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Dynamic Correlations and Optimal Hedge Ratios

Charles S. Bos∗ and Phillip Gould

Department of Econometrics & O.R.,

Vrije Universiteit Amsterdam, The Netherlands

February 18, 2007

Abstract

The focus of this article is using dynamic correlation models for the calculation of min-
imum variance hedge ratios between pairs of assets. Finding an optimal hedge requires
not only knowledge of the variability of both assets, but also of the co-movement between
the two assets. For this purpose, use is made of industry standard methods, like the naive
hedging or the CAPM approach, more advanced GARCH techniques including estimat-
ing BEKK or DCC models and alternatively through the use of unobserved components
models. This last set comprises models with stochastically varying variances and/or cor-
relations, denoted by the TVR, SCSV and DCSV models, and an approximation to these
with a single-source-of-error setup.

Modelling the correlation explicitly is shown to produce the best hedges when applied
to the simulated data. For financial time series on the daily S&P 500 cash versus fu-
tures returns, and also on weekly S&P 500 versus FTSE 100 returns, the correlations are
compared to a realised correlation measure, extracted from high frequency data.

Apart from the comparison of correlations, the reduction in portfolio variance produced
by different hedging strategies is examined. The data suggests that the most important
factor in reducing portfolio variance is the use of a flexible model for time varying volatility,
rather than capturing time variation in correlations. GARCH-based models with time
varying correlation are found to perform not as good on the present set of measures as
the stochastic volatility models, with or without dynamic correlation.

Keywords: Dynamic correlation; multivariate GARCH; stochastic volatility; hedge ratio.

JEL classification: C32, C52, G11

1 Introduction

When combining multiple financial assets into a portfolio, the portfolio return is driven by
the dynamics of the underlying asset returns. The asset returns by themselves are volatile,
with periods of relatively high and low volatility interchanging. Likewise, when two assets are
correlated through time, it can be expected that this correlation is changing over time as well.
Taken together, these observations imply that a portfolio of multiple assets which intends to
minimise the total risk will have a dynamic ratio of the underlying assets, to account for the
relative volatility and the changes in correlations of the assets.

∗Corresponding author: C.S. Bos, Department of Econometrics & O.R., Vrije Universiteit Amsterdam, De

Boelelaan 1105, 1081 HV Amsterdam, The Netherlands. Email: cbos@feweb.vu.nl.
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Apart from the construction of optimal portfolios, understanding the dynamics of the
volatility and correlation between asset returns is also important for calculations of the Value-
at-Risk (VaR, Jorion 1997), or for application of the Capital Asset Pricing Model (CAPM),
in which the risk of a stock relative to a market index is assessed (Faff, Hillier, and Hillier
2000).

With the increasing availability of data and computing power, researchers are able to use
a range of models and techniques to estimate heteroskedastic time series. The (G)ARCH
framework of Engle (1982) and Bollerslev (1986) has been popular in a univariate setting.
The stochastic volatility (SV) approach, introduced into the econometric literature by Harvey,
Ruiz, and Shephard (1994) and Jacquier, Polson, and Rossi (1994) can also be employed,
either using a (quasi) maximum likelihood or a Bayesian approach for the estimation.

In the multivariate GARCH (Bollerslev, Engle, and Wooldridge 1988) and SV (Harvey,
Ruiz, and Shephard 1994; Yu and Meyer 2006) literature, correlations are often assumed to
be either fixed or follow deterministically from the time variation in variance, in order to
simplify the models. Lately, more attention is being paid to freely time varying, dynamic
correlations. One difficulty involved in estimating multivariate GARCH models is ensuring
positive-definiteness of the covariance matrix. While the BEKK parameterisation of Engle
(1995) ensures this condition is met, it imposes restrictions on the GARCH structure. The
non-linear constraints on the parameter vector also make estimation more difficult. The
dynamic conditional correlation (DCC) model of Engle (2002) adapts GARCH models specif-
ically for the estimation of time varying correlations, while also restricting the more general
structure. Park and Switzer (1995) estimate models assuming constant correlations and use
them to test for time varying hedge ratios in index cash and futures markets. Recently, Pel-
letier (2006) compares the DCC model to a regime switching dynamic correlation model, with
an ARMACH (see Taylor 1986) structure for the variance process.

As in the case of the GARCH model, it is hard to generalise the SV model to allow for time
varying correlations between multiple assets; each possible choice for the parameterisation
implies a certain restriction in either the space of the possible covariances or correlations. Also,
allowing e.g. all correlations to evolve dynamically over time, can lead to a high number of
parameters, even for a relatively low number of assets. Therefore, in this article we first limit
ourselves to the bivariate case. Yu and Meyer (2006) provide a first attempt at estimating
time varying correlations between assets. Our setup, developed independently, corresponds
largely in the specification of the model.

This article intends to take a range of models used in practise and possible extensions
which have not yet been applied for estimating the correlation and variance of two assets.
With these models, their ability to recover the underlying correlation of the assets is compared,
and also the practical effectiveness of the hedging strategies is measured through the standard
deviations of hedge portfolio returns. Such a metric is not only relevant for hedge portfolios
consisting of cash and futures contracts, but also for constructing and analysing CAPM betas,
which are estimated in the same way as time varying hedge ratios.

Section 2 introduces the concepts behind time varying hedge ratios and betas. The dif-
ferent models for time varying correlations are explained in Section 3. While the dynamic
correlation stochastic volatility model appeared once before, in Yu and Meyer (2006), the
variant using a single-source-of-error (Ord, Snyder, Koehler, Hyndman, and Leeds 2005) ap-
proach is entirely new to the literature. Section 4 starts off with a description of a method
to construct a realised correlation measure, taking into account the possible occurrence of
jumps, and the overlap between the trading times of the two assets. Afterwards, four data
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series are described in Section 4.2, covering data which (i) is simulated, with smoothly vary-
ing correlation, (ii) is simulated, with sudden jumps in correlation, (iii) covers the standard
CAPM case of daily S&P 500 cash and futures returns and (iv) uses a longer, weekly series
of S&P 500 and FTSE 100 returns. The data description is followed by a comparison of the
performance of the models in reconstructing the simulated or realised correlation, and the
resulting hedged portfolio standard deviation, in Sections 4.3–4.4. Finally, Section 5 gathers
the main findings of the comparisons.

2 Time Varying Betas through optimising utility

There is a substantial body of literature dedicated to estimating time varying optimal hedge
ratios for simple portfolios consisting of two assets. Brooks, Henry, and Persand (2002)
specifically analyse hedge portfolios consisting of positions in cash and futures markets, while
Cho and Engle (1999) use similar models to investigate asymmetric time variation in CAPM
betas. Though the assets could be a pair of cash and futures, this is not necessary, and a
similar hedge could be set up e.g. between the price of kerosene and crude oil futures (Cobbs
and Wolf 2004).

The general setup of the problem is as follows. For any two assets at time t, the investor
holds βt units of asset 2 per unit of asset 1, with prices p1,t and p2,t respectively. The
continuously compounded returns for the two assets are defined as ri,t = log pi,t/pi,t−1, i = 1, 2
with variances σ2

i,t and covariance σ12,t = ρ12,tσ1,tσ2,t.
The rational investor seeks to maximise utility, which is a function of portfolio returns

rp,t = r1,t − βr2,t and portfolio variance σ2
p,t. For portfolio returns, the negative sign before β

is used because investors are said to take a short position on e.g. the futures contract and a
long position on the underlying stock.

Written in general form the relevant utility function, assuming a standard risk-averse
setting with risk-aversion parameter ψ, is:

U
[

Et−1(rp,t), σ
2
p,t

]

= Et−1[rp,t] − ψσ2
p,t

≈ 0 − ψ(σ2
1,t + β2

t−1σ
2
2,t − 2βt−1σ12,t)

where the last equality is strict when we assume efficient markets and forego discussions on
the cost-of-carry and possibly positive expected returns for risk-bearing assets. In this case,
a rational agent will seek to maximise this utility function with respect to βt−1, which is
equivalent to minimising the variance of portfolio returns. The derived optimal value is

β∗t−1 =
σ12,t

σ2
2,t

. (1)

In the time varying hedge ratio literature, the assumption of constant variances is relaxed,
which then leads to time variation in the optimal1 hedge ratio. As discussed in the previous
section, different restrictions — such as constant correlations — are sometimes used to facil-
itate estimation. The next sections describe a range of modelling decisions which imply each
their own ‘optimal’ hedging ratio.

1Note how the precise implication of ‘optimal’ in relation to the hedge ratio depends on the model assump-

tions.
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3 Modelling Correlation

As the focus of the article is on the relationship between two correlated assets over time, the
models considered should explicitly be able to accurately track the evolution of correlation
coefficients.

First, Section 3.1 provides three baseline models, which look directly at a linear relation-
ship between the returns of the two assets. Subsequent sections try to model the variance
processes of each of the series separately in more detail, and combine the series through a (time
varying) correlation process. For these latter sections, the focus is on the demeaned bivariate
returns process rt = (r1t, r2t)

′. For simplicity, this bivariate returns process is supposed to be
normally distributed according to

rt ∼ N (0,Ht), (2)

Ht =

(

σ2
1t σ12t

σ12t σ2
2t

)

≡

(

σ2
1t ρtσ1tσ2t

ρtσ1tσ2t σ2
2t

)

, (3)

with Ht the variance matrix. Subsequent sections may either use the specification in terms
of the variances/covariances, or the specification using the correlation ρt, depending on the
model at hand.

Notice that the first moment of the data is not modelled at all, as the focus of this article
is solely on the effects of variations and covariations. Likewise, in order to see differences
in modelling assumptions for the correlations and variances more clearly, the simplifying
assumption of (conditionally) normal returns is made.

In turn, the following sections introduce the naive, constant-hedge CAPM and time vary-
ing regression as baseline models (Section 3.1), the BEKK and DCC version of multivariate
GARCH (Section 3.2) and the exact bivariate dynamic correlation SV vs. the QML approach
using a single source of error variant (Section 3.3).

3.1 Baseline models

For comparison with the models with fully time varying correlations, three baseline models
are used. The simplest is the ‘naive’ model, which hedges the assets fully, fixing β ≡ 1
throughout the sample.

Of course, two distinct assets are never fully correlated, and such a ‘naive’ hedge is not
ideal. The standard approach in the CAPM literature is to look at the time-invariant regres-
sion

r1,t = α+ βr2,t + ǫt, (4)

relating a stock asset with return r1 to a market factor (r2). The CAPM β is usually estimated
simply by OLS, though it is hard to assume homogeneity of the variance of ǫ in this equation.

As a third baseline, some flexibility can be added to the CAPM model by allowing β to
be time varying, as the optimal hedge ratio can also be time varying (see also Equation (1)).
Writing the regression in terms of an unobserved random walk βt gives

r1,t = α+ βtr2,t + ǫt, ǫt ∼ N (0, σ2
ǫ ), (5)

βt+1 = βt + ηt, ηt ∼ N (0, σ2
η). (6)
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Such a model in state space (Durbin and Koopman 2001) can be estimated using the Kalman
equations, allowing the optimal time varying βt to be extracted. This model will be indicated
as the time varying regression (TVR) model.

Each of these three models makes its own set of assumptions on the underlying data
generating process. Especially, all three baseline models effectively assume constant variances
for both assets, with only the TVR model allowing for some variation in the relation between
the two. Accordingly, each of the resulting hedging decisions will be more or less ‘optimal’,
as shall be seen in the applications.

3.2 GARCH Analysis

After the inception of the GARCH models (Engle 1982; Bollerslev 1986), multivariate variants
quickly started appearing. A most general version, the multivariate vec GARCH model
introduced in Bollerslev, Engle, and Wooldridge (1988) relates all elements of the covariance
matrix Ht of the returns equation (2) to all cross-products of returns in the form

vec(Ht) = vec(C) +A vec(rt−1r
′

t−1) +B vec(Ht−1). (7)

As there are here no explicit restrictions on A,B and C which guarantee that the covariance
matrix Ht is positive definite, several variants have been introduced. Two of these variants
are considered in this paper.

The BEKK model

One of the earlier is the BEKK GARCH model, see e.g. Engle (1995). Here, instead of
specifying separate equations for all covariance matrix elements, a matrix formulation is used
which ensures from the start the positive definiteness of Ht at all time points. The BEKK
updating equations for the covariance matrix are of the form

Ht = C∗′C∗ +A∗′rt−1r
′

t−1A
∗ +B∗′Ht−1B

∗ (7’)

where A∗ and B∗ are symmetric matrices, and C∗ is upper-diagonal.
In the bivariate case, this leads to 11 parameters requiring estimation, instead of 21 pa-

rameters for the corresponding vec specification (7). A nonlinear restriction on the parameters
of A∗ and B∗ is needed to ensure that the eigenvalues of A∗ + B∗ lie within the unit circle,
for stationarity.

The DCC model

Where the BEKK model describes a process for the variances and covariances of the returns,
the Dynamic Conditional Correlation model (Engle 2002, DCC) explicitly recognises that the
interesting dynamics lie in the realm of the correlations instead of the covariances, and has
become a popular multivariate GARCH representation. The specification of the covariance
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matrix is

Ht = DtRtDt, (7”)

D2
t = diag[ωi] + diag[κi] ◦ rt−1r

′

t−1 + diag[λi] ◦D
2
t−1, (8)

ut = D−1
t rt, (9)

Qt = (1 − λ)(ut−1u
′

t−1) + λQt−1, (10)

Rt = diag[Qt]
−1Qt diag[Qt]

−1, (11)

where Dt is a diagonal matrix with the variances of all of the components and Rt is a correla-
tion matrix. Positive definiteness of Rt is ensured by transformation (11). All other matrices
define the dynamics of correlations and variances in a similar way to the BEKK GARCH
specification. The updating specification (10) for Qt implies that the (transformed) corre-
lations are integrated of the first order, although AR(1) or other specifications can also be
used.

Estimation of BEKK and DCC models

Estimation of the parameters of the BEKK model is done by optimising the likelihood func-
tion. Given a vector of parameters θ, the likelihood of the data can be calculated. Using
either standard Gauss-Newton techniques or applying some more robust estimation methods
(as the likelihood function may be not very well behaved in practical cases), the likelihood
can be optimised over θ.

For the DCC model a similar approach can be used. However, it can be shown that
the likelihood function L separates into a part Lv pertaining to the volatility components,
and a part Lc containing only parameters for the correlation (see Engle 2002 for details).
The two parts can be optimised separately, effectively breaking down one high-dimensional
optimisation into two, simpler, low-dimensional problems.

3.3 Unobserved components for Stochastic Volatility models

The multivariate extension of the SV model, for the constant correlation case is already
proposed in Harvey, Ruiz, and Shephard (1994). Also a multi-factor SV model is a common
extension, but to get to a separate time varying correlation factor is more difficult. To our
knowledge, the bivariate Dynamic Correlation Stochastic Volatility (DCSV) model used here
is only presented before in Yu and Meyer (2006). Fixing the dynamic correlation back to the
static case leads to the Static Correlation SV model (SCSV), which is used for comparison.

Apart from these stochastic volatility models, a quasi maximum likelihood approach using
a Single Source of Error Model (SSOE, see Ord, Snyder, Koehler, Hyndman, and Leeds 2005
is presented in a subsequent section.

Dynamic Correlation SV

The starting point for the DCSV model is again the returns equation (2), stating that rt ∼
N (0,Ht), with the correlation element in the variance matrix Ht of (3) modelled as

ρt ≡
exp(qt) − 1

exp(qt) + 1
= 2

1

exp−qt + 1
− 1, (12)

qt+1 = qt + ηt, ηt ∼ N (0, σ2
η). (13)
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Both log-price returns have SV-type variances, according to

σ2
it = exp(hit) (14)

hit+1 = γi + φ(hit − γi) + ξit ξt = N (0,Σξ) (15)

The two returns are related through the correlation coefficient ρt, which varies over time
according to a transformed random walk (13). The transformation in (12), which is a rescaled
Sigmoid function, assures that the correlation is bounded in (-1, 1).

As there is little information on the value of ρt at each time point t, it does not seem useful
to specify a more refined process for the correlation process, or a different transformation. As
a simplification, fixing ση ≡ 0 gets us back to the static correlation model with dual stochastic
volatility (SCSV), which is used below for comparison.

The two SV innovations ξit could display correlation as well, though in this article we limit
ourselves to the situation where Σξ ≡ diag(σ2

ξ,1, σ
2
ξ,2). First of all, the novelty of introducing

dynamic correlation in a stochastic volatility model already imposes sufficient technical diffi-
culties. Secondly, it is at present unclear how well identified a correlation coefficient between
two innovation processes of unobserved volatility components would be.

A QML Approximation using SSOE

The major drawback of the DCSV model of the previous section is that it is fully nonlinear,
based on unobserved components. This leads to the need for advanced Bayesian sampling
techniques (more on this topic below) to get to an estimate of parameters, variances and
correlations.

In the article by Harvey, Ruiz, and Shephard (1994), a quasi maximum likelihood (QML)
approach was used to estimate the stochastic volatility model. Their approach entailed lin-
earising the model to a get to a model which can be estimated using standard Kalman filtering
techniques (Durbin and Koopman 2001). The linearised version of the univariate SV model
for rt reads

ln r2t = ht + νt (16)

ht+1 = γ + φ(ht − γ) + ξt (15’)

where νt = lnu2
t , ut ∼ N (0, 1), has a non-standard density. The density of νt is a transforma-

tion from the standard normal density of ut, with mean -1.27 and variance π2/2. When the
Kalman equations are used in the above setting, effectively a normal approximation to the
density of νt is used, and hence the resulting estimator is only a quasi-maximum likelihood
estimator. On the other hand, the approach has the appeal of being both intuitive and easy
to estimate, using the linear Kalman filter. The approach is not efficient, so results will be an
approximation of the outcomes of e.g. a Bayesian estimation approach of the exact model.

When the correlations ρt are introduced as in the DCSV model, a new source of non-
linearity appears. A general approach to cope with non-linear state space models is the single
source of error (SSOE) framework, presented in detail by Ord, Snyder, Koehler, Hyndman,
and Leeds (2005). Here, instead of allowing separate independent disturbances et and ξt as in
the equations above, in the multiple source of error approach, full correlation between these
disturbances is assumed, taking ξt ≡ ψνt−1 for some constant parameter ψ which is to be
estimated. Note how this provides a closer link to the GARCH approach, where also the
innovation in the return equation drives the changes in the variance equation.
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To link together a bivariate system of observations and the correlation sequence, the full
model is specified as

r1t = α+ βtr2t + ν0t, (5’)

ln r2it = hit + νit, i = 1, 2 (16’)

βt = ρt

√

exp(h1t)

exp(h2t)
, ρt =

exp(qt) − 1

exp(qt) + 1
, (12’)

qt+1 = qt + ψ0ν0t, (13’)

hi t+1 = γi + φi(hit − γi) + ψiνit. (15”)

In this setup, the time varying regression (5) of Section 2 is used to obtain more information
on the dynamics of the variance and covariance terms. This equation is combined with two
QML observation equations, (16’), while the three state equations describing qt and hit are
linked using smoothing parameters ψ0, ψ1, ψ2 to the disturbances of the observation equations.

Estimation of the SV models

The advantage of the SSOE-SV models is that they are able to handle non-linearity easily, as
the above set of equations can be solved recursively for a fixed set of parameters. This allows
the likelihood function to be calculated in a direct manner, optimising over the parameters
using standard methods.

One drawback is the lack of a smoother for SSOE models, so this approach is most suitable
for forecasting. Secondly, in a linear setup there is a close correspondence between the outcome
of a multiple source of error model and its SSOE counterpart; for the non-linear case, there
is no such clear correspondence, and results will depend on the precise implementation of the
links between the disturbances in the model.

Estimation of the DCSV model is more demanding, as the likelihood is not available in
closed form without integrating out the unobserved components hit, i = 1, 2 and ρt, t = 1, .., T
for volatility and correlation. Therefore, estimation is done here using a Bayesian approach
with data augmentation, using a Markov chain Monte Carlo method.

The algorithm proceeds, after initialising the parameters θ = (φi, γi, σi,ξ, ση), i = 1, 2 and
states, by iterating over the following steps:

i Sampling a new vector of ρ, by successively sampling ρt|ρt−1, ρt+1, yt, ht, θ, for t =
1, .., T . As this density is not available in closed form, instead a random walk Metropolis-
Hastings step is used with to sample from the posterior density

P (qt|qt−1, qt+1, yt, ht, θ) ∝ P (qt|qt−1, qt+1, ση) × L(yt;ht, ρt(qt)).

Both latter densities are simple normals, such that sampling a new value of qt is not
difficult. After sampling qt, it is transformed back to ρt;

ii Sampling two new vectors of h jointly, from the density of ht|ht−1, ht+1, yt, ρt, θ. Again,
the density is not easily tractable in closed form, but the posterior is again a combi-
nation of the density of ht|ht−1, ht+1, θ and the likelihood of the present observation
L(yt|ht, ρt, θ).
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iii Assuming a prior π(ση) ∼ IG-1(αη , βη), the posterior of ση is

P (ση|ρ) ∼ IG-1



α =
T − 1

2
+ αη, β =

(

T
∑

t=2

(qt − qt−1)
2

2
+

1

βη

)−1




iv The parameters γi|hi follow a simple normal density, assuming a normal prior with
mean µγ and variance σ2

γ ;

v The remaining parameters φi, σi ξ are sampled per asset i using another Metropolis-
Hastings step, with a random walk normal candidate density.

This algorithm results, after performing a sufficient number of iterations, in a sample from
the posterior density of the parameters θ and states h, ρ. For the analysis in subsequent
sections, the posterior mode of the parameters θ estimated over the available sample is used
as input for a particle filter (Pitt and Shephard 1999), to extract filtered estimates of the
states ρt, ht|y1, .., yt, conditioning only on past and present information. This gives a more
fair comparison than using the output of the MCMC chain, which describes the distribution
of the states ρt, ht|y1, .., yT conditioning on the full data set.

Table 1: Prior densities and moments
Parameter Density Prior parameters µ σπ

ση IG-1 αη = 1.3 βη = 100 0.13 0.13
γi N µγ = 0 σγ = 2 0 2
φi Beta αφ = 12 βφ = 3 0.8 0.1
σi ξ IG-1 αξ = 1.3 βξ = 300 0.075 0.075

A Bayesian procedure needs some prior information on the parameters. These priors were
fixed using information on the expected size of the parameters based on related research,
and taken with sufficient spread to allow the present data to decide on the location of the
posterior. The parameters, prior density family, prior parameters and moments of the prior
are given in Table 1. For all data series, these same priors are used.

Alternatively, Sandmann and Koopman (1998), with further extensions by Jungbacker and
Koopman (2005), provide a classical maximum likelihood approach for models with stochastic
variance, applying importance sampling to simulate out the unobserved states. This method
could be extended to include the time varying correlation as well.

4 Evaluating Model Performance

In this section the performance of the models is evaluated in four different settings. In Section
4.4 the portfolio standard deviation resulting from using the different modelling setups is
compared. Section 4.1 describes an alternative manner of comparing the models by the
construction of a realised covariation measure, based on theory by Andersen and Bollerslev
(1998) and Barndorff-Nielsen and Shephard (2004a). The steps needed to extract the measure
for data sets in practice are introduced.

With this realised covariation measure introduced, Section 4.2 introduces two data gener-
ating processes for analysis of simulated series in a controlled setting, and two sets of financial
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data. It is followed by Section 4.3, which starts the evaluation of the model performance com-
paring the estimated correlation with either the simulated or the realised correlation. The
aforementioned Section 4.4 compares the performance on the basis of the portfolio standard
deviation.

4.1 Realised covariation

The models presented in Section 3 deliver an estimate of the variances and correlations be-
tween two assets. In a simulation exercise, these estimates can be compared with the true
series underlying the simulated returns, but in applied work, no immediate comparison is
possible. Hence, an estimate of possible time-varying variances and correlations is useful for
judging whether a model’s estimate of these quantities can be considered acceptable.

In this paper an approach based on realised volatilities and realised correlations is taken.
Realised volatility is a concept discussed in e.g. Andersen and Bollerslev (1998), extended to
realised covariation in Barndorff-Nielsen and Shephard (2004a).

When M intra-day2 (demeaned) returns yj,i, j = 1, ..,M are available on day i, then the
realised covariation matrix for day i is defined as

RVi = [y∗M ]i =

M
∑

j=1

yj,iy
′

j,i.

The diagonal elements of the realised covariation matrix equal the original measure of realised
variation, whereas the off-diagonal elements can be used to construct an estimate of the
correlation between assets within a day.

Several considerations are necessary for controlling the precision of the correlation esti-
mates. First of all, obviously the returns within the vector yj,i should cover the same intra-day
period. For assets traded on geographically distinct markets, only intra-day returns of the
overlapping time period can be used.

Secondly, to obtain a good estimate of the daily covariation or correlation, the number M
of intra-day returns should be large enough. This can be troublesome due to data availability
as high-frequency data sets can be hard to come by, especially over longer time horizons.

Thirdly, the intra-day returns should not be of too high frequency either. When the fre-
quency is increased beyond 5-minute data, more intervals with few or no trades can be found,
leading to either a missing observation or a zero return, depending on the interpretation.
Other micro-structure type effects may occur as well, hampering the estimation of the daily
correlation. See e.g. Aı̈t-Sahalia, Mykland, and Zhang (2005) for a discussion of the optimal
sampling frequency in the presence of micro-structure noise.

A further consideration is the possible occurrence of jumps within series of asset prices.
Though on a daily basis a price process may seem smooth, intra-daily it is found that sudden
jumps can occur. If such a jump would occur in only one of the two series, it can seriously
alter the estimate of the correlation between the series, and therefore it would be convenient
to detect if jumps occur.

The theory of jumps and their detection is described in articles of Andersen, Bollerslev,
and Diebold (2005) and Barndorff-Nielsen and Shephard (2006). A possible procedure is to

2In the following sections, apart from daily covariation also weekly covariation is estimated. For simplicity

of argument, this section uses a day as the period of interest.
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calculate the bipower variation of series a in the vector y as

BPVi,a =

M
∑

j=2

|yj,i,a||yj−1,i,a|/µ
2, µ ≡

√

2/π.

The bipower variation gives an estimate of the integrated variance excluding possible jumps,
whereas the realised variation still includes those jumps. Hence, the difference between the
diagonal elements of RVand BPV, following Barndorff-Nielsen and Shephard (2004b), can be
used to estimate the jump process free of negative squared jumps as

Ji,a ≡ max ((diag RVi)a − BPVi,a, 0)

To test whether a jump is significant, Barndorff-Nielsen and Shephard (2006) use (among
others) a test statistic which they call the feasible linear jump statistic, reading

Ĝi,a =
(diag RVi)a − BPVi,a

√

δθQPVi,a

H0→ N (0, 1)

under the hypothesis H0 of no jump. QPVi,a in this formula is the realised quadpower
variation,

QPVi,a =
1

δ

M
∑

j=4

|yj,i,a||yj−1,i,a||yj−2,i,a||yj−3,i,a|/µ
4,

and θ ≡ π2/4 + π − 5.
To summarise, in following sections on financial data a realised correlation measure will

be constructed by

• using data on the 5-minute frequency, treating periods in which no trades occurred as
missing;

• applying above procedure for testing for the occurrence of jumps in all elements of the
vector of returns y, with a significance level of α = 0.05; when a jump is detected, the
largest absolute return in the series is deleted, and the testing procedure is repeated
until no further jumps are found;

• skipping data on the first 15 minutes of each trading day, to remove initial effects;

• for days with too few intra-day returns, setting the realised correlation measure to a
missing.

Clearly, these choices of operationalising the construction of an approximate measure of corre-
lation are debatable, and that a resulting series of correlations should be used as a guideline.
It was however found that this procedure is robust against e.g. changing the significance
level, the amount of data disregarded from the beginning of the day of returns etc. Including
also observations detected as jumps by the above procedure leads to a more erratic behaviour
of the estimate of the realised correlations, with more days displaying lower correlation than
average.
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4.2 Data

As mentioned before, four sets of data are used in subsequent section for comparing the
performance of different models in recovering the underlying correlation, and in constructing
a minimum-variance hedge portfolio.

The first two data sets are simulated series. In Engle (2002), a range of different GARCH
models are compared in their ability to extract a time varying correlation structure from
bivariate returns. The variances in the covariance matrix Ht of Equation (3) are specified as

σ2
1,t = .01 + .05y2

1,t−1 + .94σ2
1,t−1,

σ2
2,t = .5 + .2y2

2,t−1 + .5σ2
2,t−1,

implying a GARCH process for both returns. For the time varying correlation, several deter-
ministic processes are proposed. Here we look at two cases,

ρt = .5 + .4 cos(2πt/200), Slow sine

ρt = mod(t/200), Ramp

either providing a slow sine wave for the correlation, or a ramp structure.
Data is generated for a period of N = 1000 observations. Of these 1000 observations,

and of the two applied data sets, 90% is used for estimating the parameters, while 10% is
preserved as a hold-out period for assessing out-of-sample performance.

The latter two data sets compare the S&P 500 index to either its own future, or to the
FTSE 100 index. In the first case, daily data over the period January 7, 1998–December 28,
2006 is used, for a total of N = 2266 observations. The data are obtained from DiskTrading3,
and concern the daily index or future price at closing time. For this same period, data is also
available from the same source at the 5 minute frequency, to construct the realised correlation
measure as presented in Section 4.1. This data set allows to investigate the common situation
of an investor trying to hedge his or her risk using a future on the same stock.

The second applied data set compares the S&P 500 as traded in New York to the FTSE 100
index, traded in London. From Yahoo Finance4, a longer series of daily prices is available. Of
these, the Friday closing price (or last day of the week, in case the market is closed on Friday)
is taken to construct a weekly time series over the period January 4, 1985–December 31, 2006,
for a total of N = 1147 observations. Such a longer time period, with assets trading on two
geographically distinct markets, can display the robustness of the models to more variation
in correlation. It however also hampers the construction of a reasonable realised correlation
measure: For the FTSE index, we only have available data from DiskTrading at the 5 minutes
frequency for the period of August 21, 1998 until December 10, 2004. The realised correlation
series can be extended until the end of December 2006 by using a high-frequency future series
on the FTSE 100, which is availabable from September 2002–December 2006.5 Over this
subperiod a comparison of the realised correlation to the model based correlation can be
made, again remembering that the realised correlation measure is a rough approximation to
the true underlying correlation.

3See http://www.disktrading.com.
4See http://finance.yahoo.com, symbols SNP:^GSPC and FSI:^FTSE.
5Effectively, over the period where both high frequency FTSE and future data is available, both are used

for calculating a realised correlation measure against the S&P 500 series. Both correlations line up reasonably

well, apart from a roughly constant difference as the future is less correlated with the S&P 500 series as the

FTSE index itself. For the latter part of the sample, the correlation between FTSE future and the S&P 500

is adapted for this difference.
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Table 2: Data availability
Data In-sample Out-of-sample Correlation
Sine 1-900 901–1000 1–1000
Ramp 1-900 901–1000 1–1000
S&P 500-Future 1998/1/2–2006/2/3 2006/2/6–2006/12/28 1998/1/2–2006/12/28
S&P 500-FTSE 1985/1/4–2004/10/15 2004/10/22–2006/12/29 1998/8/21–2004/12/10

+ 2002/9/27–2006/12/29

As a summary, Table 2 reiterates the availability of the data for the four data sets, and
the periods which are used for estimation, ie. the first 90% of the data, the out-of-sample
period, and the period for which a correlation measure is available.

4.3 Recovering the correlation structure

Before moving on to the hedging performance of the different model, in the next section, here
the question is whether these models are able to reconstruct the correlation sequence from
the bivariate data series.

Table 3: MSE of correlation measure, for simulated data
MSE(ρ̂) Sine MSE(ρ̂) Ramp

in-sample out-of-sample in-sample out-of-sample

Naive 32.96 33.40 36.38 8.46
CAPM 8.12 8.10 8.41 8.64

TVR 4.80 4.72 7.31 3.10
BEKK 3.39 3.67 5.27 3.44

DCC 3.11 2.78 4.78 2.18
DCSV 3.36 4.25 6.32 2.62
SCSV 8.18 8.21 8.45 7.96

SSOESV 4.77 5.23 6.90 4.15

Note: The table reports the average mean squared error (×100) of the estimated correlation,
both in-sample (the first 90% of the observations) and out-of-sample (over the last 10% of
the simulated data), over 100 iterations of generating data from the DGP and estimating
the models.

For the simulated data sets, the true correlation is known. Table 3 displays the average
mean squared error (MSE) for the models, and the percentage difference with the best model.
The MSE was averaged over 100 repetitions of generating data and reestimating the models.
For the models estimated using the Gibbs sampler with data augmentation, a posterior sample
of 1000 iterations is collected after allowing a burn-in period of 100 iterations.

Clearly, fixing the correlation at 1 as the Naive model does, is not a good way to recover
the true correlation. The fixed correlations of the CAPM and SCSV models are likewise not
good at estimating either a sine or a ramp structure.

Closest correspondence between the true and estimated correlations is found with the DCC
model, with the DCSV and BEKK following closely behind. This indicates that modelling
the correlation seriously does indeed pay off. The approximate SSOESV model is behaving
roughly on par with the TVR model, slightly better even in sample.
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For the applications of measuring correlation between the S&P 500 index and either its
future or the FTSE 100 index, the MCMC method was run for the DCSV and SCSV models
until a sample of size 10.000 parameter vectors was collected, after a burn-in period of 1.000
iterations. On this data, one has to take into account that the measure of comparison,
the realised correlation, is only an approximate measure of correlation, and that even this
approximate measure is only available for a subperiod in the case of the S&P 500 vs the
FTSE (see Table 2). Therefore, Table 4 should only be used as a reference point, and not for
drawing hard conclusions as to which model best fits reality.

Table 4: MSE of correlation measure vs realised correlation, for financial data
MSE(ρ̂) S&P vs Future MSE(ρ̂) S&P vs FTSE

in-sample out-of-sample in-sample out-of-sample

Naive 3.08 0.56 21.11 12.63
CAPM 2.23 0.23 2.98 1.82

TVR 1.96 0.54 7.70 3.28
BEKK 2.24 0.24 5.56 2.96

DCC 2.10 0.21 4.42 1.54
DCSV 2.04 0.25 4.43 1.70
SCSV 2.33 0.26 2.82 2.19

SSOESV 2.03 0.14 2.59 2.04

Note: The table reports mean squared error (× 100) of the estimated correlation, as com-
pared with the realised correlation calculated on 5-minutes returns, both in-sample (the first
90% of the observations) and out-of-sample (over the last 10% of the data), for as far as the
high frequency returns are available.

As the correlation between S&P 500 and its future is high, especially on a daily basis,
taking the naive stance of putting it to one is not that terribly bad, as seen in the first two
columns of Table 4. The CAPM and SCSV models fix the correlation at values of around
0.97, so the MSE for these models is not much different from the one of the naive model.
The other models manage to lower their MSEs somewhat, down to 1.96 for the time varying
regression model. For the S&P 500 vs FTSE results, the CAPM model gives lowest MSE. To
understand where these results come from, it is instructive to discuss plots of the estimated
correlation, and the way they relate to the realised correlation over the sample.

Figure 1 displays the estimated correlations, and from it is seen how the results especially
for the TVR, DCC, DCSV and SSOESV models are not so different: A consistently high
correlation is found, such that also the MSE will be similar between these models. Comparing
the correlations of the models which are closest to the realised correlation with this correlation
measure itself, in Figure 2, shows that throughout the sample, the realised correlation ends
up consistently lower than the model-based measures.

Also, the realised correlation as extracted from the high frequency returns is very volatile,
even after removing obvious jumps from the time series. Throughout 2000-2001, the number
of trades in the data set on the futures is going down, to jump up again at the start of
2002. This is apparent from a distinctly higher estimate of the correlation from this moment
onwards. Changing the frequency to minute-by-minute data does not significantly alter these
results. This can serve as a warning message, that finding a time-varying estimate for the
correlation between two high frequency time series may be difficult, and one would do better
to judge the model performance on the basis of e.g. the portfolio hedging in the next section.
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Figure 1: Model based correlation measures of S&P 500 vs its future
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Figure 2: Correlation of S&P 500 vs its future, for the TVR, DCSV and SSOESV models, as
compared to the realised correlation

For columns 3 and 4 of Table 4, remember that the MSE of the correlation is only computed
over the period August 1998–December 2006, where the high frequency data for the S&P 500
and the FTSE indices was available. Over this period, the correlation resulting from the
SSOESV model seems closer to the realised correlation, though out-of-sample the DCC and
DCSV model seem to perform better again.

Figures 3–4 give corresponding plots on the estimated correlations, with for the period
starting in August 1998 the comparison with the realised correlation. In this case, there
is less discrepancy between the realised and model-based measures. The three model-based
measures follow the increase in correlation between 2000–2002, with a slight decline indicated
by the DCC and DCSV measures after 2003.
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Figure 4: Correlation of S&P 500 vs its future, for the DCC, DCSV and SSOESV models, as
compared to the realised correlation, over the subperiod starting in August 1998

4.4 Lowering the portfolio risk

The main idea behind the CAPM is to construct a portfolio which would lower the risk of
holding the asset by itself, through hedging. Both in the case of simulated data as in the
applications, such a portfolio based on the different models can be constructed to get to
the lowest possible portfolio standard deviation. Tables 5–6 display this standard deviation,
both in- and out-of-sample, together with the percentage difference with the lowest standard
deviation.

For building a low-variance portfolio, it clearly is important to know not only the corre-
lation between the two assets, but also the relative variances. For the simulated data series,
the lowest risk is obtained using the DCSV model, both in- and out-of-sample, apart from
one virtual tie with the SSOESV in the out-of-sample sine data case. For the more extreme
ramp data, the SSOESV is not behaving as good: A detailed look at the estimated corre-
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Table 5: Portfolio standard deviation, simulated data
σ(rp) Sine σ(rp) Ramp

in-sample out-of-sample in-sample out-of-sample

Naive 1.036 [39.7] 1.061 [38.5] 1.056 [40.4] 0.763 [26.0]
CAPM 0.824 [11.0] 0.845 [10.3] 0.834 [11.0] 0.695 [14.9]

TVR 0.870 [17.3] 0.824 [7.5] 0.821 [9.2] 0.656 [8.4]
BEKK 0.804 [8.3] 0.843 [10.0] 0.818 [8.8] 0.675 [11.6]

DCC 0.801 [7.9] 0.816 [6.4] 0.820 [9.1] 0.660 [9.1]
DCSV 0.742 [0.0] 0.768 [0.2] 0.752 [0.0] 0.605 [0.0]
SCSV 0.814 [9.8] 0.842 [9.9] 0.824 [9.6] 0.680 [12.5]

SSOESV 0.747 [0.7] 0.766 [0.0] 0.880 [17.1] 0.645 [6.7]

Note: The table reports the portfolio standard devation, both in-sample (first 90% of the
data) and out-of-sample, with the percentage difference with the lowest standard deviation
reported between square brackets.

Table 6: Portfolio standard deviation, financial data
σ(rp) S&P vs Future σ(rp) S&P vs FTSE

in-sample out-of-sample in-sample out-of-sample

Naive 0.300 [13.9] 0.169 [7.5] 1.963 [18.7] 1.074 [13.4]
CAPM 0.294 [11.8] 0.169 [7.7] 1.731 [4.6] 0.984 [3.9]

TVR 0.295 [11.9] 0.168 [7.5] 1.704 [3.0] 0.984 [3.9]
BEKK 0.295 [11.9] 0.171 [9.3] 1.704 [3.0] 1.030 [8.8]

DCC 0.302 [14.8] 0.170 [8.2] 1.706 [3.1] 0.997 [5.3]
DCSV 0.268 [1.7] 0.159 [1.3] 1.657 [0.1] 0.947 [0.0]
SCSV 0.263 [0.0] 0.157 [0.0] 1.665 [0.6] 0.969 [2.4]

SSOESV 0.292 [10.8] 0.175 [11.7] 1.654 [0.0] 0.966 [2.1]

Note: See Table 5 for an explanation of the entries in the table.

lations indicates that the SSOESV model can sometimes run into trouble when estimating
low correlations, possibly leading to explosive behaviour. In more realistic cases, this should
however not be a problem.

Note how the BEKK, DCC and SCSV models consistently lag the DCSV model, at around
9% of a difference in standard deviation, and how the simple CAPM model doesn’t do so bad,
with a standard deviation of the portfolio which lies on average 11% above the result of the
DCSV model, in the case of the simulated data.

More interesting are the real-world results for the financial data hedging, in Table 6.
For the S&P 500 against the futures data, in the first four columns, the true SV models
take the lead, where the generalisation from the SCSV to time varying correlation does not
seem to be as important as the introduction of stochastic volatility itself. The other models
result in rather similar portfolio standard deviations, at least for this data set, both in- and
out-of-sample.

For the S&P 500 vs FTSE data, both DCSV and SSOESV track the volatility and corre-
lation well, resulting in a low hedged portfolio variance. The multivariate GARCH models,
BEKK and DCC, do not deliver any advantage as compared to either the simpler TVR model,
and perform out-of-sample even worse than the simplest CAPM.
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It is important to note that the closest correspondence between the correlation estimate
with the true or (estimated) realised correlation is not predictive of optimal variance minimi-
sation for the hedged portfolio.

5 Conclusions

This article studied the possibility of building a hedge portfolio out of two assets, using
industry-standard approached like the CAPM or with a naive hedge, and compared these to
more advanced approaches applying BEKK and DCC GARCH-type models. Furthermore,
novel methods are proposed, like allowing for time variation in the CAPM using a time varying
regression model, or using an unobserved components approach with stochastic volatility and
stochastic correlation. For comparison, also a static correlation SV and an approximate
single-source-of-error-SV model are introduced, of which the latter is entirely novel.

In order to judge the relative performance of the models, two criteria are considered: Either
the precision with which the correlation is estimated, or, more importantly, the resulting
variability of the hedged portfolio.

For simulated data, the more elaborate, non-approximative models BEKK, DCC and
DCSV perform better in recouping the correlation, especially when the underlying correlation
comes from a smooth process like the simulated sine. For the financial series it is found
that the construction of a reliable correlation measure based on intraday returns is not as
straightforward as could be hoped for.

Using an advanced method of constructing a measure of realised correlation, adapting
for jumps in the return process, taking great care in only using returns which correspond
to the same time period for both series, leaves a rather volatile correlation series which
seems hampered by a lack of clean data, especially for the S&P 500 futures data pre-2002.
Therefore, reported measures on the MSE of the correlation (which maybe should be called a
mean squared difference with the realised correlation), is not taken too seriously in comparing
the models using real data.

A more definite result of the computation of model-based correlations is that for the S&P
500 vs its future the correlation has been high, around 0.97, and nearly constant, throughout
the entire sample period 1998–2006. The model-based estimates agree in this respect to a
high extent.

For the longer time series concerning the S&P 500 and FTSE indices, the models agree
that overall correlation increased, from 0.4-0.6 in 1984 up to 0.8 at the end of 2006. However
the path of the correlation is estimated differently for the models used.

This distinction between the models is highlighted further in the resulting variability of
the optimal portfolio that can be constructed using the models. For both the simulated and
financial data, models of the SV class are preferred for lowering the variability. For the S&P
500-futures data, the static correlation SV model results in lowest variability of the hedged
portfolio. As the correlation between these assets was found to be nearly constant throughout
the sample, intricate modelling seems not to help much, apart from getting a good grasp on
the volatility in each of the series. For the other series, DCSV or even the approximate
SSOESV performs better, also lowering the standard deviation of the portfolio by 3-14.8% as
compared to the GARCH approaches.

The fact that this latter result also holds for the simulated data is quite remarkable: The
DGP of the volatilities in the simulation was of the GARCH-type, with only the correlation
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simulated in a way differing from the BEKK or DCC specifications. Even so, the fully
misspecified DCSV model delivers a better performing hedged portfolio.

Only bivariate models have been applied in this article, in order to grasp the importance
of modelling correlation correctly in a simple hedge portfolio of two assets. The extension to
multiple assets, though interesting in its own right, would obfuscate one of the main findings
that, at least for the series considered here, applying a flexible volatility model is at least
as important as allowing the correlation to change over time. However, an extension to
multivariate DCC-GARCH vs. DCSV along the lines proposed in Yu and Meyer (2006),
effectively following the framework of Engle (2002), could be an interesting possibility.

Furthermore, the approach taken in this article of extracting a measure of realised corre-
lation was a very practical approach: Available data was used as best as possible, but further
detail in results and further finetuning of the algorithm, with possibly a combination of dif-
ferent frequencies for computing the correlation measure, could deliver a better comparative
measure.
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