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Abstract

This paper extends the static analysis of oligopoly structure into an infinite-horizon
setting with sunk costs and demand uncertainty. The observation that exit rates de-
cline with firm age motivates the assumption of last-in first-out dynamics: An entrant
expects to produce no longer than any incumbent. This selects an essentially unique
Markov-perfect equilibrium. With mild restrictions on the demand shocks, a sequence
of thresholds describes firms’ equilibrium entry and survival decisions. Bresnahan and
Reiss’s (1993) empirical analysis of oligopolists’ entry and exit assumes that such thresh-
olds govern the evolution of the number of competitors. Our analysis provides an
infinite-horizon game-theoretic foundation for that structure.
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1 Introduction

This paper develops and presents a simple and tractable model of oligopoly dynamics. The

model’s firms make entry and exit decisions in an infinite-horizon setting with stochastic

demand. Calculating its equilibrium dynamics requires only a few seconds on a standard

personal computer. With mild restrictions on the demand shocks, threshold rules govern

firms’ entry and exit decisions. That is, entry occurs whenever demand passes above one in a

sequence of entry thresholds, and exit occurs if it subsequently passes below a corresponding

exit threshold. Bresnahan and Reiss’s (1993) empirical analysis of oligopolists’ entry and exit

assumes that such thresholds govern the evolution of the number of competitors. Our analysis

provides an infinite-horizon game-theoretic foundation for that structure, which can be used

to extend their earlier structural estimation of static oligopoly models to a fully dynamic

setting. Because the model makes a unique equilibrium prediction, it can also be used for

policy experiments. This paper’s companion (Abbring and Campbell, 2006b) provides one

example of such an experiment, which determines how raising a barrier to entry by increasing

late entrants’ sunk costs changes firms’ short-run and long-run market participation decisions.

The model industry is a dynamic version of the static entry game used by Bresnahan and

Reiss (1990). A random number of consumers demands the industry’s services, and this state

evolves stochastically. Entry possibly requires paying a sunk cost, and continued operation

incurs fixed costs. The wish to avoid these per-period fixed costs in markets that are no

longer profitable motivates firms to exit.

Bresnahan and Reiss (1991a) noted that the static version of this game can have multi-

ple equilibria, which obviously complicates prediction. To select a unique equilibrium, both

Bresnahan and Reiss (1990) and Berry (1992) assume that firms move sequentially. We take

a similar approach by allowing older firms to commit to continuation before their younger

counterparts. We also restrict attention to equilibria in which firms correctly believe that

no firm will produce after an older rival exits. That is, the equilibria have a last-in first-out

(LIFO) structure. Three considerations motivate this focus. First, it is consistent with the

widespread observation that young firms exit more frequently than their older counterparts.

Second, the equilibrium approximates the “natural” Markov-perfect equilibrium in an exten-

sion of the model in which firms’ costs decrease with age and the most efficient firms survive.

Third and perhaps most importantly, this restriction vastly simplifies the equilibrium analy-

sis. We prove that there always exists such an equilibrium and that it is (essentially) unique.

The model’s theoretical simplicity makes it well-suited for exploring how parameter

changes impact equilibrium dynamics and long-run market structure. To show this, we
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calculate the effects of increasing demand uncertainty on firms’ equilibrium entry and exit

thresholds. Non-strategic analysis of the firm life cycle suggests that additional uncertainty

should raise the value of the option to exit and thereby substantially lower both entry and

exit thresholds. The oligopolistic exit thresholds do indeed fall with uncertainty, but the en-

try thresholds do not. Their relative invariance to demand uncertainty reflects an offsetting

effect that a monopolist does not face: Increasing demand uncertainty raises the probability

of further entry and thereby reduces a new firm’s value. We also calculate the population

“estimates” of oligopoly profit margins using the ordered Probit procedure of Bresnahan and

Reiss (1990) and data generated from the model’s ergodic distribution. We find that the

delay in exit arising from uncertainty (familiar from Dixit and Pindyck, 1994) biases these

entry threshold estimates downwards, and this leads to a downward bias in the estimated

rate that profits fall with additional competition. That is, the static “long-run” procedure

that abstracts from relevant dynamic considerations can find “evidence” that profit margins

decline with entry when in fact they are constant.

The remainder of this paper proceeds as follows. The next section presents the model’s

primitives and demonstrates the uniqueness of a Markov-perfect equilibrium with a LIFO

structure. To clarify how the model’s moving parts fit together, this section closes with an

examination of a particular specification for the demand shocks that yields a pencil-and-

paper solution. Section 3 gives sufficient conditions for firms to use threshold rules for their

equilibrium entry and exit decisions, and Section 4 illustrates its application. Section 5

considers extensions of our analysis to include a learning curve and firm-specific technology

shocks. Section 6 relates this paper with previous work on dynamic games with timing

restrictions and with the extensive literature on oligopoly with Markov-perfect equilibrium.

Section 7 contains some concluding remarks.

2 The Model

The model consists of a single oligopolistic market in discrete time t ∈ {0, 1, . . .}. There is a

large number of firms that are potentially active in the market. We index these firms by N.

At time 0, N0 = 0 firms are active. Entry and subsequent exit of firms determines the number

of active firms in each later period, Nt . The number of consumers in the market, Ct, evolves

exogenously according to a nonnegative first-order Markov process bounded between Ĉ and

Č < ∞. We denote the conditional distribution of Ct with Q(c|Ct−1) ≡ Pr[Ct ≤ c|Ct−1].

Figure 1 illustrates the sequence of events and actions within a period. It begins with
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. . .
Start with
(Nt, Ct−1)

Draw Ct

from Q(·|Ct−1)
Firms Earn
Ct

Nt
π(Nt)− κ

Incumbents’ Continuation Decisions

Oldest,
R = 1

Second Oldest,
R = 2

· · · , Youngest,
R = Nt

. . . -

time

Entry Decisions

Firm i Firm i + 1
if i entered

· · ·

Go to next period with (Nt+1, Ct).

Figure 1: The Sequence of Actions within a Period

the inherited values of Nt and Ct−1. First, all participants observe the realization of Ct;

and all active firms receive profits equal to (Ct/Nt) × π(Nt) − κ. Here, each firm serves

Ct/Nt consumers, and π(Nt) is the producer surplus earned from each one. The term κ > 0

represents fixed costs of production.

After serving the market, active firms decide whether they will remain so. These decisions

are sequential and begin with the oldest firm. After this, any remaining firms make the same

decision in the order of their entry. If firm i is active, then Ri
t denotes its rank in this sequence.

Exit is irreversible but otherwise costless. It allows the firm to avoid future periods’ fixed

production costs.

After active firms’ continuation decisions, those firms that have not yet had an opportunity

to enter make entry decisions in the order of their names. The cost of entry potentially

depends on the number of firms already committed to serving the market in the next period.

We denote the entry cost for a firm that would be the R′-th oldest among next period’s

active firms with ϕ(R′). We assume that ϕ(R′) is strictly positive and weakly increasing

in R′. This allows for, but does not require, later entrants to face a “barrier to entry” in
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the form of elevated sunk costs. The payoff to staying out of the industry is always zero,

because a firm with an entry opportunity cannot delay its choice. The period ends when

some potential entrant decides to stay out of the industry. Both active firms’ and potential

entrants’ decisions maximize their expected stream of profits discounted with a factor β < 1.

2.1 Markov-Perfect Equilibrium

We choose as our equilibrium concept symmetric Markov-perfect equilibrium. When firm

i decides whether to stay or exit, Nt − Ri
t (the number of active firms following it in the

sequence), Ct, and Ri
t+1 (its rank in the next period’s sequence of active firms) are available

and payoff-relevant. Collect these into Hit ≡ (Nt − Ri
t, Ct, R

i
t+1). Similarly, the payoff-

relevant state to a potential entrant is Hit ≡ (Ct, R
i
t+1). Note that Hit takes its values in

HS ≡ Z+ ×
[
Ĉ, Č

]
× N for firms active in period t and in HE ≡

[
Ĉ, Č

]
× N for potential

entrants. Here and below, we use S and E to denote survivors and entrants.

A Markov strategy for firm i is a pair (Ai
S(HS), Ai

E(HE)) for each HS ∈ HS and HE ∈
HE. These represent the probability of being active in the next period given that the firm

is currently active (Ai
S(·)) and given that the firm has an entry opportunity (Ai

E(·)). A

symmetric Markov-perfect equilibrium is a subgame-perfect equilibrium in which all firms

follow the same Markov strategy.

When firms use Markov strategies, the payoff-relevant state variables determine an ac-

tive firm’s expected discounted profits, which we denote with v(HS). In a Markov-perfect

equilibrium, this satisfies the Bellman equation

v(HS) = max
a∈[0,1]

aβE
[

C ′

N ′π(N ′)− κ + v(H ′
S) HS

]
, (1)

Here and throughout, we adopt conventional notation and denote the variable corresponding

to X in the next period with X ′. In Equation (1), the expectation of N ′ is calculated using

all firms’ strategies conditional on the particular firm of interest choosing to be active.

It is well known that multiple Markov-perfect equilibria can exist in similar models.1 To

overcome this standard difficulty, we restrict attention to equilibria in which firms’ entry and

exit policies arise from a last-in first-out (LIFO) strategy.

Definition 1. A LIFO strategy is a strategy (AS, AE) such that AS(HS) ∈ {0, 1}, AE(HE) ∈
{0, 1}, and AS(N −R,C, R′) is weakly decreasing in R.

1See Doraszelski and Satterthwaite (2005).
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If all firms adopt a common LIFO strategy (AS, AE), then an active firm with rank R ≥ 2

never stays if the predecessor in the sequence of active firms exits, because

AS(N −R,C, R′) = 0 ⇒ AS(N −R− 1, C,R′) = 0.

As a consequence, if firms adopt a common LIFO strategy, they exit in the reverse order of

their entry. As we mentioned in the paper’s introduction, this embodies in an extreme form

the empirical regularity that young firms exit more frequently than their older counterparts.

Conversely, if firms use a common strategy and always exit in the reverse order of their entry,

then the common strategy is a LIFO strategy.

With this definition, we can demonstrate existence of a Markov-perfect equilibrium in a

LIFO strategy.

Proposition 1. There exists a symmetric Markov-perfect equilibrium in a LIFO strategy

(AS, AE) such that AS(N −R,C, R′) is invariant in N −R and weakly decreasing in R′.

The equilibrium survival probability in Proposition 1 decreases with the firm’s rank in the

next period and is invariant to the number of firms with unresolved continuation decisions.

This paper’s appendix contains the proposition’s constructive proof, which has two critical

steps. First, we note that the upper bound on C implies that the number of firms that

ever produce in a Markov-perfect equilibrium cannot exceed some bound, which we call Ň .

Because a firm with rank Ň expects none of its older competitors to cease production before

it does, this firm’s optimal exit rule corresponds to that from a simple dynamic programming

problem. Second, we solve exit decision problems for firms with ranks Ň − 1, Ň − 2, . . . , 1

that embody the assumption that other firms follow a LIFO strategy. A firm with rank R

forms its expectations about the behavior of firms with higher ranks using the solutions of

those firms’ decision problems. With the solutions to these standard dynamic programming

problems in hand, we construct a candidate LIFO strategy and then verify that it satisfies

the proposition’s conditions and forms a Markov-perfect equilibrium.

The existence proof strongly suggests that the Markov-perfect equilibrium in a LIFO

strategy is unique, because the decision problems used in its construction have unique so-

lutions to their Bellman equations. However, we can construct multiple LIFO equilibria by

varying a firm’s actions in states of indifference between activity and inactivity. We sidestep

this difficulty by concentrating on equilibria in which a firm defaults to inactivity.

Definition 2. A symmetric Markov-perfect equilibrium strategy (AS, AE) defaults to inac-

tivity if AS(HS) = 0 whenever v(HS) = 0 and AE(C, R′) = 0 whenever v(0, C,R′) = φ(R′).
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Proposition 2. There exists a unique symmetric Markov-perfect equilibrium in a LIFO

strategy that defaults to inactivity. This equilibrium’s survival rule AS is such that AS(N −
R,C, R′) is invariant in N −R and weakly decreasing in R′.

Other symmetric Markov-perfect equilibria that default to inactivity might exist, but in

them the apparent advantage of early entrants to commit to continuation does not translate

into longevity. Henceforth, we constrain our attention to the unique symmetric Markov-

perfect equilibrium in a LIFO strategy that defaults to inactivity.

2.2 A Pencil-and-Paper Example

If we assume that Ct = Ct−1 with probability 1−λ and that it equals a draw from a uniform

distribution on [Ĉ, Č] with the complementary probability, then we can calculate the model’s

equilibrium value functions and decision rules with pencil and paper. Before proceeding, we

examine this special case to illustrate the model’s moving parts. For further simplification,

suppose that π(N) = 0 for N ≥ 3, so at most two firms serve the industry. To ensure that

the equilibrium dynamics are not trivial, we also assume that no firm will serve the industry

if demand is low enough and that two firms will serve the industry if it is sufficiently high.2

To begin, consider an incumbent firm with rank 2. In an equilibrium in a LIFO strategy,

its profit equals (C/2)π(2) − κ. It will earn this until the next time that Ct changes, at

which point the new demand value will be statistically independent of its current value. It

is straightforward to use these facts to show that this firm’s value function is the following

piecewise linear function of C.

v(0, C, 2) =

{
0 if C ≤ C2,

β
(1−λ)(C

2
π(2)−κ)+λṽ(0,2)

1−β(1−λ)
if C > C2,

where

ṽ(0, 2) =
1

2

(
Ĉ + Č

2

)
π(2)− κ +

∫ Č

Ĉ

v(0, C ′, 2)

(Č − Ĉ)
dC ′.

Here, ṽ(0, 2) is the firm’s average continuation value given a new draw of Ct and C2 is the

largest value of C that satisfies v(0, C, 2) = 0. Optimality requires the firm to exit if C < C2.

2Sufficient conditions for these two properties are (1 − λ)
[
Ĉπ(1)− κ

]
+ λ

Ĉ+Č
2 π(1)−κ

1−β < 0 and

β

[
(1−λ)( Č

2 π(2)−κ)+ λ
1−β

(
1
2

Č+Ĉ
2 π(2)−κ

)
1−β(1−λ)

]
> ϕ(2).
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This value function is monotonic in C, so there is a unique entry threshold C2 that equates

the continuation value with the entry cost. Thus, a second duopolist enters whenever Ct

exceeds C2 and exits if it subsequently falls at or below C2.

Next, consider the problem of an incumbent with rank 1. If this firm is currently a

monopolist, it expects to remain so until Ct > C2; and if it is currently a duopolist, it

expects to become a monopolist when Ct falls below C2. This firm’s value function is also

piecewise linear. If the firm begins the period as the sole incumbent, it is

v(0, C, 1) =


0 if C ≤ C1

β (1−λ)(Cπ(1)−κ)+λṽ(0,1)
1−β(1−λ)

if C1 < C ≤ C2,

β
(1−λ)(C

2
π(2)−κ)+λṽ(1,1)

1−β(1−λ)
if C > C2;

and if it begins as one of two incumbents it equals

v(1, C, 1) =


0 if C ≤ C1,

β (1−λ)(Cπ(1)−κ)+λṽ(0,1)
1−β(1−λ)

if C1 < C ≤ C2,

β
(1−λ)(C

2
π(2)−κ)+λṽ(1,1)

1−β(1−λ)
if C > C2.

The exit threshold C1 is the greatest value of C such that v(0, C, 1) = 0, and the average

continuation values following a change in Ct for a monopolist and a duopolist are

ṽ(0, 1) =

(
Ĉ + Č

2

)
π(1)− κ +

∫ Č

Ĉ

v(0, C ′, 1)

(Č − Ĉ)
dC ′,

ṽ(1, 1) =
1

2

(
Ĉ + Č

2

)
π(2)− κ +

∫ Č

Ĉ

v(1, C ′, 1)

(Č − Ĉ)
dC ′.

This value function does not always increase with C, because slightly raising C from C2

induces entry by the second firm and causes both current profits and the continuation value

to discretely drop. Nevertheless we know that they drop to a value above ϕ(1), because at

this point the second firm chooses to enter. Hence, it is still possible to find a unique entry

threshold C1 that equates the value of entering with rank 1 to the cost of doing so.

Figure 2 visually represents the equilibrium. In each panel, C runs along the horizontal

axis. The vertical axis gives the value of a firm at the time that entry and exit decisions are

made. The top panel plots the value of a firm with rank 1, while the bottom plots the value

for a competitor with rank 2. For visual clarity, the two panels have different vertical scales.

The value of a duopolist with rank 2 equals zero for C < C2, and thereafter increases linearly
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Figure 2: Equilibrium in the Pencil-and-Paper Example

with C. The entry threshold C2 equates this value with ϕ(2). The value of an older firm

with rank 1 has two branches. The upper monopoly branch gives the value of a monopolist

expecting no further entry. If C increases above C2 and thus induces entry, the firm’s value

drops to the lower duopoly branch. This has the same slope as the value function in the

lower panel. Its intercept is higher, because the incumbent expects to eventually become

a monopolist the first time that C passes below C2.
3 When this occurs, the firm’s value

returns to the monopoly branch. The entry and exit thresholds for this firm occur where the

monopoly branch intersects ϕ(1) and 0.

The paper-and-pencil example provides a useful basic framework for analytically charac-

terizing the effects of policy interventions in a dynamic duopoly. This paper’s companion

(Abbring and Campbell, 2006b) uses this framework to determine the effects of raising a bar-

rier to entry in a monopoly by increasing a second entrant’s sunk costs, and to explore the

consequences of replacing the LIFO assumption with a first-in first-out (FIFO) assumption.

3The two panels’ different vertical scales mask these results.
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3 Threshold Entry and Exit Rules

In the paper-and-pencil example, all firms follow threshold rules for their entry and continu-

ation decisions.

Definition 3. A firm with rank R′ follows a threshold rule if there exist real numbers CR′

and CR′ ≥ CR′ such that AS(N −R,C, R′) = I{C > CR′} and AE(C, R′) = I{C > CR′}.

With such a rule, a potential entrant into a market with R′ − 1 incumbents actually enters

if and only if C > CR′ , and this firm exits the first time that C ≤ CR′ .

There are three reasons to care about whether or not firms follow threshold rules. First,

they pervade theoretical and empirical industrial organization. Second, they simplify the

model’s analysis, as the pencil-and-paper example illustrated. Third, as the next proposition

shows, higher realizations of demand always result in more active firms if and only if all firms

use threshold rules.

Proposition 3. Consider a sequence of possible demand realizations, C1, C2, . . . , Ct−1 and the

corresponding number of operating firms from the equilibrium of Proposition 2, N1, N2, . . . , Nt−1.

Then increasing Ct weakly increases Nt+j for non-negative j, and any possible sequence of

subsequent demand realizations Ct, . . . , Ct+j if and only if firms of all ranks follow threshold

rules.

This proposition’s proof is obvious.

A monotonic influence of Ct on Nt+j appeals to us as “natural”. It is straightforward

to show that a firm with the highest possible rank always follows a threshold rule given

stochastic monotonicity (Q(·|C) decreases with C). Hopenhayn (1992) imposes this condition

on competitive firms’ productivity shocks to demonstrate the existence of an optimal exit

threshold. However, stochastic monotonicity does not guarantee that firms of all ranks use

threshold rules in the LIFO equilibrium. Figure 3 illustrates this using a particular numerical

example with Ň = 2. For this, we suppose that ln Ct ∈ [−1.5, 1.5] and that

Q(c|C) =


0 if ln c < max{ln C − 0.3,−1.5}
1/4 if max{ln C − 0.3,−1.5} ≤ ln c < ln C

3/4 if ln C ≤ ln c < min{ln C + 0.3, 1.5}
1 otherwise

With this stochastic process, the probability of ln Ct remaining unchanged is 1/2. With

probability 1/4 it falls to the maximum of ln Ct−0.30 and ln Ĉ, and with the same probability
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it rises to the minimum of ln Ct+0.30 and ln Č. The model’s other parameters in this example

are ϕ(1) = ϕ(2) = 10, π(N) = 2× I{N ≤ 2}, κ = 1, and β = 1.05−1.4

The example’s stochastic process displays stochastic monotonicity, so the value function

for the second entrant increases with Ct. As with the paper and pencil example, the first

firm’s value function decreases to a point above ϕ(1) at the second entrant’s entry threshold.

However, the value function also decreases at several points to the left of this threshold. The

drops occur when increasing ln Ct moves one of the two extreme points in the support of

ln Ct+1 over another drop. The implication of this non-monotonicity is that this firm’s value

function crosses ϕ(1) thrice. As a result, a firm with this entry opportunity would take it

if ln Ct is in either of the disconnected sets labeled A and B but it would stay out of the

market if ln Ct fell in the region between them. Intuitively, moving ln Ct from A into the

region between A and B decreases the value of entry by increasing the probability of further

entry without a compensating gain from increasing ln Ct+1.

The above example illustrates that firms do not generically use threshold rules in equi-

librium. In it, increasing the current value of C can discontinuously increase the likelihood

of crossing C2 and thereby discontinuously decrease the incumbent’s value. In contrast, in-

creasing C in the pencil-and-paper example leaves the probability of future entry unchanged.

Together, these examples suggest that firms will use threshold rules if the stochastic process

limits the negative “potential entry” effect of increasing C on expected future profits. Here

we present sufficient conditions for this to be so.

We rely on the following class of stochastic processes for Ct.

Definition 4. The transition function Q(·|C) is a mixture of uniform autoregressions with

bounded growth if (i) there exists a sequence of transition functions

Qk(c|C) =


1 if c > µk(C) + σk/2

(c− µk(C) + σk/2)/σk if µk(C)− σk/2 ≤ c ≤ µk(C) + σk/2

0 otherwise,

with both µk(C) ≤ C+σk/2 and µk(C) weakly increasing in C; and (ii) there exists a sequence

of positive real numbers pk such that limK→∞
∑K

k=1 pk = 1 and

lim
K→∞

sup
c,C

∣∣∣∣∣Q(c|C)−
K∑

k=1

pkQk(c|C)

∣∣∣∣∣ = 0.

4For the computation, we used the algorithm described in Section 4.1.
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Figure 3: Example of LIFO Equilibrium with a Non-Monotonic Entry Rule

In this definition, each of the mixing distributions is a (possibly nonlinear) autoregression

with conditional mean µk(C) and uniform innovations with variance σ2
k/12. The coefficients

pk give the mixing probabilities. The condition that µk(C) ≤ C + σk/2 ensures that the

current state is always in or above the support of each mixing distribution. This is the sense

in which Definition 4 bounds the growth of C. With this definition in place, we can state

this section’s central result.

Proposition 4. Let (AS, AE) be the unique symmetric Markov-perfect equilibrium in a LIFO

strategy that defaults to inactivity. Assume that Q(·|C) is a mixture of uniform autoregres-

sions with bounded growth. Then, firms with all ranks follow threshold policies.

The key step in the proposition’s proof is the demonstration that an increase in C that

makes further entry more likely does not reduce the expected continuation value below the
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firm’s cost of entry. To appreciate the contribution of the restriction on Q(·|C) to this,

notice that it requires the distribution of C ′ given C to have no modes to the right of C.

Thus, increasing C cannot move a “substantial” probability mass over another firm’s entry

threshold as in our example of a non-monotonic exit rule.

A wide variety of demand processes are consistent with the requirements of Proposition

4. The stochastic process from the pencil-and-paper example satisfies the conditions with α

and 1−α serving as the mixing probabilities. In this case, one of the uniform distributions is

degenerate at µ1(Ct) = Ct. To construct another example, consider a random walk reflected

at Ĉ and Č. That is, set

µ(c) =


Ĉ + σ

2
c < Ĉ + σ

2
,

c if Ĉ + σ
2
≤ c ≤ Č − σ

2
, and

Č − σ
2

c > Č − σ
2
,

for some 0 < σ < Č − Ĉ. By mixing over such reflected random walks, we can approximate

any symmetric and continuous distribution for the growth rate of demand in the region away

from the boundaries of [Ĉ, Č].

4 Entry and Exit with Uncertainty

This section applies our analysis to two related questions: How does adding uncertainty

impact oligopolists’ entry and exit thresholds? How do estimates of oligopolists’ producer

surplus per consumer based on static models of the “long-run” without both uncertainty and

sunk costs differ from their actual values?

Dixit and Pindyck (1994) review a large literature that characterizes competitive firms’

entry and exit decisions with sunk costs and uncertain profits. Such a firm’s value equals its

fundamental value, the expected discounted profits from perpetual operation, plus the value

of an option to sell this stream of (potentially negative) profits at a strike price of zero. This

literature’s key insight is that uncertainty about future profits raises the value of this put

option and thereby decreases the frequency of exit. Abbring and Campbell (2006a) estimated

that this option value accounted for the majority of firm value in a particular competitive

service industry. Our model allows us to investigate how the insights from this well-studied

decision-theoretic problem apply to oligopolistic dynamics.

Our analysis of the second question follows a large literature based on static free-entry

models of oligopoly structure, exemplified by Bresnahan and Reiss (1990, 1991b) and Berry
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(1992). They determined empirically how changing market size influenced the number of

competitors using observations from cross-sections of local retail (Bresnahan and Reiss) and

airline (Berry) markets. The models they used to structure their analysis can be viewed

as versions of ours in which either demand remains unchanged over time or firms incur no

sunk costs. These papers point to current demand as the key determinant of the number of

firms: A market will attain N firms if N entrants can recover their fixed costs but N + 1

entrants cannot. These authors emphasize that the observed relationship between C and N

depends on the rate at which π(N) decreases (which Sutton, 1991, labeled the “toughness of

competition”) and the rate at which ϕ(N) increases (which McAfee et al., 2004, define to be

an economic barrier to entry). If both of these functions are constant, then the number of

active firms is roughly proportional to demand, Cj = j×C1. However, if either π(N) decreases

or ϕ(N) increases, then N/C declines with C. In this sense, increasing the toughness of

competition or imposing a sunk barrier to entry increases concentration.

Our approach to answering these questions is computational. Accordingly, we begin

this section with an explicit presentation of the algorithm for equilibrium computation. We

then show how demand uncertainty impacts equilibrium entry and exit thresholds for a

particular model parameterization. The section concludes with the calculation of the entry

thresholds and the producer surplus per consumer calculated from feeding data generated by

our model’s ergodic distribution through a static Probit model of long-run equilibrium like

that of Bresnahan and Reiss (1990, 1991b).

4.1 Equilibrium Computation

The proof of Proposition 1 outlines a simple algorithm for computing the Markov-perfect

equilibrium of interest:

(i). Given values for the model’s primitives, we choose an evenly spaced grid of values for

C in the interval [Ĉ, Č] and a Markov chain over this grid to approximate Q(·|C).

(ii). We set Ň equal to the largest value of R such that

Č

R
π(R)− κ ≥ 0.

(iii). We consider the entry and survival decision problem of a firm with rank Ň . This firm

rationally expects no further entry and sets N ′ equal to Ň in all states (N−R,C). Under

this supposition, we can solve the firm’s dynamic programming problem by beginning

13



with a trial value for its value function v(0, ·, Ň) and iterating on the Bellman equation

(1) for N = R = Ň . This gives the firm’s expected discounted profits v(0, C, Ň) for

all C on the chosen grid. In practice, this takes very, very little computer time. From

v(0, ·, Ň), we can calculate the sets of demand states C in which the firm chooses to

enter and survive. We refer to these as the entry and survival sets

EŇ ≡ {C|v(0, C, Ň) > ϕ(Ň)} and SŇ ≡ {C|v(0, C, Ň) > 0}.

(iv). The rest of the computation proceeds recursively for R = Ň − 1, . . . , 1. Suppose that

we have computed entry sets ER+1, . . . , EŇ and survival sets SR+1, . . . ,SŇ . A firm with

rank R rationally expects that these sets govern younger firms’ entry and survival

decisions, and that no firm will enter with rank larger than Ň . Hence, it expects that

N ′
R(N −R,C) ≡ R +

Ň∑
R̃=R+1

[
I
{

R̃ ≤ N, C ∈ SR̃

}
+ I

{
R̃ > N,C ∈ ER̃

}]

governs the evolution of the number of firms. With this specification for N ′ in place,

we can solve this firm’s dynamic programming problem by iterating on the Bellman

equation (1) for given R, starting with e.g. the value function for a firm with rank

R + 1. This produces the expected discounted profits v(N − R, ·, R), N = R, . . . , Ň ,

and the entry and survival sets

ER ≡ {C|v(0, C,R) > ϕ(R)} and SR ≡ {C|v(0, C,R) > 0}

for a firm with rank R.

With the equilibrium entry and survival sets for all Ň possible ranks in place, calculating

observable aspects of industry dynamics (such as the ergodic distribution of Nt) is straight-

forward. Matlab programs and documentation are available in this project’s replication file.

4.2 Equilibrium Entry and Exit Thresholds

With this algorithm, we have calculated the equilibrium entry and exit thresholds for a

particular specification of the model that satisfies the sufficient conditions for firms to use

threshold-based entry and exit policies. We set one model period to equal one year and chose

β to replicate a 5% annual rate of interest. We set κ = 1.75 and ϕ = 0.25(1 − β)/β, so the

fixed costs of a continuing establishment equal seven times sunk costs’ rental equivalent value.

14
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We also set π(N) = 4 for all N . With these parameter values and no demand uncertainty,

the entry thresholds are twice the corresponding exit thresholds and the entry threshold for

a second firm equals one. We set Ĉ = e−1.5, Č = e1.5, and Q(·|C) to equal a mixture over 51

reflected random walks in the logarithm of C with uniformly distributed innovations. The

mixture approximates a normally distributed innovation. We denote the standard deviation

of the normal distribution we seek to approximate with σ. Proposition 4 can be easily

extended to the case where Definition 4 applies to a monotonic transformation of Ct, so the

logarithmic specification for demand has no direct theoretical consequences. We choose it

because population and income measures typically require a logarithmic transformation to

display homoskedasticity across time.

The first two panels of Table 1 report the equilibrium entry and exit thresholds for this

specification for four values of σ, 0, 0.10, 0.20, and 0.30. Given the support of Ct, up to

eight firms could populate the industry when σ = 0. Because Ct is reflected off of Č, demand

displays mean reversion. Thus, such high states of demand are somewhat temporary when

σ > 0 and the maximum number of firms observed in the ergodic distribution accordingly

decreases with σ. The two panels’ cells for those missing firms’ entry and exit thresholds are

blank.

Consider first the impact of increasing σ on the entry thresholds. At least one firm enters

an empty market with no demand uncertainty if Ct > 0.50. This threshold hardly changes

as σ increases. Likewise, the entry threshold for a second firm remains very close to 1.00 as

σ rises. The thresholds for higher-ranked entrants all rise with σ with one exception (to be

discussed further below). Apparently, increasing demand uncertainty makes entry into an

oligopoly less likely for a given value of Ct. Demand uncertainty has exactly the opposite

impact on the entry of a potential monopolist. For such a firm, increasing uncertainty

increases the value of the put option associated with exit, thereby raising profitability and

lowering the firm’s entry threshold.

This difference between oligopolists’ and monopolists’ entry decisions arises from the

threat of potential entry. A monopolist captures all of the increased profit from a favor-

able demand shock. For an oligopolist, further entry chops this right tail off of the profit

distribution and thereby reduces the firm’s option value. This explanation squares with the

single exception to the rule that increasing σ increases the entry threshold. Increasing σ from

0.20 to 0.30 simultaneously eliminates the possibility that a sixth firm enters and reduces C5

from 2.72 to 2.56 .5 The third panel of Table 1 further illustrates this effect. It reports the

5Entry by an eighth firm does not occur when there is demand uncertainty, so this discussion begs the
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equilibrium entry thresholds for the case where π(N) = 4× I{N < 5}, so that no more than

four firms will populate the market. The entry thresholds for the first, second, and third

firms are nearly identical to their values in the first panel. However, the entry thresholds for

the fourth firm (facing no further entry) decline with σ.

Next examine the exit thresholds in the table’s second panel. Without demand uncer-

tainty, these form a line out of the origin with a slope approximately equal to 0.44 . As

expected, raising σ decreases all of the exit thresholds. This mimics the well-known effect

of increased uncertainty on monopolists’ exit decisions: Uncertainty raises the value of the

firm’s put option, and exit requires this option’s exercise. For completeness, Table 1 reports

the equilibrium exit thresholds when π(N) = 4 × I{N < 5}. As expected, this change has

almost no impact on the exit thresholds for firms with ranks less than four. For the fourth

firm, eliminating the possibility of further entry makes survival more attractive and thereby

lowers the exit threshold even further.

To summarize, adding uncertainty either leaves the equilibrium entry thresholds un-

changed or raises them somewhat. This result embodies two effects: Increasing uncertainty

alone would make entry more attractive, but the accompanying increase in the probabil-

ity of future entry reduces expected future profits. On the other hand, adding uncertainty

substantially reduces equilibrium exit thresholds.

4.3 Static Analysis of Market Size and Entry

We now characterize how a static “long-run” analysis of market size and entry interprets data

generated by our dynamic model. For this, it is helpful to briefly review a stylized version of

the entry model examined by Bresnahan and Reiss (1990, 1991b). As in our dynamic model,

the producer surplus per firm equals (C/N)× π(N) and at most Ň firms serve the industry.

The fixed costs to a firm serving the market are eεκ, where ε is a normally distributed shock

with mean 0 and variance ς2. There are no sunk costs. Free entry requires that all active

firms earn a positive profit and that an additional firm would earn a non-positive profit. That

is

C

N
× π(N) > eεκ and

C

N + 1
× π(N + 1) ≤ eεκ.

question of why increasing σ from 0 to 0.10 raises C7 from 3.49 to 3.60 . This change reflects the mean
reversion noted above. The same principle explains the rise of C6 from 3.13 to 3.19 when σ goes from 0.10
to 0.20.
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Table 1: Equilibrium Entry and Exit Thresholds(i,ii)

π(N) = 4

Entry Thresholds

σ 1 2 3 4 5 6 7 8

0.00 0.50 1.00 1.49 1.99 2.48 2.97 3.49 3.97

0.10 0.48 0.98 1.51 2.03 2.56 3.13 3.60

0.20 0.46 1.00 1.55 2.12 2.72 3.19

0.30 0.46 1.02 1.62 2.20 2.56

Exit Thresholds

σ 1 2 3 4 5 6 7 8

0.00 0.44 0.87 1.31 1.73 2.18 2.61 3.03 3.49

0.10 0.38 0.76 1.15 1.54 1.93 2.32 2.69

0.20 0.33 0.69 1.05 1.40 1.77 2.12

0.30 0.28 0.63 0.97 1.30 1.58

π(N) = 4× I{N < 5}

Entry Thresholds

σ 1 2 3 4 5 6 7 8

0.00 0.50 1.00 1.49 1.99

0.10 0.48 0.98 1.52 1.90

0.20 0.46 0.99 1.57 1.77

0.30 0.45 1.03 1.57 1.75

Exit Thresholds

σ 1 2 3 4 5 6 7 8

0.00 0.44 0.87 1.31 1.73

0.10 0.38 0.76 1.15 1.51

0.20 0.33 0.69 1.05 1.31

0.30 0.28 0.64 0.96 1.19

(i) The parameter values used were κ = 1.75, β = 1.05−1, ϕ = 0.25 × (1 − β)/β, Ĉ = e−1.5, Č = e1.5, and
Q(·|C) a mixture over reflected random walks in the logarithm of C with uniformly distributed innovations
and approximate innovation variance σ2. (ii) An empty cell indicates that the ergodic distribution of Nt puts
zero probability on the given value of N . Please see the text for details.
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For each N = 1, . . . , Ň ; define the deterministic entry threshold C?
N to be the unique solution

to (C/N)π(N) − κ = 0. Exactly N firms will serve the industry if ln C > ln C?
N + ε, and

ln C ≤ ln C?
N+1 +ε. The probability that this occurs is Φ

(
ln(C/C?

N )

ς

)
−Φ

(
ln(C/C?

N+1)

ς

)
. In this

expression, we set C?
0 = 0 and C?

Ň+1
= ∞.

Given observations of C and N from a cross section of markets, ordered Probit estimation

immediately yields estimates for C?
1 , . . . , C

?
Ň

and ς. With these we can estimate how the

producer surplus per consumer falls with additional competitors. Specifically, the definition

of C?
N implies that π(N)/π(1) = C?

1 × N/C?
N . If the level of demand required to support

N firms equals N times the level required for a monopolist, then we infer that the producer

surplus per consumer does not fall with additional entry. On the other hand, if demand must

exceed N ×C?
1 to induce N firms to enter, then the surplus per consumer must decline with

N . In this way, the Probit analysis infers the toughness of competition from the relationship

between market size and the number of competitors.

For a given joint distribution of C and N , we can define the population counterparts

to the estimated thresholds by minimizing the population analogue of the ordered Probit’s

log-likelihood function.

L(C?
1 , . . . , C

?
Ň

, ς) ≡ E

 Ň∑
R=0

I {N = R} ln

(
Φ

(
ln(C/C?

R)

ς

)
− Φ

(
ln(C/C?

R+1)

ς

))
Because the ordered Probit likelihood function is always concave, even if it does not rep-

resent the true data generating process, this function has a unique minimizer. Population

“estimates” of π(N)/π(1) correspond to these minimizing values for C?
1 , . . . , C

?
Ň

. Calculat-

ing these from data generated by our dynamic model and comparing them to their true

values indicates whether abstraction from dynamic considerations substantially biases the

static/long-run estimates of the toughness of competition.

The top panel of Table 2 reports ordered Probit estimates of C?
1 , . . . , C

?
Ň

from the ergodic

distribution of the dynamic model specification examined in Section 4.2, and its bottom panel

gives the implied estimates of π(N)/π(1). For all three of values of σ used, the static entry

thresholds almost exactly equal the average of the dynamic model’s corresponding entry and

exit thresholds. That is, the static analysis “splits the difference” between them.

Recall that the true values of π(N)/π(1) all equal one. That is, an additional competitor

steals business from incumbents but does not lower the producer surplus earned per consumer.

For the case with σ = 0.10, the implied values deviate little from the truth. However, raising σ

further substantially lowers these “estimates”. When σ = 0.3, the implied value of π(2)/π(1)

equals 0.85. Further increases in N change this little.
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Table 2: Static Probit Analysis of Market Structure(i)

Implied Static Entry Thresholds

σ 1 2 3 4 5 6 7

0.10 0.43 0.87 1.32 1.78 2.24 2.71 3.13

0.20 0.39 0.84 1.29 1.74 2.21 2.62

0.30 0.34 0.81 1.26 1.70 2.04

Implied π(N)/π(1)

σ 1 2 3 4 5 6 7

0.10 1.00 0.98 0.97 0.96 0.95 0.95 0.96

0.20 1.00 0.94 0.92 0.90 0.89 0.90

0.30 1.00 0.85 0.81 0.80 0.84

(i) The table’s top panel reports population values of Probit-based entry thresholds from the static model of

Bresnahan and Reiss calculated using the ergodic distribution of the dynamic model specification of Section

4.2 and Table 1. The bottom panel reports the implied values of π(N) normalized by π(1). An empty cell

indicates that the ergodic distribution of Nt puts zero probability on the given value of N . Please see the

text for further details.

Apparently, the static Probit analysis can find evidence that π(N) falls with data gener-

ated from a dynamic model in which π(N) is constant. To gain some insight in the way sunk

costs and uncertainty affect the static analysis of the toughness of competition, recall that the

static Probit’s thresholds are roughly the average of the dynamic entry and exit thresholds.

Hence, without uncertainty both the static and the dynamic thresholds are evenly spaced

if π(N) is constant. For example, from the static analysis we may find that it takes 1000

consumers for one firm and 2000 consumers for two firms to be active in the market. With

uncertainty, however, the option value sacrificed on exit will make firms of all ranks more

reluctant to exit. Because this effect is not offset by a change in the entry thresholds (see

the previous section and Table 1), the static thresholds will decrease as well. We may now

find that that it takes only 500 consumers for one firm and 1500 consumers for two firms

to be active. The fact that the number of consumers needs to triple, from 500 to 1500, to

entice a second firm to join the first suggests that the producer surplus per consumer falls

substantially when a second firm enters. However, uncertainty fully explains this effect; the
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producer surplus per consumer is constant.6

In our analysis, the delay in exit arising from option-value considerations imparts a sub-

stantial downward bias to each estimated threshold. In this way, omitting dynamic consider-

ations from a long-run analysis of industry structure can lead to a finding of falling producer

surplus per consumer when in fact it is constant. This bias is large in the specification under

consideration. Determining its importance for empirical work must proceed on a case-by-

case basis, but we expect option-value considerations to pervade oligopolists’ exit decisions.

A comparison of the results of Bresnahan and Reiss (1991b) with “estimates” in Table 2

supports this view. Their abstract reports

Our empirical results suggest that competitive conduct changes quickly as the

number of incumbents increases. In markets with five or fewer incumbents, almost

all variation in competitive conduct occurs with the entry of the second or third

firm.

This is exactly the pattern displayed in Table 2.

5 Technology Dynamics

In the model, π(N) depends neither on the identity of the firm nor on its history. The previous

literature on industry dynamics suggests relaxing this in two ways. A firm’s productivity

could improve with experience, or it could be stochastic and require Bayesian learning on the

part of owners. In this section, we show that the basic approach we follow can accommodate

these two extensions.

5.1 Learning by Ageing

We begin with the learning curve. The most popular specification for technology which

displays such intertemporal economies of scope is “learning-by-doing.” That is, the pro-

duction frontier shifts out with the level of previous cumulative output. Benkard (2000)

estimated such a specification that also includes “forgetting-by-not-doing” using data from

the production of a wide-bodied aircraft, and he investigated the technology’s consequences

6Another logical possibility is that the fall in the implied static thresholds reflects mean reversion: Because
C cannot fall below Ĉ, a potential entrant does not expect extremely low values of C to persist. We examined
whether this contributes to our results by changing Ĉ and Č from e−1.5 and e1.5 to e−2 and e2. The results
differ only minimally from those in Table 2.
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for oligopolistic dynamics in Benkard (2004). Following this approach requires explicitly

modeling firms’ production decisions and incorporating them into the dynamic game. This

would be an interesting extension, but it is overly ambitious for the present paper. Instead,

we adopt here a specification of learning-by-ageing. That is, a firm’s technology frontier ex-

pands deterministically with the passage of time. Bahk and Gort (1993) estimated such a

specification for the learning curve using a panel of U.S. manufacturing plants, and Cabral

(1993) examines how such learning impacts oligopoly dynamics in a model similar to ours

but with constant demand and simultaneous entry and continuation decisions.

To incorporate learning-by-ageing into our model, we alter two of its assumptions. First,

firms have heterogeneous fixed costs. Each period Ň potential entrants have an opportunity

to enter. The first has type T = 1, the second, T = 2, etc. A firm’s fixed costs in its

first period of operation are ξ = κ + ν(T ), where ν(·) is positive and strictly increasing.

Thereafter, the firm’s fixed costs evolve deterministically according to ξ′ − κ = ϑ(ξ − κ),

where 0 < ϑ < 1. So that older firms always have lower costs than their younger rivals,

we assume that ϑν(T ) < ν(1). Second, incumbent producers and potential entrants make

their continuation decisions simultaneously instead of sequentially. The analysis of LIFO

equilibrium assigns firms entering in the same period different ranks. In the model with the

learning curve, the technology types distinguish simultaneous entrants.

In this environment, the payoff relevant state for entry and continuation decisions is C,

and the vector of incumbents fixed costs. A Markov-perfect equilibrium is a pair of functions

of this state giving the probabilities of survival and entry. We follow Cabral (1993) and focus

on a “natural” equilibrium in which low-cost firms never exit while leaving behind a high-

cost competitor and no high-cost potential entrant actually enters at the same time that a

low-cost potential entrant remains inactive. Because a firm’s cost decreases strictly with its

age, any such equilibrium has a LIFO structure. Hence, it is straightforward to demonstrate

analogous results to Propositions 1 and 2 using simple extensions of their proofs.

To see the relationship between the natural equilibrium in this setting and the LIFO

equilibrium in our model, consider a sequence of specifications for firms’ fixed costs in which

ν(·) converges to zero. Because the value functions are continuous in firms’ fixed costs, the

limits of the equilibrium value functions equal their counterparts from the equilibrium in

LIFO strategies. In this specific sense, the assumption of sequential continuation decisions

and a restriction to LIFO strategies “stand in” for a restriction to a “natural” equilibrium

in a model with learning-by-ageing.
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5.2 Bayesian Learning and Technology Shocks

Entry entails risk. Jovanovic (1982) modeled this risk as imperfect information about a

time-invariant productivity parameter. A firm’s owner optimally infers its value given noisy

observations and makes continuation decisions based on this inference. Hopenhayn (1992)

uses a similar specification with observable but continuously evolving productivity to generate

a declining hazard rate for exit. Here, we demonstrate that versions of such technology shocks

can be added to our model without destroying its simplicity.

To do so, we again focus on the case where a firm’s fixed cost varies over time. Denote

firm i’s fixed cost at time t with κit. This can take on one of two values, κ̂ ≤ κ̌. At the time of

entry, this is drawn from a distribution with probability p on κit = κ̂. Thereafter, it evolves

according to a Markov chain. This fixed cost is observable to all market participants after

production takes place. In this sense, this specification is closer to Hopenhayn’s (1992) than

Jovanovic’s (1982), but the firm’s owner does learn a substantial amount about productivity

after its first period of production.

If the difference between κ̌ and κ̂ is large enough, then there might not exist a symmetric

Markov-perfect equilibrium in a LIFO strategy. To see this, suppose that p is close to one (so

that the realization κ̌ is very unlikely), the probability of transiting from κ̂ to κ̌ is small, and

κ̌ is an absorbing state. If κ̌ greatly exceeds κ̂ then an old firm facing younger competitors

with lower costs might find continuation unprofitable, even given LIFO expectations. If such

a firm exits, then its younger competitors’ ranks decrease.

This difficulty disappears in two cases. In the first, the Markov transition matrix equals

the identity matrix and survival as a perpetual monopolist is only profitable if κit = κ̂. Allow-

ing for such a possibility would add the realistic feature that adding a long-lived competitor

potentially requires many entrepreneurs to try and fail first. In the second case, the differ-

ence between κ̌ and κ̂ is small. Because the incumbents’ value function is strictly decreasing

in the firm’s rank except in degenerate and uninteresting cases, we know that such small

shocks will never induce a low ranked incumbent to exit before a high-ranked rival. Thus,

the expectation that LIFO always holds is rational. Adding such a small technology shock

would alter the timing of firms’ exits but not their order.

6 Related Literature

This paper’s analysis implicitly relies upon a great deal of previous work on the theory

of dynamic games and the empirics of industry structure and dynamics. This section ac-
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knowledges this dependence explicitly. There are two areas of previous research that are

particularly important for us.

6.1 Timing and Expectational Assumptions

The sequential nature of firms’ entry and exit decisions allows Markovian strategies to them-

selves depend on a firm’s rank. This and the assumption that firms rationally expect LIFO

dynamics substantially structures our analysis. In some previous work, the assumption that

firms move sequentially gives early movers a form of commitment to their actions. Examples

are Dixit’s (1980) two-period Stackelberg investment game and Maskin and Tirole’s (1988)

infinite-horizon alternating-moves quantity game. In other work with finite-horizon games,

ordering players’ moves selects a unique Nash equilibrium for empirical analysis. As Berry

(1992) notes, this approach is particularly useful when firm-specific observable variables are

of substantial interest. Sequencing firms’ actions need not select a single Markov-perfect equi-

librium in an infinite-horizon setting like ours. In this case, researchers sometimes structure

expectations with assumptions— such as LIFO— to select a “natural” equilibrium. Cabral’s

(1993) restriction that high-cost firms exit before their low-cost counterparts provides one

example of such an expectational assumption.7

Amir and Lambson (2003) prove existence of a subgame-perfect equilibrium in an infinite-

horizon model that is similar to ours, but in which firms move simultaneously in each stage

game. They do so by constructing an equilibrium that is the limit of a sequence of LIFO

equilibria in the finite-horizon versions of their model as the horizon grows to infinity. This

suggests an alternative interpretation of our LIFO equilibrium as the limit of the sequence

of equilibria from our model’s finite-horizon analogues.

The most common defense of timing assumptions, that incumbents can take actions earlier

simply by virtue of their incumbency, applies to our work as well. In the equilibrium we

consider, these assumptions on timing and expectations make older firms more valuable than

their otherwise identical younger counterparts. For this reason, we expect incumbent firms’

to use the tools available to them to move potential entrants’ expectations towards those we

consider. A formal consideration of equilibrium selection is, however, well beyond the scope

of this paper.

7Assumptions on agents’ expectations can also select a “natural” equilibrium in finite-stage games of
dynamic oligopoly with incomplete or private information. For example, Bagwell et al. (1997) assume that
imperfectly informed consumers rationally expect the firms that charged the lowest price previously will do
so again. This selects an equilibrium in which otherwise static price decisions have dynamic consequences.
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6.2 Dynamic Empirical Analysis of Oligopolistic Markets

Ericson and Pakes (1995) proposed a framework for the empirical analysis of Markov-perfect

dynamics that is particularly well-suited for modeling oligopolists’ investment choices, and

Benkard (2004) provides one example of its application. It allows for a wide variety of dy-

namic investment decisions, but there is no characterization of its equilibrium set beyond the

existence proof due to Doraszelski and Satterthwaite (2005). Accordingly, the estimation of

this framework’s unknown parameters either occurs “off-line”, as in Benkard (2004), or by

considering each firm’s decision problem in isolation and letting the data reveal which equi-

librium was played in sample, as in Bajari et al. (2006) and Pesendorfer and Schmidt-Dengler

(2003). Strictly speaking, the Ericson and Pakes framework encompasses our model, but we

abstract from its most compelling feature, technological change arising from investment de-

cisions. Nevertheless, we expect that the possibility of business-stealing future entry in those

models will also severely reduce a new firm’s option value and thereby reduce entry.

Bresnahan and Reiss (1993) take a different empirical approach to dynamic oligopoly to

which our framework can also contribute. They consider panel observations of the numbers

of consumers and producers from concentrated markets for dental services. Their goal is to

estimate oligopolists’ fixed and sunk costs (κ and ϕ(R′) in our model). They acknowledge

the numerous theoretical difficulties associated with an infinite-horizon model of oligopolistic

entry and exit (such as ours) and they then proceed to estimate a much more tractable two-

period model in which entry and exit thresholds determine the number of operating firms

given its previous value and the current number of consumers. Because structural estimates

coming from such a finite-horizon model lack plausibility, Bresnahan and Reiss refrain from

using the estimated thresholds to infer dentists’ sunk costs. We believe that an extension of

this paper’s LIFO equilibrium model that includes econometric error could be appropriate

for such a structural estimation.

7 Conclusion

Because there is essentially a unique Markov-perfect equilibrium in LIFO strategies, we can

conduct comparative dynamics experiments such as that above. A companion paper to this

(Abbring and Campbell, 2006b) applies this framework to another experiment of interest

for industrial organization, raising late entrants’ sunk costs. For the case of an industry

with at most two firms, we prove that raising such a barrier to a second producer’s entry

increases the probability that some firm will serve the industry and decreases its long-run
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entry and exit rates. We also show there that these conclusions are robust to assuming

that the oldest firm exits first when Ct follows the simple stochastic process from the paper-

and-pencil example. In numerical examples of LIFO equilibrium with more than two firms,

imposing a barrier to entry stabilizes industry structure. Another natural application of this

framework is the estimation of oligopoly entry and exit thresholds discussed above. This

awaits future research.
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Appendix

A Proofs of Results in Section 2

Proof of Proposition 1. The proof proceeds by first constructing a candidate equilibrium

strategy and then verifying that it is a LIFO strategy that satisfies the conditions of Propo-

sition 1 and forms an equilibrium.

To construct the candidate strategy, define Ň as in Section 4.1. Because Č is finite, π(R)

is weakly decreasing in R, and κ > 0; Ň < ∞. This is an upper bound on the number of

firms that would ever produce in a LIFO equilibrium.

Next, consider the exit decision problem of a firm that entered with rank R ≤ Ň and

expects the number of firms to evolve according to the deterministic transition rule N ′
R :

Z+ × [Ĉ, Č] → {R,R + 1, . . . , Ň}. Here, N ′
R(X,C) is the number of firms that the firm with

rank R expects to be active next period given a decision to continue, X younger firms are

active this period, and the number of consumers equals C. The expected number of active

firms next period is defined for the off-equilibrium-path event that R + X > Ň , but it never

exceeds Ň . Define W to be the space of all functions

w : {0, . . . , Ň − 1} ×
[
Ĉ, Č

]
→
[
0,

βπ(1)Č

1− β

]
and define the Bellman operator TR : W →W with

TR(w)(X, C) = max
a∈[0,1]

aβE
[
π(N ′

R(X, C))C ′

N ′
R(X, C)

− κ + w(N ′
R(X, C)−R,C ′)

]
. (2)

Note that TR depends on the specification for N ′
R. It satisfies Blackwell’s sufficient conditions

for a contraction mapping, and W is a complete metric space. Hence, TR has a unique fixed

point, the value function wR that gives this firm’s expected discounted profits at each state

(X, C) ∈ {0, . . . , Ň − 1} ×
[
Ĉ, Č

]
.

To construct the candidate equilibrium, begin with the decision problem for a firm with

rank Ň and the transition rule N ′
Ň

(X, C) = Ň for all (X,C). This transition rule reflects the

firm’s expectations that it produces no longer than any earlier entrant, any younger active

firms will exit, and no firms will enter. The fixed point wŇ of TŇ can be uniquely extended

to a value function on the entire state space Z+×
[
Ĉ, Č

]
by assigning wŇ(X, C) = wŇ(0, C)

for all (X,C). Denote the set {C|wŇ(0, C) > 0} with SŇ and the set {C|wŇ(0, C) > ϕ(Ň)}
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with EŇ . Under the maintained hypotheses of this maximization problem, this firm chooses

to remain active if and only if C ∈ SŇ and it chooses to enter the industry if and only if

C ∈ EŇ .8

Next, iterate the following argument for R = Ň − 1, . . . , 1. Suppose that we have deter-

mined value functions wR+1, . . . , wŇ , entry sets ER+1, . . . , EŇ , and survival sets SR+1, . . . ,SŇ .

Suppose that we have established that

(i). ER+1 ⊇ · · · ⊇ EŇ ,

(ii). SR+1 ⊇ · · · ⊇ SŇ ,

(iii). for all R̃ ≥ R + 1, wR̃(X, C) = wR̃(Ň − R̃, C) if X > Ň − R̃, and

(iv). for all R̃ ≥ R + 1, wR̃(X, C) > 0 if and only if C ∈ SR̃.

Consider the decision problem for a firm with rank R and transition rule

N ′
R(X,C) = R +

∞∑
j=1

[I {j ≤ X,C ∈ SR+j}+ I {j > X, C ∈ ER+j}] , (3)

where ER̃ = SR̃ = ∅ for R̃ > Ň . This transition rule reflects the firm’s expectations that it

produces no longer than any earlier entrant and that ER+j and SR+j, j ∈ N, govern younger

firms’ entry and survival. The specification for N ′
R implies that N ′

R(X, C) = N ′
R(Ň − R,C)

if X > Ň − R. Therefore, we can uniquely extend the fixed point wR of TR to a value

function on the entire state space Z+ ×
[
Ĉ, Č

]
by assigning wR(X, C) = wR(Ň − R,C) for

all X > Ň −R.

We first prove some properties of this value function. Consider the complete subspace

WR ⊆ W of functions w such that w(X + 1, C) ≥ wR+1(X, C), X = 0, . . . , Ň − 2, and

w(X, C) is weakly decreasing in X, for all C. To show that the Bellman operator TR maps

WR into itself, note that

(i). N ′
R(X, C) is weakly increasing in X, so that TR(w)(X,C) is weakly decreasing in X if

w ∈ WR;

(ii). we have that

(a) 0 ≤ N ′
R+1(X,C)−N ′

R(X + 1, C) = I{C 6∈ SR+1} ≤ 1, so that

π(N ′
R(X + 1, C))C ′

N ′
R(X + 1, C)

≥
π(N ′

R+1(X, C))C ′

N ′
R+1(X, C)

; and

8This specification of SŇ and EŇ ensures that the firm defaults to inactivity in the case of indifference.
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(b) for w ∈ WR,

w(N ′
R(X + 1, C)−R,C ′) ≥ w(N ′

R+1(X, C)− (R + 1) + 1, C ′)

≥ wR+1(N
′
R+1(X, C)− (R + 1), C ′),

so that we can write

TR(w)(X + 1, C) = max
a∈[0,1]

aβE
[
π(N ′

R(X + 1, C))C ′

N ′
R(X + 1, C)

− κ + w(N ′
R(X + 1, C)−R,C ′)

]
≥ max

a∈[0,1]
aβE

[
π(N ′

R+1(X, C))C ′

N ′
R+1(X, C)

− κ + wR+1(N
′
R+1(X, C)− (R + 1), C ′)

]
= wR+1(X, C).

Since TR maps WR into itself, wR ∈ WR. That is,

(i). wR(X + 1, C) ≥ wR+1(X, C) for all X = 0, . . . , Ň − 2 and all C, and

(ii). wR(X, C) is weakly decreasing in X for all C.

These properties extend to the entire state space Z+ ×
[
Ĉ, Č

]
, because, for X ≥ Ň −R,

(i). wR(X + 1, C) = wR(Ň −R,C) ≥ wR+1(Ň −R− 1, C) = wR+1(X, C) and

(ii). wR(X, C) = wR(Ň −R,C).

The firm chooses to enter the industry if and only if C ∈ ER ≡ {C|wR(0, C) > ϕ(R)}. If

the firm is active and X = 0, it stays in the industry if and only if C ∈ SR ≡ {C|wR(0, C) >

0} ⊇ ER. To show that it is also optimal for an active firm with X ≥ 1 to stay in the industry

if and only if C ∈ SR ≡ {C|wR(0, C) > 0}, note that

(i). if C ∈ SR then survival is optimal because either

(a) C 6∈ SR+1, so that wR(X, C) = wR(0, C) > 0, or

(b) C ∈ SR+1, so that wR(X, C) ≥ wR+1(X − 1, C) > 0;

(ii). if C 6∈ SR then exit is optimal because v(X, C, R) ≤ v(0, C,R) ≤ 0.

Finally, wR(0, C) ≥ wR(1, C) ≥ wR+1(0, C) for all C, so that ER ⊇ ER+1 and SR ⊇ SR+1.
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With the value functions in hand and their properties established, consider the strategy

AS(X,C, R) =

{
1 if C ∈ SR and

0 otherwise,

and

AE(C, R) =

{
1 if C ∈ ER and

0 otherwise.

By construction, this strategy is a LIFO strategy that satisfies the conditions of Proposition 1.

It forms a symmetric Markov-perfect equilibrium if no firm can gain by a one-shot deviation

from the strategy (e.g. Fudenberg and Tirole, 1991, Theorem 4.2). By construction, the

strategy prescribes the optimal action in each state if all other firms follow the same strategy.

Hence, no firm can profit from a one-shot deviation and the strategy forms an equilibrium.

Proof of Proposition 2. The LIFO strategy constructed in the proof of Proposition 1 defaults

to inactivity. Thus, a symmetric Markov-perfect equilibrium in a LIFO strategy that defaults

to inactivity exists.

Uniqueness can be proven recursively, following the recursive construction of a candidate

equilibrium strategy in the proof of Proposition 1. First note that, in any equilibrium in a

LIFO strategy that defaults to inactivity,

(i). the expected discounted profits v(X,C, R) equal 0 and the entry and survival sets equal

ER = SR = ∅ in all states (X, C,R) such that R > Ň ; and

(ii). therefore, N ′
Ň

(X, C) gives the expected number of firms in the next period in all states

(X, C, Ň), so that the expected discounted profits v(X,C, Ň) equal wŇ(X, C), the entry

set equals EŇ , and the survival set equals SŇ in all states (X,C, Ň).

Next, iterate the following argument for R = Ň−1, . . . , 1. Suppose that, in any equilibrium in

a LIFO strategy that defaults to inactivity, the expected discounted profits v(X, C, R̃) equal

wR̃(X, C), the entry set equals ER̃, and the survival set equals SR̃ in all states (X, C, R̃) such

that R̃ > R. Then, N ′
R(X, C) defined by equation (3) gives the expected number of firms

in the next period in state (X, C, R). Hence, in all such equilibria, the expected discounted

profits v(X, C, R) equal wR(X, C), the entry set equals ER, and the survival set equals SR in

all states (X, C, R).

Finally, note that the corresponding survival rule AS is such that AS(N − R,C, R′) is

invariant in N −R and weakly decreasing in R′.
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B Proofs of Results in Section 3

We develop three auxiliary results before the proof’s presentation.

Definition 5. A function f : [Ĉ, Č] → R is C̃-separable, C̃ ∈ [Ĉ, Č], if (i) f(C) ≥ f(C̃) for

all C > C̃ and (ii) f(C) ≤ f(C̃) for all C < C̃.

Lemma 1. Let f : [Ĉ, Č] → R be integrable with respect to a uniform measure over its do-

main, C̃-separable, and non-decreasing on [Ĉ, C̃], for some C̃ ∈ [Ĉ, Č]. Given a conditional

probability distribution Q(·|C) for C ′ with non-decreasing expectation µ(C) that satisfies ei-

ther

(i). Q(·|C) is degenerate at µ(C) ≤ C for all C ∈ [Ĉ, Č], or

(ii). Q(·|C) is uniform on [µ(C)− σ
2
, µ(C) + σ

2
] ⊆ [Ĉ, Č] with σ > 0 and µ(C)− σ

2
≤ C for

all C ∈ [Ĉ, Č]

then g(C) ≡
∫ Č

Ĉ
f(C ′)dQ(C ′|C) is non-decreasing in C on [Ĉ, C̃].

Proof. In Case (i) , the result follows immediately from g(C) = f(µ(C)). Now consider Case

(ii). First, note that g(C) = σ−1
∫ µ(C)+σ/2

µ(C)−σ/2
f(u)du. Because f is non-decreasing on [Ĉ, C̃],

it immediately follows that g is non-decreasing on {C ∈ [Ĉ, C̃]|µ(C) + σ/2 ≤ C̃}. Next, for

C? ≤ C ≤ C̃ such that µ(C?) + σ/2 ≥ C̃, we have that

σ (g(C)− g(C?)) =

∫ µ(C)+σ/2

µ(C?)+σ/2

f(u)du−
∫ µ(C)−σ/2

µ(C?)−σ/2

f(u)du

≥
∫ µ(C)+σ/2

µ(C?)+σ/2

f(C̃)du−
∫ µ(C)−σ/2

µ(C?)−σ/2

f(C̃)du

= 0.

Taken together, this implies that g is non-decreasing on [Ĉ, C̃].

Lemma 2. Let f : [Ĉ, Č] → R and C̃ satisfy the conditions of Lemma 1. If QK(·|C) =∑K
k=1 pkQk(·|C) for some positive p1, . . . , pK and Q1(·|C), . . . , QK(·|C) that each individually

satisfy the conditions of Lemma 1, then gK(C) ≡
∫ Č

Ĉ
f(C ′)dQK(C ′|C) is non-decreasing in

C on [Ĉ, C̃].

Proof. Lemma 1 implies that gk(C) ≡
∫ Č

Ĉ
f(C ′)dQk(C

′|C) is non-decreasing on [Ĉ, C̃], k =

1, . . . , K. In turn, because gK(C) =
∑K

k=1 pkgk(C), this implies that gK(C) is non-decreasing

on [Ĉ, C̃].
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Lemma 3. Let f : [Ĉ, Č] → R be bounded, C̃-separable, and non-decreasing on [Ĉ, C̃],

for some C̃ ∈ (Ĉ, Č]. Let Q1, Q2, . . . be a sequence of mixture Markov transition functions

satisfying the conditions of Lemma 2 such that sup |QK−Q| → 0 for some Markov transition

distribution function Q as K → ∞. Then, g(C) ≡
∫ Č

Ĉ
f(C ′)dQ(C ′|C) is non-decreasing in

C on [Ĉ, C̃].

Proof. Lemma 2 implies that the function gK corresponding to each QK , K = 1, 2, . . ., is

non-decreasing on [Ĉ, C̃]. Because f is bounded, gK → g as K →∞ and g is non-decreasing

on [Ĉ, C̃].

We are now prepared to present the proof of Proposition 4.

Proof of Proposition 4. The proof begins with a characterization of SŇ = {C|v(0, C, Ň) > 0}
and EŇ = {C|v(0, C, Ň) > ϕ(Ň)}. Recall from the proof of Proposition 2 that v(0, C, Ň) =

wŇ(0, C), with wŇ the unique fixed point of the Bellman operator TŇ defined by Equation

(2). This operator maps the space of functions in W that are non-decreasing in C into itself,

so the value function v(0, C, Ň) is non-decreasing in C. It immediately follows that there

exist thresholds CŇ and CŇ such that SŇ = {C C > CŇ} and EŇ = {C C > CŇ}. Note

that either of these thresholds might equal Ĉ−, for some Ĉ− < Ĉ, or Č.

Next, iterate the following argument for R = Ň − 1, . . . , 1. Suppose that, for all R̃ = R+

1, . . . , Ň , there exist thresholds CR̃ and CR̃ such that SR̃ = {C C > CR̃} and ER̃ = {C C >

CR̃} and v(0, C, R̃) is non-decreasing in C for all C < CR̃. Consider the characterization of

SR = {C|v(0, C,R) > 0} and ER = {C|v(0, C,R) > ϕ(R)}. There are two cases to consider.

(i). In the first, CR̃ = Č for all R̃ = R + 1, . . . , Ň , so that a firm entering with rank R

expects no further entry to occur during its lifetime. This case is identical to the case

where R = Ň , so there exist thresholds CR and CR such that SR = {C C > CR} and

ER = {C C > CR}.

(ii). In the second case, CR+1 < Č. Here, there are two sub-cases to consider.

(a) In the first, v(0, C,R) > ϕ(R) for all C, so we can set CR = CR = Ĉ−.

(b) In the second sub-case, v(0, C,R) ≤ ϕ(R) for some C. The argument for this

sub-case requires the construction of an auxiliary sequence of value functions by

iterating on the Bellman operator TR. To this end, recall that v(0, C,R + 1) =

wR+1(0, C) (where wR+1 is the unique fixed point of TR+1), and initialize w1
R ≡
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wR+1. Then, for j = 2, 3, . . ., set wj
R ≡ TR(wj−1

R ). From Equation (3), it follows

that

N ′
R(X, C)−R−

[
N ′

R+1(X, C)− (R + 1)
]

= I{C ∈ SR+1}+ I{C ∈ ER+X+1} − I{C ∈ SR+X+1}.

Because SR+1 ⊇ SR+X+1 ⊇ ER+X+1, this implies that

0 ≤ N ′
R(X, C)−R−

[
N ′

R+1(X,C)− (R + 1)
]
≤ 1.

From this, wR+1 ∈ WR+1, and NR(X, C) ≤ NR+1(X, C); it follows that w2
R =

TR(w1
R) ≥ w1

R = wR+1. Because TR is monotonic, this implies that wj
R ≥ wj−1

R for

all j ≥ 2.

Define vj(0, C,R) ≡ wj
R(0, C) for all j and C. We first show with induction

that vj(0, C,R) and C
j

R ≡ inf{C|vj(0, C,R) > ϕ(R)} ≤ C
j−1

R together satisfy

the conditions for f(C) and C̃ in Lemma 3. By assumption, this is the case for

v1(0, C,R) and C
1

R, because C
1

R ≤ CR+1. Next, suppose that vj−1(0, C,R) and

C
j−1

R satisfy Lemma 3’s requirements for f(C) and C̃. Then this Lemma implies

that E[vj−1(0, C ′, R)|C] is non-decreasing in C on [Ĉ, C
j−1

R ]. Therefore, inspection

of Equation (2) determines that vj(0, C,R) is non-decreasing in C on the same

interval. Because vj(0, C,R) ≥ vj−1(0, C,R), we have that C
j

R ≤ C
j−1

R . Thus,

vj(0, C,R) and C
j

R satisfy Lemma 3’s requirements of f(C) and C̃.

Define CR = limj→∞C
j

R. We wish to show that

(A) v(0, C,R) ≤ ϕ(R) and non-decreasing in C for all C ∈ [Ĉ, CR] and

(B) v(0, C,R) > ϕ(R) for all C ∈ (CR, Č].

To show (A), first note that it holds trivially if CR = Ĉ and focus on the case that

CR > Ĉ. Note that vj(0, C,R) is non-decreasing in C and weakly less than ϕ(R)

on [Ĉ, C
j

R) for all j. Because CR ≤ C
j

R, it must be that for all C? ≤ C ≤ CR that

limj→∞ vj(0, C,R) ≤ ϕ(R) and limj→∞ vj(0, C?, R) ≤ limj→∞ vj(0, C,R).

We demonstrate (B) inductively. Because ϕ(R) ≤ ϕ(R + 1) and v1(0, C,R) =

wR(0, C) is non-decreasing in C on [C
1

R, CR+1], we know that v1(0, C,R) > ϕ(R)

for C ∈ (C
1

R, Č]. Suppose that vj−1(0, C,R) > ϕ(R) for all C ∈ (C
j−1

R , Č]. Then,

vj(0, C,R) ≥ vj−1(0, C,R) > ϕ(R) for all C ∈ (C
j−1

R , Č] as well. Furthermore,

because vj(0, C,R) is non-decreasing in C on [Ĉ, C
j−1

R ], the definition of C
j

R implies

that vj(0, C,R) > ϕ(R) for all C ∈ (C
j

R, C
j−1

R ]. Because the sequence {vj(0, C,R)}
is non-decreasing, v(0, C,R) > ϕ(R) for all C ∈ (CR, Č].
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With this established, it is clear that SR = {C|C > CR}. Define

CR ≡ sup{C|v(0, C,R) ≤ 0}

if {C|v(0, C,R) ≤ 0} 6= ∅, and CR ≡ Ĉ− otherwise. By construction, CR ≤ CR.

Because v(0, C,R) is non-decreasing for C ≤ CR, we can write ER = {C|C > CR}.
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