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AUDREY’S ACQUISITION OF FRACTIONS: A CASE STUDY INTO
THE LEARNING OF FORMAL MATHEMATICS

ABSTRACT. National standards for teaching mathematics in primary schools in the Ne-
therlands leave little room for formal fractions. However, a newly developed programme
in fractions aims at learning formal fractions. The starting point in the development of
this curriculum is the students’ acquisition of ‘numeracy in fractions’. In this case study
we describe the growth in reasoning ability with fractions of one student in this newly
developed programme of 30 lessons during one whole school year. In the study we found
indications that the programme and its teaching stimulated the progress of an average per-
former in mathematics. Moreover we found arguments as to what extent formal operations
with fractions suits as an educational goal.
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1. INTRODUCTION

Students differ in many aspects. Restricted to the learning of fractions,
one observes how some ten year olds relatively easily acquire rational
numbers, while others experience difficulties in the most simple manip-
ulations with fractions. Many researchers reported on the differences in
students’ fraction learning (cf. e.g. Holt, 1964; Behr, Lesh, Post and Silver,
1983; Hunting, 1984; Streefland, 1987; Behr, Harel, Post and Lesh, 1992;
Kamii and Clark, 1995). In addition, the Dutch National Testing Institute
for primary and secondary education researches the development of the
mathematical ability of students in grade 8 in primary schools (11–12 year
olds). The three nationwide investigations performed so far show, again
and again, tremendous differences in skills between students, especially
in fractions (Wijnstra, 1988; Bokhove, Van der Schoot and Eggen, 1996;
Janssen, Van der Schoot, Hemker and Verhelst, 1999). These investigations
suggest that a significant number of students should be able to acquire the
ability for formal reasoning with fractions rather easily.

However, national curriculum standards for primary education esta-
blish that teaching should be aimed at acquiring competence in using frac-
tions in simple contexts or supported by models (Commissie Heroverwe-
ging Kerndoelen Basisonderwijs [Committee for the Reassessment of Cur-
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riculum Standards in Primary Education], 1994; cf. Principles and Stand-
ards for School Mathematics, 2000). We thus ascertain a discrepancy be-
tween the potentialities of groups of students and what is decided upon as
curriculum standards. This discrepancy forms the starting point of the re-
search described here. In the Dutch tradition of realistic mathematics edu-
cation (Treffers, 1987; Freudenthal, 1991; Streefland, 1991; Gravemeijer,
1994; Van den Heuvel-Panhuizen, 1996), we developed an experimental
curriculum on fractions as an extension of the newly developed curriculum,
‘the Fractiongazette’ [De Breukenbode] (Buys, Bokhove, Keijzer, Lek,
Noteboom and Treffers, 1996). This experimental curriculum is construc-
ted to seize upon potentialities of students who are able to obtain mean-
ingful formal reasoning with fractions with relative ease, where we will
refer to this formal level in reasoning as ‘formal fractions’. This level of
reasoning “is characterised by a sense that one’s mathematical methods
work ‘for all’ relevant examples” (Pirie and Kieren, 1994, 43). Or, fol-
lowing Hart (1987), we consider this “formalisation” to be “(. . .) a rule,
formula or general method which can be applied to a variety of mathe-
matical examples” (p. 409). In the study reported on here, we will observe
a process of learning formal mathematics. Freudenthal (1973) considers
this to be a process where a general principle emerges from a series of
well chosen examples. Here we will report upon this process leading to
the generalised notion of equivalent fractions, which on their turn facilitate
fraction operations.

During one school year we observed the development of one of the
students, Audrey, in the experimental programme. We describe her frac-
tion learning here as a case-study, and analyse Audrey’s development in
learning fractions. Audrey is a student with average skills in mathematics.1

Elsewhere we report on the development of students involved in the ex-
periments in a quasi-experimental research design (Keijzer and Terwel,
2000). Our analyses here finally lead to assessing general characteristics
on learning meaningful formal fractions.

2. DESIGNING A PROGRAMME

Mathematical insight is widely recognised as an important educational
goal. Mathematics education should promote learning for understanding
(Freudenthal, 1968; Van Hiele, 1986; Sfard, 1994; Perkins and Unger,
1999; Reigeluth, 1999; Van Dijk, Van Oers and Terwel, 2000). However,
it is known from many studies that students have difficulty in applying
their mathematical knowledge in meaningful ways in formal mathematics.
Moreover history proves that teaching mathematics often results in imitat-
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ive, meaningless following of rules of calculation. This is especially so for
the learning of fractions.

For this reason, various researchers in the 1980’s and 1990’s pleaded
for constructivist approaches to the difficult problem of teaching fractions.
For example, Graeber and Tanenhaus (1993) suggest naming fractions by
making them results of measuring. With Bednarz and Janvier (1988) and
Mack (1990), Graeber and Tanenhaus chose to explicitly build on informal
knowledge of students.2

In the Netherlands, Streefland (1982, 1983, 1987 and 1990) developed
a new curriculum on fractions in the Dutch tradition of realistic mathemat-
ics education. By choosing fair-sharing as main fraction-generating activ-
ity, Streefland also took informal knowledge of the students into account.
Through these activities of fair-sharing, Streefland at first stimulated the
development of a fraction-language by the students. For example students
develop their language of fractions, when they have to divide three pizzas
among four children. Each child gets three pieces of a quarter of a pizza
or half a pizza and a quarter of a pizza, etc. Later Streefland elaborated
the sharing-situation so that equivalent fractions could emerge; equiva-
lent sharing situations were observed. Sharing three pizzas among four
children results in the same amount of pizza for each child as sharing six
pizzas among eight. Moreover, by comparing results of fair-sharing formal
operations with fractions are facilitated.

As we mentioned, in the late 1990’s a new fraction programme, ‘The
Fractiongazette’ [De Breukenbode] was developed (Buys, Bokhove,
Keijzer, Lek, Noteboom and Treffers, 1996). This programme was created
to link up with new curriculum standards for teaching fractions. Moreover,
it provided explicitly for students’ acquisition of ‘numeracy’ or number
sense (Greeno, 1991; Mcintosh, Reys and Reys, 1992; Keijzer and Buys,
1996a). Our programme, which we describe here and which, for conveni-
ence, we name an ‘experimental programme’, is an extension of ‘The
Fractiongazette’, and emphasises formal reasoning with fractions.

As in Streefland’s curriculum, in the experimental programme at first
there is explicit focus on the learning of fraction-language. However, un-
like Streefland, in this programme situations of measuring are mainly used.
Bezuk and Bieck (1993) emphasise the importance of this kind of situation
in teaching fractions; in this manner fractions are seen as lengths, which
help students in making estimations and thus facilitates reflection on one’s
work. Connell and Peck (1993) provide arguments for using a bar as a
measuring instrument as a forerunner for the number line. They observed
students’ preference for the bar (in the context of a rectangular cake) as a
model.
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The students (. . .) universally selected a ‘cake’ model for dealing with fractions
because they seemed to sense its general applicability.

(Connell and Peck, 1993, p. 336)

In the next stages of the experimental programme, from the situations
of measuring, the number line is developed. Moreover, this model forms
the key-instrument in comparing fractions. Many strategies for compar-
ing fractions are discussed with the students. Furthermore, the situations
presented encourage students to use equivalent fractions more and more
when comparing. Next these equivalent fractions form a base for formal
operations with fractions.

Several researchers (e.g. Behr, Lesh, Post and Silver (1983) and Novil-
lis Larson (1980)) reported on students’ difficulties with the number line.
Behr, Lesh, Post and Silver observed three kinds of problems:

1. Children differed in how they identified the unit on the number line.
2. Problems, in which the subdivisions of the unit did not equal the deno-

minator of the fraction, were harder to solve than were problems in which
subdivisions equalled the denominator.

3. Problems with perceptual distractors (inconsistent cues) were harder to solve
than were problems in which subdivisions of the unit were factors or mul-
tiples of the denominator or the fraction (incomplete cues or irrelevant
cues).

(Behr, Lesh, Post and Silver, 1983, p. 118)

To overcome these problems, in the experimental curriculum using a bar
as a measuring-device, and then making measurements was closely con-
nected with the development of the number line. Moreover, the number
line was used extensively to compare fractions (Keijzer and Buys, 1996b).
The following observation by Mack (1990) provides additional support
for relating the development of the number line and comparing fractions.
Students, she observed, spontaneously find and use a comparison-strategy,
that clearly is supported by the number line:

One common characteristic of all student-invented algorithms, with the exception
of the alternative algorithm for comparing fractions (via 1, RK/JT), was that in
general, they were not utilised for an extended period of time. Students soon
discovered quicker ways of solving the problems. As soon as they discovered
these quicker algorithms, they abandoned their alternative algorithms in favour of
the more efficient ones, which often reflected those that are traditionally taught in
schools. (Mack, 1990, p. 26–27)

In the final stage of the programme formal operations with fractions be-
come a field of exploration for the students (cf. Streefland and Elbers, 1995
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and 1997). However, as formal fractions are difficult (Hart, 1981; Hase-
mann, 1981; Hiebert, 1988; Kamii and Clark, 1995), in the experimental
program formal approaches were used next to informal ones. Moreover,
dealing with formal and informal fractions occured next to each other,
intending to facilitate switching from one strategy to another.

The finalised programme thus had the following key features:

• As whole class discussions are used to negotiate and construct mean-
ings in learning fractions, the teaching can be characterised as inter-
active.

• The curriculum is directed towards the acquisition of number sense:
students learn to give meaning to fractions in various kinds of situ-
ations, develop a good notion of the size of fractions, and learn to
handle fractions in simple applications.

• The curriculum contains a teaching strategy in four stages in which
number sense is developed: (i) a language of fractions, (ii) developing
the number line for fractions, (iii) comparing fractions, (iv) learning
formal fractions.

• Different situational contexts and models are used: two types of situ-
ations, dividing and measuring, lead to the bar and the number line as
central models for fractions.

• Students are offered the opportunity to present their approaches at
several levels: initially, when confronted with fraction problems, they
opt for informal approaches. These are followed by semi-formal and
formal solutions, which are imbedded in the informal approaches.
Thus the students are challenged to reach approaches at higher levels.

3. AIM

Our objective is to describe, analyse and explain the complex fraction
learning process of an average student, Audrey. Yin (1984) clearly con-
siders a case study appropriate here, as the study is sustained by a theoret-
ical framework. Moreover, he states on case studies:
“The most important [thing] is to explain the causal links in real-life interventions
that are too complex for the survey or experimental strategies. A second applic-
ation is to describe the real-life context in which an intervention has occurred.
Third, an evaluation can benefit, again in a descriptive mode, from an illustrative
case study (. . .) of the intervention itself. Finally, the case study strategy may be
used to explore those situations in which the intervention being evaluated has no
clear, single set of outcomes. (Yin, 1984, p. 25)

Yin thus offers us a methodology to design the case-study. We describe
Audrey’s fraction learning process in the newly developed programme to
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Figure 1. Audrey’s cake with four toppings.

obtain a description of the real-life context where the intervention took
place. Moreover, Greeno (1991) offers us a theoretical framework that,
together with the theoretical notions mentioned, we will use to analyse and
explain the relation between the fraction-programme, the style of teaching
and Audrey’s strategies in handling formal and informal fractions. We de-
veloped what Greeno refers to as an “environment that fosters curiosity and
exploration” (p. 173) and will analyse relevant relations within this envir-
onment; those between teaching and learning fractions, between the pro-
gramme and the teaching thereof and between activities in the programme
and Audrey’s fraction learning process. We will show relevant elements
of the developed environment and will show how Audrey’s learning is
supported by a process of ‘negotiation of meaning’.

Against this background we will argue how students with average ma-
thematical skills can acquire formal fractions, in a programme that aims
at students gaining number sense and which reaches formal approaches in
situations where the number line is a central model and where comparing
fractions is a key-activity.

4. AUDREY’S LEARNING OF FRACTIONS

4.1. Obtaining a language of fractions

Many researchers emphasise the importance of gaining competence in a
language of fractions (Bezuk and Bieck, 1993; Connell and Peck, 1993;
Streefland, 1990). This acquisition of fraction language therefore marks
the beginning of the fraction program discussed here. Audrey’s first les-
sons in fractions aim at dividing square-shaped and circle-shaped objects
in parts of equal size. Moreover the pieces are named in both informal
and formal manners and are symbolised as unit-fractions. For instance in
the first lesson we ask Audrey to make a square cake with four different
toppings. She does so with remarkable ease (Figure 1).

In the next lessons Audrey quickly starts to use unit-fractions in a cor-
rect manner. Then, in the fourth lesson a new context is presented to intro-
duce other than unit fractions. We ask the students to measure their table
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with a bar, representing an ‘Amsterdam foot’ (abbreviated to av). Folding
the bar leads to accurate measuring results, but generates the problem of
naming the pieces of the bar. At first students use informal and long names
for the fractions that arise, like a quarter or three pieces of the bar that is
folded in eight. Audrey soon shortens these fraction-names to the formal
notation.

This situation shows what Greeno (1991) refers to as a “a social con-
struction in which students interact with the teacher and with each other
about quantities and numbers” (p. 173). Here the meaning of fraction is
‘negotiated’ as precise names are needed to communicate measuring re-
sults.

However, Audrey does not yet fully understand the fraction-language.
In the fourth lesson she also introduces 1/3 av as alternative name for three
quarters av. However, Audrey continuously uses correct interpretations
of the fractions and gradually improves her names and notations of the
fractions.

After ten lessons we interviewed Audrey, to assess her knowledge of
the language of fractions. One of the problems we present her here is about
Irene’s chocolate bar. We tell Audrey Irene ate 3/5 of her chocolate bar and
show her what is left.

In solving this problem, Audrey shows her mastery of fraction lan-
guage:

Interviewer: Do you think Irene ate more than half the bar?

Audrey: Yes. . .

I: Can you explain?

A: The bar has five pieces and she ate three. Two are left.
(indicates two pieces in the drawn part of the bar)

I: Can you name these pieces?

A: Eh. . .one-second. . . Oh no, that is wrong. . .

I: Can you draw the whole chocolate bar?

A (after draw-
ing the bar):

Three pieces are out and two left.

Audrey now knows how to name the pieces as fractions. She writes what
part is left (Figure 2).

We thus observe how Audrey, in about ten lessons on fractions, obtains
a firm grip on the language involved in working with fractions. Her exper-
iences in dividing objects and measuring with divided bars and, moreover,
discussing the outcomes of these activities, resulted in the development of
the use of fractions as descriptors in this kind of situation.
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Figure 2. Audrey’s solution of the Irene-problem.

4.2. Developing the number line for fractions

In the experimental programme, the number line is an important tool to
reach formal (operations with) fractions. Equivalent fractions emerge as
fractions in the same position on the line. Moreover, introducing the num-
ber line here enables us to exploit students’ knowledge of operations with
whole numbers and stimulates students to make rough calculations with
fractions, such as 3/4 + 1/3 makes approximately 1. However, it takes
students some effort to grasp the number line (Novillis Larson, 1980).
Measuring with the ‘Amsterdam foot’ is one of the activities to help stu-
dents to develop the number line for fractions. In general the bar, as a
model for fractions, can be seen as means to form the number line.

In the following weeks the bar is further developed as a model for
fractions. Sometimes the connection with the number line is made expli-
cit. In lesson eleven we introduce the try-your-strength machine (Note-
boom, 1994). If one hits the machine, water starts running through a pipe.
When the water in the machine reaches the top, you are the strongest of
all. Many children however, cannot reach the top. Audrey here in a free
production compares the efforts of two children hitting to 1/2 and 1/3.
Audrey, in comparing these results, moves her finger alongside the water
pipe and concludes that 1/2 is higher than 1/3. Her bar has flattened to a
line (Figure 3).

In the thirteenth lesson we use a drawing-contest as context. Approx-
imately 600 children are participating in the contest. 1/5 of those are in the
youngest (4 and 5 year) group. We ask the students, among other things,
how many children in the contest were 4 or 5 years old. To solve this
problem, we suggest the students to represent the 600 participants in a bar.
Audrey, in doing so, more or less constructs a double indexed number line,
where the participants in the contest are on the one side and fractions on
the other. Audrey explains what she did: “If you take this five times you
arrive at 600.” On the whole we observe that using a double indexed bar



AUDREY’S ACQUISITION OF FRACTIONS 61

Figure 3. Audrey’s free production with the try-your-strength machine.

or number line becomes Audrey’s approach in solving problems, where a
fraction is operating on a large number such as 600.

4.3. Comparing fractions

In the following lessons the number line is developed further. We thus en-
courage students to form various strategies to compare fractions to finally
reach equivalent fractions (Keijzer and Buys, 1996b). These equivalent
fractions provide a way to compare fractions in an algorithmic manner,
for instance by transforming the two fractions involved in equivalents, that
have an equal numerator or denominator. Moreover equivalent fractions
are key to formal reasoning with fractions.

However, considerable effort is needed to grasp equivalent fractions in
order to use them in the described way. In one of the first lessons, lesson 6,
we observe how Audrey misinterprets the equivalence of fractions. In the
context of the ‘Amsterdam foot’ we ask the students to compare the heights
of Christel, 2 1/3 av, and Tessa, 2 2/6 av. Audrey thinks that Christel is
taller.

In the same lesson we find a clue for this comparison strategy. Audrey
compares with ease the lengths of Melle, 6 1/3 av, and Auke, 6 1/4 av. In
explaining her approach Audrey points at the lengths of the pieces 1/3 and
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1/4 and thus concludes that Auke is a bit shorter. We think that Audrey, in
comparing fractions, at this stage of her fraction learning, concentrates on
the denominator only. The larger the denominator the smaller the pieces.
Reasoning this way a larger denominator always leads to a smaller fraction,
independently of the size of the numerator of the fractions involved (cf.
Noelting, 1980).

We saw how the context of the try-your-strength machine in the ele-
venth lesson again resulted in Audrey comparing fractions by looking at
the size of the pieces. In the fifteenth lesson we introduced the context of
the fraction-lift.3 Here again we introduce a metaphor for learning frac-
tions. Sfard (1994), from several interviews with mathematicians, shows
how experts and novices use metaphors to construct mathematical know-
ledge. One of her interviewees tells her how he uses personification to
perform manipulations on the concept (Sfard, 1994, p. 48). We see this
personification in the context of the fraction-lift. Moreover, Greeno’s (1991)
notion of situated knowledge portrays the fraction-lift as interacting “with
the environment in its own terms – exploring the territory, appreciating its
scenery, and understanding how its various components interact.” (p. 175).

Here a vertical number line houses fractions; the fractions live in a
fraction-building. Lifts connect the different floors in the building. The
numbers of the lifts indicate the stops they make: for instance the 3-lift
stops three times, at 1/3, 2/3 and at the top of the building (at 1). Similarly
the 4-lift stops at 1/4, 2/4, 3/4 and at 1, the 2-lift stops at 1/2 and at 1,
etc. (Figure 4). This context thus makes explicit that different fractions can
belong to the same position on the number line. In other words the fraction-
lift, by personalising the fractions, becomes a metaphor for fractions on the
numberline.

In the next lesson Audrey uses this newly introduced context, when
comparing 3/10 and 3/13, to show how she extended her initial comparison
strategy to fractions that are not unit-fractions. Moreover in this lesson we
observe Audrey using 1 as anchor-point to compare fractions. The teacher
and the students discuss finding fractions in the fraction-building higher
than 99/100. One of the students mentions 199/200 and 299/300 as can-
didates. Audrey explains how this last result could be established: “Only
1/300 is needed to reach the top of the building.”

In the nineteenth lesson equivalent fractions are again approached as
fractions in the same position on the number line. In the lesson we discuss
with the students which fractions occupy the same place on the line as
2/3. Many students here choose to (repeatedly) double both numerator and
denominator of the fraction to make equivalent fractions (cf. Streefland,
1990). Audrey thus constructs the fraction 16/24. Next we discuss how
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Figure 4. The fraction-lift, with 2-lift, 3-lift and 4-lift. The fractions 1/2 and 2/4 are at the
same level.

Figure 5. ‘Room-mates’ of 1/3 and 2/3.

these ‘room-mates’ of 2/3 can be used to find fractions between 1/3 and
2/3 (Figure 5). Here again we see the metaphor of “sharing a room” in
connection with positioning fractions on the number line (cf. Sfard, 1994).
As 4/12 is a room-mate of 1/3 and 8/12 is one of 2/3, the fractions 5/12,
6/12, etc. are between 1/3 and 2/3.

In her individual work following this class discussion, Audrey shows at
least three different strategies to compare the fractions involved:

• she compares the fractions ‘by the look of it’,
• she reasons with the size of the pieces, e.g. 1/3 is bigger than 1/4,
• she reasons with equivalent fractions.
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Figure 6. A fragment of the screen of ‘treasure-digging’. The fraction 2/5 is found.

In the twentieth lesson we present the students with a computer game,
‘treasure-digging’.4 Here the students are offered a fraction and next they
are invited to look for this fraction by clicking on the number line. Every
attempt reveals the fraction at the indicated position (Figure 6). This way
the students are offered ‘anchor-points’ to assist them in the searching
process.5

Audrey plays the game with Ines. Their fourth task is to find the fraction
3/8. In doing so they first dig up the fraction 2/5. Audrey uses the position
of this fraction to construct the position of 3/8. She therefore estimates
the distance to 1/2, by the look of it. Next, she uses the equivalence of
1/2 and 4/8 to indicate where 3/8 should be: “To the left of 2/5.” Audrey
thus shows how she uses 1/2 as an reference point to compare 2/5 and 3/8.
Audrey’s use of the fraction 1/2 as a whole number corresponds with find-
ings of Hunting (1986) and Hart (1981). Both Hart and Hunting state that
students relatively easily extend whole numbers to 1/2. Kieren, Nelson and
Smith (1985) emphasise the importance of this kind of findings in learning
fractions, as the fraction 1/2 can support fraction generating activities. In
a similar way, when looking for 9/10 in the tenth game, Audrey shows she
is able to compare fractions such as, 3/4, 5/6 and 7/8 by referring to the
distance between each fraction and 1.

After twenty one lessons (seven months after the start of her fraction
programme) we interview Audrey a second time. If we examine Audrey’s
increasing ability to compare fractions, on the whole, we observe that
Audrey gradually developed various approaches. At first her strategies
were restricted to unit-fractions. She compared these fractions by reas-
oning about the relation between the size of the denominator and that
of the fraction. Later she extended her approach to non-unit-fractions.
Moreover she learned how to compare fractions by using both 1/2 and 1 as
anchor-points. Finally using equivalent fractions was seen as a means of
comparing fractions. After about twenty lessons in fractions, Audrey was
about to conquer these formal relations between fractions.
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Figure 7. Make 1. Audrey finds equivalent fractions by halving parts.

4.4. Learning formal fractions

However, reaching a full understanding of formal fractions is a long pro-
cess. From the start of the programme Audrey explores formal relations
between fractions. At first, these relations are closely connected to situ-
ational contexts. For example in the seventh lesson, where fractions emerge
when a part of a lighthouse is to be painted. When asked what part still
needs to be painted, the students need to find the complement of fractions.
Moreover, in this context fractions with denominator 8 are constructed
from fractions with denominator 2 and 4, when students are asked to fold
the bar-like lighthouse, for example, to ‘paint’ 5/8. Audrey here explains
how she constructed 5/8: “You have to fold in two and again in two and
again in two.” There are then eight pieces and Audrey knows five of those
are needed to make 5/8.

In the following lessons Audrey frequently shows how she relates frac-
tions with denominator 2, 4 and 8. However, it takes some time to extend
this knowledge to other fractions. In the fourteenth lesson we observe this
for the first time. We ask Audrey to select two fractions from 4/10, 2/10
and 3/5 that together make 1. As Audrey finds this difficult, we advise her
to make a sketch. When she does so, she discovers the equivalence of 4/10
and 2/5 (Figure 7).

In the next lessons Audrey repeatedly finds equivalent fractions by
doubling both the numerators and the denominators of the fractions. Some-
times she also uses other strategies. For example in the seventeenth lesson
we present the students the fraction-lift in the form of a computer-game.
Here students use the lifts to move fractions through the building. In one
of their games Audrey and Ines need to shift a fraction from 1/5 to 1/3.
Audrey suggests the multiplication tables of 3 and 5 can be used to find an
appropriate lift. She thus soon finds that the 15-lift can be used.

In the twenty second lesson we introduce ‘difficult problems’ and ‘easy
problems’ for adding and subtracting fractions. ‘Easy problems’ are those
problems, where the denominators of the fractions that need to be added
or subtracted are equal, as with 4/6 + 1/6. In ‘difficult problems’ the deno-
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Figure 8. Searching for fractions that “live” at the question-marks. Audrey finds 1/12 and
2/12.

minators of the fractions are unequal, as with 1/3 + 1/2. We discuss with
the students how we can turn 4/6 + 1/6 into a ‘difficult problem’. The
students seem eager to do so. Soon the fraction 4/6 is turned into 8/12 and
1/6 into 6/36. We ask Audrey to suggest still another fraction to replace 4/6
or 1/6. Audrey chooses to change 4/6 into 16/24, by doubling numerator
and denominator of 8/12, as mentioned a little earlier.

Later in that lesson Audrey abandons the approach of doubling or halv-
ing both numbers in the fraction, to transform the fractions into equivalent
ones. For example, she replaces the “easy problem” 5/15 + 3/15 by the
“difficult” one 1/3 + 1/5.

Some time later, in the twenty eighth lesson, Audrey shows how she
uses equivalent fractions. In this lesson we again present the fraction-lift
context. We now ask the students to use this context to divide fractions
by two, three or more. When doing this, we see Audrey struggling with
the problem of dividing 1/4 by three. She wonders what could be done
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here. We advise her to search for fractions that are ‘at the same floor of the
fraction building’. Audrey does so and finds an answer (Figure 8).

We consider formal arithmetic with fractions to be the ability to use
equivalent fractions in a proper manner, as equivalent fractions facilitate
fraction operations. When we thus analyse Audrey’s grasp of equivalent
fractions, we see that, initially, manipulating bars results in only one strate-
gy of obtaining equivalent fractions. In the beginning she tends to only
double numerator and denominator. However, when the situation forces
Audrey to use other equivalence relations, she does so. However, this causes
her some difficulty. After 30 lessons Audrey still needs some assistance in
finding a general approach to find and use equivalent fractions. If, sub-
sequently, Audrey uses this general strategy, equivalent fractions are used
in a creative and flexible manner.

4.5. Overview

We conducted a case study on Audrey’s fraction learning and found various
signs of acquired ‘numeracy in fractions’ clearly related to the experi-
mental programme and its teaching. Moreover, we found Audrey’s flexible
strategies in managing equivalent fractions. In this overview, we outline
a few of the observations which typify Audrey’s growing “numeracy in
fractions”.

We observed how Audrey needed only a few lessons to fully grasp
unit-fractions. Moreover, reasoning with unit-fractions made her develop a
way to compare fractions, by considering the denominator. Soon she found
more relations between fractions. For example, in the seventh lesson, she
constructed 3/8 by repeated halving and in her first interview she easily
related 2/5 and 3/5. Later on we saw that her knowledge in fractions is
sufficient for her to be able to compare fractions with 1. Moreover, she
showed creative use of the fraction 1/2 in various situations.

When we consider Audrey’s formal reasoning with fractions, we see
that her preferred strategy was the doubling of numerator and denomin-
ator. After 30 lessons in fractions she still needed some support in using
other approaches to find equivalent fractions. However, when she found an
appropriate equivalent fraction, she was proficient in using this fraction.

5. CONCLUSIONS AND DISCUSSION

One of the limitations of a case-study – like the one we described here – is
its difficulty to obtain generalisable results. Yin (1984), however, provides
a tool to gain some generalisation, namely by explaining case study events
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in a theoretical framework. That is what we did in the case study described.
We first showed how we selected Audrey from her group. Being an ave-
rage student, Audrey sets an example of how ordinary students can gain
proficiency in formal fractions. In line with Yin’s (1984) ideas in perfor-
ming case study research, we ordered our information on Audrey along
observed signals of causal relations between the constructed program, and
the teaching thereof, and Audrey’s learning-process. We thus found that the
programme and the teaching thereof could be a factor in Audrey’s observed
growth in ‘numeracy in fractions’ and her proficiency in using equivalent
fractions.

Simon (1995) provides us with another means to further analyse Audrey’s
progress. As in our study, Simon performed the roles of both teacher and
researcher. He stated that he based his local teaching decisions on the as-
sumed learning of the students. “A hypothetical learning trajectory provides
the teacher with a rationale for choosing a particular instructional design;
thus, I make my design decisions based on my best guess of how learning
might proceed.” (Simon, 1995, p. 135). We now used this decision-making
design in teaching in analysing key-elements in Audrey’s formal frac-
tion learning process, in order to gradually reconstruct the development
of Audrey’s fraction learning.

We have drawn on Greeno’s (1991) notion of situated knowledge to
develop an environment that fostered classroom discussion on fraction
meanings and relations in order to develop number sense within the frac-
tion domain. We constructed the first activities in the programme so that
a language of fractions would be elicited from the students. We therefore
used problems where the students had to divide objects. This resulted in
Audrey using unit-fractions in a proper way. However, Audrey scarcely
used other than unit-fractions here. For that reason we introduced the bar
as a measuring instrument. In the activities the bar presented a length of
several parts. We expected that the students would now turn to other than
unit-fractions, as the measuring activities would give rise to counting. And
that is what we observed with Audrey, for example, when she constructed
7/8 as being seven pieces of 1/8. Next, we aimed our teaching activities
at developing a number line for fractions. We anticipated the developed
bar to serve as a model for fractions. In the situational contexts we used
here the number line became a measuring scale on a bar. We observed how
this made Audrey shift from the bar to the line and vice versa, for instance
when ‘hitting’ on the try-your-strength machine.

We expected that considering fractions as parts of folded bars or points
on a number line would encourage students to compare fractions on several
levels. Namely, laying two bars side by side, would give a way of compar-
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ing the constructed fractions visually and folding bars would generate a
few simple relations between fractions, like 1/2 = 2/4, 3/4 = 6/8, et cet-
era. Next well chosen situations were developed to elicit other strategies
of comparing fractions, such as comparing with 1 and with 1/2. We ob-
served how Audrey soon acquired several fraction comparison strategies.
However, we initially observed Audrey having problems in comparing the
equivalent fractions 1/3 and 2/6. We therefore used the fraction-lift to cla-
rify equivalent fractions, by making them fractions living at the same floor
of the fraction-building and by introducing the metaphor of “roommates”
for fractions at the same position on the number line. We now observed
how Audrey used the strategy of doubling both the numerator and the
denominator to generate equivalent fractions, for example by replacing 2/3
by 4/6 to compare the latter fraction with 5/6.

Folding bars, as we mentioned, cleared the way for the construction of
equivalent fractions. We saw how this resulted in Audrey relating fractions
with denominators 2, 4 and 8. Moreover, Audrey developed doubling both
numerator and denominator as an approach to make equivalent fractions.
This turned out to be her favoured (and persisting) strategy. We concluded
that by using the bar as a manipulative tool we actually were encour-
aging this approach (cf. Gravemeijer, 1994). To overcome this one-sided
strategy in obtaining equivalent fractions, we introduced several problems,
where other approaches were needed, such as constructing a “difficult
problem” for the sum 3/15 + 5/15. Moreover we again used the fraction-
lift to construct other relations between fractions, for example dividing
1/4 by three. We observed how Audrey slowly started to consider other
approaches than doubling both numerator and denominator to construct
equivalent fractions.

Simon’s (1995) idea of constructing hypothetical learning trajectories
as mini-theories of the learning of a student, offered us a useful instrument
to analyse Audrey’s learning of fractions. Looking at Audrey’s progress in
gaining proficiency in fractions, the projected learning trajectories became
the means of observing and valuing the learning. Teaching interventions
following from the analyses were essential in this scheme. They provided
possibilities to follow Audrey’s progress over an extended period of time
and to draw conclusions concerning the potential of Audrey, and that of
students like her, to learn formal fractions.

Audrey is not a special student in any aspect, and consequently her
learning activities teach us about average students like her. Therefore this
study supports the view that the teaching we described, where developing
the number line takes a special place and where comparing fractions forms
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a natural introduction to formal reasoning, could offer many students the
prospect of learning formal fractions in a meaningful manner.

NOTES

1. We used the standardized LVS-tests (Janssen, Kraemer and Noteboom, 1995) to ob-
tain the general mathematical skills of the student. Audrey’s pre-test score shows she
performs at the nation-wide average.

2. Padberg (1989) in an inventory study summarizes all possible approaches for fractions
in relation to the four operations: addition, subtraction, division and multiplication.

3. The fraction-lift was an idea of Adrian Treffers.
4. This program was created by Frans van Galen, who earlier made a similar program

with whole-number tasks. One of the authors, Ronald Keijzer, proposed to extend the
existing program to fractions.

5. The program only shows fractions that facilitate reasoning on several levels. Therefore
only fractions with denominators 2, 3, 4, 5, 6, 8, 9, 10 and 12 become visible.
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