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Abstract: Assessing the scope for insurance in rural communities usually requires a 

structural model of household behavior under risk. One of the few empirical applications of 

such models is the study by Rosenzweig and Wolpin (1993) who conclude that Indian 

farmers in the ICRISAT villages would not benefit from the introduction of formal weather 

insurance. In this paper we investigate how models such as theirs can be estimated from 

panel data on production and assets. We show that if assets can take only a limited 

number of values the coefficients of the model cannot be estimated with reasonable 

precision. We also show that this can affect the conclusion that insurance would not be 

welfare improving. 
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1 Introduction 

 

Insecurity is a key aspect of poverty. There now is substantial evidence that 

exposure to risk (in the absence of well-functioning financial markets) is often 

reflected in very large volatility of a household’s consumption over time (e.g. 

Baulch and Hoddinott, 2000; Dercon, 2005). There still is little clarity on the policy 

implications of such churning. For example, Rosenzweig and Wolpin (1993) argue 

that rural households need micro credit, but Dercon (2005) favors formal insurance 

arrangements. While many insurance schemes are now being piloted (including 

rainfall insurance in Ethiopia and option contracts on coffee prices in several 

African countries) very little is known of their costs and benefits relative to existing 

risk coping institutions. To assess new policy initiatives in this area we  need to 

know more about their welfare effects. 

In choosing risk-coping strategies households face, of course, a trade-off between 

the mean and the volatility of their income. For example, a household can reduce 

the volatility of its income through crop diversification, but it will thereby lower its 

mean income by foregoing the gains from specialization. The household thereby 

pays an implicit risk premium and this must be taken into account in the evaluation 

of policy interventions, such as micro credit, price stabilization or formal insurance. 

The evaluation should assess not only the change in volatility as a result of the 

intervention, but also the change in the (implicit) premium. Households can also 

use consumption smoothing by accumulating or decumulating assets to cope with 
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risk.1 Here the implicit premium is the loss of production as a result of using assets 

for this purpose. 

Ideally, the scope for insurance can be evaluated by comparing villages with and 

without insurance where treatment villages have been selected randomly and the 

distribution of shocks is known. Alternatively, if locations differ in risk exposure this 

can be exploited as a natural experiment to infer how behavior would change 

under insurance. Clearly, the villages must then be similar in all other respects. 

Matching or differencing offers some scope for relaxing this requirement but only if 

all relevant variables are observed. In practice unobserved heterogeneity is likely 

to be a major problem. In that case there is no alternative to estimating a structural 

model, using panel data. Such a model can be used to derive how agents would 

behave if insurance were available, even if no agent had been observed in that 

situation. Obviously, this requires estimation of the model’s structural parameters. 

An important advantage of this procedure is that the researcher does not need to 

know the distribution of the shocks to which the households are exposed; 

estimates of the parameters characterizing that distribution will be generated as 

part of the estimation procedure.  

Lucas (2003) suggested on the basis of a back-of-envelope calculation that 

insurance could not have a substantial effect on growth. However, he considered a 

situation with much less risk than is common in many developing countries. 

Unfortunately, for developing countries there are few empirical studies. 

A notable exception is the famous paper by Rosenzweig and Wolpin (1993) 

(henceforth RW). They estimated a structural model using the ICRISAT data 
                                                 
1 See e.g. Tanner (1997) for US evidence and Elbers et al. (forthcoming) for Zimbabwe evidence.  
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collected in three Indian villages. The model describes investment behavior under 

risk where investment in bullocks is the key decision variable. Bullock ownership 

can take three values: 0, 1 or 2. The model is estimated from data on production 

and bullock ownership, but not on consumption. RW stressed that the villagers in 

their sample participated in an informal insurance arrangement which established a 

floor under their consumption level. They found that the introduction of actuarially 

fair insurance (AFI) would not be welfare improving: households were already 

sufficiently protected through informal insurance. Rosenzweig and Binswanger 

(1993) using the same data reached the opposite conclusion: the poorer ICRISAT 

farmers would benefit greatly from the introduction of insurance. Average profits in 

the bottom wealth quartile would increase by about one third for a reduction in 

weather risk of one standard deviation. However, their conclusion was not based 

on a dynamic model: a household’s total wealth was taken as given. Elbers, 

Gunning and Kinsey (forthcoming) estimate a structural model for smallholder 

households in Zimbabwe. They found a massive effect of the introduction of AFI: 

on average in their sample households would accumulate a capital stock (cattle) 

twice as large (over a 50-year period) as in the absence of insurance (when 

consumption smoothing is the only risk coping strategy available to them). As in 

RW this model is estimated on the basis of production and capital stock data but in 

this study the capital stock is a continuous variable. 

In many rural economies the key asset of a household is livestock, e.g. one or two 

bullocks. The use of a discrete concept of the capital stock is therefore a natural 

choice. In addition, it is well-known that households recall their cattle ownership 
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quite accurately. An implication is that observing the number of cattle is likely to be 

less subject to measurement error than, say, consumption. However, this 

advantage may well come at very high econometric costs, as we show in this 

paper. The question we investigate is whether the RW research agenda is feasible 

in the sense that robust conclusions about the welfare effects of insurance can be 

derived from a structural model estimated from production and capital stock data if 

the capital stock can take only a limited number of values. Our approach is to 

specify a simplified version of the RW model; to use the model as data generating 

mechanism; to find out how accurately we can recover the underlying behavioral 

parameters by estimation, given the values of all other parameters and given the 

true model specification; and, finally, to use the findings to assess the robustness 

of the policy conclusion on the desirability of the introduction of insurance.  

The structure of the paper is as follows. In the next section we show under what 

conditions the use of limited dependent variables in this class of models may lead 

to large standard errors. In section 3 we specify the model and use simulation 

experiments to derive the distribution of the structural coefficients. We find, as 

expected, very large errors. It turns out that in this class of models the RW 

conclusion as to the welfare effects of insurance is not robust. Section 4 concludes. 
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2 Limited Dependent Variables 

 

Consider the following deterministic intertemporal optimization problem  
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and β  a discount factor. The usual interpretation of the model is that output 
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We will assume that the solution is unique. Note that the optimization problem is 

stationary, implying that ϕ  does not depend on t . 

There are several ways to extend the decision problem to a stochastic framework. 

One possibility is to allow for random shocks in )(kf  and to maximize the expected 
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value of summed discounted utility with respect to investment policies. If the 

shocks are serially independent the optimal policy is again an investment function 

of the form ))(( kfϕ . 

In the deterministic case the functions )(⋅f  and )(⋅ϕ can be identified from a 

sufficient number of different 0k  observations and subsequent observations on the 

capital stock and output. (Note that there is no need to observe consumption since 

it follows from )(1 ttt kfkc += + .) The question arises whether observation of )( tkf   

(subject to shocks) and tk̂  is sufficient to recover the behavioral parameters of the 

process, namely the discount factor β  and the parameters of )(cu . The answer is 

affirmative: by integrating the Euler conditions for an optimal accumulation path we 

can normally recover β  as well as the utility function (over the relevant part of its 

domain and up to an affine transformation). 2  Knowledge of the behavioral 

parameters allows us to study counterfactual situations, such as the introduction of 

insurance.3 

Now suppose that tk  is restricted to a limited number ( n ) of integer values.4
 

Recovering the behavioral parameters of the model now becomes problematic. For 

example, in the deterministic case since there is a one to one mapping from tk  to 

tk̂  and )( tkf  can only take n  numbers, if the number of behavioral parameters 

exceeds n  they cannot be recovered, irrespective of the number of observations 

                                                 
2 Elbers and Gunning (2002). 
3 From a positive economics perspective this is the very reason for writing accumulation as an 
optimization problem instead of being satisfied with a purely descriptive function ϕ . 
4 This is similar to the situation studied by RW where asset ‘ k ’ is in fact a vector of stocks: bullocks, 
pump and calves of various ages, all integer valued. The number of bullocks can take only three 
values: 0, 1 and 2. 
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because no more than n values of k are observed. In the stochastic case (with 

)(kf  subject to shocks) output is a continuous variable while k  is discrete. The 

investment function ϕ  is now a step function characterized by threshold values iw  

and corresponding asset levels ia  so that  

000 == aw  

it ak =+1
ˆ , if 1)( +<≤ iti wkfw  

Since the asset levels ia  are integer-valued they do not carry local information 

about the behavioral parameters; the parameters must therefore be determined 

from the threshold values iw . The number of threshold values therefore determines 

the number of parameters of the behavioral process that can be estimated. 

As an example take the case where k  settles on a steady state value of 2 and all 

households have initial values 0k  below this number. Then the data will at best 

allow the researcher to determine the thresholds 1w  and 2w .5
 Consequently only 

two parameters of the behavioral process can (normally) be estimated. 

More information can be obtained if there is more heterogeneity between observed 

cases. For instance, if the time horizon of the optimization is finite (say, until the 

death of the agent) and agents differ in age, then the investment function ϕ  and 

the threshold values iw  become age-dependent. Also, the production function 

)(kf  could differ across households, again leading to multiplication of observable 

threshold values. If such heterogeneity affects some (but not all) of the parameters 

it can be exploited in pooled estimation. 

                                                 
5 It is possible that 21 =a  in which case only 1w  can estimated. 
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RW use both methods. They assume a finite decision horizon, leading to 

heterogeneity in asset holding policies across decision makers of different age. 

Irreversibility of the installation of a pump leads to a shift in the production function 

for pump owners.  

Whether heterogeneity can indeed be used to solve the estimation problem is an 

open question.6 RW in fact fix the value of one of the three behavioral parameters, 

the discount factor. Further, as we will show for a simplified version of their model, 

but with similar parameter values, heterogeneity introduced by pump ownership 

does little to improve the situation since conditionally on pump-less threshold 

values, behavioral parameters have almost no effect on pump-inclusive thresholds. 

Also, age-based heterogeneity has very little effect on investment behavior except 

for households with elderly heads; this gives such households inordinate weight in 

the estimation procedure. 

We conclude that estimation of behavioral parameters underlying an accumulation 

process is inherently difficult if the asset involved can take only a few discrete 

values. The problem can be solved by putting additional constraints on the 

parameters, but any counterfactual analyses based on the estimated parameters 

must then be checked for robustness against such constraints. We also suggest 

that the identification problem can be solved if the asset becomes continuous. 

 

                                                 
6 Rust (1994) provides detailed discussion of the identification of  dynamic discrete choice models, 
presenting sufficient conditions under which the model can be identified and a simple and general 
estimation theory is available. One of the restrictions required in his discussion is that shocks enter 
into the utility function additively, which is violated in the RW model. As Rust (1994) mentions, no 
general estimation theory exists for this case. 
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3 Simulations 

 

For our simulations we use a simplified version of the RW model. 7  We first 

describe the model and then discuss the simulations. 

3.1 The model 

 

In the simplified RW model each agent solves: 
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where the agent’s instantaneous utility function is characterised by the parameter  

0>γ  ( 1≠γ ), β  is the discount factor, minc  is a minimum consumption level  

supported by an informal insurance arrangement,8 c is the level of consumption 

                                                 
7 In this model consumption smoothing is the only coping mechanism. Maitra (2001) finds evidence 
of another coping mechanism, changes in labour supply.  
8 In this RW specification minc  has unfortunately a dual role: it is the level of consumption below 
which a household cannot survive and also the level guaranteed by the informal insurance 
arrangement. It would be more natural to specify different parameters for these roles so that the 
welfare effect of a change in the protection offered by the insurance scheme can be analyzed. 
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before any support from the insurance arrangement, w  is wealth at hand (available 

for consumption and investment), k  is the capital stock (constrained to take the 

values 0, 1 or 2) with price kp , P  is a dummy variable indicating whether the 

household owns a pump (with price pp ) and ε  is an income shock (a draw from a 

distribution known by the agent). Income shocks are independent over time. The 

function )(kα takes the values 0α , 1α , 2α  for =k 0, 1, 2 respectively; this picks up 

the effect of bullock ownership on income. The productivity of pumps is captured 

by pα . The age of the household head (which determines the time remaining until 

time T ) is denoted by τ. In this formulation investment in pumps (which is 

irreversible) is exogenous (contrary to the RW formulation). Agents without a pump 

do not expect to acquire one. Expected utility is maximized with respect to the 

policy function  τϕ .  

Note from (1) and (3) that the insurance arrangement will pay out only to 

households without cattle: a household with mincc < will have to sell its cattle before 

it is entitled to consumption support since c  is defined as the difference between 

wealth at hand ( w ) which includes the cattle asset and the investment.  

The optimal policy function will depend on τ  and P . Given these two parameters 

the function will involve two threshold values for wealth at hand, 1w , 2w  such that in 

each period the household chooses 1=k for 21 www <≤ , 2=k for 2ww ≥  and 0=k  

otherwise9. 

                                                 
9 There are two possible cases for the order of the thresholds. Besides the case used in this paper, 
the only possible case is the one mentioned in footnote 4. Since we do observe households with 
one bullock in the data, we exclude this case in this paper. 
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Like RW we assume that 0k , τ , P  and the capital stock tk  are observed without 

error, but that instead of tw  the researcher observes ttt ww η+=~ , where tη  is 

measurement error, i.i.d. and independent of household shocks tε . 

3.2 Simulations set-up 

 

We impose the following values (based on the RW estimates) for the three 

structural coefficients: 1469min =c , 95.0=β , 964.0=γ . We set 992=kp , 6338  =pp , 

0  0 =α , 326  1 =α , 1800  2 =α ,  1795 =pα  (based on RW estimates and the value 

used in their paper). The distribution of ε  is normal with zero mean and 2293 =εσ . 

Note that this is very high relative to the value of minc . The observation error η  is 

also normally distributed with zero mean and standard deviation 427  =ησ . The 

maximum plan horizon 0T  is 70 periods. We solve the investment thresholds w  by 

using backward recursion which is discussed in Rust (1994) as the main solution 

method for finite-horizon models. With these parameter values the investment 

thresholds w  are virtually insensitive to age τ  for all but the oldest households. 

We have therefore eliminated age heterogeneity, imposing ∞=0T . For these 

parameter values we find thresholds 2461  1 =w  and 3453  2 =w  for households 

without a pump and again 2461  1 =Pw  and 3453  2 =Pw for households owning a 

pump.10 

                                                 
10 Note that the threshold values are insensitive to pump ownership. 
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The set-up of the simulations is as follows. Each of thirty households is endowed 

with exogenous values 0k  and tP . Next we generate a series of eight11
 shocks tε  

and measurement errors tη  for each household. The shocks are independent 

across households.12
 The measurement errors are applied to the true values tw  to 

generate the ‘observed’ values tw~ . The dataset now consists of a vector 

},|~,,...,~,{ 011 tss Pkwkwk  for each household. The maximum likelihood estimates of 

the three behavioral parameters ),,( min βγθ c=  are derived for this data set (with all 

other  parameters set at their true values). We then generate a new data set and a 

new set of estimates of θ . By repeating this procedure of data generation and 

estimation many times we generate the sampling distribution of the θ -estimators, 

given the values of all other parameters and the true underlying model specification. 

Maximum Likelihood Estimation 

Define 11 =tD  if 1=tk , and zero otherwise. Similarly for 12 =tD  if 2=tk . With this 

notation the likelihood contribution of a household is proportional to  

t= 0

9

∏ [Pr(kt +1 = 0 | ˜ w t ,kt ,Pt )
1−D1,t+1−D2,t+1 × Pr(kt +1 =1 | ˜ w t,kt,Pt )

D1,t +1 × Pr(kt +1 = 2 | ˜ w t,kt,Pt )
D2,t+1 ] 

                                                 
11 Eight is also the number of periods in RW. RW do not mention the number of households, but the 
ICRISAT data set contains 30 medium-size households with two or more observations. RW use the 
data from this medium-size group of households. 
12 This is, of course, a simplification; in practice there will be covariance, e.g. in the case of weather 
shocks.  
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The three probabilities after the product sign are derived from a normal 

distribution 13
  

2222222 /),/()(( ηεηεηεε σσσσσσσηε +++N  with cumulative distribution 

function Γ . For instance, if the household has no pump 

 )()0,,~|0Pr( 011 α−Γ===+ ttttt wPkwk     (4) 

Note that the likelihood depends only indirectly, through the threshold values w , 

on the parameters θ . Maximizing the likelihood therefore involves computing the 

threshold values as a function of θ . To reduce the computational burden we have 

calculated the thresholds on a grid of parameters θ . Linear interpolation14
 of these 

threshold values on the grid values of θ  is then used to approximate the threshold 

values for non-grid values of θ . The interpolated values turn out to be highly 

accurate approximations to the exact threshold values. We then substitute the 

interpolated threshold values )(ˆ θw  in the likelihood function. For instance, in 

equation (2) we get  

 ))(ˆ()0,,~|0r(P̂ 011 αθ −Γ===+ ttttt wPkwk  

It is now straightforward to maximize the likelihood with respect to θ . In all cases 

we have used the true parameter values ( 95.0=β , 964.0=γ , 1469min =c ) as initial 

point for the optimizing algorithm. Moreover, we have restricted parameters to the 

bounds imposed of the grid of parameters for which the true thresholds have been 

computed, i.e. intervals )(0.59,0.99  for β , 89)(0.899,0.9  for γ  and  (0,2997)  for minc . 

The bounds have been chosen to make the thresholds estimated precisely. Since 

                                                 
13 Note that tktptt kpPkw −−−=+ ααηε )(~ . 
14 The interpolation method used is a trivariate version of the “Four Point Formula” in Abramowitz 
and Stegun (1972, p. 882). 
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the estimates of β ,γ  and minc  should be close to their true values if they could be 

estimated from the model the choice of different bounds do not make difference to 

the estimation of the parameters. 

3.3 Results 

 

With the above choice of model and parameters it turns out that the threshold 

values 2,1w  are virtually insensitive to parameters β  and γ . Hence it is impossible 

to estimate these parameters with any accuracy. We find that γ  tends to settle on 

one of the bounds and β  tends to stay very close to its initial value. Figure 1 is a 

typical scatter plot of the joint ),( γβ  sampling distribution, based on 100 

simulations. 

On the other hand, minc  can be estimated fairly accurately. The mean and standard 

deviation determined from 100 simulations are 1444.7 and 80.3. 

Recall that the heterogeneity in pump ownership raises the number of thresholds 

above the number of parameters so that the problem discussed in section 2 of 

having to recover three coefficients from two threshold values does not arise. 

However, it turns out that the extra pair of thresholds do not convey sufficient 

additional information: as may be seen from Figures 2 and 3 the thresholds for 

pump-owning households are almost insensitive to the behavioral parameters 

given the corresponding thresholds for the other households. Hence the second 

pair of thresholds convey little extra information on the parameters. In fact, we find 

that the thresholds are almost exclusively determined by the value of minc , so that 
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the combined figures trace essentially a one-dimensional sub-set in the space of 

threshold values. This is why only a single parameter can be estimated with 

reasonable precision. 

What are the implications for the robustness of the conclusion that actuarially fair 

insurance would not raise welfare? We investigate this by calculating W∆ , the net 

increase in welfare (i.e. the expected value of discounted utility) as a result of 

replacing the informal arrangement supporting minc  with AFI.15
 We do this for each 

of six household types, defined by whether they have (initially) a pump and 

whether they start with 0, 1 or 2 bullocks. Table 1 shows W∆  for each of these 

household types and for various values of β  in the 0.99) (0.59,  range, and putting 

all other parameters to their true value.16
 The values shown in the Table are 

calculated under the assumption that no household will acquire a pump: the first 

three household types remain pumpless throughout. 

The Table shows that the first two types of households (those who initially have no 

pump and at most one bullock) would not be willing to give up the informal 

insurance arrangement (which guarantees a consumption level minc ) in exchange 

for AFI. The reason is simple: under AFI they would no longer enjoy the positive 

income shocks which they experience under the (asymmetric) informal insurance 

                                                 
15 Recall that this measure is biased since (as RW recognise) the cost of the informal arrangement 
would be reflected in a premium which would not have to be paid under AFI. Since RW do not know 
this cost (which is reflected in )(kα ) they ignore it in the comparison: hence under AFI the 

household continues to pay the same premium. This is a major issue: given the choice between AFI 
(i.e. constant consumption) and an arrangement where the household would receive positive 
shocks but (as a result of the minc  floor) no negative shocks it might well prefer the latter if the two 
schemes did not differ in cost. This would, obviously, say nothing about the desirability of AFI. 
Rather, it would reflect the failure to model explicitly the cost of the minc  scheme.  
16  The welfare changes can only be compared within rows since different rows correspond to 
different preferences. 
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arrangement. For richer households this advantage of the minc  arrangement is 

offset by a larger difference between minc  and mean consumption: the informal 

arrangement gives them little downward protection. As a result, households with 

pumps or with two bullocks would switch to AFI. Clearly, the aggregate effect 

depends on the distribution of the population over household types and on the 

discount factor. In the Table we show a particular distribution. Under this 

distribution the change in aggregate welfare depends on the value of the discount 

factor. For low values of β  (i.e. a high discount rate) the net effect is negative, for 

values of 0.79 or higher it is positive: AFI would be accepted.  

This example underestimates the case for AFI, for two reasons. First, as noted 

above, under AFI the implicit premium of the informal insurance would no longer 

have to be paid but this is not taken into account. Secondly, we have treated pump 

investment as exogenous. In the RW world pump investment is endogenous. A 

pumpless household might receive (at some future date) a positive shock large 

enough to enable it to buy a pump. At that stage insurance would become 

attractive. Therefore, if households were not forced to adopt insurance now or stay 

with the informal arrangement forever, but were instead offered the option of 

switching to insurance then welfare gains might be positive even for the first two 

types of households. 

Since β  cannot be estimated with precision, Table 1 implies that any policy 

conclusion on the welfare effect of introducing formal insurance will not be robust. 

If β  is estimated (in a relatively small sample) it may easily settle on one of the two 
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boundary values (with opposite policy conclusions). Conversely, if β  is fixed (as in 

RW, who set 0.95=β ) the policy conclusion is thereby fixed as well. 

 

4 Conclusion 

 

There is a renewed interest in insurance mechanisms to assist rural households in 

risk coping. It is rarely possible to evaluate such interventions through (quasi) 

experimental evaluation methods. In principle estimating a structural model of 

household behavior under risk (using panel data) is a viable alternative. 

Rosenzweig and Wolpin (1993) applied this approach to the ICRISAT data and 

found that insurance would not be welfare improving. In this paper we have 

investigated the robustness of this policy conclusion. We have considered a class 

of models of household behavior under risk where assets can take only a small 

number of values. This severely restricts the scope for estimating structural 

coefficients. In the RW case heterogeneity could solve this problem but we have 

shown (for a simplified version of their model) that in small samples two of the 

coefficients cannot be estimated with reasonable precision in spite of this 

heterogeneity. Since the policy conclusion on the desirability of introducing formal 

insurance is sensitive to the value of these coefficients, the conclusion is probably 

not robust. This does not mean that we cannot use panel data to assess the scope 

for insurance. Rather, it implies that if asset data indeed take only a small number 

of values (relative to the number of parameters to be estimated) then estimation 
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requires heterogeneity which (unlike the heterogeneity allowed for by RW) leads to 

independent variation in threshold values. The procedure we have described can 

easily establish whether this condition is satisfied. An alternative is to treat assets 

as continuous variables, e.g., by using livestock (an aggregate of cattle, goats, 

sheep etc.) rather than bullocks as the capital stock. 
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Table 1: Welfare Effect of Insurance 

Endowment        

initial k  0 1 2 0 1 2  

pump 0 0 0 1 1 1  

        

discount 

factor 

      weighted 

effect 

.590 -25.8 -35.6 27.5 26.0 17.7 8.5 loss 

.615 -27.8 -37.6 30.4 27.0 18.6 9.4 loss 

.640 -30.0 -40.0 33.8 28.1 19.7 10.4 loss 

.665 -32.5 -42.7 37.7 29.4 20.9 11.6 loss 

.690 -35.5 -45.8 42.3 30.8 22.3 13.0 loss 

.715 -39.0 -49.5 47.8 32.4 23.9 14.7 loss 

.740 -43.2 -53.9 54.5 34.2 25.8 16.7 loss 

.765 -48.4 -59.2 62.6 36.3 28.0 19.1 loss 

.790 -54.7 -65.7 72.8 38.9 30.8 22.2 gain 

.815 -62.8 -74.1 86.0 42.1 34.2 26.2 gain 

.840 -73.5 -85.0 103.4 46.2 38.7 31.5 gain 

.865 -88.2 -99.8 127.4 51.5 44.8 38.8 gain 

.890 -109.6 -121.5 162.7 59.1 53.5 49.6 gain 

.915 -143.5 -155.6 218.7 70.8 67.1 66.7 gain 

.940 -203.7 -216.0 318.6 91.1 91.2 97.3 gain 

.965 -328.8 -341.4 526.8 132.8 141.1 161.6 gain 

.990 -640.5 -653.4 1047.0 236.6 266.2 323.6 gain 

        

weights 1.8 1 1 1 1 1  
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Figure 1: Sampling Distribution of Behavioral Parameters ( β , γ ) 
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Figure 2: Investment thresholds: 1

_
w (vertically) against pw1

_
(horizontally) 

 

Figure 3: Investment thresholds: 2

_
w (vertically) against pw2

_
(horizontally) 


