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Abstract

A situation in which a finite set of players can obtain certain payoffs by cooperation can

be described by a cooperative game with transferable utility, or simply a TU-game. A solu-

tion for TU-games assigns a set of payoff vectors to every TU-game. Some solutions that

are based on distributing dividends are the Shapley value (being the single-valued solu-

tion distributing the dividends equally among the players in the corresponding coalitions)

and the Selectope or Harsanyi set (being the set-valued solution that contains all possible

distributions of the dividends among the players in the corresponding coalitions).

In this paper we assume the players to be hierarchically ordered. We modify the

concept of Harsanyi set to this context by taking into account this hierarchical order when

distributing the dividends of the game. We show that the resulting new solution concept

for games with ordered players, called the Restricted Harsanyi set , is fully characterized

by a collection of seven logically independent properties. We also discuss an alternative

modification of the Harsanyi set and a solution concept resulting from adapting the concept

of Selectope to games with ordered players. Some applications show the usefulness of the

Restricted Harsanyi set.

Keywords: TU-game, Harsanyi dividends, Shapley value, Harsanyi set, Selectope, di-

graph.
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1 Introduction

A situation in which a finite set of players can obtain certain payoffs by cooperation can be

described by a cooperative game with transferable utility, or simply a TU-game. A solution

for TU-games assigns a set of payoff vectors (possibly empty or consisting of a unique

element) to every TU-game. In a payoff vector provided by a solution, the payoff assigned

to a particular player depends on the payoffs that can be obtained by any coalition of

players. The most well-known single-valued solution is the Shapley value (Shapley, 1953),

the most well-known set-valued solution is the Core (Gillies, 1953).

In this paper we assume that the players in a TU-game are part of some hierarchical

structure that is represented by a directed graph. In such games with ordered players the

payoff assigned to a player may depend on both the worths of the coalitions and the position

of the player in the graph. We introduce a solution for such games with ordered players

that is based on distributing the Harsanyi dividends (see Harsanyi, 1959) of a game in the

spirit of the Harsanyi set or Selectope. The dividend of a singleton is equal to its worth

while, recursively, the dividends of all other coalitions are defined as their worth minus

the dividends of all proper subcoalitions. In this sense the dividend of a coalition might

be considered as the earnings of cooperation of the coalition that was not yet realized by

its proper subcoalitions. The Harsanyi set , see Vasil’ev (1978, 1981) and Vasil’ev and van

der Laan (2002),assigns to every TU-game all Harsanyi payoff vectors , being those payoff

vectors that are obtained by distributing every dividend in any possible way among the

players in the corresponding coalition. An alternative definition of this set is given by the

Selectope of a TU-game, see Hammer et. al. (1977) and Derks et. al. (2000), defined as

the convex hull of all selectope vectors , where the selectope vectors are those vectors where

every dividend is fully assigned to one player of the corresponding coalition.

For games with ordered players we modify the Harsanyi set by requiring that any

dividend is distributed in such a way that a player that is dominated within the coalition

gets a share in this dividend that is at most equal to the share in this dividend assigned to

a player by whom he is dominated. We refer to this set as the Restricted Harsanyi set and

refer to the corresponding solution as the Restricted Harsanyi set solution. The Restricted

Harsanyi set generalizes both the Shapley value and the Harsanyi set for standard TU-

games. In particular, for any directed graph the Shapley value of the TU-game (without

ordered players) belongs to the Restricted Harsanyi set, and it is the unique element of

this set if the digraph is complete, i.e., when each player i dominates each other player j.

On the other hand, for any directed graph the Restricted Harsanyi set is a subset of the

Harsanyi set (of the game without ordered players), and it equals this Harsanyi set in case

the graph is empty.

We provide a full characterization of the Restricted Harsanyi set solution on the class
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of games with ordered players as the unique nonempty solution that satisfies a collection of

seven logically independent axioms. Besides the well-known efficiency, null player property,

disjoint additivity and sign-preservation properties, it is characterized by convexity and

two properties reflecting the hierarchical aspect of games with ordered players, namely

an inferior player property and a consistency property. We also show that any solution

satisfying all axioms except the consistency property assigns to every game with ordered

players a subset of the Restricted Harsanyi set.

Further, besides a second modification of the Harsanyi set characterized by alterna-

tive inferior player and consistency properties, we also discuss shortly how to modify the

concept of Selectope to games with ordered players. Although for standard TU-games the

Selectope and Harsanyi set are equivalent, it appears that for games with ordered players

their modifications give different solutions. In fact, the Restricted Selectope solution assigns

to every game with ordered players a (possibly empty) subset of the (always nonempty)

Restricted Harsanyi set.

The paper is organized as follows. In Section 2 we discuss some preliminaries on

TU-games and directed graphs. In Section 3 we introduce the Restricted Harsanyi set for

games with ordered players and show some of its properties. In Section 4 we characterize

the Restricted Harsanyi set solution by seven logically independent axioms. In Section 5

we provide an alternative modification of the Harsanyi set and we discuss the concept of

Restricted Selectope. An application is given in Section 6, while final remarks are made in

Section 7.

2 Preliminaries

2.1 TU-games

A cooperative game with transferable utility, or simply a TU-game, is a pair (N, v), where

N = {1, ..., n} is a finite set of n players, and v: 2N → R is a characteristic function on N

such that v(∅) = 0. For any coalition S ⊆ N , v(S) is the worth of coalition S, i.e., the

members of coalition S can obtain a total payoff of v(S) by agreeing to cooperate. Since

we take the player set N to be fixed, we represent a TU-game by its characteristic function

v. We denote the collection of all TU-games on N by GN . A special class of TU-games are

unanimity games. For T ⊆ N , T �= ∅, the unanimity game uT on N is given by uT (S) = 1

if T ⊆ S, and uT (S) = 0 otherwise. Writing v as a (2n − 1)-dimensional vector with the

worths of the 2n − 1 nonempty coalitions as its components, it is well-known that every

TU-game v is a unique linear combination of unanimity games, i.e., there exist uniquely

determined weights ∆v(T ) ∈ R such that v =
∑

T∈2N\{∅}∆v(T )uT . These weights usually

are called the (Harsanyi) dividends. Recursively, solving v(S) =
∑

T⊆S ∆v(T ) on the
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number of players starting from ∆v({i}) = v({i}) for the single player coalitions yields

∆v(T ) = v(T ) −
∑

S⊂T ∆v(S) =
∑

S⊆T (−1)
|T |−|S|v(S) for T ⊆ N (see Harsanyi (1959)).

A TU-game v is almost positive if ∆v(S) ≥ 0 for all S ⊆ N with |S| ≥ 2, and it is totally

positive if also ∆v({i}) = v({i}) ≥ 0 for all i ∈ N . Every almost positive game v is a

convex game, i.e. v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) for all S, T ⊆ N .

A set-valued solution F on GN assigns a set F (v) ⊂ Rn of payoff vectors to every TU-

game v ∈ GN . A single-valued solution F on GN assigns precisely one vector F (v) ∈ Rn to

every v ∈ GN . Examples of set-valued solutions are the Core and the Selectope or Harsanyi

set. The Core of TU-game v ∈ GN is the set of all efficient payoff vectors that are stable in

the sense that no coalition can do better by separating, i.e., Core(v) = {x ∈ Rn|
∑

i∈N xi =

v(N) and
∑

i∈S xi ≥ v(S) for all S ⊆ N}. As known, the Core of a game can be empty1.

A set-valued solution F on GN is said to be nonempty when F (v) �= ∅ for any v ∈ GN .

The Selectope or Harsanyi set is nonempty for every TU-game. A selector chooses

for every coalition a particular player in the coalition to whom to assign the dividend of

that coalition, i.e., a selector is a function α : 2N \ {∅} → N such that α(T ) ∈ T for all

T ⊆ N . The selectope vector corresponding to selector α and game v ∈ GN is the vector

sα(v) ∈ Rn given by sαi (v) =
∑

T∈2N \{∅}

α(T )=i

∆v(T ). The Selectope S(v) of v then is the convex

hull of all selectope vectors (see Hammer et. al. (1977) and Derks et. al. (2000), i.e.,

S(v) = Conv({sα(v)|α ∈ AN}),

with AN = {α : 2N \ {∅} → N |α(T ) ∈ T for all T ∈ 2N \ {∅}} being the set of all selectors

on N , and Conv({A}) denoting the convex hull of A ⊂ Rn.

For TU-games v ∈ GN , Vasil’ev (1978, 1981) defines the Harsanyi set H(v) as the

set of payoff vectors obtained by distributing for any coalition the dividend of that coalition

in any possible way among its players, i.e., H(v) is the weighted sum of sets P T ⊂ Rn
+

given by

H(v) =
∑

T∈2N\{∅}

∆v(T )P
T ,

with, for T ∈ 2N \ ∅, P T the set of sharing vectors pT ∈ IRn+ defined as

P T =





pT ∈ IRn+

∣∣∣∣∣∣∣

(i) pTi = 0 for all i ∈ N \ T,

(ii) pTi ≥ 0 for all i ∈ T , and

(iii)
∑

i∈T p
T
i = 1





.

1It is well-known that C(N, v) is nonempty if and only if v is balanced, see e.g. Bondareva (1962) or

Shapley (1967), and is equal to the convex hull of all the marginal vectors of the game if and only if the

game is convex, see Shapley (1971) and Ichiishi (1981).
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The set ∆v(T )P
T gives any possible distribution of ∆v(T ) amongst the players in T and

H(v) is obtained by summing up all these payoff sets over all nonempty sets T . An element

of H(v) is called a Harsanyi payoff vector of game v.

The Harsanyi set and Selectope are equivalent, i.e., H(v) = S(v) for every v ∈ GN .

In Vasil’ev (1981) (see also Derks et. al. (2000) and Vasil’ev and Van der Laan (2002)) it

is shown that (i) for every TU-game v ∈ GN it holds that Core(v) ⊆ H(v) with equality

if and only if v is almost positive, and (ii) H(v) = Core(vH), with vH the convex game

defined by vH(S) = v(S)+
∑

{T | |T∩S|≥1, T∩(N\S)|≥1} max[0,−∆v(T )]. The second assertion

implies that the Harsanyi set has a convex game Core-type structure and thus is not empty.

The latter fact also follows straightforwardly from the Harsanyi set always containing the

Shapley value (Shapley (1953)) being the single-valued solution Sh:GN → IRN given by

Shi(v) =
∑

{S⊆N |i∈S}

∆v(S)

|S|
for every i ∈ N.

So, for every game v the Shapley value yields the Harsanyi payoff vector that is obtained by

taking the sharing vectors pT given by pTi =
1
|T |
for all i ∈ T and every nonempty T ⊆ N .

2.2 Directed graphs

In this paper we assume the players to be part of a hierarchical structure that is represented

by a directed graph. A directed graph or digraph is a pair (N,D) where N = {1, ..., n} is a

finite set of nodes (representing the players) and D ⊆ N×N is a binary relation on N . We

assume D to be irreflexive, i.e. (i, i) �∈ D for all i ∈ N . The collection of all (irrefelxive)

binary relations on N is denoted by DN . Since we assume the finite set N to be fixed, we

will refer to a binary relation simply as a digraph on N . For a subset A ⊆ D and i ∈ N ,

the nodes in SA(i) := {j ∈ N | (i, j) ∈ A} are called the successors of i in A, and the

nodes in RA(i) := {j ∈ N | (j, i) ∈ A} are called the predecessors of i in A.

For i, j ∈ N , a path between i and j in D is a sequence of nodes (i1, . . . , im) such

that i1 = i, im = j, and {(ik, ik+1), (ik+1, ik)} ∩D �= ∅ for k = 1, . . . ,m− 1. A set of nodes

T ⊆ N is connected in D ∈ DN if there is a path between any two nodes in T that only

uses arcs between nodes in T , i.e., if for every i, j ∈ T there is a path (i1, . . . , im) between

i and j such that {i1, . . . , im} ⊆ T . A path (i1, . . . , im) between i and j in D is a directed

path if (ik, ik+1) ∈ D for k = 1, . . . ,m − 1. A directed path (i1, . . . , im), m ≥ 3, in D is a

cycle in D if i1 = im. We call digraph D acyclic if it does not contain any cycle. Finally,

a nonempty set S ∈ 2N is called comprehensive from above in D if [j ∈ S and (i, j) ∈ D]

implies that i ∈ S. A nonempty set S ∈ 2N is called complete in D when S is connected

and comprehensive from above in D. We define CTD to be the set of complete subsets of T ,

T ⊆ N \ ∅ in (T,D(T )) where D(T ) = {(i, j) ∈ D | {i, j} ⊆ T}. We define D−1 to be the
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transpose of D, i.e., D−1 = {(i, j) ∈ N × N | (j, i) ∈ D}. Then CTD−1 is the collection of

complete subsets of T in D−1, i.e., a nonempty set S ⊆ T is in CT
D−1 if (i) S is connected in

D and (ii) S is comprehensive from below in D meaning that [j ∈ S and (j, i) ∈ D] implies

that i ∈ S.

3 The Restricted Harsanyi set solution

In this section we propose a modification of the Harsanyi set for situations in which players

in a TU-game are part of a hierarchical structure represented by a digraph. A pair (v,D) ∈

GN×DN is called a game with ordered players on N . A (set-valued) solution F on GN×DN

assigns a set F(v,D) ⊂ Rn of payoff vectors to every game with ordered players (v,D).

Applying the idea of the Harsanyi set to games with ordered players we now take

into account the position of the players within the graph when distributing the dividends

of the coalitions by requiring that if i, j ∈ T and (i, j) ∈ D, then the payoff that the

dominating player i receives from the distribution of the dividend ∆v(T ) is at least as

high as the payoff that the dominated player j receives from ∆v(T ). So, for i, j ∈ T and

(i, j) ∈ D we require that pTi ≥ pTj when ∆v(T ) > 0, and that pTi ≤ pTj when ∆v(T ) < 0.2

For a game v, define K+
v = {T |∆v(T ) > 0} and K−

v = {T |∆v(T ) < 0} as the sets of

coalitions with positive, respectively, negative dividends in v. Further, let P+T
D and P−T

D

be subsets of P T given by

P+T
D = {pT ∈ P T | pTi ≥ pTj for all i, j ∈ T with (i, j) ∈ D},

respectively

P−T
D = {pT ∈ P T | pTi ≤ pTj for all i, j ∈ T with (i, j) ∈ D}.

Definition 3.1 The Restricted Harsanyi set of game with ordered players (v,D) ∈ GN ×

DN is the set

H(v,D) =
∑

T∈K+
v

∆v(T )P
+T
D +

∑

T∈K−
v

∆v(T )P
−T
D .

The Restricted Harsanyi set solution is the solution that assigns the Restricted Harsanyi

set to every game (v,D) ∈ GN ×DN . Since all sets P+T
D and P−T

D are polytopes, note that

also H(v,D) is a polytope for any (v,D). The definition of the Restricted Harsanyi Set

implies that it always contains the Shapley value and is contained in the Harsanyi set of

the game.

2The shares don’t matter when ∆v(T ) = 0.
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Theorem 3.2 For every (v,D) ∈ GN ×DN it holds that Sh(v) ∈ H(v,D) ⊆ H(v).

Proof. Let (v,D) ∈ GN × DN . Take pTi =
1
|T |
if i ∈ T , and pTi = 0 otherwise. Clearly,

∑
T∈2N\{∅}∆v(T )p

T = Sh(v). Further, for any T we have that pT ∈ P+T
D ∩ P−T

D for every

D ∈ DN . Hence Sh(v) ∈ H(v,D). The inclusion H(v,D) ⊆ H(v) follows immediately

from the fact that both P+T
D ⊆ P T and P−T

D ⊆ P T . �

Note that Sh(v) ∈ H(v,D) implies that H(v,D) �= ∅ for all (v,D) ∈ GN × DN .

The Restricted Harsanyi set H(v,D) generalizes both the Shapley value and the Harsanyi

set for TU-games, in the sense that the corresponding inclusions in Theorem 3.2 can be

equalities.

Theorem 3.3 Let D ∈ DN . Then

(i) H(v,D) = {Sh(v)} for every v ∈ GN if and only if D = N ×N ;

(ii) H(v,D) = H(v) for every v ∈ GN if and only if D = ∅.

Proof. (i) If Take D = N ×N . Then (i, j) ∈ D for all i, j ∈ N , and thus P+T
D = P−T

D =

{pT ∈ P T | pTi = pTj for all i, j ∈ T} = {pT ∈ P T | pTi =
1
|T |
for all i ∈ T} for any T �= ∅.

So H(v,D) = {Sh(v)} for every v ∈ GN . Only if Suppose that D �= N × N , i.e., there

exist i, j ∈ N, i �= j, with (i, j) �∈ D. Take v = u{i,j} and let e
j ∈ IRN be given by e

j
j = 1

and e
j
h = 0 for all h ∈ N \ {j}. Then ej ∈ H(v,D) although ej �= Sh(v).

(ii) If Take D = ∅. Then P+T
D = P−T

D = P T for any T �= ∅, implying that H(v,D) = H(v).

Only if Suppose that D �= ∅, i.e., there exist i, j ∈ N, i �= j, with (i, j) ∈ D. Again, take

v = u{i,j} and consider e
j ∈ IRN . Then ej �∈ H(v,D) although ej ∈ H(v). �

To find the extreme points of the Restricted Harsanyi set, the following theorem

from van den Brink et. al. (2004) about the extreme points of the set P+T
D is useful. For

S ⊆ N , let aS ∈ IRn be the vector with components aSi =
1
|S|
when i ∈ S and aSi = 0,

otherwise. The lemma says that aS is an extreme point of P+T
D if and only if S is a complete

subset of T . For the proof we refer to van den Brink et. al. (2004).

Theorem 3.4 For T ⊆ N , the set of extreme points of P+T
D is given by

Ex(P+T
D ) = {aS ∈ IRn | S ∈ CTD}.

For the extreme points of P−T
D the next corollary follows straightforwardly from Theorem

3.4 and is given without proof.

Corollary 3.5 The set of extreme points of P−T
D is given by

Ex(P−T
D ) = {aS ∈ IRn | S ∈ CTD−1}.
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We conclude this section with some examples in which we apply Theorem 3.4 to

find the extreme points.

Example 3.6 (i) Consider the game with ordered players (v,D) on N = {1, 2, 3} given

by v = u{1,2} + u{1,3} and D = {(1, 3), (2, 3)}. First observe that H(v) = P {1,2} + P {1,3} =

Conv({(1, 0, 0)⊤, (0, 1, 0)⊤}) +Conv({(1, 0, 0)⊤, (0, 0, 1)⊤}) =

Conv({(2, 0, 0)⊤, (1, 1, 0)⊤, (1, 0, 1)⊤, (0, 1, 1)⊤}). The Restricted Harsanyi set is equal to

H(v,D) = P
+{1,2}
D + P

+{1,3}
D = P {1,2} + {p{1,3} ∈ P {1,3} | p{1,3}1 ≥ p

{1,3}
3 }. It follows that

H(v,D) = Conv({(1, 0, 0)⊤, (0, 1, 0)⊤}) + Conv({(1, 0, 0)⊤, (1
2
, 0, 1

2
)⊤}) =

Conv({(2, 0, 0)⊤, (1, 1, 0)⊤, (11
2
, 0, 1

2
)⊤, (1

2
, 1, 1

2
)⊤}), see Figure 1.

(ii) Consider the game with ordered players (v,D) on N = {1, 2, 3} given by v = 2u{1,2} −

u{2,3} and D = {(1, 2), (2, 3)}. In this case we have that H(v) = 2P {1,2} − P {2,3} =

Conv({(2, 0, 0)⊤, (0, 2, 0)⊤}) + Conv({(0,−1, 0)⊤, (0, 0,−1)⊤}) =

Conv({(2,−1, 0)⊤, (0, 1, 0)⊤, (2, 0,−1)⊤, (0, 2,−1)⊤}). The Restricted Harsanyi set is equal

toH(v,D) = 2P+{1,2}
D −P−{2,3}

D = 2{p{1,2} ∈ P {1,2} | p{1,2}1 ≥ p
{1,2}
2 }−{p{2,3} ∈ P {2,3} | p{2,3}2 ≤

p
{2,3}
3 } = Conv({(2, 0, 0)⊤, (1, 1, 0)⊤}+ Conv{(0,−1

2
,−1

2
)⊤, (0, 0,−1)⊤}) =

Conv({(2,−1
2
,−1

2
)⊤, (1, 1

2
,−1

2
)⊤, (2, 0,−1)⊤, (1, 1,−1)⊤}). �
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Figure 1: H(v,D) of Example 3.6.(i).

4 Axiomatic characterization of the Restricted Harsanyi

set solution

In this section we characterize the Restricted Harsanyi set solution as the unique nonempty

solution on GN ×DN satisfying a collection of seven logically independent axioms. Let F
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be a solution on GN × DN assigning a set F(v,D) of payoff vectors to any game (v,D).

The first five axioms are generalizations of standard axioms in cooperative game theory,

and are discussed for TU-games in Vasil’ev and van der Laan (2002).

Axiom (Convexity) The set F(v,D) ⊂ IRn is convex.

Axiom (Efficiency) Any payoff vector in the solution is efficient, i.e.
∑

i∈N xi = v(N)

for all x ∈ F(v,D).

Recall that a player i ∈ N is a null player in v ∈ GN if v(S) = v(S \ {i}) for all S ⊆ N .

Axiom (Null player property) Any payoff vector x ∈ F(v,D) satisfies xi = 0, whenever

i is a null player in v.

Two games v,w ∈ GN are called disjoint if ∆v(T )∆w(T ) = 0 for all T ∈ 2N \ {∅}, i.e. any

coalition has a nonzero dividend in at most one of these two games.

Axiom (Disjoint additivity) If v and w are disjoint games, then F(v + w,D) =

F(v,D) + F(w,D).

Let V + ⊂ GN be the collection of totally positive games (all dividends are nonnegative)

and V − ⊂ GN the collection of totally negative games (all dividends are nonpositive). The

next axiom states that in games with nonnegative (respectively nonpositive) dividends all

payoffs are nonnegative (respectively nonpositive).

Axiom (Sign preservation) The set F(v,D) ⊆ IRn+ if v ∈ V +, and F(v,D) ⊆ IRn− if

v ∈ V −.

Next we introduce two new properties. The first one reflects the hierarchical dominance.

It states that players always earn at least as much as players that are inferior to them.

We call player j inferior to player i in (v,D) ∈ GN × DN if (i, j) ∈ D and ∆v(T ) = 0 if

T ∈ Ω{i,j} = {T ⊂ N | |{i, j} ∩ T | = 1} being the set of all subsets T of N that either

contains i or j (but not both).

Axiom (Inferior player property) Any payoff vector x ∈ F(v,D) satisfies xi ≥ xj

whenever j is inferior to i.
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Observe that it may happen that both (i, j) ∈ D and (j, i) ∈ D and that ∆v(T ) = 0 for

all T ∈ Ω{i,j}. In this case i is inferior to j and j is inferior to i, so that the inferior player

property says that xi = xj for any x ∈ F(v,D).

The last property is a consistency property. For any pair of nonempty sets T ⊆ N

and R ⊆ T we define the game vR,T by

vR,T (S) =

{
v(S) if T ⊆ S,

v(S) + |R∩S|
|R| ∆v(T ) , otherwise.

The next proposition follows by straightforward calculation of the dividends and is given

without proof.

Proposition 4.1 For T ⊆ N and R ⊆ T the dividends of game vR,T are given by

∆vR,T (S) =






∆v(S) +
1
|R|
∆v(T ) if S ⊆ R, |S| = 1,

0 if S = T,

∆v(S) otherwise.

So, in terms of the dividends the game vR,T is obtained from the original game by distrib-

uting the dividend of coalition T equally amongst the players in R. Recall that a selector

chooses for any nonempty coalition one of the players in that coalition as some represen-

tative to whom to assign the dividend of that coalition. In the game vR,T the coalition T

becomes a ‘null coalition’ in the sense that its dividend is zero, while the players in R are

chosen to represent T meaning that they all individually get an equal share in the dividend

of T .

Recall that CTD is the collection of subsets of T that are connected and comprehen-

sive from above in D, while CTD−1 is the collection of subsets of T that are connected and

comprehensive from below in D.

Axiom (Coalitional consistency property) Consider T ⊆ N, T �= ∅. For all R ∈ CTD,

F(vR,T ,D) ⊆ F(v,D) if ∆v(T ) > 0; for all R ∈ CT
D−1

, F(vR,T ,D) ⊆ F(v,D) if ∆v(T ) < 0.

This property states that by allocating the dividend of a coalition equally among some of

the players in that coalition, we do not obtain new payoff vectors in the solution. Going

from a game v with ordered players to the game vR,T with the same ordering of the players,

we don not yet assign payoffs to the players, but we allocate one of the coalitional dividends

to singleton dividends. Considering this as a partial solution, then the consistency require-

ment is that the payoff vectors assigned to the new game should also be payoff vectors in

the original game.

To prove that H(v,D) is characterized by the seven axioms stated above, we first

state three lemmas. In the sequel sT denotes +T when s = 1, and −T when s = −1.
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Lemma 4.2 Let F be a solution on GN×DN satisfying efficiency, the null player property,

sign preservation and the inferior player property. Then for any D ∈ DN and nonempty

T ⊆ N , we have that F(uT ,D) ⊆ P+T
D and F(−uT , D) ⊆ −P

−T
D .

Proof. Let x ∈ F(suT , D), s ∈ {−1,+1}. Then, from efficiency it follows that
∑

i∈N xi =

s and by sign preservation we have that xi ≥ 0, i ∈ N , when s = +1, respectively xi ≤ 0,

i ∈ N , when s = −1. From the null player property we have that xi = 0 if i ∈ N \ T .

Finally, from the inferior player property we obtain that for any two players i, j ∈ T with

(i, j) ∈ D it holds that xi ≥ xj. Hence F(suT ,D) ⊆ sP sT
D . �

In the proof of the next lemma we apply Theorem 3.4 and its Corollary 3.5 on the

extreme points of P+T
D , respectively, P−T

D .

Lemma 4.3 Let F be a nonempty solution on GN×DN satisfying convexity, efficiency, the

null player property, disjoint additivity and coalitional consistency. Then for any D ∈ DN

and nonempty T ⊆ N , we have that P+T
D ⊆ F(uT ,D) and −P

−T
D ⊆ F(−uT , D).

Proof. It follows from Proposition 4.1 that for R ⊆ T the game swR,T = (suT )R,T

satisfies

swR,T =
∑

i∈R

1

|R|
su{i}.

From the non-emptiness, efficiency and the null player property it follows that for any

D, F( 1|R|su{i}, D) =
1
R
sa{i}, i ∈ N . Then disjoint additivity implies that F(swR,T , D) =∑

i∈R F( 1|R|su{i}, D) =
∑

i∈R
1
R
sa{i} = saR. Hence coalitional consistency implies that

aR ∈ F(uT , D) for any R ∈ CTD, and −a
R ∈ F(−uT , D) for any R ∈ CT

D−1. Finally, with

Theorem 3.4, respectively Corollary 3.5, convexity implies that P+T
D = Conv({aR, R ∈

CTD}) ⊆ F(uT , D) and −P
−T
D = Conv({−aR, R ∈ CT

D−1}) ⊆ F(−uT , D). �

Lemma 4.4 Let F be a nonempty solution on GN × DN satisfying convexity, efficiency,

the null player property, disjoint additivity, sign preservation, the inferior player property

and coalitional consistency. Then for any D ∈ DN , nonempty T ⊆ N and c > 0, we have

that F(cuT , D) = cP+T
D and F(−cuT ,D) = c(−P−T

D ).

Proof. For c = 1, the statement follows immediately from Lemmas 4.2 and 4.3. For

positive c �= 1 it follows from the fact that the set of extreme points of csP sT
D is given by

Ex(csP sT
D ) = csEx(P sT

D ), s ∈ {−1,+1}. The result then follows by repeating the reasoning

given in the Lemmas 4.2 and 4.3 for the games csuT . �

We now come to the main theorem.
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Theorem 4.5 A nonempty solution F on GN × DN satisfies convexity, efficiency, the

null player property, disjoint additivity, sign preservation, the inferior player property and

coalitional consistency, if and only if F is the Restricted Harsanyi set solution.

Proof. It is straightforward to verify that the (nonempty) Restricted Harsanyi set solution

satisfies these properties. To show uniqueness, suppose that a nonempty solution F on

GN ×DN satisfies the seven axioms. From disjoint additivity we have that

F(v,D) =
∑

T∈2N\∅

F(∆v(T )uT ,D)

=
∑

T∈K+
v

F(∆v(T )uT , D) +
∑

T∈K−
v

F(∆v(T )uT ,D).

With Lemma 4.4 it then follows that

F(v,D) =
∑

T∈K+
v

∆v(T )P
+T
D +

∑

T∈K−
v

∆v(T )P
−T
D = H(v,D).

�

We show logical independence of the seven axioms in Theorem 4.5 by the following

alternative solutions on GN ×DN .

1. Solution FC given by FC(v,D) =
∑

T∈K+
v
∆v(T )Ex(P

+T
D )+

∑
T∈K−

v
∆v(T )Ex(P

−T
D )

satisfies the axioms of Theorem 4.5 except convexity.

2. Solution FE given by FE(v,D) = µH(v,D) for some positive µ �= 1, satisfies the

axioms of Theorem 4.5 except efficiency.

3. Define v ∈ IRn by vi =
1
|N |v(N). Solution FNP given by FNP (v,D) = µ{v} + (1 −

µ)H(v,D), for some µ, 0 < µ < 1, satisfies the axioms of Theorem 4.5 except the

null player property.

4. Let 0 denote the null-vector in IRn. Solution FDA given by FDA(v,D) = {0} when

v(N) = 0 and FDA(v,D) = H(v,D) otherwise, satisfies the axioms of Theorem 4.5

except disjoint additivity.

5. For some ǫ > 0, define P T (ǫ) = {pT ∈ IRn | pTi = 0, if i �∈ T, pTi ≥ −ǫ if

i ∈ T , and
∑

i∈T p
T
i = 1, T ∈ 2N \ {∅}}. Let P+T

D (ǫ) and P−T
D (ǫ) be as defined

before, but with P T (ǫ) instead of P T , and define the solution Hǫ by Hǫ(v,D) =
∑

T∈K+
v
∆v(T )P

+T
D (ǫ) +

∑
T∈K−

v
∆v(T )P

−T
D (ǫ). Solution FSP given by FSP (v,D) =

Hǫ(v,D) satisfies the axioms of Theorem 4.5 except sign preservation.

6. Solution FIP given by FIP (v,D) = H(v,D) satisfies the axioms of Theorem 4.5

except the inferior player property.
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7. Solution FRG given by FRG(v,D) = {Sh(v)} satisfies the axioms of Theorem 4.5

except coalitional consistency.

The results stated above imply several corollaries for games with ordered players and

for (unrestricted) TU-games. First, from Lemma 4.2, Lemma 4.4 and Theorem 4.5 it follows

that for any solution F satisfying efficiency, the null player property, sign preservation

and the inferior player property, it holds that F(scuT , D) ⊆ csP sT
D = H(scuT , D), s ∈

{−1,+1}. From this it follows that F(v,D) ⊆ H(v,D) for any solution F that satisfies

these four axioms and disjoint additivity. So, the Restricted Harsanyi set solution is the

maximal (with respect to set inclusion) solution that satisfies efficiency, the null player

property, sign preservation, the inferior player property and disjoint additivity.

Second, let FConv and FCl be the solutions that assign to every game with ordered

players (v,D) the sets Conv(F(v,D)), respectively Cl(F(v,D)), where Cl(A) denotes the

closure of set A. Then it is easy to verify that when F satisfies efficiency, the null player

property, sign preservation, the inferior player property and disjoint additivity, then also

FConv and FCl satisfy these five axioms.3 Hence, when F satisfies efficiency, the null

player property, sign preservation, the inferior player property and disjoint additivity, then

also Conv(F(v,D)) ⊆ H(v,D) and Cl(F(v,D)) ⊆ H(v,D).

These results for games with ordered players are summarized in the next corollary.

Corollary 4.6 On the class GN ×DN we have that:

(i) F(v,D) ⊆ H(v,D) for any (v,D) when F satisfies efficiency, the null player property,

sign preservation, the inferior player property and disjoint additivity;

(ii) When the solution F satisfies the efficiency, the null player property, sign preservation,

the inferior player property and disjoint additivity, then also the solutions FConv and FCl

satisfy these properties.

When D = ∅ the inferior player property gives no restriction. Defining F (v) =

F(v, ∅) as a solution for TU-games (i.e. a solution on GN), then F (v) ⊆ H(v) when

F satisfies efficiency, the null player property, sign preservation and disjoint additivity.

Moreover, Theorem 4.5 gives a characterization of the Harsanyi set for TU-games as the

unique nonempty solution on GN that satisfies convexity, efficiency, the null player property,

sign preservation, coalitional consistency and disjoint additivity4. Further, note that in this

case R ⊆ T is complete in D, respectively in D−1, if and only if R is a singleton coalition.

3Disjoint additivity follows from the well-known fact that for any two sets A,B ⊂ IRn, it holds that

Conv(A+B) = Conv(A) + Conv(B), respectively, when at least one of the sets is bounded, Cl(A+B) =

Cl(A) + Cl(B).
4Note that on the class of games with ordered players all these axioms are defined for a fixed D ∈ DN .

Here we refer to corresponding axioms on the class of TU-games which are obtained by taking D = ∅.
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So, coalitional consistency reduces to F(vR,T , D) ⊆ F(v,D) for all R = {i} ⊆ T , i.e., only

the games vR,T in which the dividend of coalition T is fully given to some player in T are

considered. This axiom replaces the individually consistency axiom in the characterization

of the Harsanyi set given in Vasil’ev and van der Laan (2002), while the other five axioms

are the same.

Finally, when D = N ×N , the inferior player property implies unanimity symmetry

(i.e. in a unanimity game all players in the unanimity coalition get the same). Moreover,

in this case R is comprehensive from above, respectively below, in T given D if and only

if R = T . Hence, coalitional consistency reduces to F(vR,T , D) ⊆ F(v,D) for R = T , i.e.,

only the game vR,T in which the dividend of coalition T is equally divided amongst the

players in T are considered. For unanimity games this also reduces to unanimity symmetry.

Since H(v,D) = {Sh(v)} when D = N × N , we obtain a characterization of the Shapley

value as the unique single-valued solution satisfying efficiency, the null player property,

disjoint additivity and unanimity symmetry. Note that disjoint additivity and unanimity

symmetry are weaker than the corresponding axioms used in the famous characterization of

the Shapley value in Shapley (1953). Also note that in this case sign preservation (although

satisfied by the Shapley value) is superfluous in the characterization5.

These results for TU-games are summarized in the next corollary.

Corollary 4.7 On the class GN of TU-games we have that:

(i) if solution F on GN satisfies efficiency, the null player property, sign preservation and

disjoint additivity, then F (v) ⊆ H(v) for all v ∈ GN ;

(ii) the Harsanyi set solution H is the unique nonempty solution on GN that satisfies

convexity, efficiency, the null player property, sign preservation, coalitional consistency for

all R = {i} ⊆ T , T ⊆ N , and disjoint additivity;

(iii) the Shapley value is the unique single-valued solution on GN that satisfies efficiency,

the null player property, unanimity symmetry and disjoint additivity.

5 Other solutions for games with ordered players

The inferior player property reflects a very strong dominance of player i above player j

when (i, j) ∈ D. In fact, it gives the dominating player not only the power to extract a

higher share than the dominated player in the dividend of a coalition when that dividend is

positive, but also the power to give the dominated player a higher share than the dominat-

ing player when the dividend is negative. To give an extreme example, let D be a graph in

which (1, j) ∈ D and (j, 1) �∈ D for any j �= 1. Then x with x1 =
∑

{T |1∈T, ∆v(T )>0}
∆v(T )

5Convexity is not listed here, because this is redunded in case of single-valuedness.
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is in the Restricted Harsanyi set, giving player 1 all positive dividends of the coalitions

containing player 1, but nothing of the negative dividends.

Depending on the particular organizational (hierarchical) structure reflected by the

digraphD, an alternative dominance relation would be in which the share of the dominating

player in the dividend of a coalition is always at least as high as the share of a dominated

player. For instance, this could reflect situations in which a dominating player takes higher

risks than a dominated player and therefore get a higher share in positive dividends, but

also in negative dividends.

This is reflected by the following notion and corresponding axiom. We call player j

weak inferior to player i in (v,D) ∈ GN ×DN if (i) ∆v(T ) = 0 if T ∈ Ω{i,j} and (ii) either

(i, j) ∈ D and ∆v(T ) ≥ 0 for all T containing i and j, or (j, i) ∈ D and ∆v(T ) ≤ 0 for all

T containing i and j.

Axiom (Weak inferior player property) Any payoff vector x ∈ F(v,D) satisfies

xi ≥ xj whenever j is weak inferior to i.

The axiom says that the payoff to player i is at least as high as the payoff to player

j if all dividends of the coalitions containing either i or j are zero and either i dominates j

and all dividends of the coalitions containing i and j are nonnegative, or if i is dominated

by j and all dividends of the coalitions containing i and j are nonpositive. Clearly, the

axiom is satisfied when in any coalition containing i and j, the share of player i in the

dividend is at least as high as the share of player j, irrespective whether the dividend

is positive or negative. This holds when for any T the sharing vector is in the set P+T
D ,

irrespective of the sign of the dividend. This gives as alternative solution the Weak Inferior

Player (WIP) Restricted Harsanyi set solution.

Definition 5.1 TheWIP Restricted Harsanyi set solution is the solution HW on GN×DN

defined by

HW (v,D) =
∑

T∈2N\∅

∆v(T )P
+T
D , (v,D) ∈ GN ×DN .

Similarly as in the previous section the solution can be characterized by modifying

coalitional consistency to sign-independent coalitional consistency.

Axiom (Sign-independent coalitional consistency) For all R ∈ CTD, F(vR,T ,D) ⊆

F(v,D).

The next theorem characterizes the WIP Restricted Harsanyi set solution by similar axioms

as those in Theorem 4.5.
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Theorem 5.2 A nonempty solution F on GN ×DN satisfies convexity, efficiency, the null

player property, sign preservation, the weak inferior player property, sign-independent coali-

tional consistency and disjoint additivity, if and only if F is the WIP Restricted Harsanyi

set solution.

Since the proof goes along the same lines as the proof of Theorem 4.5, we leave it to the

reader. In the next example we compare the two solutions.

Example 5.3 Consider game (ii) of Example 3.6, i.e., N = {1, 2, 3}, v = 2u{1,2} − u{2,3}

and D = {(1, 2), (2, 3)}. Then HW (v) = 2P
+{1,2}
D − P

+{2,3}
D =

2{p{1,2} ∈ P {1,2} | p{1,2}1 ≥ p
{1,2}
2 } − {p{2,3} ∈ P {2,3} | p{2,3}2 ≥ p

{2,3}
3 }. It follows that

HW (v,D) = Conv({(2, 0, 0)⊤, (1, 1, 0)⊤}) + Conv({(0,−1
2
,−1

2
)⊤, (0,−1, 0)⊤}) =

Conv({(2,−1
2
,−1

2
)⊤, (1, 1

2
,−1

2
)⊤, (2,−1, 0)⊤, (1, 0, 0)⊤}). �

Next we consider shortly how to apply the concept of selector to games with ordered

players. Recall that a selector chooses for every coalition a particular player in the coalition

to whom to assign the dividend of that coalition. In accordance with reasoning used in

defining the Restricted Harsanyi set solution, when the players are ordered according to a

digraph D ∈ DN we put as restriction on a selector that the dividend of a coalition should

always be assigned to a player that has no predecessors in the coalition when the dividend

is positive, and to a player that has no successors in the coalition when the dividend is

negative. So, we consider only selectors in the sets

A+ND = {α ∈ AN |for every T ∈ 2N \ {∅}: [{i, j} ⊆ T and (i, j) ∈ D]⇒ α(T ) �= j},

respectively

A−ND = {α ∈ AN |for every T ∈ 2N \ {∅}: [{i, j} ⊆ T and (j, i) ∈ D]⇒ α(T ) �= j},

We obtain the following definition.

Definition 5.4 The Restricted Selectope of game with ordered players (v,D) ∈ GN ×DN

is the set S(v,D) = Conv({sα(v)|α ∈ A+ND ,∆v(T ) > 0} ∪ {sα(v)|α ∈ A−ND ,∆v(T ) < 0}).

We refer to the solution that assigns to every game with ordered players its Re-

stricted Selectope as the Restricted Selectope solution. Obviously, for every (v,D) ∈

GN ×DN we have S(v,D) ⊆ S(v) since A+ND ∪A−ND ⊆ AN . Note that A+ND = A−ND = AN

if and only if D = ∅. Therefore S(v,D) = H(v) = H(v,D) if D = ∅. On the other hand,

A+ND = A−ND = ∅ if (and only if) D contains a cycle. This implies that S(v,D) = ∅ if

there is a cycle in D. It is straightforwardly to verify that the Restricted Selectope solution
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satisfies efficiency, the null player property, disjoint additivity, sign preservation and the

inferior player property. Hence, according to Corollary 4.6 it holds that

S(v,D) ⊆ H(v,D).

As we showed, this inclusion holds with equality when D = ∅ (since then both sets are

equal to H(v)), whereas S(v,D) = ∅ when D contains a cycle. So, when we require that

a solution is nonempty, we have to restrict ourselves to the class of acyclic digraphs. In a

subsequent paper we intend to provide a full characterization of the restricted Selectope

on the class of ordered games with acyclic digraphs. Finally, the Selectope analogue of the

WIP Restricted Harsanyi set solution is given by SW (v,D) = Conv({sα(v)|α ∈ A+ND }).

Example 5.5 Consider the game with ordered players (v,D) on N = {1, 2, 3} of Example

3.6.(i), i.e. v = u{1,2}+u{1,3} and D = {(1, 3), (2, 3)}. The unrestricted and restricted Selec-

tope, respectively, are given by S(v) = H(v) = Conv({(2, 0, 0)⊤, (1, 0, 1)⊤, (1, 1, 0)⊤, (0, 1, 1)⊤})

and S(v,D) = Conv({(2, 0, 0)⊤, (1, 1, 0)⊤}). �

6 An application: airport games

Suppose there are n airplanes that want to use the same landing strip. The n airplanes

are different and therefore need landing strips of different size. Assume that the airplanes

are labeled so that the cost of building a landing strip for airplane i ∈ {1, ..., n} is given

by ci satisfying c1 ≥ c2 ≥ ... ≥ cn ≥ 0. The corresponding airport game (see Littlechild

and Owen (1973)) is a cost game (N, v) with the set of airplanes as the set of players

and the characteristic function given by v(S) = maxi∈S ci for all S ⊆ N . As noticed by

Brânzei et. al. (2002) the dual6 airport game v∗ is given by v∗ =
∑n

i=1(ci − ci+1)u[1,i],

with cn+1 = 0, where [1, i] denotes the set {1, . . . , i} of consecutive players including player

1. The dividend of coalition {1, ..., i} is the additional cost (ci − ci+1) of extending the

landing strip that is sufficient for all aircrafts that are smaller than i, so that also i can

use it. All other coalitions have dividend equal to zero. Since eventually also all larger

airplanes j ∈ {1, ..., i− 1} will use this part of the landing strip, and all smaller airplanes

j ∈ {i+ 1, ..., n} will not use it, it seems reasonable to divide the cost (ci − ci+1) among i

and all larger airplanes 1, ..., i − 1. This is done by the Harsanyi set of the dual (airport)

game. In addition, the Restricted Harsanyi set corresponding to the directed line-graph

L = {(i, i+1) ∈ N×N | i = 1, . . . , n−1} (i.e. the agents are linearly ordered from 1 to n),

distributes these costs in such a way that for every part of the landing strip larger airplanes

pay at least as much as smaller airplanes. (Note that the WIP Restricted Harsanyi set is

6For any game v ∈ GN , the dual game is given by v∗(S) = v(N)− v(N \ S) for all S ⊆ N .
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the same since all dividends are nonnegative.) Extreme points are given by the Shapley

value in which all airplanes that use part of the landing strip pay the same share in the

corresponding cost, and the unique element of the Restricted Selectope which charges all

the cost for the full landing strip to the largest airplane. The Restricted Harsanyi set

provides a collection of reasonable cost allocations with the Shapley value and the unique

element of the Restricted Selectope as two of its extreme points.

Example 6.1 Take N = {1, 2, 3} and costs (c1, c2, c3)⊤ given by (3, 2, 1)⊤. The dual game

of the corresponding airport game is the game v∗ on N given by v∗ = u{1}+u{1,2}+u{1,2,3}.

The Harsanyi set of this game (which by totally positiveness equals its Core) is equal to

H(v∗) = Conv({(3, 0, 0)⊤, (2, 0, 1)⊤, (1, 2, 0)⊤, (1, 1, 1)⊤}),

while the Restricted Harsanyi set of this game is equal to the sum of H(u{1}, L) =

Conv({(1, 0, 0)⊤}), H(u{1,2}, L) = Conv({(1, 0, 0)
⊤, (1

2
, 1
2
, 0)⊤}) and

H(u{1,2,3}, L) = Conv({(1, 0, 0)
⊤, (1

2
, 1
2
, 0)⊤, (1

3
, 1
3
, 1
3
)⊤}), and is thus given by

H(v∗, L) = Conv({(3, 0, 0)⊤, (2, 1, 0)⊤, (1
5

6
,
5

6
,
1

3
)⊤, (2

1

3
,
1

3
,
1

3
)⊤}),

see Figure 3. The Shapley value Sh(v∗) = (15
6
, 5
6
, 1
3
)⊤ and the unique element s(v∗) =

(3, 0, 0)⊤ of the Restricted Selectope element are two of its extreme points. �
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Figure 2: The Restricted Harsanyi set H(v∗,D) of Example 6.1.

Other applications where the Restricted Harsanyi solution could be applied are,

for instance, sequencing situations, see e.g. Curiel et. al. (1989), auction games, see

e.g. Graham et.al. (1990), and water distributions problems, see Ambec and Sprumont

(2002). In van den Brink et. al. (2006) these problems are modelled as line-graph games.

Considering other grph structures we can generalize these models. For example, the water
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distribution problem considers the distribution of water among agents allocated along a

river from upstream to downstream. Situations with side rivers joining the main stream

and river delta situations can be modelled by more general directed graphs satisfying that

a pair of agents (i, j) ∈ D if and only if j is a downstream ‘neighbour’ of i.

7 Final remarks

In this paper we assumed the players in a cooperative TU-game to belong to a hierarchical

structure which restricts the payoff distribution in the game and we propose the concept

of the Restricted Harsanyi set as solution concept for such situations. This restricted

Harsanyi set provides a collection of payoff distributions obtained by taking into account

the hierarchical structure when distributing the dividends. Theorem 3.2 states that the

Restricted Harsanyi set is a subset of the Harsanyi set of the game (without ordered players)

which always contains the Shapley value of this game. Also, we have seen, for instance

in Example 6.1, that the Restricted Harsanyi set cannot be obtained as the core of some

modified game. This in contrast with the Harsanyi set for TU-games which equals the

core of the game vH as defined in Section 2. For future research this opens the question

whether it could be possible to define the Restricted Harsanyi set as a set of payoff vectors

satisfying a system of linear (in)-equalities.

Another game theoretic model in which players in a TU-game belong to a hierar-

chical structure are the games with a permission structure as considered in Gilles et. al.

(1992), Gilles and Owen (1994), van den Brink and Gilles (1996) and van den Brink (1997)7.

In these games it is assumed that players need permission from other players before they

are allowed to cooperate within a coalition. So, instead of restricting payoff distributions,

in these games with permission structure the cooperation possibilities are restricted8. For

instance, in the conjunctive approach to these games as developed in Gilles et. al. (1992)

and van den Brink and Gilles (1996), it is assumed that each player needs permission from

all its predecessors before it is allowed to cooperate. This implies that a coalition is only

feasible if it is comprehensive from above. Alternatively, according to the disjunctive ap-

7Related is also the model of Faigle and Kern (1992) who consider feasible rankings of the players.
8In this sense these models fall within the theory on restricted cooperation, together with, for example,

the games with limited communication (graph) structure in which the edges of an undirected graph on the

set of players represent binary communication links between the players such that players can cooperate

only if they are connected (see, e.g. Myerson (1977), Kalai et. al. (1978), Owen (1986) and Borm et.

al. (1992)), and the games in a-prioiri coalition structure in which it is assumed that the set of players

is partitioned into disjoint sets which represent social groups such that for a particular player it is more

easy to cooperate with players in its own group than to cooperate with players in other groups (see, e.g.,

Aumann and Drèze (1974), Owen (1977), Hart and Kurz (1983) and Winter (1989)).
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proach a player needs permission to cooperate of at least one of its predecessors. Given the

sets of feasible coalitions, a restricted game is defined which assigns to every coalition the

worth of its largest feasible subset. Applying well-known solutions as the Shapley value,

Core or Harsanyi set to such restricted games yields solutions for games with a permission

structure. We want to stress that the two approaches of restricting payoff distributions as

done in the underlying paper, and restricting cooperation possibilities as in games with a

permission structure are essentially different. The Restricted Harsanyi set is a subset of

the Harsanyi set of the game (without ordered players) and therefore refines the concept of

Harsanyi set. In the alternative approach of restricting the cooperation possibilities, not

all coalitions are feasible anymore and therefore the Core of the restricted game is larger

than the Core of the original game. So, when considering, for example, the class of almost

positive games (on which the Harsanyi set and Core are equal), putting restrictions on

the distributions of the dividends always gives a refinement of the set of outcomes, while

restricted cooperation may enlarge the set of outcomes according to these solutions.

In Section 5 we discussed shortly two alternative solutions for games with ordered

players. As another alternative, we can use the concept of top cycle. A set of nodes is a

top cycle, if there is a directed path between any pair of nodes within the set and there is

no directed path from a node outside the set to a node in the set. A node is a top-node if

it is in a top-cycle. Now the inequalities for the Restricted Harsanyi set can be weakened

by requiring that top-nodes within the digraph (respectively inverse digraph) restricted to

T get at least (most) as much of the dividend of coalition T as the players that do not

belong to the top of T . This ‘Top-node’ Restricted Harsanyi set also always contains the

Shapley value and is a subset of the Harsanyi set of the unrestricted game. It equals the

Harsanyi set of the unrestricted game if the digraph is empty or complete. However, it

never consists of a unique element and therefore does not generalize the Shapley value.

So, this top-node approach does not look so attractive as alternative for the Restricted

Harsanyi set. However, for the Restricted Selectope of a game with ordered players it has

nice properties. In Section 5 we saw that this set is empty whenever the underlying digraph

has a (directed) cycle. Weakening our selector requirement by saying that the dividend of

a coalition T should always be assigned to a player in the top of the digraph restricted to

that coalition T , respectively to the top of the inverse digraph in case of negative dividends,

it follows that the Restricted Selectope according to this selection rule is always nonempty

since any digraph has at least one top-node.
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