
Agent-Based Mediated Service Negotiation

David Mobach

SIKS Dissertation Series No. 2007-09

The research reported in this thesis has been carried out under the auspices of SIKS, the
Dutch Research School for Information and Knowledge Systems, and has been financially
supported by Stichting NLnet.

Promotiecommissie:
prof.dr. F.M.T. Brazier (promotor)
dr. B.J. Overeinder (copromotor)
prof.dr.ir. H.E. Bal
dr. F.P.M. Dignum
prof.dr. C.M. Jonker
prof.dr. M. Luck
dr. J. Onvlee
dr. O.F. Rana

Cover design by Ana Pascha
Printed by PrintPartners Ipskamp, Enschede, The Netherlands
Copyright c© 2007 by David Mobach
All rights reserved

VRIJE UNIVERSITEIT

Agent-Based Mediated Service Negotiation

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. L.M. Bouter,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen

op maandag 21 mei 2007 om 15.45 uur
in de aula van de universiteit,

De Boelelaan 1105

door

David Gillis Age Mobach

geboren te Amsterdam

promotor: prof.dr. F.M.T. Brazier
copromotor: dr. B.J. Overeinder

Contents

Preface ix

1 Introduction 1
1.1 Overall Research Context . 1
1.2 Research Focus . 5
1.3 Main Contributions . 7
1.4 Thesis Structure . 8

2 Related Work 9
2.1 A.I. and Negotiation . 9

2.1.1 Forms of Negotiation . 9
2.1.2 MAS and Negotiation . 12
2.1.3 Contract Negotiation . 12

2.2 Service Oriented Computing . 13
2.2.1 Grid Architectures . 13
2.2.2 Service Oriented Architectures 14
2.2.3 Agents and Grid Resource Management 15
2.2.4 Multi-Agent System Resource Management 16

2.3 Conclusions . 17
2.3.1 Framework Positioning . 17

3 The Negotiation Framework 19
3.1 Introduction . 19
3.2 The Negotiation Framework . 19

3.2.1 Participants . 21
3.2.2 Negotiation Model Overview . 21

3.3 The Negotiation Language . 24
3.3.1 Web Service Agreement Specification 24
3.3.2 WS-Agreement Specification Usage 28

3.4 The Negotiation Protocol . 30
3.4.1 Advertisement Phase . 30
3.4.2 Request Phase . 41
3.4.3 Offer Phase . 42
3.4.4 Acceptance Phase . 47

vi CONTENTS

3.4.5 Negotiation Process Overview 49
3.5 Agent Task Models . 49

3.5.1 Consumer Agent Tasks . 50
3.5.2 Mediator Agent Tasks . 51
3.5.3 Service Provider Agent Tasks 53

3.6 Discussion . 56

4 Distributed Energy Management: Mediated Service Negotiation in Energy
Markets 59
4.1 Introduction . 59

4.1.1 Distributed Energy Management 60
4.1.2 Related Work . 61

4.2 Energy Negotiation Model . 63
4.2.1 Consumer Agent . 64
4.2.2 Mediator Agent . 65
4.2.3 Provider Agent . 67
4.2.4 Energy Resource Description 67

4.3 Framework Application . 68
4.3.1 Scenario A: Provider Competition 68
4.3.2 Implementation Details and Simulation Results 76
4.3.3 Scenario B: Competition Between Provider Groups 79
4.3.4 Implementation Details and Simulation Results 82

4.4 Framework Extensions . 83
4.4.1 Scenario C: Consumer Competition 84
4.4.2 Auction Framework Example Trace 89
4.4.3 Scenario Discussion . 97
4.4.4 Scenario D: Decommitment . 97
4.4.5 Scenario D Example Trace . 103
4.4.6 Scenario Discussion . 105

4.5 Summary and Conclusions . 106
4.5.1 Future Work . 106

5 Multi-Agent System Resource Management: Resource Negotiation in Agent-
Scape 109
5.1 Introduction: AgentScape . 110
5.2 AgentScape Negotiation Architecture 113

5.2.1 Agentscape Framework Implementation 113
5.2.2 Topics of Negotiation . 115

5.3 Consumer Agent . 119
5.3.1 Advertisement Management . 120
5.3.2 Request Management . 120
5.3.3 Agreement Management . 121

5.4 Mediator Agent . 122
5.4.1 Advertisement Management . 122
5.4.2 Combining Advertisements: Example 1 123

CONTENTS vii

5.4.3 Combining Advertisements: Example 2 126
5.4.4 Combining Advertisements: Example 3 129
5.4.5 Request Management . 130
5.4.6 Agreement Management . 138

5.5 Service Provider . 138
5.5.1 Negotiation Module . 139
5.5.2 Service Management Module 141

5.6 Implementation and Experiments . 146
5.6.1 AgentScape Middleware . 146
5.6.2 AgentScape Negotiation Experiments 146
5.6.3 AgentScape Kernel Experiments 147
5.6.4 Host Manager Negotiation Experiments 148
5.6.5 Full Negotiation Architecture Experiments 150
5.6.6 Agent Load Balancing Experiments 154

5.7 Discussion . 157
5.7.1 Extending the Implementation 158
5.7.2 Performance and Security . 158
5.7.3 Fault-tolerance . 159

5.8 Summary . 160
5.9 Conclusions . 160

6 Conclusions and Future Work 163
6.1 Research Questions . 165
6.2 Future Work . 166

Samenvatting 169

SIKS Dissertation Series 183

viii CONTENTS

Preface

This thesis is one of a range of theses currently being written within the relatively new
Intelligent Interactive Distributed Systems group at the Vrije Universiteit Amsterdam. As
one of the first PhD students to enter the group in 2001, I learned many valuable lessons
over the years witnessing the development of the group and its research, and learned
even more from the people in it and their attitudes towards research. In this respect I
am grateful to Frances, Benno and Niek, who proved to be experts in guidance, advice,
support and inspiration throughout the years. I also thank my fellow PhD students Sander,
Elth, David, Guido, and Reza, whose company I enjoyed very much. In addition I thank
my other colleagues Michel, Renier, Martijn, Etienne, Olivier, and all others for making
my stay at the Vrije Universiteit interesting and fun. Last but not least, I thank my friends,
family and especially Marjolein, for building and maintaining the foundations that made
it possible for me to spend so much time and energy on my research and this thesis.

x Preface

Chapter 1

Introduction

1.1 Overall Research Context
The agent paradigm allows for the specification of computer systems as collections of
autonomous and distributed components. Jennings et al. [50] specify a number of key
characteristics of multi-agent systems:

• individual agents have specialized, limited problem solving capabilities and view-
points;

• decentralized data;

• lack of global control;

• asynchronous computation.

An advantage of these characteristics is that within a multi-agent system, individual
agents can be modeled relatively straightforward, as their tasks and interactions with the
world are limited. However, due to the asynchronous nature of multi-agent systems, and
the lack of global control, communication and coordination mechanisms are very impor-
tant elements of agent-based systems. These provide the necessary interaction structures
between individual agents, enabling exchange of information, and coordination of com-
plex tasks involving many agents. Although not mentioned in the above list of charac-
teristics, mobility is considered an important characteristic in mobile agent systems, an
important subclass of multi-agent systems. Allowing agents to migrate has a number of
advantages: Agents can move (closer) to machines where required data is stored, avoiding
network latency and bandwidth limitations; Increased data protection as agents can access
data locally. Lange and Oshima describe several other advantages in [59]. If designed and
implemented correctly, agent-based systems can offer robust and efficient solutions in
complex information system environments.

In recent years, applications of agent-based systems in real-world environments have
emerged, particularly in areas where distributed planning/scheduling, or the management
of distributed interactions, are important issues:

2 Introduction

Magenta’s Ocean i-Scheduler1 uses agents in real-time planning of cargo assignment
to vessels in a fleet. WhiteStein’s Living Systems Adaptive Transportation Networks2

(LS/ATN) uses agents to optimize the logistics of large-scale transport companies, tak-
ing into account the many constraints on their vehicle fleet, cargo, and drivers. Acklin BV
developed an international vehicle insurance claims processing system (KIR) to connect
companies from Belgium, the Netherlands and Germany, with business rules and logic
encoded into discrete agents representing the data sources of the different companies in-
volved.

Eurobios has provided an agent-based modelling solution [30] for SCA Packaging
in order to explore different strategies for reducing stock levels without compromising
delivery times, as well as evaluating consequences of changes in the customer base. The
agent-based simulation developed by Eurobios allowed the company to reduce warehouse
levels by over 35% while maintaining delivery commitments.

Working with US-based software developer Infotility, CSIRO has completed the first
release of the GridAgents software framework3, and is building a demonstration system
at the CSIRO Energy Centre in Newcastle, Australia, putting a gas micro-turbine, photo-
voltaic arrays, and a wind generator under agent control, along with two cool rooms and
a zone of a building climate system. This will form a mini-grid, coordinating supply and
demand and reacting intelligently to electricity market or retail contract price signals.

HealthAgents4 plans to create a multi-agent distributed decision support system, to
help in the early diagnosis and prognosis of brain tumors. For more information on these
applications, and other examples of commercial agent-based applications, see [12, 62].
Research in the area of agent-based systems can be classified as follows: Firstly, multi-
agent system (formal) design frameworks are being developed. These frameworks are
very diverse, ranging from modeling languages aimed at software engineering aspects of
designing multi-agent systems, such as AUML [70], to organizational modeling frame-
works such as GAIA [98] and DESIRE [19], that are aimed at modeling and formalizing
knowledge and interactions within multi-agent systems.

Secondly, agent programming languages are being developed, such as 3APL [46],
and AgentSpeak [79]. These languages offer constructs taken from imperative and/or
logic programming languages, extended with agent-based programming concepts, such
as cognitive agent models (e.g. BDI-based models) and agent interaction protocols.

Thirdly, multi-agent system platforms are being developed, providing basic infrastruc-
tures for agent-based applications. Well-known examples of such systems are JADE [13],
Ajanta [51], Cougaar [45], Grasshopper [11], and Aglets [60]. These architectures provide
agent run-time environments and libraries implementing basic agent models, communica-
tion and coordination protocols, and (in some cases) support for agent mobility. In addi-
tion to these ‘general-purpose’ agent platforms, there are platforms specifically developed
for certain application domains, such as virtual markets (e.g. GEMS [7], MAGNET [27]),
and simulations (e.g. Soar [99], Swarm [67]).

1http://www.magenta-technology.com/products/ischedulers/oceanfleet
2http://www.whitestein.com/pages/solutions/logistics/ls atn.html
3http://www.ict.csiro.au/page.php?did=225
4http://www.healthagents.net

1.1. Overall Research Context 3

It is mainly the third category in which developments have lead to the adoption of
agent-based systems in real-world application domains, ranging from telecommunication
networks [76, 17] to electronic commerce [24, 57], and from transportation planning and
stock management [31, 36] to distributed energy management [48, 94]. Although systems
in this category generally are not based on the advanced specification and formalization
features of the first two categories, they do provide the necessary structures for developing
and deploying agent-based applications in real-world environments.

Agent platforms are considered a cornerstone technology for future generation service-
oriented computing infrastructures [62]. These infrastructures require intelligent and dis-
tributed management solutions, capable of dealing with distributed, dynamic and hetero-
geneous environments securely. Current multi-agent platforms do not provide the required
management features to operate effectively in these environments.

Management Challenges

A number of the challenges that next-generation agent platforms face can be character-
ized as management challenges. Due to the scale and diversity of the applications these
platforms must support, traditional management approaches fall short. The following
management challenges can be distinguished:

1. Managing Agents

Next-generation agent platforms need to support a very diverse agent population, rang-
ing from small, simple agents (e.g. agent-based simulations) to large, complex agents
(e.g. personal assistant agents, (mobile) Internet search agents). Furthermore, when deal-
ing with mobile agent systems, migration support is needed to enable agents to move
from one location to another, to access remote resources. To manage a heterogeneous
agent population, a common life cycle model needs to be implemented in agent platforms,
allowing platforms to perform basic management operations (e.g. creation, suspension,
migration, and removal of agents).

2. Managing Multi-Agent Communication and Coordination

Different types of multi-agent applications have different requirements concerning com-
munication and coordination. These requirements range from basic support for exchang-
ing simple messages, to support for semantically rich agent communication languages and
interaction protocols. With respect to communication, agent platforms need to provide
robust and scalable mechanisms, capable of supporting these different communication
models. With respect to coordination, next-generation agent platforms need to provide
implementations of well-known coordination models such as auctions, markets, and bro-
kering. For more detail on coordination models, see Omicini et al. [72] and Deugo et
al. [33].

4 Introduction

3. Managing Agent Resource Access

Agents interact not only with other agents. They also use resources offered by and through
the agent-platform, by which they are supported, to perform their tasks. These resources
include low-level resources, such as computational resources, as well as higher-level ser-
vices, such as access to functionality offered by the agent system (directory services,
application specific services), or by external parties (e.g. web services).

In next generation agent platforms, large numbers of agents perform their tasks con-
currently, and compete with each other for access to limited resources. At the same time,
owners of these resources need to regulate access, for reasons such as security, account-
ing, and performance. An important (and complicating) factor is that agents and resources
are distributed across multiple (administrative) domains, each with different management
policies concerning agents and resources. Next generation agent platforms need to offer
agents coordinated and regulated service access across multiple distributed domains.

Of these three management challenges, the first two receive the most attention in current
agent platform research and development: Most current platforms define an agent life
cycle model, and offer implementations of various communication and coordination pro-
tocols. However, these models are often proprietary, and may not be suitable for use in
application domains other than for which they were designed.

Standardization efforts in these areas are very important, as these provide the man-
agement structures and approaches that will be implemented in the upcoming generation
of agent platforms. The FIPA5 specification incorporates models for managing agents
and agent applications, and includes (among others) an agent life cycle model, and spec-
ifications for various interaction and communication models, such as Contract-Net and
brokering protocols. Also, agent communication standards such as message structures
and message exchange protocols are specified. FIPA has recently been accepted as a new
standards committee by the IEEE6.

Less attention has been given to the third management challenge however. Tradition-
ally, allocation of resources within multi-agent systems is based on centralized approaches
such as combinatorial auctions, which do not incorporate the distributed and decentralized
nature of agents, resources, and the administrative domains in which they are situated.
More elaborate negotiation infrastructures are necessary to:

• Allow individual agents and resource providers to engage in localized interactions
for negotiating resource access conditions,

• and which allows the incorporation of resource access/management policies speci-
fied by both individual resource providers, as well as those spanning administrative
domains which the resources providers are part of.

In a recent survey published by the AgentLink Technical Forum Group on Multiagent
Resource Allocation (TFG-MARA) [25], an overview is given of the approaches currently
being considered promising in the area of multi-agent resource allocation. In the survey,

5Foundation for Intelligent Physical Agents, http://www.fipa.org
6Institute of Electrical and Electronics Engineers, http://www.computer.org

1.2. Research Focus 5

a distinction is made between traditional centralized allocation procedures, and decen-
tralized approaches. The two main decentralized approaches described in the survey are
auctions and negotiation.

This thesis presents a negotiation framework, based on an interaction model for nego-
tiation of service agreements between agents and the platform by which they wish to be
supported. The agreements specify guarantees and obligations concerning the use of ser-
vices, and are used to manage service access. Negotiation is not performed between the
involved parties directly, but is performed through third party intermediaries, called medi-
ators. The negotiation framework is based in part on the WS-Agreement specification [9].
The specification is extended to allow for mediated negotiation between consumers and
service providers within agent-based environments, and explicit acceptance of agreements
in the final stage of the negotiation process.

The framework provides for a policy based approach to resource access management:
The framework is modeled to allow the implementation of service access policies into the
negotiation model, at both individual service and group levels. Policies are considered
to be domain-specific, and are defined and specified outside the negotiation framework.
These policies can be instantiated in the negotiation framework as negotiation policies, us-
ing the extended WS-Agreement negotiation language. This approach allows for resource
owners and domain administrators to incorporate the framework into existing policy spec-
ification infrastructures.

1.2 Research Focus
In this thesis, a negotiation framework is described and evaluated. Agents and providers
of services (the term services is used instead of resources, as a more general term) interact
with each other, with the goal of regulating access to these services.

A number of aspects of a distributed, agent-based environment in which the frame-
work is to be applied have been identified in the discussion above:

• Large number of (mobile) agents and service providers;

• autonomy of agents and platform administrators;

• heterogeneity of agents and the platform support infrastructure (i.e. hosts, operating
systems);

• dynamics of both agents and platform infrastructure.

Based on these aspects, a number of requirements can be formulated for the negotiation
framework, which must be met in order for the framework to cope with each of the envi-
ronmental aspects, with the aim of providing an effective negotiation infrastructure:

1. Consistent service acquisition model: A negotiation framework should be part of
basic functionality provided by an agent platform, offering a uniform method for
establishing agreements throughout the distributed infrastructure, alongside other
primary functionality such as agent-agent communication and agent migration. It

6 Introduction

should be part of the basic service acquisition infrastructure, offering a consistent
model for managing service access for all involved parties.

2. Domain-independent and flexible: A negotiation framework should be domain-
independent and flexible, allowing many different agent applications and providers
of services to use the framework in their respective domains of application.

3. Straightforward to use: A negotiation framework should be straightforward in its
use, and should provide as much functionality as possible to help agents and service
providers in establishing agreements. The parties should not be burdened by the
framework, but gain from its use.

4. Suitable for dynamic negotiation environments: A negotiation framework should
be able to cope with the dynamic nature of an agent-based environment. Agents and
service providers may join and leave at any time. Moreover, individual agents and
service providers may change their requirements regarding service access over time.

5. Incorporate both local and domain-wide service access policies: A negotiation
framework should ensure that domain-specific policies regarding service access and
use can be expressed in the framework, and are represented in the agreement estab-
lishment process: We distinguish between so-called organizational domain-wide
policies, and localized service provider policies. Organizational policies specify
policies which hold for all available services within a domain, and are used for
defining general service access an usage conditions (e.g., fairness of service ac-
cess distribution across the agent population, overall service access performance
conditions, etc.). Local service provider policies are specified by individual ser-
vice providers and concern individual services (e.g., service acces control in order
to deny access to specific agents or to maintain service performance under heavy
load).

The above policies influence the use of services by agents, and should be taken into
account during the process of establishing agreements.

Based on these requirements, a number of research questions are formulated. These indi-
cate issues regarding the design of the framework for which solutions must be provided.
Below, the four main research questions that are addressed in this thesis are presented.

Q1:Can the negotiation framework support negotiation interactions over a wide range
of service domains?

Q2:Can the negotiation framework provide a uniform negotiation architecture, suitable
for application in these different service domains?

Q3:Can the negotiation framework incorporate both organizational and local service
access policies in the negotiation process?

Q4:Can the negotiation framework accommodate for dynamic and heterogeneous agent
and provider populations?

1.3. Main Contributions 7

The above research questions are used to guide the design of the negotiation frame-
work, and the implementation of the framework in the AgentScape agent platform: The
research presented within this thesis is also strongly related to the AgentScape project.
AgentScape [96] is a distributed agent platform developed by the IIDS group at the Vrije
Universiteit Amsterdam. The platform is designed to be scalable and secure, and offers
support for heterogeneous and mobile agents. The work in this thesis contributes to the
AgentScape platform by adding service negotiation functionality to the AgentScape im-
plementation. In return, the AgentScape system provides a valuable testbed which can be
used for the evaluation and testing of the work presented in this thesis. In the concluding
chapter of this thesis, the four questions are revisited, and the solutions presented in the
framework are discussed.

1.3 Main Contributions
The main contributions of this thesis are:

• A negotiation framework for service access has been designed and implemented
which is based on the WS-Agreement specification: The basic protocol of this spec-
ification has been extended to allow for more negotiation expressiveness and flex-
ibility. Policies can be defined which govern negotiation interactions at key points
in the process.

• The negotiation framework has been deployed in two different application domains:
Distributed agent middleware, and distributed energy management. Different nego-
tiation policies have been implemented within the negotiation framework to achieve
different negotiation interaction patterns required for each of the application do-
mains. The negotiation framework has been implemented as part of the AgentScape
agent middleware, and was used for a number of experiments and simulations, in
the context of both the agent middleware and the distributed energy management
application domains.

• In the AgentScape agent middleware domain, low-level resource allocation poli-
cies which assign computational resources to individual agents (e.g. round robin
resource selection, random resource selection) have been implemented and evalu-
ated. Agents within an AgentScape environment negotiate with multiple locations
offering resources required by the agents, and choose (i.e. migrate to) the loca-
tion that offers the best resource conditions. AgentScape administrators specify
resource access policies, which are reflected in the negotiation policies that govern
which resources (and which resource amounts) are available to agents for negoti-
ation. Experiments have been performed to evaluate the performance of the basic
negotiation infrastructure, and the resource allocation behavior of the framework.

• In the distributed energy management domain, negotiation policies have been im-
plemented which enable competition between individual energy providers offering
energy resources to clients, and to enable competition between groups of energy
providers, represented by mediators in the negotiation process. Simulations have
been performed to evaluate the resulting negotiation behavior.

8 Introduction

• Two extensions of the negotiation framework have been described in the context of
the distributed energy domain, each describing how the framework can be extended
to accommodate additional negotiation models. The first extension describes the
implementation of an auctioning model using the negotiation framework. The sec-
ond extension describes the incorporation of decommitment penalties in the nego-
tiation framework.

1.4 Thesis Structure
The structure of this thesis is as follows:

Chapter 2 provides a literature overview of the relevant research related to the design
and implementation of the framework: Multi-agent systems and negotiation theory are
discussed. In addition, the field of service-oriented computing is also discussed, as this
field faces management challenges similar to the challenges described in this chapter.
Chapter 3 presents the negotiation framework. First, an overview of the negotiation in-
teraction model is presented, followed by a description of the mechanisms provided by
the framework. Chapter 4 presents the first of two use cases that are used to evaluate the
framework. In the chapter, the applicability of the framework in the domain of distributed
energy management is examined. Chapter 5 presents the second use case: An imple-
mentation and evaluation of the framework in the AgentScape distributed agent platform.
Chapter 6 concludes the thesis by summarizing the work, and revisiting the research
questions posed in Chapter 1.

Chapter 2

Related Work

This chapter gives an overview of relevant literature for this thesis. First, as the framework
presented in this thesis is centered around a negotiation model, an overview of relevant
negotiation research is given. We focus on negotiation models in the context of agent-
based systems, as our framework is agent-based. After this, the field of Service Oriented
Computing is discussed. In this field of research, similar management challenges as pre-
sented in the previous chapter are distinguished. Negotiation models and agent-based
approaches are considered an important part of solutions to these problems, and standards
are being defined by the service oriented computing community to structure service ne-
gotiation processes, based on existing negotiation models. Finally, the relevance of the
topics that have been discussed for the framework presented in this thesis is discussed.

2.1 A.I. and Negotiation
Negotiation is a process in which two or more interdependent participants, each with their
own possibly incompatible goals, explore their options, bargain and strive for a mutu-
ally acceptable outcome. In its broadest form, negotiation can be viewed as communica-
tion [95]: exchanging proposals/preferences, asking questions, argumentation, can all be
part of negotiation processes. In the field of automated negotiation, negotiation is com-
monly described in the context of software agents [49]. In this context, negotiation can be
seen as a coordination model, enabling agents to interact with each other in a structured
way. Coordination models, such as negotiation, enable agents to form virtual organiza-
tions to achieve common goals in shared environments. Dignum et al. [35] describe the
role of coordination models in modeling virtual organizations. In the paper, coordination
models are described as a common ground for incorporating concepts from organizational
theory (e.g. roles, norms, goals) in the design of multi-agent systems.

2.1.1 Forms of Negotiation
In automated negotiation, two main forms of negotiation can be distinguished: Auctions
and bargaining [88]. The main characteristics used to classify negotiation models are

10 Related Work

the number of participants involved in the negotiation process and the number of issues
that are subject of the negotiation process. With respect to the number of participants,
negotiation models can be classified as one-to-one, one-to-many, and many-to-many. With
respect to negotiation issues, negotiation models can be classified as multiple-issue or
single-issue. See Bichler et al. [15] for more detail. In addition to buyers and sellers,
negotiations may also include intermediaries: Trusted impartial parties that participate in
the negotiation process, for example to provide fair negotiation solutions when the other
parties cannot reach an agreement. The following sections will briefly discuss auctions,
bargaining, and mediation.

Auctions

Participants in auctions make their preferences known to a centralized auctioneer via a
one-way offering mechanism known as bidding (different bidding protocols exist, e.g.
English, Dutch and Vickrey auctions [53]). The auctioneer determines the outcome of
the negotiation process. Auctions are traditionally used in single-issue situations, where
price is the issue to be negotiated. Multi-attribute auctions allow for simultaneous bidding
on multiple attributes (e.g., volume and price), and are currently subject of research [58].
David et al. [32] describe a number of issues contributing to the complexity of multi-
attribute auctions: determining what the winner criterion should include; how to formulate
a bid considering the multiple attributes; what should the auctioneer reveal at the start of
an auction. In this thesis, auctions are not further discussed, as the negotiation model
presented in this thesis is based on mediation.

Bargaining

In bargaining, participants most often negotiate by exchanging proposals/preferences.
Proposals are evaluated by participants using some form of utility determination function.
Bargaining models consist of two main parts: Interaction protocols and strategies. Early
models focus mainly on protocol aspects. An early and well-known bargaining protocol
is the Contract Net protocol [87]. The basic Contract Net protocol distinguishes two roles
for participants: managers and contractors. In this protocol, managers announce a task to
contractors. Contractors respond by making an offer to a manager. The manager allocates
the task to a contractor. Finally, the contractor confirms the allocation. Counter proposals
are not supported in the original Contract Net protocol. However, the protocol has been
extended in many ways, allowing for example negotiation over bundles of resources, as
presented by Sandholm [83].

More recently however, negotiation models are being developed that incorporate both
protocols and internal models for the negotiation participants: Faratin et al. [38] present a
negotiation architecture for agents that is related to the Contract Net approach, but extends
this model by allowing more elaborate offer/counter-offer interaction sequences between
agents. Furthermore, the architecture explicitly defines two deliberative mechanisms for
participants in the negotiation process: Trade Offs, and Issue Set Manipulation. The
trade off mechanism allows agents to search for offers which are of equal value to earlier
contracts, but which may be of greater value to the other party. The issue set manipulation

2.1. A.I. and Negotiation 11

mechanism provides solutions for determining which issues to remove or add from the
current issue set under negotiation.

Multi-issue Negotiation is an important subclass of negotiation. In these negotiations,
participants negotiate for multiple items in a single negotiation sequence. It is possible
for participants in a multi-attribute negotiation to reach a ‘win-win’ state in the negotia-
tion process (often a Pareto optimization process) [77]. From a complexity point-of-view,
multiple-issue negotiations are challenging [25]: Determining utility functions for evalu-
ating combinations of items is difficult, as different combinations of items may be valued
very differently, depending on the preferences of the individual participants. Also, the
number of possible solutions when dealing with combinations of items is much larger
than in the case of single-issue negotiation.

In addition to negotiation protocols, negotiation strategies are also an important aspect
of modeling negotiation. Two main approaches to negotiation strategies can be distin-
guished: Game theoretical approaches originating from the field of economics, currently
embraced by the A.I. community, and approaches based on technologies developed in
the field of A.I.. In the first category, negotiation mechanisms are developed and analyzed
with the goal of reaching optimal negotiation outcomes for participants [82]. A distinction
is made between cooperative and non-cooperative negotiation situations. Furthermore, in-
complete and complete information situations are distinguished. Game theory approaches
are criticized for often depending on assumptions which are difficult to maintain in prac-
tical situations (e.g. full rationality). Also, in the case of multiple-issue non-cooperative
negotiation, the negotiation problem from a game theory point-of-view is computation-
ally intractable: The search space in which to find an optimal strategy from the available
strategies grows exponentially.

Approaches from the field of Artificial Intelligence (genetic algorithms, evolutionary
search techniques) are used to efficiently find negotiation solutions in cases where reach-
ing optimal solutions may be difficult or impossible. Chevaleyre et al. [25] and Gerding
et al. [44] provide comprehensive literature overviews of negotiation theory in the field of
multi-attribute negotiation.

Mediation

In addition to direct negotiation between participants, negotiation can also take place
through intermediaries. These intermediaries can play one of three roles: that of Match-
maker, Broker, or Mediator [97]. A matchmaker’s only task is to find matching negotiation
participants based on preferences and offerings of these participants. After a match has
been made the parties are introduced to each other, and the matchmaking process is fin-
ished. A broker is more involved in the negotiation process: Brokers not only match nego-
tiation participants, they also intermediate all interaction between the parties. Mediators
are similar to brokers, but have the additional ability to negotiate on behalf of participants,
and provide a static contact point for a dynamic group of negotiation participants.

In mediated negotiation, participants negotiate with each other through a mediator.
A mediator is able to direct the negotiation process by analyzing the preferences of the
participants, and using this information to obtain a negotiation solution that satisfies both

12 Related Work

parties. However, tradeoffs with respect to one-to-one bargaining models are a more
complex interaction model, and potential trust issues, as participants need to communicate
their preferences (partially) to a third party. In situations where negotiation participants
cannot/do not directly know each other, or are not able to interact with each other for other
reasons, a mediator-based model may be the only alternative.

2.1.2 MAS and Negotiation

Multi-agent systems are a natural approach to modeling and implementing negotiation
systems, as they provide a structured environment for instantiating negotiation partici-
pants as multiple independent autonomous agents, and offer communication primitives
for communicating negotiation information. In some cases multi-agent systems explic-
itly provide negotiation support by offering negotiation-based interaction mechanisms.
The FIPA standard specifications provide several interaction protocols, such as the ‘FIPA
Contract Net Interaction Protocol’. JADE [13] (as a FIPA compliant framework) provides
implementations of these protocols to agent developers for implementation of auctions
and bargaining between agents. MAGNET (Multi AGent NEgotiation Testbed) [27], de-
signed for analysis of market-based systems, also provides support for negotiation interac-
tion protocols. Hindriks et al. [46] describe an extension of the 3APL agent language for
the specification of a multi-stage negotiation protocol. Predefined negotiation protocols
such as Contract Net, and auction protocols are provided in the ZEUS agent component li-
brary [69]. Although the approaches mentioned above provide similar negotiation mech-
anisms based on well-known negotiation protocols, the interaction mechanisms used to
implement the protocols are specific to each system. Negotiation interactions with other
agents running on other platforms are thus difficult to realize. FIPA provides standard-
ized negotiation protocols, which could contribute to improving interoperability between
platforms. These protocols however do not include mediator-based approaches.

2.1.3 Contract Negotiation

Negotiation in agent environments is often concerned with the allocation of tasks or re-
sources between agents. In traditional negotiation models, negotiation issues are repre-
sented using simple data structures. Cardoso and Oliveira [22] state that generally, formal
contracts are preferred when establishing relationships between unknown parties. Further-
more, they state that contracts are an alternative sanctioning mechanism, when non-legal
sanctions, such as reputation mechanisms are insufficient to constrain opportunism. In
contract negotiation, negotiation is used to establish a contract between negotiation par-
ticipants. After a contract has been established, the terms agreed upon in the contracts
can be monitored/implemented. Research in this area focuses mainly on formal contract
representations [81]. Tan and Thoen [34] present a contract language (LCR) based on a
branching-time logic. In the paper, contracts are used to specify commitments made by
organizations or individuals with respect to interactions within an environment, allowing
for the evaluation and verification of agent interaction. Dignum et al. [90] present a con-
tract representation language (DocLog) for electronic contracting systems in the context
of Internet trading. These contracts distinguish three layers, each describing the content

2.2. Service Oriented Computing 13

of the contract in a different way: The Data Layer to allow easy processing of contracts by
Enterprise Resource Planning (ERP) systems; the Natural Language Layer for presenting
contracts to humans and other text-related issues; the Semi-Formal Layer for allowing
electronic contracting systems to process and reason about the contract. In addition to
contract languages, alternative negotiation interaction protocols are also studied: Mathieu
et al. [65] present a model in which persistent contracts are exchanged between partici-
pants, instead of individual messages.

2.2 Service Oriented Computing
Distributed computing aims to combine computational resources distributed across many
computer systems into virtual organizations, and to provide users with tools for deploying
applications across available resources. Grid systems aim to provide distributed comput-
ing environments in a transparent and uniform way, allowing straightforward deployment
of applications across heterogeneous resources [42]. This section shortly describes Grid
systems and discusses recent developments in the newly emerging field of Service Ori-
ented Computing.

2.2.1 Grid Architectures
Although models and architectures differ, Grid architectures typically consist of compo-
nents providing:

• Resource models: Data models for describing resources that are available to appli-
cations.

• Resource naming schemes: Global namespaces for resources, according to some
organizational structure (e.g., hierarchical, flat).

• Resource discovery protocols: Mechanisms for applications to discover available
and suitable resources.

• Monitoring and control of resources: Mechanisms to regulate resource access, for
e.g. management and accounting purposes.

• Scheduling of tasks/jobs on the available resources: Elements of the architecture
responsible for assigning resources to applications.

• Identity management mechanisms: Authentication and authorization mechanisms,
to guarantee security and integrity of the resources.

Of these components, the scheduling component is the most central part, as it is re-
sponsible for performing the main task, consisting of allocating computational jobs to
available computational resources. Many different approaches to scheduling can be distin-
guished based on various technologies such as economic/market models, machine learn-
ing, and predictive heuristic models. Krauter et al. [56] describe a number of taxonomies

14 Related Work

to differentiate architectural models of Grid resource management systems (RMS), an-
alyzing and comparing a number of well-known Grid architectures with respect to this
taxonomy. Typically, in these systems, the Grid resource management system takes on a
matchmaking or brokering role to allocate user tasks/jobs on/across available resources.
One of the best known early Grid systems is Condor [78]. In Condor, entities which
require or provide resources publish their resource requirements/offerings in so-called
ClassAds (analogous to newspaper classified advertisements). A matchmaker service
matches classads, and notifies the involved entities when a match occurs. Condor supports
decentralized ownership of resources. Scheduling (i.e. matchmaking) in Condor however
remains centralized. Another well-known Grid system is Nimrod/G [21]. Nimrod/G has
been developed as an infrastructure to deploy parameter study applications across dis-
tributed computing environments, and is designed to use other Grid RMS systems such
as Condor and Legion. Nimrod/G uses an economy based approach: Both deadline (soft-
realtime) and budget (computational economy) constraints in scheduling are supported.
Although Grid systems are successfully applied in many application areas, the goal of
providing ubiquitous computing analogous to the power grid has not yet been attained.
Recent developments in the field of Grid computing are aimed at further virtualization
of the underlying Grid infrastructures, and standardization of the interfaces offered to
Grid application developers. Examples of such systems are the Grid Application Toolkit
(GAT) [8], the Simple API for Grid Applications (SAGA), 1 and the Open Grid Service
Architecture (OGSA) [40].

2.2.2 Service Oriented Architectures
As Web Service architectures emerge, Grid architectures have adopted standards and prac-
tices developed in the web service community: So-called Service Oriented Architectures
(SOAs) [43]. SOAs are architectures composed of loosely coupled services, interacting
through standardized interfaces, modeled independently from underlying platforms. The
Open Grid Service Architecture (OGSA) currently developed by the Open Grid Form
(OGF) [40], is an attempt to provide standards for SOAs in Grid environments. OGSA
defines a number of core web services providing basic Grid environment functionality
(directory services, resource management services, scheduling and reservation services,
etc.). The aim of OGSA is to provide a service-based environment, using web service
interaction standards, in which additional Grid services can easily be deployed and ac-
cessed. Another example of a service-based architecture is the Service Bus described in
[61]: A basic middleware layer (the bus) as a virtualization layer between users and ser-
vices. Users request services based on high level criteria (WSDL, semantic descriptions,
etc.), after which the service bus determines the best way to accommodate these requests.
The bus hides implementation details of specific services, and allows for transparent com-
position (orchestration) of services.

An important concept within SOAs is the Service Level Agreement (SLA). SLAs are
widely used in the information system domain to express Quality of Service (QoS) guar-
antees and obligations with respect to delivered products and services. Traditionally, these
documents are written in natural language. In SOAs, SLAs are created between users and

1http://wiki.cct.lsu.edu/saga/

2.2. Service Oriented Computing 15

providers of web services, and describe the conditions under which a service is accessed
by a user (job priorities, required computational resources, etc.). Established SLAs are
often used by resource management services as a basis for making management decisions
to ensure proper provisioning of agreed upon resources to users. In these service oriented
environments, automated SLA management is desirable, as human intervention should
be kept to a minimum. An example of a framework for automated SLA management is
the Web Service Level Agreement (WSLA) [52] framework. This framework presents a
language for specifying SLAs, and an architecture consisting of SLA monitoring services.

Negotiation in Service Oriented Environments

In the AgentLink Roadmap [62], negotiation research is mentioned as one of the main
research challenges in the coming years in the development of service oriented architec-
tures. With respect to SOAs and negotiation, the Roadmap states:

. . . bargaining over multiple parameters or attributes to establish SLAs be-
tween service providers and service consumers will be key in future service-
oriented computing environments.

The Open Grid Forum’s current aim is to standardize infrastructures for automated
negotiation and creation of SLAs. The WS-Agreement specification [9] offers a basic
contracting protocol and language, which can be used to establish agreements between
service providers and consumers, based on predefined contracting templates. Although
the specification provides a straightforward approach to establishing agreements, it of-
fers a one-way interaction protocol, and does not allow for more elaborate negotiation
interactions. Several attempts are being undertaken to extend the contracting protocol.
Paurobally et al. [75] integrate Speech Acts into the model, allowing for a more expres-
sive negotiation language, enabling more elaborate negotiations (e.g. Contract Net proto-
col). Aiello et al. [5] add re-negotiation to the protocol. The Open Grid Forum itself is
working on an additional specification, WS-Negotiation. This additional layer on top of
WS-Agreements will offer concepts for the specification of negotiation protocols based
on the WS-Agreement primitives. For more information and a more elaborate discussion
of the aforementioned WSA specification and extensions, see Chapter 3.

2.2.3 Agents and Grid Resource Management
The AgentLink Roadmap indicates that as the complexity of service-oriented environ-
ments increases, software agents can play an important role in these environments, both
as a design paradigm, and as an enabling technology, for example to implement automated
SLA negotiation infrastructures.

The use of the agent paradigm in Grid systems is not a new development. An early ex-
ample of a Grid system in which the agent concept is used is Netsolve [23]. In a Netsolve
system, agents are responsible for maintaining resource information, and act as brokers
between users and computational resources. Recent developments in this area include
more elaborate agent-based approaches, such as CONOISE-G [68], an agent-based archi-
tecture intended to implement virtual organizational formation and operation in a service

16 Related Work

based environment. Another well-known system is Planetlab [26], in which agents track
resources, and interact with resource brokers by advertising resources and issuing tickets
with which resources can be claimed. Foster et al. [41] discuss the convergence of Grid
and agent research communities, and highlight a number of important areas of research,
in which both communities have an overlapping interest:

• Autonomy of system components: Both communities require models for creating
systems consisting of independent components, capable of performing their tasks
in a heterogeneous and dynamic environment.

• Negotiation and contracting: The use of negotiation to establish service contracts
is considered important in both communities. Agent researchers have already pro-
vided significant contributions in this area, as described earlier in this chapter.

• Management of virtual organizations: Using organizational models to structure sys-
tems is also considered important in both communities. Current grid systems allow
for describing and grouping services, but require higher-level semantic discovery
and brokering functionality. Work performed in the agent community can be incor-
porated to provide this functionality.

• Authentication, trust, and policy management: Due to the dynamic and open nature
of systems created in both communities, models for authentication of dynamically
created entities are important, as well as models for establishing trust relationships
between entities, and for policy specification and enforcement within these envi-
ronments.

2.2.4 Multi-Agent System Resource Management

As (mobile-)agent-based systems are moving out of academia and into real-world applica-
tions, performance requirements are becoming a more pronounced concern. Multi-agent
systems are being deployed on existing networking and computing infrastructures: Mech-
anisms are required to allow monitoring and control of agent resource consumption. Work
in this area ranges from low-level monitoring and enforcement mechanisms that are used
internally for management purposes, to infrastructures that allow agents to interact with
management systems about resource requirements and availability.

Binder et al. [16] describe a resource aware version of the Java based J-SEAL2 mo-
bile agent kernel, which is aimed at preventing denial-of-service attacks by agents through
regulation of agent resource usage. The infrastructure allows for the regulation of agent
(relative) CPU consumption, active memory, and active and total number of threads. Shar-
ing of allocated resources by agents is also supported and is also subject to regulation.

In the NOMADS [89] multi-agent platform, fine-grained resource control of disk and
network access (rate and quantity) is achieved using mechanisms provided by a Java-
compatible Virtual Machine (Aroma).

Ajanta [51] is a mobile agent platform in which resource access is governed by policies
that can be defined and implemented by resource owners. Resource access is provided to
agents through proxies, enabling the embedding of metering and accounting mechanisms.

2.3. Conclusions 17

2.3 Conclusions

In this chapter, an overview of different agent-based negotiation approaches is given. Al-
though implementations of these models are available, these are mostly application spe-
cific. Although FIPA is offering basic negotiation protocols as part of its standardization
effort, these protocols are oriented towards coordination of tasks, and are not intended
as a basic interaction mechanism as part of the basic platform infrastructure. For agent-
based negotiation models such as those discussed in the beginning of this chapter to be
successfully implemented in large-scale and heterogeneous environments, a common and
standardized framework needs to be created which is able to support these models. Such a
framework can provide a common base for all users and providers of negotiation systems
built op top of this framework, and should consist of the components as indicated earlier
in Section 2.1.1: A negotiation language, negotiation protocol, and generic internal agent
models for the negotiation participants, including support for the specification and im-
plementation of domain-specific negotiation strategies. Furthermore, we argue that such
a generic framework should be based on a mediated negotiation model, as this provides
the framework with a number of useful properties that are of importance in large-scale
and heterogenous domains: Mediators function as relatively static contact points for ne-
gotiation participants in the dynamic environment (participants may not be able to known
each other directly due to the size of the environment/population); mediators can acts as
trusted parties when negotiating with unknown parties; mediators can translate between
different parties. Finally, to allow for the expression of complex negotiation issues in a
generic manner, and as formal agreement structures are preferred in situations with un-
known negotiation participants, a well-defined contract-like information structure should
be provided, in which domain-specific negotiation issues can be integrated with minimal
effort.

The overview of the field of Service Oriented Computing given in this chapter indi-
cates that interaction models for establishing agreements have been and are an important
issue in this field: Grid systems introduced matchmaking services for job/task scheduling,
which have evolved to more elaborate brokering services allowing high-level deployment
of applications on heterogeneous distributed infrastructures. More recently, as the field
moves in the direction of higher-level general Service Oriented Architectures, frameworks
are needed that allow automated negotiation of service level agreements between service
providers and service consumers, to reduce the time consuming intervention of humans
in this process. The initiatives that are currently being researched (e.g., WS-Agreements)
are promising, but are only able to model very basic interaction models.

2.3.1 Framework Positioning

The negotiation framework presented in this thesis originates from the need of both fields
for the specification and implementation of service negotiation, in a generic and standard-
ized way.

For the field of agent-based negotiation, the framework offers the possibility of im-
plementing the various negotiation models that have been, and are still being researched,
using a standardized basic interaction model and language. The framework can then be

18 Related Work

offered to agent application developers as part of a larger agent-based middleware system
(such as the AgentScape middleware described in Chapter 5), offering a basic support
infrastructure for specifying, implementing, and using negotiation models.

For the field of service oriented computing, the framework offers an extension of
the specifications and frameworks currently being developed. The extensions allow for
more realistic negotiation models to be expressed, which can in turn provide more solid
foundations for automated service level agreement negotiation systems. Domain-specific
negotiation policies can be specified which tailor the negotiation framework to the specific
negotiation requirements in different domains.

To summarize, the framework can be viewed as an attempt to bridge the gap between
service oriented computing and agent-based computing, using negotiation as a common
denominator between the two fields. Negotiation is a key component of future generation
distributed computing architectures, and agent-based architectures play an important role
in future service oriented environments, to provide autonomous and distributed negotia-
tion infrastructures. The negotiation framework described in this thesis aims provide an
agent-based mediation approach for service negotiation in distributed environments.

Chapter 3

The Negotiation Framework

3.1 Introduction

This chapter presents a negotiation framework within which consumers negotiate with
providers for service access through mediation. Mediators present consumers with aggre-
gations of services, available within the virtual organization it represents. In the frame-
work, providers are assumed to be aggregated in virtual organizations: Providers can form
dynamic groups, based on criteria which may or may not relate to the services they of-
fer. The creation and management of these virtual organizations is performed outside the
negotiation framework. Mediators are dynamic: At any point in time can a mediator be
assigned to represent a virtual organization in a negotiation process. This mediator is then
responsible for handling negotiations between service providers within the virtual organi-
zation, and any service consumers. During negotiations, mediators enforce organization-
wide service policies. Negotiation is one-to-many: Consumers can enter into negotiations
with multiple mediators. Mediators negotiate with multiple service providers simulta-
neously. The environment is dynamic: Consumers can interact with multiple mediators
concurrently, and services and service providers can join and leave virtual organizations
at any time. Interactions between parties are based on the WS-Agreement [9] negoti-
ation protocol and language. Extensions to the protocol are made to accommodate for
mediated negotiation. Section 3.2 identifies the roles of the participants and introduces
the negotiation model. Section 3.3 describes the negotiation language used in the frame-
work. Section 3.4 defines the negotiation protocol. Section 3.5 provides an overview of
the task models of each of the modeled agents. Finally, Section 3.6 presents a summary
and discussion of the framework.

3.2 The Negotiation Framework

This section presents an overview of the negotiation framework. Requirements for the
negotiation framework have been defined in Section 1.2. Based on these requirements,
framework design decisions are made. These decisions are described below:

20 The Negotiation Framework

• Standardized negotiation language and protocol:
The protocol and language are based on an emerging agreement negotiation stan-
dard (WS-Agreements). This standard provides a domain-independent agreement
negotiation language (requirement 2), and a straightforward interaction protocol to
establish agreements (requirement 1).

• Single cycle negotiation:
To prevent lengthy negotiations, negotiation interactions consist of a single request-
offer sequence. Advertisements are used to limit the negotiation space at the start
of each negotiation. This relatively simple negotiation scheme ensures that partic-
ipants do not have to manage complex negotiations consisting of multiple negotia-
tion cycles involving revision of requests or offers (requirement 3).

• Mediated negotiation:
A mediated negotiation model is chosen as a basis for the framework. The use
of mediators hides the dynamics of the participant population in the negotiation
process (requirement 4). Also, mediators can provide the means for implementing
domain-wide service access policies during negotiations (requirement 5).

Policy Based Negotiation

The framework is designed to be policy based: The behavior of the negotiation frame-
work is governed by negotiation policies that are specified for each negotiation domain in
which the framework is implemented. These negotiation policies are based upon exter-
nal, domain-specific policies: We assume that each domain has its own policies regarding
access to, and use of available services. These are specified outside the negotiation frame-
work, and may be part of some more general policy infrastructure. To achieve the goals
as specified by these external policies, they are translated into negotiation policies which
govern the behavior of the components of the negotiation framework. Figure 3.1 shows
the relation between the different policy levels. In the components of our framework, sev-
eral types of negotiation policies are distinguished. These are introduced and discussed in
more detail throughout this chapter.

Framework
Negotiation
policies

Domain−specific service
access & usage policies

Domain−specific service
access & usage policies

Domain A Domain B

Negotiation

Figure 3.1: Negotiation policies.

Allowing for the incorporation of different negotiation policies in the negotiation
framework means that the implementations of the agent roles defined by the framework
can be different in different domains. For example, in one domain, a mediator agent can
be configured to act with the interests of the consumer in mind, while in another domain
a mediator may act in favor of providers.

3.2. The Negotiation Framework 21

3.2.1 Participants
The framework distinguishes consumer agents, mediator agents and service provider
agents:

Consumer Agent

Each consumer agent represents one consumer in a negotiation process. Consumer agents
initiate a negotiation process, aiming to acquire an offer which they can accept: An offer
that fulfills their requirements.

Service Provider Agent

A service provider agent represents the provider/owner of one or more services in nego-
tiations with a mediator agent. Access and usage policies are defined, implemented, and
enforced by the provider/owner of each service individually. Each service provider agent
is a member of exactly one virtual organization of service provider agents.

Mediator Agent

A mediator agent represents a virtual organization of service provider agents in negoti-
ations with consumer agents. Each virtual organization has its own negotiation policies
spanning the service provider agents involved. A mediator agent is responsible for the
implementation and enforcement of these organization-wide negotiation policies.

3.2.2 Negotiation Model Overview
Consumer Agents (CA) negotiate with mediator agents (MA). Mediator agents negotiate
with service provider agents (SPA), on behalf of CAs. Figure 3.2 presents an overview of
the model.

S

SPA

SPA

Virtual provider organization

S

S

S

S

MA
CA

Figure 3.2: Negotiation model overview.

Our negotiation model is two-tiered: In the upper tier, consumer agents negotiate
with mediator agents. Mediator agents hide provider-level details from consumer agents,
offering a single point of contact. In the lower tier, mediator agents negotiate with service

22 The Negotiation Framework

provider agents. Mediator agents translate negotiation requests from consumer agents into
requests for services for service provider agents.

Mediator agents combine information on the availability of services within a virtual
organization at a specific point in time. This information is provided by service provider
agents in the form of advertisements. Consumer agents bid for these services. Mediator
agents determine an optimal allocation across the services offered by the individual ser-
vice provider agents once a bid has been made, according to the policies of the virtual
organization.

Agreement

S

S
SPAC:

Negotiation offers

S

S
SPA

S

S
SPA

A0:

Expression of interests

A1:

Advertisements

B:

Negotiation requests

D0:

Offer acceptance/rejection

D1:

S

S
SPA

S

S
SPA

MA

MA

MA

MA

MA

MA

CA

CA

CA

CA

CA

CA

Figure 3.3: Negotiation interactions.

The negotiation interactions used in both tiers consist of simple request-response type
negotiation interactions. Figure 3.3 gives an overview of the negotiation interactions in
the negotiation process. The negotiation process consists of four main phases, extending
the WS-Agreement protocol :

Advertisement phase (A):
In this phase, consumer agents request advertisements from mediator agents. Con-

3.2. The Negotiation Framework 23

sumer agents express the services in which they are interested in the request (A0).
Mediator agents collect and combine individual service provider agent advertise-
ments into combined advertisements. Any combined advertisements that contain
services that the consumer agent is interested in, are returned to the consumer agent
(A1). Note that the retrieval of service provider agent advertisements is a separate
process, which can occur concurrently, independent of the consumer agent adver-
tisement request process.

Request phase (B):
Consumer agents create negotiation requests based on advertisements. Mediator
agents translate these requests into negotiation requests for individual service pro-
vider agents.

Offer phase (C):
In the offer phase, service provider agents return negotiation offers in response to
the received negotiation requests. Mediator agents combine and select the best
offer(s), and return this to the consumer agent.

Acceptance/rejection phase (D):
In the acceptance phase, the final agreement is established. Consumer agents ac-
cept (or reject) the received offer(s). Mediator agents translate this into accep-
tance/rejection of individual service provider agent offers (D0). Service provider
agents return the established (partial) agreements to the mediator agent. The medi-
ator agent combines the partial agreements into a single agreement, and returns this
to the consumer agent (D1).

The format of the negotiation information exchanged is based on agreement document
standards as described in the Web Service Agreement specification (WS-Agreement) [9].
WS-Agreement template documents are used to start a negotiation process and to struc-
ture negotiation sequences: During a negotiation sequence, parties exchange agreement
documents, resulting in a final agreement document the parties have agreed upon.

Role of the Consumer Agent

Consumer agents perform multi-attribute negotiations with one or more mediator agents,
the goal being to acquire the right to service access. Consumer agents are assumed to
have already located the mediators with whom they wish to negotiate, through some ex-
ternal means (e.g. directory services). The negotiation protocol described in this chapter
focuses on interactions with one mediator agent, but the framework allows for multiple
negotiations concurrently. Agents may need to negotiate with different mediators in order
to fulfill their full set of requirements. Consumer agents are assumed to be capable of
translating their domain-specific requirements into negotiation requests for services using
the negotiation language as specified in the framework. Similarly, agents are assumed to
be capable of interpreting the negotiation offers they receive.

24 The Negotiation Framework

Role of the Mediator Agent

A mediator agent collects and combines service provider advertisements, and provides
a single point of access for consumer agents to negotiate for multiple services provided
by different service provider agents. In the request phase, a mediator agent forwards
(parts of) a request to selected service provider agents. Domain-specific utility calculation
mechanisms determine which providers can potentially provide the best offers, based on
their advertisements and local policies. In the next phase, the offer phase, a mediator
agent compares the offers these providers return, again using the aforementioned utility
calculation mechanisms to determine which offer(s) should be forwarded to the consumer
agents. The negotiation process ends with an agreement.

Role of the Service Provider Agent

Service provider agents provide a contact point for mediators to negotiate for access to
services. Service provider agents specify advertisements that represent an up-to-date and
accurate view on the current state of services and policies. All incoming negotiation
requests are based on these advertisements. The content of the advertisements is based
upon availability and expected utility of services, and local policies concerning service
access. During negotiations, service provider agents create negotiation offers in response
to requests from the mediator agent. The content of an offer is based on (i) the content of
the request, (ii) the availability of the requested services, and (iii) local policies regarding
service access. Service provider agents are responsible for ensuring that the services they
have offered can be delivered if the negotiation succeeds (i.e. commitment to the offer
made). Domain-specific service reservation mechanisms may be needed.

After an agreement has been negotiated, service provider agents are responsible for
enforcement of the agreement.

3.3 The Negotiation Language
The negotiation interactions between the agents presented above are based on the Web
Service Agreement (WS-Agreement) specification. Below a description of the WS-Agreement
Specification is provided, followed by a description of the extensions made to the specifi-
cation, and the use of the specification within our negotiation framework.

3.3.1 Web Service Agreement Specification
The WS-Agreement specification [9] describes a domain-independent negotiation-based
approach for accessing web services. To obtain access to and use a web service, a nego-
tiation cycle takes place between the two involved parties: A web service provider and a
web service consumer.

Service providers specify the services they offer and the conditions under which the
services may be used by consumers in a template document. Service consumers may
request such a template document and use it to formulate an agreement request, specifying
the desired services and service conditions in the request document. Service providers

3.3. The Negotiation Language 25

interpret the request and respond with an agreement document if the requested services
and service conditions can be met. The resulting agreement specifies the conditions under
which the service can/may be used by a consumer.

agreement

C P

C P

C P
templates

agreement offer

Figure 3.4: The WS-Agreement protocol.

The specification has been designed specifically for service oriented architectures,
and defines a negotiation protocol and language. The interaction protocol is relatively
straightforward (see Figure 3.4): First, the initiator of a negotiation sequence (C) requests
available templates from the service provider (P). The initiator then selects a suitable
template and uses this to create an agreement offer. This offer is sent to the service
provider. If accepted, the provider creates an agreement based on the offer. The agreement
is implemented, and returned to the initiator.

The specification defines negotiation document formats using XML-Schema: Two
document types are distinguished: Templates, and Agreements. Central to these document
types are negotiation terms. Service descriptions are explicitly not modeled, and can be
added to the specification according to the requirements of the application domain. The
following sections describe the document types in more detail.

Agreement

Context

Guarantee Terms

Service Description Terms

Terms

Name

Figure 3.5: Conceptual overview of an agreement.

Agreement Document

An agreement consists of two main sections: a context, and terms section. The context
section contains agreement meta-information, such as identifiers for the initiator of an
agreement, and the provider of an agreement, the name of the template on which the

26 The Negotiation Framework

agreement is based, references to other agreements (if present), and agreement duration.
Relationships between agreements are not further defined in the WS-Agreement specifi-
cation. Agreements are time-limited: The duration specified in the context section of an
agreement indicates when the agreement expires. Figure 3.5 depicts the main fields in an
agreement document.

The terms section contains the actual agreement content. Two types of terms are dis-
tinguished: Service Description Terms (SDTs), and Guarantee Terms (GTs). SDTs define
the services involved. GTs refer to the described services, and define assurances to the
consumer on service quality and/or resource availability offered by the service provider.
Agreements can contain multiple SDTs, which can refer to multiple services. An example
of an agreement document is shown in Example 3.1. In the example, an agreement estab-
lished between provider P and consumer C for access to a video library service is shown.
The agreement is based on template T, which was specified by P beforehand. The agree-
ment is valid for one hour (duration = 3600s), and specifies a single video library service.
Also, the agreement specifies that the mediatype delivered by the library is MPEG-4. Fi-
nally, the agreement specifies a guarantee term, indicating that the minimum streaming
bandwidth agreed upon by both parties is 250 Kb/s.

<Agreement>
<Name>Agreement Example</Name>
<Context>
<AgreementInitiator>Consumer C</AgreementInitiator>
<AgreementProvider>Provider P</AgreementProvider>
<Template>Template T</Template>
<Duration>3600</Duration>

</Context>
<Terms>
<All>
<ServiceDescriptionTerm Name=”sdt-1” serviceName=”video library”>

<mediatype>MPEG-4</mediatype>
</ServiceDescriptionTerm>
<GuaranteeTerm Name=”gt-1”>
<ServiceScope>
<ServiceName>video library</ServiceName>

</ServiceScope>
<ServiceLevelObjective>
<minimum bandwidth>250</minimum bandwidth>

</ServiceLevelObjective>
</GuaranteeTerm>

</All>
</Terms>

</Agreement>

Example 3.1: An agreement document.

Template Document

A template has a document structure similar to an agreement document, but with the
addition of a Creation Constraint section, which is used to define initial negotiation con-
straints on service description terms described in the template (e.g. specifying a maximum
or minimum value for a service request). Figure 3.6 depicts a template document.

The creation constraint section consists of Items. An Item is a restriction describing a
field in the agreement (indicated using an XPath [14] expression in the Location tag), and

3.3. The Negotiation Language 27

Creation Constraints

Context

Guarantee Terms

Service Description Terms

Terms

Name

Template

Figure 3.6: Conceptual overview of a template.

value restrictions for that field. Restriction models are not specified in the WS-Agreement
specification, they are considered to be domain dependent. Creation constraints are only
an initial indication of valid values for agreement requests: An agreement offer adhering
to the constraints described in the template does not necessarily guarantee the acceptance
of the agreement request. An example of an agreement template is shown in Example 3.2:
The template with name T is specified by Provider P as indicated in the context section,
and describes a single service video library. The library delivers media of type MPEG-4.
Furthermore, the template specifies a constraint on the value which may be requested for
the minimum bandwidth of the service, limiting this to a maximum value of 1500 Kb/s.

<Template>
<Name>Template T</Name>
<Context>
<AgreementProvider>Provider P</AgreementProvider>

</Context>
<Terms>
<ServiceDescriptionTerm name=”sdt-1” serviceName=”video library”>
<mediatype>MPEG-4</mediatype>

</ServiceDescriptionTerm>
<GuaranteeTerm name=”gt-1”>
<ServiceScope>
<ServiceName>video library</ServiceName>

</ServiceScope>
<ServiceLevelObjective>
<minimum bandwidth/>

</ServiceLevelObjective>
</GuaranteeTerm>

</Terms>
<CreationConstraints>
<Item>
<Location>

//GuaranteeTerm[@name=’gt-1’]/ServiceLevelObjective/minimum bandwidth
</Location>
<max value>1500</max value>

</Item>
</CreationConstraints>

</Template>

Example 3.2: A template document.

28 The Negotiation Framework

3.3.2 WS-Agreement Specification Usage

The negotiation language and protocol defined in the WS-Agreement specification are
applied in our negotiation framework to provide the basis for the agent-based negotiation
interactions. Both the protocol and language have been extended to allow for a more
flexible negotiation framework. In this section, adaptations to the negotiation language
are discussed. In Section 3.4, extensions to the negotiation protocol are discussed.

WS-Agreement Language Adaptations

In our framework, advertisements are specified using WS-Agreement template docu-
ments: Service providers use the service description terms and creation constraints to
specify available services and negotiation restrictions.

Negotiation requests, negotiation offers, and final agreements are specified using WS-
Agreement agreement documents: Service description terms are used to specify the ser-
vices under negotiation. In our framework, services are typed: The serviceName attribute
in the service description term indicates the type of service that is being described in the
term. Instead of being specified in separate guarantee terms, service level guarantees are
modeled as part of domain-specific service descriptions contained within the service de-
scription terms: In our framework, the distinction between what is to be part of a service
description and what is to be part of a service level objective is not made at this (domain-
independent) level in the negotiation language, but is instead considered part of domain-
specific service descriptions. Example 3.3 depicts an agreement document as used in our
framework.

<Agreement>
<Name>Agreement Example</Name>
<Context>
<AgreementInitiator>Consumer1</AgreementInitiator>
<AgreementProvider>Provider1</AgreementProvider>
<Template>Template1</Template>
<Duration>600</Duration>

</Context>
<Terms>
<All>
<ServiceDescriptionTerm Name=”...” serviceName=”...”>

<!-- domain-specific service description,
including domain-specific service level objectives -->

</ServiceDescriptionTerm>
</All>

</Terms>
</Agreement>

Example 3.3: An agreement document as used in the negotiation framework.

Negotiation Restriction Model

A basic service access restriction model has been added to the WS-Agreement specifi-
cation, allowing for the expression of basic constraints over services: Maximum value
constraints, minimum value constraints, and constraints enumerating allowed values. Ex-
ample 3.4 shows the syntax of the restriction model: Each restriction is defined using

3.3. The Negotiation Language 29

a Restriction element. The type attribute is used to indicate the restriction type (max-
Value/minValue/enumeration). Type specific elements are used to express the actual re-
strictions.

<CreationConstraints>
<Item>
<Location>//xpath-expression-to-service-description-term</Location>
<Restriction type=”maxValue”>
<maxValue>350</maxValue>

</Restriction>
</Item>
<Item>
<Location>//xpath-expression-to-service-description-term</Location>
<Restriction type=”minValue”>
<minValue>50</minValue>

</Restriction>
</Item>
<Item>
<Location>//xpath-expression-to-service-description-term</Location>
<Restriction type=”enumeration”>
<enum>AllowedValue1</enum>
<enum>AllowedValue2</enum>
...

</Restriction>
</Item>

</CreationConstraints>

Example 3.4: The restriction model.

Term Composition

In our framework, term composition is an important aspect of the negotiation docu-
ments (both in advertisements and agreements): The mediator agent uses term com-
positors to manipulate documents (combining advertisements and requests/offers during
negotiations, etc.). The WS-Agreement specification support term composition using
term compositors taken from the WS-Policy specification [10]. WS-Policy defines three
main composition elements: All, ExactlyOne, and OneOrMore, which are used as logical
AND/XOR/OR operators. These operators are used to express policies concerning the
combination of various services described in the service description terms.

The WS-Policy specification also specifies operations for normalizing, merging, and
intersecting policy assertions. In our framework these operations are used to process ser-
vice description terms in the negotiation documents. Normalization of assertions entails
reducing the complexity of a nested set of assertions, to a normal form representation of
the nested set. This form is subsequently used to create combinations and intersections
of sets of service descriptions. The normal form of a document contains a single Exact-
lyOne element at the root of the specification. The alternatives within this element are
encapsulated using All elements. Example 3.5 shows an example of a set of service de-
scription assertions in the normal form. In this example, the normal form expresses that
either serviceA, or serviceA and serviceB together can be requested. The merge and inter-
sect operations are discussed in more detail in the protocol description in Section 3.4. For
more information on the processing models see the WS-Policy specification [10].

30 The Negotiation Framework

<ExactlyOne>
<All>
<ServiceDescriptionTerm serviceName=”serviceA”/>
<ServiceDescriptionTerm serviceName=”serviceB”/>

</All>
<All>
<ServiceDescriptionTerm serviceName=”serviceA”/>

</All>
</ExactlyOne>

Example 3.5: Normal form representation of service description terms.

Domain-Specific Service Descriptions

The WS-Agreement specification does not specify the actual content of the negotiation
document, nor does our framework. This depends on the domain of application. The
only requirement with respect to the negotiation issues in these domains is that they can
be represented as services in the negotiation language, which is applicable to a broad
range of domains. Examples of service descriptions in two different negotiation domains
however are used in Chapters 4 and 5 to demonstrate the framework potential.

3.4 The Negotiation Protocol

In this section, the four negotiation phases of the protocol, introduced in Section 3.2.2,
are described, from the perspective of each of the negotiation participants.

In our framework, the WS-Agreement protocol (see Section 3.3) is extended with
a fourth negotiation phase. In its original form, the WS-Agreement protocol consists
of three phases, in which the initiator of a negotiation implicitly accepts the returned
agreement it receives from the other negotiation party. In our framework, initiators of
negotiations need to be able to negotiate with multiple parties simultaneously. The WS-
Agreement specification does not allow for this, as it assumes full commitment of the
initiator of a negotiation: Agreement requests cannot be revoked in favor of better negoti-
ation offers. To enable agreement initiators to conduct multiple negotiations for the same
services with different service providers concurrently, an explicit acceptance/rejection
phase is added to the protocol. This allows initiators to select between multiple offers,
and select the best offer, instead of implicitly committing to multiple agreements, as in
the original protocol. Figure 3.7 show the phases. Note the inclusion of the fourth nego-
tiation phase.

3.4.1 Advertisement Phase

In the advertisement phase, consumer agents request the combined advertisements. Me-
diator agents combine advertisements of individual service provider agents.

3.4. The Negotiation Protocol 31

(newly added phase)

SPAMACA

Advertisement phase

Request phase

Offer phase

SPAMACA

SPAMACA

SPAMACA

Acceptance/rejection phase

(original template phase)

(original agreement offer phase)

(original agreement phase)

Figure 3.7: Overview of the negotiation phases in the protocol.

Advertisement phase: Consumer Agent

For a consumer agent the advertisement phase entails (i) formulating service interests, and
(ii) communicating these interests to one or more mediator agents, which have been se-
lected by the consumer agent. Consumer agents inform the mediator agents of the services
in which they are interested, using domain-specific terms. For example, a consumer may
indicate that it is interested in negotiation about access to two services: diskSpace, and
printingService. The consumer agent indicates its interest in these services by specifying
the service names in the interest list:

<Interests>
<ServiceDescriptionTerm serviceName=”diskSpace”/>
<ServiceDescriptionTerm serviceName=”printingService”/>

</Interests>

As a result, the consumer agent receives relevant advertisements describing the ser-
vices and conditions available for negotiation from each of the mediators. A consumer
agent can also communicate an empty list to a mediator agent, which results in the media-
tor agent returning all available advertisements. This phase could also include authentica-
tion: Authentication information can be passed from the consumer agent to the mediator
agent along with the service interests described above. This aspect is subject of future
research, and as such is not further explored in this thesis.

Advertisement Phase: Mediator Agent

In the advertisement phase, a mediator agent (i) retrieves and combines advertisement
documents from service provider agents, and (ii) responds to requests for advertisements
from consumer agents.

The mediator agent requests the available advertisements from the service provider
agents within the virtual organization. These advertisements are then reduced to their nor-
mal forms, and the merge operation is applied to the documents to integrate the individual
advertisements into combined advertisements.

When a request for advertisements is received, the service interests as specified by the
consumer agents in this request are compared to the available services described in the

32 The Negotiation Framework

combined advertisements. Any matching advertisements (i.e., advertisements containing
one or more services that match with the services indicated in the service interests) are
returned to the consumer agent. If no direct matches are found, the mediator agent may
attempt more elaborate (semantic) matching procedures, for example matching on func-
tionality offered by services, but these are not further considered here.

Combining Advertisements
Merging advertisements can be described as determining the cross product of the individ-
ual advertisements. Each advertisement alternative is combined with each other alterna-
tive, until all permutations are exhausted. Not all combinations of services are possible:
The mediator agent uses domain-specific knowledge and combination policies to deter-
mine whether services can be offered together, and which should be offered as separate
options.

Combining advertisements consists of two main tasks, described below in more de-
tail: (i) Combining service description terms, and (ii) combining the creation constraints
related to the service description terms. Combining Service Description Terms

<!-- Advertisement A1 from service provider agent P1 -->
<Terms>
<ExactlyOne>
<All>
<ServiceDescriptionTerm serviceName=”serviceA”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”serviceB”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</All>
<All>
<ServiceDescriptionTerm serviceName=”serviceC”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</All>

<ExactlyOne>
</Terms>

<!-- Advertisement A2 from service provider agent P2 -->
<Terms>
<All>
<ServiceDescriptionTerm serviceName=”serviceD”>

<!-- domain-specific service description -->
</ServiceDescriptionTerm>

</All>
</Terms>

Example 3.6: Example advertisements.

When combining service description terms, a distinction between combinable and non-
combinable services is made: Service descriptions are combinable when multiple services
of the same type can be merged into one single service description. For example, on the
power grid, electricity is combinable: service descriptions in advertisements from differ-
ent utility providers can be combined into one advertisement. Service descriptions are
considered non-combinable when services of the same type cannot be combined into one
service description. For example, a CPU on one host cannot be easily combined with a
CPU on another host on the fly, to provide an application with a single, virtual CPU.

3.4. The Negotiation Protocol 33

The WS-Agreement service description term language does not provide the means to
express whether services described within the terms are combinable or not. Therefore this
knowledge has to be represented within domain-specific policies.

In the framework, it is assumed that a naming scheme is available for services: Differ-
ent service description terms relate to the same service when their serviceName attributes
have the same value. In domains where no common and unequivocal ontology for de-
scribing services is available, ontology mapping mechanisms should be applied to map
different service descriptions onto a single service description ontology, which can then
be used in the negotiation process.

To clarify the combination process, two examples are given. First, an example of the
combination process involving several different services is presented. Next, an example is
given in which two advertisements that both offer the same service are combined. Exam-
ple 3.6 shows the service description terms of two example advertisements. A1 specifies
two options: services {serviceA, serviceB} or {serviceC} may be requested. A2 specifies
a single service that may be requested, service {serviceD}.

<ExactlyOne>
<All>
<!-- option from advertisement A1 -->
<ServiceDescriptionTerm serviceName=”serviceA”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”serviceB”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</All>
<All>
<!-- option from advertisement A1 -->
<ServiceDescriptionTerm serviceName=”serviceC”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</All>
<All>
<!-- option from advertisement A2 -->
<ServiceDescriptionTerm serviceName=”serviceD”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</All>
<All>
<!-- option combining A1 and A2 -->
<ServiceDescriptionTerm serviceName=”serviceA”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”serviceB”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”serviceD”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</All>

</ExactlyOne>

Example 3.7: The combined advertisement.

The mediator agent first determines all possible combination options from both ad-
vertisements. This results in the following options: {serviceA, serviceB}, {serviceC},
{serviceD} (i.e. the original options specified in each of the advertisements), {serviceA,
serviceB, serviceD}, and {serviceC, serviceD} (i.e. the options resulting from combining

34 The Negotiation Framework

both advertisements). Next, the mediator reviews the combinations for any combinations
that are either not allowed or not possible. In this example, the option {serviceC, ser-
viceD} is not allowed. This results in the option being removed from the advertisement.
Example 3.7 shows the final advertisement.

In realistic situations, with more than two provider agents, each offering multiple
services, the number of options in the merged advertisements can grow considerably. The
normal form representation, however, ensures that the advertisement consists of a list of
mutually exclusive options, which may become long, but has a nesting depth of 1. For
readability, normal form documents can always be processed into a form which combines
service options in a more compact, nested composition hierarchy. Example 3.8 shows a
possible alternative representation of the advertisement in Example 3.7.

<ExactlyOne>
<OneOrMore>
<All>
<ServiceDescriptionTerm serviceName=”serviceA”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”serviceB”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</All>
<All>
<ServiceDescriptionTerm serviceName=”serviceD”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</All>

</OneOrMore>
<All>
<ServiceDescriptionTerm serviceName=”serviceC”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</All>

</ExactlyOne>

Example 3.8: Alternative representation of the combined advertisement depicted in Ex-
ample 3.7, using nested term compositors.

When two or more service provider agents offer the same services, the service de-
scription terms describing these services can be combined into a single service descrip-
tion term, if these services are combinable. This combined term then represents a virtual
combination of the underlying services. If the service described in the service description
terms is non-combinable, the terms are treated separately, and combined as in the previous
example.

The process of combining two service description terms describing the same service
entails combining the domain-specific service description contained within the service
description term. Example 3.9 shows an example, in which two advertisements offer
the same service types: At the level of the service description terms, the advertisements
have identical contents: They offer serviceA and serviceB. In this example, serviceA is
considered to be a combinable service, while serviceB is a non-combinable service.

3.4. The Negotiation Protocol 35

<!-- Advertisement A1 -->
<ExactlyOne>
<All>
<ServiceDescriptionTerm serviceName=”serviceA”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</All>
<All>
<ServiceDescriptionTerm serviceName=”serviceB”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</All>

</ExactlyOne>

<!-- Advertisement A2 -->
<ExactlyOne>
<All>
<ServiceDescriptionTerm serviceName=”serviceA”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</All>
<All>
<ServiceDescriptionTerm serviceName=”serviceB”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</All>

</ExactlyOne>

Example 3.9: Two example advertisements containing the same services.

36 The Negotiation Framework

<!-- Combined Advertisement A1 & A2 -->
<ExactlyOne>
<All>
<ServiceDescriptionTerm serviceName=”serviceA”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</All>
<All>
<ServiceDescriptionTerm serviceName=”serviceB”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</All>
<All>
<ServiceDescriptionTerm serviceName=”serviceB”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</All>

</ExactlyOne>

Example 3.10: Combined advertisement based on the advertisements depicted in Fig-
ure 3.9.

The combined advertisement created from these advertisements by the mediator agent
is shown in Example 3.10. When a service is known to be a combinable service, in this
case serviceA, the service description terms can be combined: serviceA is reduced to a
single service description term. serviceB is known to be not combinable, and so both
service description terms are added to the combined advertisement.

Whether service description terms of combinable services can be combined or not, is
also influenced by term compositors. Example 3.11 shows advertisements similar to those
shown in the previous example. The advertisements differ, however, with respect to the
term compositors. In this example, the services offered can only be requested as a pair:
The All compositor indicates that they cannot be separated.

<!-- Advertisement A1 -->
<ExactlyOne>
<All>
<ServiceDescriptionTerm serviceName=”serviceA”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”serviceB”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</All>

</ExactlyOne>

<!-- Advertisement A2 -->
<ExactlyOne>
<All>
<ServiceDescriptionTerm serviceName=”serviceA”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”serviceB”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</All>

</ExactlyOne>

Example 3.11: Example advertisements containing paired options consisting of both com-
binable and non-combinable services.

3.4. The Negotiation Protocol 37

Example 3.12 shows the combined advertisement, which simply contains the two un-
derlying service provider agent advertisements as separate options, as the All compositor
prevents serviceA from being treated separately from serviceB.

<!-- Combined Advertisement A1 & A2 -->
<ExactlyOne>
<All>
<ServiceDescriptionTerm serviceName=”serviceA”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”serviceB”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</All>
<All>
<ServiceDescriptionTerm serviceName=”serviceA”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”serviceB”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</All>

</ExactlyOne>

Example 3.12: Combined advertisement resulting from the combination of advertisements
in Example 3.11.

38 The Negotiation Framework

Combining Creation Constraints
Not only do service descriptions need to be combined, negotiation constraints (i.e. the
creation constraints in the advertisements) defined over these services must also be com-
bined. Whether this is possible depends on the type of service, the restriction model used
within the creation constraints, and on the policies governing the combination process.
The restrictions as defined in our model are merged in the following way:

Maximum value restrictions:
The maximum value of all restrictions is the new maximum value.

Minimum value restrictions:
The minimum value of all restrictions is the new minimum value

Enumeration restrictions:
The union of all enumerated values is the new enumeration restriction.

<Template>
<Name>Advertisement˙1</Name>
<Context>...</Context>
<Terms>
<ServiceDescriptionTerm serviceName=”serviceA”>
<Service><Amount/></Service>

</ServiceDescriptionTerm>
</Terms>
<CreationConstraints>
<Item>
<Location>

//ServiceDescriptionTerm[@serviceName=’serviceA’]/Amount
</Location>
<Restriction type=”maxValue”>
<maxValue>400</maxValue>

</Restriction>
</Item>

</CreationConstraints>
</Template>

<Template>
<Name>Advertisement˙2</Name>
<Context>...</Context>
<Terms>
<ServiceDescriptionTerm serviceName=”serviceA”>
<Service><Amount/></Service>

</ServiceDescriptionTerm>
</Terms>
<CreationConstraints>
<Item>
<Location>
//ServiceDescriptionTerm[@serviceName=’serviceA’]/Amount

</Location>
<Restriction type=”maxValue”>
<maxValue>250</maxValue>

</Restriction>
</Item>

</CreationConstraints>
</Template>

Example 3.13: Two advertisements containing service descriptions for the same service
and related constraints.

3.4. The Negotiation Protocol 39

Whether combining creation constraints is meaningful, depends on the domain in
which the advertisements are used. Example 3.13 shows two advertisements: Adver-
tisement 1 specifies the service serviceA, with a restriction indicating that the amount
requested for this service may not exceed 400. Advertisement 2 also specifies service
serviceA, but specifies a restriction indicating that the amount requested may not exceed
250.

<Template>
<Name>Combined Advertisement</Name>
<Context>...</Context>
<Terms>
<ServiceDescriptionTerm serviceName=”serviceA”>
<Service>
<Amount/>

</Service>
</ServiceDescriptionTerm>

</Terms>
<CreationConstraints>
<Item>
<Location>
//ServiceDescriptionTerm[@serviceName=’serviceA’]/Service/Amount

</Location>
<Restriction type=”maxValue”>
<maxValue>400</maxValue> <!-- value is MAX(250,400) -->

</Restriction>
</Item>

</CreationConstraints>
</Template>

Example 3.14: Combination of advertisements in Example 3.13.

Example 3.14 shows how these two advertisements are combined: combining service
description terms and creation constraints. Both service description terms are combined,
as they both represent the same service. Furthermore, the creation constraints are com-
bined: The maximum value of the two creation constraints is taken as the new maximum
value, as this represents the maximum value that can be requested across both services.

The combined advertisements as shown in these examples are sent to the consumer
agents: Upon receiving a request for advertisements from a consumer agent, the mediator
agent examines the service interests contained within the request, and returns any adver-
tisements that contain one or more services for which the consumer agent has expressed
its interest.

Advertisement Phase: Service Provider Agent

For service provider agents, the advertisement phase entails (i) maintaining advertise-
ments, and (ii) responding to requests for advertisements by the mediator agent of the
virtual organization. Advertisements are an indication of the valid negotiation space, and
that service provider agents may deviate from the values specified in the advertisements
during negotiation, if the situation requires. For example, if a service suddenly suffers a
drop in performance, a service provider agent may no longer be able to offer the service
as specified in the advertisement. A service provider agent must ensure that the adver-
tisements returned to the mediator agent reflect the current state of the services. To this
end, a service provider agent must maintain an accurate view of available services, and lo-

40 The Negotiation Framework

cal service access policies, and translate these into service description terms and creation
constraints.

<Terms>
<OneOrMore>
<All>
<ServiceDescriptionTerm serviceName=”serviceA”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”serviceB”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</All>
<ExactlyOne>
<ServiceDescriptionTerm serviceName=”serviceC”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”serviceD”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”serviceE”>
<!-- domain-specific service description -->

</ServiceDescriptionTerm>
</ExactlyOne>

</OneOrMore>
</Terms>

Example 3.15: Term composition examples.

Specifying Creation Constraints
For each service description term specified in an advertisement, a service provider agent
can define constraints that specify the valid value range for any service requests based on
the advertisement. Creation constraints, and the restriction model as discussed in Sec-
tion 3.3 are used for this purpose. Example 3.16 shows an example advertisement in
which a constraint is defined for the NegotiationIssue element of a service with service
type serviceA.

<Template>
<Name>...</Name>
<Context>...</Context>
<Terms>
<ServiceDescriptionTerm serviceName=”serviceA”>
<ExampleService>
<NegotiationIssue/>

</ExampleService>
</ServiceDescriptionTerm>

</Terms>
<CreationConstraints>
<Item>
<Location>
//ServiceDescriptionTerm[@serviceName=’serviceA’]

/ExampleService/NegotiationIssue
</Location>
<Restriction type=”maxValue”>
<maxValue>70</maxValue>

</Restriction>
</Item>

</CreationConstraints>
</Template>

Example 3.16: An example service provider agent advertisement.

3.4. The Negotiation Protocol 41

Service Combination Restrictions
In addition to creation constraints indicating limitations on the use of individual services, a
service provider agent also specifies restrictions on the combination of individual services.
Using the term compositors as specified in Section 3.3.1, a service provider agent indicates
combination options. As an example, consider the terms shown in Example 3.15. In
this example, the term compositors specify that either {serviceA,serviceB}, or one of the
services {serviceC, serviceD, and serviceE} can be requested, or both (indicated by the
OneOrMore compositor).

3.4.2 Request Phase
In the request phase, consumer agents select an advertisement from the advertisements ob-
tained from the mediator agents, and use this to create a negotiation request. The request
describes which services a consumer agent wishes to access, under which conditions, in
accordance with the advertisement on which the request is based. The mediator agent
translates the agreement request into one or more requests to the individual service provi-
der agents involved.

Request Phase: Consumer Agent

If one of the advertisements the consumer agent has received is in line with its needs, the
consumer agent formulates a negotiation request based on the advertisement, and commu-
nicates this to the mediator agent. If no appropriate advertisement is available, the con-
sumer agent has two options: (i) change its requirements, or (ii) contact another mediator
agent. In Example 3.17, the service description terms from the integrated advertisement
(shown in Example 3.7) have been ‘filled in’ by the consumer agent to request specific
values of the services described in the advertisement. In this case, the agent has based its
request on the last of the three options presented in the advertisement.

Request Phase: Mediator Agent

In the request phase, the mediator agent is responsible for handling incoming requests
from consumer agents, and translating these into requests for services with appropriate
service provider agents.

One of the main tasks of a mediator agent is to allow consumer agents to request
multiple services at the same time. The mediator agent has the responsibility of allocating
the requested services to the service provider agents as efficiently as possible.

To this purpose, each incoming request from a consumer agent is intersected1 with the
advertisements of the provider agent, to determine which (combination of) service provi-
der agent advertisements satisfies the consumer agent request. As an example, consider
the the request shown in Example 3.17: The request is intersected with the advertisements
provided by service provider agents P1 and P2 (see Example 3.6). As P1 provides ser-
vices serviceA and serviceB, intersection with the advertisement of P1 results in services
serviceA and serviceB. Similarly, intersection with the advertisement of P2 results in

1The Intersect operation defined in WS-Policy is used for this purpose.

42 The Negotiation Framework

<Agreement>
<Name>...</Name>
<Context>...</Context>
<Terms>
<ExactlyOne>
<All>
<ServiceDescriptionTerm serviceName=”serviceA”>
<Service>
<Amount>250</Amount>

</Service>
</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”serviceB”>
<Service>
<Amount>400</Amount>

</Service>
</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”serviceD”>
<Service>
<Amount>50</Amount>

</Service>
</ServiceDescriptionTerm>

</All>
</ExactlyOne>

</Terms>
</Agreement>

Example 3.17: A consumer agent request.

service serviceD. The resulting intersections are used by the mediator agent to generate
requests to the service provider agents. Example 3.18 shows the resulting requests.

If several service provider agents offer similar services, the intersection process results
in several request options, between which the mediator agent must choose. For example, if
in the previous example P1 had also offered serviceC, the mediator agent would have had
two alternative negotiation options from which to choose: either request all services from
P1, or to split the request into requests to P1 and P2 as described above. This selection
process is governed by negotiation policies, specifying which combinations of providers
are allowed or not, and which combinations are preferred over others. For example, a
mediator agent may prefer to negotiate with as few service provider agents as possible.
This policy would result in a mediator agent having to choose the option that contains the
fewest separate negotiation requests.

Request Phase: Service Provider Agent

The request phase from a service provider agent’s point-of-view consists of processing
incoming negotiation requests from the mediator agent of the virtual organization. For
each negotiation request, it determines whether it can provide the services advertised to
the consumer agent in question, on the basis of local policies.

3.4.3 Offer Phase

In the offer phase, the mediator agent compares and combines service provider offers,
and returns negotiation offers to consumer agents. Service provider agents analyze the
negotiation requests they received and generate appropriate offers in response.

3.4. The Negotiation Protocol 43

<!-- request to provider P1 -->
<Agreement>
<Name/>
<Context/>
<Terms>
<All>
<ServiceDescriptionTerm servicename=”serviceA”>
<Service>
<Amount>250</Amount>

</Service>
</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”serviceB”>
<Service>
<Amount>400</Amount>

</Service>
</ServiceDescriptionTerm>

</All>
</Terms>

</Agreement>

<!-- request to provider P2 -->
<Agreement>
<Name/>
<Context/>
<Terms>
<All>
<ServiceDescriptionTerm serviceName=”serviceD”>
<Service>
<Amount>50</Amount>

</Service>
</ServiceDescriptionTerm>

</All>
</Terms>

</Agreement>

Example 3.18: Service provider agent requests.

Offer Phase: Consumer Agent

In the offer phase, consumer agents receive negotiation offers from one or more mediator
agents, and select the offer with the highest utility. To this end, a consumer agent com-
pares the terms described in each of the offers from the mediator agents it has contacted,
and determines which of the offers provides the highest utility for the agent. Each nego-
tiation offer contains one or more options, from which the consumer agent must choose.
Figure 3.8 shows an example in which a consumer agent must select between three offers,
each containing a number of options. Offer A contains 3 options, offer B one option, and
offer C two options. In the example, the consumer agent select option 2 from offer A.

Offer Phase: Mediator Agent

In the offer phase, the mediator agent gathers all offers from individual service provi-
der agents, and determines the possible allocations of services from these offers. The
possible combinations are generated using the merge operation also used in the advertise-
ment phase: The negotiation offers are translated to normal forms, after which the service
description terms in the individual service provider agent offers are combined into a nego-
tiation offer intended for the requesting consumer agent. This selection process consists
of (i) comparing the utilities of the offers and (ii) applying organizational policies that

44 The Negotiation Framework

Selected offer: Offer A, option 2

CA

option 3

Offer A

Offer B

Offer C

option 2

MA3

MA2

MA1option 1

option 1

option 1

option 2

Figure 3.8: A consumer agent receiving 3 offers containing several options.

describe which combinations are allowed, which are not, and which combinations are
preferred above other combinations, if the utility of these offers is equal. For example,
a mediator agent may have the option to select between two offers containing the same
services, one consisting of a combination of two service provider agent offers, and one
consisting of a single provider agent offer. A possible policy which can be applied in this
case is to select the offer with the lowest number of provider offers. Figure 3.9 depicts
this example.

Combined offer 1 (A,B)

Combined offer 2 (C)

Selected offer: Combined offer 2Offer C

SPA3

SPA2

SPA1
Offer A

serviceB

serviceA

serviceB

MA

serviceA

Offer B

Figure 3.9: A mediator agent selecting between two offer combinations with equal utility.
The offer involving the lowest number of service provider agents is selected.

Combining Service Description Terms
Creating offer combinations entails combining the service description terms contained
within each offer. This process is similar to combining service description terms as de-
scribed in the advertisement phase. Combining similar service description terms in this

3.4. The Negotiation Protocol 45

phase however, is based on domain-specific knowledge. This domain specific knowledge
is expressed in combination rules. The combination rules are specified using XML and
XPath [14] expressions, and are used to describe how two instances of a similar service
description can be combined into one. XPath allows for easy querying of XML specifi-
cations, and has basic logical support. XPath expressions can be used to select specific
parts of XML document structures, manipulate the obtained information, and output the
information in other XML document structures. In our framework, each combination rule
uses an XPath expression to describe the elements of the service description term to which
the rule applies, and the operations to be performed.

<CombinationRule serviceName=”serviceA”>
<Service>
<Amount>

<!-- use the ’+’ operator to add the two amounts -->
/Offer1/ServiceDescriptionTerm[@serviceName=’serviceA’]/Service/Amount +
/Offer2/ServiceDescriptionTerm[@serviceName=’serviceA’]/Service/Amount

</Amount>
</Service>

</CombinationRule>

Example 3.19: Service description term combination rule.

The combination rule shown in Example 3.19 specifies how two instances of a term
describing serviceA can be combined into a single service description term. The combina-
tion rule consists of a domain-specific service specification, containing XPath expressions
to indicate how a combined value in the service specification is to be generated from ex-
isting values, and where the result should be placed in the combined service description
term. In the example, the values of the Amount elements of both offers are added using
the ‘+’ operator.

As an example of the application of this rule, consider two similar service description
terms in Example 3.20. Both services are of the same type: serviceA, which is a com-
binable service. The combination rule above applies, and results in a combined service
description term, as shown in Example 3.21.

<!-- Term in Offer 1-->
<ServiceDescriptionTerm serviceName=”serviceA”>
<Service>
<Amount>250</Amount>

</Service>
</ServiceDescriptionTerm>

<!-- Term in Offer 2-->
<ServiceDescriptionTerm serviceName=”serviceA”>
<Service>
<Amount>450</Amount>

</Service>
</ServiceDescriptionTerm>

Example 3.20: Combining two service offers.

The above example shows the application of a simple combination rule involving a
single attribute. The XPath expressions, however, can be used to define more complex
combination rules, for example involving conditional elements and iterations over value
sets.

46 The Negotiation Framework

<!-- The combined term after application of the rule -->
<ServiceDescriptionTerm serviceName=”serviceA”>
<Service>
<Amount>700</Amount> <!-- 250 + 450 -->

</Service>
</ServiceDescriptionTerm>

Example 3.21: Result of combining the two offers in Example 3.20.

After the mediator agent has generated the offer combinations, the total utility of each
of the offer combinations is calculated. The combination with the highest utility is selected
(according to some domain-specific utility function), and returned to the consumer agent.
Also, offers from service provider agents that have not been included in the offer to the
consumer agent are explicitly rejected. Note that it is not required for a mediator agent
to always return a single offer to the consumer agent: Multiple offers may have the same
utility, or an offer selection policy may be implemented that explicitly requires multiple
offers to be returned to consumer agents. Choosing between these offers is then left up to
the consumer agents.

<Agreement>
<Name>...</Name>
<Context>...</Context>
<Terms>
<ExactlyOne>
<All>
<ServiceDescriptionTerm servicename=”serviceA”>
<Service>
<Amount>40</Amount>

</Service>
</ServiceDescriptionTerm>

<All>
<All>
<ServiceDescriptionTerm serviceName=”serviceB”>
<Service>
<Amount>20</Amount>

</Service>
</ServiceDescriptionTerm>

</All>
<All>
<ServiceDescriptionTerm serviceName=”serviceA”>
<Service>
<Amount>40<Amount>

</Service>
</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”serviceB”>
<Service>
<Amount>20</Amount>

</Service>
</ServiceDescriptionTerm>

</All>
</ExactlyOne>

</Terms>
</Agreement>

Example 3.22: Example incoming negotiation request.

3.4. The Negotiation Protocol 47

Offer Phase: Service Provider Agent

In the offer phase, a service provider agent generates negotiation offers for each of the
negotiation requests it receives from the mediator agent.

Each negotiation request consists of one or more service description terms, describing
the requested services. For each term, it determines whether the requested service can
be offered, or not. The current state of the requested service is examined, and policies
specified by the service provider are applied, to determine an appropriate offer in response
to the request. If the request cannot be fulfilled, an alternative offer may be generated (i.e.
the requested service can be partially delivered). For example, consider the negotiation
request shown in Example 3.22. In this request, two services are requested: serviceA and
serviceB. The request specifies that offers are requested for either serviceA or serviceB,
or for {serviceA and serviceB}.

In this example, the provider is capable of providing serviceA and serviceB, but is
more interested in delivering both services together, instead of individually. This pref-
erence is reflected by the provider in the negotiation offer, shown in Example 3.23: The
amounts offered for each of the services individually are lower than the amounts offered
for each of the services in the combined offer. For serviceA individually the amount of-
fered is 30, instead of the requested 40. For serviceB individually the amount offered is
15 instead of the requested 20. Together however the requested amount of both serviceA
and serviceB are included in the offer. Offering lower amounts for individual services
lowers the likelihood of these offers being selected and accepted by the consumer.

3.4.4 Acceptance Phase

In the acceptance phase, agreement offers are accepted or rejected, and agreements are
established and implemented.

Acceptance Phase: Consumer Agent

If the consumer agents agrees with (one of) the offers it has been made by a mediator
agent, it sends that mediator agent an accept notification, containing the offer (and pos-
sibly which option contained within the offer, if the offer contained several options) that
was accepted. In return, the consumer agent receives an agreement document, which it
can use to claim the services specified in the accepted offer. If a consumer agent does
not agree with an offer made by a mediator agent, it sends that mediator agent a reject
notification, containing the offer that is being rejected.

Acceptance Phase: Mediator Agent

Mediator agents can either receive an accept or reject notification as a response to an
offer made to a consumer agent. When a rejection is received, all service provider agents
participating in the rejected offer are notified by the mediator of rejection of their offers. If
an acceptance notification is received, the service provider agents that participated in the
offer are informed of the acceptance. If an offer contained multiple options, the service

48 The Negotiation Framework

<Agreement>
<Name>...</Name>
<Context>...</Context>
<Terms>
<ExactlyOne>
<All>
<ServiceDescriptionTerm servicename=”serviceA”>
<Service>
<Amount>30</Amount> <!-- lowered to 30 -->

</Service>
</ServiceDescriptionTerm>

</All>
<All>
<ServiceDescriptionTerm serviceName=”serviceB”>
<Service>
<Amount>15</Amount> <!-- lowered to 15 -->

</Service>
</ServiceDescriptionTerm>

</All>
<All>
<ServiceDescriptionTerm serviceName=”serviceA”>
<Service>
<Amount>40<Amount> <!-- unchanged -->

</Service>
</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”serviceB”>
<Service>
<Amount>20</Amount> <!-- unchanged -->

</Service>
</ServiceDescriptionTerm>

</All>
</ExactlyOne>

</Terms>
</Agreement>

Example 3.23: Negotiation offer response to request shown in Example 3.22.

provider agents that participated in the options that have not been selected are informed
of rejection.

Each service provider agent of which an offer has been accepted returns an agreement
document detailing the services it has agreed to provide. The mediator agent combines
these agreements in one agreement document, specifying the overall services that will be
delivered by the service provider agents. Finally, this combined agreement is returned to
the consumer agent.

Acceptance Phase: Service Provider Agent

In the acceptance phase, service provider agents receive notifications of acceptance or re-
jection of the offer they have made. When an offer is rejected, the negotiation sequence is
terminated, and all associated service operations (e.g. reservations) are rolled back. Each
offer expires after a certain time-period specified by the service provider agent, to prevent
unclaimed offers from consuming resources. When an offer (or offer option, if multiple
options were offered during the offer phase) has been accepted, the provider agent imple-
ments the selected offer by ensuring the service is ready for use by the consumer agent.
Finally, an agreement document is returned by each service provider agent to the mediator
agent, detailing the services it has agreed to provide.

3.5. Agent Task Models 49

3.4.5 Negotiation Process Overview
Figure 3.10 shows a complete overview of a single negotiation sequence. For each of the
negotiation phases, the main tasks of the participants are indicated. Arrows represent the
exchange of negotiation documents between participants. In most negotiation situations,
mediators will negotiate with multiple service providers concurrently. However, for sim-
plicity, the figure only shows a single service provider participant. In the next section, the
tasks indicated in the figure are discussed in more detail.

template

creation

merged

template

agreement accept

agreement acceptrequirements

template request

C
on

su
m

er
M

ed
ia

to
r merged

template

creation

provider agreement offer
provider agreement request

consumer agreement request

agreement

processing
request

creation

request

agreement

creation
agreement offer

provider

agreement offer
creation

consumer

consumer agreement offer

agreement

offer

processing

creation

consumer

agreement

provider
agreement

requirements

creation

formulation

request
phase

offer
phase

acceptance
phase

S
er

vi
ce

P
ro

vi
de

r

advertisement
phase

service

Figure 3.10: The negotiation process.

3.5 Agent Task Models
In this section, for each of the agents of the framework, the internal tasks and their rela-
tionships are identified, including the role of domain-specific knowledge in these tasks,
and the information exchanged between the negotiation parties as a result of these tasks.
The information exchange is described using calls performed on interfaces, but can also
be regarded as messages exchanged between parties, or any other method of communica-
tion that is deemed appropriate in the application domain.

For each of the three agent types (consumer/mediator/service provider), the following
three high-level tasks are identified:

1. ADVERTISEMENT MANAGEMENT

2. REQUEST MANAGEMENT

3. AGREEMENT MANAGEMENT

The tasks are related to the four phases of the negotiation process (see Figure 3.10):
The ADVERTISEMENT MANAGEMENT task is responsible for performing tasks related to

50 The Negotiation Framework

the advertisement phase; the REQUEST MANAGEMENT task is responsible for handling
tasks related to the request phase and the offer phase; the AGREEMENT MANAGEMENT
task is responsible for handling tasks related to the acceptance phase.

For each of these tasks, subtasks are identified, and domain-specific information that
is required is specified. Tasks and subtasks are indicated in the following figures using
solid boxes, domain-specific information is indicated using dashed boxes. Dependencies
between tasks are indicates using dashed arrows.

3.5.1 Consumer Agent Tasks
Consumer agents perform three main tasks related to the negotiation process: Maintaining
mediator advertisements, creating negotiation requests, and selecting negotiation offers.
Figure 3.11 gives an overview of the tasks required within the negotiation task of the
consumer agent.

create agreement
request

negotiation policies
and domain−specific

service utility
information

select template

compare and select
offer(s)

negotiation policies
and domain−specific

service utility
information

maintain agreement
information

maintain agreement
request information

maintain
advertisement
information external

requirements
informationexternally

acquired list
of mediators

external
service interests
information

Advertisement Mgt. Request Mgt. Agreement Mgt.

Mediator(s)

requestAgreement(request) accept/reject(offer)

requestAgreementStatus(agreement)

Negotiation Task

Consumer Agent

requestTemplates(<list_of_service_interests>)

determine service
requirements

Figure 3.11: Tasks within the consumer agent.

1. Advertisement Management

The ADVERTISEMENT MANAGEMENT task is responsible for retrieving and storing ad-
vertisements. A consumer agent starts the negotiation process by requesting the avail-

3.5. Agent Task Models 51

able advertisements from mediator agents, using requestTemplates(‘service interests list’)
available on the interface of the mediator. A list of advertisements is returned by the
mediator.

2. Request Management

The REQUEST MANAGEMENT task of the consumer agent is responsible for creating and
sending out negotiation requests, and collecting offers in response to these requests.

The consumer agent selects an advertisement on which to base its negotiation request,
governed by negotiation policies and domain-specific utility functions. The advertisement
is used to create a negotiation request, which contains the service descriptions of the
required services, and the desired service levels. The consumer agent must ensure that the
request complies with the constraints specified within the advertisement, as the request
will be denied by the mediator agent if this is not the case. The request is communicated
to the mediator agent using the requestAgreement(request document) call.

The consumer agent receives the replies to the negotiation request(s) from the me-
diator agents in the form of negotiation offer documents, and selects which negotiation
offer to use. This selection process is governed by domain-specific policies, which use
domain-specific service utility calculation mechanisms, to compare individual service of-
fers within the negotiation offer documents.

3. Agreement Management

The AGREEMENT MANAGEMENT task of the consumer agent is responsible for maintain-
ing established agreements. After an offer has been selected, it is accepted or rejected
by notifying the mediator agent, using accept(offer document), or reject(offer document),
with offer document being the offer that is being accepted/rejected. As a result of ac-
ceptance, a final agreement document is returned by the mediator agent, on the basis of
which the agent can claim the services. The claiming process is outside the scope of the
negotiation framework, and this should be implemented at the service implementation
level.

3.5.2 Mediator Agent Tasks
The mediator agent contains a negotiation module similar to the module of the service
provider agents. The external negotiation interface is identical to the service provider
agent interface. The tasks which need to be performed within the components of the mod-
ule are however different. Figure 3.12 shows an overview of the tasks within a mediator
agent, and the interactions with consumer and service provider agents.

1. Advertisement Management

The ADVERTISEMENT MANAGEMENT task of the mediator agent is responsible for col-
lecting and maintaining the advertisements of the individual service providers within the
virtual organization. Advertisements are requested from the service provider agents using
the requestTemplates() call. The resulting advertisements are combined. Consumers can

52 The Negotiation Framework

advertisement
information

combine provider
advertisements

combination policies
and domain−specific

service utility
information

determine provider
advertisements
supporting request
request handling policies
and domain−specific
service utility information

create service
provider negotiation
requests

maintain provider
advertisements

select and combine
received provider
negotiation offers

combination policies
and domain−specific

service utility
information

maintain combined
agreement
information

maintain combined
offer information

maintain provider
agreement
information

maintain provider
offer information

implement agreement
offers

requestTemplates(<list_of_service_interests>)

Advertisement Mgt. Request Mgt. Agreement Mgt.

requestAgreement(request)

Consumer Agents

externally maintained
list of service
providers

Negotiation Task

Service Provider Agents

Mediator Agent
accept/reject(offer)

requestAgreementStatus(agreement)requestAgreement(request)requestTemplates()

accept/reject(offer)

requestAgreementStatus(agreement)

maintain combined

Figure 3.12: Negotiation tasks within the mediator agent.

request the available advertisements from a mediator using the call requestTemplates(‘list
of service interests’).

2. Request Management

The subtasks of the REQUEST MANAGEMENT task are: (i) Determining which service
provider agents can provide the services requested by a consumer, (ii) creating the negoti-
ation requests to these service provider agents, and (iii) processing the individual provider
offers into a combined offer for the consumer agent.

Consumer agents communicate negotiation requests to a mediator agent using re-
questAgreement(request document). The request document is translated into one or more
negotiation requests to service provider agents by the mediator. This process is governed
by domain specific organizational policies, which are implemented by this task. These
requests are communicated using the requestAgreement(request document) call.

3.5. Agent Task Models 53

The negotiation offer documents collected by service provider agents as a response
to the negotiation request, are received by the mediator, and an offer selection process
is performed, based on domain-specific utility calculation for the service levels offered in
the individual offers, and governed by combination policies. The selected offer documents
are then combined into a single offer and returned as such to the consumer agent. Finally,
the combined offer, and the underlying offers made by the service provider agents are
communicated to the Agreement Management component.

3. Agreement Management

The AGREEMENT MANAGEMENT task is responsible for maintaining information on four
types of negotiation documents:

1. Information on negotiation offers made to consumer agents,

2. and their underlying negotiation offers made by the individual service provider
agents;

3. Information on active agreements,

4. and their underlying service provider agent agreements.

Furthermore, agreement offers are implemented and monitored by this task. Upon receiv-
ing accept(offer document) from a consumer agent, an agreement must be established, by
accepting the underlying agreement offers made by the service provider agents. Simi-
larly, when an agreement offer is rejected, the underlying offers from the service provider
agents are also rejected.

Upon receiving requestAgreementStatus(agreement document) from a consumer agent,
the agreement management task returns status information on the requested agreement
document. This information is obtained by combining the status information on the indi-
vidual service provider agent agreements underlying the agreement.
The requestAgreementStatus(agreement document) call is used to request status informa-
tion from service provider agents.

Managing active agreements at the mediator level is a relatively simple task, as actual
monitoring and enforcement of agreement is handled at the service provider agent level.
The mediator agent is primarily responsible for monitoring the status of the service pro-
vider agreements underlying the currently active agreements, and take appropriate action
if one or more of the underlying agreements expires or is violated. This process is gov-
erned by domain-specific organizational policies that are implemented by this task. (e.g.
violation of a service provider agent agreement may not necessarily lead to expiration of
an entire agreement that has been established with the consumer agent).

3.5.3 Service Provider Agent Tasks
A service provider agent provides negotiation facilities to allocate services to consumers,
and is responsible for monitoring and controlling the services it offers. It is the respon-
sibility of the service provider agent to translate service usage and access policies into
advertisements and negotiation policies.

54 The Negotiation Framework

In addition the negotiation tasks which are also described for the consumer and medi-
ator agents in Sections 3.5.1 and 3.5.2, a service provider agent also contains the SERVICE
MANAGEMENT task, which provides monitoring and control facilities for the actual ser-
vices provided. Figure 3.13 shows the tasks within the service provider agent.

maintain agreement
offer information

implement agreement
offers

create agreement
offer

policies
and negotiation

domain−specific
service utility and
status information

policies
and negotiation

domain−specific
service utility and
status information

implement agreements
at underlying service
level

maintain service
state information

Advertisement Mgt. Request Mgt. Agreement Mgt.

requestTemplates() requestAgreement(request)

Mediator Agent

accept/reject(offer)

requestAgreementStatus(agreement)

maintain
advertisement
information

verify request

Negotiation Task

Service Management Task

Service Provider Agent

Services

monitor

maintain agreement

control

information

Figure 3.13: Negotiation tasks within the service provider agent.

1. Advertisement Management

The AGREEMENT MANAGEMENT task ensures that the advertisements reflect the status
of the available services. Depending on the service domain, this may be implemented by
periodic monitoring of services and updating of the advertisement documents. Service
monitoring information can be obtained from the SERVICE MANAGEMENT task. Adver-
tisement content is not only based on service status information alone, but also on domain-
specific policies specifying which service capacity is provided to whom and when. For
example, policies may prescribe limits on individual service requests based on adminis-
tration level regulations.

3.5. Agent Task Models 55

2. Request Management

The REQUEST MANAGEMENT task consists of two main tasks: (i) Verifying incoming
negotiation requests from mediators, and (ii) creating an appropriate response to requests.
Requests are verified by comparing them to the advertisements on which they are based.
When a request has been successfully verified, an offer may be made. An offer is based
on the service provider agent’s negotiation policies concerning the requested services, and
the current status of the requested services. The status of a service can be monitored by
requesting monitoring information from the SERVICE MANAGEMENT task.

3. Agreement Management

The agreement management task contains three main tasks: (i) Managing outstanding ne-
gotiation offers, (ii) implementing accepted offers into active agreements, and (iii) man-
aging active agreements.

Maintaining negotiation offers entails (i) expiring offers which have exceeded the al-
lowed offer duration, and (ii) ensuring that the services described in the offer are available
for use if the offer is accepted (i.e. handling reservations). The expiration of a negotiation
offer may involve releasing of reserved services, which can be performed by using the
SERVICE MANAGEMENT task.

When a mediator agent accepts a negotiation offer, a final agreement document is
created, and through the SERVICE MANAGEMENT task the specified services are made
available to be claimed by consumer agents. Service reservations must be implemented
and enforced at the service management level. Depending on the service domain and the
capabilities of the SERVICE MANAGEMENT task in that domain, this enforcement may
consist of controlling and/or monitoring of service usage. Rejection of a negotiation offer
by the mediator agent results in the services being released.

Information on the current status of active agreements is maintained, (i) to respond to
agreement status requests from the mediator agents, (ii) to handle any violations that may
occur, and (iii) to handle agreement expirations. Service status information is collected
from the SERVICE MANAGEMENT task, and used to determine if services are being deliv-
ered as specified in the agreement, or if violations have occurred (either by the consumer
or the service provider agents).

Expiration of an agreement can occur as a result of a violation, or when the time-
period agreed upon in the agreement has passed. The related services are released.

4. Service Management Task

The SERVICE MANAGEMENT task provides the glue between the domain-independent
agreement negotiation functionality, and the actual services. Two main tasks are distin-
guished: (i) Maintaining service state information, and (ii) implementing service reserva-
tions (during negotiations) and agreements (after negotiations) at the underlying services.

The first task implements domain- and service-specific monitoring facilities, and trans-
lates this information into service state information to be used by the negotiation tasks to
base it decisions upon. The second task implements service control facilities enabling
reservation of services and implementation of established agreements. As this task is very

56 The Negotiation Framework

domain-specific, no further details are provided in the negotiation framework, other than
the two tasks described above. An implementation of the service management task is
discussed in Chapter 5.

3.6 Discussion

In this chapter, a framework for mediated negotiation between service consumers and
service providers is presented. The framework consists of: (i) A two-tiered negotiation
protocol and a domain-independent negotiation language; (ii) mechanisms for perform-
ing basic mediation operations on the negotiation documents; (iii) task models for the
negotiation participants.

The negotiation protocol and language are based on the WS-Agreement specification.
This specification is chosen as it presents one of the first attempts to standardize negotia-
tion interactions in the area of service oriented computing. As our negotiation framework
is intended for use in large-scale and heterogenous middleware environments, the use of
standards is an important requirement. The basic WS-Agreement specification however
provides a very limited negotiation model, which limits the possible negotiation interac-
tions. For example, the specification allows only one-to-one interactions between service
providers and consumers, and only a single negotiation round is supported. The WS-
Agreement specification defines abstract agreement factories responsible for agreement
negotiation and creation, which do not preclude the use of multiple agreement factories,
to establish combined agreements. However, this is not further addressed in the specifica-
tion.

Our framework extends the existing WS-Agreement specification by explicitly sup-
porting mediation operations on the negotiation documents such as combining adver-
tisements and negotiation offers, and the domain-specific service descriptions contained
within. The WS-Agreement negotiation protocol is extended: The original template phase
is extended to allow initiators of negotiations to express service interests. Based on these
interests, specific advertisements can be returned, or advertisements can be created on the
fly, tailored to the service interests of the initiator. Furthermore, the protocol is extended
with an explicit acceptance/rejection phase at the end of the negotiation sequence.

The addition of the acceptance phase to the WS-Agreement protocol in our framework
changes the semantics of the final WS-Agreement phase: The returned document in this
phase is no longer considered a final agreement, but instead is considered an offer. This
has implications with respect to the interoperability of our protocol with implementation
of the WS-Agreement protocol by external parties.

In the case where external parties interoperate with an implementation of our frame-
work, the implementation has to recognize that the final acceptance phase is not known
to the other party, and accept the returned negotiation offers on behalf of the other party.
In the case where an implementation of our framework needs to interoperate with other
WS-Agreement based infrastructures, the implementation has to recognize that negotia-
tion offers returned by the external party do not need to be explicitly accepted. This also
implies that negotiations cannot be performed concurrently with multiple external parties,
as de-commitment during negotiations is not possible.

3.6. Discussion 57

IBM’s Cremona [63] (Creation and Monitoring of Agreements) presents an architec-
ture and set of libraries that implement the WS-Agreement interfaces and agreement (tem-
plate) management, and provide agreement functionality suitable for implementations in
domain-specific environments. The Cremona architecture specifies domain-independent
and domain-specific components required for agreement-based management, and the Cre-
mona libraries provide implementations of the agreement interfaces, domain-independent
components, and well-defined interfaces for the domain-specific components. The Cre-
mona architecture, however, only models direct consumer-provider interactions, and does
not explicitly model the role of a mediator in the agreement negotiation process. Although
the architecture could be used as a basis for mediator based negotiations, the absence of
the final acceptance phase in the WS-Agreement protocol, as described earlier, would
prevent a mediator from engaging in multiple negotiations simultaneously.

Independent from the WS-Agreement Specification activities, Hung [47] proposes a
Web service negotiation model called WS-Negotiation, and presents a service level agree-
ment (SLA) template model, with different domain specific vocabularies for supporting
different types of negotiation. The negotiation protocol in their model is geared toward in-
tegrative negotiation, where both parties locate and adopt the option that provide greater
joint utility to the parties taken collectively. The message types resemble those in our
negotiation model and is more extended than the models presented by Paurobally and
Jennings [74] and the GRAAP working group [9].

Extending the negotiation protocol as in our framework gives it more flexibility, mak-
ing it possible to specify more elaborate negotiation models. In its basic form, our nego-
tiation protocol can be compared to the well-known Contract Net protocol [87]: At both
the consumer level and the provider level of the negotiation model, a Contract Net-like
interaction sequence takes place: negotiation requests can be compared to calls for pro-
posals, negotiation offers can be compared to bids, after which offers can be accepted or
rejected, similar to acceptance/rejection of bids in the Contract Net protocol.

The extension of the negotiation protocol, as well as the explicit two-layered mediated
negotiation model, allows our framework to implement a range of negotiation models on
top of the WS-Agreement base.

For example, Sandholm and Lesser [84] describe an extension of the Contract Net
protocol, in which de-commitment penalties are included in the contract negotiation pro-
cess. Ending a contract negotiation results in the responsible party paying the penalty
to the other party. Extending our model to include de-commitment penalties is possible:
The negotiation documents used in the negotiation process can be extended to express
de-commitment penalties, in addition to the other negotiation terms described earlier.

Furthermore, the mediator agent in our framework allows negotiations to not be lim-
ited to one-to-one interactions, but to include multiple negotiation participants represented
by mediator agents. Also the mediator agent, as it is situated between the negotiation par-
ticipants, can decouple negotiation interactions on both negotiation levels, to implement
different negotiation models. For example, multiple negotiation rounds can be performed
on one level, while limiting the negotiation interactions to a single round with the negoti-
ation participants on the other level.

In the following chapter, the flexibility of the negotiation framework is demonstrated.
The basic negotiation model is instantiated and demonstrated in the domain of distributed

58 The Negotiation Framework

energy management. Subsequently, scenarios are discussed in which the negotiation
framework is adapted to (i) enable the use of de-commitment penalties, and (ii) to support
consumer competition, through implementing an auction-like interaction model using the
framework, in which the mediator agent takes on the role of auctioneer.

Chapter 4

Distributed Energy
Management: Mediated Service
Negotiation in Energy Markets

4.1 Introduction

This chapter describes the application of the negotiation framework in the domain of Dis-
tributed Energy Management in open energy markets. In these newly emerging markets,
traditional energy management systems do not suffice: Distributed management infra-
structures are required to facilitate interactions between market participants. The frame-
work described in this thesis is used as a basis for an energy negotiation model, allowing
energy providers to establish agreements concerning the supply of energy to consumers.

In this chapter, different negotiation models suitable for the domain of energy man-
agement are implemented using the framework. First, the framework is instantiated and
negotiation policies are defined to implement two forms of negotiation: (i) Mediated pro-
vider competition in which a single mediator acts on behalf of the consumer agents, and
(ii) mediated provider competition with multiple mediator agents. Scenarios are presented
and simulations are performed to evaluate the behavior of these two negotiation models.

After this, possibilities for extending the negotiation framework to accommodate for
other negotiation models are examined. Two extensions of the framework are described:
(i) The integration of leveled-commitment contracts, allowing negotiation participants to
drop commitments in favor of other negotiation options during negotiations, and (ii) the
support for consumer competition by implementing an auctioning model. Two scenarios
are presented in which the required extensions to the framework are discussed.

This section introduces the domain of distributed energy management. Section 4.2
introduces the energy negotiation model. Section 4.3 presents two scenarios in which the
negotiation framework is instantiated for the two different negotiation types. Section 4.4
discusses two scenarios in which extensions of the negotiation framework are discussed.
Conclusions and contributions are discussed in Section 4.5.

60 Distributed Energy Management

4.1.1 Distributed Energy Management
The term Distributed Energy (or Distributed Generation) is used to describe a relatively
new area of development in the field of power generation, in which small scale distributed
energy resources are used to provide energy at or near the point of use.

Ackermann et al. [4] recognize the absence of a general definition for the concept of
distributed generation, and analyze the differences in the definitions and issues used in
literature. They define distributed generation as follows:

Distributed generation is an electric power source connected directly to the
distribution network or on the customer side of the meter.

They also define distributed utility architectures as architectures that include distributed
generation, demand-side mechanisms for influencing energy demand (e.g. load manage-
ment systems) and mechanisms for providing transmission and distribution capacity (e.g.
stand-by generators).

The potential benefits of distributed utility architectures has lead to substantial interest
of governmental organizations [3] and international energy consortia [2], leading to an
increase in research on technologies for enabling distributed generation in emerging open
energy markets. Kok et al. [54] describe five driving forces behind the growing interest in
the field:

Environmental concerns: Due to governmental support, a growing number of small
scale, distributed, sustainable energy resources (wind turbines, solar arrays) are
appearing within the market.

Open energy markets: Deregulation of electricity markets has created opportunities for
medium and small generation of electricity, requiring lower investments and having
shorter payback periods.

Diversification of energy resources: To reduce dependence on fossil fuels, and to cope
with the global increase in energy demand, alternative energy sources are being
researched.

Energy autonomy: The use of local energy capacity to allow for stand-alone operation
of buildings or subsystems during power failures.

Energy efficiency: Transporting energy results in power loss. By using generated elec-
tricity locally, the loss is reduced, as well as transportation costs. Furthermore, the
use of combined heat-power (CHP) generation is increasing in consumer homes.

Interaction and contracting mechanisms in current energy markets are not well suited
for these new and dynamic distributed energy markets: Current markets are oriented to-
wards limited competition between a small number of large providers, each with a large
and fairly static customer base.

As energy markets are moving towards more fine-grained and distributed infrastruc-
tures, novel management approaches are required to facilitate the interactions between
large and dynamic populations of energy providers and energy consumers. Automated
negotiation and coordination infrastructures can be useful in these circumstances. Below,
a number of agent-based approaches are discussed.

4.1. Introduction 61

4.1.2 Related Work

Distributed energy management can be modelled as a multi-agent system: Agents are
used to model the relevant entities, and agent communication and coordination models
are used to specify the interactions between these parties. Below, a number of approaches
to energy management using multi-agent systems is discussed.

Some earlier work in the area of distributed energy management using multi-agent
systems focuses on load management. The main purpose of load management is to reduce
peak loads, thereby reducing energy production costs, and the risk of energy shortages.

Akkermans et al. [6] describe a load management system in which electrical appli-
ances are represented by so-called Homebots. Homebots participate in a computational
market and bid for energy in an auction, initiated by the utility. The auction scheme
consists of three stages: announce, bid, and award. Multiple bidding rounds are per-
formed, until a globally optimal allocation is found. The utility acts as an equal party
to the Homebots in the auction process, by using utility interface agents to influence the
auction process. These agents are controlled by the utility, and can be used to influence
auctions, either by reducing the load consumed by the interface agent, or changing the
utility function of the interface agent (effectively ‘buying back’ energy).

Another example of an agent-based load management system is described by Brazier
et al. [18]. In this work, a multi-agent system is presented in which Customer Agents nego-
tiate with a Utility Agent. Negotiations are initiated by the utility agent. Three negotiation
interaction methods are available within the system. Agents are able to choose between
these different negotiation interactions, resulting in different negotiation strategies:

1. Offer: A utility agent makes an offer to customer agents, who may only answer
‘yes’ or ‘no’. Customer agents are not able to influence the negotiation process in
any other way.

2. Request for bids: A utility agent issues a request for bids to customer agents. Cus-
tomer agents respond by indicating the desired amount of electricity, and the price
they are willing to pay for this amount. Based on the response, the utility agent
determines if additional negotiation rounds are necessary.

3. Announcing reward tables: Similar to the second method, but the utility agent now
also restricts the possible bids by issuing a reward table with the request, indicating
allowed bids.

Depending on the circumstances, one strategy may be preferred over another. For
example, the first strategy provides little negotiation freedom, but is relatively fast. The
second strategy gives customer agents the freedom to express bids, which can lead to
multiple negotiation rounds, increasing overall negotiation time. The third strategy can be
seen as a ‘middle ground’ strategy: Customer agents are allowed to make bids, but only
within the negotiation space indicated by the utility agent.

The framework has been implemented and tested in DESIRE [19]. The main moti-
vation of this work is to provide an automated negotiation system for managing dynamic
and open energy markets. The work does not explicitly model concepts such as distributed

62 Distributed Energy Management

generation or use of localized energy resources. More recently, research has emerged in-
corporating these concepts:

Kok et al. [54] describe PowerMatcher, an agent-based hierarchical structure of Supply
and Demand Matchers (SDMs). In this system, each SDM is responsible for increasing
the match of the electricity production and consumption of the cluster directly below.
The ‘leaf’ SDMs are the ‘Device Agents’ representing actual consumers and producers
of energy. Different device types are modeled with varying behavioral models and levels
of ‘controllability’. Device agents implement a self-interested bidding strategy, based
on achieving economic gain, while adhering to the operational constraints of the device.
The ‘root’ SDM defines which market-mechanisms are available, and is also responsible
for the price forming process. At specific intervals defined in the market, the root SDM
sends out a request for bids to the lower SDMs, which are propagated down the hierarchy.
The bids are aggregated, and the root SDM determines the equilibrium price. Devices can
subsequently determine their respective power allocations based on the established market
price and their bid functions. This framework models the concept of localized energy
usage well, by defining both ‘consumer’ and ‘provider’ agents as equal parties in the
market (‘device agents’), and clustering these devices in an SDM hierarchy. The auction-
like interaction within the hierarchy has the drawback that interactions are synchronized
‘globally’, and have to be initiated by the root ‘SDM’, decreasing the autonomy of the
SDMs at the lower levels.

The Australian CSIRO science agency also focuses on developing mechanisms to facili-
tate new interaction forms between distributed electricity providers, electricity networks,
and end-users: In a recent paper, James et al. [48] present an agent-based framework pro-
viding loads and generators with a market-based interaction environment. In the frame-
work, a number of agent roles are distinguished, such as buyer, seller, and device roles.
Agents can assume more than one role, and interact through a bulletin board. The model
incorporates aggregation and brokering of capacity of distributed energy resources. Ag-
gregated capacity is modeled using four issues: quantity, time(liness), reliability, and
traceability to a known set of customers. Furthermore, this work stresses the importance
of ‘any-time’ solutions, to ensure that adequate solutions are available in a short time.
In contrast to the other approaches described above, this last approach can be described
as bottom-up: Buyer agents initiate negotiations by issuing a request for price to a seller
agent. The use of decentralized clustering is proposed for the formation of groups of
buyers and sellers.

In the context of the POWERACE1 project, Veit et al. [94] introduce an agent-based
simulation model for determining the effects of CO2-emission trading, and the influence
of renewable energy sources in liberalized energy markets. Market participants are mod-
eled as autonomous agents: The simulation enables the evaluation of different and dy-
namic adoption of strategies of participants. The model explicitly incorporates prediction
of fluctuations of renewable energies.

Lastly, the Alternative Energy Systems Consulting2 (AESC) firm has developed agent-

1http://www.powerace.de
2http://www.aesc-inc.com

4.2. Energy Negotiation Model 63

based systems in cooperation with the Electric Power Research Institute (EPRI) and the
California Energy Commission (CEC): Agent-based systems implementing an electronic
auction for buying and selling electric power, and for control and scheduling of distributed
energy resources were created.

4.2 Energy Negotiation Model
This section introduces a negotiation model for distributed energy management, based on
the negotiation framework presented in Chapter 3. The model supports: (i) Aggregation
of energy capacity, allowing medium- and small-size energy providers within a virtual
organization to combine their offered energy capacity; (ii) negotiation as the interaction
model, giving the participants autonomy in their interactions with other parties; (iii) ne-
gotiations initiated by energy consumers, not synchronized by a central manager.

The architecture distinguishes itself from the aforementioned systems by two ele-
ments: Firstly, negotiation is based on mediation. Groups of energy providers are repre-
sented by group managers, that implement the role of mediator in the negotiation frame-
work. Although other approaches recognize hierarchies in which providers can represent
multiple, lower-tier providers, our framework explicitly defines a mediator role. Our me-
diator agents do not only act in the best interest of the overall negotiation process, but ac-
tively influence the negotiation process by applying organization-wide policies. Secondly,
negotiation is based on advertisements. Energy providers specify energy negotiation con-
ditions in advertisements These advertisements are combined and offered to consumers
by mediator agents. Figure 4.1 shows the mapping of the negotiation framework to the
elements of the distributed energy management architecture.

Mediator
Agent

Service
Provider

Agent

Service
Provider

Agent

Service
Provider

Agent

Consumer
Agent

Group
Manager

Energy
Provider

Negotiation model

Provider

Energy
Provider

Energy
Consumer

Virtual provider organization

Energy provider group

Energy

Chapter 3

Implementation for
energy domain

Figure 4.1: Overview of mediated energy negotiation model.

A Group Manager is introduced in the energy negotiation model, implementing the
mediator agent role in the negotiation process. A Group manager can be either a sepa-

64 Distributed Energy Management

rate entity specifically created to implement the mediator agent role, or it can be an ex-
tended energy provider agent, implementing both the mediator and service provider agent
roles. Energy providers and energy consumers negotiate with each other through group
managers. The goal of negotiation is to establish agreements between consumers and
providers about the delivery of energy resources. In the next section the negotiation par-
ticipants, and the energy resource description used in the negotiation process to represent
energy resources, are discussed

4.2.1 Consumer Agent
Energy consumer agents represent individual parties requiring access to a specific amount
of energy. Figure 4.2 shows a typical consumer demand curve, specifying the demand
over the course of one day.

Time of day

E
ne

rg
y

de
m

an
d

Figure 4.2: A typical consumer demand curve.

Consumer agents negotiate with one or more mediator agents representing energy pro-
viding organizations, to reach an agreement. An agreement guarantees access to energy
resources for a certain time-period. In our model, the demand curve of an energy con-
sumer agent is translated into a number of negotiation requests, aimed at obtaining the
required energy for a certain time-period. Figure 4.3 depicts the translation of the demand
curve.

agreement

E
ne

rg
y

de
m

an
d

Time of day

duration
agreement

Figure 4.3: The demand curve translated into agreements.

4.2. Energy Negotiation Model 65

Consumer agents initiate negotiations directly prior to the moment that energy is to
be claimed and used: No advance negotiations for future energy demands are currently
supported. Consumer agents negotiate for a single agreement covering the desired energy
over a time-period: An agreement cannot be split across multiple mediator agents.

4.2.2 Mediator Agent

Energy provider agents are combined into groups. These groups can represent different
types of real-world energy provider organizations, such as geographically based or admin-
istrative organizations. A mediator agent (i.e. energy provider group manager) represents
a group in the negotiation process, and negotiates with individual energy provider agents
on behalf of consumer agents. Decision making within mediator agents is based on two
types of knowledge: (A) Knowledge concerning the types of energy resources in the orga-
nization, and (B) Negotiation policies. The mediator uses this knowledge at three points
within the negotiation process:

1. To combine advertisements from energy provider agents (advertisement phase);

2. To select energy provider agents with whom to negotiate, when a negotiation re-
quest from a consumer agent is received (start of request phase);

3. To select and combine negotiation offers received from energy provider agents (end
of request phase).

For each of the two knowledge types, its role at these points in the negotiation process
is discussed below.

A: Mediator Agent ‘Energy Resource’ Knowledge

A mediator agent has knowledge related to the different types of resources provided by
the providers within the organization. For example, an organization of a energy provider
agents offering energy generated by solar arrays, and others offering energy generated
by diesel generators. These resources essentially all offer the same basic resource (i.e.
energy), but with different characteristics. Some resources may be aggregated without
problems, but others may not fit well together. For example, when the capacity of a diesel
generator is combined with the capacity of a wind generator, the overall reliability of the
offered energy will be as low as the reliability of the wind generator. The mediator must
take these aspects into account.

A1. Combining Advertisements
To combine provider advertisements, the mediator uses the knowledge it has on (i) the

compatibility of different resources, and on (ii) how to combine advertisements containing
descriptions of these resources.

66 Distributed Energy Management

A2. Selecting Energy Provider Agents
To handle an incoming negotiation request from a consumer agent, the mediator agent

must decide which energy provider agents are suitable negotiation candidates, and start
negotiations. For this purpose, the mediator agent must be aware which energy provider
agents provide similar resources. These providers are candidates for negotiation. The se-
lection process uses knowledge concerning the similarity of energy resources, and knowl-
edge describing how consumer-level negotiation requests can be translated into one or
more provider-level negotiation requests.

A3. Selecting Energy Provider Agent Negotiation Offers
Upon receiving offers from the energy provider agents, the mediator agent selects which

offer(s) is (are) to be selected to create an agreement. First, if in step two a negotiation
request was split into multiple requests, a mediator agent combines the offers into one
or more possible combinations that satisfy the original negotiation request. If more than
one offer remains, the offers are compared, and the best offer is selected. For comparing
and selecting offers, the mediator has knowledge enabling comparison of the utility of the
energy resources specified in the different offers.

B: Mediator Agent Negotiation Policies

In addition to knowledge concerning energy resources, negotiation policies play an im-
portant role in the decision making process of the mediator agent.

B1. Combining Advertisements
Negotiation policies within the mediator agent influence the way in which advertise-

ments are combined. The main purpose of advertisements is to provide consumer agents
with information on the available energy resources, and the negotiation constraints over
these resources. Policies regulate the amount of combination that occurs within the com-
bined advertisements, by prescribing (i) which energy provider agent advertisements may
or may not be combined, and (ii) the number of options that the consumer agent is allowed
to see.

B2. Selecting Energy Provider Agents
The energy provider agent selection process is also subjected to policies. These policies

direct the selection process, by prescribing constraints on (i) which energy provider agents
are allowed to provide combined offers together, and on (ii) the number of energy provider
agents that may participate in a negotiation.

B3. Selecting Negotiation Offers
Negotiation offers made by energy provider agents are also subject to selection policies.

These policies prescribe which combinations of energy provider agents are (not) allowed
to provide combined offers, and which are to be selected in the case of multiple, similar
offers.

4.2. Energy Negotiation Model 67

4.2.3 Provider Agent

Energy resources are encapsulated by energy provider agents. Energy provider agents
represent a diversity of energy providers, both small and large, such as consumer homes,
universities, or power plants, wishing to sell off excess generated energy. For each re-
source offered, an energy provider agent implements a function that models the avail-
able negotiation space for that resource, based on the constraints of the resource. Such
functions may consist of simple price-demand curves, but may also include additional
dimensions, such as time-of-day or weather conditions, depending on the type of energy
resource being modeled. Provider-level policies also influence negotiations: Policies pre-
scribe additional constraints on advertisement content, and negotiation offers. Based on
the resource models and negotiation policies, an energy provider agent constructs adver-
tisements, and handles negotiations for energy resources.

4.2.4 Energy Resource Description

Energy resource descriptions are used to represent the different types of energy resources
(such as diesel generators, wind generators, solar arrays, etc.) within the negotiation
model. Each resource specifies an amount of energy it can provide. Energy is considered
a divisible resource: The capacity provided by an energy resource can be divided and
allocated to multiple consumer agents. Similarly, energy capacity provided by multiple
resources can also be combined.

<xs:element name=”EnergyResource” type=”energy:EnergyResourceType”/>
<xs:complexType name=”EnergyResourceType”>
<xs:sequence>
<xs:element ref=”energy:Amount”/>
<xs:element ref=”energy:Price”/>
<xs:element ref=”energy:Reliability”/>

</xs:sequence>
<xs:attribute name=”resource-id” type=”xs:string”/>
<xs:attribute name=”resource-type” type=”xs:string”/>

</xs:complexType>

<xs:element name=”Amount” type=”xs:positiveInteger”/>
<xs:element name=”Price” type=”xs:positiveInteger”/>
<xs:element name=”Price” type=”xs:float”/>

Example 4.1: Energy resource type definition.

Energy resource descriptions are based on the specification shown in Example 4.1.
The elements in the specification define the negotiable issues with respect to an energy
resource. The specification allows the expression of requirements/availability concerning
Amount, Price, and Reliability of energy capacity. The specification can be extended to
include other concepts concerning energy resources. Example 4.2 shows an example of
its use. The energy resource definition contains five information elements:

• resource-type: The type of resource being negotiated (e.g. diesel-generator, solar
array, etc.).

68 Distributed Energy Management

• resource-id: A unique identifier for a specific energy resource instance. In most
cases, this will not be used in negotiations at the consumer agent level, but can
be used by energy provider agents to explicitly map energy resources to specific
negotiations.

• Amount: Contains the energy capacity that is being negotiated.

• Price: Contains the price of the energy capacity that is being negotiated.

• Reliability: Contains the reliability of the negotiated energy capacity.

<EnergyResource resource-id=”diesel1” resource-type=”diesel generator”>
<Amount>350</Amount>
<Price>12</Price>
<Reliability>99.85</Reliability>

</EnergyResource>

Example 4.2: Energy resource description example.

4.3 Framework Application
In this section, the negotiation framework is applied in two scenarios, each implementing
different negotiation types. Scenario A describes how the framework can be instantiated to
enable competition between providers, hidden from the consumer agent perspective. Sce-
nario B demonstrates competition between mediator agents, where each mediator agent
represents a group of energy provider agents, and consumer agents can choose between
multiple negotiation offers. For each scenario, the negotiation policies are described that
are implemented in each of the different negotiation participants, to achieve the desired
competitive behavior. Scenarios A and B are fully implemented using a prototype of the
negotiation framework integrated into the AgentScape system. Simulations are performed
and the results are discussed to examine the achieved negotiation behavior.

4.3.1 Scenario A: Provider Competition
In scenario A, the emphasis is on the role of the mediator agent in the negotiation process:
The scenario demonstrates (i) how consumer agents defer energy negotiations to a medi-
ator agent, and (ii) how the mediator agent negotiates on behalf of a consumer agent with
the available energy provider agents, creating competition between the energy provider
agents. The scenario models a world in which energy providers are not directly available
for negotiation, but are instead negotiated with by means of a mediator agent, acting as
a representative of the parties in the negotiation process. This situation can occur for ex-
ample when the provider population is too large or too dynamic for a consumer agent to
obtain a complete and up-to-date overview of the population. Mediators acts as relatively
static entities within this environment, keeping track of the changes in the population.
Energy providers and consumers are modeled as highly dynamic entities, with constantly

4.3. Framework Application 69

changing energy supply and demand. The scenario presents example negotiation poli-
cies for energy consumer agents, energy provider agents, and mediator agents, which are
implemented using the prototype negotiation framework. In this section, the basic sce-
nario design is introduced first. After this, implementation details and examples of actual
simulations of this scenario are presented and discussed.

Provider agents are used to represent energy providers that compete for requests for
energy. Energy consumers are represented by consumer agents that issue negotiation re-
quests to the mediator agent. The mediator agent negotiates with the individual energy
provider agents, and returns negotiation offers to the consumer agents. The energy negoti-
ation model as presented in Section 4.2 is used to model the participants and interactions.

Scenario Outline

Energy consumer agents have varying electricity demand over a certain time period that
needs to be satisfied. Energy provider agents are very heterogeneous (i.e., have varying
energy capacity), and are willing to deliver energy at a certain price, according to some
pricing model internal to each of the agents. In this scenario, a single day is considered.
Each hour of this day, negotiations are performed for the allocation of energy capacity in
the subsequent hour. Negotiations consist of a single round in each hour. Available energy
capacity and energy demand are based on data obtained from a distributed power opti-
mization modeling framework named HOMER3. The HOMER framework can be used to
model energy technologies, including power sources such as wind turbines, generators,
and fuel cells, as well as to model energy loads using daily profiles. For more details on
how the framework is used to provide data, see the descriptions of the agents below.

Energy Consumer Agent

Energy consumer agents negotiate for delivery of energy throughout a full day (i.e. 24
hourly negotiations). Energy consumer agents are initialized with a vector specifying the
energy demand for the duration of the simulation. This data is obtained from the HOMER
framework by specifying an energy demand pattern over the course of a single day. This
patterns is based on the typical consumer demand curve as shown earlier in Figure 4.2.
The original demand curve is shown in Figure 4.4. Energy demand starts at 7:00, and ends
at 23:00, and two large demand peaks are present at the start and end of the day. A smaller
demand peak is defined at 13:00. Based upon this default pattern, HOMER generates
varying daily energy demand data (one demand value for each hour), for a full year. Each
energy consumer agent is given a vector containing the energy demand data from a random
day of this pool of 365 days. Figures 4.5, and 4.6 show examples of demand patterns
generated from the default demand pattern using the HOMER framework.

Based on its demand pattern, each agent determines whether energy is required in the
next hour. If this is the case, a negotiation request is communicated to the mediator agent.
The request consists of an energy resource description containing the requested amount
of energy, as well as the desired duration and starting time of the delivery of energy.
Example 4.3 shows an example of a request. In this scenario, negotiations are focused on

3http://www.nrel.gov/homer, National Renewable Energy Laboratory (NREL)

70 Distributed Energy Management

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

en
er

gy
 d

em
an

d
(u

ni
ts

)

hours

Figure 4.4: The original energy demand pattern from which the consumer agent energy
demand is derived.

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

en
er

gy
 d

em
an

d
(u

ni
ts

)

hours

Figure 4.5: Example demand pattern generated using the HOMER framework.

the price issue, which represents the price per unit of energy (ppu). Reliability of energy
is not considered in scenario A, see scenario B for negotiations that include this concept.

When an offer is subsequently returned by the mediator agent, the consumer agent
determines whether it is willing to pay the ppu that is specified in the offer, or whether
the proposed ppu is too high. In this scenario, three types of consumer agents are dis-
tinguished, each with a different mechanism to determine the maximum acceptable ppu.
The three types were chosen to model different types of consumer behavior: Unbounded

4.3. Framework Application 71

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

en
er

gy
 d

em
an

d
(u

ni
ts

)

hours

Figure 4.6: Second example demand pattern generated using the HOMER framework.

<Agreement>
<Name>Request ConsumerAgent1</Name>
<Context>
<Duration>1</Duration>
<Start>13</Start>
...

</Context>
<Terms>

...
<ServiceDescriptionTerm ServiceName=”energy”>
<EnergyResource>
<Amount>350</Amount>
<Price></Price>

</EnergyResource>
</ServiceDescriptionTerm>

...
</Terms>

</Agreement>

Example 4.3: Example of an energy negotiation request in Scenario A.

consumers that always accept the offer made by the mediator agent, strictly bounded con-
sumers that deny any offers above a certain threshold, and adaptive consumers that adapt
their threshold during negotiations.

• (A) Fixed maximum ppu: Agents that are equipped with this mechanism determine
their maximum acceptable ppu randomly in some predefined range, at the start of
the simulation. During the course of the simulation, the agents do not deviate from
this value.

• (B) No maximum ppu: Agents equipped with this mechanism have no upper limit,
but simply accept the offer that is given to them by the mediator.

• (C) Adaptive maximum ppu: Agents equipped with this mechanism change their

72 Distributed Energy Management

maximum acceptable ppu depending on the success of previous negotiations: Based
on the ratio of the amounts of energy that have been successfully obtained and that
should have been obtained, the ppu is changed. If the ratio is too low, the maximum
acceptable ppu is increased. If the ratio is high enough, the ppu is decreased. As an
example, assume the desired ratio is 0.80 (meaning that at least 80% of the demand
should be obtained). If the actual ratio is 0.50 (only 50% has been obtained), the
maximum acceptable ppu is increased with the difference of these (0.30), resulting
in the ppu being increased in this example to 130% of the original value.

Of the three types, the adaptive type can be said to model ‘normal’ consumer behavior,
while the other two agent types model boundaries of consumer behavior. To verify the
energy negotiation framework under these different demand models, simulations have
been performed using the three agent types. The offer selection policy of each of the
abovementioned agents is the same: Any offer that is received that contains a ppu value
below the maximum acceptable ppu is accepted by the consumer agents.

Energy Mediator Agent

The mediator agent forwards incoming negotiation requests from energy consumer agents
to all of the available provider agents. Based on their responses, the mediator agent in this
scenario implements the following offer selection policy:

• If multiple offers are returned which supply the energy originally requested by the
consumer agent, select the offer with the lowest energy ppu from these offers.

• If none of the returned offers supply the requested amount of energy, the mediator
agent performs a search for a set of agreements that can be combined to deliver the
requested amount. This is a combinatorial problem which grows exponentially with
the number of available offers. To limit computation time, the first valid combina-
tion that satisfies the requested energy amount is returned after a specified time-
period, regardless of the ppu specified in these offers.

The selected offer (or offer combination) is subsequently forwarded to the consumer
agent. The other offers from the energy provider agents are immediately rejected by the
mediator agent. Upon acceptance (or rejection) of an offer by a consumer agent, the me-
diator agent contacts the involved energy provider agents, and forwards the notification.

Energy Provider Agent

In the scenario, each hour over the course of a day, energy provider agents receive ne-
gotiation requests from the mediator agent, to supply energy to consumer agents in the
subsequent hour. To simulate dynamic energy providers, each energy provider agent is
initialized in a manner similar to the energy consumer agents: A wind turbine model4 and
simulated wind speeds taken from the HOMER framework are used as a basis for energy

4the BWC Excel-R turbine model is chosen randomly from the available turbine models in the HOMER
framework

4.3. Framework Application 73

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P
ow

er
 O

ut
pu

t (
kW

)

Wind Speed (m/s)

Figure 4.7: The power curve of the wind turbine model used in this scenario.

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10 11 12

A
ve

ra
ge

 W
in

d
S

pe
ed

 (
m

/s
)

Month of year (January = 1)

Figure 4.8: The monthly wind speed averages used in this scenario.

supply data. The turbine model provides a realistic power curve indicating the amount
of energy generated by the turbine at different wind speeds. Figure 4.7 shows the power
curve.

The HOMER framework also provides the functionality to generate wind speed data,
using a wind speed distribution model5. The wind speeds data generator is supplied with
average monthly wind speed values for each month of the year. For this scenario, this

5based on a Weibull distribution model

74 Distributed Energy Management

data is obtained from weatherbase6, a source for worldwide monthly weather records and
averages. The selected location chosen for this scenario to supply the monthly wind speed
averages was Amsterdam, The Netherlands. Figure 4.8 shows the monthly averages used.
Based on the wind speed distribution model, and the supplied average wind speeds, 8760
hourly wind speeds values (or: 365 days) are generated by HOMER.

This dataset was used to initialize the individual energy provider agents: Each agent is
given a random day from the dataset at the beginning of the day. For this scenario, the data
was scaled by a factor of 100, in order to match the amount of energy generated by the
individual energy provider agents, to the energy demand of the energy consumer agents.
Figures 4.9 and 4.10 show two examples of the power output used in this scenario.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
ow

er
 O

ut
pu

t (
un

its
)

Time (h)

Figure 4.9: Simulated energy supply pattern.

Every hour, energy provider agents determine a new demand price per unit to be used
in subsequent negotiations, based on expected available capacity, prior negotiation results,
and prior demand price. The overall policy of the provider agents is based around: The
main goal of selling at least a minimum percentage of the available energy throughout
each day; the concepts of over- and underproduction; whether the energy provider agent is
successful in allocating its available energy to consumer agents. The policy specifies that
prices are changed only when the energy provider agent is currently in a period of over-
or underproduction. If this is the case, prices are increased if the agent has succeeded
in selling more than a predefined percentage in the previous round (i.e. energy demand
is considered to be high enough). Prices are decreased if this percentage has not been
met in the previous round (i.e. energy demand is considered to be low). Also, in the
case of decreasing overproduction, prices are lowered in anticipation of less available
energy. Furthermore, in the case of overproduction, the base price is lowered by the
energy provider agent, to prevent loss of the overproduced energy. The policy is shown in
Algorithm 1, in pseudocode notation.

6http://www.weatherbase.com

4.3. Framework Application 75

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
ow

er
 O

ut
pu

t (
un

its
)

Time (h)

Figure 4.10: Second simulated energy supply pattern.

if overproduction then
new base ppu = lower price due to overproduction(previous price);
if previously also overproduction then

if overproduction is decreasing then
new price = decrease price(new base ppu);

else
if previously enough sold then

new price = increase price(new base ppu);
else

new price = decrease price(new base ppu);
end

end
else

new price = new base ppu;
end

else
new base ppu = previous price;
if previously also no overproduction then

if previously enough sold then
increase price(new base ppu);

else
decrease price(new base ppu);

end
else

new price = new base ppu;
end

end
Algorithm 1: Pseudocode description of energy provider request handling policy.

76 Distributed Energy Management

4.3.2 Implementation Details and Simulation Results
Scenario A has been implemented using the prototype negotiation infrastructure avail-
able within the AgentScape framework: Consumer agents, service provider agents, sim-
ulated energy resources, and a mediator agent have been implemented. Furthermore, the
domain-specific negotiation policies presented for each of the negotiation participants in
the previous section have been implemented. For more details about AgentScape, and the
implementation of the negotiation framework in the AgentScape middleware, see Chap-
ter 5. A number of simulations have been performed using this implementation. Examples
of simulation runs are presented and discussed in this section, with the aim of demonstrat-
ing the energy negotiation framework, and the competition created between the individual
energy providers by the mediator agent, under varying consumer demand conditions.

The simulations have been performed using the DAS-2 cluster at the Vrije Universiteit
Amsterdam, using the prototype negotiation infrastructure implemented in the Agent-
Scape framework. As this scenario requires the negotiation participants to be aware of
the simulated time of day, a virtual clock is implemented to synchronize the time of day
between the participating agents.

The following configuration is used in the simulations: 60 energy consumer agents and
15 energy provider agents are instantiated, and a single mediator is instantiated, through
which the negotiation parties interact. Energy provider agents are instantiated with a
initial price per unit of 30. For each of the three different consumer agent types, the initial
maximum acceptable prices are:

• agent type A (fixed maximum): Value is determined randomly in the range 15-30.

• agent type B (no maximum): No maximum value.

• agent type C (adaptive maximum): Initial value is determined randomly in the range
15-30.

Energy supply and demand data are generated prior to the simulations, using the
HOMER framework, as described earlier. Results of simulations for each of the different
agent types are shown below. The results discussed below are of typical simulation runs,
to demonstrate dynamic negotiation behavior of the negotiation model, and do not aim to
present the average or overall negotiation behavior of the framework.

Simulation A1: Type A agents
In this simulation, the energy consumer agent population consists of type A agents. In

figure 4.11, a typical simulation is shown. Each of the 60 consumer agents has established
a maximum acceptable price per unit of energy at the beginning of the simulation. This
has resulted in an average maximum acceptable ppu threshold as shown in the figure.
Furthermore, the figure shows both the average normalized offered price and the average
normalized selling price of the energy provider agents. The first represents the price for
which the energy has been offered during negotiation, the second represents the price for

4.3. Framework Application 77

which energy has been obtained (i.e. agreements have been established) by the consumer
agents during negotiation. Both have been normalized with respect to the amount of
available energy at that point in time. Finally, the figure also shows the maximum and
minimum offered actual prices at each hour by the energy provider agents, using grey
bars. This indicates the spread between these maximum and minimum values, which can
be interpreted as the bandwidth within which the energy provider agents offer their energy
to the consumer agents.

The figure shows that the average normalized selling price is close to the lower end of
the offered price bandwidth. This indicates that the market is a so-called buyer’s market
(i.e. buyers determine the price in the market). The increase in the offered and selling
prices as indicated in the figure (hours 9–11 and 18–20) also clearly indicate the parts of
the day in which energy demand increases, and prices increase accordingly. This increase
in energy demand leads to energy becoming scarce, which can also be seen by examining
the price bandwidth as shown in the figure. In periods of relatively high demand, the
bandwidth of the offered prices decreases, indicating less differentiated prices between
the energy providers.

Finally, this simulation shows that the fixed maximum acceptable price set by the
consumer agents leads the energy provider agents to offer their energy below this thresh-
old. At two points in the simulation (hours 11 and 18), the energy providers attempt to
increase their price above the threshold, but immediately reduce their prices in the subse-
quent hours, due to the consumer agents not accepting these new prices.

 0

 5

 10

 15

 20

 25

 30

 35

 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

P
ric

e
P

er
 U

ni
t

Time (h)

max. and min. ppu
avg. norm. selling price

avg. norm. offered price
avg. consumer max. price threshold

Figure 4.11: Energy negotiation simulation for type A agents.

Simulation A2: Type B agents
In this simulation, 60 consumer agents of type B are negotiating with the available

energy provider agents. No fixed maximum acceptable ppu is used by these agents. Fig-
ure 4.12 shows the results of a typical simulation run using type B consumer agents. The

78 Distributed Energy Management

figure shows that at hour 9, the average normalized offered price is equal to the average
normalized selling price, indicating that all available energy at that time has been allo-
cated. This is due to (i) high energy demand and (ii) the absence of a maximum price
threshold in type B agents, which would otherwise have prevented the consumer agents
from accepting agreements that are priced too high. Furthermore, the figure shows that in
longer periods of relatively high demand (see hours 17-20), the average normalized sell-
ing price moves closer to the average normalized offered price, as the consumer agents
are forced to accept more expensive agreements, due to high demand. Although con-
sumer agents do not apply a maximum acceptable ppu threshold in this simulation, prices
are kept low due to a surplus in energy during most of the day, and sufficient competition
between the energy providers. Only during times when energy is relatively scarce, an
increase in price occurs.

 0

 5

 10

 15

 20

 25

 30

 35

 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

P
ric

e
P

er
 U

ni
t

Time (h)

max. and min. ppu
avg. norm. selling price

avg. norm. offered price

Figure 4.12: Energy negotiation simulation for type B agents.

Simulation A3: Type C agents
In this simulation, the agents adapt their maximum acceptable price, depending on the

percentage of required energy that has been successfully obtained. The results of a typical
simulation run have been depicted in figure 4.13. In this figure, it can be seen that the
consumer agents adapt their acceptance threshold during the simulation. As the thresh-
old is adapted when the ratio between required and obtained energy is above (increase
threshold) or below (decrease threshold) .8, the established threshold can be viewed as an
indication of a fair price for energy under the current supply–demand conditions in the
simulation, if the demand equals to 80% of the available energy.

4.3. Framework Application 79

 0

 5

 10

 15

 20

 25

 30

 35

 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

P
ric

e
P

er
 U

ni
t

Time (h)

max. and min. ppu
avg. norm. selling price

avg. norm. offered price
avg. consumer max. price threshold

Figure 4.13: Energy negotiation simulation for type C agents.

Scenario Discussion

In this scenario, the basic energy negotiation framework is demonstrated. Results of typ-
ical simulation runs are presented, which show the effect of provider competition under
different demand conditions (i.e. different agent types, and varying demand over time)
on the development of the price in the energy market. The simulations show that under
the different supply–demand conditions, the market can be classified as a buyer’s market.
Even when consumers do not maintain a maximum acceptance price threshold (i.e. type B
agents), energy prices are kept relatively low. In part, this is due to the mediator selecting
offers on behalf of the consumer agents, which leads to consumer agents only receiving
the cheapest offers in the market.

4.3.3 Scenario B: Competition Between Provider Groups
In scenario B, two provider groups exist, one group consisting of very reliable energy
providers (e.g. diesel generators), and the other group consisting of less reliable energy
providers (e.g. wind generators). The groups can be formed for a number of reasons,
for example, groups can represent separate companies consisting of multiple energy pro-
viders, or groups can be formed because of a geographical relationship between energy
providers. The aim of the scenario is to demonstrate competition between these energy
provider groups, by including multiple mediators in the negotiation process.

Scenario Outline

This scenario extends scenario A by including multiple mediators, enabling consumer
agents to choose between the negotiation offers made by each of the mediator agents. In
addition to the competition within each energy provider group of the individual mediators,

80 Distributed Energy Management

competition is introduced at the level of the mediator agents, as the offers made by each
of the mediators are evaluated and compared by the consumer agents.

Additionally, negotiations now include reliability of supplied energy, as a second ne-
gotiation issue for the negotiation parties to consider during negotiations: Energy con-
sumers do not only have a varying energy demand, but also a varying reliability threshold,
indicating the desired reliability of the required energy. Similarly, energy provider agents,
in addition to varying power output, simulate varying reliability of the power output. The
following sections describe details of the negotiation participants.

Energy Consumer Agent

The energy consumer agents used in this scenario are based on the consumer agents pre-
sented in scenario A, with the addition of a component responsible for generating relia-
bility values, and a modified offer selection policy to include the reliability concept in the
offer selection process.

In this scenario, energy consumer agents determine the reliability for each negotiation
request using a random walk mechanism. Each hour during the simulated day, the agents
update their desired reliability percentage by increasing or decreasing (direction is chosen
randomly) the current reliability value with a predetermined amount. Maximum and min-
imum value limits are set to constrain the random walk. The desired reliability is included
in the negotiation request. Example 4.4 shows an example of a request.

<Agreement>
...
<Context>
<Duration>1</Duration>
<Start>13</Start>
...

</Context>
<Terms>

...
<ServiceDescriptionTerm ServiceName=”energy”>
<EnergyResource>
<Amount>350</Amount>
<Reliability></Reliability>
<Price>82</Price> <!-- 82 % -->

</EnergyResource>
</ServiceDescriptionTerm>

...
</Terms>

</Agreement>

Example 4.4: Example of an energy negotiation request in Scenario B.

The established reliability value is used in the offer selection policy to determine
whether an offer is acceptable. In scenario A, offer selection consisted only of deter-
mining whether the price per unit specified in the (single) offer from the mediator was
below the established threshold. In scenario B, the offer selection policy is extended to
allow comparison of multiple offers received from multiple mediators: Offers with a re-
liability below the desired reliability as established by the energy consumer agent, are
selected above offers with a matching or higher reliability, if:

4.3. Framework Application 81

• The offered reliability is not below a predetermined percentage of the desired reli-
ability.

• The offered price is at least lowered with a percentage equal or more than the offered
reliability is lower compared to the desired reliability. (e.g. if the offered reliability
is 75% of the desired reliability, the offered price should be equal to, or less than
75% of the price in the offer to which it is compared (the offer with a reliability
equal or higher than the desired amount).

The above selection policy allows an agent to select a cheaper offer if the reliability
of the offer is still within acceptable limits.

Energy Mediator Agent

The mediator agents used in scenario B do not differ from the mediator agent in scenario
A, with the exception that multiple mediators are now available, each responsible for a
separate group of energy provider agents. The offer selection policy employed by the
mediators only considers offer price, and does not distinguish on offer reliability. This is
left up to the consumer agents.

Energy Provider Agent

Two types of energy provider agents are distinguished in this scenario: Constant and
variable. Variable provider agents are similar to the provider agents used in scenario A,
but with the extension that provider agents now include a reliability concept for the energy
offered to consumers:

• Based on the difference between current and average power output values, a reli-
ability value is calculated at hourly intervals. Two value ranges are distinguished,
based on the standard deviation of the power output: When the current output is
within the standard deviation range, reliability is lowered linearly from 100% to
80%, based on the distance of the current power output value from the output aver-
age. When the current output is between 1 and 2 times the standard deviation range,
reliability is lowered linearly from 80% to 40%.

• The calculated reliability value is included in the negotiation offers returned to the
energy consumer agents through the mediator. The policy used to determine the
offer price is the same policy used in scenario A, and does not include reliability as
a factor.

Constant provider agents have a constant power output, and a reliability value of
100%. The policy to determine the offer price is the same as the policy used by the
variable provider agents.

82 Distributed Energy Management

4.3.4 Implementation Details and Simulation Results

In this section, two simulation runs are shown and discussed. The simulations use the
following configuration: 60 energy consumer agents, 2 mediator agents, and 14 energy
provider agents. The energy provider agents are divided equally between the two mediator
agents. Furthermore, one group consists of variable energy providers, with varying power
output and the aforementioned added varying reliability. The other group consists of
energy provider agents with a constant power output. The results of two typical simulation
are shown in Figures 4.14 and 4.15.

 0

 5

 10

 15

 20

 25

 30

 35

 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

 1

 0.75

 0.5

 0.25

 0

P
ric

e
P

er
 U

ni
t

R
at

io
 s

ol
d/

of
fe

re
d

Time(h)

Variable energy provider group avg. normal offered price
Constant energy provider group avg. normal offered price

Average pricepayed by consumer agents
Ratio sold/offered constant provider group
Ratio sold/offered variable provider group

Figure 4.14: Energy negotiation simulation scenario B.

In both figures, the average normalized offered prices of both groups separately, and
the average price paid by the consumer agents are shown. The two lower lines in the
figures indicate the ratio of the amounts of energy sold versus the amount offered, for the
two groups.

In both simulations, the offered prices of the variable reliability energy provider group
are on average lower than the prices offered by the constant reliability group, due to the
fact that the variable reliability providers compensate the difference in reliability with the
constant reliability providers with a lower ppu. Furthermore, it can be seen that the offered
prices of the variable reliability energy providers follow the prices payed by the consumer
agents more closely than the prices offered by the constant provider group. Also, the
fluctuation of the prices offered by the constant provider group are more pronounced.
This can be attributed to the facts that (i) the variable provider group is better able to sell
energy in all demand situations (i.e. high and low demand), as can be seen in the lines
indicating the ratio of the amount sold versus the amount offered, and (ii) the amount of
risk-averseness of the consumer agents (i.e. the amount of reliability that is acceptable for
the consumer agents).

4.4. Framework Extensions 83

 0

 5

 10

 15

 20

 25

 30

 35

 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

 1

 0.75

 0.5

 0.25

 0

P
ric

e
P

er
 U

ni
t

R
at

io
 s

ol
d/

of
fe

re
d

Time(h)

Variable energy provider group avg. normal offered price
Constant energy provider group avg. normal offered price

Average pricepayed by consumer agents
Ratio sold/offered constant provider group
Ratio sold/offered variable provider group

Figure 4.15: Second energy negotiation simulation scenario B.

Scenario Discussion

The negotiation scenario presented in scenario A has been extended to include multiple
mediators, allowing consumer agents to obtain offers from multiple mediators, creating
competition between the provider groups represented by each of the mediators. Further-
more, energy reliability has been included in the model as additional negotiation issue.
Simulations have been presented that demonstrate mediator competition by differentiat-
ing provider groups with respect to the reliability of the energy they are offering. Provider
groups offering less reliable energy compensate for this by reducing their demand price,
increasing their chance of acceptance. This results in the less reliable provider groups
being able to sell available energy more successfully in the varying demand conditions
throughout the simulated day.

4.4 Framework Extensions
In this section, extensions to the negotiation framework are presented. Although the
framework provides for much flexibility through adjusting the negotiation policies and
the negotiation language of the negotiation participants (as demonstrated in the previous
section, and Chapter 5), not all negotiation models are captured by our negotiation frame-
work. However, the basic building blocks provided by the framework can be extended to
allow for other types of negotiation:

• The negotiation language can be extended to include additional negotiation related
information. Note that these extensions are different from the domain-specific ne-
gotiation language extensions that are part of the normal framework instantiation
process within a particular domain. The extensions considered here are not part
of these domain-specific extensions, but are modifications to the basic negotiation

84 Distributed Energy Management

language structure: Additional language elements are defined that can be used by
the negotiating parties to express additional negotiation related information during
the negotiation process.

• The four basic negotiation phases used at both levels in the negotiation framework
can be re-used in different ways, to achieve different negotiation interactions. Ne-
gotiation phases on the different levels can be decoupled, to allow for different
interactions on each of the levels. Furthermore, phases can be repeated and the role
of the phases in the overall negotiation process can be redefined.

• The role of the mediator in the interaction process can be redefined, allowing the
mediator to govern the interaction taking place at the two levels in the negotiation
process, in order to achieve the desired negotiation interaction behavior.

To demonstrate the application of the framework to other negotiation models, two
scenarios are presented in this section. Scenario C demonstrates the extension required
to enable competition between energy consumers. For this purpose, the framework is
extended to accommodate an auctioning model. Scenario D describes an extension of
the framework which allows negotiation participants to specify decommitment penalties.
For each of the scenarios, the required extensions to the framework are discussed, and
example traces are given to demonstrate the use of the extensions.

4.4.1 Scenario C: Consumer Competition
In scenario C, competition between energy consumers is achieved by implementing an
auctioning model using the negotiation framework. Auctions are frequently used as
a market form in newly deregulated traditional energy markets. The effects of differ-
ent auction models on the behavior of electricity markets is the subject of ongoing re-
search [39, 80, 92]. Our auction interaction model is based on the negotiation language
and protocol as described in Chapter 3, and supports most common auction models, such
as ascending bid, descending bid, and first- and second-price sealed bid auctions, as well
as bid withdrawal. The model allows for multiple buyers and sellers (double auctions), as
well as multiple issue auctions, including package bidding. The role of the mediator in
the negotiation process changes from reactive to pro-active, to the role of an auctioneer.

The auction interaction model is described below. After that an example auction is
presented.

Auction Interaction Model

Figure 4.16 shows a schematic overview of the steps in the auction interaction model, in
which the negotiation framework interactions that take place at each of the two negotiation
levels, at different points in the auction process, are distinguished.

An auction starts at the mediator-provider agent level, where the provider agents have
specified the auction issues that they wish to sell through the auction. The mediator agent
collects this information from the various provider agents. The mediator agent decides in
which configuration the issues specified by the provider agents are auctioned (e.g. each
issue separately, all issues combined in a single auction, etc.). When this information has

4.4. Framework Extensions 85

Provider agents
specify auction issues

auction not yet
decided

Mediator −
Consumer
level

Mediator −
Provider
level

Mediator −
Consumer
level

Mediator −
Provider
level

Consumer agents
request auction info

Consumer agents
create bid

Consumer agents

mediator
receive reply from

auction ends

Mediator notifies
Provider agents
of outcome

Provider agents

Consumers receive

return final agreement

final agreement

Mediator collects
information from
Provider agents

Figure 4.16: The auction interaction model.

been collected, the mediator agent selects the (next) provider for which it will perform an
auction. The auction now continues on the mediator-consumer agent level. Upon the start
of an auction, consumer agents request the information concerning the auction (which
issues are being auctioned, etc.), collected by the mediator agent7. After this, a number
of auction rounds are performed, during which the consumers agents submit bids to the
mediator agent. After the mediator agent has received all bids (or a time-out occurs), the
mediator decides whether an additional round is required, or whether conditions are met
that signal the end of the auction (e.g. no new bids in the previous n rounds, time limit
reached, etc.). When the mediator agent decides that an additional round is required, the
consumer agents are informed. If the auction has ended, the mediator agent determines
the allocation of the issue(s) to the consumer agents, but does not yet inform the consumer
agents of the outcome: The mediator agent first notifies the provider agents of the outcome
of the auction. The provider agents then confirm this result. The resulting confirmation is
returned to the consumer agents, after which the auction ends.

Although the semantics have changed, the interaction model uses the basic elements
of the negotiation language (templates and agreement-request and agreement-offer docu-
ments), and implements the four phases of the original interaction model (advertisement,
request, offer, acceptance). Contrary to the original interaction model, the negotiation
phases at both interaction levels are no longer linked to each other. Figure 4.17 shows the
phase transitions on the two levels, and their relationships. Below, for each of the negoti-

7we assume that the starting time of auctions is known to the consumer agents

86 Distributed Energy Management

ation levels, the different phases and their place in the auction process are described.

Advertisement phase

Offer phase

Request phase

Acecptance phase

Request phase

Offer phase

Acecptance phase

Consumer−Mediator level Mediator−Provider level

Final agreement document

Advertisement phase

Figure 4.17: The auction phase transitions.

Advertisement Phase

• Mediator-Provider agent level: In this phase, provider agents indicate the items that
are made available in the upcoming auction (e.g. the energy capacity that they have
available), by specifying this in their template document. The creation constraints
section of the document can be used to specify any constraints that a provider agent
wishes to apply to the auction. For example, a minimum price can be specified,
by defining a minimum value constraint for the price element of the offered service
description term. At the start of a new auction, the mediator agent collects these
templates from the provider agents.

• Consumer-Mediator agent level: Consumer agents that want to participate in the
auction contact the mediator agent, and request the available templates. Based on
the auction model implemented by the mediator agent (e.g. simultaneous or sequen-
tial), the mediator either bundles all available provider agent templates, or selects
one of the available templates, and returns it to the consumer agents. The template
contains all available auction item information, including available item packages
if the auction supports these. Term compositors are used to indicate item packages.

4.4. Framework Extensions 87

Example 4.5 shows a template in which two items can only be requested as a com-
bination, indicated by the All compositor element. The consumer agents use the
template to determine which bidding options are available to them, and adjust their
bidding strategies.

<Template>
<Name>AuctionItems Mediator</Name>
<Context>...</Context>
<Terms>
<All>
<ServiceDescriptionTerm serviceName=”serviceA”>...</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”serviceB”>...</ServiceDescriptionTerm>
<All>

</Terms>
</Template>

Example 4.5: Example template document containing packaged auction items.

88 Distributed Energy Management

Request Phase

• Mediator-Provider agent level: The mediator agent informs the energy provider
agents which consumer agents have been awarded the auction items. A negotiation
request document is communicated to the energy provider agents, describing which
auction items are awarded, including the final price established during the auction.

• Consumer-Mediator agent level: Consumer agents communicate bids to the me-
diator agent, for the auction items specified in the template information. For each
item on which a consumer agent wishes to bid, a bid is specified in the agreement
request document. If a consumer agent decides that its standing bid is still satisfac-
tory, the standing bid is sent to the mediator agent, to indicate no change is required.
Consumer agents can also withdraw standing bids in this phase, by removing the
standing bid for that item.

Offer Phase

• Mediator-Provider agent level: Provider agents acknowledge the notification re-
ceived from the mediator agent, by returning an agreement offer document detailing
the agreement that is to be established as a result of the auction.

• Consumer-Mediator agent level: The mediator agent informs the consumer agents
about the progress of the auction. The mediator agent determines the current state
of the auction based on the pricing rules it implements (ascending bid, descending
bid, etc.), and chooses the amount of information it reveals in the offer, to allow for
example anonymous bid information to be distributed.

Acceptance Phase

• Mediator-Provider agent level: If an auction has been successfully closed, the
mediator agent establishes the final agreements by accepting the agreement offers
received from the provider agents. The provider agents implement the accepted of-
fer, and return a final agreement document describing the allocation of the awarded
items to the specific consumer agents.

• Consumer-Mediator agent level: The consumer agents indicates whether the auc-
tion information as was received in the previous offer phase, is considered to be
correct. If an agent decides to continue participating in the auction, the mediator
agent is informed of acceptance. However, a consumer agent can also decide in
this phase to withdraw from the auction entirely. As a result, the mediator agent
removes the consumer agent’s current bid, and removes the agent from the auction
in the next round. The mediator agents examines the current state of the auction,
and decides whether an additional round is required. If this is not the case, the auc-
tion is ended by contacting the provider agents to obtain the final agreements, and
creating final agreement documents for each of the participating consumer agents.
If an additional round is required, an agreement document is returned containing
the current state of the auction, and an indication the auction has not yet resulted in
a final agreement, and that an additional round is required.

4.4. Framework Extensions 89

The next section presents an example auction scenario which shows the interactions
required to implement an auction framework, using our negotiation framework. After this,
an example auction is presented to demonstrate the use of the framework.

4.4.2 Auction Framework Example Trace

To demonstrate the adaptation of the framework to the auction domain, this section pre-
sents an example auction sequence. The auction type chosen in this example is a simulta-
neous ascending auction, as this auction type has relatively straightforward rules (bidders
bid for items they are interested in, see all highest bid prices, and pay their bid if awarded),
and is considered a suitable auction type for auctions concerning substitute goods [28, 66].
The basic simultaneous ascending auction model does not support package bidding (for an
approach which extends the model to include package bidding. see [29]). In this scenario,
any bidders interested only in packages of items can use bid withdrawal to withdraw any
bids if it becomes clear that not all items are attainable. An example of the bid with-
drawal mechanism as provided by our auction framework is included in the trace. Energy
resources that are offered are substitute goods (i.e. in our scenario, items only differ in
energy amount offered, no additional issues such as reliability are considered). The mar-
ket is a per-day market, i.e. each auction concerns the energy that will be delivered the
following day. The example auction consists of two energy provider agents offering en-
ergy, and three energy consumer agents acting as bidders. A mediator agent implements
the role of auctioneer. Below, a number of rounds of the auction will be discussed, to
demonstrate the framework interactions.

<Template>
<Name>AuctionItems ProviderA</Name>
<Context>...</Context>
<Terms>
<ExactlyOne>
<All>
<ServiceDescriptionTerm serviceName=”energy”>
<EnergyResource resource-id=”dieselA” resource-type=”diesel˙generator”>
<Amount>450</Amount>
<Price></Price>

</EnergyResource>
</ServiceDescriptionTerm>

</All>
</ExactlyOne>

</Terms>
<CreationConstraints>
<Item>
<Location>
//Context/Price

</Location>
<Restriction type=”minValue”>
<minValue>2000</minValue>

</Restriction>
</Item>

</CreationConstraints>
</Template>

Example 4.6: Template document created by Provider A.

90 Distributed Energy Management

Round One
Before the start of the first round, the energy provider agents create their templates,

describing the offered energy. In this example, provider agent A offers 450 units of power,
and defines a constraint regarding this offer that indicates the minimum price the provider
agent wishes to receive. Example 4.6 shows the template specified by provider A. Provider
agent B specifies a similar template, offering 250 energy units, and a minimum price of
1100.

At the start of the first round, the mediator agent collects the templates. The mediator
agent bundles this information into a single template document. The mediator agent uses
the template term composition structure to indicate which bid possibilities are available.
In our scenario, consumer agents can either bid on one or both of the items separately. The
creation constraints used by the provider agents to indicate reserve price are not included
in the template which is sent to the bidding agents, as this information is used by the
mediator agent in the auction process, and is not intended to be known to the bidding
agents. Example 4.7 shows the structure of the template document created by the mediator
agent.

<Template>
<Name>AuctionItems Mediator</Name>
<Context>...</Context>
<Terms>
<OneOrMore>
<ServiceDescriptionTerm serviceName=”energy”>
<EnergyResource resource-id=”dieselA” resource-type=”diesel˙generator”>
<Amount>450</Amount>
<Price></Price>

</EnergyResource>
</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”energy”>
<EnergyResource resource-id=”dieselB” resource-type=”diesel˙generator”>
<Amount>250</Amount>
<Price></Price>

</EnergyResource>
</ServiceDescriptionTerm>
<OneOrMore>

</Terms>
</Template>

Example 4.7: Template document created by mediator agent, containing two auction
items.

4.4. Framework Extensions 91

Every consumer agent requests the available template information from the mediator
agent, and receives the bundled template as a result. Based on this template, the consumer
agents make their first bids, by constructing a negotiation request document containing
the bids for the items they are interested in. The request contains one of the options
presented in the template, for which the consumer agent has filled in the ‘Price’ element
of the document. In this scenario, consumer agent 1 bids on both items, and intends to
obtain both, consumer agent 2 bids only on the item of provider agent A, and consumer
agent 3 bids on both items separately, in an attempt to acquire either one, or both of the
items. Example 4.8 shows the request created by consumer agent 1.

<Agreement>
<Name>Request Consumer1</Name>
<Context>
<AgreementInitiator>Consumer 1</AgreementInitiator>
<TemplateName>AuctionItems Mediator</TemplateName>
</Context>
<Terms>

<All>
<ServiceDescriptionTerm serviceName=”energy”>
<EnergyResource resource-id=”dieselA” resource-type=”diesel˙generator”>
<Amount>450</Amount>
<Price>2100</Price>

</EnergyResource>
</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”energy”>
<EnergyResource resource-id=”dieselB” resource-type=”diesel˙generator”>
<Amount>250</Amount>
<Price>900</Price>

</EnergyResource>
</ServiceDescriptionTerm>
<All>

</Terms>
</Agreement>

Example 4.8: Example agreement request in round 1.

92 Distributed Energy Management

The mediator agent analyzes the incoming bids, and determines whether an additional
round is available (i.e. if new bids have been received). Figure 4.18 shows these interac-
tions taking place in this first round of this scenario.

auction
state

3

2

1

3

2

1

ac
ce

pt
 (

co
nt

in
ue

)
or

 r
ej

ec
t (

w
ith

dr
aw

 fr
om

 a
uc

tio
n)

de
te

rm
in

e
bi

d

template{250:1100}

template{450,250}

bid{(450:2100,250:900}

accept()

accept()

accept()

Energy Provider AgentsMediator Agent

3

2

1

3

2

1

1

2

3

A

B

determine
if next round
is required

template{450:2000}

Energy Consumer Agents

offer{450:2100,250:1100}

agreement{no;(450:2100,250:1100)}

template{450,250}

template{450,250}

bundle templates
according to auction
rules

bid{450:2000}

bid{450:1900,250:1100}

determine

Figure 4.18: The first auction round.

Round Two
In round two, consumer agent 1 decides to increase its bid on the 250 item to 1200, in an

attempt to obtain the highest bid on both the auction items. Consumer agent two however,

4.4. Framework Extensions 93

also increases its bid on the 450 item to 2200. Consumer agent 3 however, based on the
bids in the previous round, decides to forego bidding on the 450 item, and withdraws its
bid on the item from the auction, by removing the bid for this item from the negotiation
document it will send to the mediator agent. The bid on the 250 item remains unmodified.
Finally, all the agents send their new bids to the mediator agent.

As a result of the new bids, the mediator agent determines the new state of the auction,
and returns this to the consumer agents. The agents accept the current state of the auction.
Figure 4.19 shows the interactions taking place in round two.

agreement{no;(450:2200,250:1200)}

accept()

accept()

3

2

1

3

2

1

determine
if next round
is required

3

2

1

Energy Consumer Agents Mediator Agent

bid{250:1100}

bid{(450:2100,250:1200}

bid{450:2200}

withdraw
bid 450

1

determine
auction
state

ac
ce

pt
 (

co
nt

in
ue

)
or

 r
ej

ec
t (

w
ith

dr
aw

 fr
om

 a
uc

tio
n)

increase
bid 450

increase
bid 250

accept()

3

2

offer{450:2200,250:1200}

Figure 4.19: The second auction round.

Round Three
In round three, consumer agent 1 decides to take no action, and await the bids of the

other agents in this round. Consumer agent 2 increases its bid on the 450 item to 2300,
thereby outbidding consumer agent 1. Consumer agent 3 also decides to await the bids of
the other agents in this round. All agents send their bid information to the mediator agent.

94 Distributed Energy Management

The mediator agent determines the new high bids for the items, and communicates this
to the consumer agents using the agreement offer document. As a result, consumer agent
1 decides that it will not succeed in obtaining the 450 item, as the bid made by consumer
agent 2 is too high. As consumer agent 1 was only interested in both items together, it
decides to withdraw its bids on all items, and leave the auction. The agent indicates this
to the mediator agent by issuing a reject back to the mediator agent. The mediator agent
withdraws the standing high bids the consumer currently has in the auction8. The current
state of the auction is returned to the consumer agents, indicating the new standing high
bid on the 250 item, due to the withdrawal of consumer agent 1. Figure 4.20 shows the
interactions taking place in round three.

1

ac
ce

pt
 (

co
nt

in
ue

)
or

 r
ej

ec
t (

w
ith

dr
aw

 fr
om

 a
uc

tio
n)

do
nothing

increase
bid 450

do
nothing

agreement{no;(450:2300,250:1100)}

accept()

accept()

3

2

1

3

2

1

determine
if next round
is required

3

2

Energy Consumer Agents Mediator Agent

bid{450:2100,250:1200}

bid{450:2300}

bid{250:1100}

determine
auction
state

3

2

reject()

offer{450:2300,250:1200}

Figure 4.20: The third auction round.

Rounds continue in the manner described above, until the final round is reached.
8A standard penalty mechanism for withdrawal may be used by the mediator agent as a result of the with-

drawal: The withdrawing bidder is responsible to pay the maximum of 0 and the difference between the with-
drawn bid and the final sale price.

4.4. Framework Extensions 95

Final Round
In the final round, the mediator agent decides that the current state of the auction is

the final state (e.g. due to time constraints, or due to a number of previous rounds in
which no new bids were received), and contacts the energy provider agents to create the
agreement documents for the consumer agents. The energy provider agents are sent the
final state of the auction, for each of the items they have brought in the auction. As a
result, the energy provider agents inform the mediator agent about the agreement that will
be created if accepted by the mediator (i.e. acknowledgment of the received request).
The mediator accepts the offers from the energy provider agents, and receives the final
agreement documents in return. Finally, the agreement documents are sent to the energy
consumer agents in response to their acceptance of the auction state. Figure 4.21 shows
the interactions taking place in the last round9.

9The withdrawal penalty which is issued to consumer agent 1 due to the withdrawal of its bid on the 250
item in round three is not shown here.

96 Distributed Energy Management

A

B

Energy Consumer Agents Energy Provider AgentsMediator Agent

3

2

A

B

A

3

2

B

3

2

A

accept()3

B

2 accept()

bid{450:2300,250:1100}

cr
ea

te
 a

gr
ee

m
en

t o
ffe

r
ba

se
d

on
 o

ut
co

m
e

agreement{yes;(450,2500)}

agreement{yes;(250:1100)}

re
ce

iv
e

ag
re

em
en

ts

offer{450:2500,250:1100}

decision: auction ends

send agreement request

receive agreement offer

accept offer

receive agreements

request{450,2500}

offer{450,2500}

request{250:1100}

offer{250:1100}

agreement{450,2500}

agreement{250:1100}

se
nd

 fi
na

l a
gr

ee
m

en
t

cr
ea

te
 fi

na
l a

gr
ee

m
en

t
re

ce
iv

e
au

ct
io

n
ou

tc
om

e

bid{450:2500}

Figure 4.21: The final auction round.

4.4. Framework Extensions 97

4.4.3 Scenario Discussion

In this scenario, our negotiation framework was adapted to support competition between
consumers in the negotiation process. An auction-like approach was chosen, in which the
mediator was assigned the role of auctioneer. A Price element was explicitly incorporated
in the negotiation documents, to enable consumer agents to bid for the services offered by
the service provider agents. Furthermore, the original framework protocol was adapted to
implement auction interactions, by assigning different semantics to the interaction avail-
able in the protocol. The mediator is responsible for performing the auction process on
behalf of the provider agents. The provider agents provide templates to indicate the items
that will be included in the auction, and are contacted again by the mediator agent once
the auction has ended, and the auction items have been awarded to the consumer agents.
The mediator establishes the final agreements with the provider agents based on the out-
come of the auction, and provides the agreement documents to the consumer agents, as
final proof of the outcome of the auction. An example auction is presented in which a
simultaneous ascending auction was implemented using the auction framework, includ-
ing bid withdrawal. The auction framework supports several common auction models, as
described earlier.

4.4.4 Scenario D: Decommitment

In this section, our negotiation framework is extended to allow participants of the negoti-
ation process to unilaterally end ongoing negotiations. First, a short overview is presented
of the various models described in literature. After this, the extensions of the negotiation
framework are presented. Finally, an example scenario is presented, demonstrating the
extension of the model.

In literature, various methods have been proposed to allow negotiation participants
to end ongoing negotiations. Kraus et al. [55] include the notion of time as a driving
force in the negotiations. In their model, time is considered valuable. Agents prefer any
agreement in any given time period over the indefinite continuation of the negotiation
process. Furthermore, agents prefer establishing agreements sooner rather than later. This
approach allows agents to end negotiations if a solution has not been found within a certain
amount of time. In this approach, agents still commit fully to a negotiation, but negotiation
times are shortened, allowing agents to more quickly resolve ongoing negotiations, and
engage in other possible negotiations that may present themselves.

Other approaches involve allowing agents to ‘opt out’ of ongoing negotiations. This
enables agents not only to reduce negotiation time spent on negotiations that are no longer
useful, but also to stop ongoing negotiations if other, more interesting negotiation options
have become available. An early example in this area is that of contingency contracts
(Raiffa 1982). In this approach, contracts are made contingent on probabilistically known
future events. If these events arise, an agent may drop its commitments regarding the con-
tract. In realistic settings however, contingency contracts have a number of problems: Not
all future events may be known; The number of (relevant) events may be very large pre-
venting an agent from monitoring all events; events may not be observable by all parties,
which allows for agents to lie about the events that it has (or has not) monitored.

98 Distributed Energy Management

An approach that is put forward by Sandholm and Lesser is the so-called levelled
commitment contract. The main idea of this approach is to allow negotiation participants
to unilaterally decommit from a negotiation, in exchange for a decommitment penalty.
The penalties can be used to choose a level of commitment, ranging from traditional full-
commitment contracts, to commitment-free contracts. Advantages of this approach as
described by Sandholm et al. [85] include: Accommodation of new domain and negotia-
tion events in the negotiation process; enabling agents to use decommitment to perform
a backtracking search in the space of available negotiation options; enabling profitable
construction of combinatorial contracts from basic contracts (agents can try to obtain a
number of contracts, but drop established commitments when not all contracts can be ob-
tained); reduction of time and computation required for negotiations; up-front feasibility
checks are not necessary, as negotiations can be aborted later in the negotiation process, if
required. Sandholm et al. show that, using decommitment, agents can reach higher utility
levels in case of negotiations with uncertainty about future events.

In addition to the issues under negotiation (usually goods and price), a levelled commit-
ment contract contains two additional elements: The contractor’s decommitment penalty,
and the contractee’s decommitment penalty. When an agent receives a so-called outside
offer which is preferred over the current offer, an agent can decommit upon which it re-
ceives the penalty specified in the contract. Each agent’s decommitment strategy is based
on the decommitment threshold of the agent.

With respect to decommitment mechanisms, three different leveled commitment mech-
anisms are distinguished by Sandholm et al.: Sequential decommitment; simultaneous
decommitment where both parties pay their respective penalties when both decommit;
and simultaneous decommitment where neither party pays a penalty when both decom-
mit. Which mechanism to use depends on the conditions in which the negotiations are
taking place, the types of agents under consideration (risk-neutral or not) and the utility
functions of the agents. With respect to the number of interactions required, simultaneous
decommitment where neither party pays leads to the least amount of interactions, which
could be of importance in domains where interactions are difficult or expensive. With
respect to complexity: sequential decommitment is easy for the ’second mover’: ’decom-
mit’ nonstrategically if the first mover did not decommit, and never decommit if the first
mover already decommitted first.

Examples for implementing leveled commitment contracts are given by Sandholm et
al. in [86], and by Excelente-Toledo et al. in [37]: Both works present algorithms for de-
ciding when to drop a commitment, and algorithms for determining decommitment penal-
ties. In the former work, two algorithms are presented for: (i) Computing the Nash equi-
librium10 decommitment thresholds and decommitment probabilities for rational agents;
(ii) optimizing the contract price and penalties to maximize expected payoff. In the lat-
ter work, three levels of commitment are described: Total, in which agents cannot drop
commitments; loose, in which agents always drop their commitments once a better offer
is received; partial, in which agents drop commitments with a percentage of probability if
a better offer is received. Furthermore, three mechanisms for determining decommitment
penalties are discussed: Fixed, in which penalties are defined to be a pre-specified per-
centage of the reward specified in the contract; partially sanctioned, in which the penalty

10no agent can improve its result by unilaterally changing its decommitment strategy

4.4. Framework Extensions 99

is determined dynamically, based on the likelihood of decommitment (high if chance of
decommitment is high); sunk cost, in which penalties are also dynamic, and increase over
time to reflect the effort spent on a contract. These dynamic penalty mechanisms provide
a more realistic model for determining the costs related to dropping commitments in an
ongoing negotiation process.

Scenario Outline

The adaptation of our framework to include decommitment is presented in the context of
the energy management domain, as described earlier in this Chapter. Providing the option
to decommit in negotiations in this domain allows for more flexibility in the negotiation
process. In the energy management domain, flexibility is important, as changes in the
supply or consumption of energy may occur without prior notification, and due to real time
constraints, the balance between supply and demand needs to be re-established rapidly, as
dealing with energy shortages or surpluses is costly.

Decommitment Interaction Model

The decommitment model implemented in this scenario is a leveled commitment protocol,
with penalties for each of the negotiating parties. Penalties are fixed during negotiations,
but can be modified between different negotiations, by each of the negotiating parties.
This mechanism is comparable to the partially sanctioned mechanism mentioned earlier.
We consider only decommitment during the negotiation process. After an agreement is
established, other mechanisms may be used to determine what happens when an agree-
ment that is active, is violated. This may for example be specified in other agreements,
established earlier, which cover agreement violation terms.

To allow for specifying levels of commitment in our framework, the information ex-
changed between the negotiating parties (i.e. service consumer agents and service provider
agents) is extended to include information on decommitment penalties. Both consumers
and providers can specify decommitment penalties, indicating to the other party the price
they will have to pay if the party decides to back out of the negotiation. Furthermore,
the protocol is extended to include an intermediate phase, in which the negotiating par-
ties agree on the negotiation terms (i.e. the penalties specified by both parties), before
proceeding with the negotiation.

To allow for the expression and use of decommitment contracts in our framework, a
number of extensions to the framework are made, both in the negotiation language, and
the negotiation protocol. These changes are discussed below.

Negotiation Language The Context section of the negotiation documents (templates
and agreement requests/offers) is extended with a Penalties section enabling the specifi-
cation of penalties by the negotiating parties. In the template document, service provider
agents can add penalty information to the service options (i.e. the service description
terms) described in the template. This allows a service provider agent to specify differ-
ent penalties for the services or service combinations that are specified in the template.
Any negotiations that are initiated by service consumers using this template, can only be

100 Distributed Energy Management

aborted by paying the specified penalty. Each penalty specification refers to a subsection
of the service description terms section using an XPath expression. To uniquely identify
subsections of the SDT section, an additional attribute can be specified within each term
compositor element. Linking penalties to subsections also allows the mediator agent to
combine multiple templates into a single template, while retaining the penalty informa-
tion specific to each provider template on which the combined template was based. Exam-
ple 4.9 shows an example of a template including penalty information for the different ser-
vice options. In this example, two options are specified in the template: provider1 option1
for negotiating a service package consisting of three services, and provider1 option2, ne-
gotiating for single service. For both options, decommitment penalties are specified. For
option 1, the penalty is set higher than option 2, as the risks for negotiating option 1 are
higher from the perspective of the provider agent.

<Template>
<Name>Template Provider1</Name>
<Context>

...
<Penalties>
<ProviderPenalty location=”//All[@id=’provider1 option1’]”>40</ProviderPenalty>
<ProviderPenalty location=”//All[@id=’provider1 option2’]”>5</ProviderPenalty>

</Penalties>
</Context>
<Terms>
<ExactlyOne>
<All id=”provider1 option1”>
<ServiceDescriptionTerm serviceName=”serviceA”>...</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”serviceB”>...</ServiceDescriptionTerm>
<ServiceDescriptionTerm serviceName=”serviceC”>...</ServiceDescriptionTerm>

</All>
<All id=”provider1 option2””>
<ServiceDescriptionTerm serviceName=”serviceA”>...</ServiceDescriptionTerm>

</All>
</ExactlyOne>

</Terms>
<CreationConstraints>
...
</CreationConstraints>

</Template>

Example 4.9: Example template containing the penalties extensions.

In an agreement request document, a service consumer agent can specify its decom-
mitment penalty by specifying it in the Penalties section of the negotiation request. The
agreement request only contains one of the options that were specified in the templates
(the option the consumer agents has selected to negotiate for), as the penalty does not refer
to a specific subsection of the SDT section, but holds for the entire agreement request. Ex-
ample 4.10 shows an example agreement request document containing the penalty speci-
fied by the consumer agent, in addition to the penalty specified by the provider agent for
the service description terms.

Negotiation Protocol
The negotiation protocol follows the same phases as defined in Chapter 3, with the

addition of an intermediate acceptance phase, in which negotiating parties agree on the
penalties as specified. This additional phase is added after the offer phase, and before the

4.4. Framework Extensions 101

<Agreement>
<Name>Request Consumer1</Name>
<Context>

<ConsumerPenalty>20</ConsumerPenalty>
<ProviderPenalty location=”//All[@id=’provider1 option2’]”>5</ProviderPenalty>

<AgreementInitiator>Consumer 1</AgreementInitiator>
<TemplateName>Template Provider1</TemplateName>
</Context>
<Terms>
<All id=”provider1 option2””>
<ServiceDescriptionTerm serviceName=”serviceA”>...</ServiceDescriptionTerm>

</All>
</Terms>

</Agreement>

Example 4.10: Example agreement request containing the penalties extension.

final acceptance phase. Figure 4.22 shows the phase transitions including the intermediate
acceptance phase.

Intermediate

Advertisement phase

Request phase

Offer phase

Acceptance phase

intermediate
phase for
penalty
agreement

Period during
which other
negotiation offers
may present itself
to the negotiating parties

acceptance phase

Figure 4.22: The phase transitions in the negotiation model including decommitment.

Consumer Agent In the intermediate acceptance phase, a consumer agent decides (based
on the decommitment threshold it has set for itself) whether an offer it has received is ac-
cepted, after which penalties have to be paid if the agent decides to reject the offer at a
later point in time. If an offer is rejected in the intermediate phase, the negotiation ends
immediately and no penalty has to be paid. Figure 4.23 show the possible scenarios for
the consumer agent in the extended protocol, and the resulting penalties that are received
or paid.

Provider Agent In the extended protocol a provider agent can decide, after receiving
a negotiation request, to either immediately end negotiation by returning an empty offer
document, or to commit to the received request, by sending a negotiation offer. If the
offer is accepted by the consumer agent, an intermediate accept notification is received.
Otherwise, a intermediate reject notification is received, in which case the negotiation

102 Distributed Energy Management

no penalty

reject
offer

intermediate
accept
offer

accept
offer

reject
offer

receive
agreement

received
offer

pay penalty

no agreement

receive penalty payment

intermediate

Figure 4.23: Possible scenarios in the extended protocol, consumer side.

ends. If, at a later point in time, the provider agent decides to drop its commitment in
favor of other negotiations, it will indicate this in the acceptance phase, by returning an
empty agreement document to the consumer agent, and paying the agreed upon penalty.
If it becomes clear during the acceptance phase that the consumer agent has dropped its
commitment, the provider agent will receive payment. Figure 4.24 shows the possible
scenarios for the provider agent.

no penalty

request

create
offer

received
intermediate

accept

received
reject

received
accept

received
intermediate

reject

create agreement

end negotiation

end negotiation

pay penalty

receive penalty payment

receive no penalty

received

Figure 4.24: Possible scenarios in the extended protocol, provider side.

4.4. Framework Extensions 103

4.4.5 Scenario D Example Trace

To demonstrate the extension of the framework, two example scenarios are presented in
this section: Scenario D1 presents a situation in which one energy consumer agent nego-
tiates with two energy provider agents, and drops its commitment to one of the provider
agents; scenario D2 presents a situation in which one energy provider agent negotiates
with two energy consumer agents, and drops its commitment to one of the consumer
agents. The scenarios demonstrate how both consumers and providers can drop commit-
ments when new and better negotiation options present themselves. For simplicity, it is
assumed that the mediators in this scenario only fulfill a passive intermediary role, passing
through the received negotiation messages, and not influencing the negotiation process.
These interactions are not explicitly specified.

Scenario D1
In this scenario, an energy consumer agent first engages in negotiations with energy

provider agent A: The template is requested from the provider. The template indicates
the maximum amount of energy that can be requested (750 units), and the penalty that
will be imposed if any negotiations based on this template are ended by the consumer
agent, without establishing an agreement (Pprov:15). The consumer agent examines the
template, and creates a negotiation request for 500 energy units. The request contains
the energy amount requested, the original penalty as indicated by the provider agent,
and the penalty set by the consumer agent, which is imposed if the provider agent ends
negotiations prematurely (Pcons, 5).

Energy provider agent A receives the request, and decides to accept the request and
create an offer. The offer is returned to the consumer agents, and includes the price set by
the energy provider agent (price: 200). Subsequently, the energy consumer agent decides
to commit to the offer by issuing an intermediate accept. From this point, if either energy
provider agent A or the energy consumer agent decides to withdraw from the negotiation,
a penalty will have to be paid to do so.

The energy consumer agent decides to attempt to negotiate with another energy provi-
der agent, provider agent B. The template specified by this provider agent indicates that it
can also supply the requested amount of energy. The consumer agent issues a negotiation
request to this provider, to request the price this provider agent asks for 500 units. The
provider agent responds with an offer specifying a price of 180, and a penalty of 5, if
negotiations are ended prematurely. The consumer agent receives the offer, and decides
which offer is to be accepted, and which is to be rejected. Rejecting the old offer will
result in a penalty of 15, but the difference in price of both offers makes it worth while to
make this choice. The consumer agent first accepts the new offer, to ensure that provider
agent B has not yet decided to end negotiations, after which it informs provider agent A of
rejection, and paying the agreed upon penalty. Figure 4.25 shows the interactions taking
place in this scenario between the negotiation participants.

Scenario D2
In this scenario, an energy provider agent enters into negotiations with two consumer

agents, and drops commitment to one negotiation, favoring the most profitable negotia-

104 Distributed Energy Management

energy provider agent A

time

make offer

acceptintermediate

create agreement

commit

energy consumer agentenergy provider agent B

receive agreement

accept new

reject old, pay:15

receive payment:15

make offer

send request

return template

return template

send request

penalty:5

amount:500;price:200

amount:500
Pcons:5;Pprov:15

max amount:500

amount:500
Pcons:5;Pprov:5

Pcons:5;Pprov:15

amount:500;price:180
Pcons:5;Pprov:5

max amount:750
Pprov:15

Figure 4.25: Scenario D1

tion. First, the provider agent is contacted by energy consumer agent B, with a request
for the template. The template is returned to the consumer agent, indicating that the max-
imum amount of energy that can be request is 750 units, and the penalty is set to 15.
Consumer agent B decides to issue a negotiation request for 500 energy units, and sets the
decommitment penalty to 5. The provider agent decides to accept the request, and com-
mits to it by creating an offer, with a price of 200. The offer is accepted by the consumer
agent. From this point, a withdrawal of either of the two agents from the negotiation now
results in a penalty payment. Figure 4.26 shows the interactions taking place in scenario
D2.

Subsequently, the energy provider agent is contacted by consumer agent A, which also
requests the template, and creates a request for 500 energy units, and a penalty of 10. The
provider agent decides to create an offer in response to the request, with a price of 210.
The offer is accepted (immediately, no intermediate acceptance by the consumer in this
scenario) by consumer agent A, which means that the provider can now decommit from
the negotiation with consumer agent B, and pay the penalty of 5. When consumer agent
B indicates that it wants to accept the agreement, the provider agent returns an empty
agreement, indicating it has ended this negotiation, and will pay the agreed upon penalty.

4.4. Framework Extensions 105

time

energy consumer agent A energy consumer agent Benergy provider agent

receive payment:5

Pprov:15

negotiation

intermediate accept

create request

Pcons:5;Pprov:15

accept agreement

amount:500

return end of

Pcons:10;Pprov:15

amount:500
Pcons:5;Pprov:15

amount:500;price:210

create request

accept offer

return template

return template

make offer

make offer

Pcons:5;Pprov:15
amount:500;price:200

Pprov:15

receive agreement

create agreement

max amount:750

pay penalty

max amount:750

Figure 4.26: Scenario D2

4.4.6 Scenario Discussion

The framework extension presented in this scenario allows for both negotiating parties
to indicate levels of commitment during negotiations by settings decommitment penal-
ties, and dropping commitments during negotiations in exchange for payment of these
penalties. The extension implements a sequential decommitment mechanism, in which
provider agents always move last, as they await the acceptance/rejection of the agreement
from the consumer agent. Penalties are not fixed between negotiations, but are established
per negotiation, using the negotiation templates, and negotiation request documents.

The extensions to the framework that are required for decommitment are relatively
straightforward: An additional section has been defined in the negotiation documents,
and an additional intermediate acceptance phase is inserted in the protocol, which uses
the same interactions (accept/reject) already present within the original protocol, but with
different semantics.

106 Distributed Energy Management

4.5 Summary and Conclusions

The energy negotiation model as presented in this chapter enables energy providers to
form virtual organizations, represented by mediator agents. Forming organizations has
the advantages that (i) energy providers can offer their energy capacity collectively, and
that (ii) organizational policies concerning the use of energy resources can be applied.
These policies can ensure that negotiations within the provider organization are performed
effectively: The mediator can intelligently choose the providers with which to negotiate,
to achieve higher-level organizational goals, such as reducing negotiation times, or spe-
cific energy allocation goals (fair division among energy resource providers, prioritize
consumer agents based on their identities, etc.).

The applicability to the energy management domain, and the flexibility of the frame-
work has been demonstrated: Using our framework, energy negotiations are modeled as a
succession of negotiations for agreements, where each agreement describes the amount of
energy that is to be delivered, the reliability of the delivered energy, price, and the duration
of delivery that has been agreed upon.

The framework has been instantiated, and negotiation policies have been defined for
the negotiation participants that enable competition between energy providers, and be-
tween groups of energy providers. The simulations that have been performed show that
the framework can be used to model different negotiation types in the domain of dis-
tributed energy management.

Not all negotiation models are encompassed by the negotiation language and inter-
action protocol specified in negotiation framework. The framework’s potential to model
other negotiation types is shown through two example scenarios, in which extensions are
presented of the basic framework components: An auctioning model extension, and an ex-
tension to enable support for decommitment penalties are presented, which demonstrate
the extension possibilities of the negotiation framework. The negotiation scenarios can-
not easily be compared to each other: In the auctioning scenario, consumers compete with
each other, which can be perceived as a disadvantage from a consumer point of view, but
as an advantage for providers. In the decommitment scenario the situation is reversed, as
providers compete with each other in the negotiation process. Choosing between these
negotiation approaches with the goal of modeling a negotiation process will be largely
determined by domain-specific factors such as the relative sizes of the consumer an pro-
viders populations, and the availability/scarcity of services for negotiation.

4.5.1 Future Work

From a performance perspective, the negotiation model needs to be further examined. The
basic negotiation protocol as described in Section 4.2 has features that can contribute to
the performance of negotiations: Advertisements are used to initiate negotiations, limiting
the allowed negotiation space and negotiation candidates. This can reduce overall negotia-
tion times, and improve the negotiation results obtained within this time. Furthermore, the
protocol is based on a single negotiation cycle, which prevents lengthy negotiation inter-
actions. In realistic settings however, re-negotiations will be necessary when negotiation
results are not considered acceptable by energy consumer agents.

4.5. Summary and Conclusions 107

Also, the energy negotiation model as described in this chapter focuses primarily
on the role of the mediator agent in the negotiation process. The model can be further
extended to include additional elements specific to the energy domain, such as pricing
models, dynamic energy provider and consumer agent populations, and multiple virtual
organizations.

Finally, the energy negotiation model as presented in this chapter can be refined
to model different types of realistic energy resources, providers, and consumers more
closely.

108 Distributed Energy Management

Chapter 5

Multi-Agent System Resource
Management: Resource
Negotiation in AgentScape

Next generation agent platforms will consist of large-scale, distributed middleware lay-
ers, providing support for many agent applications simultaneously. Mobile agents in these
environments need to share limited platform resources with many other agents. These re-
sources are subject to access and usage policies, set by owners and system administrators.
Facilities need to be provided by agent platforms, enabling agents to obtain guarantees
concerning service access, while simultaneously ensuring that resource access and usage
policies are not violated.

This chapter describes the implementation of the negotiation framework in the Agent-
Scape platform [96]. The aim of this chapter is to evaluate the applicability of the frame-
work in the domain of distributed agent middleware.

In AgentScape, agents can enter into negotiations with mediators representing groups
of hosts, and establish agreements describing service access and usage conditions. Prior
to migrating to a new AgentScape platform, agents need to:

• locate resources;

• determine whether the required resources can be obtained at reasonable cost;

• negotiate guaranteed access to these resources.

These resources can be low-level computational resources such as CPU-time, working
memory, communication bandwidth, or higher-level services such as web service access
or database access. For example, an agent which has been written in Java requires that the
platform to which it migrates offers a Java run-time environment.

Section 5.1 introduces the AgentScape middleware. Section 5.2 describes the map-
ping of the negotiation framework onto the AgentScape architecture. Sections 5.3, 5.4,
and 5.5 discuss the implementations of the consumer, mediator, and provider agents in

110 MAS Resource Management

the AgentScape middleware in more detail. Section 5.6 presents a number of negotiation
experiments. Section 5.7 discusses the implementation of the framework. Section 5.8
summarizes the main points of this chapter. Section 5.9 presents the final conclusions.

5.1 Introduction: AgentScape
AgentScape is a distributed middleware platform designed to support large-scale dis-
tributed agent applications. The goal of AgentScape is to realize a secure, scalable, and
fault-tolerant middleware layer for agent applications. Furthermore, AgentScape is de-
signed to be an open system: Supporting multiple code bases and offering interoperability
with other agent platforms.

Agents in AgentScape
AgentScape provides support for migration and run-time support of agents: AgentScape
implements an agent life cycle model defining a number of states and state transitions.
This model (see Figure 5.1) consists of four states and related transitions:

termination

creation termination

resumption suspension

retrieval

departure

arrival
storage

Migrating

Activated

Storage
Persistent

Suspended

Figure 5.1: AgentScape life cycle model.

• The active state, in which the agent is running and able to communicate with its
environment and pursue its goals;

• the suspended state, in which an agent is temporarily stopped and unable to com-
municate, but not removed from the middleware instance. The state of the agent

5.1. Introduction: AgentScape 111

is stored within the middleware (i.e. in an agent container, see the next section for
more details). Depending on the policies of the middleware, incoming messages
addressed to the agent may be buffered for later delivery, or not delivered;

• the migrating state, during which the agent is being moved to another host within
the middleware. Depending on the policies of the middleware, incoming messages
may be buffered and forwarded to the new location of the agent, or not delivered;

• the persistent storage state, in which an agent is removed from the middleware and
stored in persistent storage outside the middleware. Incoming messages are not
delivered.

For communication purposes, AgentScape implements a naming service, and simple
low-level message-based communication primitives for transparently and securely routing
messages to and from agents. AgentScape also provides higher-level functionality for
agents to discover other agents and/or services. These are not further described in this
thesis.

Access to web services in AgentScape is offered to agents through a web service gate-
way, giving agents the ability to communicate with web services using the SOAP/XML
protocol [1]. The gateway acts as a proxy between the web service and an agent wishing
to access the service, by redirecting the SOAP traffic from the agent to the gateway instead
of directly to the web service, allowing AgentScape to monitor and control agent access
to web services.

AgentScape Middleware Architecture
The AgentScape middleware provides agents with a world consisting of locations. Each
AgentScape location provides agents with a run-time environment. AgentScape locations
are supported by one or more hosts. Each host in an AgentScape location runs a Host
Manager, and one or more Agent Servers. Each location has its own Location Manager,
which is responsible for managing the host managers within its location. Each host man-
ager within a location is responsible for registering its host with the location manager.
Host managers only communicate with other host managers (its peers), or with the lo-
cation manager of its location. Locations are connected to each other by their location
managers. This configuration is in fact a super-peer architecture. Figure 5.2 depicts the
entities within an AgentScape location.

Figure 5.3 presents an overview of the AgentScape architecture from the perspective
of a single host. Three layers are distinguished within the middleware: A kernel layer,
providing basic support functionality for the middleware layer. The middleware layer im-
plements the functionality required to support mobile agent applications and agent com-
munication. Middleware layers on separate hosts communicate with each other through
the kernel layer using an RPC-mechanism. The application layer is the layer within which
the actual agent applications are run. This layer also provides additional higher level ap-
plication support (e.g. agent directory services).

Agents in AgentScape are not aware of the distributed and modular nature of the mid-
dleware. Agents only see a single entity representing the middleware: the agent server.

112 MAS Resource Management

Agent

Web
Service

GWHM

Host C

LM

HM

Host A
Server

Location

Agent

Agent
Server

Agent
Server

HM

Host B

Server

Figure 5.2: An AgentScape location.

Web
Services Application layer

A A

A

Middleware layer

Kernel layer
Kernel

MiddlewareMiddleware

Figure 5.3: AgentScape middleware.

This agent server presents agents with an agent interface, through which agents commu-
nicate with other agents, interact with services, and migrate to other locations. Further-
more, agents in AgentScape are not aware of the individual hosts supporting the middle-
ware. From the agent perspective, locations are the most basic elements in an AgentScape
world.

Agent communication within AgentScape is message-based: Agents formulate a mes-
sage and rely on the AgentScape middleware to route the message to the correct location
and deliver the message to the destination agent. As an open agent platform, Agent-
Scape supports only low-level secure communication. Higher-level message abstractions
(i.e. Agent Communication Languages) are the responsibility of the application layer.

AgentScape supports weak agent mobility: Agents are not bound to the run-time envi-
ronment of the location at which they were first started. Agents can leave an AgentScape
location and move to another location (e.g. to use resources available at the target loca-

5.2. AgentScape Negotiation Architecture 113

tion). AgentScape agents can also carry data from one location to the next, using the
storage space available in a so-called agent container [93]. An agent container is a data
structure for storing agent code, state data, and miscellaneous data. As shown earlier in
the AgentScape life cycle model, agents are first suspended before being moved to an-
other location, which results in the state of the agent being stored in the agent container
associated with the agent. Once the suspension process is completed successfully, the
agent container containing the agent and its associated data are moved to the destination
location.

The kernel has been designed as a separate entity from the AgentScape middleware,
resulting in a robust and scalable layer, with a well-defined interface which is available
for use through an RPC mechanism by the middleware. The kernel provides three types
of functionality:

• Secure communication: The kernel allows middleware on separate hosts to commu-
nicate with each other through encrypted communication channels. This allows the
middleware to exchange data (including encapsulated agent communication data)
in a secure way.

• Secure agent container management: Within the AgentScape middleware, agent
code and data are stored in agent containers. To enable management of agent con-
tainers, the kernel provides a number of calls to create, modify, and delete agent
containers. Agent containers are stored using encryption, preventing unauthorized
access to the agent code and data stored within.

• Secure migration: The kernel supports secure migration of agent containers from
one kernel to another (most often from a host in one location to a host in another
location). Security mechanisms enable the kernel to detect tampering with agent
containers during transfer.

5.2 AgentScape Negotiation Architecture
This section describes the application of the negotiation framework to the AgentScape
middleware. For each of the agents identified in the negotiation framework (consumer,
mediator, and service provider agents), it is determined how the agent is instantiated in
the middleware architecture. Furthermore, the services are identified that are the topics of
negotiation.

5.2.1 Agentscape Framework Implementation
The negotiation architecture is integrated into the AgentScape architecture, with the goal
of enabling system adminstrators (i.e. administrators of AgentScape locations or individ-
ual hosts) to define resource access policies for the resources within their administrative
scope, and to allow agents to negotiate for access to these resources. This section de-
scribes the mapping of the framework elements to components of the AgentScape archi-
tecture, and describes the additions and modifications that are made to the AgentScape
middleware to accomplish this.

114 MAS Resource Management

In AgentScape, agents implement the consumer agent role within the negotiation pro-
cess. Agents negotiate with AgentScape locations to obtain access to services offered by
these locations. Location managers act as mediator agents, on behalf of an AgentScape
location. Within an AgentScape location, host managers act as service provider agents
representing specific resources. An AgentScape location represents a virtual organization
of host managers. Location managers represent locations in the negotiation process: They
negotiate with host managers in their location, on behalf of agents. Figure 5.4 shows the
mapping of the negotiation framework onto the AgentScape middleware.

Provider
Agent

Service
Provider

Agent

Consumer
Agent

Negotiation model
Chapter 3

Implementation for
AgentScape framework

Location
Manager

Host
Manager

host

Host
Manager

host

Host
Manager

host

AgentScape
Agent

host

AgentScape location

Mediator

Virtual provider organization

Agent

Service
Provider

Agent

Service

Figure 5.4: Mapping of the negotiation framework elements onto the AgentScape mid-
dleware.

The AgentScape prototype is extended with a Java implementation of the negotia-
tion framework. An existing AgentScape kernel implementation developed as part of
the ongoing AgentScape project provides the required kernel layer services (i.e. secure
communication and migration), and was used without modifications. An existing Agent
Server which is available within the AgentScape prototype framework was modified to
allow for monitoring and control of resource usage by the agents it supports, including
monitoring of CPU-time consumption. Similarly, existing Host Manager and Location
Manager prototype implementations were extended to include the components required
for the negotiation architecture, and the additional interface elements required for nego-
tiation protocol communication. The original AgentScape agent interface that is used by
agents to communicate with the world and the middleware is extended to include the re-
quired negotiation protocol calls. The existing migration protocol as implemented in the
AgentScape prototype was extended to include the negotiation phase: Prior to migration,
agents are required to obtain an agreement with the location that is the target of migration.
The identifier of the agreement is then used to initiate the migration process.

Furthermore, an existing example WS-Agreement XML-Schema specification pro-

5.2. AgentScape Negotiation Architecture 115

vided by the Open Grid Forum was used as a basis to generate the negotiation documents
that are exchanged during the negotiation process. Additionally, an XML-Schema was
created defining the negotiable elements (i.e. AgentScape middleware resources) that can
be expressed in the negotiation documents.

The negotiation framework explicitly does not specify (domain-specific) negotiation
policies, or a policy specification language, as this is considered to be domain-specific.
In the current version of AgentScape, no specific policy language has been defined to
express policies on a more abstract level. Instead, policies are specified directly in the
agents, location manager, and host manager implementations. This makes it difficult for
other parties to add or modify negotiation policies at the current time, as they have to
apply the modifications directly in the AgentScape source code. Selecting and/or defining
a suitable language to specify negotiation policies that can be configured and instantiated
at run-time is the subject of future research.

In the following sections, further details of the integration of the negotiation architec-
ture in the AgentScape framework are discussed.

5.2.2 Topics of Negotiation

In AgentScape, the topics of negotiation (i.e. the services in the terminology of the nego-
tiation framework) are middleware resources. Currently, three resource descriptions are
specified: Agent Run-time Environments, CPU-time, and Web Service Access. The struc-
ture of these resource descriptions are specified in the XML-Schema language. The spec-
ifications can be extended to include additional resources when needed, such as memory
usage, or disk usage, etc. Currently however, the implementation only supports negotia-
tion about the three above-mentioned resources. Each of these resources are described in
more detail in the following sections.

<xs:element name=”EnvironmentResource”
type=”agentscape:EnvironmentResourceType”/>

<xs:complexType name=”EnvironmentResourceType”>
<xs:sequence>
<xs:element ref=”agentscape:Language” minOccurs=”1” maxOccurs=”1”/>

</xs:sequence>
</xs:complexType>

<xs:element name=”Language” type=”agentscape:LanguageType”/>

<xs:complexType name=”LanguageType”>
<xs:simpleContent>
<xs:extension base=”xs:string”>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

Example 5.1: Specification of the run-time environment resource description.

116 MAS Resource Management

Agent Run-time Environment

In AgentScape, run-time environments for agents are provided by agent servers. Each
agent server provides a language dependent run-time environment. The AgentScape mid-
dleware implementation currently provides two types of agent servers, one offering a Java
and one offering a C run-time environment. Agents can negotiate for specific run-time
environments with the AgentScape middleware using resource descriptions based on the
specification as shown in Example 5.1.

The specification defines a top-level EnvironmentResource element, containing a sin-
gle Language element. This element can be used in negotiations to indicate run-time
environments, as shown in the example below. The specification in its current form is
overly simplified: Future versions of the specification should separate the various aspects
defining a run-time environment, such as language name, version and dialect, instead of
using a single value representation.

Administrators of AgentScape hosts can specify in negotiation advertisements which
run-time environments they have available. Example 5.2 depicts an advertisement speci-
fying three available run-time environments: Java-1.4.2, Java-1.5.0, C/C++.

<Template>
...
<ServiceDescriptionTerm serviceName=”RuntimeEnvironment”>
<EnvironmentResource>
<Language/>

</EnvironmentResource>
</ServiceDescriptionTerm>
...
<CreationConstraints>
<Item>
<Location>

//ServiceDescriptionTerm[@serviceName=’RuntimeEnvironment’]
/EnvironmentResource/Language

</Location>
<Restriction type=”enumeration”>
<enum>Java-1.4.2</enum>
<enum>Java-1.5.0</enum>
<enum>C/C++</enum>

</Restriction>
</Item>

</CreationConstraints>
</Template>

Example 5.2: An advertisement containing the EnvironmentResource resource descrip-
tion.

A negotiation request based on this advertisement, in which an agent requests a Java-1.4.2
run-time environment, is depicted in Example 5.3.

CPU-time

Agents can also negotiate with AgentScape platforms for required CPU-time by using
resource descriptions based on the specification shown in Example 5.4.

The specification is used by administrators of AgentScape hosts to specify negotia-
tion advertisements containing constraints on the amount of CPU-time that agents may
request. The current specification allows for the expression of CPU-time requirements in

5.2. AgentScape Negotiation Architecture 117

<Agreement>
...
<All>
<EnvironmentResource>
<Language>Java-1.4.2</Language>

</EnvironmentResource>
</All>

...
</Agreement>

Example 5.3: A negotiation request containing the EnvironmentResource resource de-
scription.

<xs:element name=”CPU-timeResource”
type=”agentscape:CPU-timeResourceType”/>

<xs:complexType name=”CPU-timeResourceType”>
<xs:sequence>
<xs:element name=”CPU-time” type=”xs:positiveInteger”/>

</xs:sequence>
</xs:complexType>

Example 5.4: Specification of the CPU-time resource description.

milliseconds, and does not account for differences in CPU type or speed. Example 5.5
depicts an example of an advertisement, in which the maximum CPU-time that may be
requested is limited to 20000 milliseconds.

<Template>
...
<ServiceDescriptionTerm serviceName=”CPU”>
<CPU-timeResource>
<CPU-time/>

</CPU-timeResource>
</ServiceDescriptionTerm>
...
<CreationConstraints>
<Item>
<Location>
//ServiceDescriptionTerm[@serviceName=’CPU’]

/CPU-timeResource/CPU-time
</Location>
<Restriction type=”maxValue”>
<maxValue>20000</maxValue>

</Restriction>
</Item>

</CreationConstraints>
</Template>

Example 5.5: An advertisement containing the CPU-timeResource resource description.

An example of a negotiation request created by an agent based on this advertisement (in
which an agent requests 10000 milliseconds CPU-time), is depicted in Example 5.6.

Web Service Access

Agents negotiate for access to web services by using the resource descriptions based on
the specification as shown in Example 5.7. Successful negotiations result in the web

118 MAS Resource Management

<Agreement>
...
<All>
<CPU-timeResource>
<CPU-time>10000</CPU-time>

</CPU-timeResource>
</All>
...

</Agreement>

Example 5.6: A negotiation request containing the CPU-timeResource resource descrip-
tion.

service gateway allowing access to the web services requested by the agent.

<xs:element name=”WebServiceResource”
type=”agentscape:WebServiceResourceType”/>

<xs:complexType name=”WebServiceResourceType”>
<xs:sequence>
<xs:element name=”WebServiceName” type=”xs:string” minOccurs=”1”

maxOccurs=”unbounded”/>
</xs:sequence>

</xs:complexType>

Example 5.7: Specification of the WebServiceResource resource description.

AgentScape administrators can use these resource descriptions in negotiation advertise-
ments to specify web services that may be accessed. For any web services to which access
is allowed through the gateway, the names are specified in the advertisement. Example 5.8
depicts an example of an advertisement containing a web service resource description with
two web services (WebServiceA,WebServiceB).

<Template>
...
<ServiceDescriptionTerm serviceName=”WebService”>
<WebServiceResource>
<WebServiceName/>

</WebServiceResource>
</ServiceDescriptionTerm>
...
<CreationConstraints>
<Item>
<Location>
//ServiceDescriptionTerm[@serviceName=’WebService’]

/WebServiceResource/WebServiceName
</Location>
<Restriction type=”enumeration”>
<enum>WebServiceA</enum>
<enum>WebServiceB</enum>

</Restriction>
</Item>

</CreationConstraints>
</Template>

Example 5.8: An advertisement containing the WebServiceResource resource description.

A negotiation request based on this advertisement, in which access to one of the web
services (WebServiceB) is requested by an agent, is shown in Example 5.9.

5.3. Consumer Agent 119

<Agreement>
...
<All>
<WebServiceResource>
<WebServiceName>WebServiceB</WebServiceName>

</WebServiceResource>
</All>

...
</Agreement>

Example 5.9: A negotiation request containing the WebServiceResource resource descrip-
tion.

The AgentScape resource descriptions introduced above allow for negotiation about
three different AgentScape resource types: Agent Run-time Environment, CPU-time, and Web
Service Access. To support the actual implementation of established agreements concern-
ing these resources, the AgentScape middleware provides monitoring and control facilities
for each of these resources. Other AgentScape resource types can be added to the nego-
tiation language, given that the AgentScape middleware provides the required monitoring
and control functionality. For more information on resource monitoring and control in
AgentScape, see Section 5.5.

In the following sections, the consumer agent, mediator agent, and service provider
agent entities of the negotiation framework are mapped onto the AgentScape middleware.

5.3 Consumer Agent
In AgentScape, agents fulfill the consumer agent role in the negotiation framework. Agents
migrate from one location to another to access resources. Agents negotiate resource ac-
cess prior to migration: An agent first determines its resource requirements (based on its
current goals and tasks), and subsequently negotiates with one or more target locations,
to determine which location can provide the best offer. When a suitable offer has been
received, the agent accepts the offer, after which it migrates to that location to claim the
resources. Figure 5.5 depicts the steps involved in the migration process.

Location

Negotiation
phase

Migration
phase

request transfer
with agreement

agreement request

agreement offer

request template

accept agreement

agreement

Agent

Agent

Figure 5.5: Migration using the negotiation framework.

120 MAS Resource Management

This section describes the negotiation functionality implemented in AgentScape. De-
tails are presented for each of the three main negotiation tasks: Advertisement manage-
ment, Request management, and Agreement management.

5.3.1 Advertisement Management

Prior to negotiations, agents in AgentScape need to determine which locations are suitable
candidates for negotiation. The AgentScape middleware offers a directory service for this
purpose. The details of this service are beyond the scope of this thesis. Once a list of
candidate locations has been obtained by an agent, advertisements are requested using the
following call:

• TemplateList requestTemplates(locationID)
This call allows agents to request the available advertisements from a location, spec-
ified by the location identifier argument.

In the negotiation framework described in Chapter 3, consumer agents specify a list of
service interests when requesting advertisements from mediator agents. Support for this
is, however, not included in the current implementation of the framework within Agent-
Scape. Agents that request advertisements using the above call simply receive all available
advertisements from the target location. As a result of this call, an agent receives a list
of advertisements, in the form of advertisement documents. These documents specify the
resources available at the location, and any negotiation constraints that have been defined
over these resources (e.g. see Example 5.8).

5.3.2 Request Management

After the advertisements have been obtained, an agent formulates a negotiation request.
The contents of this request are based on (i) the agent’s resource requirements, and (ii)
the advertisements. As an example, consider an agent that has the following resource
requirements:

• A: Access to a Java-1.4.2 run-time environment.

• B: Access to one of two web services: WebServiceA or WebServiceB.

Example 5.10 shows the requirements translated into a negotiation request. Note the
use of the term compositors All and ExactlyOne to indicate the relationships between the
resource requirements.

The following call is used to communicate the request to the target location:

• AgreementOffer requestAgreement(locationID, agreementRequest)
Using this call, agents send an agreement request document to a location.

5.3. Consumer Agent 121

<Agreement>
...
<ExactlyOne>
<All>
<EnvironmentResource>
<Language>java-1.4.2</Language>

</EnvironmentResource>
<ExactlyOne>
<WebServiceResource>
<WebServiceName>WebServiceA</WebServiceName>

</WebServiceResource>
<WebServiceResource>
<WebServiceName>WebServiceB</WebServiceName>

</WebServiceResource>
</ExactlyOne>

</All>
</ExactlyOne>
...

</Agreement>

Example 5.10: An AgentScape negotiation request.

5.3.3 Agreement Management

In response to a request an agent receives one or more negotiation offers from the dif-
ferent locations. The agent selects the best offer. The selection process is governed by
negotiation strategies specific to the agent application. The AgentScape implementation
of the framework does not provide support for negotiation strategies for consumer agents:
It is left up to agent developers to implement strategies to compare and select negotiation
offers.

After a selection has been made, the agent indicates acceptance of the offer using the
following call:

• Agreement acceptAgreement(locationID, agreementOffer)
The agent needs to supply the identifier of the location which made the offer, and
the agreement offer that the agent accepts. The call returns the final agreement
document specifying all negotiated resource specifications.

Finally, the agent migrates to the target location using the move call. Before the actual
migration process is initiated, the target location needs to be informed about the agreement
the agent wishes to use at that target location. The information in the agreement may affect
the placement of the agent within the location (e.g. if a specific run-time environment was
negotiated by the agent, the migration process must ensure that the agent is placed on
the host offering this run-time environment). For this purpose, the original AgentScape
move(locationID) call used by agents to request migration to another location, has been
extended to include the identifier of the agreement that it has established with the target
location:

• move(locationID, agreementID)
This call informs the middleware that the agent wishes to migrate to a different
location, using the agreement indicated by agreementID.

122 MAS Resource Management

5.4 Mediator Agent
In AgentScape, a location manager (LM) is the primary entity which manages a location:
It maintains information on the hosts within its location, and is the contact point for agent
migration both to and from the location.

The location manager implements the mediator role in the negotiation implemen-
tation: Mediating negotiation processes between service providers (i.e. host managers)
within the location, and agents (i.e. agents outside the location requesting migration, or
agents within the location requesting new agreements). Location-wide negotiation poli-
cies influence the negotiation interactions, and resulting resource access. For example, a
location manager may differentiate between agents issuing negotiation requests and pro-
vide agents with different negotiation options based on the identity of the agent (e.g.
giving well-known agents or agent ‘owners’ a better deal).

The AgentScape location manager itself consists of a number of modules implement-
ing functionality related to the various location management tasks, such as managing
agent migration to and from a location, and managing the configuration of a location.
Figure 5.6 depicts the modules within the location manager. The Location Management
Module (LMM) of the LM maintains information on registered HMs (e.g. middleware
contact addresses, etc.). The Migration Management Module (MMM) manages incoming
and outgoing agent migrations. The location manager is extended with the Negotiation
Module (NM), implementing the main negotiation subtasks of the mediator architecture:
Advertisement Management, Request Management, and Agreement Management. The
next section discusses these three subtasks.

5.4.1 Advertisement Management
The Advertisement Management (AM) component of the negotiation module periodi-
cally queries the LMM to determine if changes have occurred in the configuration of the
location. AgentScape locations are dynamic entities: Hosts can join or leave a location
at any point in time. This also affects the negotiation infrastructure of the location. The
currently implemented policy regarding management of advertisements, is the following:
If a host is unresponsive for a certain period, its advertisements are removed; When a
new host joins an existing location, its advertisements are requested when needed, and
incorporated into the location managers combined advertisement.
To request advertisements from a host manager, a location manager uses the following
call:

• TemplateList requestTemplates() This call of the host manager middleware interface
allows a location manager to request available advertisements.

Combining Advertisements

Combining advertisements consists of combining resource description terms and negoti-
ation constraints, as described earlier in Chapter 3. The combination process is governed
by (i) domain-specific knowledge concerning resource combinations, and (ii) combina-
tion policies defined at the organizational level, prescribing (dis)allowed resource com-

5.4. Mediator Agent 123

other
not negotiation−related
middleware calls

reject(...)

accept(...)

requestTemplates()

requestAgreementStatus(...)

requestAgreement(...)

Location Manager

Advertisement
Management

Request
Management

Agreement

Migration

Management

Management
Module

Location
Management

Module

Negotiation
Module

Figure 5.6: Location manager modules.

binations. Below, the constraint combination process in the AgentScape domain is dis-
cussed: Three examples of the advertisement combination process are given. Example 1
is a straightforward combination process. Example 2 shows the role of domain-specific
resource combination knowledge. Example 3 shows the role of combination policies.

5.4.2 Combining Advertisements: Example 1

In this example, two host manager advertisements are combined by a location manager
into a combined advertisement. Consider the following two host manager advertisements
shown in Examples 5.11 and 5.12.

The two host manager advertisements both offer similar resources, but with differ-
ent constraints: Host manager A indicates that two run-time environments are available:
Java-1.4.2, and C/C++. Furthermore, A indicates that it provides access to a web service
named WebServiceA. Host Manager B indicates that it provides a Java-1.4.2 and a Java-
1.5.0 run-time environment. B also provides web service access, but to a different web
service than A: WebServiceB. The AgentScape location manager combines these adver-
tisements using the resource constraint combination operations as described above: Both
advertisements offer the same types of services (RuntimeEnvironment and WebService),
no changes are made to the terms section. The Creation Constraints section is constructed
by combining the constraints of both advertisements, as depicted in Example 5.13.

124 MAS Resource Management

...
<OneOrMore>
<All>
<ServiceDescriptionTerm serviceName=”RuntimeEnvironment”>
<EnvironmentResource><Language/></EnvironmentResource>

</ServiceDescriptionTerm>
</All><All>
<ServiceDescriptionTerm serviceName=”WebService”>
<WebServiceResource><WebServiceName/></WebServiceResource>

</ServiceDescriptionTerm>
</All>

</OneOrMore>
<Item>
<Location>

//ServiceDescriptionTerm[@serviceName=’RuntimeEnvironment’]/EnvironmentResource/Language
</Location>
<Restriction type=”enumeration”>
<enum>Java-1.4.2</enum>
<enum>C/C++</enum>

</Restriction>
</Item><Item>
<Location>

//ServiceDescriptionTerm[@serviceName=’WebService’]/WebServiceResource/WebServiceName
</Location>
<Restriction type=”enumeration”>
<enum>WebServiceA</enum>

</Restriction>
</Item>
...

Example 5.11: Advertisement created by host manager A.

...
<OneOrMore>
<All>
<ServiceDescriptionTerm serviceName=”RuntimeEnvironment”>
<EnvironmentResource><Language/></EnvironmentResource>

</ServiceDescriptionTerm>
</All><All>
<ServiceDescriptionTerm serviceName=”WebService”>
<WebServiceResource><WebServiceName/></WebServiceResource>

</ServiceDescriptionTerm>
</All>

</OneOrMore>
<Item>
<Location>

//ServiceDescriptionTerm[@serviceName=’RuntimeEnvironment’]/EnvironmentResource/Language
</Location>
<Restriction type=”enumeration”>
<enum>Java-1.4.2</enum>
<enum>Java-1.5.0</enum>

</Restriction>
</Item><Item>
<Location>

//ServiceDescriptionTerm[@serviceName=’WebService’]/WebServiceResource/WebServiceName
</Location>
<Restriction type=”enumeration”>
<enum>WebServiceB</enum>

</Restriction>
</Item>
...

Example 5.12: Advertisement created by host manager B.

5.4. Mediator Agent 125

...
<OneOrMore>
<All>
<ServiceDescriptionTerm serviceName=”RuntimeEnvironment”>
<EnvironmentResource><Language/></EnvironmentResource>

</ServiceDescriptionTerm>
</All><All>
<ServiceDescriptionTerm serviceName=”WebService”>
<WebServiceResource><WebServiceName/></WebServiceResource>

</ServiceDescriptionTerm>
</All>

</OneOrMore>
...
<Item>
<Location>

//ServiceDescriptionTerm[@serviceName=’RuntimeEnvironment’]/EnvironmentResource/Language
</Location>
<Restriction type=”enumeration”>
<enum>java-1.4.2</enum>
<enum>java-1.5.0</enum>
<enum>c/c++</enum>

</Restriction>
</Item><Item>
<Location>

//ServiceDescriptionTerm[@serviceName=’WebService’]/WebServiceResource/WebServiceName
</Location>
<Restriction type=”enumeration”>
<enum>WebServiceA</enum>
<enum>WebServiceB</enum>

</Restriction>
</Item>
...

Example 5.13: Combined advertisement created by the location manager.

126 MAS Resource Management

5.4.3 Combining Advertisements: Example 2
Combining advertisements with multiple service specifications can become complex, es-
pecially if term compositors are used to specify service combination restrictions. In this
example, schematic representations of advertisements are used, as opposed to the longer
XML specifications used in earlier examples.

Figure 5.7 shows an example of the schematic representation of an advertisement:
This advertisement specifies two service descriptions, each with value restrictions. The
two descriptions are contained within a ExactlyOne element (the outer box), which in-
dicates that either the Run-time environment, or the Web Service access resource may be
requested, but not both.

Run−time env.

java−1.4.2

java1.5.0

ExactlyOne

All

All

WebService Access

WebServiceB

Figure 5.7: Abstract representation of an advertisement.

In this example, the policy implemented by the mediator is to combine the content of
the advertisements based on domain-specific resource knowledge: Knowledge describing
which resources can or cannot be offered as a combination, due to constraints imposed
by the resources. In AgentScape, the CPU-time and run-time environment resources are
strongly related: Both resources are consumed locally by agents after migration (i.e. on
the AgentScape host on which the agents are placed). The location manager must make
sure that agents cannot establish agreements for these resources across multiple hosts
(e.g. CPU-time on host A, and a run-time environment on host B): Agents cannot use
both resources simultaneously (e.g. if an agent is placed on host A after migration, the
agreed upon run-time environment on host B does not make any sense). Consider the host
manager advertisements shown in Figure 5.8.

Both advertisements indicate that at the level of individual hosts, either CPU-time
or run-time environment resources can be negotiated separately, or both together. To com-
bine the advertisements, the location manager first generates all combination options:
Figure 5.9 shows the combined advertisement.

After this, the location manager determines if the advertisement includes invalid com-
binations. If so, which is the case in this example, they are removed: Both combinations
consist of a CPU-time resource on one host, and a run-time environment resource on
another host. These combinations cannot be used by an agent. Figure 5.10 shows the
combined advertisement.

5.4. Mediator Agent 127

ExactlyOne

All

All

All

Host B

ExactlyOne

All

All

All

Host A

java−1.4.2

java1.5.0

Run−time env. host−A

CPU−time host−A

<= 10000 ms

java−1.4.2

java1.5.0

Run−time env. host−A

CPU−time host−A

<= 10000 ms

CPU−time host−B

<= 15000 ms

java−1.4.2

c/c++

Run−time env. host−B

CPU−time host−B

<= 15000 ms

java−1.4.2

c/c++

Run−time env. host−B

Figure 5.8: Two host manager advertisements containing CPU-time and run-time envi-
ronment resource descriptions.

ExactlyOne

java−1.4.2

java−1.5.0

Run−time env. host−A

Combined Host A & B

All

All All

All

combined
resource
descriptions

resource
descriptions
host A

resource
descriptions
host B

All

All

CPU−time host−A

<= 10000 ms

java−1.4.2

java−1.5.0

Run−time env. host−A

java−1.4.2

c/c++

Run−time env. host−B

CPU−time host−A

<= 10000 ms

CPU−time host−B

<= 15000 ms

java−1.4.2

java−1.5.0

Run−time env. host−A

CPU−time host−B

<= 15000 ms

java−1.4.2

c/c++

Run−time env. host−B

CPU−time host−A

<= 10000 ms

All

java−1.4.2

c/c++

Run−time env. host−B

All

CPU−time host−B

<= 15000 ms

Figure 5.9: The combined advertisement containing all combinations of resources.

128 MAS Resource Management

ExactlyOne

All

java−1.4.2

java−1.5.0

Run−time env. host−A

AllAll

resource
descriptions
host A

resource
descriptions
host B

Combined Host A & B

All

CPU−time host−A

<= 10000 ms

java−1.4.2

java−1.5.0

Run−time env. host−A

CPU−time host−A

<= 10000 ms

CPU−time host−B

<= 15000 ms

java−1.4.2

c/c++

Run−time env. host−B

All

CPU−time host−B

<= 15000 ms

All

java−1.4.2

c/c++

Run−time env. host−B

Figure 5.10: The final combined advertisement.

Finally, any combinable service descriptions are combined (as described in the Exam-
ple 1 above): The individual CPU-time and run-time environment resource descriptions
are combined into single descriptions. The lower sections containing combined CPU-
time and run-time environment descriptions cannot be combined, as the allowed values
specified by host A and host B are different: combining these would result in invalid
descriptions. For example, it would allow a request for both a java-1.5.0 run-time envi-
ronment and a CPU-time value of 15000 ms, which cannot be delivered by either of the
two hosts individually. The final combined advertisement is shown in Figure 5.11.

5.4. Mediator Agent 129

All

Run−time env.

All

ExactlyOne

Combined Host A & B

java−1.4.2

java−1.5.0

c/c++

All

All

CPU−time host−A

<= 10000 ms

java−1.4.2

java−1.5.0

Run−time env. host−A

java−1.4.2

c/c++

Run−time env. host−B

CPU−time host−B

<= 15000 ms

CPU−time

<= 15000 ms

Figure 5.11: The final combined advertisement.

5.4.4 Combining Advertisements: Example 3
In the last example, the role of combination policies in the combination process is shown.
Consider the advertisements shown in Figure 5.12.

ExactlyOne

All

All

java−1.4.2

c/c++

Run−time env. host−B

Host B

ExactlyOne

All

All

java−1.4.2

java1.5.0

Run−time env. host−A

Host A

WebService Access

WebServiceA

WebService Access

WebServiceB

Figure 5.12: Two host manager advertisements containing web service and run-time envi-
ronment resource descriptions.

The two advertisements both offer two resources: Web service access to a specific web
service, and run-time environments (WebServiceA,WebServiceB). Both advertisements
indicate that at each of the hosts, either one of the resources may be requested, but not
both simultaneously.

130 MAS Resource Management

The location manager first creates a combined advertisement from the two advertise-
ments, containing all combination options. Figure 5.13 depicts the combined advertise-
ment.

c/c++

Run−time env. host−B

WebService Access

WebServiceB

WebService Access

WebServiceB

java−1.4.2

java1.5.0

Run−time env. host−A

java−1.4.2

java1.5.0

Run−time env. host−Acombined
resource
descriptions

ExactlyOne

All

All

All

All

All

All

Host BHost A

Combined Host A & B

WebService Access

WebServiceA

WebService Access

WebServiceA

java−1.4.2

c/c++

Run−time env. host−B

java−1.4.2

Figure 5.13: The initial combined advertisement based on the advertisements shown in
Figure 5.12.

The location manager subsequently applies combination policies to determine if any
combinations are present in the advertisement that are not allowed according to these poli-
cies. The example combination policy applied in this example is the following: Resources
used by agents may not span multiple hosts. This policy leads to the removal of the lower
two options in the combined advertisement, as these options combine resources from both
hosts.

Finally, the location manager combines any resource descriptions that can be com-
bined into single descriptions. In this case the run-time environment and web service ac-
cess descriptions can be combined and presented as single options in the advertisement.
Figure 5.14 depicts the final advertisement.

5.4.5 Request Management
The main task of the request management component of the location manager is to create
negotiation offers in response to negotiation request received from agents. This task is
divided into two subtasks:

• A: Selecting with which host manager to negotiate, on behalf of the agent;

• B: Selecting and combining the received offers from host managers into a negotia-
tion offer for the agent.

5.4. Mediator Agent 131

ExactlyOne

All

java−1.4.2

java1.5.0

Run−time env. host−A

c/c++

All

WebService Access

WebServiceA

WebServiceB

Combined Host A & B

Figure 5.14: The final combined advertisement.

A: Selecting Host Managers

Upon receiving a negotiation request from an agent, the location manager selects the host
manager(s) to which it will send a negotiation request. This selection process is governed
by three types of knowledge:

1. Host manager advertisements;

2. Domain-specific knowledge about resources and their combinations;

3. Domain-specific negotiation policies.

Below these knowledge types are discussed in more detail, after which an example of the
host selection process is given.

1. Host manager advertisements This task determines which hosts advertise the re-
sources requested by the agent. For this purpose, the location manager compares the
requested resources in the negotiation request of the agent, to the content of the host man-
ager advertisements. Policies guide which advertisements are selected and combined. For
example, a location manager may implement a policy which specifies that at most two
advertisements may be combined to limit the number of host managers involved in the
negotiation process. In AgentScape, the currently implemented policy does not specify
any constraints on the advertisement combination process.

2. Domain-specific knowledge about resources and their combinations. In Agent-
Scape, some resources are consumed locally on the host to which an agent migrates (as

132 MAS Resource Management

mentioned earlier, e.g. the CPU-time resource). However, other resources can be con-
sumed remotely. For example, Figure 5.15 shows an example in which an agent resides
on host A and uses the CPU-time resource, on that host, whilst using the web service
access resource (i.e. a Web Service Gateway), located on host B.

Kernel
Host B

A

Kernel

Web Service

Server
Agent Web Service

Gateway

Host A

resource resource
Web Service AccessCPU−time

Figure 5.15: An agent using multiple resources on different hosts within a location.

The location manager uses this knowledge about AgentScape resources, together with
the advertisement information of the host managers, to decide if a negotiation request will
be split into multiple negotiation requests to different hosts.

3. Domain-specific negotiation policies. Negotiation policies influence which host
managers are selected as candidates for negotiation. The location manager applies these
policies to (i) reduce negotiation overhead, and to (ii) apply organization-wide resource
usage strategies.

AgentScape locations can consist of many hosts, each offering multiple resources. An
important factor in the negotiation process within AgentScape is the response time: The
location manager must provide agents with negotiation offers quickly, to prevent agents
from spending too much time waiting, or loosing interest and aborting the negotiation pro-
cess. Reducing the number of host managers involved in a negotiation sequence reduces
the total negotiation overhead, as less negotiation interactions are necessary. For example,
in a large AgentScape location, the location manager can decide to split the host manager
population into two virtual groups, and alternate between these groups during negotia-
tions. This reduces the number of interactions by half (provided that no re-negotiation
is necessary). For experiments regarding the performance of the AgentScape negotiation
architecture, see Section 5.6.

Influencing the number of host managers in a specific negotiation process can also
be used to apply resource usage policies: A location manager can selectively include
or exclude host managers in negotiations. For example, to ensure that the resources are
used evenly within a location, the location manager can select host managers with a low
number of active agreements, in an attempt to increase resource usage on that host.

5.4. Mediator Agent 133

CPU−time: <= 12000 ms

WebService Access: WebServiceA

Run−time env.: Java−1.5.0

Agent

Agent negotiation request CPU−time: <= 20000 ms

Run−time env.: Java−1.5.0

WebService Access: WebServiceA

Run−time env.: Java−1.4.2

WebService Access: WebServiceC

Run−time env.: Java−1.5.0

CPU−time: <= 15000 ms

WebService Access: WebServiceB

WebService Access: WebServiceA

CPU−time: <= 10000 ms

WebService Access: WebServiceA

Run−time env.: Java−1.5.0

HM6

HM2

HM3

HM5

LM

HM1

HM4

Figure 5.16: The AgentScape location, showing available resources, and the incoming
negotiation request.

Example: Selecting Host Managers
In this example, an AgentScape location consists of six hosts. Each host offers a number

of resources. The goal of the example is to illustrate the host selection process within the
location manager, after having received a negotiation request from an agent. Figure 5.16
shows the AgentScape location, and the negotiation request of the agent. In the figure,
the resources available on each host are shown. In the example the location manager has
collected the advertisements from each of the host managers, and has created a combined
advertisement. The combined advertisement has been used by the agent to create its
negotiation request. Based on the advertisement information, the location manager selects
all relevant host managers. Figure 5.17 shows these five host managers. The resources
that match have been depicted.

In this example, the location manager applies a negotiation policy, aimed at reducing
the overall negotiation time and resources required for each negotiation process. This
policy is implemented in the following way: The number of selected host managers is
reduced by removing the host managers with the lowest number of matching resources,
until at most half of the selected host managers , thus reducing the number of negotiation
requests in this example by two. Figure 5.18 shows that three hosts are selected. Finally,
to each of the selected hosts, negotiation requests are communicated. Figure 5.19 shows
the outgoing negotiation requests.

134 MAS Resource Management

Run−time env.: Java−1.5.0

WebService Access: WebServiceA

Run−time env.: Java−1.4.2

WebService Access: WebServiceC

Run−time env.: Java−1.5.0

CPU−time: <= 15000 ms

WebService Access: WebServiceB

WebService Access: WebServiceA

CPU−time: <= 10000 ms

WebService Access: WebServiceA

Run−time env.: Java−1.5.0

CPU−time: <= 20000 ms

HM5

HM4

HM3

HM2

HM1

Selected host managers

Agent

HM6

LM

CPU−time: <= 12000 ms

WebService Access: WebServiceA

Run−time env.: Java−1.5.0

Agent negotiation request

Figure 5.17: The selected host managers.

Run−time env.: Java−1.5.0

WebService Access: WebServiceA

Run−time env.: Java−1.4.2

WebService Access: WebServiceC

Run−time env.: Java−1.5.0

CPU−time: <= 15000 ms

WebService Access: WebServiceB

WebService Access: WebServiceA

CPU−time: <= 10000 ms

WebService Access: WebServiceA

Run−time env.: Java−1.5.0

CPU−time: <= 20000 ms

HM5

HM4

HM3

HM2

HM1

Selected host managers

HM6

LM

CPU−time: <= 12000 ms

WebService Access: WebServiceA

Run−time env.: Java−1.5.0

Agent

Agent negotiation request

Figure 5.18: The definitive selected host managers.

5.4. Mediator Agent 135

Run−time env.: Java−1.5.0

Run−time env.: Java−1.5.0

CPU−time: <= 12000 ms

WebService Access: WebServiceA

HM3

LM

WebService Access: WebServiceA

Run−time env.: Java−1.5.0

WebService Access: WebServiceA

CPU−time: <= 20000 ms

HM1

Run−time env.: Java−1.5.0

CPU−time: <= 15000 ms

HM2

WebService Access: WebServiceB

CPU−time: <= 12000 ms

WebService Access: WebServiceA

Figure 5.19: The negotiation requests sent out to the host managers.

136 MAS Resource Management

B: Selecting and Combining Host Manager Offers

After the location manager has sent out the negotiation requests as described above, it
gathers the negotiation offers from the host managers. The location manager now selects
which offers it will use to create a negotiation offer for the agent. This process is governed
by two types of knowledge:

1. Utility calculation mechanisms;

2. Location-wide selection policies.

1. Utility Calculation Mechanisms Upon receiving negotiation offers from the host
managers, the offers are compared to determine the best offer. For example, if two host
managers return a negotiation offer containing a CPU-time resource, the offer containing
the highest CPU-time value is selected.

If negotiation offers contain multiple resources, the location manager uses knowledge
about the utility of the combined resources to compare the combinations with each other,
and select the combination with the highest total utility.

2. Location-wide Selection Policies Selection policies influence the offer selection
process. For example, a location manager applies a ‘load-balancing’ policy by selecting
the offer of the host manager with the lowest number of active agreements, if several host
managers return a similar offer. This policy results in agents being placed at hosts with
the lowest number of agents within the location.

Example: Host Offer Selection
This example continues the example used in the previous section. The example ended

with negotiation requests being sent to three hosts within a location (see Figure 5.19). In
response to these requests, the host managers return their negotiation offers. These offers
are shown in Figure 5.20.

Run−time env.: Java−1.5.0

WebService Access: WebServiceA HM3

HM2

HM1

WebService Access: WebServiceA

Run−time env.: Java−1.5.0

CPU−time: <= 11000 ms

CPU−time: <= 12000 ms

LM

Figure 5.20: The negotiation offers received the host managers.

5.4. Mediator Agent 137

The location manager examines the offers: The offer from HM1 provides all requested
resources, but the requested CPU-time of 12000 ms has been reduced in the offer to 11000
ms (lower than specified in HM1’s advertisement). The offers from HM2 and HM3 sepa-
rately do not provide the required resources, but combined they do. The location manager
has two options from which to choose. Figure 5.21 shows the two offers: Offer 1 is the
single offer from HM1. Offer 2 is the combined offer from HM2 and HM3.

Offer 2

LM

WebService Access: WebServiceA HM3

WebService Access: WebServiceA

Run−time env.: Java−1.5.0

CPU−time: <= 11000 ms

HM2

CPU−time: <= 12000 ms

HM1

Run−time env.: Java−1.5.0

Offer 1

Figure 5.21: Two offer bundles.

Offer 2 is preferable over Offer 1, as Offer 1 provides a lower CPU-time value. How-
ever, in this example, the location manager applies an organizational policy (the reasons
behind this decision are not relevant for this example) which specifies that when two offers
are comparable, an offer from a single host manager is preferred over an offer composed
of multiple host manager offers. The location manager decides in this case that the offers
are sufficiently alike (it considers the 11000 ms offer similar to the 12000 ms offer), and
chooses Offer 1. The offer is communicated to the agent, and HM2 and HM3 are informed
that their offers have been rejected. Figure 5.22 depicts these messages.

HM1

CPU−time: <= 12000 ms

WebService Access: WebServiceA

Run−time env.: Java−1.5.0

Agent

reject(offer)

reject(offer)

original negotiation request

LM

WebService Access: WebServiceA

Run−time env.: Java−1.5.0

CPU−time: <= 11000 ms

offer from location manager

HM3

HM2

Figure 5.22: The selected offer, and rejection of the other offers.

138 MAS Resource Management

5.4.6 Agreement Management
The location manager is responsible for maintaining information on agreement offers that
have been offered to agents, and agreements that have been accepted by agents and have
been implemented. Also, any incoming agreement status requests from agents are pro-
cessed.

When an agent informs a location manager that it accepts a particular offer, the agree-
ment management component of the location manager retrieves information on which
host manager offers were used to create the negotiation offer accepted by the agent. For
each of these offers, the location manager contacts the host manager, and accepts the offer.
Any other offers are rejected, as described in the previous section. Figure 5.23 shows the
acceptance of an offer consisting of two host manager offers.

Agent
accept(offer)

accept(offer)
HM

accept(offer)LM

Agreement
HM

Agreement

Agreement

Figure 5.23: Acceptance of an agreement offer in AgentScape.

Finally, the location manager receives agreement documents from the host managers,
combines them, and forwards the combined final agreement to the agent.

The location manager is also responsible for handling requests from agents concern-
ing the status of established agreements. To determine the status of an agreement, the
location manager requests the status of the underlying host manager agreements, by call-
ing requestAgreementStatus() on the host managers implementing the agreements (see
Figure 5.24). The resulting status information is combined and returned to the agent. The
retrieval and combination of agreement status information is implemented in the Agent-
Scape middleware in a coarse-grained form: Agreements can either be pending, active,
or violated. Future versions of the implementation will enable detailed status information
concerning the different resources specified in advertisements.

5.5 Service Provider
Host Managers are the service provider agents in the AgentScape negotiation architecture.
The following main negotiation tasks are performed by a host manager:

1. Maintaining advertisement information.

2. Handling incoming negotiation requests from the location manager.

5.5. Service Provider 139

HM

requestAgreement

Status(agreement)
HM

LM

Agent

+ Status

Agreement

+ Status
Agreement

+ Status
Agreement

Figure 5.24: Requesting agreement status information in AgentScape.

3. Handling resource reservations that are made during the negotiation process.

4. Implementing accepted offers in the middleware (and rejecting declined offers).

These tasks are performed by the negotiation module (NM) and the service manage-
ment module (SMM) of the host manager. The host management module (HMM) is re-
sponsible for maintaining information on the middleware (e.g. agent servers, web service
gateway, etc.). This information is used by the SMM to determine the availability of
resources, and by the NM to determine the content of advertisements. The agent man-
agement module (AMM) maintains information on the agents running on the host (e.g.
lifecycle information), and handles migration of agents to and from the host. Figure 5.25
shows these modules, and the other modules of the host manager.

5.5.1 Negotiation Module
In this section, the components of the negotiation module of the host manager are dis-
cussed. After this, the service management module is discussed.

Advertisement Management

The host manager is responsible for providing an advertisement containing the descrip-
tions of available AgentScape resources on the host, and possible restrictions imposed by
administrators. The configuration of an AgentScape host is dynamic (middleware services
may be added/removed or may crash). For every change in the host configuration, the host
manager updates the host advertisement to reflect the change. Also, host administrators
may change the usage policies of specific services (e.g. decreasing the maximum allowed
CPU-time which may be used by agents).

In AgentScape, host administrators can directly access and modify the advertisement
information to reflect policy changes. Currently, the advertisement information is stored
in a configuration file, which is periodically checked, to determine if any changes have
been made by the administrator. Future versions will let administrators define resource
policies using a policy language, and translate provider advertisements on demand.

140 MAS Resource Management

other
not negotiation−related
middleware calls

reject(...)

accept(...)

requestTemplates()

requestAgreementStatus(...)

requestAgreement(...)

Request
Management

Agreement
Management

Module

Advertisement
Management

Host Negotiation

Management
Module

Agent
Management

Module

Module
Management

Service

Figure 5.25: Host manager components.

Request Management

When a host manager receives a negotiation request from its location manager, the request
is validated against the advertisement on which it was based. If validation succeeds, an
offer is created. The contents of the offer is based on (i) the current state of the requested
resources, and (ii) resource policies concerning the resources.

Information about the current state of the resource is obtained through the service
management module described in section 5.5.2. For example, if a request for web service
access is received, the state of the web service access resource is determined. If the
resource is used heavily by other agents, the host manager can decide to not process the
request further.

In addition to the resource state information, resource policies also govern the request
management process. For example, a policy specifying that a maximum of 20 agents may
access a resource may be defined. When this amount has been reached, no additional
offers are made until some of the agents have left the host. These policies are currently
specified directly within the host manager, but future versions will enable administrators

5.5. Service Provider 141

to define the policies explicitly using a policy language.
When a negotiation offer has been created, the host manager must ensure that the

resources offered can be provided. For this purpose, the host manager uses the service
management module to reserve resources. For example, when an offer is made for a
Java run-time environment, the host manager must make sure that the agent server that
implements this resource, reserves space for the agent for which the offer is intended.

Agreement Management

Agreement management is responsible for maintaining information on outstanding offers
and active agreements. Each outstanding offer has a duration associated with it, specified
in the policy implemented within the host manager. When this duration is exceeded, the
offer is removed, and all associated resources are released by the service management
module.

Active agreements are monitored using the service management module to determine
if agreed resources are being delivered, or whether violations have occurred. In Agent-
Scape, the current policy is: When part of an agreement is considered to be violated
(e.g. an agent has consumed the allocated amount of CPU-time), the entire agreement is
considered violated. Violations of an agreement result in termination of the agreement.
When terminating an agreement, the service management module releases the resources
associated with the agreement.

When an agreement is violated or expires, agents are not informed of this, and agents
are denied access to resources until a new agreement is established. Agents are not in-
formed as they are considered responsible for monitoring their own agreements and to
take timely actions to negotiate a new agreement if required. Other policies are possible.

5.5.2 Service Management Module
The service management module provides the negotiation module with functionality to (i)
determine the current state of resources, (ii) create resource reservations during negotia-
tion (if required), and (iii) implement established agreements at the service level.

For these purposes, for each resource in AgentScape, a resource handler is created and
maintained by the service management module (see Figure 5.26). Each resource handler
supports four basic operations:

• Object getMonitorValue(monitorObjectID): This generic monitoring call is used to
retrieve resource specific monitoring data on the resource the handler represents.
For example (in the case of a CPU-time resource handler), the call can be used to
request data on the consumed CPU-time of an agent. The return value of this call is
a resource handler specific data-type.

• reservationID reserve(serviceDescriptionTerm): This call is used to reserve re-
sources during negotiations. The argument of the call contains an AgentScape
specific resource description term, taken from the negotiation offer for which the
reservation is made, specifying the amount of the resource that is to be reserved.
The call returns a reservation identifier, which can later be used by the negotiation
module to implement or release the reservation.

142 MAS Resource Management

re
se

rv
e(

...
)

resource
handler

resource resource

resource
handler

resource
handler

Service Management Module

Host Manager

AgentScape resources

ge
tM

on
ito

rV
al

ue
(.

..)

re
le

as
e(

...
)

im
pl

em
en

t(
...

)

Figure 5.26: Resource handlers in the Service Management Module.

• implementedID implement(reservationID): This call is used to implement a reser-
vation made earlier by the negotiation module. After this call, the resource is ready
for access by the agent. The call returns an implemented identifier, which can be
used to release the resource.

• release(reservationID | implementedID): This call is used to free any reserved or
implemented resources, in case of violation or expiration of an agreement. When
an identifier of an implemented agreement is supplied as the argument, an agent can
no longer make use of the resource. When an identifier of a reservation is supplied
as the argument, the reservation is removed.

The resource handlers currently implemented in AgentScape are discussed below.

CPU-time Resource Handler

For each agent server on a host1, the host manager contains a CPU resource handler. The
handler enables negotiation module to monitor CPU-time consumption, using the getMon-
itorValue(. . .) call: The resource handler periodically retrieves monitoring information
from the agent server, detailing the amount of CPU-time that agents have consumed on
the agent server. Figure 5.27 shows this process.

When a reservation is made for the CPU-time resource by the negotiation module
using the reserve(. . .) call, the resource handler initializes a counter that keeps track of
the consumed CPU-time of the agent. No active CPU scheduling is performed by the
resource handler (but this could be added in future versions).

When the negotiation module calls the implement(. . .) call, the counter is started, and
will keep track of the consumed CPU-time of the agent.

Monitoring
The CPU resource handler monitors the consumed CPU-time of agents on the agent

server it is assigned to. Monitoring is performed using polling (as opposed to event-based
monitoring). Polling intervals are not based on regular intervals, but instead are calculated

1Currently, only the Java agent server implementation allows for CPU monitoring.

5.5. Service Provider 143

AA A

agent CPU−time
monitoring
thread

im
pl

em
en

t(
..)

re
se

rv
e(

..)

re
le

as
e(

..)

ge
tM

on
ito

rV
al

ue
(.

.)

getCPUtimeConsumed(AgentID)

CPU

Resource Handler

Agent Server

Figure 5.27: CPU resource handler.

based on the expected consumption rate of the CPU-time resource: An estimate is made
of the amount of wall clock time the consumption of the assigned CPU-time will take.
As an example, consider an agent that has agreed to use at most 2000 ms CPU-time.
The initial polling interval will be based on the allocated CPU-time value: Polling of the
consumed CPU-time will occur after 2000 ms (wall-clock time) have passed. If at that
point in time the consumed CPU-time is less then the wall-clock time (i.e. the measured
CPU-time value at that time reveals that the agent has been scheduled on the CPU for a
total of only 1400 ms), a new polling interval of 600 ms is scheduled.

To enable the monitoring of agent CPU consumption, the JVM Tool Interface (JVMTI)
of the Java virtual machine (see Figure 5.28) is used. The JVMTI provided by the JVM
provides calls to monitor applications running in the Java virtual machine.

The JVMTI interface is however not directly accessible from within the JVM: Java
applications have to use native calls (using JNI) to access the interface. For this purpose,
a small C library is implemented which exposes the GetThreadCpuTime(ThreadIdentifier)
call offered by the JVMTI. This library performs the JVMTI call to obtain the consumed
CPU-time value for the agent thread.

Other methods of determining CPU consumption of Java threads are available, but
either require modifying the JVM [16], or using operating system specific mechanisms
(e.g. using /proc on a linux based system).

The current implementation of the AgentScape agent server does not offer facilities
for fine-grained scheduling of agents for regulating CPU-time consumption, but instead
offers control of the agent life cycle, as an indirect method of limiting CPU consumption:
When a violation of the agreed CPU-time is detected, the current policy of the negotiation
module is to kill the agent, resulting in its removal from the agent server, and freeing the
CPU resource. Finally, the negotiation module also then calls the release(. . .) call, which

144 MAS Resource Management

JVM Tool Interface

Agent thread

getCPUtimeConsumed(AgentID)

Java Native Interface

A

Native Library

Java Virtual Machine

Agent Server

Figure 5.28: Monitoring of agent CPU consumption.

removes the counter in the service handler, as it is no longer in use. Other policies are also
possible, for example giving agents a warning prior to their removal, enabling the agents
to establish a new agreement, or migrate to another location.

Run-time Environment Resource Handler

Analogous to the CPU-time resource handler, the run-time resource handler is also related
to agent servers. The handler maintains a counter to indicate the number of agents cur-
rently using the resource (i.e. running on the agent server). The service handler monitors
the number of agents on the agent server using the getNumberOfAgents() call on the agent
server. Figure 5.29 shows the resource handler in relation to the agent server.

A A A

re
se

rv
e(

..)

re
le

as
e(

..)

ge
tM

on
ito

rV
al

ue
(.

.)

getNumberOfAgents()

im
pl

em
en

t(
..)

Agent Server

Run−time environment
Resource Handler

Figure 5.29: Run-time environment resource handler

The negotiation module uses the getMonitorValue() call to retrieve the current number

5.5. Service Provider 145

of agents, for determining during negotiations whether additional agents are allowed on
the agent server. The reserve(..) call of the resource handler results in resources being
reserved at the agent server, ensuring that the agent server has sufficient resources avail-
able to run the agent when it is started (e.g. memory/communication bandwidth/message
buffers/etc.). The implement(..) call activates the reservation, and ensures that the agent
can be started on the agent server. The release(..) call ensures that any resources associ-
ated to an agreement or reservation, are freed. In the current AgentScape implementation
however, agent servers do not support advance allocation and reservation of resources for
exclusive usage by agents.

Web Service Resource Handler

This resource handler enables the negotiation module to implement agreements concern-
ing access to web services through the web service gateway. The handler monitors the
current load of the gateway, using the getCurrentLoad() call (see Figure 5.30). This infor-
mation can be requested by the negotiation module through the getMonitorValue() call, to
determine if the load of the gateway allows additional access by agents, or not.

Web ServiceWeb Service

im
pl

em
en

t(
..)

re
se

rv
e(

..)

re
le

as
e(

..)

ge
tM

on
ito

rV
al

ue
(.

.)

getCurrentLoad() setServiceAccess(agentID, <list of webservices>)

Service Handler

Web Service Gateway

"Web Service"

Figure 5.30: ”Web Service” resource handler

The current implementation of the web service gateway in AgentScape does not sup-
port advance allocation and reservation of resources associated to web service access (e.g.
call rate, bandwidth, etc.). Currently an access control list is maintained, specifying which
web services may be accessed, and which may not. Reservations are therefore not appli-
cable, as no actual resources are consumed at the web service gateway. Therefore the
reserve(. . .) call is not implemented for this resource. The implement(. . .) call results
in the resource handler calling setServiceAccess(agentID, webservice name, true) on the

146 MAS Resource Management

web service gateway. This call instructs the gateway to allow the agent indicated by the
first call argument access to the web service indicated in the second argument of the call.
After this, the agent that has established the agreement is able to use the gateway, but
only for the agreed upon web service. Any communication to other web services sent by
the agent are not forwarded by the gateway. The release(. . .) call results in the resource
handler calling setServiceAccess(agentID, webservice name, false), resulting in the agent
not being denied access to the specified web service.

5.6 Implementation and Experiments

The goal of the experiments described in this section is to assess the performance of the
AgentScape negotiation infrastructure. The experiments are divided into three categories.
The first set of experiments measures the response times of the various subparts of the
negotiation infrastructure. In the second set of experiments, the complete infrastructure
is subjected to increasing load, and measurements are performed to compare the response
times of the negotiation infrastructure in different load situations, from the perspective of
the agents negotiating with architecture. The third set of experiments describes a specific
implementation of a location manager negotiation policy, that balance agents across agent
servers within an AgentScape location.

5.6.1 AgentScape Middleware

The current version of AgentScape provides both a C/C++ and a Java implementation of
the middleware kernel process2. The middleware is implemented in Java. The experi-
ments described in this section use the Java version of the kernel, together with the Java
middleware layer. All experiments are performed on the DAS-2 cluster of the Vrije Uni-
versiteit Amsterdam. The cluster consists of 72 dual Pentium-III nodes connected by Fast
Ethernet (the cluster also offers a high speed Myrinet network infrastructure, but this was
not used in the experiments).

5.6.2 AgentScape Negotiation Experiments

To determine the performance and potential performance bottlenecks of the negotiation
infrastructure, a number of experiments are performed to measure the response times
of individual components within the two-tiered negotiation infrastructure, as well as the
response time of the complete negotiation infrastructure. In this section, first, the response
times of the low-level communication infrastructure provided by the AgentScape kernel
are determined, upon which the negotiation infrastructure is built. After this, response
times of the host manager negotiation process are examined. Finally, response times of
the complete negotiation infrastructure are measured.

2For a performance evaluation of the Java and C/C++ kernel implementations, see [91]

5.6. Implementation and Experiments 147

Byte array size (bytes) 0 3000 6000
Response time (ms) 3 3 3

Table 5.14: Mode of the response times (ms) using the kernel test calls.

5.6.3 AgentScape Kernel Experiments

To determine the performance of the AgentScape middleware infrastructure underlying
the negotiation components (i.e. the kernel), experiments are performed in which two
dummy middleware processes are instantiated on two AgentScape kernels running on
separate hosts. The aim of the experiment is to determine the time required for a single
communication call from one middleware service to another. A ping() call which returns
an array of bytes is provided by one the dummy services. Figure 5.31 shows the configu-
ration used in the experiment.

Kernel
Host A

ping()

A

Dummy
Service

B

Dummy
Service

Timer

Host B

T

Kernel

Figure 5.31: ‘Ping’ call setup.

A number of experiments compare response times, for varying lengths of the byte
array returned by the call: 0, 3000, and 6000 bytes. These values are the size of the
negotiation documents that are transferred through the kernel during the negotiations (ap-
proximately 3000 bytes). Each experiment consists of 5000 calls of the ping() method
performed sequentially. Experiments are repeated five times. Response times are mea-
sured using a millisecond resolution.

Figure 5.32 shows the results of an experiment, for a returned byte array length of 3000
bytes. Figure 5.33 shows the distribution of the response times in the same experiment.
These results show that the distribution of the response times contains a small number of
relatively high-value ‘outliers’.

Due to these outliers, using the average of these response times would give an atypical
performance measure. The mode however gives the performances measure most likely to
be observed by the AgentScape negotiation framework. Table 5.14 shows the mode of the
response times obtained in the above experiments.

The results show that the time for communicating from one middleware process to
another takes approximately three milliseconds. This only accounts for communication:
No pre- or post-processing of the document is taken into account (this is discussed in the
upcoming experiments). For more experimental results concerning the performance of the
AgentScape kernel communication infrastructure, and other kernel functions, see [91].

148 MAS Resource Management

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

re
sp

on
se

 ti
m

e(
m

s)

ping() calls

Figure 5.32: Example of a ‘ping’ call experiment (3000 bytes).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 10 100 1000

nu
m

be
r

of
 c

al
ls

response time(ms)

Figure 5.33: Distribution of response times shown in Figure 5.32.

5.6.4 Host Manager Negotiation Experiments

In this section, the performance of the host manager is examined, by measuring the re-
sponse time of typical negotiation calls to the host manager. In the experiments, a host
manager and a location manager are instantiated on two kernels running on separate hosts.
The location manager performs negotiation calls on the host manager, and measures re-
sponse times. Three sets of experiments have been performed:

1. Empty negotiation requests: The location manager performs empty negotiation re-
quests, in which a negotiation request is sent to the host manager with no service
requests specified. As a result, the host manager only performs basic request veri-
fication and handling, and does not apply any policies. An empty agreement offer
is returned by the host manager. These experiments are aimed at determining the

5.6. Implementation and Experiments 149

Experiment set Response time (ms)
1. Empty request 6
2. CPU-time request 19
3. CPU-time + accept 27

Table 5.15: Mode of the response times for the negotiation calls.

minimal time required by the host manager to process an agreement request.

2. CPU-time negotiation requests: In these experiments, the location manager per-
forms negotiation requests, which contains CPU-time resource requests. The host
manager processes the request and applies a straightforward CPU-time policy: The
requests are accepted unconditionally. These experiments are aimed at determin-
ing the time required for handling a typical negotiation request, and returning an
answer.

3. CPU-time negotiation and acceptance: The consumer performs the same negotia-
tion request as in the previous experiment, after which the location manager per-
forms an accept(. . .) call to the host manager, accepting the obtained offer. These
experiments aim to measure performance of the host manager under normal nego-
tiation situations, in which agreements are requested and accepted.

Figure 5.34 shows an overview of the calls performed in the different experiments.

2. requestAgreement(CPU−time)

1. requestAgreement(empty)

3. requestAgreement(CPU−time) + accept()

Manager
Location

ManagerHost

accept()

requestAgreement(...)

Figure 5.34: Measuring response times between a location manager and a single host
manager.

As in the kernel experiments, each experiment consists of the location manager issu-
ing 5000 sequential requests to the host manager, and measuring the individual response
times. As shown in Figure 5.34, in the last set of experiments, each request consists of
2 calls (request and accept). In this last set of experiments the total response times over
both calls is measured. Experiments have been repeated 5 times. Table 5.15 shows the
results.

From these results, the overhead generated by the host manager can be determined:
The kernel level experiments discussed earlier indicate that a single call between middle-

150 MAS Resource Management

ware services takes approximately 3 milliseconds. For the experiments described above
this means that:

• Experiment set 1 (empty request): In this case, the overhead generated by the host
manager due to the processing of the empty agreement, and returning an empty
agreement, is 3 milliseconds: 6 ms minus 1 middleware communication (3 ms).

• Experiment set 2 (CPU request): In this case, the overhead generated by the host
manager due to processing a request for the CPU-time resource, is 16 ms.

• Experiment set 3 (CPU request + accept): In this case, two communication calls are
performed, which result in approximately 6 milliseconds of communication time.
The overhead generated by the host manager (creating a negotiation offer, and sub-
sequently implementing it) in this case is 21 ms.

The results are an indication of the overhead generated by the host manager middle-
ware service in the negotiation process. It is clear that host manager overhead affects
negotiation response times. The amount of time a host manager spends on determining
a negotiation offer depends highly on the complexity of the negotiation policies. In the
above experiments, a straightforward policy is used, in which the requested CPU-time is
blindly accepted by the host manager. In situations in which a host manager uses more
complex resource scheduling algorithms, response times will increase.

5.6.5 Full Negotiation Architecture Experiments
In the following experiments the complete negotiation infrastructure is tested in a realistic
setting. Experiments are performed with different AgentScape configurations consisting
of multiple host managers, and with varying consumer load, by varying the number of
agents requesting agreements. For each experiment, an AgentScape location is deployed
across the nodes in a cluster: One node is configured to run the AgentScape location man-
ager, the other nodes are configured to run either host manager processes or consumer
processes (i.e. agents). Consumers request access to the CPU-time resource, and subse-
quently accept the offer which is returned by the location manager.

In these experiments, all incoming agent negotiation requests are sent to all host man-
agers within the location (no ‘host selection’ is performed by the location manager). Sub-
sequently, the location manager selects one host manager with whom to negotiate, and
forwards the offer returned by this host manager to the requesting agent. The offers from
the other host managers are not further processed: This results in expiration of these offers
when their duration has been exceeded. Response time measurements are performed for
location configurations with varying numbers of host managers and agents, to determine
the increase in response times when negotiation load increases. Agents run concurrently,
each on a single host, and each perform their negotiation calls sequentially. During the
experiments, for each call pair (request and accept), the total response time is measured
in milliseconds by the agents. Figure 5.35 depicts the setup of the experiments.

To subject the negotiation infrastructure to increasing load, experiments are performed
with an increasing number of host managers and agents, to a maximum of 32 host man-
agers and 32 agents. Each agent is configured to perform 1000 sequential negotiation

5.6. Implementation and Experiments 151

HMHM

Agent

Location A (negotiation target)

Location B (location of negotiating agents)

LM

HM

HM

HM

HM

Figure 5.35: Experimental setup.

#Agents - #Host Managers 1 2 4 8 16 24 32
1 40 51 54 61 81 101 139
2 49 53 60 77 126 180 234
4 62 64 83 117 226 365 437
8 92 96 137 207 452 675 860
16 89 178 266 450 859 1412 2043
24 91 285 415 719 1834 2564 3539
32 101 276 562 894 2040 3443 4799

Table 5.16: mode of the average negotiation response times (ms).

requests. Experiments are repeated 5 times. As in the previous experiments, the mode of
the response times is taken as representative of the response time distribution, to remove
excess influence of any outlier values due to external conditions. Table 5.16 shows the
results.

152 MAS Resource Management

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 32 24 16 8 4 2 1

R
es

po
ns

e
tim

e
(m

s)

Host Managers

1 agent
2 agents
4 agents
8 agents

16 agents
24 agents
32 agents

Figure 5.36: Increasing host managers.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 32 24 16 8 4 2 1

R
es

po
ns

e
tim

e
(m

s)

Agents

1 host manager
2 host managers
4 host managers
8 host managers

16 host managers
24 host managers
32 host managers

Figure 5.37: Increasing agents.

To acquire a better understanding of the impact of increasing the number of host man-
ager versus increasing the number of agents, two plots are made: Figure 5.36 shows the
response times when the number of host managers is increased: Each line represents a
fixed number of agents (1, 2, 4, 8, 16, 32). Figure 5.37 shows the response times when
the number of agents is increased, while keeping the number of host managers fixed (1,
2, 4, 8, 16, 32). The figures indicate that increasing the number of agents leads to an
approximately linear increase in response times. Similarly, increasing the number of host
managers also leads to an approximately linear increase in response times. Figure 5.38

5.6. Implementation and Experiments 153

shows the increase in response times when simultaneously increasing the number of host
managers and agents, up to 40 host managers and 40 consumers.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 80 64 48 32 16 8 4 2

re
sp

on
se

 ti
m

e
(m

s)

particpants

Figure 5.38: Increasing both agent and host manager populations.

The results show that increasing the number of participants (agents + host managers)
leads to a non-linear increase of response times in the negotiation process. The increase
in the number of negotiation interactions that occur in the experiments is an important
factor. The results are discussed further in the next section.

Performance Experiments Discussion

In the first set of experiments, the increase in negotiation response times is measured
under increasing negotiation ‘load’. Increase of the load of the AgentScape negotiation
infrastructure is achieved in two ways: By increasing the number of agents negotiating
through the infrastructure, and by increasing the number of host managers in the target
location. The results show that when increasing both the number of agents and host man-
agers, response times increase non-linearly. The main cause is the increase in negotiation
communication interactions:
The number of negotiation interactions in the experiments can be determined as follows:
Each negotiation interaction of an agent with the location manager in the experiment
leads to two negotiation calls between the agent and the location manager (request and
subsequently accept/reject). In addition, the location manager sends out requests to all
host managers within the location, for each request from an agent. Finally, an accept
call is performed to one host manager, the host manager selected to provide the requested
CPU-time resource. As mentioned earlier, no explicit rejection calls are made to the other
host managers in these experiments. The number of negotiation calls resulting from a
configuration consisting of A agents and H host managers can be determined as follows:

2 ·A+(A ·H)+1

To reduce the non-linear increase in response times, the number of negotiation interac-
tions needs to be restricted. This can be achieved by implementing negotiation policies at

154 MAS Resource Management

the mediator that reduce the number of host managers involved in negotiations, effectively
reducing the total number of communication interactions between the mediator and host
managers within the location. For this purpose, a location manager can use the informa-
tion available in the advertisements obtained from the host managers within the location,
to intelligently select with which host managers to negotiate.

5.6.6 Agent Load Balancing Experiments
This section describes experiments in which a location manager and host managers im-
plement negotiation policies that influence the allocation of resources to agents, with the
aim of distributing agents across the available resources within a location. The first set of
experiments centers on the ability of the negotiation architecture to accommodate domain-
wide resource policies. The second set of experiments focuses on the use of the negotia-
tion architecture to apply “quality of service” policies using individualized host policies.

Experimental Setup

A distributed AgentScape location is set up with nine hosts. Eight hosts are configured to
run both a host manager and an agent server, and one host is configured to run a location
manager. The location manager implements the domain coordinator negotiation function-
ality. In each of the experiments, agents migrate to the location after an agreement has
been negotiated with the location manager. The hosts used for the AgentScape location
are part of the DAS-2 cluster at the Vrije Universiteit Amsterdam. The agents are inserted
from a host outside the DAS-2 cluster, connected by Fast Ethernet.

In the experiments, CPU-time is the subject of negotiation. In each experiment, 1000
agents are inserted into the location. For each agent, a ‘desired’ CPU-time amount is
generated according to the Weibull distribution (scale = 3.0, shape = 2.0, mean = 26.59
seconds). The Weibull distribution is chosen as it provides a good model for ‘lifetimes’
of objects, in this case the agents. This value is then used to create a negotiation request
which is then sent to the location. The intervals between requests of individual agents are
distributed according to the Poisson distribution (mean = 2 seconds). The Poisson distri-
bution was chosen as it provides a good model for independent arrivals of the negotiation
requests at the location. Each negotiation request received by the location manager is
translated into negotiation requests to the 8 host managers within the location. Each host
manager then responds with a negotiation offer if the requested value is in line with the
local CPU-time policy, or responds with an empty offer if the requested value is not in
line with the policy. In the experiments, the load on a host is represented as the number
of agents running on a host, measured at one second intervals.

Experiment 1: Domain-wide Negotiation Policy

Domain policies facilitate the distribution of computational load across available hosts in
the environment. Two straightforward types of policies are based on the principles of: (1)
time-division, in which computational load is scheduled for execution at different times,
and (2) space-division, in which computational load is scheduled on different hosts. In
these experiments, a round-robin (space-division) negotiation policy is applied: The aim

5.6. Implementation and Experiments 155

of this policy is to distribute all agents evenly throughout the location. In the experiments,
a location manager collects negotiation offers made by the hosts, and applies a round-
robin load balancing policy to select one of the offers made by the host managers. This
offer is then sent back as an answer to the original negotiation request of an agent. After
acceptance of the agreement, the agent migrates to the host that has been selected during
negotiation. The agent then starts to consume CPU-time by performing some predefined
CPU-bound computations. When the CPU time delegated to the agent in the agreement
has been consumed, the agent is stopped and removed from the host. In this experiment,
hosts are configured with a negotiation policy dictating that all negotiation requests from
agents should be accepted, regardless of the requested CPU-time value.

As a measure for the balance of the load within the AgentScape location, the “Load
Balance Metric” is used, as described by Bunt and Eager [20]. This metric is calculated
by taking the weighted average of peak-to-mean server load ratios. This ensures that a
larger imbalance during high-load situations has a greater effect on the LBM measure
than a smaller imbalance during lower-load conditions. The value of the LBM measure
ranges from the number of servers (8 hosts in the experiments) to 1, where a lower value
represents a higher balance. In Fig. 5.39, the LBM values are graphed, calculated over
10 second intervals. The figure shows that a consistent balance is achieved within the
location using the round-robin policy, during the insertion of agents as described in the
experimental setup. Near the end of the experiment, load balance can no longer be en-
forced, as all agents have been inserted. This is shown in the graph by the sharp increase
of the LBM value.

 1

 2

 3

 4

 5

 6

 7

 8

 0 500 1000 1500 2000 2500

LB
M

time (s)

Figure 5.39: LBM over 10 second intervals using round-robin negotiation policy.

Experiment 2: Differentiated Host Policies

In the second set of experiments, negotiation policies are applied to implement a quality
of service policy aimed at improving responsiveness for agents with a relatively short
lifetime (below the mean value as described above). In the experiments, two different host
policies are used, resulting in two different host groups: a policy allowing only requests

156 MAS Resource Management

below mean avg. for below avg. for above
hosts mean agents % mean agents %

2 8.3 38.6
3 24.9 13.2
4 76.3 9.7
5 87.7 5.8
6 90.9 4.5

reference 14.5 16.2

Table 5.17: Quality of service percentage results of the CPU-time differentiated host pol-
icy experiments.

below the mean CPU-time value (short jobs), and a policy allowing only requests above
the mean CPU-time value (long jobs). In each experiment, the number of hosts in the
groups is varied. Agent ‘desired’ CPU-time generation and the intervals between agent
requests are kept the same as in the previous set of experiments. Given the requested
CPU-time value, the appropriate provider group is selected. Within the group, the round-
robin selection policy as described in the previous experiments is used. Table 5.17 shows
the results of these experiments. The first column depicts the number of hosts accepting
only agents with a CPU-time value below the mean. The second and third column present
a quality of service percentage for agents with a below-mean and above-mean CPU-time
value respectively. The quality of service percentage metric is defined as the actual CPU-
time agents have consumed divided by the “wall clock” time agents have spent on a host.
The results in the table show the mean over three experiments. A high quality of service
percentage of 100 % indicates a perfect quality of service where the resource is completely
available to the agent (the agents in the experiments are CPU bound, and, e.g., not waiting
for I/O or network communication). A low quality of service percentage means that the
agent has to compete with other agents (or generally tasks) to access the resources.

The values in the bottom row are obtained from the load balancing experiments pre-
sented in the previous section, in which no differentiation was made based on CPU-time
values, and agents could be placed on all hosts. This can be seen as a “reference” value, in-
dicating the responsiveness in the undifferentiated case. From the results it can be argued
that a configuration with 8 hosts, where 3 hosts accepting only agents with below-mean
CPU-time values (and consequently 5 hosts accepting only above-mean CPU-time), gives
agents with a shorter running time a better responsiveness, at a not too great expense for
the longer running agents. For 4 hosts reserved for short running agents, the responsive-
ness dramatically improves with about a factor of 5 compared to the reference results,
while the long running agents experience an increased turnaround time of a factor of 1.7.

Load Balancing Experiments Discussion

In the above experiments, negotiation policies are implemented and the effect of the poli-
cies is evaluated: The first experiment implements a negotiation policy at the location
manager level, aimed at balancing agents across hosts in a location. This is achieved by
selecting host managers to negotiate with on behalf of agents, using a round-robin strat-

5.7. Discussion 157

egy. The second experiment implements a negotiation policy on the host manager level,
aimed at increasing responsiveness for agents with short lifetimes. This is achieved by
implementing policies in each of the host managers in the location, that prescribe whether
to accept negotiation requests for low (i.e. below mean) CPU-time values, or high (i.e.
above mean) CPU-time values.

The experiments show that negotiation policies at both the location manager level
and the host manager level can be used to influence the placement of agents on hosts
within a location, to achieve higher level management goals, such as load balancing and
differentiation between different agent classes.

5.7 Discussion

Agent platforms in large-scale, open environments require facilities to manage resource
access: Agents need to obtain assurances that the resources they require are available,
and that they are allowed to use them. Resource owners and system administrators on the
other hand need to be able to enforce resource access and usage policies.

The negotiation infrastructure presented in this chapter offers agents the necessary
facilities to negotiate for resource access with remote locations, prior to migration. Sys-
tem administrators of locations define negotiation policies that influence the allocation
of resources during the negotiation process. The infrastructure is implemented in the
AgentScape middleware, allowing agents in AgentScape to negotiate for basic platform
resources.

Negotiations are based on advertisements retrieved by agents from self-selected lo-
cations. The advertisements indicate which resources are available on remote platforms,
and the negotiation space within which agents may negotiate for these resources.

Successful negotiations result in agreement documents, that contain detailed descrip-
tions of the resources that can be accessed on the basis of the agreement. The agreement
documents serve as proof of a successful negotiation, and are of use to both parties in
the negotiation process: Agents can examine an agreement to determine what they can
expect from the middleware in terms of resources. The middleware can use the document
to implement the actual provisioning of the resources described in the agreement. The
agreements can also serve as a legal basis, to be used to resolve conflicts between parties
concerning the use of resources: Actual delivered resources can be compared to the agreed
upon resources in the document, to determine whether one of the parties is accountable
for violating the agreement. Based on this, subsequent steps can be taken to resolve the
conflict (e.g. update trust models, award penalties, etc.). In addition to forming a legal
basis, agreement documents may also be used for other higher level management goals
such as accounting or monitoring.

In the infrastructure presented in this chapter, negotiations are subjected to negotia-
tion policies that govern the negotiation process at both the organizational (i.e. Agent-
Scape location) and local (i.e. individual host) level. These negotiation policies are aimed
at regulating negotiations to ensure that resources are allocated to agents according to
the resource access policies specified by both location administrators and administrators
of individual hosts within the locations. In situations where many agents negotiate for

158 MAS Resource Management

resources simultaneously and locations consists of many hosts, and response times of
negotiations is an important factor, negotiation policies at the organization (i.e. location
manager) level need to ensure that the number of negotiation interactions is restricted
when possible, to prevent unnecessary time- and resource consuming negotiation interac-
tions.

5.7.1 Extending the Implementation

The implementation of the negotiation infrastructure can be extended in a number of ways:
Firstly, more middleware resources can be made available for negotiation, such as com-
munication bandwidth, temporary disk space, and other resources for which it is useful to
obtain guarantees.

A second way in which the AgentScape negotiation infrastructure can be extended,
is by enabling agents to not only act as resource consumers, but also as providers. This
allows agents to expose resources to other agents, and use the negotiation infrastructure to
establish agreements with agents requiring these resources. For example, if an agent pos-
sesses knowledge/data that it would like to offer to other agents, the agent could register
this as a resource at the negotiation infrastructure (i.e. providing the negotiation infrastruc-
ture with a resource handler). The AgentScape negotiation infrastructure would require
a number of changes to support this: Dynamic addition/removal of resource descriptions
and resource handlers has to be supported. Ideally, each agent (application) provides its
own resource descriptions and handler, for the services it provides and about which it can
negotiate. Agents need to be able to publish these resource handlers. The AgentScape
agent interface would need to be extended with additional calls to enable this.

5.7.2 Performance and Security

An important aspect of the AgentScape negotiation infrastructure is response time. For
agents, it is important that the negotiation process does not impede them performing their
tasks. A tradeoff exists between the amount of time it takes for agents to establish agree-
ments, and the benefits the negotiation process provides by enabling agent to establish
resource access guarantees. Although these two factors cannot be compared easily, it is
clear that the negotiation performance should be robust: Response time of the negotiation
infrastructure should degrade gracefully as the interaction load increases, and provide
agents with a reasonable interaction time. In AgentScape, agents are not assumed to be
very short-lived processes, and resource interactions for which agreements are established
are assumed to last for longer periods of time. The mediator of the negotiation infrastruc-
ture is the component which is critical for negotiation performance, as it plays a central
role in negotiations within an AgentScape location. A possible approach to increase the
performance of the infrastructure, is to replicate the mediator agent of the negotiation
infrastructure. Replication would distribute the negotiation workload over multiple me-
diator instances, enabling the infrastructure to better cope with an increase in negotiation
load. Replication of the mediator agent is further discussed in Section 5.7.3.

In addition to the mediator, other elements involved in the negotiation process can also
affect performance: It is important to provide efficient implementations of service han-

5.7. Discussion 159

dlers, as these components are used in the negotiation sequences. In these components, a
tradeoff needs to be managed between complexity and negotiation efficiency.

The main security risk of the negotiation infrastructure is that agents may attempt to
use agreements originally intended for other agents (e.g. to use resources the other agent
has exclusive access to). A location manager stores established agreements locally to pre-
vent this from happening: When agents request to be migrated to a location, the agreement
identifier provided by the agent in the migration request is used by the location manager
to retrieve the locally stored copy of the agreement. The agent identifier contained in
the agreement is then compared to the identifier of the agent requesting migration. It is
assumed that agents in the AgentScape middleware are uniquely identifiable, and cannot
take on the identity of other agents. A drawback of this approach is that agents currently
cannot negotiate agreements on behalf of other agents (which could be useful in agent
applications), as the agreements are bound to the requesting agent. A possible solution
for this would be to no longer bind agreements to the requesting agent, and use external
authentication mechanisms and cryptographic signing of agreement documents, to enable
the negotiation infrastructure to determine whether an agreement is claimed by the rightful
agent.

5.7.3 Fault-tolerance

As the negotiation infrastructure is distributed over the various hosts within a location,
not all failures lead to unavailability of the entire system: Failures of negotiation compo-
nents of host managers lead to: (i) Active agreements concerning resources on the host
are no longer available: The guarantees established in the agreements can no longer be
monitored and enforced; (ii) new agreements concerning resources on the host can no
longer be established. Immediately after the failure of a host manager, the location man-
ager may still attempt to negotiate for resources with the failed host, as the advertisement
information it maintains may not reflect the new situation.

Failure of a location manager leads to agents being unable to negotiate for resources
available at that location. Failure however does not necessarily lead to failure of estab-
lished agreements, as agreements are enforced and monitored locally by the hosts within
the location. The agents may not be able to request agreement status information however,
as long as the location manager is unavailable.

An approach often used to protect against failure of distributed system components
is replication. Within AgentScape, replication can be applied to ensure the continuity of
the location manager middleware service in the event of a failure. Overeinder et al. [73]
discuss the integration in AgentScape of the DARX [64] framework, a framework for
providing fault-tolerance in large scale agent systems. Currently however, AgentScape
does not yet provide facilities for fault-tolerance. Replication strategies in distributed
systems range from active to passive approaches: Active replication ensures that replicas
receive all information that the original process also receives; Passive replication ensures
that the state of replicas is periodically updated to reflect the state of the original process.
Active replication allows for faster recovery, as replicas are continuously updated. Passive
replication can result in loosing some state information of the original process, which was
not yet transmitted to the replicas. However, an advantage of passive replication is that less

160 MAS Resource Management

processing and communication overhead is needed for updating the state of the replicas.
For AgentScape, a semi-active replication approach is appropriate. In this approach,

location manager replicas are not actively involved in the actual negotiation process (re-
ceiving all messages from host managers and agents). Instead, the ‘lead’ location man-
ager communicates all established agreements and host manager template information to
its replicas. In the event of a failure, the failed location manager is replaced by a replica.
Only the currently ongoing negotiations are lost.

5.8 Summary
This chapter presents the application of the negotiation framework in the AgentScape
agent middleware. The roles defined in the negotiation framework are mapped to the
components of the AgentScape middleware: Agents are consumer agents, location man-
agers are mediator agents, and host managers are service provider agents. In AgentScape,
agents negotiate for access to low-level middleware resources at a particular AgentScape
location, prior to migration: CPU-time, run-time environment, and web service access
resources are currently supported.

The negotiation subtasks of each of the negotiation parties are described. Examples
are presented for the location manager’s main negotiation subtasks: Combining advertise-
ments containing AgentScape resources, and selection of host managers in the negotiation
process. Host managers provide the resources which are the topics of the negotiation pro-
cess, and implement resource handlers which support (i) reservation of resources during
negotiations, and (ii) enforcement of established agreements. Resource handlers for the
three supported resources are described.

Experiments are performed to analyze the responsiveness of the negotiation archi-
tecture under increasing load: The effects of increasing the number of agents, as well
increasing the number of hosts in an AgentScape location are examined. Additional ‘load-
balancing’ experiments are performed to demonstrate the application of negotiation poli-
cies at the organizational level (through the location manager) as well as are the individual
provider level (through the host managers). The experiments demonstrate the importance
of regulating the number of negotiation interactions in situations where many agents ne-
gotiate with large AgentScape locations. Furthermore, the experiments demonstrate that
negotiation policies can be applied to successfully achieve higher level management goals
such as load-balancing and differentiated placement of agents.

5.9 Conclusions
This chapter discusses how the negotiation framework can be used to enable agents and
platform administrators to reduce uncertainties with respect to access to, and use of re-
sources: Agents negotiate resource access, prior to migration. Administrators define ne-
gotiation restrictions and negotiation policies, that are applied during the negotiation pro-
cess.

The AgentScape middleware in which the negotiation framework has been imple-
mented is an example of a next generation agent infrastructure. One of its next-generation

5.9. Conclusions 161

features is that AgentScape explicitly incorporates the location concept, to accommodate
for the distribution of the infrastructure across multiple independent administrative do-
mains. In AgentScape, a location manager is responsible for managing the hosts within a
location, as well as managing agent migration to and from the hosts within the location.
In this respect, the location manager is a good candidate for implementing the mediator
role within the negotiation framework: Between the hosts within the location offering
resources, and the agents outside the location wishing to access these resources. As a
mediator, the location manager combines the resources available on the individual hosts
within the location, and offers them to agents. Agents negotiate with a single mediator
for access to these resources, instead of negotiating with multiple individual hosts within
a location. The location manager must ensure that negotiation interactions are regulated,
to prevent negotiations from consuming unnecessary time and resources. Furthermore,
the location manager, as the representative of the hosts within the location, ensures that
resources usage is regulated according to the negotiation policies specified by the location
administrator. The ‘load-balancing’ experiments described in this thesis demonstrate this.

From a performance perspective, the implementation of the negotiation framework in
AgentScape suffers from the performance bottleneck introduced by the location manager
in the negotiation process. In situations where AgentScape locations will consist of many
hosts, or where many agents negotiate for access to the location simultaneously, negotia-
tion response times will increase considerably. Future extensions of the implementation
of the negotiation framework in AgentScape will need to implement negotiation policies
within the location manager that are aimed at minimizing the number of host managers
involved in negotiations, while maintaining good negotiation solutions for the agents. The
host manager advertisements will need to contain sufficient resource information for the
location manager to base these selection policies on. Other approaches for improving
negotiation response times include replicating the location manager to reduce the work-
load for each location manager instance, optimizing negotiation policies to reduce policy
overhead, and creating advance agreements which can be used to respond more quickly
to negotiation requests.

From a modeling perspective, the negotiation framework is successfully applied in
the AgentScape middleware. As AgentScape already incorporates organizational con-
cepts, the model is mapped straightforwardly on the existing AgentScape management
infrastructure (location managers and host managers). Advertisements and agreements
encapsulate the different resources offered by the middleware, and allow agents to negoti-
ate for sets of resources offered by multiple hosts within an AgentScape, grouped within
locations. This coincides with the world-view of agents within AgentScape: Agents do
not distinguish individual hosts, and consider locations to be the smallest organizational
concept within the AgentScape environment. The AgentScape negotiation infrastructure
enables location administrators to regulate access to their locations by specifying negoti-
ation policies that prevent unauthorized agents from obtaining resources access, and limit
resource usage for the agents that are allowed to enter their locations. In this respect, the
negotiation infrastructure can be used as a basis for facilitating higher-level AgentScape
management tasks, such as enforcing security policies, accounting, and performance man-
agement.

162 MAS Resource Management

Chapter 6

Conclusions and Future Work

Information system infrastructures will increasingly consist of large numbers of hetero-
geneous and distributed components, managed independently from each other and spread
across multiple organizational domains. In such infrastructures, it is necessary to provide
management facilities for applications to locate and acquire access to the services and
resources offered by the different parties and organizations. Most of the existing man-
agement solutions are not tailored to meet the requirements that are specific for these
distributed and dynamic environments.

Agent-based systems can contribute in this area, as agents capture a number of impor-
tant properties relevant to this domain, such as the distributed and dynamic nature of the
environment, and the autonomy of the stakeholders (e.g. applications, system administra-
tors, organizations) in fulfilling their requirements.

This thesis presents an agent-based negotiation framework for consumers and provi-
ders of services to negotiate service access conditions. Consumers and providers negotiate
through mediators. Mediators represent virtual organizations of providers. Negotiation
parties do not have to know/locate each other before, during, and after negotiations. This
dual mediator/organization-representative role has the advantage that organizational poli-
cies concerning the use of services can be, and are enforced by the mediator. Negotiations
begin with advertisements, based on announcements of interests and result in agreements
between consumers and providers of services, describing in detail the service access con-
ditions that have been negotiated.

The negotiation framework is based on the WS-Agreement emerging Grid standard,
which provides a protocol and language for negotiating agreements between individual
consumers and providers of services. The framework uses WS-Agreement as a basis for
its negotiation protocol and language. This enables the negotiation framework to be eas-
ily integrated with external service based infrastructures, offering similar WS-Agreement
based functionality. In this thesis, the basic WS-Agreement negotiation protocol is ex-
tended to allow for more elaborate negotiations between parties, and confirmation of
agreements. Furthermore, mechanisms are presented for mediation operations during ne-
gotiation, such as combining advertisements and negotiation offers.

Another important feature of the negotiation framework is the fact that a single in-

164 Conclusions and Future Work

teraction protocol is used at both levels in the negotiation process. A potential drawback
of this approach is performance, as was shown in Chapter 5: Using the protocol at the
service provider agent level may lead to response times that are not suitable for applica-
tions in domains where timely response is an important issue. Replacing the negotiation
protocol at the service provider agent level with a more restricted protocol could reduce
response times, at the expense of reduced negotiation functionality and service provider
agent autonomy.

An important advantage of using the same interaction protocol at the two levels of
the framework is that both consumer agents, and service provider agents interact using
this protocol. Both parties are not explicitly aware that they are negotiating through a
mediator agent, as the mediator agent interacts with the negotiation parties using the same
protocol, in a proxy-like manner. The negotiation parties negotiate with the mediator
agent as they would with a “regular” negotiation partner. This gives the mediator agent a
flexible position in the negotiation process, as it can influence negotiations on both sides
of the negotiation process. In this position, the mediator can pursue its own negotiation
goals, which can for example be used to improve overall negotiation performance, by
regulating the number of service providers involved in negotiations.

Application domains may differ with respect to the negotiation models/features they re-
quire. The negotiation framework is used to instantiate different negotiation models for
different domains: For each particular domain, negotiation policies can be specified which
govern the negotiation decisions made by the participating agents (template management,
agreement request management, and agreement offer management decisions), aimed at
creating a suitable negotiation model for each of the domains. In this thesis, the frame-
work is applied in two different negotiation domains: Distributed energy management,
and resource management in distributed agent middleware.

In the domain of distributed energy management, an important requirement with re-
spect to the negotiation framework is the ability of the framework to create competition
between the parties involved in the negotiation process. A number of negotiation models
are instantiated using the negotiation framework, which result in different forms of com-
petitive behavior: energy provider competition, competition between groups of energy
providers, and competition between energy consumers.

The negotiation framework is also applied to the domain of distributed agent middle-
ware. An important requirement for the negotiation framework in this domain is the ability
for the framework to incorporate resource management policies defined by system admin-
istrators at both organizational and individual host levels. The negotiation framework is
implemented as part of the AgentScape middleware, and allows agents to negotiate ac-
cess to resources offered by (and through) the AgentScape platform on which they are
running. Middleware resources (CPU-time, agent run-time environments (Java, C/C++,
etc), and web service access) are the topics of negotiation. Before migrating to another
location, agents in AgentScape first negotiate resource access with the location managers
of potentially interesting locations: Agents request advertisements, and negotiate with se-
lected locations to determine which location offers the best access conditions (i.e. the most
CPU-time, access to specific web services, etc.). Location managers implement negoti-
ation policies aimed at regulating resource usage throughout their locations, to achieve

6.1. Research Questions 165

management goals such as load balancing or fair-use.
The implementation of the framework in the AgentScape middleware contributes to

the functionality needed to deploy AgentScape in environments that require regulation of
resource usage, and that are managed de-centrally. This makes AgentScape one of the
first agent infrastructures to include a negotiation based service management framework
at the middleware level.

6.1 Research Questions
The introduction chapter presents four research questions. Each of these questions is
revisited in this section, and the solutions provided by the framework are discussed.

Question 1: Can the negotiation framework support negotiation interactions over a
wide range of service domains?
The WS-Agreement specification, upon which the negotiation language in the framework
is based, provides basic structures for specifying advertisements, requests, offers, and final
agreements. The specification is domain-independent, and defines placeholders (‘service
description terms’ and ‘negotiation constraints’) which can contain domain-specific de-
scriptions of services and constraint models. No assumptions are made about the format
or content of these service descriptions. In our framework, a basic constraint model is de-
fined allowing for the definition of generic minimum/maximum/enumeration constraints,
applicable in many domains. The two use cases described in this thesis show how the
framework can be instantiated in different domains.

Question 2: Can the negotiation framework provide a uniform architecture, suitable
for application in these different service domains?
The framework specifies a mediated negotiation architecture, intended for domains in
which organizational structures are part of the environment in which services are pro-
vided, and need to be explicitly incorporated in the service negotiation process. Mediators
take on the role of representatives of these organizations. In most domains, organizations
in one form or another can be distinguished, providing a straightforward mapping of the
mediated negotiation architecture onto these organizations. Furthermore, the interaction
protocol used in both tiers of the negotiation architecture consists of straightforward nego-
tiation interactions (i.e. the exchange of negotiation documents), that can be easily imple-
mented using different communication infrastructures (i.e. representing the documents as
messages in a message-based communication infrastructure, or explicitly using interface
calls as were specified in the framework description).

Question 3: Can the negotiation framework incorporate both organizational and local
service access policies in the negotiation process?
The mediator agent of the negotiation framework is explicitly modeled as an active com-
ponent within the negotiation process: The mediator agent gathers information on avail-
able services, and allows consumer agents to negotiate for these services. The mediator
agent guides the negotiation process as it sees fit, by selectively choosing which parties

166 Conclusions and Future Work

will be involved in the negotiation process. In our framework, mediator agents represent
virtual provider organizations. Combining this role with the mediator role makes it pos-
sible to implement organizational policies concerning service usage by influencing the
ongoing negotiation processes: The two primary ways in which the negotiation process is
influenced by the mediator agent is through the advertisement combination process, and
the service provider agent selection process. Local service access policies are enforced
by the service provider agents in the negotiation framework, as they are responsible for
negotiating with mediators on behalf of the service providers.

Question 4: Can the negotiation framework accommodate for dynamic and heteroge-
neous agent and provider populations?
Service access requirements of agents are subject to change. Different agents have differ-
ent requirements, and requirements of agents change over time. Agreement negotiations
are initiated by agents, based on these requirements. When requirements of agents change,
and established agreement(s) are no longer sufficient, agents negotiate new agreements,
reflecting the new requirement conditions. Old agreements expire, or are removed when
new agreements are negotiated by agents, depending on the policies of the service provi-
ders. At the service provider agent side, changes in the provider population can either be
the result of changes in the configuration of the provider organization (providers arrive or
leave an organization), or changes in the configuration of an individual provider (services
are added or removed, policies change). Advertisements are used to reflect these changes
in the negotiation process: Provider agents periodically update their advertisements to re-
flect new conditions. The mediator agent, in turn, monitors the provider agent population,
and periodically collects advertisements from the provider agents, resulting in an updated
view of the organization.

6.2 Future Work

The research presented in this thesis can be extended in two areas: Extending the negoti-
ation framework, and extending the implementation of the framework in the AgentScape
agent middleware.

Extensions to the Framework

In many components of our negotiation framework, domain-specific policies govern the
negotiation process. A language for specifying policies has not been proposed in this
thesis. The WS-policy framework [10] includes a reasonably high-level policy specifica-
tion language, which could be used in the framework as a basis for specifying negotiation
policies at both the mediator and service provider agent levels.

Currently, the framework assumes that agents and service providers use a common
language describing the domain-specific services. This assumption can be dropped if the
mediator is also given the role of translator: This would allow agents and service providers
to use different languages when negotiating with each other, provided that the mediator is
capable of translating between the languages.

6.2. Future Work 167

Our framework distinguishes two negotiation layers. More layers could be added to
the model, if more than one organizational layer is needed: Service consumer agents
could be grouped into virtual organizations just like service provider agents, allowing
consumer agents to combine their individual demands, strengthening their position in the
negotiation process. Clustering mechanisms which allow agents to autonomously form
clusters based on their service requirements could be provided by the framework for this
purpose (see Ogston et al. [71]). An alternative approach would be for mediator agents
to group consumer negotiation requests, on behalf of consumers. However, in service
oriented environments, consumer populations are more dynamic than service provider
populations, making grouping of requests more complex.

Furthermore, the mediator in the framework can be given a more pro-active role in
establishing agreements: The mediator could monitor negotiations, and based on this in-
formation, create frequently requested agreements in advance, and give requesting agents
the option of accepting these ‘default’ agreements. This would reduce negotiation time
from the consumer agent point-of-view, and give the mediator more control over the con-
tents of negotiated agreements.

Extensions to the AgentScape Implementation

Additional resources can be modeled, allowing agents to negotiate for ‘services’ such as
communication bandwidth, disk space, etc. This also requires that the AgentScape imple-
mentation supports monitoring and control of these resources, to enforce the agreements
that are established.

Also, currently AgentScape administrators modify the negotiation advertisement in-
formation directly, to reflect service access conditions. A more user-friendly approach
would be to define a policy language in which administrators can specify access condi-
tions, which would be translated into advertisement information by the framework.

Finally, the implementation can be extended to allow agents to not only act as con-
sumers, but also as providers of services. This would allow agent applications to expose
‘services’ to other agents, and negotiate for ‘terms of use’ of those services, for exam-
ple acting as resource mediators for “dumb” Grid applications: In Grid system workflow
management, parallel jobs have to be scheduled to the available Grid resources, during
the different phases of the computation. Negotiation agents could be associated with such
tasks, to manage the resource allocation for these Grid jobs by establishing agreements
for the required resources.

168 Conclusions and Future Work

Samenvatting

Agent-Gebaseerd Onderhandelen Over Services Via Mediators

In de komende jaren zullen grootschalige computernetwerken zoals het Internet in groei-
ende mate een basis vormen voor geautomatiseerde, autonome systemen, welke in staat
zullen zijn om zonder tussenkomst van mensen taken uit te voeren in uitéénlopende gebie-
den. Deze systemen zullen bestaan uit grote aantallen individuele componenten (Servi-
ces) die specifieke functionaliteiten aanbieden en dynamisch gecombineerd kunnen wor-
den om complexere functionaliteit aan te bieden, al naar gelang de vraag. Het beheersen
van deze grootschalige service georienteerde systemen (bijvoorbeeld voor het voorko-
men/oplossen van falende componenten en infrastructuur, en het optimaliseren van de
systeemconfiguratie) is één van de grote uitdagingen voor het Service Oriented Compu-
ting onderzoeksveld voor de komende jaren.

Software agenten zullen hierin een sleutelrol gaan vervullen. Agent-gebaseerde syste-
men worden gekarakteriseerd door eigenschappen zoals decentrale controle en autonomie
van individuele agenten, en zijn daarom zeer geschikt voor het implementeren van ge-
distribueerde en autonome oplossingen in service georiënteerde dynamische omgevingen.
Huidige agent platformen zijn echter nog niet geschikt om agenten in deze omgevingen te
ondersteunen, aangezien er hoge eisen worden gesteld op gebieden zoals schaalbaarheid,
veiligheid, openheid en beheersbaarheid.

Dit proefschrift richt zich op het laatstgenoemde probleem van beheersbaarheid: Om
goed te kunnen functioneren moeten agenten niet alleen met elkaar kunnen communice-
ren, ze moeten ook toegang hebben tot benodigde services om specifieke taken te kunnen
uitvoeren. In een grootschalige omgeving met vele agenten zijn deze services schaars, en
gedistribueerd over meerdere administratieve domeinen (en dus onderhevig aan verschil-
lend beleid met betrekking tot het beheer van deze services): Toegang tot de services moet
gereguleerd kunnen worden voor redenen zoals veiligheid, het garanderen van systeem-
prestaties, en voor het uitvoeren van domein-specifieke beleidsbeslissingen.

Dit proefschrift stelt een oplossing voor gebaseerd op een onderhandelingsmodel, dat
het mogelijk maakt om overeenkomsten te sluiten tussen aanbieders en afnemers van ser-
vices. Onderhandelingsmodellen beschrijven interacties tussen deelnemers die het moge-
lijk maken om eisen/wensen uit te wisselen, waarbij uiteindelijk concensus wordt bereikt
tussen de deelnemers over de uitkomst van een onderhandeling. Gedurende het onderhan-

170 Samenvatting

delingsproces blijft de autonomie van de individuele deelnemers gerespecteerd.
Huidige oplossingen voor het onderhandelen over toegang tot services zijn veelal

domein-specifiek, en bieden niet de praktische basis die nodig is om een breed scala aan
onderhandelingsmodellen te kunnen implementeren. Standaarden zijn belangrijk voor
adoptie en interoperabiliteit, en een aantal hiervan zijn in ontwikkeling, maar bieden nog
niet de benodigde flexibiliteit om een goede basis te vormen.

In dit proefschrift wordt een agent-gebaseerd raamwerk voor onderhandelingen over
services gepresenteerd, om onderhandelingen tussen aanbieders en afnemers van services
vorm te kunnen geven. De gebruikte onderhandelingstaal en het onderhandelingsprotocol
zijn gebaseerd op de Web Service Agreement (WS-Agreement) specificatie. Deze spe-
cificatie biedt een onderhandelingstaal en -protocol, waarin onderhandelingen gebaseerd
zijn op zogenaamde template documenten, en de onderhandelingspartijen via een simpel
offer-agreement protocol een overeenkomst kunnen sluiten. Het resultaat van onderhande-
lingen is een document waarin staat gespecificeerd welke services geconsumeerd mogen
worden door de afnemer, en onder welke condities.

Om het onderhandelingsraamwerk de benodigde flexibiliteit te geven is in dit proef-
schrift het WS-Agreement protocol uitgebreid met een expliciete acceptatie fase, en is
een zogenaamde mediator in het model opgenomen. Onderhandelingen vinden plaats op
twee niveau’s: Tussen afnemers en mediators enerzijds, en tussen de mediators en aanbie-
ders anderszijds. De aanwezigheid van een mediator in het raamwerk maakt het mogelijk
om verschillende onderhandelingsvormen te kunnen modelleren, waarbij de mediator de
onderhandelingen reguleert.

In het proefschrift wordt het raamwerk beschreven en wordt een implementatie van
het raamwerk beschreven in de context van de gedistribueerde multi-agent infrastructuur
AgentScape. In AgentScape kunnen agenten zich verplaatsen tussen verschillende be-
schikbare lokaties (zogenaamde agent migratie). Agenten kunnen in AgentScape via de
onderhandelingsinfrastructuur onderhandelen over toegang tot services (CPU, geheugen,
database toegang, etc.), voordat tot migratie naar een AgentScape lokatie wordt overge-
gaan. Dit onderhandelen voor migratie heeft als groot voordeel dat voordat agenten daad-
werkelijk gebruik gaan maken van de services van een lokatie, afspraken zijn gemaakt
over de specifieke condities waaronder de toegang tot de services wordt verleend. Dit
stelt beheerders van AgentScape lokaties en de onderliggende infrastructuur in staat om
controle uit te oefenen en beleid uit te voeren aangaande het gebruik van de infrastructuur.
Experimenten worden beschreven waarin het gebruik van het onderhandelingsraamwerk
in AgentScape wordt geanalyseerd.

Om de flexibiliteit van het raamwerk verder te demonstreren worden een aantal onder-
handelingsscenario’s beschreven binnen het domein van distributed energy management.
In dit domein is een groeiende behoefte aan geautomatiseerde onderhandelingssystemen
om in te kunnen spelen op vrije en gedistribueerde energiemarkten. De scenario’s be-
schrijven hoe het basisraamwerk kan worden gebruikt om onderhandelingen mogelijk te
maken tussen aanbieders en afnemers van energie. Vervolgens wordt het raamwerk ge-
bruikt om een veilingmodel vorm te geven, en om het mogelijk te maken voor deelnemers
om onderhandelingen af te breken (decommitment). De scenario’s worden ondersteund
door simulaties die met behulp van de in AgentScape geı̈mplementeerde infrastructuur

171

zijn uitgevoerd.

Het gepresenteerde raamwerk biedt meer flexibiliteit dan de WS-Agreement specifi-
catie waarop het is gebaseerd, onder andere door de uitbreiding van het protocol met een
additionele fase en de expliciete rol van de mediator, die onderhandelingsprocessen kan
sturen om zo verschillende onderhandelingsmodellen vorm te geven. Het raamwerk kan
in de basisvorm succesvol ingezet worden in verschillende domeinen, en biedt voldoende
ruimte voor uitbreiding om diverse onderhandelingsmodellen te ondersteunen. De imple-
mentatie van het raamwerk in AgentScape geeft het agent-platform de benodigde controle
over toegang tot services door agenten die gebruik maken van het gedistribueerde plat-
form. Deze controle is een belangrijke voorwaarde voor de acceptatie van AgentScape als
ondersteuning van grootschalige, gedistribueerde systemen.

172 Samenvatting

Bibliography

[1] Simple Object Access Protocol (SOAP). See http://www.w3.org/2000/xp/Group/.

[2] Distributed Generation in Liberalised Electricity Markets. International Energy
Agentcy (IEA), 2002.

[3] New ERA for electricity in Europe – Distributed Generation: Key Issues, Challenges
and Proposed Solutions. European Commission, Directorate-General for Research,
2003.

[4] T. Ackermann, G. Andersson, and Lennart Söder. Distributed generation: a defini-
tion. Electric Power Systems Research, 57:195–204, 2001.

[5] M. Aiello, G. Frankova, and D. Malfatti. What’s in an Agreement? An Analysis and
an Extension of WS-Agreement. In B. Benatallah, F. Casati, and P. Traverso, editors,
Proceedings of the Third International Conference on Service Oriented Computing
(ICSOC), volume 3826 of ”Lecture Notes in Computer Science”, pages 424–436.
Springer, Amsterdam, The Netherlands, November 2005.

[6] H. Akkermans, F. Ygge, and R. Gustavsson. HOMEBOTS: Intelligent Decentralized
Services for Energy Management. In Proceedings of the Fourth International Sym-
posium on the Management of Industrial and Corporate Knowledge (ISMICK’96),
1996.

[7] M. Albers, C.M. Jonker, M. Karami, and J. Treur. Agent Models and Different User
Ontologies for an Electronic Market Place. Knowledge and Information Systems,
6(1):1–41, 2004.

[8] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann, A. Merzky,
R. van Nieuwpoort, A. Reinefeld, F. Schintke, T. Schütt, E. Seidel, and B. Ullmer.
The Grid Application Toolkit: Towards Generic and Easy Application Programming
Interfaces for the Grid. Proceedings of the IEEE, 93(3):534–550, 2005.

[9] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano,
S. Tuecke, and M. Xu. Web Services Agreement Specification WS-Agreement
(draft). Global Grid Forum, 2004.

174 BIBLIOGRAPHY

[10] S. Bajaj, D. Box, D. Chappel, F. Curbera, G. Daniels, P. Hallam-Baker, M. Hondo,
C. Kaler, D. Langworthy, A. Nadalin, N. Nagaratnam, H. Prafullchandra, C. von
Riegen, D. Roth, J. Schlimmer, C. Sharp, J. Shewchuk, A. Vedamuthu, . Yalnalp,
and D. Orchard. Web Services Policy Framework (WSPolicy), 2006.

[11] C. Baumer, M. Breugst, S. Choy, and T. Magedanz. Grasshopper: a universal agent
platform based on OMG MASIF and FIPA standards. Technical report, IKV++
GmbH, 2000.

[12] R. A. Belecheanu, S. Munroe, M. Luck, T. Payne, T. Miller, P. McBurney, and
M. Pechoucek. Commercial Applications of Agents: Lessons, Experiences and
Challenges. In Proceedings of the Fifth International Conference on Autonomous
Agents and Multiagent Systems, Hakodate, Japan, 2006.

[13] F. Bellifemine, A. Poggi, and G. Rimassa. Developing Multi-agent Systems with
JADE. In C. Castelfranchi and Y. Lesprance, editor, Intelligent Agents VII. Agent
Theories Architectures and Languages (ATAL 2000), volume 1986 / 2001 of Lecture
Notes in Computer Science. Springer, Berlin, Germany, 2001.

[14] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay,
J. Robie, and J. Siméon. XML Path Language (XPath) 2.0, 1999.
http://www.w3.org/TR/xpath20/.

[15] M. Bichler, G. Kersten, and S. Strecker. Towards a Structured Design of Electronic
Negotiations. Group Decision and Negotiation”, 12(4):311–335, 2003.

[16] W. Binder, J. G. Hulaas, and A. Villazon. Portable Resource Control in Java. In Pro-
ceedings of the 16th ACM SIGPLAN conference on Object oriented programming,
systems, languages, and applications, pages 139–155. ACM Press, 2001.

[17] C. Bohoris, G. Pavlou, and H. Cruickshank. Using Mobile Agents for Network
Performance Management. In Proceedings of the IFIP/IEEE Network Operations
and Management Symposium (NOMS’00), Hawaii, USA, 2000.

[18] F.M.T. Brazier, F. Cornelissen, R. Gustavsson, C.M. Jonker, O. Lindeberg, B. Po-
lak, and J. Treur. A Multi-Agent System Performing One-to-Many Negotiation for
Load Balancing of Electricity Use. Electronic Commerce Research and Applications
Journal, 1:208–224, 2002.

[19] F.M.T. Brazier, C.M. Jonker, and J. Treur. Principles of Component-Based Design
of Intelligent Agents. Data and Knowledge Engineering, 41:1–28, 2002.

[20] R. B. Bunt, D. L. Eager, G. M. Oster, and C. L. Williamson. Achieving load balance
and effective caching in clustered Web servers. In Proceedings of the 4th Interna-
tional Web Caching Workshop, 1999.

[21] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An Architecture for a Resource
Management and Scheduling System in a Global Computational Grid. In Proceed-
ings of HPC ASIA, Beijing, China, 2000. IEEE CS Press.

BIBLIOGRAPHY 175

[22] H.L. Cardoso and E. Oliveira. Assisting and Regulating Virtual Enterprise Interoper-
ability through Contracts. In K. Fischer, A. Berre, K. Elms, and J.P. Muller, editors,
Proceedings of the AAMAS 2005 Workshop Agent-based Technologies and Applica-
tions for Enterprise Interoperability (ATOP), pages 1–12, Utrecht, The Netherlands,
July 2005.

[23] H. Casanova and J. Dongarra. NetSolve: A Network-Enabled Server for Solving
Computational Science Problems. The International Journal of Supercomputer Ap-
plications and High Performance Computing, 11(3):212–223, 1997.

[24] A. Chavez and P. Maes. Kasbah: An Agent Marketplace for Buying and Selling
Goods. In First International Conference on the Practical Application of Intelligent
Agents and Multi-Agent Technology (PAAM’96), pages 75–90, London, UK, 1996.
Practical Application Company.

[25] Y. Chevaleyre, P. E. Dunne, U. Endriss, J. Lang, M. Lemaitre, N. Maudet, J. Padget,
S. Phelps, J. A. Rodriguez-Aguilar, and P. Sousa. Issues in Multiagent Resource
Allocation. Informatica, 30(1):3–31, 2006.

[26] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bow-
man. PlanetLab: an Overlay Testbed for Broad-coverage Services. SIGCOMM
Comput. Commun. Rev., 33(3):3–12, 2003.

[27] J. Collins, B. Youngdahl, S. Jamison, B. Mobasher, and M. Gini. A Market Archi-
tecture for Multi-Agent Contracting. In Katia P. Sycara and Michael Wooldridge,
editors, Proceedings of the 2nd International Conference on Autonomous Agents
(Agents’98), pages 285–292, New York, 9–13, 1998. ACM Press.

[28] P. Cramton. Simultaneous Ascending Auction. Papers of Peter Cramton 04mit4,
University of Maryland, Department of Economics - Peter Cramton, 2004. available
at http://ideas.repec.org/p/pcc/pccumd/04mit4.html.

[29] P. Cramton, J. McMillan, P. Milgrom, B. Miller, B. Mitchell, and D. Vincent. Si-
multaneous Ascending Auctions with Package Bidding. Papers of Peter Cramton
98cra2, University of Maryland, Department of Economics - Peter Cramton, March
1998. available at http://ideas.repec.org/p/pcc/pccumd/98cra2.html.

[30] V. Darley and D. Sanders. An Agent-Based Model of a Corrugated-Box Factory:
The Trade-Off Between Finished Goods Stock and On-Time-In-Full Delivery. In
H. Coelho and B. Espinasse, editors, Proceedings of the Fifth Workshop on Agent-
Based Simulation, 2004.

[31] V. Darley and D. Sanders. An Agent-based Model of a Corrugated-box Factory: The
Trade-off between Finished Goods Stock and On-time-in-full Delivery. In H. Coelho
and B. Espinasse, editors, Proceedings of the Fifth Workshop on Agent-Based Simu-
lation, 2004.

[32] E. David, R. Azoulay-Schwartz, and S. Kraus. Protocols and strategies for auto-
mated multi-attribute auctions. In AAMAS ’02: Proceedings of the first international

176 BIBLIOGRAPHY

joint conference on Autonomous agents and multiagent systems, pages 77–85, New
York, NY, USA, 2002. ACM Press.

[33] D. Deugo, M. Weiss, and E. Kendall. Reusable patterns for agent coordination,
pages 347–368. Springer-Verlag, London, UK, 2001.

[34] V. Dignum, J-J. Meyer, F. Dignum, and H. Weigand. Formal Specification of Inter-
action in Agent Societies. In ”M. Hinchey, J. Rash, W. Truszkowski, C. Rouff, and
D. Gordon-Spears”, editors, Formal Approaches to Agent-Based Systems (FAABS),
”Lecture Notes in Computer Science”. Springer, Berlin, Germany, 2003.

[35] Virginia Dignum and Frank Dignum. Modelling Agent Societies: Co-ordination
Frameworks and Institutions. In Portuguese Conference on Artificial Intelligence,
pages 191–204, 2001.

[36] K. Dorer and M. Calisti. An Adaptive Solution to Dynamic Transport Optimiza-
tion. In AAMAS ’05: Proceedings of the fourth international joint conference on
Autonomous agents and multiagent systems, pages 45–51, New York, NY, USA,
2005. ACM Press.

[37] C. B. Excelente-Toledo, R. A. Bourne, and N. R. Jennings. Reasoning about Com-
mitments and Penalties for Coordination between Autonomous Agents. In Jörg P.
Müller, Elisabeth Andre, Sandip Sen, and Claude Frasson, editors, Proceedings of
the Fifth International Conference on Autonomous Agents, pages 131–138, Mon-
treal, Canada, 2001. ACM Press.

[38] P. Faratin, C. Sierra, N. R. Jennings, and P. Buckle. Designing Responsive and
Deliberative Automated Negotiators. In Proceedings of the AAAI Workshop on Ne-
gotiation: Settling Conflicts and Identifying Opportunities, pages 12–18, Orlando,
FL, 1999.

[39] G. Federico and D. Rahman. Bidding in an electricity pay-as-bid auction. Economics
Papers 2001-W5, Economics Group, Nuffield College, University of Oxford, April
2000. available at http://ideas.repec.org/p/nuf/econwp/0105.html.

[40] I. Foster, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, H. Kishimoto, F. Maciel,
A. Savva, F. Siebenlist, R. Subramaniam, J. Treadwell, , and J.V. Reich. The Open
Grid Services Architecture, 2004.

[41] I. Foster, N. Jennings, and C. Kesselman. Brain Meets Brawn: Why Grid and Agents
Need Each Other. Autonomous Agents and Multi-Agent Systems, 2004.

[42] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kauffman, 1998.

[43] D. Gannon, B. Plale, M. Christie, L. Fang, Y. Huang, S. Jensen, G. Kandaswamy,
S. Marru, S. L. Pallickara, S. Shirasuna, Y. Simmhan, A. Slominski, and Y. Sun. Ser-
vice Oriented Architectures for Science Gateways on Grid Systems. In B. Benatal-
lah, F. Casati, and P. Traverso, editors, Proceedings of the Third International Con-
ference on Service Oriented Computing (ICSOC), volume 3826 of ”Lecture Notes in

BIBLIOGRAPHY 177

Computer Science”, pages 21–32. Springer, Amsterdam, The Netherlands, Novem-
ber 2005.

[44] E. Gerding, D. van Bragt, and J. Poutre. Scientific Approaches and Techniques for
Negotiation: a Game Theoretic and Artificial Intelligence Perspective. Technical
Report SEN-R0005, CWI, Amsterdam, The Netherlands, 2000.

[45] A. Helsinger, M. Thome, and T. Wright. Cougaar: A scalable, distributed multi-
agent archi- tecture. In Proceedings of the International Conference on Systems,
Man and Cybernetics (IEEE SMC 2004), The Hague, The Netherlands, October
2004.

[46] K. V. Hindriks, F. S. de Boer, W. ven der Hoek, and J.-J. Ch. Meyer. Semantics
of communicating agents based on deduction and abduction. In Frank Dignum
and Mark Greaves, editors, Issues in Agent Communication, pages 63–79. Springer-
Verlag: Heidelberg, Germany, 2000.

[47] P. C. K. Hung, H. Li, and J. Jeng. WS-Negotiation: An Overview of Research Issues.
In Proceedings of the 37th Hawaii International Conference on System Sciences
(HICSS’04), pages 33–42, Big Island, Hawaii, January 2004.

[48] G. James, D. Cohen, R. Dodier, G. Platt, and D. Palmer. A deployed multi-agent
framework for distributed energy applications. In 5th International Joint Conference
on Autonomous Agents and Multi-agent Systems (AAMAS 2006),Hakodate, Japan,
May 2006.

[49] N. Jennings, S. Parsons, C. Sierra, and P. Faratin. Automated Negotiation. In Pro-
ceedings of the 5th International Conference on the Practical Application of Intelli-
gent Agents and Multi-Agent Systems, pages 23–30, Manchester, UK, 2000.

[50] N. R. Jennings, K. Sycara, and M. Wooldridge. A Roadmap of Agent Research and
Development. Journal of Autonomous Agents and Multi-Agent Systems, 1(1):7–38,
1998.

[51] N. Karnik and A. Tripathi. Agent Server Architecture for the Ajanta Mobile-Agent
System. In Proceedings of the 1998 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA’98), Las Vegas, NV,
USA, 1998.

[52] A. Keller and H. Ludwig. The WSLA Framework: Specifying and Monitoring Ser-
vice Level Agreements for Web Services. Journal of Network and Systems Manage-
ment, 11(1):57–81, March 2003.

[53] P. Klemperer. Auction Theory: A Guide to the Literature. Mi-
croeconomics 9903002, EconWPA, March 1999. available at
http://ideas.repec.org/p/wpa/wuwpmi/9903002.html.

178 BIBLIOGRAPHY

[54] J. K. Kok, C. J. Warmer, and I. G. Kamphuis. PowerMatcher: Multiagent Control
in the Electricity Infrastructure. In AAMAS ’05: Proceedings of the Fourth Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems, pages
75–82, New York, NY, USA, 2005. ACM Press.

[55] S. Kraus, J. Wilkenfeld, and G. Zlotkin. Multiagent Negotiation under Time Con-
straints. Artificial Intelligence, 75(2):297–345, 1995.

[56] K. Krauter, R. Buyya, and M. Maheswaran. A taxonomy and survey of grid resource
management systems for distributed computing. Software Practice and Experience,
32(2):135–164, 2002.

[57] B. Krulwich. The BargainFinder Agent: Comparison Price Shopping on the Internet.
In Agents, Bots, and other Internet Beasties. Macmillan Publishing, 1996.

[58] G. Lai, C. Li, K. Sycara, and J. A. Giampapa. Literature Review on Multi-attribute
Negotiations. Technical Report CMU-RI-TR-04-66, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, December 2004.

[59] D. B. Lange and M. Oshima. Seven Good Reasons for Mobile Agents. Commun.
ACM, 42(3):88–89, 1999.

[60] D. B. Lange, M. Oshima, G. Karjoth, and K. Kosaka. Aglets: Programming mobile
agents in Java. In T. Masuda, Y. Masunaga, and M. Tsukamoto, editors, World-
wide Computing and Its Applications, volume 1274 of Lecture Notes in Computer
Science, pages 253–266. Springer Berlin / Heidelberg, 1997.

[61] F. Leymann. The (Service) Bus: Services Penetrate Everyday Life. In B. Benatallah,
F. Casati, and P. Traverso, editors, Proceedings of the Third International Conference
on Service Oriented Computing (ICSOC), volume 3826 of ”Lecture Notes in Com-
puter Science”, pages 12–20. Springer, Amsterdam, The Netherlands, November
2005.

[62] M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent Technology: Computing
as Interaction (A Roadmap for Agent-Based Computing). AgentLink, 2005.

[63] H. Ludwig, A. Dan, and R. Keaney. Cremona: An Architecture and Library for Cre-
ation and Monitoring of WS-Agreements. Technical report, IBM Research Division,
June 2004.

[64] O. Marin, M. Bertier, and P. Sens. DARX - A Framework for the Fault-Tolerant
Support of Agent Software. In Proceedings of the 14th. IEEE International Sympo-
sium on Software Reliability Engineering (ISSRE 2003), pages 406–417, November
2003.

[65] P. Mathieu and M. Verrons. A Generic Model for Contract Negotiation. In Proceed-
ings of the AISB’02 Convention, pages 1–8, London, UK, April 2002.

BIBLIOGRAPHY 179

[66] P. Milgrom. Putting Auction Theory to Work: The Simultaneous Ascending Auc-
tion. Journal of Political Economy, 108(2):245–272, April 2000. available at
http://ideas.repec.org/a/ucp/jpolec/v108y2000i2p245-272.html.

[67] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The Swarm Simulation Sys-
tem: A Toolkit for Building Multi-Agent Simulations”. Technical report, Santa Fe
Institute, Santa Fe, 1996.

[68] T. J. Norman, A. Preece, S. Chalmers, N. R. Jennings, M. Luck, V. D. Dang, T. D.
Nguyen, V. Deora, J. Shao, W. A. Gray, and N. J. Fiddian. Conoise: Agent-based
formation of virtual organisations. Research and Development in Intelligent Sys-
temsXX: Proceedings of AI2003, the Twentythird SGAI International Conference on
Innovative Techniques and Applications of Artificial Intelligence, pages 353–366,
2003.

[69] H. S Nwana, D. T. Ndumu, L. C. Lee, and J. C. Collis. ZEUS: a toolkit and approach
for building distributed multi-agent systems. In Oren Etzioni, Jörg P. Müller, and
Jeffrey M. Bradshaw, editors, Proceedings of the Third International Conference on
Autonomous Agents (Agents’99), pages 360–361, Seattle, WA, USA, 1999. ACM
Press.

[70] J. Odell, H. Parunak, and B. Bauer. Extending UML for Agents. In Proceedings of
the Agent-Oriented Information Systems Workshop at the 17th National conference
on Artificial Intelligence, 2000.

[71] E. Ogston, M. van Steen, and F.M.T. Brazier. Group formation among decentral-
ized autonomous agents. Applied Artificial Intelligence, pages 953–970, October-
December 2004.

[72] A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf, editors. Coordination of
Internet Agents: Models, Technologies, and Applications. Springer, 2001.

[73] B.J. Overeinder, F.M.T. Brazier, and O. Marin. Fault-Tolerance in Scalable Agent
Support Systems: Integrating DARX in the AgentScape Framework. In Proceedings
of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGrid2003), pages 688–695, May 2003.

[74] S. Paurobally and N. R. Jennings. Developing Agent Web Service Agreements. In
Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent
Technology, pages 464–470, Compiegne, France, September 2005.

[75] S. Paurobally and N.R. Jennings. Developing Agent Web Service Agreements. In
Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent
Technology, 2005.

[76] A. Puliafito and O. Tomarchio. Using Mobile Agents to implement flexible Network
Management strategies. Computer Communication Journal, 23(8):708–719, April
2000.

180 BIBLIOGRAPHY

[77] H. Raiffa. The Art and Science of Negotiation. Cambridge, MA: The Belknap Press
of Harvard University Press, 1982, 1982.

[78] R. Raman. Matchmaking Frameworks for Distributed Resource Management. PhD
thesis, University of Wisconsin, 2000.

[79] A. S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable
Language. In R. van Hoe, editor, Seventh European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World, Eindhoven, The Netherlands, 1996.

[80] S. J. Rassenti, V. L. Smith, and B. J. Wilson. Discriminatory Price Auc-
tions in Electricity Markets: Low Volatility at the Expense of High Price Lev-
els. Journal of Regulatory Economics, 23(2):109–23, March 2003. available at
http://ideas.repec.org/a/kap/regeco/v23y2003i2p109-23.html.

[81] D. M. Reeves, M. P. Wellman, and B. N. Grosof. Automated Negotiation from
Declarative Contract Descriptions. In Jörg P. Müller, Elisabeth Andre, Sandip Sen,
and Claude Frasson, editors, Proceedings of the Fifth International Conference on
Autonomous Agents, pages 51–58, Montreal, Canada, 2001. ACM Press.

[82] A. Rubinstein. Perfect Equilibrium in a Bargaining Model. Econometrica, 50(1):97–
109, January 1982.

[83] T. Sandholm. An Implementation of the Contract Net Protocol Based on Marginal
Cost Calculations. In Proceedings of the National Conference on Artificial Intelli-
gence. AAAI Press, 1993.

[84] T. Sandholm and V. Lesser. Issues in Automated Negotiation and Electronic Com-
merce: Extending the Contract Net Framework. In Victor Lesser, editor, Proceed-
ings of the First International Conference on Multi-Agent Systems (ICMAS’95),
pages 328–335, San Francisco, CA, USA, 1995. The MIT Press: Cambridge, MA,
USA.

[85] T. Sandholm and V. Lesser. Issues in Automated Negotiation and Electronic Com-
merce: Extending the Contract Net Framework. In Victor Lesser, editor, Proceed-
ings of the First International Conference on Multi-Agent Systems (ICMAS’95),
pages 328–335, San Francisco, CA, USA, 1995. The MIT Press: Cambridge, MA,
USA.

[86] T. Sandholm, S. Sikka, and S. Norden. Algorithms for Optimizing Leveled Commit-
ment Contracts. In IJCAI, pages 535–541, 1999.

[87] R. G. Smith. The Contract Net Protocol: High-level Communication and Control in
a Distributed Problem Solver, pages 357–366. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1988.

[88] M. Ströbel and C. Weinhardt. The Montreal Taxonomy for Electronic Negotiations.
Group Decision and Negotiation, 12:143–164, March 2003.

BIBLIOGRAPHY 181

[89] N. Suri, J. Bradshaw, M. R. Breedy, P. T. Groth, G. A. Hill, and R. Jeffers. Strong
Mobility and Fine-Grained Resource Control in NOMADS. In ASA/MA 2000: Pro-
ceedings of the Second International Symposium on Agent Systems and Applications
and Fourth International Symposium on Mobile Agents, pages 2–15, London, UK,
2000. Springer-Verlag.

[90] Y. Tan and W. Thoen. DocLog: An Electronic Contract Representation Language.
In Proceedings of the DEXA 2000 Workshop, 2000.

[91] R.J. Timmer. An efficient implementation of the agent operating system. Master’s
thesis, Vrije Universiteit Amsterdam, August 2005.

[92] C. Triki, P. Beraldi, and G. Gross. Optimal capacity allocation in multi-auction
electricity markets under uncertainty. Comput. Oper. Res., 32(2):201–217, 2005.

[93] G. van ’t Noordende, F.M.T. Brazier, and A.S. Tanenbaum. Security in a Mobile
Agent System. In Proceedings of the First IEEE Symposium on Multi-Agent Security
and Survivability, Philadelphia, August 2004.

[94] D. Veit, W. Fichtner, and M. Ragwitz. Agent-based Computational Economics in
Power Markets Multi-agent Based Simulation as a Tool for Decision Support. In
J. Andrysek, M. Karny, and J. Kracik, editors, Multiple Participant Decision Mak-
ing, volume 9 of International Series on Advanced Intelligence. Advanced Knowl-
edge International, Adelaide, Australia, 2004.

[95] H. Weigand, A. de Moor, M. Schoop, and F. Dignum. B2B Negotiation Support: The
Need for a Communication Perspective. Group Decision and Negotiation, 12:3–29,
2003.

[96] N.J.E. Wijngaards, B.J. Overeinder, M. van Steen, and F.M.T. Brazier. Supporting
internet-scale multi-agent systems. Data and Knowledge Engineering, 41(2-3):229–
245, June 2002.

[97] S. Woods and M. Barbacci. Architectural evaluation of collaborative agent-based
systems. Technical report, Software Engineering Institute, Carnegie Mellon Univer-
sity, 1999.

[98] M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia Methodology for Agent-
Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems,
3(3):285–312, 2000.

[99] R.E. Wray and R.M Jones. An Introduction to Soar as an Agent Architecture. In
R. Sun, editor, Cognition and Multi-agent Interaction: From Cognitive Modeling to
Social Simulation, pages 53–78. Cambridge University Press, 2005.

SIKS Dissertation Series

1998

1998-1 Johan van den Akker (CWI)

DEGAS - An Active, Temporal Database of
Autonomous Objects

1998-2 Floris Wiesman (UM)

Information Retrieval by Graphically Brows-
ing Meta-Information

1998-3 Ans Steuten (TUD)

A Contribution to the Linguistic Analysis
of Business Conversations within the Lan-
guage/Action Perspective

1998-4 Dennis Breuker (UM)

Memory versus Search in Games

1998-5 E.W.Oskamp (RUL)

Computerondersteuning bij Straftoemeting

1999

1999-1 Mark Sloof (VU)

Physiology of Quality Change Modelling; Au-
tomated modelling of Quality Change of Agri-
cultural Products

1999-2 Rob Potharst (EUR)

Classification using decision trees and neural
nets

1999-3 Don Beal (UM)

The Nature of Minimax Search

1999-4 Jacques Penders (UM)

The practical Art of Moving Physical Objects

1999-5 Aldo de Moor (KUB)

Empowering Communities: A Method for the
Legitimate User-Driven Specification of Net-
work Information Systems

1999-6 Niek J.E. Wijngaards (VU)

Re-design of compositional systems

1999-7 David Spelt (UT)

Verification support for object database de-
sign

1999-8 Jacques H.J. Lenting (UM)

Informed Gambling: Conception and Analy-
sis of a Multi-Agent Mechanism for Discrete
Reallocation

2000

2000-1 Frank Niessink (VU)

Perspectives on Improving Software Mainte-
nance

2000-2 Koen Holtman (TUE)

Prototyping of CMS Storage Management

2000-3 Carolien M.T. Metselaar (UVA)

Sociaal-organisatorische gevolgen van ken-
nistechnologie; een procesbenadering en ac-
torperspectief

2000-4 Geert de Haan (VU)

ETAG, A Formal Model of Competence
Knowledge for User Interface Design

2000-5 Ruud van der Pol (UM)

Knowledge-based Query Formulation in In-
formation Retrieval

2000-6 Rogier van Eijk (UU)

Programming Languages for Agent Communi-
cation

2000-7 Niels Peek (UU)

Decision-theoretic Planning of Clinical Pa-
tient Management

2000-8 Veerle Coup (EUR)

Sensitivity Analyis of Decision-Theoretic Net-
works

2000-9 Florian Waas (CWI)

Principles of Probabilistic Query Optimiza-
tion

2000-10 Niels Nes (CWI)

Image Database Management System Design
Considerations, Algorithms and Architecture

2000-11 Jonas Karlsson (CWI)

Scalable Distributed Data Structures for
Database Management

2001

2001-1 Silja Renooij (UU)

Qualitative Approaches to Quantifying Proba-
bilistic Networks

2001-2 Koen Hindriks (UU)

Agent Programming Languages: Program-
ming with Mental Models

2001-3 Maarten van Someren (UvA)

Learning as problem solving

2001-4 Evgueni Smirnov (UM)

Conjunctive and Disjunctive Version Spaces
with Instance-Based Boundary Sets

2001-5 Jacco van Ossenbruggen (VU)

Processing Structured Hypermedia: A Matter
of Style

2001-6 Martijn van Welie (VU)

Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU)

Diva: Architectural Perspectives on Informa-
tion Visualization

2001-8 Pascal van Eck (VU)

A Compositional Semantic Structure for
Multi-Agent Systems Dynamics

2001-9 Pieter Jan ’t Hoen (RUL)

Towards Distributed Development of Large
Object-Oriented Models, Views of Packages as
Classes

2001-10 Maarten Sierhuis (UvA)

Modeling and Simulating Work Practice
BRAHMS: a multiagent modeling and simula-
tion language for work practice analysis and
design

2001-11 Tom M. van Engers (VUA)

Knowledge Management: The Role of Mental
Models in Business Systems Design

2002

2002-01 Nico Lassing (VU)

Architecture-Level Modifiability Analysis

2002-02 Roelof van Zwol (UT)

Modelling and searching web-based document
collections

2002-03 Henk Ernst Blok (UT)

Database Optimization Aspects for Informa-
tion Retrieval

2002-04 Juan Roberto Castelo Valdueza (UU)

The Discrete Acyclic Digraph Markov Model
in Data Mining

2002-05 Radu Serban (VU)

The Private Cyberspace Modeling Electronic
Environments inhabited by Privacy-concerned
Agents

2002-06 Laurens Mommers (UL)

Applied legal epistemology; Building a
knowledge-based ontology of the legal domain

2002-07 Peter Boncz (CWI)

Monet: A Next-Generation DBMS Kernel For
Query-Intensive Applications

2002-08 Jaap Gordijn (VU)

Value Based Requirements Engineering: Ex-
ploring Innovative E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel(KUB)

Integrating Modern Business Applications
with Objectified Legacy Systems

2002-10 Brian Sheppard (UM)

Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)

Agent Based Modelling of Dynamics: Biolog-
ical and Organisational Applications

2002-12 Albrecht Schmidt (Uva)

Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)

A Reference Architecture for Adaptive Hyper-
media Applications

2002-14 Wieke de Vries (UU)

Agent Interaction: Abstract Approaches to
Modelling, Programming and Verifying Multi-
Agent Systems

2002-15 Rik Eshuis (UT)

Semantics and Verification of UML Activity
Diagrams for Workflow Modelling

2002-16 Pieter van Langen (VU)

The Anatomy of Design: Foundations, Models
and Applications

2002-17 Stefan Manegold (UVA)

Understanding, Modeling, and Improving
Main-Memory Database Performance

2003

2003-01 Heiner Stuckenschmidt (VU)

Ontology-Based Information Sharing in
Weakly Structured Environments

2003-02 Jan Broersen (VU)

Modal Action Logics for Reasoning About Re-
active Systems

2003-03 Martijn Schuemie (TUD)

Human-Computer Interaction and Presence in
Virtual Reality Exposure Therapy

2003-04 Milan Petkovic (UT)

Content-Based Video Retrieval Supported by
Database Technology

2003-05 Jos Lehmann (UVA)

Causation in Artificial Intelligence and Law -
A modelling approach

2003-06 Boris van Schooten (UT)

Development and specification of virtual envi-
ronments

2003-07 Machiel Jansen (UvA)

Formal Explorations of Knowledge Intensive
Tasks

2003-08 Yongping Ran (UM)

Repair Based Scheduling

2003-09 Rens Kortmann (UM)

The resolution of visually guided behaviour

2003-10 Andreas Lincke (UvT)

Electronic Business Negotiation: Some ex-
perimental studies on the interaction between
medium, innovation context and culture

2003-11 Simon Keizer (UT)

Reasoning under Uncertainty in Natural Lan-
guage Dialogue using Bayesian Networks

2003-12 Roeland Ordelman (UT)

Dutch speech recognition in multimedia infor-
mation retrieval

2003-13 Jeroen Donkers (UM)

Nosce Hostem - Searching with Opponent
Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation Pro-
cesses across ICT-Supported Organisations

2003-15 Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incremental
Maintenance of Indexes to Digital Media
Warehouses

2003-17 David Jansen (UT)
Extensions of Statecharts with Probability,
Time, and Stochastic Timing

2003-18 Levente Kocsis (UM)
Learning Search Decisions

2004

2004-01 Virginia Dignum (UU)
A Model for Organizational Interaction:
Based on Agents, Founded in Logic

2004-02 Lai Xu (UvT)
Monitoring Multi-party Contracts for E-
business

2004-03 Perry Groot (VU)
A Theoretical and Empirical Analysis of Ap-
proximation in Symbolic Problem Solving

2004-04 Chris van Aart (UVA)
Organizational Principles for Multi-Agent Ar-
chitectures

2004-05 Viara Popova (EUR)
Knowledge discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD)
The Evaluation of Business Process Modeling
Techniques

2004-07 Elise Boltjes (UM)
Voorbeeldig onderwijs; voorbeeldgestuurd
onderwijs, een opstap naar abstract denken,
vooral voor meisjes

2004-08 Joop Verbeek(UM)
Politie en de Nieuwe Internationale Infor-
matiemarkt, Grensregionale politiële gegeven-
suitwisseling en digitale expertise

2004-09 Martin Caminada (VU)
For the Sake of the Argument; explorations
into argument-based reasoning

2004-10 Suzanne Kabel (UVA)
Knowledge-rich indexing of learning-objects

2004-11 Michel Klein (VU)
Change Management for Distributed Ontolo-
gies

2004-12 The Duy Bui (UT)

Creating emotions and facial expressions for
embodied agents

2004-13 Wojciech Jamroga (UT)

Using Multiple Models of Reality: On Agents
who Know how to Play

2004-14 Paul Harrenstein (UU)

Logic in Conflict. Logical Explorations in
Strategic Equilibrium

2004-15 Arno Knobbe (UU)

Multi-Relational Data Mining

2004-16 Federico Divina (VU)

Hybrid Genetic Relational Search for Induc-
tive Learning

2004-17 Mark Winands (UM)

Informed Search in Complex Games

2004-18 Vania Bessa Machado (UvA)

Supporting the Construction of Qualitative
Knowledge Models

2004-19 Thijs Westerveld (UT)

Using generative probabilistic models for
multimedia retrieval

2004-20 Madelon Evers (Nyenrode)

Learning from Design: facilitating multidisci-
plinary design teams

2005

2005-01 Floor Verdenius (UVA)

Methodological Aspects of Designing
Induction-Based Applications

2005-02 Erik van der Werf (UM))

AI techniques for the game of Go

2005-03 Franc Grootjen (RUN)

A Pragmatic Approach to the Conceptualisa-
tion of Language

2005-04 Nirvana Meratnia (UT)

Towards Database Support for Moving Object
data

2005-05 Gabriel Infante-Lopez (UVA)

Two-Level Probabilistic Grammars for Natu-
ral Language Parsing

2005-06 Pieter Spronck (UM)

Adaptive Game AI

2005-07 Flavius Frasincar (TUE)

Hypermedia Presentation Generation for Se-
mantic Web Information Systems

2005-08 Richard Vdovjak (TUE)
A Model-driven Approach for Building Dis-
tributed Ontology-based Web Applications

2005-09 Jeen Broekstra (VU)
Storage, Querying and Inferencing for Seman-
tic Web Languages

2005-10 Anders Bouwer (UVA)
Explaining Behaviour: Using Qualitative
Simulation in Interactive Learning Environ-
ments

2005-11 Elth Ogston (VU)
Agent Based Matchmaking and Clustering - A
Decentralized Approach to Search

2005-12 Csaba Boer (EUR)
Distributed Simulation in Industry

2005-13 Fred Hamburg (UL)
Een Computermodel voor het Ondersteunen
van Euthanasiebeslissingen

2005-14 Borys Omelayenko (VU)
Web-Service configuration on the Semantic
Web; Exploring how semantics meets prag-
matics

2005-15 Tibor Bosse (VU)
Analysis of the Dynamics of Cognitive Pro-
cesses

2005-16 Joris Graaumans (UU)
Usability of XML Query Languages

2005-17 Boris Shishkov (TUD)
Software Specification Based on Re-usable
Business Components

2005-18 Danielle Sent (UU)
Test-selection strategies for probabilistic net-
works

2005-19 Michel van Dartel (UM)
Situated Representation

2005-20 Cristina Coteanu (UL)
Cyber Consumer Law, State of the Art and
Perspectives

2005-21 Wijnand Derks (UT)
Improving Concurrency and Recovery in
Database Systems by Exploiting Application
Semantics

2006

2006-01 Samuil Angelov (TUE)
Foundations of B2B Electronic Contracting

2006-02 Cristina Chisalita (VU)
Contextual issues in the design and use of in-
formation technology in organizations

2006-03 Noor Christoph (UVA)

The role of metacognitive skills in learning to
solve problems

2006-04 Marta Sabou (VU)

Building Web Service Ontologies

2006-05 Cees Pierik (UU)

Validation Techniques for Object-Oriented
Proof Outlines

2006-06 Ziv Baida (VU)

Software-aided Service Bundling - Intelligent
Methods & Tools for Graphical Service Mod-
eling

2006-07 Marko Smiljanic (UT)

XML schema matching – balancing efficiency
and effectiveness by means of clustering

2006-08 Eelco Herder (UT)

Forward, Back and Home Again - Analyzing
User Behavior on the Web

2006-09 Mohamed Wahdan (UM)

Automatic Formulation of the Auditor’s Opin-
ion

2006-10 Ronny Siebes (VU)

Semantic Routing in Peer-to-Peer Systems

2006-11 Joeri van Ruth (UT)

Flattening Queries over Nested Data Types

2006-12 Bert Bongers (VU)

Interactivation - Towards an e-cology of peo-
ple, our technological environment, and the
arts

2006-13 Henk-Jan Lebbink (UU)

Dialogue and Decision Games for Informa-
tion Exchanging Agents

2006-14 Johan Hoorn (VU)

Software Requirements: Update, Upgrade,
Redesign - towards a Theory of Requirements
Change

2006-15 Rainer Malik (UU)

CONAN: Text Mining in the Biomedical Do-
main

2006-16 Carsten Riggelsen (UU)

Approximation Methods for Efficient Learning
of Bayesian Networks

2006-17 Stacey Nagata (UU)

User Assistance for Multitasking with Inter-
ruptions on a Mobile Device

2006-18 Valentin Zhizhkun (UVA)

Graph transformation for Natural Language
Processing

2006-19 Birna van Riemsdijk (UU)

Cognitive Agent Programming: A Semantic
Approach

2006-20 Marina Velikova (UvT)

Monotone models for prediction in data min-
ing

2006-21 Bas van Gils (RUN)

Aptness on the Web

2006-22 Paul de Vrieze (RUN)

Fundaments of Adaptive Personalisation

2006-23 Ion Juvina (UU)

Development of Cognitive Model for Navigat-
ing on the Web

2006-24 Laura Hollink (VU)

Semantic Annotation for Retrieval of Visual
Resources

2006-25 Madalina Drugan (UU)

Conditional log-likelihood MDL and Evolu-
tionary MCMC

2006-26 Vojkan Mihajlovic (UT)

Score Region Algebra: A Flexible Framework
for Structured Information Retrieval

2006-27 Stefano Bocconi (CWI)

Vox Populi: generating video documentaries
from semantically annotated media reposito-
ries

2006-28 Borkur Sigurbjornsson (UVA)

Focused Information Access using XML Ele-
ment Retrieval

2007

2007-01 Kees Leune (UvT)

Access Control and Service-Oriented Archi-
tectures

2007-02 Wouter Teepe (RUG)

Reconciling Information Exchange and Confi-
dentiality: A Formal Approach

2007-03 Peter Mika (VU)

Social Networks and the Semantic Web

2007-04 Jurriaan van Diggelen (UU)

Achieving Semantic Interoperability in Multi-
agent Systems: a dialogue-based approach

2007-05 Bart Schermer (UL)

Software Agents, Surveillance, and the Right
to Privacy: a Legislative Framework for
Agent-enabled Surveillance

2007-06 Gilad Mishne (UVA)

Applied Text Analytics for Blogs

2007-07 Natasa Jovanovic’ (UT)

To Whom It May Concern - Addressee Identi-
fication in Face-to-Face Meetings

2007-08 Mark Hoogendoorn (VU)

Modeling of Change in Multi-Agent Organiza-
tions

