
TI 2007-041/3 
Tinbergen Institute Discussion Paper 

 

If Winning isn't Everything, Why do 
they keep Score? A Structural 
Empirical Analysis of Dutch Flower 
Auctions 

 Gerard J. van den Berg1,2,3 

Bas van der Klaauw1 

 

1 Free University Amsterdam, Tinbergen Institute, and CEPR; 
2  IFS London; 
3 IZA. 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15452501?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  

Tinbergen Institute 
The Tinbergen Institute is the institute for 
economic research of the Erasmus Universiteit 
Rotterdam, Universiteit van Amsterdam, and Vrije 
Universiteit Amsterdam. 
 
Tinbergen Institute Amsterdam 
Roetersstraat 31 
1018 WB Amsterdam 
The Netherlands 
Tel.: +31(0)20 551 3500 
Fax: +31(0)20 551 3555 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
Fax: +31(0)10 408 9031 
 
 
 
Most TI discussion papers can be downloaded at 
http://www.tinbergen.nl. 
 



If Winning Isn’t Everything,

Why Do They Keep Score?

A Structural Empirical Analysis of

Dutch Flower Auctions

Gerard J. van den Berg ∗

Bas van der Klaauw †

May 14, 2007

Abstract

This paper provides a structural empirical analysis of Dutch auctions of
houseplants at the flower auction in Aalsmeer, the Netherlands. The data
set is unique for Dutch auctions in the sense that it includes observations
of all losing bids in an interval adjacent to the winning bid. The size of this
interval is determined by the speed of reaction of the auction participants,
and as such these data are collectible due to neurological constraints on in-
formation processing. The data on losing bids are shown to be informative
on the structural model determinants. The models are estimated using the
Gibbs sampler with data augmentation. We take account of data limita-
tions concerning the number of bidders. The estimation results are used
to investigate whether actual reserve prices are optimal, and to determine
the effects of reserve price changes.
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1 Introduction

The Aalsmeer Flower Auction (AFA) is the largest flower auction and the largest

commercial edifice in the world (Guinness World Records, 2001). The annual

supply exceeds 4 billion flowers and 500 million plants, and the annual turnover of

auctioned products amounts to 1.5 billion Euro. Daily, around 19 million flowers

and 2 million plants are auctioned, resulting in around 50,000 daily transactions.1

AFA is located at the city of Aalsmeer, the Netherlands, close to Amsterdam

and Schiphol Airport. It is also the largest trade building in the world, with a

surface size of 150 football fields and an average daily number of 10,000 working

individuals, many of whom use a bicycle to get around.2 AFA uses the Dutch

auction mechanism, i.e., the price falls from an initial high price until a bidder

stops the auction. This bidder then obtains the object for the price at which he

stopped the auction.

We perform a full structural empirical analysis of auctions of potted house-

plants at AFA. Structural empirical analysis aims at the estimation of the under-

lying distribution of valuations of the bidders. This in turn enables the evalua-

tion of the imposition of counterfactual policies, notably concerning the minimum

price (or reserve price or reservation price) set by AFA. The data are taken from

electronically collected databases of AFA and cover all auctions of houseplants

during 14 days at the end of August and the beginning of September, 1996.

In the paper we argue that the independent private value (IPV) paradigm is

accurate for the AFA auctions, and we restrict attention to IPV models.3 By now,

there is an established literature on the structural estimation of IPV models (see

for example Hendricks and Paarsch, 1995, Laffont and Vuong, 1996, and Laffont,

1997, for surveys). The structural empirical analysis of Dutch auctions suffers

from a number of potential problems. First and most important, in general only

a single bid is observed per auction. Obviously, observations of winning bids

contain less information than observations of all bids (which may be available in

a sealed-bid auction). Intuitively, it is difficult to obtain a reliable estimate of the

whole distribution of private values from only winning bids, particularly when the

1See Van den Berg, Van Ours and Pradhan (2001), Kambil and Van Heck (1996), and Katok
and Roth (2004), for descriptions of AFA in English.

2The magnitude of AFA reflects the importance of flowers and plants for the Dutch economy.
The Netherlands is the leading producer and exporter of flowers in the world, and flowers are
its most important export product. Around half of the products at AFA are imported and
more than half are exported.

3See for example McAfee and McMillan (1987a) and Wolfstetter (1996) for surveys of auction
theory.

1



number of bidders is large. The estimation results and policy evaluations may

then be sensitive to the assumed functional form of the distribution of valuations.

We are in a unique position to deal with this, because our database does not

only register the price at which the auctioning clock is stopped, but also all other

bids of bidders who pushed the button to stop the clock up to one second after

the moment of the winning bid. Such bidders are unable to inhibit their planned

response within a very short time frame after the moment that the auction is over.

The data on losing bids are therefore collectible due to neurological constraints

in the speed of human information processing. As such, these data exploit that

economic response behavior takes real time.

The data on the losing bids consist of observations of all bids in an interval

adjacent to the winning bid. This constitutes an information gain compared to

other studies of Dutch auctions. Of course, some bidders with a bid laying in the

one-second time-frame are able to refrain from pushing because they realize on

time that the auction is over. We can therefore only use the losing bids made

within a fraction of a second after the winning bid. To quantify the size of the

interval, we rely on relevant results in the psychological and behavioral science

literature on stop signal reaction times (see e.g. Logan and Cowan, 1984, and

the overview in Rieger, 2000). We infer that 0.2 seconds is an accurate and

conservative approximation of the speed of reaction of bidders. It is important

that this number does not exceed the smallest reaction time among the bidders,

because otherwise the observed density of bids close to 0.2 seconds after the

winning bid underestimates the true density at that point. The data provide

over-identifying information on this. We use this to perform Hausman-type tests

and we estimate models with upper bounds smaller than 0.2 seconds.

A second potential problem with structural empirical analysis of Dutch auc-

tions arises with Maximum Likelihood (ML) estimation. As is well-known (e.g.

see Donald and Paarsch, 1993, and Laffont, Ossard and Vuong, 1995), in most

specifications of first-price auction models the support of the distribution of bids

depends on all structural parameters. This has two implications for ML esti-

mation, which are particularly problematic when the parameters of the distribu-

tion of valuations are expressed as functions of observed explanatory variables

or covariates. First, finding the ML estimator involves maximizing a nonlinear

function subject to nonlinear constraints, with heavy computational costs. This

is exacerbated by the fact that the mapping from valuations to bids cannot be

inverted analytically and depends on an integral that in general cannot be solved

explicitly. Secondly, ML estimation is non-standard in the sense that standard

asymptotic properties do not apply.
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We deal with this by using recently developed Markov Chain Monte Carlo

(MCMC) estimation methods. In particular, we use the Gibbs sampler with data

augmentation to evaluate the marginal posterior distributions of the parameters

(see Casella and George, 1992, and Gelfand and Smith, 1990). This estimation

method is a special case of the novel collection of estimation methods called

Markov-Chain Monte Carlo (MCMC) estimation methods. Because inference on

auctions is simple and straightforward in case the private values of all bidders are

observed, we use data-augmentation methods to construct these (latent) private

values (see Tanner and Wong, 1987).4 Estimation with the Gibbs sampler with

data augmentation does not involve (numerical) optimization routines or (numer-

ical) differentiation of objective functions. Instead, it only requires simulations

of random variables. Because of the Bayesian nature of the estimation method,

asymptotic rates of convergence are not an issue. Instead, we focus on posterior

distributions based on conventional uninformative priors.5

We use the estimation results to investigate the effects of increases of the

reserve prices on bids and on the expected revenue of the seller. The actual reserve

price for houseplants does not vary across plants and is often less than 20% of

the realized price. In fact, the price rarely falls below the reserve price. This may

suggest that it is profitable to increase the reserve price and to differentiate it

across plants.

The empirical analysis needs to address a number of complicating factors.

First, we need to quantify the number of bidders. The problems we encounter here

are similar to those in other applications with Dutch auctions, and the solutions

we develop have therefore wider relevance. The data provide the number of

individuals in an auction room who are logged on to a certain auction. Potential

participants whose valuations are below the reserve price may not show up at

the auction and are therefore not counted as a potential bidders. We therefore

restrict attention to the sub-population of individuals whose valuation exceeds

the reserve price. This implies that we can only examine counterfactual policies

4Sareen (1998) uses a similar approach to analyze a first-price auction. Her method differs
from the method used in this paper, and we discuss the differences in more detail in Subsection
3.4. See also Bajari and Hortacsu (2003) for an application to internet auctions.

5Laffont, Ossard and Vuong (1995) developed and applied a simulated non-linear least
squares estimation method for IPV models for Dutch auctions. This allows them to exploit
standard asymptotic results and to avoid heavy computational burdens. However, the estima-
tor focuses on data on the mean of the distribution of the winning bid, and as such it only uses
limited information on observed bids. The method is unfeasible for estimation with our data
on losing bids, since the number of observed losing bids is dispersed over the auctions in the
data.
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that result in a shrinking of the set of bidders, and not policies that result in

expansion of this set. We demonstrate that the restriction to this sub-population

is easily implementable and does not entail a loss of relevance.

Another problem with quantifying the number of bidders is that some of the

individuals who are logged on may actually have a valuation below the reserve

price and may be logged on just because they participate at the preceding and

subsequent auction in the same room and do not bother to log off in between. We

deal with this problem in two ways. First, we restrict attention to auctions at the

beginning of the morning (or rather late at night), when the auction house opens

and most participants arrive. Secondly, we estimate a model assuming that the

true number of participating bidders is unknown to us (although known to the

bidders). We demonstrate that the observations on losing bids are particularly

informative on the distribution of the true number of bidders. From these data

it follows that the number of individuals who are logged in (or, for that sake, the

number of individuals seated in the auction rooms) grossly over-estimates the

actual number of bidders, and as a result the actual auctioning market is much

less close to a competitive market than may seem at first hand.

The second complicating factor concerns the sequential nature of certain auc-

tions. At AFA, often, a certain number of homogeneous plants is auctioned

sequentially with a buyer’s option, i.e., the winner decides how many units he

wants to buy in excess of the stipulated minimum purchase quantity, and if the

desired number falls short of the total available number, the remaining units are

auctioned in the same way. Theoretical models of sequential auctions are rela-

tively complex, and therefore we only use data of auctions in which the minimum

purchase quantity equals the total number of units available.

The outline of this paper is as follows. Section 2 provides a description of

AFA and gives an overview of the data. We present some summary statistics and

perform reduced-form analyses of the prices at which the plants are sold. Sec-

tion 3 discusses our auction model, its parameterization, and our corresponding

particular implementation of the Gibbs sampler with data augmentation. The

estimation results of the structural analysis are presented in Section 4. This sec-

tion also evaluates the reserve price of the seller. Subsection 4.3 presents results

under alternative assumptions concerning the number of bidding participants.

Section 5 concludes.
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2 Institutions and data

2.1 The Aalsmeer Flower Auction

This subsection describes the organizational structure of AFA and the actual

auctioning process. Next, in Subsection 2.2, we give an overview of the data we

use in the empirical analysis, and we perform some reduced-form analyses of the

winning bids. In Subsection 2.3 we discuss the losing bids that we observe.

AFA is a cooperative owned by about 3500 Dutch growers of the auctioned

products.6 The total number of growers participating in the auctions equals about

7100, of which almost 1500 are from abroad. The total number of buyers equals

about 1500. The dispersion of their shares in total turnover is enormous. On

the one hand, about 50 buyers each buy for more than 5 million Euro per year;

together this amounts to about 50% of total turnover. On the other hand, about

725 buyers each buy for less than 50.000 Euro per year; together this amounts

to about 1% of total turnover. These two extremes basically correspond to big

exporting companies and small domestic retail shops, respectively.

There are 13 auctioning clocks in five separate auction rooms. These clocks

are often used at the same time, so that simultaneous auctions take place within

a room. A given individual can only participate at one auction, but a given

buyer may of course delegate more than one individual to an auction room. The

number of seats in an auction room is about 500. The average duration of a

single auction (i.e., one transaction) equals between 3 and 4 seconds.

The products are auctioned as separate “lots”, which are defined as the total

supply of a given homogeneous product of a given grower on a given day. An

“auction group” denotes a group of products with similar features. The daily

ordering of auction groups over time is the same on every day. However, the daily

ordering over time of different lots within a given auction group is randomized

every day.

As explained in the introduction, we only consider non-sequential auctions,

so our description below of the auctioning process ignores topics that are only

relevant for sequential auctioning. The wall in front of the auctioning room

contains a large board with a clock and an electronic display of the identity of

the grower, name of the product, various quality indicators, size of the flower

pot in case of plants, and monetary unit. The flowers or plants are transported

through the room, and an employee takes a few items from the carriage to show

them to the buyers (buyers also have the opportunity to closely examine the

6See the Annual Reports of AFA, e.g. Bloemenveiling Aalsmeer (1996a).
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flowers some time before the actual auctioning). The auctioneer decides on a

starting position for the clock which corresponds to an unreasonably high price

for the product. He then sets the clock in motion. The value pointed at by the

clock drops continuously until a buyer stops the clock by pushing the button in

front of him.7 The value pointed at by the clock at that moment is the price to

be paid by that buyer for a single item. The identity of the buyer is then shown

on the electronic display in front of the room. If the hand of the clock passes the

minimum price then the lot is destroyed.

In 1996 (the year covered by our data), the reserve prices were fixed in co-

operation with all (seven) major flower auction houses in the Netherlands. For

a given product, the reserve price was the same at every auction house and was

constant throughout the year. Variation across products was only very modest.

The reserve prices are published in the publicly available annual AFA Codebook

(see e.g. Bloemenveiling Aalsmeer, 1996b). For all the houseplants we consider

in this paper, the reserve price in 1996 was 25 cents per single plant.

2.2 The data set

Our database describes auctions taking place in one of the auctioning halls of

the AFA. This particular hall has four auctioning clocks on which the auctions

of houseplants take place. The data consist of three different registers that were

collected during the end of August and the beginning of September 1996. The first

data register concerns transactions. These contain the moment and auctioning

clock at which the auction takes place, the type of houseplants, a code for the

grower, the price paid at the auction and a code for the winning bidder. The

second data register concerns the registered bidders. This describes for each point

in time the number of bidders that is registered at each of the four auctioning

clocks. We do not observe the identities of the registered bidders. Combining the

data on the transactions with the data on the number of bidders provides us with

data on auctions during 14 different days. The third and last register concerns

observed losing bids. We return to this in the next subsection.

Figure 1 shows, for auctions taking place during the first hour of the auc-

tioning process, the number of bidders registered. Clearly, the average number

of bidders increases relatively fast during the first 15 minutes and after that the

increase slows down. Just before the auctioning starts, which is 6.30 a.m., bidders

7Actually, the clock is designed as a circle of small lamps each corresponding to a given
monetary value, such that a clockwise movement corresponds to a decrease of this value. If the
clock is set in motion then consecutive lamps light up sequentially.
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start entering the auctioning hall and register as being a participant in the auc-

tions taking place on one of the auctioning clocks in this hall. At any moment, a

bidder can switch between the auctioning clocks, but a bidder is only allowed to

participate at one auctioning clock at the time. When the bidder stops participat-

ing in auctions, he has to sign off as being a participant. However, some bidders

do not sign off and remain registered as being participant. The registered number

of bidders than exceeds the actual number of bidders. Note that this difference

can only increase over the day, and that imperfect monitoring of the number of

bidders may cause biases in the empirical analyses. To have a reliable measure of

the number of participants in the auction, we restrict the data to auctions taking

place during the first half hour after the auctioning starts. This reduces the data

to 6633 lots that are auctioned.

We select sequences of observations of auctions of indivisible goods which are

as homogenous as possible. In the ideal case, we would observe a particular type

of houseplant which always has the same quality and is only supplied by a single

grower. In practice, to achieve the objective of having data on indivisible goods,

we restrict attention to lots for which the minimum purchase quantity equals the

actual number of units in the lot. This implies that the “first” winner of the

auction has to buy all units in the lot. By considering only these lots, we avoid

that bidders anticipate on a sequence of auctions to sell the complete lot and

there is no buyer’s option. This reduces the data set to 2809 lots. This data set

contains 274 different types of houseplants. Only 58 types of houseplants appear

more than 10 times, and only 36 types of houseplants more than 20 times.

Some types of houseplants are supplied by many different growers. As will

become clear below, the identity of the grower is a very important characteristic

of a houseplant. Therefore, we select three types of houseplants that are supplied

by a limited number of “large” growers. We thus create three subsamples, each

containing the auctions of one of the types. The types of houseplants are: a single

type of Begonia supplied in a mixture of three different colors and two particular

types of Dieffenbachias, the “Camilla” and the “Compacta”.

Some characteristics of the three subsamples are presented in Table 1. The

prices are measured in Dutch Guilder cents per unit and the reserve prices for all

three types are 25 cents per unit (we do not observe auctions where the price falls

to this level and lots are destroyed). All lots of houseplants in all three subsamples

are of the highest quality code. The subsample of Begonias is the largest with 178

observations, while the subsamples of Camillas contains 47 observations and the

subsample of Compactas 34 observations. Auctions of the Begonias are observed

on each day at which data is collected. Auctions of Camillas and Compactas are
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only observed during 11 and 9 days respectively. The Begonias and Compactas

are both supplied by 3 growers, the Camillas only by 2 growers. Opposite to

the subsample Begonias, the identity of the grower seems to have a large impact

on the price per unit in both other subsamples. The standard deviation of the

prices is large and the there is a large difference between the maximum and the

minimum price observed. For both the Camillas and the Compactas we observe

that the lots with the highest price per unit are all supplied by one grower. We

return to this issue below. The average number of bidders lies around 50 for

all subsamples. For the subsample of Camillas we do not observe any auctions

taking place on Friday, for both other subsamples we observe auctions during any

day of the week.

To get some insights into the set of covariates that determine the price of the

winning bid at an auction, we perform some reduced-form analyses. We regress

the logarithm of the price on the number of bidders participating in the auction,

the identity of the grower and the day of the week at which the auction takes

place. One may argue that the number of bidders participating is an endogenous

regressor, as some lots of houseplants may have unobserved characteristics that

bidders actually like. Lots that attract many bidders may thus not be sold for

an higher price because there are many bidders present, but also because these

lots may have some attractive unobserved characteristics. We use instrumental

variable estimation to correct for possible endogeneity of the number of bidders.

First, consider again the sample of 2809 auctions that have the minimum

purchase quantity equal to the number of units in the lot. As mentioned in

the previous subsection, within the auctioning groups, the sequence at which

different lots are auctioned is randomized early in the morning just before the

auctioning starts. As can be seen from Figure 1 during the first 15 minutes after

the actual auctioning started the number of bidders participating is increasing

relatively fast. This suggests that during these first 15 minutes the time since

the start of the auctioning has some effect on the number of bidders present,

but due to the randomization in the order of appearance time does not have a

direct effect on prices. Therefore, we use time since the start of the auctioning

as an instrumental variable for the number of bidders. Since the increase in the

number of bidders only occurs during the first 15 minutes, we restrict the sample

to 1367 auctions that took place within the first 15 minutes. Furthermore, we

exclude auctions of lots of which the type of the houseplants or the grower only

appears once in the data. This restricts the subsample to 1257 auctions. In

the regression we include 4 dummy variables for the day of the week (Tuesday

until Friday), 109 dummy variables for the types of houseplants and 114 dummy
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variables for growers. Time has a significant effect on the number of bidders. The

estimated coefficient equals 1.53 (the estimated standard error is 0.10), indicating

that on average each minute around 1.5 additional bidders register to participate

in auctions. The instrumental variable estimate of the number of bidders on the

price equals 0.0035, with an standard error of 0.0020. The OLS estimate equals

0.0038, with an standard error of 0.0008. A Hausman test cannot reject the null

hypothesis that the number of bidders is exogenous. In fact, the p-value of such

a test equals 0.83, which is not even close to the usual significance levels. This

provides rather strong evidence that the number of bidders is actually exogenous

and that the price paid at the auction significantly increases with the number

of bidders participating. This latter confirms the usual auction theory that the

level of competition is higher if more bidders are present, which increases expected

revenue. Furthermore, the type of houseplant and the grower are very relevant

for the price. The coefficients for the different days of the week indicate that

prices are constant from Monday until Thursday and are significantly lower on

Friday.

Next, we use OLS to regress for the subsamples of Begonias, Camillas and

Compactas, the logarithm of the price paid at an auction on the number of

bidders participating, dummy variables for the growers and for the days of the

week. The estimation results are presented in Table 2. The estimated covariate

effect of the number of bidders is positive for the Begonias and the Camillas, but

negative for the Compactas. The identity of the grower seems to be the most

important covariate for the price paid at the auction. Recall that the houseplants

in all lots are classified by the AFA as of the highest quality. This suggests that

the reputation of the grower is very important at the AFA. The difference in

prices are particularly striking for the Camillas and Compactas. Both growers

supplying Camillas also supply Compactas. It is clear that Grower 4 generally has

a better reputation than Grower 5. Even though the type of houseplants are very

strictly defined there seem to be differences between similar houseplants supplied

by different growers. Finally, the effect of the day of the week at which the auction

takes place on the price is ambiguous. Whereas for Camillas the average prices

are on Tuesday around 15% higher than on Wednesday, the opposite is true for

Compactas.

2.3 The losing bids

The third data register contains bids that are made by losers of the auction.

Such data have never been used before in the analysis of Dutch auctions. In the
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period covered by our data, the AFA recorded all bids made by the losers of an

auction up until one second after the winner stopped the auctioning clock. Of

the 2809 lots that have the minimum purchase quantity equal to the number of

units in the lot, this information was collected in 803 cases. In the remainder of

this subsection we focus on this subsample of 803 auctions.

It is important to stress that the auctioning clock stops at the moment the

highest bidder pushes the button to reveal his bid. Once the other bidders note

this, they know that bidding is useless. However, there is no penalty for pushing

the button after the clock stopped. Hence, losing bidders may just push out of

frustration or for fun. The is confirmed by the data, which show some losing bid

far after the clock would have reached the reserve price. On the other hand, it

takes some time before a bidder realizes that the auction actually stopped. The

losing bids made in a very short time interval after the winning bid are thus most

likely real bids.

In the subsample of 803 auctions that contain information on losing bids, in

92% of the auctions at least one losing bid is observed. This implies that in 8% of

the auctions no losing bids was made within one second after the winning bid was

registered. On average we observe 4 losing bids per auction, while the maximum

number of observed losing bids in a single auction is 21.

In Figure 2 we have plotted a histogram of the time between the winning

bid in an auction and all of the observed losing bids in the auction. In Figure

3 we have plotted univariate kernel estimates of the density of observed losing

bids for some different values of the bandwidth (h). The observations are time

intervals between two events and can therefore only take positive values. We use

a reflection method to impose a boundary condition on the kernel density close

to 0.8 Note that both in the histogram and the kernel densities we observe a

relatively large drop around 0.2 seconds.

There is a psychological literature on the time it takes individuals to inhibit

performing some planned response or action (see for example Logan and Cowan,

1984, and the overview in Rieger, 2000). This is measured by so-called stop signal

reaction times. The experiments in the literature do not consider the exact design

of Dutch auctions, but some designs are quite similar, and it seems that they are

8The reflection methods implies that for every observation xi an extra observation −xi is
added. Standard methods can be used to compute the kernel density of the doubled sample.
We use a normal density function. The resulting kernel density is truncated at 0 and multiplied
by 2 for the positive values to ensure that the density integrates to 1. The implicit boundary
condition imposed is that the right-derivative at 0 is equal to 0 (due to symmetry caused by
the reflection). Other methods, like for example transformation to logarithms or truncation at
0 make similar type of arbitrary assumptions (see for an overview Silverman, 1986 p. 30–31).
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sufficiently informative for our purposes. Most experiments indicate that the time

needed to inhibit a planned action, like pushing a button at a planned time, lies

in the interval from 0.20 to 0.25 seconds. One may claim that bidders at the AFA

are well-trained, but the ability to inhibit actions does not seem to vary much

across individuals or conditions (see the above literature). We therefore choose

the cut-off time for what we consider as real losing bids at 0.20 seconds.

In fact, we can use the actual data to obtain some insight into the extent to

which 0.20 is a reasonable choice. Define

yk =
b(1) − b(k)

b(1)

k = 2, . . .

which denotes the difference between the winning bid and kth highest bid as a

fraction of the winning bid. Clearly, yk is only observed if b(1) − b(k) is less than

some threshold δ = κτ̄ which depends on the bidders’ speed of reaction τ̄ and the

known speed of the auctioning clock κ. For a given choice of τ , we can estimate

a censored regression model for a latent variable y∗k,

log(y∗k) = x′βk + εk

where εk is normally distributed with mean 0 and variance σ2
k. The expected

value of yk equals

µk = exp

(
x′βk +

1

2
σ2

k

)

Obviously, if we choose τ small, many observations for yk become unobserved.

But if yk is observed, we can be sure that we observe the true value. A small τ

thus yield consistent estimators for βk and µk. However, the estimators are not as

efficient as for larger τ , as long as the choice for τ is smaller than the true reaction

time τ ∗. Actually, if τ exceeds τ ∗, the estimators may become inconsistent. We

can use this to construct a Hausman type test in which we compare the estimator

for µk for a small τ with the estimator for µk for a large τ . If the test rejects

similarity of both estimators, the large τ obviously exceeded the true speed of

reaction.

In the estimation, we can only use auctions which potentially have observed

losing bids. For Begonias we only include 64 auctions in the estimation, for

Camillas 29 auctions and 30 auctions of Compactas. In Table 3 we provide the

results for k = 2. We take τ = 0.05 as the initial small value for τ . However, for

most auctions we already observe for this small value for τ the second highest

bid. This implies that we cannot learn much about the bidders’ reaction speed.

However, µ2 reflects the fraction that winning bidder could have lowered his
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bid without losing the auction, which can be interpreted as the a measure for

information asymmetry in the auction. The estimates show that for auctions of

Camillas the highest bidder could have lowered his bid with around 7% without

losing the auction. The markets for Begonias and Compactas are slightly more

competitive. The highest bidder in a auction of Begonias could have lowered

his bid with almost 5% and in an auction of Compactas with slightly more than

5.5%. We repeated the empirical analyses for k = 4, which is reported in Table

4. The empirical analyses do not learn us much about the reaction speed of the

bidders. The estimates values for µ are relatively constant for the different values

of τ and the p-value for the test is never close to usual significance levels.

These results imply that the choice for the reaction speed is not very important

and we could take 0.3 seconds as well. However, since the earlier mentioned

psychological literature indicates that this might be too large, we remain with

our choice of 0.2 seconds as the maximum allowed speed of reaction. This means

that we consider bids made within 0.2 seconds after the winner as actual losing

bids and we ignore all other losing bids. After this restriction, we observed for

Begonias for 58 auctions actually losing bids, which is around 36% of the sample.

The subsample of Begonias contains 64 auctions that could potentially contain

information about losing bids, implying that in 6 auctions no losing bids were

made within 0.2 seconds after the winning bid. On average 5.6 losing bids were

made within these 0.2 seconds and the maximum number of losing bids in a single

auction is 13. For the Camillas and Compactas we observe respectively 29 and

30 auctions that could contain information on losing bids and 26 and 28 auctions

respectively that actually contain losing bids. For the Camillas we observe on

average 4.1 losing bid and the maximum number of losing bids in a single auction

equals 11, while for Compactas the average is 3.2 and the maximum 9.

For the subsample of Begonias the speed of the auctioning clock is such that

in 0.2 seconds the price drops 60 cents. On average the winning price is 202.25

cents, but the lowest winning price observed in the subsample is 130 cents. For

this auction we thus observe all bids above 70 cents. For Camilla and Compactas

the unit on the auctioning clock is not always the same. However, there are

auctions for which we observe all bids higher than 35 cents.
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3 The economic model and the econometric ap-

proach

3.1 The theoretical model for the Dutch flower auction of

houseplants

In this section we present the theoretical model framework and we argue why it

is appropriate for our auction setting. Furthermore, we discuss the identification,

specification, and estimation method for the structural analyses.

The assignment rule of the Dutch auction is simple: the highest bidder obtains

the object and pays his bid. Behavior of bidders is assumed to be governed by the

standard symmetric IPV model in which both the seller and the potential buyers

are risk neutral, and in which payments only depend on bids. This framework is

covered by a number of lucid surveys, including McAfee and McMillan (1987a),

Matthews (1995), and Wolfstetter (1996), so the present exposition can be very

brief.

Consider the auction of a single indivisible object. Each bidder knows his

valuation of the object, and knows that this valuation is strictly private. More-

over, each bidder knows that the values of the other bidders are random draws

from a common known distribution function. The seller organizes the auction

to maximize his return, and he only sells the object if the price is above some

critical value or reserve price v0. This reserve price is known beforehand to all

bidders. In case the highest bid does not exceed v0, the object is not sold and is

not auctioned again. In fact, at AFA, these plants are destroyed. Therefore we

take the seller’s private valuation of the object to equal zero.

Suppose there are n ≥ 2 potential buyers, denoted by j = 1, . . . , n, who are

identical ex-ante. Buyer j valuates the object at vj, which is only privately ob-

served. As the seller does not observe any of the buyers’ valuations, the seller

considers vj, j = 1, . . . , n as independent draws from the same continuous dis-

tribution function F with support [v, v) with 0 ≤ v < v ≤ ∞. The buyers

consider the private values of the other buyers as random realizations from F .

The equilibrium is a symmetric Bayesian-Nash equilibrium.

For given n and v0, the optimal bid of a buyer with private value v equals

B(v|v0, n) = v −
∫ v

v0

[
F (x)

F (v)

]n−1

dx (1)

Each bidder participating in the auction thus shades his private value with the

amount
∫ v

v0
(F (x)/F (v))n−1dx.
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The expected revenue of the seller is optimal if v0 satisfies the first-order

condition

v0f(v0) = 1− F (v0) (2)

and the second-order condition

2f(v0) + v0
∂f(v0)

∂v0

≥ 0

Note that these two conditions are independent of the number of potential buyers.

The reserve price can therefore be determined before the number of bidders is

known, i.e. before the auctioning starts. In case there does not exist any v0

satisfying these conditions, the optimal reserve price equals the lower bound of

the support of the private values, v0 = v. The uniqueness of a reserve price in

the support of v depends on the shape of F and is satisfied for most possible F

(Van den Berg, 2007).

The model framework can be straightforwardly amended to account for the

absence of potential bidders whose valuation falls short of v0. Suppose that there

are N potential bidders. The optimal value of v0 does not depend on N . Only

those n participants with v ≥ v0 decide to participate, leading to n actual bidders.

These learn n, and they subsequently determine their bids. As a result, we have

a game based on n bidders and on the distribution of valuations that equals the

truncated original distribution of valuations, with truncation point v0. In the

sequel we simply denote the truncated distribution by F . There is an analogy

to equilibrium search models of the labor market where the only labor market

participants are those whose productivity exceeds the minimum wage (Van den

Berg and Ridder, 1998).

A main advantage of the Dutch auction mechanism is that it works relatively

fast. Therefore, it is often used to sell large amounts of perishable goods, such as

flowers, vegetables and fruits. This is an advantage for all participants. The eco-

nomic literature cites some additional reasons for why a Dutch auction could be

attractive. For example, risk averse sellers prefer a Dutch auction, and collusive

agreements among buyers are not self-enforcing (Wolfstetter, 1996).

We now discuss the accuracy of the above theoretical model for the AFA

auctions of houseplants. First of all, consider the IPV framework. Bidders do not

buy plants for other than commercial purposes. Many bidders are retailers with

flower shops serving a local neighborhood. These act as monopolistic competitors

on the consumption market for flowers and plants in their neighborhood. From

their experience, they have an excellent knowledge of the demand functions of
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the products they sell to the consumers, and these functions may differ across

different neighborhoods. In addition to these buyers, there are also large buyers

who export flowers. These are typically active in a particular geographical region,

where they have some market power. Plants are perishable and fragile goods, so

there is no scope for extensive re-trading after the auction is held, at least not

without substantial transaction costs. Milgrom and Weber (1982) also suggest

that for nondurable consumer goods, like plants, the IPV framework suits better

than the common value framework.

As noted above, the buyers include retailers as well as exporters. However,

export of houseplants is much rarer than export of flowers, which lends some

credence to the assumption of symmetry in the economic model. Similarly,

by restricting attention to houseplants auctions where the mandatory minimum

purchase quantity equals the actual total quantity, we restrict the data to non-

sequential auctions.

Van den Berg, Van Ours and Pradhan (2001) argue that bidders at AFA are

risk neutral. The main argument is that most bidders do not face strong binding

financial constraints. The prices paid in single auctions are an extremely small

fraction of the budget of a bidder. Furthermore, because other lots auctioned on

the same day may be close substitutes, there is some insurance against losing an

auction.

Most buyers have specific employees who perform the actual bidding. These

individuals are present at AFA on many days of the year. It is therefore plausible

that they know the exact number of actual bidders in the room. At the same time,

our data only record the number of logged-on bidders, and this may over-estimate

the number of actual bidders. We therefore also estimate models in which the

number of actual bidders per auction is an unobserved drawing from a binomial

distribution with the number of logged-on bidders as the highest outcome. This

does not concern economic behavior, and it does not affect the market equilibrium

for a given number of actual bidders. However, it implies that in the econometric

analysis we need to consider a range of numbers of actual bidders for each given

auction.

3.2 Non-parametric identification

We assume that all auctions are independent. With the number of actual bidders

in each auction observed, F is non-parametrically identified from observations

of the winning bid (this follows straightforwardly from Guerre, Perrigne and

Vuong, 2000; see also Athey and Haile, 2002, for related identification results).
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It is intuitively plausible that the observations of losing bids provide valuable

additional information on F . This should reduce the dependence of the estimation

results to arbitrary functional form assumptions on F . In the Appendix we

investigate this by way of a simulation study.

As noted in the introduction and Subsection 3.1, we also estimate models

where the actual number of bidders is unobserved to the econometrician and we

assume that it is a drawing from a binomial distribution with the number of

logged-on bidders as the highest outcome. Again, the observations of losing bids

provide valuable information.9 To see this, note that we observe the two highest

bids for most separate auctions in the data. Song (2004) shows that the two high-

est bids identify F in eBay auctions, assuming an IPV framework and unknown

numbers of bidders. In our setting, it is not difficult to demonstrate that with

sufficient variation in the number of logged-on bidders, F is non-parametrically

identified as well.10

3.3 Specification issues for the distribution of valuations

As explained in Subsection 3.1, we consider “truncated” models with absence of

potential bidders whose valuation falls short of v0. Consequently, the lower bound

of the support of F equals the reserve price v0. It is well known that for many

specifications of F , the support of the distribution function of bids is bounded

even if the support of F is unbounded. In particular, with n participating bidders

the upper bound of the support depends on the structural parameters

lim
v→∞

B(v) = lim
v→∞

v −
∫ v

v0

[
F (x)

F (v)

]n−1

dx = lim
v→∞

v0
F (v0)

n−1

F (v)n−1
+

∫ v

v0
xf(x)F (x)n−2dx

F (v)n−1

= v0F (v0)
n−1 +

∫ ∞

v0

xf(x)F (x)n−2dx

= E [max(Vn−1, v0)]

where Vn−1 is the largest order statistic of (n− 1) draws from F (·) (see Laffont,

Ossard and Vuong, 1995). Since v0 is the lower bound of the support of F , it is

9First-price auctions are unidentified from only the winning bid if the number of bidders is
unobserved.

10With two logged-on individuals, the actual number of bidders n is either 0 or 1 or 2. In the
case n = 0 the item is not sold. In the case n = 1 it is sold at the observed reserve price v0. In
the case n = 2 the price exceeds the observed reserve price. Thus, the auction outcomes here
identify the value of n. The fractions of the three possible outcomes n = 0, 1, 2 then identify the
binomial parameter p0. Subsequently, the bids in the case n = 2 non-parametrically identify
F .
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sufficient to impose

b(1) ≤ E [Vn−1]

From an efficiency point of view, it is attractive to use the information captured

in these bounds in the empirical analysis. Under some additional regularity con-

ditions on the shape of the density function at its maximum, parameter estimates

based on bounds are super-consistent, as the rate of convergence equals N (in-

stead of the usual
√

N , where N is the number of observed auctions). However,

estimation results using boundary conditions are generally not very robust against

outliers. Possible causes for outliers are measurement errors or extreme behavior.

In our setting, observing outliers is not very likely, the data are from an admin-

istrative database and all bidders are very experienced in the auctioning process,

which excludes unusually high bids.

The distribution of private values F may differ between auctions. Suppose

that all heterogeneity between auctions can be captured by a set of (exogenous)

characteristics x of the houseplant and the auction. We assume that F can

be uniquely characterized by a vector of unknown parameters θ and the set of

known covariates x, Fi(·) = F (·|xi, θ). Similar type of parametric assumptions

are made in e.g. Donald and Paarsch (1996) and Laffont, Ossard and Vuong

(1995). We take the distribution function of private values to be a transformed

beta distribution, with density function

f(v|α, β, γ) ∼
(

v − v0

exp(γ)− v0

)eα−1 (
exp(γ)− v

exp(γ)− v0

)eβ−1

v0 ≤ v ≤ exp(γ) (3)

where α, β and γ are unknown parameters, possibly depending on characteristics

x of the auction. In Section 3.4 we discuss in detail how these parameters depend

on explanatory variables. The density function is transformed such that it has

support from the current minimum price v0 up till an unknown finite upper bound

exp(γ).11

For our purposes, the beta distribution is relatively flexible. The density is

only symmetric if α = β. The uniform distribution is a special case (α = β = 0).

The shape at the lower bound of the support of the density function is deter-

mined by α and at the upper bound by β. Close to the lower bound the den-

sity increases (decreases) if α > 0 (α < 0). Similar β < 0 (β > 0) implies

that the density increases (decreases) close to the upper bound. Subsequently,

11This specification does not guarantee the existence of an optimal reserve price within the
support of the distribution function of private values, which satisfies equation (2). To illustrate,
let exp(γ) < 2v0 and α = β = 0. This implies that v∗0f(v∗0) = 1 − F (v∗0) is solved for
v∗0 = exp(γ)/2 < v0, which is below the lower bound of the support.
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if both α and β are negative the density is U-shaped, and hump-shaped if these

both parameters are positive. The density is strictly increasing (decreasing)

if α > 0 and β < 0 (α < 0 and β > 0). The expectation (of v in equa-

tion (3)) equals (exp(β)v0 + exp(α) exp(γ))/(exp(α) + exp(β)) and the variance

(exp(γ) − v0)
2 exp(α) exp(β)/((exp(α) + exp(β))2(exp(α) + exp(β) + 1)). Not

only the uniform distribution is a special case of the beta distribution. Other

special cases are for example the gamma distribution (β → ∞ and exp(γ) =

exp(γ∗)(exp(α) + exp(β))) and the exponential distribution (β →∞, α = 0 and

exp(γ) = exp(γ∗)(exp(α) + exp(β))) (see McDonald, 1984).

The optimal reserve prices only depends on the distribution function of private

values. Given that we imposed a beta distribution, we can investigate the optimal

reserve price and the percentage increase in expected revenue when moving from

an auction without reserve price to an auction with an optimal reserve price.

Because the expected revenue depends on the number of bidders participating

in the auction, the percentage increase in revenue is a function of the number of

bidders as well.

For the moment we choose a beta distribution function with support on 25

cents to 200 cents. Figures 4 to 6 show for α equal to −1, 0 and 1, respectively,

what the percentage increase in expected revenue is if β is also −1, 0 and 1.

The effect of imposing an optimal reserve price depends strongly on the value

of the parameters (shape of the density). Note that if α = −1 and β equals 1,

the optimal reserve price remains equal to 25 cents. The percentage increase in

expected revenue never exceeds 30%. In general, the effect of imposing a reserve

price is higher for smaller values of β, i.e. when the density function is increasing

close to the upper bound of the support. Reserve prices are particularly effective

if the density is U-shaped (both α and β are smaller than 0). However, the impact

of the reserve price on the expected revenue diminishes quickly if the number of

bidders becomes large. If the number of bidders exceeds 5, reserve prices are not

a very efficient instrument for generating additional revenue.

3.4 Estimation

We use a sampling Bayes approach to evaluate the vector of parameters θ. In-

ference reduces to evaluating the posterior density of the vector of parameters,

p(θ|(b, x, n)i, i = 1, . . . , N), where N is the number of auctions observed in the

data set and (b, x, n)i represent the bids observed in the ith auction, the observed

covariates and the number of bidders, respectively. We use Gibbs sampling to

create Markov chains of values for vector of parameters θ. We use noninformative
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prior distributions for the vector of parameters θ.

When sampling the new vector of θ = {α, β, γ}, we have to ensure that it

lies in the feasible parameter space bounded by the observed (winning) bids. In

particular, after sampling a new set of values for θ, all observed bids must be

within the support of the bid distribution function. Since we compute exact

posterior distributions of the parameters, we do not have to rely on asymptotics.

Inference on auctions is straightforward if private values are observed. How-

ever, we observe bids instead of private values. Furthermore, only the winning

bids and sometimes bids close to the winning bid are observed. For those bids,

that are not observed, we know however that these are less than b(1) − δ, where

δ ≥ 0 is the earlier mentioned interval in which we can observe losing bids.

We use data augmentation to construct the private values of all bidders in all

auctions. For the observed bids we use the one-to-one relation given in equa-

tion (1) between bids and private values to compute the private values, i.e.

v = B−1(b), where B−1 is the inverse of the equilibrium bid function. Data

augmentation is used to sample all remaining private values from the distribu-

tion function F (v|v ≤ B−1(b(1)−δ)) (see Tanner and Wong, 1987). We use Gibbs

sampling to construct a Gibbs sequence of values for the vector of parameters θ.

Below we discuss the sampling method more formally.

Let ni denote the actual number of bidders in auction i, which lies between

the number of observed bids mi and the registered number of bidders ri. The

outline of our sampling Bayes approach is as follows:

Initialization Choose an initial value p0 in the interval between 0 and 1 and

set ni = ri. Choose a set of parameters θ0 within the possible parameter

space, i.e. for each auctions the boundary condition on the support of the

bid distribution function is satisfied, bi,(1) ≤ E [Vni−1|xi, θ
0]. Since ni and

xi are known we can compute the expectation for any particular choice of

θ0. Because also bi,(1) is observed, it is easy to check if the inequality is

satisfied.

Augment number of bidders For each auction i we generate ni ∈ {mi,mi +

1, . . . , ri} from

f(ni|(b, x, r,m)i, p0, θ) ∼
(

ri

ni

)
pni

0 (1− p)ri−ni

(
mi∏
j=1

f(bi,j|ni, xi, θ)

)

× F (bi,(1) − δi|xi, ni, θ)
ni−mi

where f(·|ni, xi, θ) and F (·|ni, xi, θ) are the density and distribution func-

tion of observed bids conditional on the true number of bidders, covariates
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and the structural parameters. Once a new value for ni is sampled it is only

accepted if it satisfies the boundary condition bi,(1) ≤ E [Vni−1|xi, θ]. If the

boundary condition is not satisfied a new value for ni is drawn.

Construct the ‘observed’ private values Use the equilibrium bid rule to com-

pute the private values corresponding to all observed bids conditional on

the set of parameters θt, i.e. for all auctions i = 1, . . . , N , we compute for

the observed bids j = 1, . . . mi the private values vi,(j) = B−1(bi,(j)|ni, xi, θt).

Solving the equilibrium bid rule requires the use of a numerical procedure.

However, in most cases 3 iterations are sufficient to find the value of vi,(j).
12

Augment the ‘latent’ private values We know that the remaining latent bids

are below b(1) − δ. This implies that the corresponding private values are

below B−1(b(1) − δ). Therefore for each auction i = 1, . . . , N we compute

v∗i = B−1(bi,(1)|ni, xi, θt) and we sample for the latent bids j = mi+1, . . . , ni

private values from the distribution function F (v|v ≤ v∗i , xi, θt). This gives

a complete set of private values vij, j = 1, . . . , ni, i = 1, . . . , N .

Generate parameters We use the set of private values v to sample a new vector

of parameters θt+1. Ignoring auction specific characteristics, we sample αt+1

from the density function

f(α|βt, γt, v) ∼
N∏

i=1

ni∏
j=1

Γ(exp(α) + exp(βt))

Γ(exp(α))

(
vij − v0

exp(γt)− v0

)eα−1

where Γ(·) is the gamma function. A draw of α is only accepted if it

satisfied the boundary condition bi,(1) ≤ E [Vni−1|xi, α, βt, γt] for all auctions

i = 1, . . . , N . If the boundary condition is satisfied αt+1 = α, otherwise we

draw a new value for α. Similarly, βt+1 is sampled from the density function

f(β|αt+1, γt, v) ∼
N∏

i=1

ni∏
j=1

Γ(exp(αt+1) + exp(β))

Γ(β)

(
exp(γt)− vij

exp(γt)− v0

)eβ−1

again taking account of the boundary condition. And finally γt+1 is drawn

from the density function

f(γ|αt+1, βt+1, v) ∼
N∏

i=1

ni∏
j=1

(exp(γ)− vij)
eβ−1

(exp(γ)− v0)eα+eβ−1

12Sareen (1998) proposes a different approach. She avoids solving the equilibrium bid rule
numerically by direct sampling of private values from F (v|x, θt). A sampled private value is
only accepted if it corresponds to the observed bid.
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where again an acceptable draw of γ should satisfy the boundary condition.

We also have to generate a new value for p0. The new value of p0 is sampled

from the density function

f(p0|(r, n)i) ∼ p
∑N

i=1 ni

0 (1− p0)
∑N

i=1(ri−ni)

which is a beta density function with parameters
∑N

i=1 ni and
∑N

i=1(ri−ni).

This provides us we a new vector of parameter θt+1 and we can return to

augmenting the number of bidders.

The Gibbs sequence only approximates the stationary distribution of the pa-

rameters if it is ergodic. At first sight ergodicity may seem problematic, as the

support of the conditional distribution of a specific element of θ depends on the

current values of the other elements in θ. This may cause the Gibbs sequence

not to be irreducible (see Robert and Casella, 1995). Let S denote the support

of the stationary distribution of θ and K(θt, θt+1) denotes the transition density

resulting from the Gibbs sampler. Indeed there exist θt ∈ S and θt+1 ∈ S for

which K(θt, θt+1) = 0. However, it can be shown that

∫

S
K(θt+1, θt+2)K(θt, θt+1)dθt+1 > 0

for all θt+2 ∈ S and θt ∈ S.13 Thus within two steps from each particular

value of θt ∈ S any θt+2 ∈ S can be reached, which implies that the Gibbs

sequence is irreducible. Because the Gibbs sequence is also aperiodic, it is ergodic.

With simulated data the Gibbs sampler performed well, i.e. once the Gibbs

sequence converged the mean values of the parameters are close to the true values.

However, it should be noted that convergence of the Gibbs sequence is slowed

down by the limited support of the conditional distributions.

Our main interests are the means and the standard deviations of the posterior

distribution. To approximate these we need realizations from the Gibbs sequence

when it converged to the stationary distribution. To monitor convergence to the

stationary distribution, we generate simultaneously 5 Gibbs sequences each with a

13The conditional density for αt+1 has support from some lower bound until infinity, where
the lower bound decreases if βt decreases or γt increases. The conditional density for βt+1 has
support from minus infinity until an upper bound that increases if α increases or γt increases.
And the conditional density for γt+1 has support from some lower bound until infinity, with
the lower bound decreasing if αt+1 increases or βt+1 decreases. It is intuitively clear that from
some θt ∈ S any θt+2 ∈ S is possible if γt+1 is large, which always lies in the support of the
conditional density of γt+1.
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different initial value in the support S. Convergence to the stationary distribution

implies that the within variance of the Gibbs sequences is approximately equal

to the between variance (see Gelman, Carlin, Stern and Rubin, 1995). Let θr,t

denote the tth value from the rth Gibbs sequence (recall that we only keep each

second draw). The mean of the posterior distribution is approximated by

θ̄ =
1

5

1

T

5∑
r=1

T∑
t=1

θr,t

and the between and within variance are respectively computed by

VB =
T

4

5∑
r=1

(
θ̄r − θ̄

)2
with θ̄r =

1

T

T∑
t=1

θr,t

VW =
1

5

5∑
r=1

1

T − 1

T∑
t=1

(
θr,t − θ̄r

)2

The variance of the marginal posterior distribution equals

var (θ) =
T − 1

T
VW +

1

T
VB

If all Gibbs sequences are drawn from the stationary distribution than

R =

√
var (θ)

VW

approach to 1 if T becomes sufficiently large.

We generate Gibbs sequences with an initial length of 100 draws and compute

for each element in θ the value of R. If one of the values of R exceeds 1.1 we

continue drawing elements of the Gibbs sequences. After each draw we compute

R again, based on the last 100 draws of each Gibbs sequence until all values of R

are below 1.1. If this is the case, we assume that all 5 Gibbs sequences converged

to the stationary distribution. Then we draw for each Gibbs sequences 400 new

realizations for θ, which we use to compute θ̄ and var (θ).

4 Structural analysis

In the empirical literature on Dutch auctions, it is common to observe only the

winning bid and the number of participants. To obtain insight in the importance

of actually observing losing bids, we first analyze our model ignoring the losing
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bids, and next we take into account that we also observe losing bids. In both

of these analyses we assume that all registered bidders are actual participants in

the auctions. Next, we extend our model such that we allow for flexibility in the

number of bidders participating in the auctions.

We investigate the fit of the different specifications by computing the expected

winning prices at the auction and the expected difference between the winning

bid and the highest losing bid. (Table 5 provides these statistics for each of the

models we estimate.) The expected winning price in an auction equals

E[b(1)|n, v0] = n

∫ v

v0

(vf(v)− (1− F (v))) F (v)n−1dv

and the expected highest losing bid equals

E[b(2)|n, v0] = n(n−1)

∫ v̄

v0

(
vf(v)

1− F (v)

F (v)
− log(F (v)) + (1− F (v))

)
F (v)n−1dv

We use the empirical results to investigate the importance of reserve prices. In

particular, we compute the optimal reserve price for each auction and how much

the expected revenue would increase if reserve prices would have set optimally.

We allow for heterogeneity between auctions of different houseplants by al-

lowing the upper bound of the support of the distribution of private values to

depend on observed characteristics x of an auction (γi = xiγ). The parameters

determining the shape of the density function of private values α and β are similar

in all auctions.

4.1 Standard Dutch auction without losing bids

Table 6 presents the means and standard deviations of the marginal posterior

distributions of the parameters when ignoring the losing bids. For all three sub-

sample α is less than 0 and β is slightly larger than 0. This implies that the

density functions of private values are downward sloping and many bidders have

private values close to the reserve price (the lower bound of the support). The

estimated model turns out to overestimate average winning prices for all three

subsamples. For Begonias, the model predicts the expected average winning price

equal to 219 cents, while in the data it is only 202 cents. For Camillas and Com-

pactas the estimated expected average winning prices are 183 and 188, while the

observed average winning prices are only 167 and 168 respectively. Also the dif-

ference between the winning bid and the highest losing bid is overestimated. For

the subsamples of Begonias, Camillas and Compactas the model predicts these
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differences to be equal to 31, 22 and 24, while the observed values are 9, 9 and 8

respectively.

Overestimation of the average winning bid might indicate that our parametric

specification is too restrictive. We have tried specifications where also β (and α)

depends on observed characteristics x. However, the data on only the winning

bid are not sufficiently informative to analyze such specifications. The winning

bid alone cannot distinguish between covariate effects in the upper bound of the

support and in β, which describes the shape of the density function close to the

upper bound.

4.2 Dutch auction with losing bids

Observing losing bids allows to analyze more flexible parametric specifications

of the structural model. Because losing bids are observed close to the winning

bid, losing bids are mainly informative on the right-tail of the density function of

private values. Therefore, we extended the model by allowing β to be different

for each grower and we specify α = α0 + α1β, so that also α can differ between

growers. However, we only managed to use this specification for the subsample of

Begonias, both other subsamples are too small. Therefore, for these subsamples

we have set α1 = 0. Furthermore, for the subsample of Compactas the number

of observations per grower is too small to let β be different between the growers,

so that for Compactas we restricted the β to be similar for all growers. So, for

Compactas we analyze the same specification as in Subsection 4.1

Table 7 shows the means and the standard deviations of the marginal posterior

distributions for these specifications. The information on the losing bids did not

improve the model predictions on the winning prices. Because the specification for

auctions of Begonias is more flexible than the earlier specification, the prediction

of the winning price is slightly better. However, for Compactas the prediction of

the winning price is worst than in the previous specification. This is obviously

caused by the fact that the same specification should now explain not only the

winning bid but also losing bids. The fit of the highest losing bid improved for

all three subsamples compared to the models in Subsection 4.1.

The shape of the density function of private values shows that for all three

subsamples most participants in the auctions have private values close to the

reserve prices. This might indicate that many bidders registered at an auction

are actually not interested in buying the houseplants. The model implies that

all winning prices fall within the support of the bid distribution function. If

not all registered bidders are actual participants at the auction, the predicted
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variance in the winning prices is smaller than the observed variation in transaction

prices. It is indeed the case that the observed variation is transaction prices (of

auctions with similar characteristics) is large given the large number of registered

participants. So, overestimation of the number of participants might explain why

the model performs poorly in explaining winning prices.

4.3 Unknown number of bidders

Next, we relax the restriction that all registered bidders are true participants in

an auction. So we allow for the possibility that buyers registered at a particular

auction do not have a private value above the reserve price. However, we retain

the assumption that bidders have an exact measure of the number of bidders

participating at an auction. Recall that the parameter p0 denotes the probability

that a registered bidder is an actual participant at an auction. As a sensitivity

analysis we also try a specification where we let the probability of being a true

bidder be dependent on the moment in time at which the auction takes place.

The means and standard deviations of the marginal posterior distributions

are provided in Table 8. The mean values for p0 are between 0.10 and 0.14,

implying that a large fraction of the registered bidders is not really interested in

buying the houseplants. Most likely these bidders are just waiting for one of the

next scheduled auctions. Recall from Subsection 2.2 that the average number of

bidders registered during an auction was around 50. This implies that in every

auction on average only 5 to 7 buyers are actually participating. The marginal

posterior distributions of p0 provided in Figure 7 have hardly any support above

0.20, which indicates that the models investigated in the previous subsections

where all registered bidders are actual participants in the auction are clearly

rejected, i.e. this model is a special case with p0 = 1.

Bidders typically enter the auctioning hall at the moment flowers or plants

are auctioned in which they are interested. This has two implications. First,

there are less registered bidders early in the morning (see Figure 1). Secondly,

early in the morning, the fraction of the registered bidders that actually intend

to participate can be expected to be higher than later during the day. Let τ ∗

denote the elapsed time in minutes since the start of the auctioning process (at

6.30am). We extend our specification to

p =

{
p0 + p1

τ∗
15

if τ∗ < 15

p0 + p1 if τ∗ ≥ 15

Table 9 provides the results of this specification. As expected, in all cases p1 is
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less than 0, indicating that the fraction of interested bidders decreases shortly

after the auctioning starts. Immediately, after the auctioning starts around 20%

of the registered bidders are true bidders, 15 minutes later this decreases to only

around 6% to 8%. The expected number of interested bidders varies between 3

and 11 in all subsamples.

Compared to the previous subsection, the fit of the models improves. The

second specification, where the fraction of the bidders interested in buying the

houseplants depends on time does slightly better than the first specification.

Therefore, we only discuss this second specification. For the Begonias the ex-

pected winning bid equals 208 and the expected difference between the highest

and the second bid is 12. The expected winning bid is thus still overestimated,

but the difference is much smaller than in the earlier specification. Also the dif-

ference between the highest and the second highest bid is slightly overestimated

by the model (mainly due to the overestimation of the highest bid). We see the

same for the subsamples of Camillas and Compactas, the fit improves but still

the winning bid is slightly overestimated. For the Camillas the expected winning

bid equals 173 and for the Compactas 174.

The grower seems to be the most informative covariate. Although the house-

plants in our samples all have the highest quality codes, the distribution function

of private values differs between growers. For both Camillas and Compactas the

upper bound of the support is smaller for houseplants supplied by Grower 5 (as

compared to houseplants supplied by Growers 4 and 6). Obviously Grower 4 and

Grower 6 have better reputations among potential buyers of Camillas and Com-

pactas than Grower 5. For Begonias both β and γ are larger for Grower 3 than

for both other Growers or Begonias. The expected revenue does not differ much

between the growers, but the variation in revenue between lots is much larger for

Grower 3 than for Grower 1 and Grower 2.

The second covariate effect concerns the day of the week at which the auction

takes place. For Begonias expected revenue is lowest on Thursday. For Camillas

this is the case on Wednesday and the prices of Compactas are lower on Wednes-

day and Thursday compared to the other days. The variation in private values

might have to do with the day at the week when transport of houseplants to

foreign countries takes place. However, the pattern is not similar for the three

types of flowers. Therefore, transportation can only explain these differences if

different countries have preferences for different types of houseplants.

As expected allowing not all registered bidders to be true participants at

the auctions changes the shape of the distribution function of private values.

For all subsamples α exceeds 0 and thus the density function of private values

26



is increasing close to the lower bound (reserve price). For the subsamples of

Begonias and Camillas the density function is decreasing close to the upper bound

(β > 0). For the subsample of Compactas the density function of private values

is not hump-shaped, but increasing (β < 0). From Subsection 3.3 we know that

reserve prices are not very effective when the density function of private values is

increasing close to the lower bound. However, since the actual number of bidders

is not very large, reserve prices might have some impact on the expected revenue.

4.4 Optimal reserve prices

The structural model allows us to evaluate the impact of reserve prices on the

expected revenue at the auction. At the moment the data were collected, there

was almost no differentiation of reserve prices between different types of plants.

AFA believes that the reserve prices are low. This is confirmed by the data, which

do not show any winning bids close to the reserve price. Recall that without ad

hoc functional form assumptions we can not study the consequences of decreasing

reserve prices.

For each of the parameter values obtained in the Gibbs sequence, we can

compute the optimal reserve price. We compare the current situation in which

there is only a single reserve prices of 25 cents with a situation where there is full

differentiation of reserve prices. This means that we allow for different reserve

prices for each grower on each day of the week.

It turns out that from the point of view of revenue maximization, the actual

reserve prices in the auctions of Begonias are sub-optimally low, for all plants

of all growers on all days of the week. The optimal reserve prices are around

141 cents, and these do not vary much between growers and over the days of

the week (except that on Thursdays, reserve prices should be slightly lower than

on other days). Increasing the reserve prices to the optimal values increases the

expected revenue with only 0.2%. In the auctions of Camillas and Compactas,

the actual reserve prices are also always sub-optimally low. For Grower 4, the

reserve prices should be around 190 cents when supplying Camilla and 200 cents

when supplying Compacta. The reserve prices for Camillas supplied by Grower

5 should only increase to 45 cents and to 50 cents if this grower supplies Com-

pactas. The optimal reserve price for Compactas supplied by Grower 6 is about

150 cents. When choosing the reserve prices optimally (and thus differentiated

between growers and over the days of the week) the expected revenue increases

with 1.3% for both Camillas and Compactas.

We conclude from this that AFA can generate more revenue if it increases
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reserve prices. Although the increase in revenue would be small, one may wonder

whether we overlooked reasons which caused actual reserve prices to be set at

such a low level in the first place. One explanation focuses on the bidder en-

try decision. Levin and Smith (1994), who endogenize the number of bidders,

prove that if bidders enter only if their expected marginal profit exceeds their

expected marginal costs, reserve prices are an instrument to discourage bidder

entry. Imposing a reserve price exceeding the seller’s valuation is therefore not

necessarily beneficial to the seller. McAfee and McMillan (1987b) show that in

the presence of entry costs, equation (2) no longer holds as the solution to the

optimal reserve price. In this case the auctioneer should impose a reserve price

equal to the valuation of the seller. At AFA, bidders do not make costs to partic-

ipate in a single auction. Instead, bidders pay an annual fee. However, they also

have to be present in the auctioning halls during the auctioning process, and they

make transportation costs. The costs associated to preparing bids can also be

considered as entry costs. It is therefore possible that bidder entry costs that are

not explicitly included in our model negatively affect the optimal reserve price.

Broens and Meulenberg (1999) conduct a survey among growers, bidders, and

auctioneers at AFA to gauge their opinion on aspects of the auctioning process.

The growers of houseplants believe that higher reserve prices increase the bids

without affecting the percentage of houseplants that will be destroyed. However,

the bidders believe that this percentage will increase, and that in particular low-

quality houseplants will not be sold. The auctioneers like the idea of “crowding-

out” low-quality houseplants, as it improves the average quality of plants sold at

auction. But they fear that higher (reserve) prices will drive buyers to competing

auction houses and/or may induce production in other countries of cheaper plant

varieties to be sold locally in those countries. Recall that even though AFA is

the largest auction house of plant products in the world, it is not a monopoly. In

the Netherlands, there are 6 other medium-sized and large flower auction houses,

and other countries have internationally oriented flower auction houses as well.

As we saw in Section 2, the reserve prices were homogeneous across the main

flower auction houses in the Netherlands. This can be seen as an outcome of a

game played by the joint Dutch auction houses against auction houses abroad.

A substantial increase of AFA’s reserve price may well induce a loss of buyers.

Such effects are not incorporated in our optimal revenue analysis. Finally, with

higher reserve prices, the costs of destroying the unsold goods is higher.
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5 Conclusions

In this paper we have used a Bayesian approach to structurally analyze Dutch

flowers auctions. In particular, we focused on the IPV model for the flower

auction. This model is analyzed with Gibbs sampling methods using data aug-

mentation to sample the (latent) private values of all participants in the auction.

This method appeared to perform well.

In most cases the Dutch auction reveals only the highest bid, as the auction

stops when this bid has been made. However, at AFA also all losing bids in a time

interval next to the winning bid are observed. The length of the time interval is

determined by the speed of reaction of the auction participants.

The empirical results show that reputation is very important at AFA. Growers

get different prices for their plants, even if these plants have the same quality code.

Although the current reserve prices at AFA are too low to optimize the expected

revenue, increasing the reserve prices does not generate substantial additional

revenue. Still, current reserve prices at AFA are higher and closer to our predicted

optimum values than they were in the period covered by our data.

Some topic for future research emerge. First, the data registers at our disposal

include observations of sequential auctions of multiple homogeneous units. We

can use these data to estimate structural models of such auctions, incorporating

the so-called buyer’s option that bidders at AFA have. Secondly, one may empir-

ically analyze competition and collusion among different flower auction houses.

Flower auction houses may use their reserve prices to compete with each other.

During the period covered by our data there was no variation in reserve prices

across Dutch auction houses and no variation over time for given auction houses.

Currently, reserve prices are more differentiated across auction houses and across

products than before. At the same time, market concentration has been increas-

ing as auction houses have been involved in mergers and takeovers since decades

(see e.g. Elshof, 2000). It would be interesting to examine to what extent cer-

tain changes in the variation of reserve prices antedate mergers between auction

houses.
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Appendix: Simulation study

We perform a small simulation study to investigate to what extent the losing bids

data contribute to the precision of the estimates. To keep matters manageable,

we assume that the number of bidders is observed, and we ignore the economic

model in the simulation study and simply focus on the distribution function of

bids instead of the distribution function of private values. We draw samples of

bids from 3 different distribution functions. To remain as close as possible to the

IPV first-price auction model, we consider distribution functions for which the

right-tail is truncated. In particular, we sample from (i) a uniform distribution

function with support from 0 until 2, (ii) an exponential distribution function

(λ = 2), which is truncated at 2, and (iii) a log-normal distribution function

(µ = 0 and σ = 1), which is also truncated at 2.

We generate two samples more or less similar to the data sets discussed in

the previous section. Moreover, the first sample contains 64 auctions with the

number of bidders similar to the number of bidders in the data set of Begonias

and the second sample has 29 auctions with the number of bidders from the data

set of Camillas (the data set of Compactas is almost of the same size as that

of Camillas). For each bidders in each auction we draw a bid. We use these

bids to construct three samples, the first sample contains only the winning bid,

the second sample contains also the losing bids close to the winning bid and the

third sample contains all bids. We choose the threshold point for observing losing

bids (the length of the interval just below the winning bid) such that we observe

approximately 5.5% of all losing bids.

We perform six simulation experiments. For both sample sizes we sample from

the three distribution functions mentioned above. Once we have constructed new

samples, we estimate the distribution function of bids using the beta distribution

function (see equation (3)) only taking into account the winning bid, also consid-

ering some losing bids and using all bids. We repeat each experiment 100 times.

In Figures 8, 9 and 10 we show the average estimated densities of the simulation

studies for the sample size of 64 auctions and the Figures 11, 12 and 13 show

these graphs for the sample size of 29 auctions. Each figure presents four lines,

the true density and the estimated densities based on (i) all bids, (ii) the winning

bid and some losing bids and (iii) only the winning bid. As expected, the true

density is best estimated by the samples containing all bids. But the estimated

density based on the winning bids and some of the losing bids lies relatively close

to the estimated density based on all bids. Obviously, the fit improves already

enormously if only a small proportion of the losing bids is observed. The infor-

33



mation contained in the losing bids is thus fairly large. According to the results it

seems hard to approximate an underlying density if one observes only a sequence

with the highest observations. Finally, the assumed numbers of participants in

the auctions is rather large in the light of the final estimation results in the paper,

and one may expect that the simulation conclusions on the usefulness of losing

bids are even stronger in the case of smaller numbers of participants.
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Begonia Camilla Compacta

Number of observation 178 47 34

Number of days 14 11 9

Number of growers 3 2 3

Average price (in cents) 202 167 168

(23) (94) (95)

Minimum price 130 48 53

Maximum price 250 320 320

Average number of bidders 56 54 50

(12) (9.1) (12)

Explanation: Standard deviations are given in parentheses.

Table 1: Some characteristics of the datasets.

Begonia Camilla Compacta

Number of bidders 0.0012 (0.0008) 0.0098 (0.0030) −0.0051 (0.0034)

Grower 1 5.20 (0.046)

Grower 2 5.31 (0.052)

Grower 3 5.23 (0.048)

Grower 4 4.88 (0.18) 5.90 (0.20)

Grower 5 3.66 (0.16) 4.31 (0.14)

Grower 6 5.40 (0.19)

Monday 0 0 0

Tuesday 0.029 (0.021) 0.13 (0.067) −0.074 (0.086)

Wednesday 0.014 (0.024) −0.026 (0.060) 0.074 (0.082)

Thursday −0.10 (0.025) −0.051 (0.085) −0.017 (0.084)

Friday 0.0040 (0.037) −0.0005 (0.12)

R2 0.29 0.95 0.95

Explanation: Estimated standard errors are given in parentheses.

Table 2: OLS regression results on the logarithm of the winning price.
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Begonia Camilla Compacta

τ µ2 obs p µ2 obs p µ2 obs p

0.05 0.049 0.80 0.070 0.62 0.058 0.57

(0.0073) (0.030) (0.022)

0.10 0.049 0.94 0.68 0.071 0.76 0.73 0.055 0.80 0.70

(0.0068) (0.030) (0.014)

0.15 0.049 1.00 0.42 0.068 0.90 0.59 0.064 0.83 0.50

(0.0067) (0.024) (0.017)

0.20 0.068 0.93 0.59 0.056 0.97 0.73

(0.023) (0.014)

0.25 0.071 0.93 0.51 0.057 0.97 0.83

(0.024) (0.014)

0.30 0.074 0.93 0.50 0.058 0.97 0.90

(0.024) (0.014)

Explanation: τ is the speed of reaction, µ2 the fraction that the highest losing bid

is lower than the winning bid. ‘obs’ is the fraction of the auctions in which the

highest losing bid is observed. p is the p-value of a test for a significant difference

with the estimate under τ = 0.05.

Table 3: Estimated difference between the winning bid and the highest losing bid

(as a fraction of the winning bid).
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Begonia Camilla Compacta

τ µ4 obs p µ4 obs p µ4 obs p

0.10 0.14 0.67 0.20 0.30

(0.021) (0.10)

0.15 0.13 0.84 0.42 0.31 0.52 0.19 0.50 0.83

(0.016) (0.18) (0.069)

0.20 0.14 0.89 0.62 0.25 0.69 0.45 0.19 0.60 0.81

(0.016) (0.10) (0.055)

0.25 0.14 0.94 0.53 0.27 0.72 0.51 0.22 0.63 0.55

(0.016) (0.11) (0.076)

0.30 0.14 0.94 0.75 0.28 0.76 0.53 0.21 0.70 0.66

(0.016) (0.12) (0.063)

Explanation: τ is the speed of reaction, µ4 the fraction that the fourth highest

bid is lower than the winning bid. ‘obs’ is the fraction of the auctions in which

the fourth highest bid is observed. p is the p-value of a test for a significant

difference with the estimate under τ = 0.10 for Begonias and Compactas and

τ = 0.15 for Camillas.

Table 4: Estimated difference between the winning bid and the third highest

losing bid (as a fraction of the winning bid).
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Begonia Camilla Compacta

Data

Reserve price 25.00 25.00 25.00
Average revenue 202.25 166.70 167.97
Average difference winning and second bid 9.38 8.82 8.43

Model ignoring losing bids

Average revenue 219.17 182.95 187.57
(0.96) (2.60) (5.19)

Average difference winning and second bid 31.42 22.46 24.26
(1.95) (1.80) (3.32)

Average optimal reserve price 97.13 80.83 80.82
Average revenue at optimal reserve price 219.44 183.11 187.71

(0.94) (2.62) (5.16)
Model with losing bids

Average revenue 218.88 184.44 192.98
(0.85) (2.37) (2.44)

Average difference winning and second bid 25.29 3.55 7.70
(0.89) (3.18) (2.70)

Average optimal reserve price 75.06 99.96 103.45
Average revenue at optimal reserve price 218.93 187.56 195.39

(0.87) (1.67) (1.99)
Model unknown bidders

Average revenue 209.74 173.02 173.29
(0.93) (2.56) (2.81)

Average difference winning and second bid 12.03 10.03 7.24
(0.42) (3.21) (2.87)

Average optimal reserve price 139.06 133.50 133.07
Average revenue at optimal reserve price 209.96 175.29 176.36

(0.92) (2.05) (2.01)
Model unknown bidders and p dependent on time

Average revenue 208.44 173.22 174.40
(1.03) (2.27) (2.77)

Average difference winning and second bid 11.90 10.20 8.48
(0.45) (2.98) (2.64)

Average optimal reserve price 141.84 133.40 132.07
Average revenue at optimal reserve price 208.83 175.50 176.75

(1.01) (1.88) (2.21)

Explanation: Estimated standard errors are given in parentheses.

Table 5: Model fit and policy simulations.
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Begonia Camilla Compacta

α −1.97 (0.088) −2.05 (0.17) −2.12 (0.19)

β 0.046 (0.034) 0.094 (0.14) 0.24 (0.34)

Grower 1 5.61 (0.012)

Grower 2 5.65 (0.0096)

Grower 3 5.62 (0.020)

Grower 4 5.86 (0.042) 6.06 (0.22)

Grower 5 4.41 (0.035) 4.56 (0.20)

Grower 6 5.83 (0.16)

Monday 0 0 0

Tuesday 0.0003 (0.0038) 0.10 (0.024) 0.011 (0.098)

Wednesday 0.16 (0.019) −0.069 (0.017) −0.083 (0.097)

Thursday −0.055 (0.017) 0.064 (0.034) −0.087 (0.11)

Friday −0.051 (0.011) −0.035 (0.064)

Explanatory note: Standard deviations in parentheses.

Table 6: The mean and the standard deviation of the marginal posterior densities

of the structural model ignoring the losing bids.
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α0 −1.15 (0.14) −2.11 (0.10) −2.11 (0.12)

α1 0.27 (0.17) 0 0

β −0.32 (0.070)

β1 0.41 (0.11)

β2 0.26 (0.092)

β3 1.65 (0.44)

β4 −0.38 (0.062)

β5 −0.27 (0.082)

Grower 1 5.61 (0.026)

Grower 2 5.63 (0.017)

Grower 3 6.30 (0.27)

Grower 4 5.74 (0.0045) 5.76 (0.010)

Grower 5 4.32 (0.012) 4.14 (0.0080)

Grower 6 5.61 (0.012)

Monday 0 0 0

Tuesday −0.025 (0.012) 0.086 (0.0037) 0.085 (0.012)

Wednesday 0.046 (0.011) −0.061 (0.0050) 0.12 (0.0093)

Thursday −0.14 (0.023) 0.063 (0.017) 0.11 (0.0086)

Friday −0.055 (0.017) −0.046 (0.026)

Explanatory note: the standard deviations are given in parentheses.

Table 7: The mean and the standard deviation of the marginal posterior densities

of the structural model taking the losing bids into account.
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α0 3.53 (0.12) 0.95 (0.18) 0.59 (0.15)

α1 −0.86 (0.065) 0 0

β −0.19 (0.11)

β1 1.49 (0.071)

β2 1.38 (0.079)

β3 2.16 (0.13)

β4 0.066 (0.28)

β5 0.46 (0.33)

Grower 1 5.62 (0.016)

Grower 2 5.66 (0.021)

Grower 3 6.11 (0.099)

Grower 4 5.77 (0.031) 5.78 (0.041)

Grower 5 4.38 (0.055) 4.31 (0.047)

Grower 6 5.58 (0.014)

Monday 0 0 0

Tuesday −0.019 (0.012) 0.045 (0.019) 0.029 (0.039)

Wednesday −0.034 (0.014) −0.084 (0.018) −0.064 (0.041)

Thursday −0.16 (0.014) 0.019 (0.037) −0.093 (0.046)

Friday −0.028 (0.023) −0.030 (0.082)

p0 0.10 (0.0043) 0.13 (0.011) 0.14 (0.013)

Explanatory note: the standard deviations are given in parentheses.

Table 8: The mean and the standard deviation of the marginal posterior densities

of the structural model with an unknown number of bidders (first specification).

41



Begonia Camilla Compacta

α0 3.02 (0.28) 0.91 (0.16) 0.61 (0.18)

α1 −0.61 (0.15) 0 0

β −0.11 (0.15)

β1 1.35 (0.14)

β2 1.18 (0.16)

β3 2.27 (0.22)

β4 0.046 (0.22)

β5 0.47 (0.35)

Grower 1 5.60 (0.019)

Grower 2 5.64 (0.023)

Grower 3 6.20 (0.15)

Grower 4 5.78 (0.023) 5.85 (0.055)

Grower 5 4.40 (0.075) 4.39 (0.061)

Grower 6 5.59 (0.019)

Monday 0 0 0

Tuesday −0.025 (0.012) 0.036 (0.017) −0.037 (0.054)

Wednesday 0.016 (0.020) −0.096 (0.016) −0.13 (0.054)

Thursday −0.18 (0.014) 0.013 (0.040) −0.16 (0.061)

Friday 0.021 (0.034) 0.070 (0.13)

p0 0.21 (0.012) 0.18 (0.026) 0.21 (0.041)

p1 −0.15 (0.013) −0.10 (0.042) −0.15 (0.076)

Explanatory note: the standard deviations are given in parentheses.

Table 9: The mean and the standard deviation of the marginal posterior densities

of the structural model with an unknown number of bidders (second specifica-

tion).
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Figure 1: The number of bidders participating in auctions shortly after the early-

morning opening of the auction house.

Figure 2: Scaled histogram of the time (in seconds) between the moment that

the highest bidder bids and the moment the next bidder is observed to bid.
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Figure 3: Kernel estimates of the time (in seconds) between the moment that

the highest bidder bids and the moment the next bidder is observed to bid (for

different values of the bandwidth (h)).

Figure 4: The percentage increase in expected revenue if the auction sets an

optimal reserve price instead of no reserve price, as a function of the number of

bidders (α = −1).
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Figure 5: The percentage increase in expected revenue if the auction sets an

optimal reserve price instead of no reserve price, as a function of the number of

bidders (α = 0).

Figure 6: The percentage increase in expected revenue if the auction sets an

optimal reserve price instead of no reserve price, as a function of the number of

bidders (α = 1).
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Figure 7: Marginal posterior density for the fraction of the registered bidders

that is actually participating.

Figure 8: The true density and estimated densities of the simulation study with

a uniform distribution.
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Figure 9: The true density and estimated densities of the simulation study with

a truncated exponential distribution.

Figure 10: The true density and estimated densities of the simulation study with

a truncated exponential distribution.
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Figure 11: The true density and estimated densities of the simulation study with

a uniform distribution.

Figure 12: The true density and estimated densities of the simulation study with

a truncated exponential distribution.
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Figure 13: The true density and estimated densities of the simulation study with

a truncated exponential distribution.
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