at a self-paced tempo of about 2 Hz causing motor-evoked 
fields (isometric thumb adduction). In all conditions a recording of ~105 s was 
made (217 samples). 
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Figure B2   Left panels: Spectral power P(f) as a function of frequency f computed 
via Welch’s periodogram method (overlapping Hamming windows with a length of 
214 samples; square root of normalized power spectral densities) of three conditions: 
at a distance of Δmin = 0.6 m the sensor was pressed by the participant sitting next to 
the MEG (blue lines); a participant was located next to the MEG, the sensor was 
not pressed (first control condition, black lines); the sensor was pressed by the 
participant sitting next to the MEG while another participant was resting in the 
MEG (second control condition, red lines). ADC refers to the force sensor’s output 
(upper panel), MEG refers to the mean of all MEG channels (lower panel: peaks in 
the power spectra with participant in MEG represent the participant’s heart beat). 
Right panel: movement-related averaged fields obtained at a distance of Δmin = 0.6 
m. Events were based on the maxima of force sensor’s output (Nevents = 240); 
absolute values are always below 4 fT; inlet displays data of a single channel. 
 
DATA ACQUISITION   The MEG compatibility of the newly developed device 
was tested using a 151 whole-head MEG (CTF Systems Inc., Vancouver, 
Canada) at the VU University medical center in Amsterdam, the Netherlands. 
We used an excitation of 3.33 V. After pre-amplification (National 
Instruments, SCXT-1121, gain = 1000) the force sensor’s output was recorded 
using an ADC channel of the MEG amplifier. All signals were on-line low-
pass filtered at 415 Hz and digitized at 1250 Hz for off-line analysis. 
 
DATA PROCESSING   The effect of the force sensor on the MEG recordings was 
examined by means of spectral analysis of both signals. No off-line filtering 
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was performed on the data before computing the normalized power spectral 
densities via Welch’s periodogram method (overlapping Hamming windows 
with a length of 214 samples). To examine the size of the induced effect, the 
MEG data were averaged relative to the maximum of the force output of each 
cycle. Before averaging, linear trends in the data were removed and the data 
were filtered (4th order Butterworth low pass filter; cut-off frequency 45 Hz) to 
eliminate artifacts from power line interference and other high frequency noise. 
Equivalently, the motor-evoked fields in the final condition were calculated 
demonstrating the usability of the force sensor. 

 
Figure B3   Motor evoked fields obtained in the final condition (Nevents = 135). Left 
panel: dipolar distribution of motor evoked field over the helmet (at t = 0.1 s). Right 
panel: motor evoked fields (in fT) of two channels as function of time. Channels are 
located at extrema of the fields shown in the left panel 

Results 

 
The precision and linearity of the force sensors were remarkably high. 
Measured with 3.33 V excitation and forces smaller than 20 N the non-linearity 
was about 0.03 N, as is illustrated in Figure B1 (right panel). The average 
maximal forces of each cycle produced at the three distances were 24, 21, and 
20 N, respectively. Since the sensor-related magnetic field was extremely small 
we only report the results obtained with the sensor positioned at the smallest 
distance to the MEG dewar (Δmin = 0.6 m). Figure B2 shows the mean power 
spectra of all MEG channels (lower panel) as well as the movement-related 
averaged MEG signals (right panel) indicating a maximum magnetic field 
below 5 fT. Neither the power spectra nor the time series hinted at structured 
correlations between the force sensor’s output (Fig. B2, upper panel ADC) and 
the recorded magnetic field. The comparison with the control recordings 



Neural dynamics of human motor control 

 136 

revealed that the strength of the small magnetic fields was always below the 
MEG’s noise-level. Possible artifacts are therefore expected to be negligible in 
experimental settings. Indeed, when a participant was lying in the MEG and 
pressed on the force sensor (final condition), we could not determine any 
differences to the commonly reported dipolar structures. Figure B3 shows 
corresponding recordings of the magnetic field above the left motor cortex 
during isometric adduction with the thumb of the right hand. 
 

Discussion 

 
If at all presents, induced magnetic fields are below magnitude of typical MEG 
noise levels; the force sensor can therefore be used to record forces in most 
MEG measurements. Because signal recording and processing are purely 
electrical, eventual delays can be neglected, unless deliberately created. The 
sensor can be used to measure force in different directions by mounting it in 
different ways. Furthermore, the use of the plastic-like material allows for 
constructing the sensor in different shapes, thus, making it adaptable to use in a 
variety of experimental settings even if the to be recorded forces are high. In 
sum, the newly developed device allows for robust force trajectory 
measurements while recording MEG. The sensor is easily integrated in 
common MEG settings and can be flexibly utilized in experiments involving 
different kinds of (isometric) force production even at small distances. 
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Summary 
 
The present thesis addresses the question how cognitive processes influence the 
neural control of action. Cognition was expected to modulate neural dynamics, 
in general, and oscillatory activity and its synchronization, in particular. To 
investigate this general expectation, several experiments were conducted in 
which task-related variables like force level, central and peripheral fatigue, 
movement tempo, and task difficulty, were varied to induce changes in the 
accompanying neural synchronization. Neural activity was recorded using 
electromyography (EMG) and magnetoencephalography (MEG), while 
participants performed either static isometric or dynamic rhythmic tasks. 

In Chapter 1, basic concepts of synchronization in brain activity are 
introduced. It is argued that a focus on synchronization stands in the scientific 
tradition that considers processes as fundamental and is therefore 
complementary to more structure-oriented approaches that try to identify 
modular processes of specialized brain regions. Next, a concise sketch of the 
theory of complex systems is provided because this theory provides an 
adequate conceptual framework for studying the behavior and coupling of 
dynamical compounds like neural oscillators, as has been amply demonstrated 
in the field of neuroscience. This sketch is followed by a brief discussion of the 
pertinent literature on neural synchronization showing that synchronization 
can provide mechanisms of feature binding or motor integration. Finally, the 
thesis’ main threads are outlined by introducing the investigated experimental 
tasks and applied data analysis methods.  

In Chapter 2, two experiments are discussed that examined the effects of 
muscle fatigue on motor-unit (MU) synchronization between the quadriceps 
muscles of both legs. Muscle fatigue was expected to result in an increased 
common drive to different MUs of synergists within a leg and, hence, to 
increased MU synchronization. It was further expected that fatigue-related 
motor overflow may cause MU synchronization of homologous muscles of 
both legs, although to a lesser extent than for synergists within a leg. In the 
first experiment, different levels of fatigue were induced by varying posture 
(knee angle), while in the second experiment fatigue was induced by having 
participants produce different force levels in a fixed posture. Synchronization, 
quantified in terms of coherence between surface EMG, was found in two 
distinct frequency bands (6-11 and 13-18 Hz), more prominently so within a 
leg than between legs. The inter-limb synchronization in the 6-11 Hz 
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frequency band increased with fatigue and resembled increased motor 
overflow during unimanual contractions. As such, the two phenomena may be 
related in that they both indicate a fatigue-induced increase in bilateral 
coupling. MU synchronization at 13-18 Hz was clearly different and depended 
on posture. 

Chapter 3 reports a similar experiment that was designed to study the 
relation between bilateral MU synchronization and motor overflow. The 
bilateral coupling between homologous arm muscles was compared during 
fatiguing elbow flexion and extension contractions. Similar to the results of 
Chapter 2, MU synchronization was found in the 8-12 Hz frequency band, 
more strongly so when fatigued. This fatigue-related increase in bilateral MU 
synchronization was stronger between extensor than between flexor muscles, 
which appeared consistent with the literature on mirror movements and 
supported the alleged link between bilateral MU synchonization and fatigue-
related motor overflow. In contrast to the study on leg muscles in Chapter 2, 
the arm muscles did not exhibit MU synchronization in the 13-18 Hz 
frequency band, which seemed consistent with the hypothesis that MU 
synchronization in the higher frequency band, as described in Chapter 2, was 
linked to balance maintenance. The results are discussed in terms of common 
bilateral input and substantiate the idea that common input is functionally 
organized.  

The experiment reported in Chapter 4 deals with the effects of sleep 
deprivation (SD) on cortical brain activity during acoustically paced rhythmic 
force production. MEG was recorded during a rhythmic motor task that was 
conducted at two consecutive days between which SD was induced by keeping 
participants awake, i.e. participants did not sleep for at least 24 hours. Effects 
of SD on brain activity were examined via spatial distribution of spectral 
power over the scalp at different frequency bands and via auditory- and 
motor-evoked fields. For the latter, principal component analysis (PCA) 
revealed that auditory- and motor-evoked fields were attenuated after SD. 
Furthermore, an anterior shift of alpha power towards more frontal channels 
was found. At the behavioral level, SD resulted in a reduction of the lag 
(negative asynchrony) between produced forces and acoustic stimuli at higher 
movement tempos. Conjointly, these results are interpreted in terms of a 
change of central processing of afferent sensory input due to SD. 

In Chapter 5, the event-related brain activity associated with the 
performance of an acoustically paced synchronization task is further examined. 
To gain insight into the neural dynamics causing the auditory- and motor-
related activity, the amplitude and phase dynamics inherent in MEG signals 
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were analyzed across frequency bands. By comparing amplitude and phase 
dynamics, a distinction was made between so-called evoked and induced 
responses. Again, PCA was used, this time, however, to compare amplitude 
and phase changes during mere listening, paced and unpaced tapping. Using 
PCA allowed for a separation of brain activity related to motor and auditory 
processes, respectively. Motor performance was accompanied by phasic 
amplitude changes and increased phase locking with the taps in the beta band. 
Auditory processing of acoustic stimuli resulted in a simultaneous increase of 
amplitude and phase locking with those stimuli in the theta and alpha band. 
The temporal overlap of auditory-related amplitude changes and phase locking 
indicated an evoked response, in accordance with previous studies on auditory 
perception. The temporal difference of movement-related amplitude and phase 
dynamics in the beta band, on the other hand, suggested a change in ongoing 
brain activity, i.e. an induced response supporting previous results on motor-
related brain dynamics in the beta band. 

Chapter 6 concerns a study on the changes in neural synchronization 
during motor learning. To this end, MEG and EMG activity was recorded 
while participants learned to perform a 5:3 polyrhythm. As this task involved 
bimanual rhythmic activity at distinct movement tempos, it was expected to 
elicit neural activity in bilateral motor cortices that could be readily 
disentangled. Building on the results of Chapter 5 regarding motor-related 
fields, synthetic aperture magnetometry (SAM) analysis was used in focusing 
on the beta band in order to separate bilateral activity in both motor cortices. 
On a behavioral level, performance converged onto the to-be-learned 5:3 
polyrhythm in the course of the experiment. The SAM-based reconstruction of 
the activity of the motor cortices revealed phasic changes in beta activity 
related to force production of the contralateral finger. The degree of beta 
modulation increased during the experiment and was positively correlated with 
motor performance, in particular for the motor cortex contralateral to the slow 
hand. These findings support the view that activity in motor cortex co-varies 
closely with behavioral changes in the course of learning. 

In Chapter 7, the epilogue, the theoretical framework presented in 
Chapter 1 is recalled in order to discuss the implications of the experimental 
results for the understanding of brain dynamics. It is concluded from those 
results that neural synchronization is ubiquitous during the execution of motor 
tasks. In particular, two distinct synchronization patterns stood out in the 
various experimental settings: the 10 Hz synchronization between bilateral 
EMGs and the beta modulation above the contralateral motor cortex during 
rhythmic motor tasks. Moreover, neural synchronization was consistently 
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modulated by various task parameters, in line with the alleged functional role 
of neural synchronization. Neural synchronization therefore appears to be a 
significant characteristic of the neural dynamics of motor control and an 
essential vehicle for the understanding of the temporal aspects of neural motor 
control. The collective results are thus consistent with the theoretical 
framework capitalized upon in this thesis and contribute to current discussions 
as to how the brain processes information in general. Especially the absence of 
beta synchronization during rhythmic motor performance is deemed revealing 
in this regard, i.e. cortical beta activity was attenuated during periods of phasic 
motor control and corticospinal synchronization was largely absent during 
rhythmic motor control. These findings suggest that instances of rhythmic and 
static motor control differ fundamentally. Apparently, periodic synchronized 
behavior does not serve as a means for motor-related information transfer 
between cortical and spinal areas during rhythmic motor performance. In this 
context, recent literature is discussed on the mode of information processing 
employed by the central nervous system and possible other forms of 
synchronization that may be present during dynamic motor control. Based on 
this discussion, new directions for future research are suggested that can 
experimentally test these extensions of the initiated research program.
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Samenvatting 
 

Neurale dynamica van de bewegingssturing 
 

De mens is in staat om met grote precisie naar doelen te bewegen, ritmische 
patronen te produceren, krachten op de omgeving uit te oefenen en 
voorwerpen op te pakken. Deze motorische vaardigheden komen tot stand 
dankzij een gecoördineerd samenspel van onze spieren. Bij dit samenspel is een 
groot aantal neurale structuren betrokken, waaronder het ruggenmerg, de 
basale kernen en de cerebrale cortex. Hoe deze neurale structuren elkaar via 
informatie-uitwisseling beïnvloeden wordt al geruime tijd onderzocht, maar dit 
heeft nog niet tot algemeen aanvaarde antwoorden geleid. De in dit proefschrift 
beschreven experimenten hadden tot doel meer inzicht te verschaffen in de 
interacties tussen de neurale structuren die bij bewegingssturing betrokken 
zijn. In deze experimenten werden factoren gemanipuleerd die de 
taakuitvoering beïnvloeden, zoals spiervermoeidheid, slaapdeprivatie, 
bewegingssnelheid en de moeilijkheidsgraad van de taak. Verwacht werd dat 
deze manipulaties zouden leiden tot modulaties in neurale activiteit, zoals 
gemeten met electromygrafie (EMG) en magneto-encephalografie (MEG). 
Gedetailleerde analyse van deze modulaties zou vervolgens inzicht moeten 
geven in de aard en functie van de bestudeerde activiteit. 

 
In hoofdstuk 1 wordt het theoretisch kader van het onderzoek geschetst. 
Binnen het onderzoek naar de relatie tussen hersenen en gedrag zijn 
verschillende benaderingen te onderscheiden, elk met hun eigen 
uitgangspunten. Enerzijds zijn er benaderingen waarin voornamelijk 
geprobeerd wordt de verschillende hersenstructuren, die betrokken zijn bij de 
sturing van bewegingen, in kaart te brengen om zo een idee te krijgen van hun 
functies. Andere benaderingen richten zich juist op het samenspel van activiteit 
tussen deze hersenstructuren. Het onderzoek in dit proefschrift behoort tot de 
tweede categorie en volgt een benadering die stoelt op de dynamische-
systeemtheorie. Vanuit deze invalshoek wordt de neurale activiteit beschouwd 
in termen van gekoppelde neurale oscillatoren. Wiskundig gezien kunnen 
dergelijke systemen allerlei gedragingen vertonen waarin verschillende regimes 
zijn te onderscheiden. Zo blijkt uit empirisch onderzoek dat verschillende 
neuronen of groepen van neuronen synchroon gedrag vertonen dat beïnvloed 
wordt door wat de proefpersoon waarneemt of doet. In hoofdstuk 1 wordt 
kort de literatuur over het centrale begrip neurale synchronisatie en de 
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functionele betekenis daarvan besproken. Om meer inzicht te krijgen in de rol 
van synchronisatie bij bewegingssturing werd een reeks van experimenten 
uitgevoerd, waarin, zoals gezegd, verschillende variabelen werden 
gemanipuleerd om de effecten daarvan op de neurale synchronisatie te 
bestuderen.  

 
In hoofdstuk 2 worden twee experimenten behandeld waarin het effect van 
spiervermoeidheid op de synchronisatie tussen motorische eenheden wordt 
onderzocht. Een motorische eenheid bestaat uit een motorneuron in het 
ruggenmerg en de spiervezels die door dit neuron worden aangestuurd. 
Motorneuronen worden op hun beurt aangestuurd door hoger gelegen neurale 
structuren. De verwachting was dat de gezamenlijke aansturing van 
verschillende motorische eenheden, en daarmee de mate van hun 
synchronisatie, zou toenemen bij toenemende spiervermoeidheid.  

In beide experimenten voerden de proefpersonen een taak uit waarin zij 
continu een bepaalde kracht moesten leveren door de kniestrekkers in beide 
benen isometrisch aan te spannen. In het eerste experiment werd 
spiervermoeidheid geïnduceerd door de lichaamshouding van de proefpersoon 
te veranderen, zodat het steeds moeilijker werd om deze houding vol te 
houden. In het tweede experiment moest de geproduceerde kracht verhoogd 
worden bij dezelfde houding. Synchronisatie werd gekwantificeerd in termen 
van de coherentie tussen oppervlakte-EMG’s. In twee frequentiebanden werd 
synchronisatie gevonden, namelijk tussen 6 en 11 Hz en tussen 13 en 18 Hz. 
Deze synchronisatie was sterker tussen de activiteit van spieren binnen één 
been dan tussen dezelfde (homologe) spieren van beide benen. Naarmate 
proefpersonen vermoeider raakten nam ook de synchronisatie tussen de 
activiteit van de homologe spieren toe in de frequentieband van 6 tot 11 Hz. 
Dit verschijnsel is vergelijkbaar met het ‘motor overflow’-fenomeen, waarbij 
aanspanning van een enkele ledemaat leidt tot spieractiviteit in de andere 
ledemaat. De toegenomen synchronisatie en het ‘motor overflow’-fenomeen 
hangen mogelijk met elkaar samen, omdat beide optreden tijdens 
spiervermoeidheid en tevens duiden op een toenemende koppeling tussen 
ledematen. De waargenomen synchronisatie tussen motorische eenheden in de 
frequentieband van 13 tot 18 Hz vertoonde echter geen duidelijke verandering 
met spiervermoeidheid, maar leek meer beïnvloed te worden door de 
ingenomen houding. 
 
In hoofdstuk 3 wordt de relatie tussen ‘motor overflow’ en de synchronisatie 
tussen motorische eenheden van homologe spieren verder onderzocht. Dit 
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gebeurt aan de hand van een experiment waarin de synchronisatie tussen 
motorische eenheden van (vermoeide) homologe bovenarmspieren werd 
vergeleken bij buiging en strekking van de elleboog. Net als in hoofdstuk 2 
werd synchronisatie gevonden in de frequentieband van 8 tot 12 Hz en deze 
nam weer toe met spiervermoeidheid. De toename in synchronisatie met 
vermoeidheid was sterker voor de elleboogstrekkers dan voor de -buigers. 
Deze bevinding komt overeen met de onderzoeksresultaten van eerdere studies 
waarin een sterkere ‘motor overflow’ wordt gerapporteerd voor strekkers dan 
voor buigers. 

In tegenstelling tot het onderzoek uit hoofdstuk 2 werd geen 
synchronisatie gevonden in de frequentieband van 13 tot 18 Hz. Dit is in 
overeenstemming met het idee dat synchronisatie in deze frequentieband 
gerelateerd is aan balanshandhaving en dus niet zal optreden tussen 
bovenarmspieren. De resultaten ondersteunen het idee dat de gezamenlijke 
aansturing van homologe spieren functioneel georganiseerd is. 

 
Het in hoofdstuk 4 gerapporteerde experiment beschrijft het effect van 
slaapdeprivatie op hersenactiviteit tijdens een taak waarin proefpersonen op 
geleide van auditieve signalen ritmisch kracht moesten produceren. Tijdens de 
uitvoering van deze taak werd MEG-activiteit gemeten. Het experiment vond 
plaats op twee opeenvolgende dagen. Gedurende de hele nacht tussen beide 
dagen werden de proefpersonen wakker gehouden, zodat ze op de tweede dag 
tenminste 24 uur niet geslapen hadden. Het effect hiervan op de 
hersenactiviteit werd bepaald aan de hand van de distributie van spectraal 
vermogen en de sterkte van de corticale activiteit in aan het gehoor en de 
motoriek gerelateerde velden. Principale Componenten Analyse (PCA) toonde 
aan dat de activiteit in deze velden een kleinere amplitude had na 
slaapdeprivatie. Verder verschoof het vermogen in de alpha-frequentieband van 
meer occipitale naar meer frontale MEG-kanalen. 

Uit de gedragsdata bleek dat de maxima in krachtproductie aan de tonen 
voorafgingen, hetgeen er op wijst dat de proefpersonen op de auditieve stimuli 
anticipeerden. Slaapdeprivatie resulteerde in een afname van deze anticipatie bij 
hogere bewegingstempi. Deze resultaten wijzen alle op een verandering van de 
centrale verwerking van sensorische informatie als gevolg van slaapdeprivatie. 

 
In hoofdstuk 5 werden de aan het gehoor en de motoriek gerelateerde velden 
van neurale activiteit nader onderzocht door de amplitude- en fasedynamica 
van de MEG-signalen te analyseren in verschillende frequentiebanden. 
Wederom werd PCA gebruikt om de MEG-activiteit tussen de verschillende 



Neural dynamics of human motor control 

 166 

experimentele condities te vergelijken, te weten: a) luisteren naar een ritme, b) 
met de vinger meetikken met het ritme, en c) het aangeboden ritme blijven 
produceren nadat de auditieve stimulus is weggevallen. Door de veranderingen 
in amplitude en fase te vergelijken bleek het mogelijk om geïnduceerde 
(induced) MEG-activiteit te onderscheiden van opgewekte (evoked) MEG-
activiteit. Bij opgewekte reacties treden amplitudemodulatie en fasekoppeling 
met een gebeurtenis gelijktijdig op, terwijl dit bij geïnduceerde activiteit niet 
het geval is.  

De resultaten van de PCA maakten het mogelijk om verschillende 
reacties in de hersenactiviteit te onderscheiden, die gerelateerd waren aan 
auditieve en motorische processen. Bewegingssturing ging samen met 
veranderingen in amplitude- en faseverdeling in de bèta-frequentieband binnen 
een bewegingscyclus. Het verwerken van de auditieve stimuli leidde tot een 
gelijktijdige toename van amplitude en fasekoppeling met deze stimuli in de 
thèta- en alpha-band, hetgeen wees op een opgewekte reactie. Dit resultaat 
kwam overeen met eerdere bevindingen in het onderzoek naar auditieve 
informatieverwerking. De aan motoriek gerelateerde veranderingen in 
amplitude en fasekoppeling met de beweging vonden niet gelijktijdig plaats, 
hetgeen wees op een geïnduceerde reactie. Geconcludeerd werd daarom dat de 
verschillende waargenomen veranderingen in hersenactiviteit werden 
teweeggebracht door verschillende onderliggende processen. 

 
In hoofdstuk 6 wordt een studie beschreven naar de veranderingen in neurale 
synchronisatie tijdens het leren van een motorische taak. MEG- en EMG-
activiteit werden gemeten terwijl de proefpersonen een 5:3-polyritme 
aanleerden, hetgeen inhoudt dat beide handen met een verschillend tempo 
dienden te bewegen in een frequentieverhouding van vijf staat tot drie. Omdat 
de bewegingsfrequenties van beide handen verschilden, was de neurale 
activiteit van beide motorcortices makkelijk te onderscheiden in de MEG-
signalen. Voortbordurend op de resultaten van hoofdstuk 5 over de aan 
motoriek gerelateerde velden, werd Synthetic Aperture Magnetometry (SAM) 
analyse toegepast om de bilaterale activiteit van beide motorcortices in de bèta-
band te scheiden. Deze analyse toonde een snelle verandering van bèta-
activiteit in beide motorcortices, die gerelateerd was aan de activiteit van de 
contralaterale hand. Dit is in overeenstemming met het anatomische gegeven 
dat de linker motorcortex verbonden is met de spieren aan de rechter kant van 
het lichaam en vice versa. De mate van bèta-modulatie nam toe gedurende het 
experiment en was positief gecorreleerd met het succes waarmee de 
proefpersonen het 5:3-polyritme uitvoerden. Deze correlatie was het sterkst 
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voor de motorcortex contralateraal van de langzame hand. Dit komt overeen 
met resultaten van gedragsstudies die aantoonden dat een polyritme wordt 
geleerd door het op de juiste manier timen van de bewegingen van de langzame 
hand ten opzichte van die van de snelle hand. 

 
In hoofdstuk 7, de epiloog, worden de resultaten van de experimenten 
geïnterpreteerd in termen van het in hoofdstuk 1 geïntroduceerde theoretische 
kader. Geconcludeerd wordt dat neurale synchronisatie een belangrijk 
kenmerk is van de hersenactiviteit die gepaard gaat met de uitvoering van 
motorische taken. Met name twee synchronisatiepatronen waren duidelijk te 
onderscheiden, te weten de 10 Hz-synchronisatie tussen homologe 
spieractiviteit (hoofdstuk 2 en 3) en de bèta-modulatie van activiteit van de 
contralaterale motorcortex gedurende ritmische taken (hoofdstuk 5 en 6). Deze 
synchronisatiepatronen werden bovendien systematisch beïnvloed door 
veranderingen in verschillende taakfactoren, hetgeen er op duidt dat 
synchronisatie een functionele rol speelt. De onderzoeksresultaten zijn in 
overeenstemming met het geadopteerde theoretische kader en dragen bij aan de 
huidige discussie over informatieverwerking in het brein. Met name de afname 
van bèta-synchronisatie gedurende ritmische bewegingstaken is wat dat betreft 
opmerkelijk: corticale bèta-activiteit werd onderdrukt gedurende korte 
episodes van bewegingssturing en corticospinale synchronisatie was 
grotendeels afwezig gedurende ritmische taken. Deze resultaten suggereren dat 
neurale bewegingssturing verschillend is voor dynamische en statische taken: 
bij laatstgenoemde taken werd, zoals beschreven in hoofdstuk 1, consistent 
corticospinale synchronisatie gevonden in de bèta-band. Blijkbaar speelt 
synchronisatie geen prominente rol bij de uitwisseling van motorische 
informatie tussen corticale en spinale gebieden tijdens de uitvoering van 
ritmische taken. 

De bevindingen uit het onderzoek worden in de epiloog verder 
gerelateerd aan recente literatuur over informatieverwerking door het 
zenuwstelsel en de verschillende vormen van synchronisatie die daarbij kunnen 
optreden. Gebaseerd op deze discussie worden uitbreidingen van het 
oorspronkelijke theoretisch kader voorgesteld en mogelijkheden besproken om 
deze experimenteel te toetsen. 
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