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1

INTRODUCTION

The emergence of computer and information technology has changed our modern so-
ciety dramatically. The use of computers has become widespread and their process-
ing power has increased tremendously. At the same time, the advances in high-speed
networking have enabled computers to collaborate. This has created a tremendous
source of processor power, which has opened up many possibilities for running ad-
vanced computation-intensive applications within a reasonable time frame. Typical
examples of such applications are in computational fluid dynamics (aerospace, mili-
tary), electro-magnetic simulations, scheduling problems that use neural networks or
permutations, environmental modeling (earth, ocean, atmospheric simulations), envi-
ronmental phenomenology, economic modeling, image processing, health-care fraud,
and market segmentation. See [37] for an overview of computation-intensive applica-
tions.

However, the sources of computer power are typically shared by different users or
applications. Consequently, the available amount of processing power is often highly
dynamic, hard to predict and often unreliable. This raises the need for methods to ef-
fectively cope with those uncertain factors. In this thesis, we focus on the development
of techniques that make the applications robust against the ever-changing processor
speeds in global-scale time-shared computing environments.

Robust applications are commonly defined as applications that (1) cope with con-
necting and disconnecting resources to the environment, (2) are insensitive to fluctua-
tions in the available processor speeds, and (3) deal with the network dynamics. In this
thesis, we focus on the development of methods that deal with the fluctuations in the
resource speeds and use the general word ‘robust’ for this type of robustness.

1.1 Clusters and Grid environments

Since the emergence of computers and communicating technologies, networks of dis-
tributed computers have been created to execute computation-intensive applications.
The development of combined computers has been expanded [35, 36] and many
processor-intensive applications have been deployed on collaborating processors. Pro-
cessor networks range from local-scale clusters of computers (e.g., the DAS environ-
ment [1]) to global-scale distributed grids, which are connected by the Internet, such as
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the Planetlab [2]. These two environments are fundamentally different. A main advan-
tage of running parallel programs on clusters is their predictability: the resources are
homogeneous, the processing speeds are static and known beforehand, and the avail-
ability of resources is based on reservation which leads to a guaranteed amount of pro-
cessing capacities. A disadvantage is the high cost of those clusters. As an alternative,
one can use the idle cycles available on processor-shared globally distributed grids.
Main advantages are the relatively low cost and the potentially unlimited resources. A
grid environment, however, is highly unpredictable in many respects: resources have
different and usually unknown capacities, they can be added and removed at any time,
and the processing speeds fluctuate over time due to the often implemented processor
sharing concept, where multiple jobs execute simultaneously on a single processor. As
a consequence, applications that perform well in a cluster environment may perform
badly when executed in a grid environment. These observations raise the challenge to
develop techniques that make parallel programs suitable for execution in a large-scale
grid environment. In this context, it is challenging to achieve good performance of
parallel applications running in a grid environment.

1.2 Grid testbeds

Over the years, much research has been done on grid computing. Initially, in the ab-
sence of publicly available grid environments, the research on how to cope with fluc-
tuations on grid nodes was mainly theoretically oriented. Recently, however, a variety
of grid testbeds have been developed (e.g., EuroGRID [3], Gridlab [4], Planetlab [2]).
This enables us to perform extensive experiments with grid applications and compre-
hensive measurements, to investigate how well grid applications perform in practice,
and how they can be improved.

1.3 Single Program Multiple Data

To be able to run a program or computation on multiple processors at the same time it
is necessary to make the program suitable for running in parallel. Programs that have
this property are called parallel programs. Parallel programs can be applied for differ-
ent purposes, such as parallel computing and virtual environments. The computations
and communications structure of many parallel applications that focus on computing
can be described by the Single-Program-Multiple-Data (SPMD) model [33]. Within
SPMD programs each processor runs the same program, but uses its own data. SPMD
programs have the property that the problem can be divided into sub-problems or jobs
(i.e., the problem space can be divided into parts) each of which can be solved or exe-
cuted in roughly the same way.

In a SPMD program, each run consists of a number of iterations (I) that consist of
the execution of P jobs that are distributed on P processors: each processor receives
one job per iteration. Every run contains I synchronization moments: after computing
the jobs, all the processors send their data and wait for each others data before the
next iteration starts. In general, the run time equals the maximum of the individual
iteration times. Figure 1.1 presents the situation for one iteration of a SPMD run in a
grid environment. The figure shows that each processor receives a job and the iteration



1.4 Fluctuations in Grid environments 3

time equals the maximum of the individual job runtimes plus the synchronization time.
Equal load balancing (ELB) assumes no prior knowledge of processor speeds of the
nodes, and consequently balances the load equally among the different nodes. The
standard SPMD program is implemented according to the ELB principle.

Figure 1.1: Illustration of a standard Single-Program-Multiple-Data Application on four nodes

Currently, not many of the SPMD-type of applications are able to run in a grid
environment due to the fact that they cannot deal with the ever-changing environment.
Especially, the synchronization in SPMD programs causes inefficiency: one late job
can delay the whole process. This raises the need for methods that make the SPMD
applications robust against changes in the grid environment.

1.4 Fluctuations in Grid environments

The increasing popularity of parallel applications in a grid environment creates many
new challenges regarding the performance of grid applications, e.g., in terms of running
times. To this end, it is essential to reach a better understanding of (1) the nature
of fluctuations in processing speeds and the relevant time scale of these fluctuations,
(2) the impact of the fluctuations on the running times of grid applications, (3) the
forecasting methods that accurately predict those processing speeds, and (4) effective
means to cope with the fluctuations: the load-distribution strategies. Below, we provide
an overview of the state-of-the-art in the research that has been done on the different
aspects. In the remainder of this section, we discuss the literature about (1)-(3), and in
Section 1.5 we get into detail about the types of load-distribution strategies.

1.4.1 Statistical properties

As described above, key characteristics of a global-scale grid are the strong burstiness
in the amount of load on the resources and on the network capacities, and the fact that
processors may be appended to or removed from the grid at any time. To cope with
these characteristics, it is essential to develop techniques that make applications robust
against the dynamics of the grid environment. For these techniques to be effective, it
is important to have an understanding of the statistical properties of the dynamics of a
grid environment. Today, however, the statistical properties of the dynamic behavior of
real global-scale grid environments are not well understood.
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In the literature, a significant number of papers have been devoted to data analysis
of different properties of grids or networks. Three types of grid-property investigations
can be distinguished: (1) a complete focus on the investigation of one grid property:
for example, the statistical characteristics of network arrivals [60], of availability [56],
and of load [20]; (2) an exploration on the statistical properties of a grid property and
followed by simulation studies to address different types of questions, varying from
grid design questions (e.g., is a global grid feasible?) to basic questions (e.g., what
scheduling strategies are needed?). Examples are the investigations on the statistical
properties of life times of UNIX processes to develop load balancing strategies [41, 51],
and investigations on a characterization of the availability of desktop grids to explore
the affection on its utility [46], and (3) research on the statistical characteristics of a
grid property to develop a prediction method: those research steps have been done for
load to predict total run times of applications [62], for load to predict the load [61], and
for the throughput to predict the throughput [15, 54]. Consequently, the final step is to
use these predictions to develop a dynamic load-balancing or scheduling algorithm (see
[22] with its preceding papers [20, 21, 61], and [17] in combination with [72]). Despite
the fact that many papers focus on the statistical characteristics of grid properties, no
papers concentrate on the running times of consecutive tasks on shared processors of a
grid.

Research has been performed on the relation between processor load and the run-
ning times by Dinda et al. [21, 23]. Although these two factors in theory are closely
related, they find that in practice it is hard to relate the running times and the load,
because many other factors (e.g., memory space) also have an influence on the running
times. For that reason, load and running times of tasks may have strongly different
characteristics, and it is necessary to investigate the running time characteristics.

1.4.2 Impact on running times

Fluctuations in the available resources (e.g., computing power, bandwidth) are known
to have an impact on the running times of parallel applications. Over the past few
decades, performance of parallel applications has received much attention in the re-
search community. Due to the difficulty of analyzing realistic variations, most of the
fluctuations were imitated and therefore controllable (see for example [10]), while per-
formance experiments were performed in a controllable cluster. However, the varia-
tions in grid environments are not manageable, which limits the applicability of these
results in a real grid environment. In the research community several groups focus on
performance aspects of grid applications. Alternatively, mathematicians typically build
stochastic models to describe the performance of resources, the network and dependen-
cies related to runs of parallel programs. They create algorithms to decrease running
times, and analyze these algorithms mathematically [6, 7, 38, 43, 44, 53, 63, 69, 76].
Such a mathematical approach may be effective in some cases; however, usually unre-
alistic assumptions have to be made to provide a mathematical analysis, which limits
the applicability of the results. On the other hand, computational grid experts develop
well-performing strategies for computational grids. However, due to the difference in
fluctuations between general grid environments and computational grids, the effective-
ness of these strategies in a grid environment is questionable [57]. A third group of
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researchers focuses on large-scale applications with parallel loops (i.e., loops with no
dependencies among their iterations) [9, 13, 42, 65], combining the development of
strategies based on a probabilistic analysis with experiments on computational grids
with regulated load. However, due to the absence of dependencies among the iterations
of those applications, these strategies are not applicable to parallel applications with
those dependencies. These observations stress the importance for an integrated analy-
sis of grid applications, combining the three above-mentioned approaches, to analyze
properties, dependencies and distributions within a grid environment, and to implement
the ideas in a real grid environment and verify how the methods perform in practice.

1.4.3 Prediction methods

In the literature, a significant number of papers have been devoted to prediction meth-
ods. The prediction schemes can be broadly classified into two main categories: linear
and non-linear predictors. For grid environments, several linear models have been
proven successful for predicting future properties of a grid: Exponential Smooth-
ing (ES) for predicting running times of jobs ([64]), Autoregressive models (AR)
for predicting the load [23] and network traffic ([61]), Linear Regression (LR) for
predicting total running times of parallel applications ([50]), and a tendency-based
predictor ([74]), also for predicting the load. Furthermore, the Network Weather
Service (NWS) prediction algorithm that selects between different linear predictors
(e.g. [71, 72, 73]) predicts different grid entities, such as CPU availability. More-
over, in other research areas interesting predictors have been developed with possible
applications in grid environments. As described in [66], several adaptive ES-based
methods (e.g., Trigg and Leach [67], Whybark [70], Mentzer [55], and Pantazopoulos
and Pappis [58]) have been developed, which have shown to be very accurate in pre-
dicting, for example, economic and societal quantities. Currently, the applicability in
grid environments of non-linear prediction models, like Neural Networks, has not been
investigated.

To predict the running times on the basis of the measured load, Dinda et al. [21, 23]
analyze the relation between processor load and the running times of jobs. They con-
clude that predicting the running times by the load is impracticable, due to the influ-
ence of other aspects (e.g., hardware mechanisms) on those times, and those are hard,
or even technically impossible, to gather in practice. The prediction of running times
is even further complicated by the fact that in a real grid environment even the load
(i.e., CPU utilization) often can not be measured at all. To circumvent this problem, we
focus on methods to predict future running times only on the basis of the past running
times of jobs, not requiring any additional - and possibly unavailable - measurement
data.

In grid environments, if prediction methods for job runtimes are used to trigger load
re-balancing actions they should be simple and fast. Moreover, since the monitoring
capabilities in a real grid environment will be at best limited, prediction methods should
be based on only a small number of measurement parameters.
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1.5 Types of load-distribution strategies

Contrary to the implementations that are based on Equal Load Balancing (ELB) three
methods for parallel applications have been developed to deal with the fluctuations in
processor speeds on the nodes: Static Load Balancing (SLB), Dynamic Load Balancing
(DLB), and Job Replication (JR). In this section, we discuss the details about the four
different load-distribution strategies.

1.5.1 Equal Load Balancing

This is a logical default implementation, because it assumes no prior knowledge about
the processor speeds or other grid properties. In this type of implementations the load
is distributed equally among the different nodes in the resource set. Above in Figure
1.1 an example is shown of an ELB iteration.

1.5.2 Static Load Balancing

Static Load Balancing (SLB) strategies first use a number of ”cold iterations” to esti-
mate the average processor speeds or to perform other relevant measurements. Next,
during a load rescheduling phase this information is used to compute the load distribu-
tion such that the total expected running time of the application is minimized. Subse-
quently, the load is redistributed according to this distribution. Finally, the implemen-
tation performs the rest of the iterations and the load distribution remains constant.

1.5.3 Dynamic Load Balancing

The third method to deal with changing processor speeds is to implement Dynamic
Load Balancing (DLB) schemes. DLB adapts the load on the different processors in
proportion to the expected processor speeds. This technique strongly relies on the
effectiveness of prediction methods: significant speedups can be obtained by good
scheduling schemes based on accurate predictions, as is demonstrated in an experi-
mental setting in [12, 17, 22, 52].

Figure 1.2: Illustration of Dynamic Load Balancing on four nodes

DLB starts with the execution of an iteration, which does not differ from the com-
mon SPMD program explained above. However, at the end of each iteration the pro-
cessors predict their processing speed for the next iteration. We select one processor to
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be the DLB scheduler. After every N iterations the processors send their prediction to
this scheduler. Subsequently, this processor calculates the “optimal” load distribution
given those predictions and sends relevant information to each processor. The load dis-
tribution is optimal when all processors finish their calculation exactly at the same time.
Therefore, it is “optimal” when the load assigned to each processor is proportional to
its predicted processor speed. Finally, all processors redistribute the load. Figure 1.2
provides an overview of the different steps within a DLB implementation on 4 pro-
cessors. The effectiveness of DLB partly relies on the possibilities of partitioning the
load.

Load balancing at every single iteration is rarely a good strategy. On the one hand,
the running time of a parallel application depends directly on the overhead of DLB,
and therefore it is better to increase the number of iterations between two successive
load balancing steps. On the other hand, less load balancing leads to an imbalance of
the load for the processors for sustained periods of time, due to significant changes in
processing speeds. For these reasons, it is necessary in an DLB implementation to find
an appropriate number of iterations between two balancing steps.

1.5.4 Job Replication

The last method for parallel applications that have been developed to deal with the
fluctuations in processor speeds on the nodes is job replication (JR) [5, 8, 16, 18, 39,
47, 59, 48]. Moreover, [14] focuses on the queue waiting times of jobs that run on
processors without processor sharing and concludes that for his setting redundant job
requests decreases the times. Generally, JR makes a given number of copies of each
job, sends the copies and the original job to different processors, and waits until the
first replication is finished.

In a R-JR run, R − 1 exact copies of each job have been created and have to be
executed, such that there exist R samples of each job. Two copies of a job perform
exactly the same computations: the datasets, the parameters, and the calculations are
completely the same. If one of these properties of two jobs is different, we call the
jobs unequal. A JR run consists of I iterations. One iteration takes in total R steps. R
copies of all P jobs have been distributed to P processors and therefore, each processor
receives during each iteration R different jobs. As soon as a processor has finished one
of the copies it sends a message to the other processors that they can kill the job and
start the next job in the sequence. The number of synchronization moments I is the
same as for the non-JR case. At least one sample of each of the P different jobs has to
be finished before the iteration is finished.

Figure 1.3 shows the situation for a 2-JR run on four processors. Each job and
its copy are distributed to R = 2 processors and during one iteration each processor
receives two jobs. Processor one finished as first job A and sends a ’finalize’ message to
processor two. Sending the message over the Internet takes some time and, therefore, it
takes a while before the other processors start the next job. Each job-type time, which
is the duration of a specific job type (the original and its copies), equals the minimum
of all its job runtimes plus a possible send time. An individual processor time of one
iteration equals the sum of the job-type times which were sent to that processor and
the send times of the ’kill’-messages. Finally, the iteration time of all the processors
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corresponds to the sum of the synchronization time and the maximum of all processor
times.

Figure 1.3: Illustration of two times Job Replication on four nodes

1.6 Types of analyses

To investigate the effectiveness of the different types of load-distribution strategies,
analyses and comparisons have to be performed. Generally, three types of investiga-
tions can be applied to accurately verify whether certain algorithms or strategies are
effective: (1) mathematical calculation, (2) trace-driven simulation, and (3) real imple-
mentation. Mathematical calculations have the advantage compared to the other two
types that (1) these provide a tremendous insight in the factors that have the most im-
pact on certain quantities, and (2) formulas can be derived that represent the situation
for many different values of the parameters. Disadvantages are that (1) they take a lot
of time to model the situation and derive formulas for the key quantities, and (2) of-
ten many assumptions have to be made to develop a model that can be used to perform
computations, which make the model less realistic. Therefore, it is necessary to make a
well-founded decision if mathematical calculations have to be performed to get insight
in the situation or one of the other two types of analyses.

Next, we compare the trace-driven simulation with the real implementation as an-
alyzing method. On the one hand, trace-driven simulations have the advantage that
(1) they are often easier to implement than real implementations because, for example,
no advanced communication implementations are necessary, and (2) less clock time is
needed to test different experimental setups. Consequently, trace-driven simulations
need a shorter time period in which more situations can be analyzed. For example,
the investigations in Chapter 4 show the performance gain of a real implementation of
DLB in a real grid environment. As many as 60 days of parallel-implementation runs
were necessary in order to derive the performance improvement (speedup) of DLB
compared to Equal Load Balancing (ELB) on four processors. The trace-driven simu-
lations in this chapter take less time and more analyses can be performed. On the other
hand, analysis of the durations of the processes in an application have to be made to
develop realistic simulations. To this end, in this thesis we program a real implementa-
tion of DLB to acquire more knowledge about the durations of the different processes
within an DLB application. In turn this knowledge is used in trace-driven simulations.
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1.7 Overview of the thesis

In Chapter 2, the grid testbed and the grid application are described that are used to
collect measurements. In addition, definitions that will be used throughout the whole
thesis are introduced. Moreover, the details of the simulations of Static Load Balancing
(SLB), Dynamic Load Balancing (DLB), and Job Replication (JR) are provided.

Second, in Chapter 3 the statistical properties are investigated of job runtimes on
processors on the basis of the datasets that are collected in the preceding chapter. To
this end, Box-and-Wisker plots, histograms, Auto Correlation Functions, Hurst param-
eters, and 17 other statistics have been analyzed. Furthermore, the relations between
the 17 different statistics is investigated.

Next, in Chapter 4, an experimental analysis is provided of the performance of grid
applications based on ELB, SLB and DLB in a global-scale grid environment on the
basis of comprehensive trace-driven simulations and real implementation experiments.
Moreover, the impact on the DLB run-times of the number of measurements between
two load rescheduling steps and of the communication to computation are investigated.

Subsequently, in Chapter 5 a model is defined to compute the expected iteration
times and speedups of SPMD programs that apply job replication (JR) on a set of
homogeneous processors. In order to make estimations with the model a number of
approximations that can easily be applied in the model computations are presented.
Subsequently, six different sets of model assumptions ranging from less realistic and
mathematically simple to realistic and mathematically difficult are applied in the com-
putations and the results are analyzed. Moreover, trace-driven simulations of JR on
homogeneous and on heterogeneous nodes are performed, based on real grid testbed
measurements. Furthermore, the impact of different factors is analyzed.

In Chapter 6, the effectiveness of ELB, DLB and JR are compared by the results
of trace-driven simulations. A comparison of the performance of those two methods
on a heterogeneous globally distributed grid environment has never been performed.
Subsequently, in-depth analysis shows the identification of an easy-to-measure statistic
Y and a corresponding threshold value Y ∗ such that DLB consistently outperforms JR
for Y > Y ∗, whereas JR consistently performs better for Y < Y ∗. This observation
naturally leads to a simple and easy-to-implement approach that can make on-the-fly
decisions about whether to use to DLB or JR. Elaborate simulations show that this new
approach always performs at least as good as both DLB and JR in all circumstances. As
such, the new approach provides a highly effective means to make parallel applications
robust in large-scale grid environments.

Chapter 7 focuses on the development of a new prediction method for job runtimes
on shared processors. To this end, the weak and strong points of several existing meth-
ods are analyzed on the basis of both theoretical and statistical analysis of experimental
testbed data from a preceding chapter. In addition, a new prediction method, called
Dynamic Exponential Smoothing (DES) is developed. The accuracy of the predictions
resulting from DES are compared to that of the other prediction methods. Furthermore,
the relation between the quality of the DES predictor and the statistical properties of
the datasets is investigated.

Finally, in Chapter 8 a number of topics for further research are addressed.
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EXPERIMENTAL SETUP

2.1 Introduction

As outlined in the previous chapter, in this thesis we perform analyses and experiments
on different types of implementations in order to make parallel applications robust in
grid environments. To this end, many datasets are needed. In this chapter, we explain
the data collection details of all the datasets that are gathered. We describe in Section
2.2 which grid testbed and which nodes are used to collect data. In addition, in Section
2.3 we present the used grid application and in Section 2.4 which measurements are
performed. In Section 2.5, we introduce definitions that are used throughout the whole
thesis. Finally, we provide the details of the simulations of Static Load Balancing
(SLB) in Section 2.6, of Dynamic Load Balancing (DLB) in Section 2.7, and of Job
Replication (JR) in Section 2.8.

2.2 Global-scale distributed testbed: Planetlab

To carry out experiments with parallel applications in a realistic setting, the testbed
must have the following key characteristics of a grid environment: (1) processor ca-
pacities often fluctuate over time, (2) the nodes work according to the processor shared
principle, (3) processor loads change over time, (4) processors are geographically dis-
tributed, and (5) network conditions are hard to predict. A commonly used grid testbed
environment that meets all these requirements is Planetlab [2]. Planetlab is an open,
processor-shared globally distributed network for developing and testing planetary-
scale network services. At the time of our experiments, version 2.0 of the Planetlab
software was installed on the nodes. Planetlab is not a grid in a strict sense due to the
fact that Globus [34], which consists of an integrated set of basic grid services, does
not run on this network. Nevertheless, the expectations are that Planetlab will use the
concepts of Globus and consequently that it will act according to the concepts of a
processor-shared grid. For this reason, we nevertheless use the word grid throughout
the thesis, even if we discuss the results of Planetlab experiments.

In order to investigate and gather reliable results of different implementations, set-
tings and cases, it is necessary to perform experiments on many different Planetlab
nodes. In total 22 nodes, which are single processors at different locations, were used
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many times for the experiments in this thesis. Table 2.1 provides an overview of all
the 22 globally distributed nodes that were used. In the next section we describe the
application that has been used to collect data on these nodes.

Institution City Country Abbreviation
Vrije Universiteit Amsterdam The Netherlands ams
Tsinghua University Beijing China china
Boston University Boston USA boston
University of Cambridge Cambridge UK cam
Datalogisk Institut Copenhagen Denmark dk
Inria Le Chesnay France inria
Technical University of Madrid Madrid Spain mad
Moscow State University Moscow Russia mos
California Institute of Technology Pasadena USA caltech
University of Utah Salt Lake City USA utah
University of California San Diego USA sandiego
University of California Santa Barbara USA santab
Seoul National University Seoul South Korea seoul
Equinix Singapore Singapore sing
University of Technology Sydney Australia au
Ben-Gurion University of the Negev Tel Aviv Israel telaviv
Academica Sinica Taipei Taiwan tw
National Taiwan University Taipei Taiwan ntu
University of Arizona Tucson USA ar
University of British Columbia Vancouver Canada ca
Warsaw University of Technology Warsaw Poland warsch
University of Washington Washington DC USA wash

Table 2.1: Overview of nodes used in the experiments

2.3 Successive Over-Relaxation

The application has also been carefully chosen so as to meet several requirements.
The application must have the same dependencies between its iterations as a SPMD
program, the structure of the dependencies should be simple, and it must have the
possibility to adapt the load on the processors. A suitable application is the Successive
Over Relaxation (SOR) application. SOR is an iterative method that has proven to be
useful in solving Laplace equations [31]. Our implementation of SOR deals with a
two-dimensional discrete state space M × N , a grid. Each point in the grid has four
neighbors, or less when the point is on the border of the grid. Mathematically this
amounts to taking a weighted average of the values of the neighbors and its own value.
The parallel implementation of SOR is based on the Red/Black SOR algorithm [40].
The grid is treated as a checkerboard and each iteration is split into phases, red and
black. During the red phase only the red points of the grid are updated. Red points only
have black neighbors, and no black points are changed during the red phase. During
the black phase, the black points are updated in a similar way.

Using the Red/Black SOR algorithm, the grid can be partitioned among the avail-
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able processors in several ways. We partitioned the grid stripe wise: each processor
receives a set of columns. All processors can update different points of the same color
in parallel. This update takes time, referred to as the calculation time. Before a proces-
sor starts the update of a certain color, it exchanges the border points of the opposite
color with its neighbors. This amount of time is referred to as the send time. The total
duration of an iteration is called the iteration time. Figure 2.1 illustrates the use of SOR
over different processors.

Figure 2.1: Parallel distribution in Successive Over Relaxation

2.4 Data collection

Throughout the whole thesis, many trace-driven simulations are performed in order to
investigate the performance of several types of implementations and diverse settings.
Trace-driven simulations are simulations that use traces of measurements instead of
distributions. For those simulations to be realistic, it is necessary to investigate the
properties of the key processes in SPMD programs, the dependencies between them,
and to collect data about the durations of those processes.

To this end, we implement a real SPMD program, which is described below in
this chapter, and, moreover, the different implementation types Equal Load Balanc-
ing (ELB), SLB, DLB, and JR, which are described in Chapter 1. Subsequently, we
divide the whole run into sub-processes (e.g., job runtimes, send times) and measure
their durations in order to gain insight into the most significant sub-processes during
a SPMD program run. As a result, we are able to measure those sub-processes and
develop realistic simulations. We conclude from the measurements that (1) all imple-
mentations at least contain the following types of phases that have a substantial impact
on the total runtime: computation and synchronization phase, (2) in JR, also the dura-
tion of sending a finalize message between processors takes a considerable amount of
time, and (3) in SLB and DLB, the same holds for the rescheduling phase. The other
sub-processes have negligible durations. The computation phase consists of individual
job runs. Within the synchronization phase all the processors send the new data to the
other processors. Therefore, in order to simulate the computation and the synchroniza-
tion phase it is reasonable to use data about the job and the send times. Summarizing,
in order to perform realistic simulations, we need to collect data about the job runtimes,
send times in the rescheduling phase, rescheduling times, and measurements of the du-
rations of sending finalize messages. Below, we describe how we collected data about
those times.
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Job Runtimes

In order to gather enough data about the job runtimes to perform all the different exper-
iments, in this thesis a total of I runs have been performed on the J different heteroge-
neous processors (see Table 2.1) on Planetlab [2]. Each run consists of the execution
of K consecutive and identical jobs (or computations), and generates a dataset of K
job runtimes (i.e., wall-clock times). Hence, we suppose the processing times (i.e., the
actual processor times that the jobs take) of all the jobs to be constant and measure the
time the jobs take on shared processors (i.e., the job runtimes). The average duration
of a run is about two hours. We observed significant differences in the durations, some
even exceed 10 hours. We did not run other applications on the same nodes during
our runs to create changing load on the processors. We constructed the jobs such that
on a completely available 500 megahertz processor, the job computations would take
2500 ms, which is a realistic job size in parallel applications. The time between succes-
sive runs that are performed on the same processor ranges from one day to one month.
We notice that the more time between the runs, the more difference between the char-
acteristics of the job runtimes of those runs. In order to correlate the datasets in the
simulations, each run is started at 9:00 CET. Unfortunately, Planetlab version 2.0 was
not mature enough at the time of the experiments to be able to run experiments on 130
different processors. However, the job runtimes of runs that are performed on the same
node mostly show different characteristics (for more details we refer to Chapter 3).
For these reasons, in many simulations we use those different datasets as if they were
performed on two different homogeneous nodes at the same site. In order to work with
the different job-runtime measurements, we define JTMi(k) as the kth job-runtime
measurement of dataset i, where i = 1, . . . , I and k = 1, . . . , K.

Send Times

For our simulations, we need realistic measurements of the synchronization times
(ST s) for the simulations of ELB, DLB, and JR. We discovered that the synchro-
nization time strongly depends on the maximum of the send times between all pairs
of neighbor processors. Therefore, for realistic simulations we need send times mea-
surements between all possible pairs of nodes. Analysis of the send times have shown
that the send times between two nodes do not depend on the number of other pro-
cessors in the application that send data at the same time. Consequently, in total
J(J − 1)/2(P − 1) original SOR-application runs on P = 4 processors were nec-
essary to generate datasets of the send times between each possible pair of nodes. In
total J(J − 1)/2 datasets of K send times have been created during this process. The
send times are on average around 750 ms. We define SndTi,j(k) as the kth send
time measurement between node i and j, where i = 1, . . . , J , j = 1, . . . , i − 1, and
k = 1, . . . , K.
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Sending Finalize-Messages Times

Further, it is important for the JR simulation to gather realistic measurements of the
time that the finalize message takes to be sent from the fastest node to another node.
Therefore, we implemented this send process in the SOR-application. This process is
different from the above send process, because less information has to be sent, and
no acknowledgement is needed. We ran again in total J(J − 1)/2(P − 1) original
SOR-application runs on four processors to generate J(J−1)/2 datasets of K finalize-
message times. The finalize message times were on average around 300 ms. We define
FMi,j(k) as the kth measurement of the finalize-message send-time between node i
and j, where i = 1, . . . , J , j = 1, . . . , i − 1, and k = 1, . . . , K.

Rescheduling Phase Times

Moreover, for the DLB simulation it is essential to gather measurements of the
rescheduling times. The steps to be taken in the DLB rescheduling phase: (1) the
nodes send their prediction to the scheduler, (2) the scheduler computes the optimal
load distribution, and (3) the nodes redistribute their load. We implemented the com-
plete rescheduling phase in the DLB application. Analyses have shown that it is suffi-
cient to randomly select in the simulation rescheduling times (RSchT s) from a set of
L measurements. The RSchT depends on too many different factors to subdivide the
RSchT s to all those factors. In our setting, the total rescheduling procedure takes on
average around 37500 ms. We note that it is possible to apply more effective packag-
ing methods in this procedure, which can significantly decrease the RSchT s. Define
RSchT (l) as the lth measurement of the rescheduling time, where l = 1, . . . , L.

In addition, we use the data of the DLB rescheduling times to estimate the overhead
of the on-the-fly switches between the implementation types DLB and JR. Those times
will in practice show comparable characteristics for the following reason. During an
implementation switch, the steps to be taken are the same as during as DLB reschedul-
ing phase. A switch from JR to DLB takes less time than a DLB rescheduling phase
because the amount of the to be redistributed load is smaller; the nodes already contain
most of the necessary load of the other processors. Small experiments have shown that
a switch from JR to DLB takes around 60% of the time of a DLB rescheduling step.
During a switch from DLB to JR, more data has to be redistributed due to the fact that
all the processors need to gather replications of load from the other processors. This
switch takes around 140% of the time of a DLB rescheduling step.

Taking everything together, we generated the following datasets for our trace-
driven simulation analyses: JTMi(k), with i = 1, . . . , I , k = 1, . . . , K, SndTi,j(k),
FMi,j(k), where i = 1, . . . , J , j = 1, . . . , i − 1, k = 1, . . . , K, and RSchT (l)
with l = 1, . . . , L. In the settings of this thesis, I = 130, J = 22, K = 2000, and
L = 10000.
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2.5 Definitions

In this section, we define the variables, parameters, functions that will be used con-
sequently through the thesis. We define N in SLB as the number of iterations at the
beginning of a run that has been used to estimate the average processor speeds, in
order to balance the load, and in DLB as the number of iterations between two load
rescheduling phases. Furthermore, we define f in DLB as the prediction method that
has been used to predict the job runtimes. Moreover, we define t as the time in seconds
that the computation of one iteration would take when it has been executed on one
completely available 500 megahertz Pentium 2 processor. This t indicates the problem
size. The default t value, tdefault in the runs performed to gather the data of this thesis
2.5 s. Finally, we define P as the number of processors in the resource set. All those
P processors receive a proportion of the total load. Given the above parameters, we
define:

E(t, P ) := expected run time of a SPMD program run of size t with ELB
on P processors,

Eit(t, P ) := expected iteration time of a SPMD program of size t with ELB
on P processors,

S(N, t, P ) := expected run time of a SPMD program run of size t with SLB
on P processors, which balances load after N iterations,

Sit(N, t, P ) := expected iteration time of a SPMD program of size t with SLB
on P processors, which balances load after N iterations,

D(N, f, t, P ) := expected running time of a SPMD program run of size t

with DLB and predictor f on P processors, which balances
load every N iterations,

Dit(N, f, t, P ) := expected iteration time of a SPMD program run of size t

with DLB and predictor f on P processors, which balances
load every N iterations,

R(t, R, P ) := expected running time of a SPMD program run of size t

with R-JR on P processors,
Rit(t, R, P ) := expected iteration time of a SPMD program of size t with R-JR

on P processors.

As stated above, E(t, P ) is the expected running time of an ELB run and S(0, t, P )
indicates the expected running time of SLB run that uses no 0 iterations to bal-
ance the load at the beginning of the run. Furthermore, D(∞, f, t, P ) equals
the expected running time of a DLB run that balances every ∞ iterations, and
R(t, 1, P ) is the expected running time of a 1-JR run (i.e., each job exists only
one time). Those running times mean the same and, therefore, we notice that:
E(t, P ) = S(0, t, P ) = D(∞, f, t, P ) = R(t, 1, P ).
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In addition, we define for each implementation type (i.e., ELB, SLB, DLB, and JR)
the theoretically lowest possible running times. The exact computations of these times
are described further in this chapter. We define the following lowest possible running
times:

S∗(t, P ) := expected running time of a SLB run of size t on P processors that
optimally balances the load at the beginning of the run,

D∗(t, P ) := expected running time of a DLB run of size t that optimally
balances the load every iteration,

R∗(t, P ) := expected running time of the JR run of size t on P processors
with the optimal R.

To compare the performance under different strategies, we define the speedups of
those different implementations as the number of times those strategies are faster than
a ELB run with the same parameters t and P :

speedup S(N, t, P ) :=
E(t, P )

S(i, t, P )
=

Eit(t, P )

Sit(i, t, P )
,

speedup D(N, f, t, P ) :=
E(t, P )

D(i, f, t, P )
=

Eit(t, P )

Dit(i, f, t, P )
,

speedup R(t, R, P ) :=
E(t, P )

R(t, R, P )
=

Eit(t, P )

Rit(t, R, P )
,

speedup S∗(t, P ) :=
E(t, P )

S∗(t, P )
,

speedup D∗(t, P ) :=
E(t, P )

D∗(t, P )
,

speedup R∗(t, P ) :=
E(t, P )

R∗(t, P )
.

In all the simulations that are performed in this thesis, we make the following as-
sumptions.

Assumption 2.5.1: The relation between the job size and the job runtimes is linear
and satisfies the additivity and the homogeneity property.

Assumption 2.5.2: The relation between the amount of data which is sent between
processors and duration of this send procedure is linear and satisfies the additivity and
the homogeneity property.

These are commonly applied assumptions and mean that if two job sizes differ with a
factor a, the job runtimes also differ with a factor a or that if the amount of data which
is sent increases with a factor a, the send time also increases with a factor a.
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Furthermore, we define the following variables for k = 1, . . . , K.

JTi(k) := kth rescaled job-runtime measurement on processor i

=
t

tdefault
× JTMi(k)

P
,

ŷi(k) := prediction of JTi(k),

EJTi(k) := effectively simulated job-runtime on processor i in iteration k,

IT (k) := kth iteration time,
ST (k) := synchronization time in iteration k = max

i,j=1,...,P
SndTij(k).

The t/tdefault in the formula for JTi(k) indicates the proportion of the job size com-
pared to the job size of the measurements of the original runs. The formula contains the
factor P−1 because each processor in a run with P processors receives this proportion
of the total load.

The communication-to-computation ratio (CCR) indicates the durations of the total
send times compared to the total computation times. We define the CCR as the total
send times in an average ELB run with two processors divided by the total job runtimes.
Consequently, the definition that is used in this thesis is as follows.

Definition 2.5.3:

CCR :=
1

J(J − 1)/2

J
∑

i=1

i−1
∑

j=1

∑K
k=1 SndTi,j(k)
∑K

k=1 JTi(k)
.

The CCR in our datasets is approximately 0.01. Since the CCR is linear related to the
job sizes we derive the following formula of the CCR for a given job size t.

Definition 2.5.4:

CCR(t) :=
tdefault

t
0.01, for t, tdefault > 0.

This equals in our setting 0.025/t, because tdefault = 2.5 which is described in the
beginning of 2.5.

Let X be a stochastic variable and x1, . . . , xn a sequence of n samples from X .
Then, we define the following unbiased estimations of the mean, median, and the stan-
dard deviation.

Definition 2.5.5: The expectation of the stochastic variable X ,
�

(X), can be esti-
mated by the unbiased sample mean, X :

�
(X) ≈ X :=

1

n

n
∑

i=1

xi,

Definition 2.5.6: The median of the stochastic variable X can be estimated by

median((x1, . . . , xn)) :=

{

y(n+1)/2 if n is odd,
1
2 (yn/2 + yn/2+1) if n is even,
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with

y1 := min((x1, . . . , xn)), . . . , yn := max((x1, . . . , xn)).

Definition 2.5.7: The standard deviation of stochastic variable X , σ(X), can be esti-
mated by the sample standard deviation, which is an unbiased estimation:

σ(X) ≈

√

√

√

√

1

n − 1

n
∑

i=1

(xi −
�

(X))2.

In addition, the following statistics can be defined.

Definition 2.5.8: The variance of stochastic variable X , V ar(X), has the following
definition:

V ar(X) = σ2(X) := (σ(X))2 =
�

(X − �
(X))2.

Definition 2.5.9: The coefficient of variation, cX , of a non-negative stochastic X with
expectation above 0 is defined as:

cX :=
σ(X)�

(X)
.

Next, we define the correlation coefficient, rX,Y , between two stochastic variables
X , and Y . The correlation coefficient as defined here has the official name Pearson
product-moment correlation coefficient. This is a statistical measure that quantifies
the linear dependency between two variables. The lower bound of the correlation co-
efficient is -1, which indicates the strongest possible negative linear dependency. A
correlation of 0 indicates no linear dependency. The upper bound equals 1, which
shows a strong positive linear dependency between the variables.

Definition 2.5.10: The correlation coefficient, rX,Y , between two variables X , and Y ,
is defined as

rX,Y :=

�
(XY ) − �

(X)
�

(Y )

σ(X)σ(Y )
.

Given the above definitions, we are able to define the following formula for the variance
of the sum of two variables.

Property 2.5.11: Given two variables X , and Y , the variance of the sum of these
variables, σ2(X + Y ) is defined as

σ2(X + Y ) = σ2(X) + σ2(Y ) + 2rX,Y σ(X)σ(Y ).
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Furthermore, we define the following measures that indicate the error or deviation be-
tween two sequences of data values x1, . . . , xn, and y1, . . . , yn.

Definition 2.5.12: The mean absolute difference/error, MAD or MAE, is defined as:

MAE :=
1

n

n
∑

i=1

|xi − yi|.

Definition 2.5.13: The mean squared difference/error of a sequence, MSD or MSE,
can be computed by the following formula:

MSE :=
1

n

n
∑

i=1

(xi − yi)
2.

Definition 2.5.14: The square root of the mean squared error, RMSE, equals the
square root of the MSE.

RMSE :=
√

MSE.

2.6 Simulations of Static Load Balancing

In this section we describe the simulation details of SPMD programs that use SLB.
First, we describe the simulations of S(i, t, P ), and second how we compute the
S∗(t, P ). We use the definitions of Section 2.5.

2.6.1 Running times

The following steps have been incorporated in the simulations:

Step 1: Randomly select a resource set S = {p1, . . . , pP } of P processors
from the datasets of the job runtimes, generated in Section 2.4, and order them such
that the send times, measured in Section 2.4, between the processors are minimized.
These numbers p1, . . . , pP correspond to the numbers of the datasets.

Step 2: Compute the average job runtimes of each processor of the first N
iterations, which is an estimation of the expected job runtimes:

1

N

N
∑

m=1

JTi(m). (2.1)

As a result, the expected speed of processor i, estimated by the fraction of the total load
processed per ms, for the iterations after the first N is approximately

1

P 1
N

∑N
m=1 JTi(m)

. (2.2)

Further, the expectation of the total processor speed of the P processors together is
approximately the sum of those speeds:

P
∑

i=1

1

P 1
N

∑N
m=1 JTi(m)

. (2.3)
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Hence, the expected time of the next iteration without send and rescheduling times
given an optimal load distribution is approximately

1
∑P

i=1
1

P 1
N

∑

N
m=1 JTi(m)

. (2.4)

Define for SLB runs the optimal load fraction to be the proportion of the total load
that a processor receives such that its job-runtime average equals the average of the job
runtimes of the other processors given that they all receive the optimal fraction of the
load. As a consequence, the optimal load fraction of processor i is approximately

1
1
N

∑N
m=1 JTi(m)

∑P
i=1

1
P 1

N

∑

N
m=1 JTi(m)

=
P

∑N
m=1 JTi(m)

∑P
i=1

1
∑

N
m=1 JTi(m)

.

(2.5)

Finally, to simulate the EJTi(k), for k = 1, . . . , K with K as the number of iterations,
of processor i for the next iterations, multiply the fractions with the real corresponding
data values JTi(k) from the datasets.

EJTi(k) =

{ JTi(k)P
∑

N
m=1 JTi(m)

∑

P
i=1

1
∑N

m=1
JTi(m)

if k > N ,

JTi(k) if k ≤ N .
(2.6)

Step 3: Next, derive the IT (k) for k = 1, . . . , K which is the maximum of the
EJTi(k)s of that iteration plus the ST (k):

IT (k) = max
i=1,...,P

EJTi(k) + ST (k). (2.7)

Step 4: Derive the running time of the SLB run by repeating step 3 K times, sum up
all the iteration times, and add up a sample of the load rescheduling times:

S(N, t, P ) :=

K
∑

k=1

IT (k) + RSchT (1), (2.8)

with N as the number of iterations between two load rescheduling steps.

Step 5: Derive the expected running time of a SLB run on P processors by re-
peating steps 1 to 4 1000 times, and finally compute the average of the running times.
Experimentation showed that 1000 as the number of repetitions is high enough in
order to derive stable and reproducible results.
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2.6.2 Optimal Static Load Balancing

We performed the following steps to compute the S∗(t, P ):

Step 1: Randomly select a resource set S = {p1, . . . , pP } of P processors
from the datasets of the job runtimes, generated in Section 2.4, and order them such
that the send times, measured in Section 2.4, between the processors are minimized.
These numbers p1, . . . , pP correspond to the numbers of the datasets.

Step 2: The average job-runtime of processor i for a complete run is represented by

1

K

K
∑

k=1

JTi(k). (2.9)

Consequently, the average speed of processor i, estimated by the fraction of the total
load processed per ms, for the next iteration is approximately

1

P 1
K

∑K
k=1 JTi(k)

. (2.10)

Further, the expectation of the total processor speed of the P processors together is
approximately the sum of those speeds:

P
∑

i=1

1

P 1
K

∑K
k=1 JTi(k)

. (2.11)

This implies that the expected time of the next iteration without send and rescheduling
times given an optimal load distribution equals approximately

1
∑P

i=1
1

P 1
K

∑

K
k=1 JTi(k)

. (2.12)

Define for DLB iterations the optimal load fraction to be the proportion of the total
load that a processor receives such that its job runtime equals the job runtimes of the
other processors given that they all receive the optimal fraction of the load. As a con-
sequence, the optimal load fraction of processor i is approximately

1
1
K

∑K
k=1 JTi(k)

∑P
i=1

1
P 1

K

∑

K
k=1 JTi(k)

=
P

∑K
k=1 JTi(k)

∑P
i=1

1
∑

K
k=1 JTi(k)

. (2.13)

Finally, to simulate the EJTi(k) for all the iterations k = 1, . . . , K, multiply the
fractions with the real corresponding data values JTi(k) from the datasets.

EJTi(k) =
JTi(k)P

∑K
k=1 JTi(k)

∑P
i=1

1
∑

K
k=1 JTi(k)

. (2.14)
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Step 3: Next, derive the IT (k) for k = 1, . . . , K which is the maximum of the
EJTi(k)s of that iteration plus the ST (k):

IT (k) = max
i=1,...,P

EJTi(k) + ST (k). (2.15)

Step 4: Derive the running time of the SLB run by repeating step 3 K times, sum up
all the IT (k)s, and add up one sample of the load rescheduling times:

S∗(t, P ) :=

K
∑

k=1

IT (k) + RSchT (1), (2.16)

Step 5: Derive the expected running time of an optimal SLB run on P processors by
repeating steps 1 to 4 1000 times, and finally compute the average of the running times.
As stated above, 1000 as the number of repetitions is high enough in order to derive
stable and reproducible results.

2.7 Simulations of Dynamic Load Balancing

In this section, we describe the details of the trace-driven DLB simulations, and the
computation of the run times of optimal load balancing. We use the definitions of 2.5.

2.7.1 Running times

The following steps have been incorporated in the simulations:

Step 1: Randomly select a resource set S = {p1, . . . , pP } of P processors
from the datasets of the job runtimes, generated in Section 2.4, and order them such
that the send times, measured in Section 2.4, between the processors are minimized.
These numbers p1, . . . , pP correspond to the numbers of the datasets.

Step 2: The DES-based prediction ŷi(k), k = 1, . . . , K, (see for more details:
Chapter 7) represents the predicted job-runtime on processor i. As a result, the
expected speed of processor i (i.e., the fraction of the total load processed per ms) for
the next iteration is

1

P ŷi(k)
. (2.17)

Further, the expectation of the total processor speed of the P processors together is

P−1
P
∑

i=1

1

ŷi(k)
. (2.18)

This implies, the expected time of the next iteration without send and rescheduling
times given an optimal load distribution is

1

P−1
∑P

i=1
1

ŷi(k)

. (2.19)
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As a consequence, the optimal load fraction of processor i is

P

ŷi(k)
∑P

i=1
1

ŷi(k)

. (2.20)

Finally, to simulate the EJTi(k) of processor i for this and the next iterations k =
1, . . . , K before the next load rescheduling step, multiply the fractions with the real
corresponding data values JTi(k) from the datasets.

EJTi(k) =
JTi(k)P

ŷi(k)
∑P

i=1
1

ŷi(k)

. (2.21)

Step 3: Next, derive the IT (k) for k = 1, . . . , K which is the maximum of the
EJTi(k)s of that iteration plus the ST (k):

IT (k) = max
i=1,...,P

EJTi(k) + ST (k). (2.22)

Step 4: Derive the running time of the DLB run, defined in Section 2.5 as
D(N, f, t, P ), by repeating step 3 K times, sum up all the IT (k)s, and add up all
the load rescheduling times:

D(N, f, t, P ) :=

K
∑

k=1

IT (k) +

bK/Nc
∑

l=1

RSchT (l). (2.23)

Step 5: Derive the expected running time of a DLB run on P processors by repeating
steps 1 to 4 1000 times, and finally compute the average of the running times. As stated
above, 1000 as the number of repetitions is high enough in order to derive stable and
reproducible results.

2.7.2 Optimal Dynamic Load Balancing

In this section we compute the D∗(t, P ) which is the estimated running time with the
optimal dynamic load balancing strategy, assuming all processor speeds are known in
advance. The following steps have been incorporated in the computations:

Step 1: Randomly select a resource set S = {p1, . . . , pP } of P processors
from the datasets of the job runtimes, generated in Section 2.4, and order them such
that the send times, measured in Section 2.4, between the processors are minimized.
These numbers p1, . . . , pP correspond to the numbers of the datasets.

Step 2: Assume that in an optimal DLB run that the predictions are perfect:
ŷi(k) = JTi(k) for k = 1, . . . , K. Consequently, the expected speed of processor i
(i.e., the fraction of the total load processed per ms) for the next iteration is

1

P ŷi(k)
=

1

PJTi(k)
. (2.24)
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Further, the expectation of the total processor speed of the P processors together is

P
∑

i=1

1

PJTi(k)
. (2.25)

Consequently, the optimal time of the iteration without send and rescheduling times
given an optimal load distribution is

EJTi(k) =
P

∑P
i=1

1
JTi(k)

. (2.26)

Step 3: Next, derive the IT (k) for k = 1, . . . , K which is the maximum of the
EJTi(k)s of that iteration plus the ST (k):

IT (k) = max
i=1,...,P

EJTi(k) + ST (k). (2.27)

Step 4: Derive the running time of the optimal DLB run by repeating step 3 K times,
sum up all the IT (k)s, and add up all the load rescheduling times:

D∗(t, P ) :=
K
∑

k=1

IT (k) +

bK/Nc
∑

l=1

RSchT (l). (2.28)

Step 5: Derive the expected running time of an optimal DLB run on P processors by
repeating steps 1 to 4 1000 times, and finally compute the average of the running times.
As stated above, 1000 as the number of repetitions is high enough in order to derive
stable and reproducible results.

2.8 Simulations of Job Replication

In this section, we describe the details of the trace-driven JR simulations, and the com-
putation of the run times of optimal job replication. We use the definitions of 2.5.

2.8.1 Running times

Within a R-JR run, R replications of the same job are executed by a set of R different
processors. For simplicity, we assume that P/R is an integer value. Consequently, the
same groups of processors execute each iteration the same job. Thus, we are able to
divide the P processors in P/R execution groups which all consist of R processors.
We proceed along the following 6 steps to simulate the expected running time of a
R-JR run on P processors.

Step 1: Randomly select a resource set S = {p1, . . . , pP } of P processors
from the datasets of the job runtimes, generated in Section 2.4, and order them such
that the send times, measured in Section 2.4, between the processors are minimized.
These numbers p1, . . . , pP correspond to the numbers of the datasets.
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Step 2: Divide the set of processors in execution groups. Execution group 1
consists of processors p1, . . . , pR, group 2 consists of processors pR+1, . . . , p2R, until
group P/R that consists of processors pP−R+1, . . . , pP . Define EG(i) as the set of
processors that are in the same execution group as processor i.

Step 3: In this step, derive the effective job-runtimes (EJT1(k), . . . , EJTP (k))
for all P processors and iterations k = 1, . . . , K. Therefore, derive first within
each execution group which processor finished the same job as first. This can be
done by taking one job-runtime value from each dataset of that execution group and
observe which processor has the lowest job runtime. Within one execution group the
EJT (k) of the fastest processor e, EJTe(k), equals the job-runtime value JTe(k).
The EJT (k)s of the other processors in the same execution group equal EJTe(k)
plus the time that it takes to send the finalize-message from e to the other processors
in the execution group, which is the above defined FMe,j(k):

EJTi(k) =

{

JTi(k) when i = e,
minj∈EG(i) JTj(k) + FMe,i(k) else. (2.29)

Step 4: Next, derive the IT (k) for k = 1, . . . , K. This time can be derived by re-
peating step 2 R times (each processor gets R different jobs during one iteration), sum
up the EJT s for each processor, taking the maximum of those sums, and adding up the
ST (k). Note that it is necessary to take into account all the previous EJT (k)s of each
processor, because of the dependencies between consecutive EJT (k)s. We introduce
parameter m, which indicate the step number within a iteration. The iteration time
equals

IT (k) = max
i=1,...,P

R
∑

m=1

EJTi(k, m) + ST (k). (2.30)

Step 5: Derive the running time of the R-JR run by repeating step 3 until all data
values of the R datasets have been processed in the simulation and sum up all the IT s.
In order to be able to compare the running times of runs with different values for R,
multiply this sum with R to derive a comparable running time of K iterations for each
possible R-JR run:

R(t, R, P ) := R ×
bK/Rc
∑

k=1

IT (k). (2.31)

When K/R is not an integer value, the value of the multiplying parameter, which is
R in the above formula, for computing the running time of a R-JR run is R Kmod(R)

K−Kmod(R) .

Step 6: Derive the expected running time of a R-JR run on P processors by
repeating steps 1 to 5 1000 times, and finally compute the average of the running
times. As stated above, 1000 as the number of repetitions is high enough in order to
derive stable and reproducible results.
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2.8.2 Optimal Job Replication

Given P , the number of processors in the resource set, the running time of an optimal
JR run is the lowest possible expected run time that can be obtained by JR. This is
the run time that belongs to the JR run with the optimal number of replications, R∗.
Compute the running time of the optimal JR run as follows.

R∗(t, P ) = min
R=1,2,4,...,P

R(t, R, P ). (2.32)

2.9 Implementation of Dynamic Load Balancing

In DLB schemes from time to time decisions are made to update the balancing of
the loads on the basis of predictions of the processing speeds. To investigate whether
DLB based on predictor f is an effective means to react on fluctuations in load or per-
formance of processors we have implemented it in a representative SPMD program,
called SOR (see Section 2.3 for more details). The job sizes (in SOR the number of
rows) are adjusted such that they would take 2500 ms on a completely available 500
megahertz processor. Our implementation of the load balancing step is as follows. At
the end of each iteration the processors predict their processing speed for the next iter-
ation. After every N iterations the processors send their prediction to processor 0, the
DLB scheduler. Subsequently, this processor calculates the “optimal” load distribution
given those predictions, which is defined in (2.20), and sends relevant information to
each processor. The load distribution is optimal when all processors finish their calcu-
lation exactly at the same time. Therefore, it is “optimal” when the number of rows
assigned to each processor is proportional to its predicted processor speed. Finally, all
processors redistribute the rows. In most of the experiments performed in this thesis,
the total load balancing step takes around one third of the total time of one iteration
(i.e., calculation and sending time).
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3

STATISTICAL PROPERTIES OF

JOB RUNTIMES

3.1 Introduction

As explained in Chapter 1, the main focus of this thesis is on highly CPU-intensive
grid applications that require huge amounts of processor power for running tasks. Mo-
tivated by this, we performed in Chapter 2 measurements in a real global-scale grid
environment in order to study the statistical properties of job runtimes on processors.
Understanding the characteristics of a grid is also extremely useful for performing sim-
ulations or computations to assess the effectiveness of control strategies prior to their
creation. For example, an effective means to do so is to implement dynamic load bal-
ancing (DLB) schemes that can dynamically update the load offered to different nodes
in a grid in response to changing circumstances. The efficiency of such control schemes
strongly depends on the effectiveness of prediction schemes, which in turn requires an
understanding of the statistical properties of the dynamics of a grid environment.

To this end, in this chapter∗ we investigate the statistical properties of job runtimes,
which have been gathered in Section 2.4. The job-runtime measurements are multivari-
ate time series, which means that the heights of the runtimes depend on many different
variates (e.g., load). However, it is difficult to find relations between those variates and
the job runtimes. Load is assumed to be the factor that has the most impact on job
runtimes. However, as stated in Section 1.4.1 it is in practice hard to quantify its rela-
tion with job runtimes. Therefore, in this chapter we do not investigate the causes of
the job-runtime fluctuations, and we are more interested in their properties. That cor-
responds to the idea that it will be hard to retrieve causes of fluctuations in the future
grid.

The following steps are taken in this chapter. First we analyze plots of job run-
times, and make Box-and-Wisker plots to investigate the general characteristics of the
datasets. Furthermore, in Section 3.4, we analyze the shape of the job-runtime dis-
tributions on the basis of histograms, and investigate the key factors on this shape.
Subsequently, the Auto Correlation Function (ACF) and the Hurst parameter are inves-

∗This chapter is based on papers [28] and [30].
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tigated in respectively 3.5 and 3.6. In addition, in Section 3.7, we analyze the datasets
with 17 other statistics. Next, in Section 3.8 we consider the correlation coefficients
between all those different statistics. Finally, concluding remarks are given in Section
3.9.

3.2 Graphs

(a) Job runtimes in Salt Lake City (UT) (b) Job runtimes in San Diego (CA)

(c) Job runtimes in Washington (DC) (d) Long- and short-term job-runtime fluctuations
in Tucson (AR)

Figure 3.1: Job runtimes on 4 different nodes

In this section, the job runtimes, which have been collected in Section 2.4, are
analyzed on the basis of plots. To this end, we selected parts (i.e., 300 or 1000 succes-
sive data-values) of four representative datasets which were generated on the following
different sites: Salt Lake City (UT), San Diego (CA), Washington (DC), and Tucson
(AR). Figures 3.1(a) to 3.1(d) depict the job runtimes on those sites plotted against the
job numbers. The results lead to a number of interesting observations. We observe a
strong heterogeneity between the different patterns with significant differences in the
burstiness on the short time scale and the fluctuations on the longer time scales. For
example, the short-term behavior in Figures 3.1(a) and 3.1(b) is much more bursty
than the short-term behavior in Figure 3.1(c). Generally, the fluctuations at a short
time scale take a few iterations (typically in the range 1 to 4 iterations), which roughly
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corresponds to several minutes. Those short-term fluctuations are bursty and rather
unpredictable. The fluctuations at an even longer time scale take several hundreds
of iterations which corresponds to several hours in the time domain. These fluctua-
tions are presumably caused by a changing load at the processor. Furthermore, for the
longer-term fluctuations we observe a heterogeneity of patterns, including periodically
changing behavior (see Figure 3.1(c)) and randomly changing behavior (see Figures
3.1(a), 3.1(b) and 3.1(d)). These observations also suggest that there is a great poten-
tial reduction in running times, which can be achieved by smart strategies that take into
account those fluctuations in job runtimes.

3.3 Box-and-Whisker plots

Constructing Box-and-Whiskerplots, commonly known as Boxplots (see Chapter 2C in
[68]), is a common way to represent the differences between the medians, the quartiles,
the minimum, the maximum and the outliers of different datasets. A disadvantage
of a representation of job runtimes by a Boxplot is that it does not depict the time
dependencies. Figure 3.2 depicts the Boxplots of the running times (in milliseconds)
of the datasets. The left-hand side plot gives a macroscopic view of the data, and the
plot at the right-hand side focuses on running times ranging from 0 to 5000 ms. More
precisely, we consider the three quartiles: the 25%-percentile (denoted as Q1), the
median (denoted as Q2) and the 75%-percentile, Q3. These quartiles are plotted as a
long horizontal line. In addition, we consider the statistical measures Adown := Q1 −
1.5(Q3−Q1), Aup := Q3+1.5(Q3−Q1), which are indications of the data points that
should not be considered as outliers, and indicated by short horizontal lines. Finally,
the outliers, which are defined by the Boxplots as points outside the range of Adown and
Aup, are plotted by small circles. Because of this definition, it is possible that a Boxplot
indicates a relatively large set of datapoints as outliers. Figures 3.2(a) and 3.2(b) lead
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Figure 3.2: Boxplots of the 6 analysis phase datasets

to the following observations: (1) the characteristics of the running times at a given
node on different days in some cases differ strongly (see for example the results for
ar01 and ar02), but can be quite similar in other cases (see for example au01 and au02),
(2) the running-time characteristics of different nodes are strongly different, even when
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experiments are done at the same time, (3) the running times at a given node within a
given run are highly bursty, and have a large number of strong outliers, and (4) in most
cases the outliers correspond to very large values of the running times, but in some
cases (see for example ar01) outliers correspond to very small running times.

These observations address the need for prediction methods that can deal with het-
erogeneous and dynamically changing time series. Moreover, we reemphasize that the
observed heterogeneity of characteristics of the running times in the grid environment
differs fundamentally from the running-time characteristics in clusters of processors,
which are usually homogeneous and well predictable.

3.4 Histograms

To analyze the frequency distribution of the running times in more detail, Figure 3.3
shows the histograms of the marginal running-time distributions of two representative
datasets. A disadvantage of a representation of job runtimes by a histogram is that it
does not illustrate the time dependencies.

(a) Histogram of ar01 (b) Histogram of warsch01

Figure 3.3: Histograms of datasets ar01 and warsch01

(a) Level switch in ar01 (b) Level switch in warsch01

Figure 3.4: Level switches in datasets ar01 and warsch01
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The results in Figure 3.3 show that the running-time distributions are typically
multi-modal. This is caused by level switches in the running times over sustained time
periods (ranging from minutes to hours). To illustrate this, Figure 3.4 gives a graphical
representation of parts of datasets ar01 and warsch01. Figure 3.4(a) shows that from
data points 235 to 260 a level switch occurs. From job number 180 to 230, the running
times are between 3500 and 6000, which explains the first top in Figure 3.3(a). From
job number 260 to 310 the measured running times are between 15000 and 30000,
which explains the second top in Figure 3.3(a). Similar level switches are observed in
Figure 3.4(b), which explains the bi-modal distribution of the running times in Figure
3.3(b). These level switches are presumably caused by changes in the processor load
due to the launching or termination of other jobs on the same node. As stated by Dinda
et al. [21, 23] much of the behavior of running times can be explained by changes in the
load. However, they conclude that there are many other factors (e.g. memory space)
that have their influence on the running times. In this thesis, we focus on reacting to
the resulting fluctuations and not on prevention of the causes of fluctuations.

3.5 Auto Correlation Function

The Auto Correlation Function (ACF) is a way to investigate whether the data points
show correlations over different time scales. For a given stationary set of data points
y = (y1, . . . , yN ), an estimator for the ACF can be computed as follows:
for lags h = 1, . . . , N ,

ρ(h) :=
γ(h)

γ(0)
, (3.1)

with

γ(h) :=
1

N

N−h
∑

t=1

(yt+h − µ(y))(yt − µ(y)), (3.2)

where h is the lag, and where µ(y) :=
∑N

t=1 yt/N .

Estimated ACFs of the job runtimes on ar01, au01, and telaviv01 are illustrated by
Figure 3.5. Figure 3.5(e) depicts the ln of the ACF and its linear trend-line instead
of the ACF. These ACFs are representative for all the datasets. The results show that
the ACFs do not follow the same patterns; there are strong differences over the small
(ranging from 1 up to 20) and large (higher than 20) lag values. For example, the
ACF has significant autocorrelations over the small lag values of datasets ar01 and
au01. On the contrary, the ACF for dataset telaviv01 decreases very quickly to 0,
even for small lag numbers. For the datasets with significant autocorrelations for the
large lag values, we consistently observe exponentially decaying autocorrelations, as
illustrated by Figure 3.5(d), which suggests that the successive running times are short-
range dependent. In Figure 3.5(e) this exponential relation can be seen more clearly,
because the ln of the ACF has a linear relation with the lag. Periodicity can be observed
by ACFs if one or more lag values are higher than the other lag values. Although
some parts of the datasets temporarily show periodicity, we conclude that in general
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the datasets do not show periodicity. However, we notice that the datasets represent
job runtimes measured on one node with a time period of less than one day. For that
reason, it is possible that the job runtimes show periodicity on longer times scales. We
expect that if there exists a daily periodic behavior in the job runtimes of Planetlab
nodes, this is not a strong behavior due to the fact that researchers at all time zones use
the nodes.

3.6 Hurst parameter

Long-Range Dependence (LRD) is a statistical phenomenon which has received much
attention in the field of telecommunications in the last ten years [11]. A time series
is said to be LRD if it has correlations which persist over all time scales. LRD is
characterized by the parameter H , the Hurst parameter, where H ∈ (1/2, 1) indicates
the presence of LRD. A Hurst parameter H of 1/2 indicates Short-Range Dependence
(SRD). For a given set of data points y = (y1, . . . , yN), let ρ(h) be the auto-correlation
function (ACF) of y = (y1, . . . , yN ), as defined in (3.1) and (3.2).

Definition 3.6.1: A stationary time series represented by y = (y1, . . . , yN) with ACF
ρ(h) is said to be long-range dependent if the sum of estimated autocorrelations,
∑∞

h=−∞ ρ(h), diverges.

Often the specific functional form

ρ(h) ∼ Cρh
−α, (3.3)

is assumed where Cρ > 0 and α ∈ (0, 1). The parameter α is related to the Hurst
parameter via the equation α = 2 − 2H .

One method to estimate the Hurst parameter is to take the logarithm of the ACF,
which is defined above, and estimate the gradient by a least-squares fit [75], which
equals −α. Next, derive H by the above formula. We estimate by this method the Hurst
parameters of all 130 datasets, described in Chapter 2, to investigate if job runtimes
on shared processors are SRD or LRD. Figure 3.6 depicts the histogram of the Hurst
parameters of all the datasets. We observe that the Hurst parameter on average equals
0.73, and that a fraction of 0.63 of Hurst parameters is higher than 0.70.

Figure 3.7 shows us how the estimated Hurst parameter changes over time. We
estimated the Hurst parameter after each 100 measurements of job runtimes on a node
in San Diego. The fluctuations of the Hurst parameter in this Figure is representative
for all the nodes. Although a Hurst parameter determined from 100 measurements is
not as accurate as when 2000 measurements are used, this figure depicts how the LRD
changes fundamentally during runs.
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(a) au01 (b) telaviv01

(c) ar01 (d) ar01 (400 ACF values)

(e) ar01 (400 ln ACF values)

Figure 3.5: Plots of estimated ACFs for different datasets
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Figure 3.6: Histogram of Hurst parameters of 130 datasets

Figure 3.7: Estimated Hurst parameter over time on a node in San Diego
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3.7 Other statistical properties

In this section, we provide an analysis of a new set of statistics that are relevant to
investigating the statistical properties of job runtimes in grid environments. First, we
define the long-term fluctuations or level switches as changes in the height of the data
points that continue for more than 4 consecutive data points. To analyze the changes in
the statistical properties over time, the index set I := {1, . . . , N} is partitioned into

I = I1 ∪ · · · ∪ IM , where Ik := {B(k − 1) + 1, . . . , Bk} for k = 1, . . . , M,

where B is the block size and M := N/B (assuming that M is integer-valued). Let 1E

be the indicator function of the event E, i.e., 1E = 1 if E is true and 1E = 0 otherwise.
Further, let y

Ik
:= (yB(k−1)+1, . . . , yBk), for k = 1, . . . , M . For a vector v, we

define |v| to be the number of elements in vector v, and therefore, v = (v1, . . . , v|v|).
Moreover, we define the sample mean and standard deviation of this vector by:

µ(v) :=
1

|v|

|v|
∑

t=1

vt, (3.4)

and

σ(v) :=

√

√

√

√

1

|v| − 1

|v|
∑

t=1

(vt − µ(v))2. (3.5)

Using this notation, we consider the set of statistical properties defined in Tables 3.1
and 3.2 below. Interpretations of the statistics and their formulas are given further on
in this section.

Tables 3.1 represents the names of 17 different statistics that can provide insight in
the statistical properties of job runtimes. Table 3.2 describes the formulas of those
statistics. We compute the statistics by those formulas for six representative datasets,
and moreover, the average, the standard deviation, the minimum, and the maximum
of the statistics of all the 130 datasets defined in Section 2.4. Table 3.3 represents the
values of those statistics. Throughout the whole analysis, the number of data points is
N = 2000 and the block size B = 20.

To highlight the most interesting statistical properties, Figure 3.7 provides a graphi-
cal representation of the results for a number of statistics. From each group of statistics,
the most important statistic is chosen to make a graphical representation. The results
presented in Table 3.3 and Figure 3.7 are discussed in detail below.

The first group of statistics µ, σ, and c indicate the main characteristics of the
datasets: statistic µ is the average, statistic σ the standard deviation, and statistic c is
the Coefficient of Variation. The c equals the standard deviation divided by the aver-
age, and is a scale-invariant indicator for the variability of the data points.
We conclude from Table 3.3 and Figure 3.7 that the average and the standard deviations
of the running times of the jobs may differ strongly between the datasets. Datasets can
show similarities when two runs are performed on the same node and on two consecu-
tive days, which is illustrated by au01 and au02. Table 3.3 and Figure 3.8(a) show that
the cs of the running times are fairly low, ranging between 0.22 and 1.81.
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Name Statistic

µ Average of whole dataset

σ Standard deviation of whole dataset

c Coefficient of Variation

rmselv RMSE of last value

σ
rmselv

Standard deviation
RMSE of last value

σ(µ) Standard deviation of the averages

c(µ) Coefficient of Variation of the averages

σ(µ)

σ

Standard deviation of averages
Standard deviation

σ(σ) Standard deviation of standard deviations

σ(σ)
µ

Standard deviation of standard deviations
Average

c(σ) Coefficient of Variation of the standard deviations

fjumps Fraction of jumps7

σjumps Standard deviation impact of jumps

rmsejumps RMSE impact of jumps

σjumps

σ

Standard deviation impact of jumps
Standard deviation

rmsejumps

rmselv

RMSE impact of jumps
RMSE of last value

msejumps

σ2

MSE impact of jumps
variance

Table 3.1: Names of the statistics of the datasets
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Name Formula

µ µ(y):= 1
N

∑N

t=1 yt

σ σ(y):=
√

1
N−1

∑N

t=1(yt − µ(y))2

c c(y):= σ(y)

µ(y)

rmselv rmselv(y):=
√

1
N−1

∑N

t=2(yt − yt−1)2

σ
rmselv

σ(y)

rmselv(y)
:= σ(y)

rmselv(y)

σ(µ) σ(µ(yI1), . . . , µ(yIM
)):=

√

1
M

∑M

k=1(µ(yIk
) − µ(y))2

c(µ) c(µ(yI1 ), . . . , µ(yIM
)):=

√
Bσ(µ(yI1

),...,µ(yIM
))

µ(y)

σ(µ)

σ
S8(y):=

√
Bσ(µ(yI1

),...,µ(yIM
))

σ(y)

σ(σ) σ(σ(yI1), . . . , σ(yIM
)):=

√

1
M

∑M
k=1

(σ(yIk
) − µ(σ(yI1

), . . . , σ(yIM
)))2

σ(σ)
µ

S10(y):=
σ(σ(yI1

),...,σ(yIM
))

µ(y)

c(σ) c(σ(yI1), . . . , σ(yIM
)):=

σ(σ(yI1
),...,σ(yIM

))

µ(σ(yI1
),...,σ(yIM

))

fjumps fjumps(y):= 1
N−1

∑N

t=2 1{|yt−yt−1|>2σ(y)}

σjumps σjumps(y):=
√

1
N−1

∑N

t=2 1{|yt−yt−1|>2σ(y)}(yt − µ(y))2

rmsejumps rmsejumps(y):=
√

1
N−1

∑N

t=2 1{|yt−yt−1|>2σ(y)}(yt − yt−1)2

σjumps

σ
S15(y):= σjumps(y)

σ(y)

rmsejumps

rmselv
S16(y):= rmsejumps(y)

rmselv(y)

msejumps

σ2 S17(y):=
σjumps(y)2

σ(y)2

Table 3.2: Definitions of the statistics of the datasets
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Six representative datasets All 130 datasets

Name ar
01

ar
02

au
01

au
02

te
la

vi
v0

1

w
ar

sc
h0

1

av
er

ag
e

st
an

da
rd

de
vi

at
io

n

m
in

im
um

m
ax

im
um

µ 23922 1346 407 301 656 300 3419 8449 107 42728

σ 11187 507 208 183 521 67 1817 4312 67 20560

c 0.47 0.38 0.51 0.61 0.79 0.22 0.57 0.26 0.22 1.81

rmselv 9443 493 194 206 680 50 1474 3224 50 14970

σ
rmselv

1.18 1.03 1.07 0.89 0.77 1.34 1.12 0.30 0.70 1.83

σ(µ) 8471 303 123 92 166 48 1287 3392 29 16627

c(µ) 1.57 1.03 1.34 1.39 1.11 0.72 1.36 0.57 0.63 3.62

σ(µ)

σ
3.39 2.67 2.64 2.25 1.42 3.23 2.54 0.78 1.02 3.68

σ(σ) 4665 230 105 139 479 34 683 1466 23 6649

σ(σ)
µ

0.20 0.17 0.26 0.46 0.73 0.11 0.24 0.25 0.08 1.73

c(σ) 0.80 0.65 0.76 1.64 2.64 0.98 0.71 0.63 0.18 3.56

fjumps 0.03 0.03 0.02 0.04 0.01 0.03 0.06 0.06 0.01 0.22

σjumps 6265 330 108 148 488 35 794 1576 35 7096

rmsejumps 8240 418 144 198 665 40 1107 2268 40 10499

σjumps

σ
0.56 0.65 0.52 0.81 0.94 0.53 0.53 0.17 0.24 0.96

rmsejumps

rmselv
0.87 0.85 0.74 0.96 0.98 0.80 0.76 0.13 0.49 0.99

msejumps

σ2 0.31 0.42 0.27 0.65 0.88 0.28 0.31 0.20 0.06 0.91

Table 3.3: Summary of the statistical properties of the datasets
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(a) Coefficient of Variation (b) Standard deviation over RMSE

(c) Standard deviation of the averages over the stan-
dard deviation

(d) Coefficient of Variation of Standard Deviations

(e) Fraction of total amount of fluctuations caused by
jumps

Figure 3.8: Various statistical properties



42 Chapter 3 Statistical properties of job runtimes

Statistics rmselv and σ/rmselv indicate (1) to what extent the standard deviation
is caused by short- or long-term fluctuations, and (2) how well the last value performs
as a predictor for running times of jobs. Statistic rmselv is the so-called Root of the
Mean Squared Error (RMSE) of the last value, which is the RMSE of a predictor that
uses the last value to predict the next value. Moreover, this statistic indicates the total
amount of fluctuations. Statistic σ/rmselv is the standard deviation over the RMSE
of the last value, and is represented in Figure 3.8(b). Statistic σ/rmselv theoretically
varies between 0.5 and infinity. For (1), when statistic σ/rmselv has the theoretical
minimum value of 0.5 (see line M in Figure 3.8(b)), it indicates that the values alternate
between two values; two random successive values show a correlation of -1. A value of
0.7(= 1

2

√
2) (see line I in Figure 3.8(b)) indicates that the values are independent and

identically distributed. When the value for this statistical property is higher than 0.7
it indicates short- and long-term fluctuations; the higher the value the more long-term
fluctuations influence the standard deviation. For (2), a value of 1.0 for this property
indicates that the average and the last value as predictors have the same accuracy. The
higher this value the better is the last value as predictor in comparison with the average.
The results in Table 3.3 show a high variety of the values of statistic rmselv , ranging
from 50 to almost 9500 for the six representative datasets and between 50 to almost
15000 for all the datasets. The average of statistic σ/rmselv is 1.12, which is signif-
icantly higher than 0.7, which indicates long-term fluctuations. Moreover, it indicates
that the last value is on average a slightly better predictor than the average. For ex-
ample, for the two datasets au02 and tel01 that have a value lower than 1.0 an average
predictor would predict better. We conclude from the high variety of the height of this
statistic that the proportion long- and short-term fluctuations differs per dataset.

The next group statistics σ(µ), c(µ), and σ(µ)/σ indicate to what extent the aver-
age of the running times of jobs changes during the run. Statistic σ(µ) is the standard
deviation of the averages, statistic c(µ) is the Coefficient of Variation of the averages,
and statistic σ(µ)/σ is the standard deviation of the averages of the standard deviation.
Statistics c(µ) and σ(µ)/σ are multiplied by a correction factor

√
B to compensate the

fact that a standard deviation of an average of B independent, identically distributed
values is by definition

√
B times smaller than the standard deviation of a single value.

The closer the value of statistic σ(µ) is to 0, the more constant the average stays during
the run. When statistic c(µ) has a value close to 1.0 or higher, the averages fluctuate
significantly. A value of 1.0 for statistic σ(µ)/σ indicates that the expectation stays
fairly constant during the run. Fluctuations in the standard deviations have no influ-
ence on this property.
Table 3.3 and Figure 3.8(c) show that for all datasets the averages fluctuate signifi-
cantly: statistic c(µ) has an average value 1.36, and statistic σ(µ)/σ shows values that
are significantly higher than 1.0. Nevertheless, the datasets show a high diversity in to
what extent the averages fluctuate. We conclude from this group of statistics that all
the datasets have many level switches.

Statistic σ(σ), σ(σ)/µ, and c(σ) indicate how much the standard deviation of the
running times changes during the run. Statistic σ(σ) is computed by taking the stan-
dard deviation of standard deviations of B successive values. Statistic σ(σ)/µ equals
statistic σ(σ) divided by the average, and statistic c(σ), which is graphically repre-
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sented in Figure 3.8(d), equals statistic σ(σ) divided by the average of the standard
deviations. In general, the closer these statistics are to 0, the more the standard de-
viation stays constant during the run. If the running times are independent, identical
normally distributed, statistic c(σ) equals 0.16, which is independent of the height of
the average and the standard deviation. We note that 0.16 depends on the value of B:
the higher the B, the lower the value.
Table 3.3 and Figure 3.8(d) show that all the datasets have substantial fluctuations in
the standard deviations. Nevertheless, there is diversity in the fluctuations of the stan-
dard deviations between the different sets. The running times on the node in Telaviv
shows the most fluctuations in the standard deviation. For that node the high value for
statistic c(σ) is mainly caused by the many big outliers, as we see in Figure 3.2(b).

The last group of statistics fjumps, σjumps, rmsejumps, σjumps/σ,
rmsejumps/rmselv, and msejumps/σ2 how many jumps the datasets contain
and what the impact of those jumps is on the total amount of fluctuations, the standard
deviation, and the variance. The first statistic of this group is the fraction of jumps,
where a jump is defined as a value that differs (up- or downwards) from its previous
value more than 2 times the standard deviation. A jump can be a peak or a level
switch. The second statistic is the impact of the jumps on the standard deviation. This
statistic sums up all the squares of the differences between the jumps and the averages,
and takes the square root of that sum. The next statistic is the RMSE impact of jumps.
This statistic sums up all the squares of the differences between the jumps and their
previous values, and takes the square root of that sum. Statistic 15 indicates the
fraction of the standard deviation that is caused by the jumps. It is computed by taking
statistic σjumps over the standard deviation. Statistic rmsejumps/rmselv indicates
the fraction of the total amount of fluctuations that is caused by the jumps. This
property equals statistic rmsejumps divided by statistic rmselv . The last statistic,
msejumps/σ2, indicates how much influence the jumps have on the variance. This
value equals the square of statistic σjumps/σ.
The results show that the fraction of the jumps does not differ that much between the
datasets, and ranges mostly between 1% and the 22% with an average of 6%. The
fraction of jumps is relatively low compared to the normal distribution (16%) and to
the exponential distribution (13%). Statistics σjumps and rmsejumps illustrate huge
differences between the different impacts of jumps on the standard deviation and on
the variance. Statistics σjumps/σ and msejumps/σ2 show that the fraction of the
standard deviation and the variance that is caused by the jumps (respectively 53% and
31%) is slightly lower, but quite similar to the fractions of the normal distribution
(respectively 60% and 36%) and the exponential distribution (respectively 73%
and 53%). Moreover, the graphical representation of statistic rmsejumps/rmselv,
Figure 3.8(e), shows that on average 76% of the total amount of fluctuations (i.e.
RMSE of last value) is caused by the jumps and that for two of the representative
datasets the fraction is even higher than 95%. This value is significantly higher than
those of the normal distribution (76%) and the exponential distribution (81%).

To summarize, the statistical data analysis of the datasets shows that: (1) there are
significant differences between the characteristics of the datasets, (2) the datasets show
on average more long-term than short-term fluctuations and the proportion differs per
dataset, (3) the averages fluctuate significantly during the run, with differences in the
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µ 0.99 -0.08 0.98 0.24 1.00 0.22 0.38 0.97 -0.05 0.01 -0.16 0.95 0.96 -0.29 -0.06 -0.22

σ 1.00 -0.01 0.99 0.23 1.00 0.27 0.36 0.98 0.02 0.05 -0.15 0.96 0.97 -0.26 -0.04 -0.19

c 1.00 0.05 -0.35 -0.05 0.57 -0.43 0.11 0.84 0.54 0.14 0.14 0.09 0.52 0.44 0.49

rmselv 1.00 0.17 0.98 0.28 0.32 0.98 0.09 0.10 -0.13 0.97 0.99 -0.20 0.00 -0.13
σ

rmselv
1.00 0.25 0.34 0.86 0.22 -0.14 0.23 -0.70 0.19 0.15 -0.58 -0.36 -0.83

σ(µ) 1.00 0.26 0.38 0.96 -0.02 0.02 -0.16 0.95 0.95 -0.29 -0.07 -0.22

c(µ) 1.00 0.42 0.34 0.55 0.55 -0.40 0.34 0.30 0.06 0.15 -0.17
σ(µ)

σ
1.00 0.34 -0.16 0.21 -0.74 0.29 0.30 -0.54 -0.36 -0.77

σ(σ) 1.00 0.20 0.21 -0.21 0.99 0.99 -0.16 0.05 -0.13
σ(σ)

µ
1.00 0.88 -0.23 0.19 0.17 0.56 0.49 0.42

c(σ) 1.00 -0.51 0.19 0.16 0.43 0.43 0.15

fjumps 1.00 -0.15 -0.14 0.31 0.26 0.61

σjumps 1.00 0.99 -0.13 0.04 -0.10

rmsejumps 1.00 -0.14 0.07 -0.08
σjumps

σ
1.00 0.88 0.88

rmsejumps
rmselv

1.00 0.71

Table 3.4: Correlation coefficients between the statistical properties

amount of fluctuations between the different nodes, (4) the standard deviations fluctuate
significantly during the run, with differences in the amount of fluctuations between the
different nodes, and (5) the datasets contain a small amount of jumps that have a huge
influence on the standard deviation, the total amount of fluctuations, and the variance.

3.8 Correlation coefficients

In this section, we investigate to what extent the various statistical properties of the
previous section are related with each other. Table 3.4 depicts the correlations between
the statistical properties, which are defined in Table 3.1.

We make the following interesting observations from Table 3.4. First, the averages
(the µs) and the standard deviations (the σs) of the datasets have a correlation coef-
ficient of 0.99. This value for the coefficient means that there exists a strong linear
relation between the average and the standard deviation of a dataset. Consequently,
this illustrates that the datasets are scalable. Second, the fraction of jumps has a con-
siderable negative correlation of -0.70 with statistics σ/rmselv , This value indicates
that when the number of jumps increases (decreases), the number of long- as short-
term fluctuations (σ/rmselv) decreases (increases), Third, the fraction of jumps has a
correlation coefficient of -0.74 with σ(µ)/σ. This correlation coefficient demonstrates
that if the averages fluctuate more, the number of jumps decreases. Fourth, the num-
ber of jumps has a significant positive correlation of 0.61 with msejumps/σ2. This
demonstrates the linear relation between the fraction of jumps and the total impact of
these jumps compared to the variance. Fifth, the msejumps/σ2, and the σ(µ)/σ have
a negative correlation coefficient of -0.77. This indicates that if there are more long-
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term fluctuations in the job runtimes, the relative impact of the jumps on the variance
is lower. Hence, the short-term fluctuations have a higher impact on the variance. Fur-
thermore, we observe that many other statistical properties have a high correlation with
each other. Nevertheless, those strong relations are related to the strong correlation
between the averages and the standard deviations.

3.9 Conclusions

In this chapter, the statistical properties of the running times of tasks on processors and
the relations between the statistics have been studied extensively. These investigations
can be used to develop effective techniques for the prediction of running times. More-
over, they can be used to develop effective control schemes for robust grid applications.

We made a significant number of 18 observations. From the analyses with the Box-
plots we observe (1) that the job runtimes measured on one node over different time
scales mostly show a strong burstiness, (2) a strong heterogeneity of the characteristics
of job running times among different hosts, even when the job runtimes are measured
at the same time, (3) occurrence of sudden level-switches in the running times, and (4)
that in most cases the outliers correspond to very large values of the running times,
but in some cases outliers correspond to very small running times. Furthermore, the
histograms show that the (5) job runtimes can not be fitted in a standard distribution.
Moreover, the Auto Correlation Function analyses illustrate that (6) the characteris-
tics of the Auto Correlation Functions of the different datasets differ completely, and
(7) most datasets show exponentially decaying autocorrelations which indicates short-
range dependency (SRD). In addition, the Hurst-parameter estimations indicate that
(8) the job runtimes mostly show long-range dependence (LRD). Subsequently, we no-
tice from the data analysis on the basis of an elaborate set of statistics that: (9) the
characteristics of the job runtimes differ strongly per dataset, (10) the datasets show
on average more long-term than short-term fluctuations and the proportion differs per
dataset, (11) the averages and (12) the standard deviations fluctuate significantly dur-
ing the run, with differences in the amount of fluctuations between the different nodes,
and (13) the datasets contain a small amount of jumps that have a huge influence on
the standard deviation, the total amount of fluctuations, and the variance. Finally, the
investigations to the correlation coefficients between the different analyzed statistics
demonstrate that (14) there exists a strong linear relation between the average and the
standard deviation of the job runtimes on a node, (15) the lower (higher) the number of
jumps, the more (less) long-term fluctuations compared to short-term fluctuations, and
(16) the more (less) fluctuations of the averages, (17) the higher (lower) the fraction
of jumps, the greater (smaller) the total impact of these jumps in comparison with the
variance, and (18) short-term fluctuations have a greater impact on the variance than
long-term fluctuations.

Most of the observations are consistent and some of them are trivial. However, there
is a difference in the observations whether the job runtimes are SRD or LRD: the results
of the Auto Correlation Function (ACF) analyses indicate that the job runtimes are
SRD, and the Hurst-parameter estimations show that the job runtimes are LRD. Based
on the analyses, we expect that there indeed exists long-range dependency among the
job runtimes. The estimations of the ACFs need a higher number of measurements
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than the Hurst-parameter analyses in order to conclude whether a time series is LRD.
We presume that 2000 as the number of data points was not enough for the ACF to
affirm LRD. However, more analyses are needed to confirm the expectation that the
job runtimes are LRD.

To summarize, our experiments show strong heterogeneity in the characteristics of
the job runtimes on different globally-distributed shared processors.



4

PERFORMANCE ASSESSMENT OF

LOAD BALANCING STRATEGIES

4.1 Introduction

As pointed out in Chapter 1, it is essential to develop effective means to cope with
the fluctuations in grid environments. The principles of Static and Dynamic Load bal-
ancing (respectively SLB, and DLB) are means to cope with fluctuating processing
speeds in a heterogeneous environment. In Chapter 2, the grid testbed Planetlab, and
the procedure to extensively collect data in this testbed have been described. Moreover,
simulation and implementation details of the different load balancing methods, ELB,
SLB, and DLB, have been given. In addition, the computations to derive the highest
possible speedup are specified. In this chapter we investigate the effectiveness of those
load balancing strategies in a global-scale grid environment on the basis of comprehen-
sive trace-driven simulations and real implementation experiments. The experiments
were performed with the Successive Over Relaxation (SOR) application, discussed in
Chapter 2.

This chapter∗ is organized as follows. First in Section 4.2, we perform trace-driven
simulations with Static Load Balancing (SLB). We investigate the impact of the num-
ber of “cold” iterations to estimate the average job runtimes on the speedup compared
to Equal Load Balancing (ELB). Next, we investigate in Section 4.3 the consequences
of the number of measurements between two load rescheduling steps on the running
times of DLB. Subsequently, we analyze the effectiveness of DLB for different com-
munication to computation ratios. Moreover, in Section 4.4 we verify the simulation
results by experiments of real implementations of DLB in the global-scale grid testbed
Planetlab. Different job sizes will be tested. Finally, in Section 4.5 we summarize the
conclusions.

∗This chapter is based on papers [25], [26], and [27].
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4.2 Static Load Balancing

As shown in Chapter 1, Static Load Balancing (SLB) strategies use a number of ”cold
iterations” to estimate the average processor speeds, in order to balance the load. In
this section, we simulate trace-driven different Static Load Balancing (SLB) settings in
order to investigate the speedups of different numbers N of job-runtime measurements
before the static load balancing step. To this end, we incorporate the datasets of the
USA nodes Boston, Pasadena, Salt Lake City, San Diego, Tucson, and Washington in
the simulations. For each simulation, we randomly select four processors from this
set. We investigate the SLB possibilities of a parallel program with problem size t =
tdefault = 2.5, and which runs on P = 4 processors. We simulate the cases that N =
0, 1, 10, 20, 50, 100, 200, . . . , 1000, and investigate the upper bound of the speedup for
this choice of parameters. Table 4.1 depicts the average speedups with and without
the overhead of the single load rescheduling step where each value is derived from
10 trace-driven simulation runs. The details of the SLB trace-driven simulations have
been described in Section 2.6. The S(N, t, P ) and the S∗(t, P ) are defined in 2.5.

LB strategy Average speedup Average speedup
without overhead with overhead

S(0, 2.5, 4) 1.00 1.00
S(1, 2.5, 4) 1.19 1.16
S(10, 2.5, 4) 1.18 1.15
S(20, 2.5, 4) 1.26 1.21
S(50, 2.5, 4) 1.31 1.25
S(100, 2.5, 4) 1.32 1.25
S(200, 2.5, 4) 1.31 1.25
S(300, 2.5, 4) 1.50 1.39
S(400, 2.5, 4) 1.60 1.45
S(500, 2.5, 4) 1.60 1.46
S(600, 2.5, 4) 1.58 1.44
S(700, 2.5, 4) 1.55 1.42
S(800, 2.5, 4) 1.49 1.38
S(900, 2.5, 4) 1.44 1.34
S(1000, 2.5, 4) 1.39 1.30
S∗(2.5, 4) 1.91 1.61

Table 4.1: Speedups of static load balancing strategies

We conclude the following from the results in the table. First, we notice from the
analyses that include overheads that the highest SLB speedups can be gained when
N = 500. For this case, on the one hand sufficiently many measurements have been
applied in determining the average job runtimes such that accurate averages have been
derived, and on the other hand, there are still enough remaining iterations to apply
the new load distribution to and gain in running time. Second, we observe that unless
during a complete run only one load rescheduling step is applied, the speedup is con-
siderable. Third, the table points out that there is still a significant difference between
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the highest derived SLB speedup and the optimal SLB strategy. Fourth, the decreasing
impact on the speedup of the load-balancing step overhead is very low. This impact
increases and becomes significant when the speedup is higher.

4.3 Dynamic Load Balancing

Number of iterations between Load Balancing steps

In this section, we investigate the optimal number N of iterations between two
rescheduling steps in a DLB run. To this end, we incorporate the same datasets, as
used above, of the USA nodes Boston, Pasadena, Salt Lake City, San Diego, Tucson,
and Washington in the simulations. For each simulation, we randomly select four pro-
cessors from this set. We investigate the cases of a parallel program with problem size
t = tdefault = 2.5, and which runs on P = 4 processors. We simulate the cases
that N = 0, 1, 2, 3, 4, 510, 20, 30, 40, 50, 100, 200, 300, 400, 500, and investigate the
maximal possible speedup for this choice of parameters.

Table 4.2 shows the speedups that can be made by dynamic load balancing on the
basis of ES with α = 0.5 predictions, compared to the case with equal load balancing,
for a variety of load balancing strategies. Moreover, the table illustrates the impact of
the rescheduling overhead on the speedup. Based on extensive experimentation with
the value of α, we found that a suitable value of α is 0.5. The D(N, f, t, P ) and the
D∗(t, P ) are defined in 2.5.

The results shown in Table 4.2 lead to a number of interesting observations. First,
we notice that for the case without overhead N is 1 provides the highest speedup. This
observation is expected, because with N = 1, the load is balanced every iteration
and therefore always up-to-date. For the case without load-balancing overhead these
updates cost no extra time. First, we observe that a suitable value of N is 10 with taking
into account the overhead. Second, we observe that there is a high potential speedup by
properly reacting to fluctuations of processing speeds by dynamic load balancing. The
potential speedup is shown by the speedup of D∗(2.5, 4) in Table 4.2; in the optimal
dynamic load balancing case it is possible to obtain a speedup of 1.85 assuming that the
overhead of the optimal DLB strategy approximately equals the overhead of the DLB
strategy with N is 10. Third, we observe that despite the inaccuracy in the predictions
of the calculation times the highest obtained speedup factor by applying DLB is still
close to the theoretical optimum.

Communication to computation ratio

In this section, we analyze the running times of DLB for different communication to
computation ratios by trace-driven simulations with extensive data sets, which are both
described in Chapter 2. First, we divided the datasets of the 130 runs into two sets of
datasets: one set contains 40 datasets and the other 90 datasets. In order to compare the
results of Sections 4.2 and the above section with the simulation results of this section,
the first set consists of datasets which are generated from the same nodes. The second
set contains datasets generated from in total 22 different nodes which includes datasets
generated from the same nodes which are used for set one. Set one only consists of
nodes in the USA: Boston, Pasadena, Salt Lake City, San Diego, Tucson, and Wash-
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LB strategy Average speedup Average speedup
without overhead with overhead

D(0, ES(0.5), 2.5, 4) 1.00 1.00
D(1, ES(0.5), 2.5, 4) 2.52 1.57
D(2, ES(0.5), 2.5, 4) 2.48 1.71
D(3, ES(0.5), 2.5, 4) 2.45 1.76
D(4, ES(0.5), 2.5, 4) 2.42 1.78
D(5, ES(0.5), 2.5, 4) 2.40 1.79
D(10, ES(0.5), 2.5, 4) 2.34 1.80
D(20, ES(0.5), 2.5, 4) 2.28 1.80
D(30, ES(0.5), 2.5, 4) 2.28 1.80
D(40, ES(0.5), 2.5, 4) 2.25 1.79
D(50, ES(0.5), 2.5, 4) 2.24 1.79
D(100, ES(0.5), 2.5, 4) 2.18 1.76
D(200, ES(0.5), 2.5, 4) 2.02 1.68
D(300, ES(0.5), 2.5, 4) 2.05 1.69
D(400, ES(0.5), 2.5, 4) 1.82 1.56
D(500, ES(0.5), 2.5, 4) 1.74 1.52
D∗(2.5, 4) 2.50 1.85

Table 4.2: Speedups of Dynamic Load Balancing strategies

ington DC. Furthermore, as described in Chapter 2, the second set contains, besides the
datasets which are generated on the same nodes as set one, datasets which are gener-
ated on the following different nodes: Amsterdam, The Netherlands; Cambridge, UK;
Beijing, China; Copenhagen, Denmark; Le Chesnay, France; Madrid, Spain; Moscow,
Russia; Santa Barbara, USA; Seoul, South Korea; Singapore; Sydney, Australia; Tel
Aviv, Israel; Taipei, Taiwan (Academica Sinica); Taipei, Taiwan (National Taiwan Uni-
versity); Vancouver, Canada; and Warsaw, Poland.

The job runtimes in set one are on average approximately 72500 ms, and in set two
65000 ms. Further analysis shows that the job runtimes on the nodes in set two show
more burstiness and have higher differences between the average job runtimes on the
processors. That last property is mainly caused by the fact that the nodes in set two are
globally distributed and the nodes in set one are distributed within the USA; set one
shows more coherence between the generated datasets.

First, we simulate the running times of DLB for different numbers of processors
with set one and two. Furthermore, we analyze the impact of the communication-to-
computation rate (CCR) on the run times of DLB. The average CCR, as defined in
Section 2.5, is found to be 0.01 in our datasets. In order to investigate this impact,
we linearly interpolate the heights of the computation times such that we are able to
derive simulations of runs with a CCR of 0.25, and of 0.50. With those interpolated job
runtimes, we again simulate runs based on DLB for a wide range of situations.

Below, we present the results of the simulations of the DLB runs. We investigate the
DLB running-times with both sets of processors for runs with a CCR of 0.01, 0.25, and
0.50 on 1, 2, 4, 8, 16, and 32 processors. Figure 4.1(a) depicts the average run times
on a logarithmic scale of all performed simulations on nodes of set one. Moreover,
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Figure 4.1(b) depicts the average run-times on a logarithmic scale of all the performed
simulations on nodes of set two.

(a) 40 datasets of USA nodes (b) 90 datasets of globally distributed nodes

Figure 4.1: DLB Run-times for different CCRs

From the simulation results of the runs with a CCR of 0.01, we conclude that se-
lecting more processors in the run decreases the running times, which is the main moti-
vation for programming in parallel. Although the rescheduling and send times increase
when more processors are selected in the run, the decrease in the computation times for
this case is always higher. As is shown by Figures 4.1(a) and 4.1(b), we draw different
conclusions when the CCR is higher than 0.01. For runs on nodes of set one and a
CCR of 0.25, we notice a decrease in running times until the amount of 16 processors
is selected. When more processors have been selected, the running times will increase
due to the significant heights of the rescheduling- and send times. Furthermore, we
conclude that for every experimental setting, DLB consistently shows a speedup in
comparison with ELB, even for runs with a CCR of 0.50. However, for the case that
CCR equals 0.50, we observe that the number of processors with the lowest run times
is one, which means that it is not efficient to run the program in parallel on more than
one processors.

4.4 Experiments

In this section, we verify the simulation results of the section above by experiments of
real implementations of DLB in the global-scale grid testbed Planetlab. We conduct
experiments in two parts. In the first part, we perform extensive experiments with a
parallel program that consists of jobs with the problem size t = 2.5 (defined in 2.5)
and analyze the difference between the run times of ELB and DLB. In the second
part, we perform experiments to investigate the dependence between the problem sizes
and the speedup gained by implementing DLB. Therefore, we run the two versions of
the SOR for job sizes with problem sizes t = 1.25, 2.5, 3.75, 5.0. Furthermore, by
analyzing in more detail the obtained experimental results of all the experiments, we
investigate how the load distribution changes during a DLB run. Finally, we analyze
how run times can evolve over time.
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Ideally, experiments should be performed both with a small number of nodes and
with a very large number of nodes. To obtain statistically significant results, the exper-
imental results need to be reproducible. In practice, however, the most commonly used
grid testbeds are not yet mature enough, and the availability of many nodes is limited.
For this reason, we choose to conduct our experiments with four sites. On the one hand,
the number of four sites is large enough to demonstrate a significant speedup factor by
DLB. On the other hand, this number is small enough to reproduce experiments with
the same set of nodes within a reasonable time frame. We choose to only use nodes in
the USA or Canada, because these nodes have the highest up times. We use two sets
of four nodes of Planetlab to conduct our experiments. Set one consists of the nodes
Pasadena (CA), Tucson (AR), Washington (DC) and Boston (MA), and set two con-
sists of Vancouver (BC), San Diego (CA), Salt Lake City (UT) and Chicago (IL). The
nodes are connected by the Internet via a linear structure, as shown by Figure 4.2.

Figure 4.2: Nodes on Planetlab, used for experiments

We perform our experiments with the Successive Over Relaxation (SOR) applica-
tion, as described in Section 2.3. The default load balancing scheme is referred to as
Equal Load Balancing (ELB). ELB assumes no prior knowledge of processor speeds
of the nodes, and consequently balances the load equally among the different nodes.
Ideally, experiments with and without DLB should be performed simultaneously. Un-
fortunately, in practice performing experiments simultaneously is not possible because
of interference. Therefore, to make a fair comparison we alternatingly run the two im-
plementations under comparable circumstances: each day at 09:00 CET we start one
of the two implementations, and the next day we start the other one.

In the first part of the experiments, we consider the effectiveness of implementing
DLB based on ES. We have performed 30 runs with the original ELB SOR implementa-
tion and 30 runs of the DLB implementation with set one of Planetlab nodes. To obtain
statistically relevant results it is necessary to perform as many as 30 runs. To make a fair
comparison, the runs were alternatingly performed with ELB and DLB. The odd run
numbers correspond to DLB-based experiments, and the even run numbers are based
on ELB. One run consists of 2000 iterations. Interrupted runs are omitted. Figure 4.3
shows the running times for these experiments. The results plotted in Figure 4.3 show
that the DLB-based experiments are significantly faster than their ELB-counterparts,
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Figure 4.3: Running times DLB compared to ELB

consistently over all experiments (except for a single outlier in run 20). Interestingly,
the DLB strongly outperforms ELB independent of the actual running times. The av-
erage speedup factor by using DLB instead of ELB was found to be roughly a factor of
1.8. This confirms the results of the simulations addressed above.

Another interesting question is how the running times achieved by implementing
DLB depend on the problem size. Therefore, in the second part of experiments we
have performed experiments with DLB and ELB and with different problem sizes t =
1.25, 2.5, 3.75, 5.0 on set two of Planetlab sites. Those runs consist of 1000, 500,
375, and 250 iterations, respectively. The experiments have been repeated seven times
in order to obtain reliable estimates. Interrupted runs are omitted. Figure 4.4 shows
the average running time as a function of t. This figure shows that the running time

Figure 4.4: Running times as a function of the problem size t
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Problem size t CCR Average speedup
0.05 0.500 1.50
0.10 0.250 1.53
1.25 0.020 1.71
2.50 0.010 1.82
3.75 0.007 1.82
5.00 0.005 1.83

Table 4.3: Speedup factors for different problem sizes

increases nearly linearly in the number of rows, for both ELB and DLB. More precisely,
based on a simple least-square estimation method we obtain the following approximate
expression for the running times E(t, 4) and D(10, ES(0.5), t, 4) (in seconds) as a
function of the problem size t:

E(t, 4) = 41600t + 21138, (4.1)

D(10, ES(0.5), t, 4) = 22200t + 14363. (4.2)

The offset for ELB consists of send and wait times, which are independent of the
problem size. The offset for DLB also consists of send times and wait times, but in
the DLB case the wait times are smaller than in the ELB case, because DLB is able
to react to temporary imbalance causing larger wait times. In addition, the DLB-offset
contains the overhead involved performing load balancing actions. Table 4.3 shows
the speedup factor for different values of t and their corresponding CCR. In order to
compare the results with the simulations, we compute estimations with (4.1) and (4.2)
for the speedups of DLB programs with a CCR of 0.50 and 0.25.

Table 4.3 demonstrates that, because of the above-mentioned differences in the
offsets for ELB and DLB, the speedup depends on the problem size. More precisely, it
follows directly from (4.1) and (4.2) that in the current experimental setting the speedup
factor seem to converge to the following constant if t grows large:

lim
t→∞

E(t, 4)

D(10, ES(0.5), t, 4)
=

41600

22200
≈ 1.87.

Moreover, the estimated speedups of 1.50 with a CCR of 0.50 and 1.53 with a
CCR of 0.25 are higher than the speedups generated in Section 4.3. The following two
reasons are possible causes for this difference: (1) the sets of nodes are different, and
(2) formulas (4.1) and (4.2) possibly lose accuracy for CCRs that differ significantly
from the CCRs that are used to estimate the formulas.

To analyze the speedup between DLB and ELB in more detail, Figures 4.5 and 4.6
show the evolution of the load distribution over the different nodes for both the DLB
and the ELB scheme. More precisely, a representative development of the load as-
signed to the nodes is shown. For the DLB case we observe both short- and long-term
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Figure 4.5: Fraction of load on each processor in a DLB run

Figure 4.6: Fraction of load on each processor in a ELB run
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Figure 4.7: Cumulative running time as a function of the iteration number

changes in the number of rows during a run, which are caused by dynamic reactions
on the short- and long-term changes in calculation times. The results also show the
drawback of implementing Static Load Balancing (SLB) schemes, where the load is
balanced statically on the basis of the first N iterations. A key problem is to find a
suitable value for N , which is based on the following trade-off. If N is too large, then
the benefit of SLB is marginal by definition. If N is too small, then the estimates of
the processing speeds of the nodes, and hence of the “optimal” load distribution, are
unreliable. For example, the results in Figure 4.5 show that the optimal load distribu-
tion on the basis of DLB is roughly 12%, 18%, 54% and 16%, for processor 1 to 4,
respectively. However, if SLB were used with M ≤ 250 then the SLB weights would
be roughly 20%, 16%, 34% and 30%, respectively.

The next question is how the speedup based on DLB compared to ELB evolves
over time. To this end, Figure 4.7 shows the cumulative running time as a function
of the number of iterations for DLB and ELB, respectively, for the same experiment
as in Figure 4.5. Figure 4.7 shows that at the beginning of the run DLB is not faster
than the original implementation ELB. However, after about 120 iterations, the ELB
run tends to slow down significantly, whereas the DLB slows down only marginally.
This observation can be explained from Figure 4.5 as follows. During the first (say)
120 iterations, processors 1 and 2 were relatively fast compared to processors 3 and 4.
However, around iteration 120 for some unknown reason processors 1, 2 and 4 were
slowing down possibly caused by background load, whereas the processing speed of
processor 3 did not change significantly. Consequently, the DLB scheme dynamically
assigned additional rows to processor 3, while the static ELB scheme did not. In this
way, the DLB scheme was found to properly react to changes in the effective processor
speeds, and as such outperformed ELB significantly.
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4.5 Conclusions

We conclude the following from the results in this chapter. First, we showed that
SLB in a global-scale grid environment leads to speedups. We notice that the SLB
speedups are as high as possible when N = 500. For this case, on the one hand
enough measurements have been applied in determining the average job runtimes such
that accurate averages have been derived, and on the other hand, there are still enough
remaining iterations to apply the new load distribution to and gain in running time.
However, the results point out that there is still a significant difference between the
highest derived SLB speedup and the optimal SLB strategy. We expect that in an ever
changing global-scale processor environment, like the grid, the difference between the
speedups of SLB methods and their theoretical upper-bounds always remains due to
the unpredictableness of the fluctuations in the job runtimes.

Second, in this chapter trace-driven simulations show that DLB leads to higher
speedups than SLB, despite the fact that the load rescheduling phase increases the
overhead. We conclude that load balancing every N = 10 iterations leads to the highest
speedups in parallel programs of problem size t = 2.5 and performed on four widely
distributed processors. For this N , the precision of the load distribution is great enough
to lead to significantly high gains in running times that completely compensate the extra
overhead.

Third, we pointed out that a distributed program run with a CCR of 0.01 gains
fundamentally by DLB. This speedup grows when the number of processors increases
and when the nodes are more widely, or even globally distributed. The last aspect
increases the potential speedup because the job runtimes on the different deployed
nodes correlate less. Moreover, we illustrate that the gain in running times decreases,
as expected, when the CCR increases. Furthermore, it has been demonstrated that in
some cases there exists an optimal number of processors.

Fourth, we have investigated the impact of implementing DLB schemes on the run-
ning times of SOR in a grid environment. Extensive experimentation in the testbed en-
vironment PlanetLab have led to the following conclusions. (1) A significant speedup
factor of on average 1.8 can be consistently achieved by implementing DLB instead
of the default ELB scheme for a parallel program of size t = 2.5 and which runs on
4 processors. This results corresponds with the trace-driven simulation results. (2)
Using DLB based on predictions of the job runtimes provides an effective means to
react to changes in the performance of the resources used by a parallel application. (3)
The relation between the running times of DLB and of ELB and the problem size are
both approximately linear. Consequently, this observation indicates that when the CCR
gets lower than 0.01, the speedups grow, but is upper bounded. For example, in our
experimental setting the upper bound of the speedup equals 1.87.
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5

PERFORMANCE EVALUATION OF

JOB REPLICATION STRATEGIES

5.1 Introduction

In Chapter 4, the concept of Dynamic Load Balancing (DLB) has been presented.
Moreover, research has been done to get insight in the possibilities of DLB. As an
alternative of DLB we introduced in Chapter 1 the concept of job replication (JR) in
SPMD programs. A complete SPMD program run consists of a number of iterations
and within each iteration a number of jobs execute on the processors in parallel. In
a JR run all the jobs are replicated a number of times and all samples are distributed
over different processors. As soon as the first sample of a specific original job is fin-
ished all the other samples are killed. An advantage of JR is that the program is more
robust against sudden peaks in job runtimes. A disadvantage is that more jobs have
to be executed, which increases the total amount of work. In order to get knowledge
about the possibilities of JR and know for which grid environment properties it outper-
forms DLB, it is essential to get insight in the characteristics of the speedups, and the
sensitivity of the speedups if some factors change.

To this end, in this chapter∗ we first define a model in Section 5.2 to compute the
expected iteration times of SPMD programs that apply job replication (JR) on a set of
homogeneous processors. The following set of factors are used as input parameters in
the model: the number of processors, the number of replications, the average job run-
time, the standard deviation of the job runtimes, and a set of three different functions
or values that represent the sensitivity of different statistical properties if one of the
parameters are changed. Further, we show in Section 5.3, a number of approximations
that can easily be applied in the model computations. Moreover, evaluations of the
approximations show that those approximations are realistic. In addition, we introduce
in Section 5.4 six different sets of model assumptions ranging from less realistic and
mathematically simple, which provides insight in the general characteristics and sen-
sitivity of the JR speedups, to realistic and mathematically difficult, which provides a
very realistic representation of the real JR implementations. Subsequently, in Section

∗This chapter is based on papers [24], and [27].
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5.5 we compare the results of the models to the speedup results of trace-driven simu-
lations based on real grid testbed measurements. The results show that the model ac-
curately represents JR in real grid environments. Moreover, in Section 5.6 we perform
extensive trace-driven simulation experiments for many different settings on heteroge-
neous nodes. The results provide insight into the impact of decisions to be made in an
experimental setting (e.g., the number of processors, the number of replications) and
the impact of the computing environment properties (e.g., the fluctuations in the job
runtimes) on the JR speedup. Finally, we present the conclusions.

5.2 The model

In this section, we model SPMD program runs based on JR on a set of homogeneous
processors which are processor shared. The processors are homogeneous in the sense
that they have the same hardware properties (e.g., same processor speed, hard-disk ca-
pacity). The processors are shared, which means that many users use the processors at
the same time and they all get an equal part of the processors capacity. We present two
computations based on this model that effectively compute the iteration time of differ-
ent JR runs. The individual job runtimes on the P processors are used as input factors.
Moreover, approximations of the expected minimum, maximum, standard deviation of
the minimum, standard deviation of the maximum, and the sum of stochastic variables,
can easily be added to one of the computations. First, we explain the necessary defini-
tions of the model. Second, two representative examples will be explained. Finally, in
the present section the two sets of computations will be discussed.

Let R be the number of samples that exist of each job, P the number of processors
available for the parallel program, and M = P

R the number of different original jobs
that run at the same time. In this chapter, we mostly use input parameters R and P that
are powers of two. Denote r and p as the 2-logs of R and P , and therefore R = 2r and
P = 2p. By definition, within one iteration exactly P original jobs are executed, which
implies that the total number of jobs that is executed on all processors within each
iteration is R × P . We assume that M is an integer, and we call a group of computers
that always receive the same jobs during the execution of all the jobs a computer group.
As a consequence, the number of computer groups equals M . Hence, each processor
in a computer group executes during one iteration in total R different jobs. Processors
1, . . . , R form computer group 1, processors R + 1, . . . , 2R computer group 2, . . .,
and processors (P

R − 1)R + 1, . . . , P constitute computer group P
R . The number of

synchronization moments in a JR run is the same as for a non-JR run. Further, in order
to build a model of a JR iteration, we define

Definition 5.2.1: X := job-runtime distribution with expectation
�

X , and standard
deviation σ(X).

The
�

X , and the σ(X) depend on the problem size t, which is defined in Section 2.5.
Corresponding to Assumption 2.5.1, in the model the expectation of the job runtimes
grows linearly with the job size. In addition, in Section 3.8 we concluded that there
exist a linear relation between the expectation and the standard deviation of the job
runtimes. Therefore, we conclude that the σ(X) indirectly linearly depends on the
problem size. Furthermore, we define
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Definition 5.2.2: Xmno := the processing time of the oth replicate (o = 1, 2, . . . , R)
of the nth job (n = 1, 2, . . . , R) on the mth computer group (m = 1, 2, . . . , M ), with
Xmno ∼ X .

Definition 5.2.3: Vr,p(k) := the kth, k ∈ 0, . . . , 2rp − 1, iteration time of a program
run on P = 2p, p = 0, 1, . . . processors where each job is replicated R = 2r, r =
0, 1, . . . , p times.

Note that by definition the following holds:

Rit(t, 2
r, 2p) :=

�
(Vr,p(k)). (5.1)

The relation between the Xmno and the V0,0(k) is defined by the following two rules:

1) Xmno := V0,0(k), for k = 0, . . . , 2rp − 1, (5.2)

with m = b k
2r cmod(2p−r) + 1, n = b k

2p c + 1, and o = k mod(2r) + 1, and

2) V0,0(k) := Xmno, for m = 1, . . . , M, n = 1, . . . , 2r, o = 1, . . . , 2r. (5.3)

with k = 2r(m − 1) + 2p(n − 1) + o − 1.

For simplicity, we do not consider the send and synchronization times in the models
presented in this chapter because it is important to focus completely on the job run-
times. The send and synchronization times can be included in the model relatively
easy. In Section 5.6, those two types of times are included in the experiments.

Given the above definitions, Figure 5.1 illustrates an example of a run based on job
replication with two samples of each job (a ’2-JR’ run) which is a simplification of
Figure 1.3 as provided in Chapter 1, because the send and synchronization times are
assumed to be negligible. Below, we get into more detail about the illustrated setting.

Figure 5.1: Illustration of two times Job Replication on four nodes
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In addition, Figure 5.2 represents a 2-JR run with the assumption that all job run-
times of one single processor in one iteration are the same. For example, in this figure
the first job on processor 1, X111, and the second job, X121, have the same duration.

Figure 5.2: Illustration of two times Job Replication with extra assumption

As described above, Figures 5.1 and 5.2 both show the situation for an iteration of a
2-replication run on 4 processors for slightly different sets of assumptions. In addition,
the figures illustrate the variable names for these JR run examples. The figures can
be interpreted as follows. Each original job and its replications are distributed to 2
(R) processors and during one iteration each processor receives 2 (R) jobs. The first
processor that finishes the job sends a message to the other processor(s) which received
a copy (copies) of the same job to finish the execution of the current job and start
the next job in the sequence. Therefore, the time that the execution of a job and its
replications take equals the minimum of their job runtimes. The complete execution
time of one processor in one iteration equals the sum of the minimum job runtimes
of its computer group. Finally, the total iteration time corresponds to the maximum
of all individual processor times. In both figures X111 and X112 are replicates of the
same job. The same holds for the sets X211 and X212; X121 and X122; and X221 and
X222. For Figure 5.2 the following equations hold: X111 = X121, X112 = X122,
X211 = X221, and X212 = X222. Further in this section, we extend the two types of
models presented above for more processors and higher numbers of replications.

Given Definition 5.2.2 and the above considerations, we are able to derive the fol-
lowing straightforward equation of the iteration time for each possible R and P com-
bination for t > 0, R = 2r, r = 0, 1, . . . , p, P = 2p, p = 1, 2, . . .:

Rit(t, R, P )) =
�

max
m=1,...,M

R
∑

n=1

min
o=1,...,R

Xmno, (5.4)

with

Xmno ∼ X, for m = 1, . . . , M, n = 1, . . . , 2r, o = 1, . . . , 2r.

This implies in combination with (5.3) that for k = 0, . . . , 2rp−1:

V0,0(k) ∼ X. (5.5)
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An advantage of equation (5.4) is that it is a compact mathematical description of
the computation of an iteration time. A disadvantage is that it is hard to use (5.4) to
make approximations of Rit(t, R, P )). The computation for the iteration time for each
R, P -combination as shown in (5.4), can be rewritten in recursive equations in terms of
Vi,j(k) (see Definition 5.2.3) in the following way for i = 0, 1, . . . , r, r = 0, 1, . . . , p,
j = 0, 1, . . . , p, p = 0, 1, . . ., and k = 0, . . . , 2rp−1:

Vi,j(k) =























































max{Vi,j−1(2k), Vi,j−1(2k + 1)}, if i < j,

min{Vi−1,j−1(2k), Vi−1,j−1(2k + 1)}, if i = j, i 6= r,

2r−1
∑

m=0

min

{

Vi−1,j−1(k2r+1 + 2m)
Vi−1,j−1(k2r+1 + 2m + 1)

}

, if i = j = r,

0, if i > j.

(5.6)

A disadvantage of (5.6) is that this mathematical description of the iteration-time com-
putation is more complex and harder to understand. This equation has the advantage
that it is easy to incorporate approximations in this equation, which is described in the
next section. Because of this advantage, we often use this equation in the remainder of
this chapter. Note that we officially need to add the r-parameter in the Vi,j(k), because
it slightly depends on r (the values for Vi,j(k) differ for the cases that i = j = r and
i = j 6= r). However, in order to make the notation not too complex we omit the r
parameter.

5.3 Model approximations

In this section, we first introduce approximations which provide a strong basis for
the investigations to the speedup characteristics of the next section. Furthermore, we
motivate them and investigate the reasonableness of those approximations. Finally, we
derive two other approximations from the already introduced ones.

5.3.1 Approximations

Below, we provide an overview of all the assumptions and approximations that have
been made. We introduce and motivate the following Assumptions 5.3.1, 5.3.2, and
Approximations 5.3.3-5.3.5. The first assumption that has been made is

Assumption 5.3.1: Vi,j(k), Vi,j(l) are identically distributed, for i = 0, 1, . . . , r, r =
0, 1, . . . , p, j = 0, . . . , p, p = 0, 1, . . ., i ≤ j and k, l ∈ 0, . . . , 2rp − 1,
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The following assumptions 5.3.2–5.3.4 have been made for i = 0, 1, . . . , r,
r = 0, 1, . . . , p, j = 0, . . . , p, p = 0, 1, . . ., i ≤ j and k, l ∈ 0, . . . , 2rp − 1, where
b k

2r cmod(2p−r) 6= b l
2r cmod(2p−r), or kmod(2r) + 1 6= l mod(2r). Those two in-

equalities correspond according to (5.3) to the situation where the values for m or o of
two different Xmno’s are different which means that the job runtimes are measured on
two different processors.

Assumption 5.3.2: Vi,j(k), Vi,j(l) are i.i.d.

Approximation 5.3.3:
�

max{Vi,j(k), Vi,j(l)} ≈ �
Vi,j(k) + ασ(Vi,j(k)), with 0 <

α < 1 and given that σ(Vi,j(k)) ≤ �
(Vi,j(k)).

Approximation 5.3.4: σ(max{Vi,j(k), Vi,j(l)}) ≈ β(i, j +1)σ(Vi,j(k)), for β(i, j +
1) ≥ 0.

Finally, we approximate the standard deviation of a sum of Vi,j(k)s, for i = 0, 1, . . . , r,
r = 0, 1, . . . , p, j = 0, . . . , p, p = 0, 1, . . ., and i ≤ j by the approximation below.
This approximation holds for Vi,j(k)s measured on the same or on different nodes.

σ

(

2r−1
∑

k=0

Vi,j(k)

)

≈ 2rγσ(Vi,j (0)), with
1

2
< γ < 1. (5.7)

The dependency among the Vi,j(k)s is taken into account in the above assumption by
the γ: the higher the γ the more dependency. Because of Assumption 5.3.2, γ = 1

2 if
those are measured on different nodes. In our setting we observe dependency among
the job runtimes because they are measured on the same processor. We derive the
following for i = 0, 1, . . . , r, r = 0, 1, . . . , p, j = 0, . . . , p, p = 0, 1, . . ., i ≤ j,
k = 0, . . . , 2rp − 1, and 1

2 < γ < 1 if (5.7) is translated to the setting of this chapter:

Approximation 5.3.5: σ
(

∑2r−1
l=0 Vi,j(k + l ∗ 2p)

)

≈Rγσ(Vi,j (k)) = 2rγσ(Vi,j(k)).

Motivation:
First, Assumption 5.3.1 indicates that all measured job runtimes are identically dis-
tributed. The fact that all processors are homogeneous and approximately receive the
same load indicates that this assumption is reasonable. Next, we assume in Assumption
5.3.2 that the running times of the jobs in the same iteration step on different processors
are independent and identically distributed. In our setting all processors are homoge-
neous and the expectations of the amount of load on the different processors are the
same, which illustrates that this assumption is reasonable. In addition, Approximation
5.3.3 uses the property that the maximum of two i.i.d. variables strongly depends on the
expectation and the standard deviation of those variables. The value of α value strongly
depends on the shape of the job-runtimes distribution. For the case that the variables
are exponentially distributed, the α value equals exactly 0.5. The α-value theoretically
depends on the r, p, and γ values. However, investigations further in this chapter show
that α loosely depends on these values. The results of a few experiments show that this
approximation looses its accuracy if the σ(Vi,j(k)) >

�
(Vi,j(k)) and therefore use this



5.3 Model approximations 65

approximation only if σ(Vi,j (k)) ≤ �
(Vi,j(k)). Moreover, Approximation 5.3.4 im-

plies that the standard deviation of the maximum of two i.i.d. variables approximately
equals the standard deviation of one of those variables multiplied by a factor β(i, j).
For example, for the case that the variables are exponentially distributed, the β(i, j)
value equals 1

2

√
5 independent of the i, j, r and p. From combining (5.6) and Approx-

imation 5.3.4 follows that β(i, j) = 0 for i ≥ j, and moreover that β(i, j) = β(r, p)
if i = r and j = p. Investigations further in this section show that the β(r, p) values
depend on the r, and p for the data collected in Chapter 2. Approximation 5.3.5 shows
that the standard deviation of the sum of a sequence of job runtimes on the same proces-
sor equals the standard deviation of one individually measured job runtime multiplied
with the number of job runtimes in the sum to the power a γ value. In our model we
use this approximation to approximate the standard deviation of a sum of job runtimes
that are measured on the same processor. The height of the γ value strongly depends
on the correlation coefficient between successive job runtimes on the same processor.
Theoretically, the γ value ranges from −∞ (complete negative correlation), via 1

2 (no
correlation) to ∞ (complete positive correlation). In practice, 1

2 is the lower bound,
and 1 is the upper bound of the γ value. In general, the γ value depends on the R.
Investigations into the γ values for different sums of job-runtime measurements show
that these value do not show significant correlation with the R. Therefore, we assume
that the γ is constant.

5.3.2 Evaluation of approximations

In the previous section, we have defined several approximations. In this section, we in-
vestigate how realistic those approximations are. We know that Approximations 5.3.3–
5.3.5 are exact for identical independent exponentially distributed measurements and
that the parameters for this case are: α = 1

2 , β(i, j) = 1
2

√
5 for i = 0, 1, . . . , r,

r = 0, 1, . . . , p, j = 0, 1, . . . , p, p = 0, 1, . . ., i ≤ j, and γ = 1
2 independent of the i, j,

r and p. We performed experiments with the normal distribution and the results show
that the approximations are close to exact. Furthermore, we tested the approximations
with the 130 real Planetlab datasets which are described in Chapter 2. The analyses are
described below.

In the final section of this chapter, we will compare the model results with trace-
driven simulations of JR-runs that consist of I = 2000 iterations. For that reason we
analyze the properties of the averages of 2000 α, β(r, p), and γ values. In total we
derive 1000 average α values which provides a strong basis for the evaluation. To this
end, in order to derive one average value, we randomly select 1000 times two datasets
from the 130 datasets. With each selection of two datasets we derive 2000 single α
values according to Approximation 5.3.3 and compute their average. Figure 5.3 depicts
1000 average α values. Moreover, we performed the same type of experiments in order
to derive a set of 1000 average β(0, 1) values: we derive the β(0, 1) values according
to Approximation 5.3.4 by dividing the standard deviation of the maximum of two jobs
by the standard deviation of one of the jobs. The results are shown in Figure 5.4.
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Figure 5.3 illustrates that the α value of a run equals on average 0.51 with a stan-
dard deviation of 0.05. We observe that the α values all fluctuate around that value
and therefore this result endorses the assumption of one fixed α parameter, which is
assumed in Approximation 5.3.3. However, more research needs to be done in order to
validate this approximation, which is described below.

Figure 5.3: Histogram of measured α values

Figure 5.4 illustrates that the β(0, 1) value of a run equals on average 1.05 with a
standard deviation of 0.10. Again these results endorse a fixed β(0, 1) parameter for
the JR situation with p = 1 and r = 0, as is assumed in Approximation 5.3.4.

Figure 5.4: Histogram of measured β(0, 1) values
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We repeat the above analyses for each r = 0, 1, . . . , 6 and p = 1, . . . , 7 com-
bination that exists in the model for the parameters α, β(r, p), and for γ for each
r = 0, . . . , 6. In order to derive the α and β(r, p) values, we assume that γ = 1.0.
Tables 5.1, 5.2, and 5.3 depict the fitted values of those parameters for α, β(r, p), and
γ respectively. Each value in the tables represents an average of 1000 averages that are
all derived from two pairs of datasets consisting of 2000 iterations. Additionally, we
derived the α and β(r, p) values given that γ = 0.81. We do not represent the results of
the tables of α, and β(r, p) with γ = 0.81 because these were not significantly different
from the above tables.

r\p 1 2 3 4 5 6 7
0 0.51 0.51 0.49 0.45 0.42 0.38 0.35
1 0.54 0.55 0.54 0.55 0.55 0.54
2 0.53 0.54 0.53 0.52 0.53
3 0.52 0.50 0.49 0.49
4 0.50 0.47 0.42
5 0.46 0.47
6 0.43

Table 5.1: Values of α for r = 0, . . . , 6, p = 1, . . . , 7, and γ = 1.0

r\p 1 2 3 4 5 6 7
0 1.05 1.07 1.10 1.14 1.22 1.26 1.26
1 0.95 1.01 0.99 0.97 0.96 0.96
2 0.80 0.94 0.99 1.00 1.00
3 0.71 0.82 0.89 0.95
4 0.67 0.83 0.84
5 0.62 0.86
6 0.53

Table 5.2: Values of β(r, p) for r = 0, . . . , 6, p = 1, . . . , 7, and γ = 1.0

r 1 2 3 4 5 6
γ 0.20 0.17 0.18 0.15 0.18 0.21

Table 5.3: Values of γ for r = 1, . . . , 6

We observe from Table 5.1 that the difference between the α values for different
r and p values is minor and it seems that the r and the p do not have a huge impact
on the α parameter. As can be seen in Table 5.3, the same holds for the γ values.
On the contrary, the difference between the β values for different r and p values is
noticeable. The above observations show that it is necessary to investigate the potential
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relations in more detail. To this end, we perform investigations to those relations in the
next three sections. We first investigate the impact of r and p on the α, β(r, p), and
γ. Subsequently, we analyze the impact of γ on the α, and β(r, p). Finally, we fit α,
β(r, p), and γ into functions or fixed values.

Impact of r and p on the α, β(r, p), and γ

In this section, we first investigate the correlation between the r and p and the α, β,
and γ. Second, we perform analyzes on the impact of the significant correlation coef-
ficients. To perform detailed analyses on the question whether the different parameters
can be estimated by a fixed value or by a function, we perform investigations to the
correlation-coefficients, as defined in Section 2.5. Table 5.4 shows the expected corre-
lation coefficients between the parameters α, β(r, p), γ, and r, p which quantifies their
linear relations. For example, to compute the expected correlation coefficient between
the α parameter and the r, we first fix the value of p, derive the correlation coefficient,
and repeat these steps for all possible p values. Finally, we compute the weighted av-
erage of those correlation coefficients where the weights equal the number of possible
r values for this p.

Correlation r p

α -0.31 -0.70
β(r, p) -0.94 0.65

γ 0.13

Table 5.4: Correlation between α, β(r, p), γ and r, p

The results of the parameters correlation investigations illustrate that there is no
significant dependency between α and r, and between γ and r. However, the following
pairs of variables are negatively correlated: the α and the p, and the β(r, p) and the r.
The β(r, p) and the p are positively correlated. These results show that the parameters
that have high correlation with r and p can be described as linear functions of those
parameters. The above result for the β(r, p) values corresponds with earlier observa-
tions, however, we did not expect a high correlation coefficient between the α and the
p. This heightens the need for further research on the actual impact of the p on the
α. Therefore, we compute the derivative of the α to the p. To compute this, we first
compute the average value of α for each value of p. Next, we derive the least-squares
trendline of the α against the averaged ps. Finally, the derivative of the α to the p is the
derivative of the trendline. For completeness, in addition we compute the derivative to
r. Both derivatives are shown in Table 5.5.
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Derivative Value
δ(α)
δ(r) -0.008
δ(α)
δ(p) -0.009

Table 5.5: Derivative of α against r, and p

We conclude from Table 5.5 and the above investigations to the α characteristics
that p indeed shows a significant correlation with α, but that the impact of this param-
eter is relatively low (-0.009). Consequently, we do not take the r and p parameters
into account in the α approximation equations. The observation that the α and γ pa-
rameters almost remain the same if the number of minima, maxima, or sums, which is
represented by the i and j in Vi,j(k) and the choice of the γ, changes is rather surpris-
ing.

Impact of γ on the α, and β(r, p)

In this section, we first perform t-tests to investigate the impact of the γ value on the
α and the β(r, p) parameters and second the impact of the relations with significant
correlations. We first generated a sequence of α-value pairs which are generated from
Approximation 5.3.3. Each two α values that constitute a pair are generated with the
same values for r = 0, . . . , 6, and p = 1, . . . , 7, and with two different γ values: within
each pair the first value is generated with γ = 0.81, and the second with γ = 1.00. The
null hypothesis is defined as follows: the α values with corresponding r and p values
are independent on the γ values. The t-test uses a double tail distribution and we reject
the null hypothesis if the p-value is lower than 0.025 or higher than 0.975. The p-value
of the t-test is 0.017, which means that we reject the null hypothesis. This means that
the α parameter depends on the γ parameter. We perform the same test for the β(r, p)
value. The p-value for the β(r, p)-parameter is 0.80 which means that we do not reject
the null hypothesis. Therefore, we assume that the γ does not have a significant impact
on the β(r, p). The above observations heighten the need for further investigations on
the actual impact of the relation between the γ value and the α parameter.

In order to investigate the possible relation between the γ and the α we compute
the fraction between the α values generated with γ = 0.81 and γ = 1.00. The 95%-
reliability interval of this proportion is [−1.29, 0.78] with an expectation of -0.25. We
conclude that the γ indeed has a influence on the α characteristics, but that we are not
able to catch this impact in a simple formula due to the significant fluctuations of the
impact which is indicated by the reliability interval. For this reason, we further assume
that α is independent of the γ.

Fits of α, β(r, p), and γ

As shown above, the α and the γ can be fitted by fixed values. Because of the high
correlation coefficients between the β(r, p) and the r and the p, we expect that the
function (a1 + b1r)(a2 + b2p), where a1, b1, a2, and b2 ∈ � have to be fitted, delivers
a reliable fit of β(r, p). Table 5.6 describes the best function or fixed value fits of the
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three parameters, based on all the above investigations and observations. Moreover,
the mean absolute error (MAE) and the square root of the mean squared error (RMSE)
between the value and the parameter values derived from the data are shown.

Parameter Fitted value or function Mean absolute error RMSE
α 0.50 0.06 0.06

β(i, j), i < j (-0.14 i + 1.54)(0.02 j + 0.63) 0.04 0.07
γ 0.81 0.02 0.02

Table 5.6: Properties of α, β(r, p), and γ

The low values for the MAE and the RMSE of the fitted values or functions in Table
5.6 indicate the high accuracy of the fits. Therefore, we conclude that the approxima-
tions of the parameters by the values or functions which are provided by the table are
valid.

5.3.3 Implications of the assumptions and approximations

We introduced approximations for the expectation and the standard deviation of the
maximum of two independent job runtimes. In this section, we derive formulas for
approximations of the expectation and the standard deviation of the minimum of two
independent job runtimes, given these previously introduced assumptions and approx-
imations. First, we derive an approximation for the expectation of the minimum.

Approximation 5.3.6: If Vi,j(k), and Vi,j(l) are i.i.d.,
�

max{Vi,j(k), Vi,j(l)} ≈�
Vi,j(k) + ασ(Vi,j (k)), and σ(Vi,j(k)) ≤ �

(Vi,j(k)) for i = 0, 1, . . . , r, r =
0, 1, . . . , p, j = 0, 1, . . . , p, p = 0, 1, . . ., i ≤ j, k, l = 0, . . . , 2rp − 1, and 0 < α < 1,
then,

�
min{Vi,j(k), Vi,j(l)} ≈ �

Vi,j(k) − ασ(Vi,j (k)).

Motivation:
The following equations hold for i = 0, 1, . . . , r, r = 0, 1, . . . , p, j = 0, 1, . . . , p,
p = 0, 1, . . ., i ≤ j, k, l = 0, . . . , 2rp − 1, and 0 < α < 1:

�
min{Vi,j(k), Vi,j(l)} =

�
min{Vi,j(k), Vi,j(l)} +

�
max{Vi,j(k), Vi,j(l)}

− �
max{Vi,j(k), Vi,j(l)}

=
�

Vi,j(k) +
�

Vi,j(l) −
�

max{Vi,j(k), Vi,j(l)}
≈ �

Vi,j(k) +
�

Vi,j(l) − (
�

Vi,j(k) + ασ(Vi,j (k)))

=
�

Vi,j(k) − ασ(Vi,j (k)). (5.8)

The first step is trivial, the second uses the property that the sum of two variables
trivially equals the sum of the minimum and the maximum of the those variables, the
third uses Assumption 5.3.3, and the last step erases the variables that cancel each other
out.
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Second, we derive an approximation of the standard deviation of the minimum of two
variables.

Approximation 5.3.7: If Vi,j(k), and Vi,j(l) are i.i.d.,
�

max{Vi,j(k), Vi,j(l)} ≈�
Vi,j(k) + ασ(Vi,j (k)), and σ(max{Vi,j(k), Vi,j(l)}) ≈ β(i, j + 1)σVi,j(k), for i =

0, 1, . . . , r, r = 0, 1, . . . , p, j = 0, 1, . . . , p, p = 0, 1, . . ., i ≤ j, k, l = 0, . . . , 2rp − 1,
0 < α < 1, and β(i, j + 1) > 0, then,

σ2(min{Vi,j(k), Vi,j(l)}) = (2 − 2α2 − β(i, j + 1)2)σ2(Vi,j(k)).

Motivation:
All the equations below hold for i = 0, 1, . . . , r, r = 0, 1, . . . , p, j = 0, 1, . . . , p,
p = 0, 1, . . ., i ≤ j, k, l = 0, . . . , 2rp − 1, 0 < α < 1, and β(i, j + 1) > 0.
The correlation coefficient, rmin,max, between the minimum and the maximum of the
two variables Vi,j(k), and Vi,j(l) can be derived by substituting min{Vi,j(k), Vi,j(l)}
(abbreviated by min), and max{Vi,j(k), Vi,j(l)} (abbreviated by max) in the general
definition of the correlation coefficient, Definition 2.5.10:

rmin,max :=

�
(min max) − �

(min)
�

(max)

σ(min)σ(max)
. (5.9)

Consequently, by substituting

�
(min{Vi,j(k), Vi,j(l)}max{Vi,j(k), Vi,j(l)}) =

�
(Vi,j(k)Vi,j(l)) = (

�
(Vi,j(k)))2

(5.10)
in (5.9), we derive

rmin,max :=
(

�
Vi,j(k))2 − �

min{Vi,j(k), Vi,j(l)}
�

max{Vi,j(k), Vi,j(l)}
σ(min{Vi,j(k), Vi,j(l)})σ(max{Vi,j(k), Vi,j(l)})

. (5.11)

Furthermore, we derive the following for 2σ2(Vi,j(k)):

2σ2(Vi,j(k)) = σ2(Vi,j(k) + Vi,j(l))

= σ2(min{Vi,j(k), Vi,j(l)} + max{Vi,j(k), Vi,j(l)}). (5.12)

Moreover, by substituting the following variables min{Vi,j(k), Vi,j(l)} and
max{Vi,j(k), Vi,j(l)} in the equation of the variance of the sum of two independent
stochastic variables, Property 2.5.11, we derive:

σ2(min{Vi,j(k), Vi,j(l)} + max{Vi,j(k), Vi,j(l)})
= σ2(min{Vi,j(k), Vi,j(l)}) + σ2(max{Vi,j(k), Vi,j(l)})

+ 2rmin,maxσ(min{Vi,j(k), Vi,j(l)})σ(max{Vi,j(k), Vi,j(l)}). (5.13)

Equations (5.12) and (5.13) can be rewritten in the following equation:

σ2(min{Vi,j(k), Vi,j(l)})
= 2σ2(Vi,j(k)) − σ2(max{Vi,j(k), Vi,j(l)})

− 2rmin,maxσ(min{Vi,j(k), Vi,j(l)})σ(max{Vi,j(k), Vi,j(l)}). (5.14)



72 Chapter 5 Performance evaluation of Job Replication strategies

Consequently, we derive the following equation for σ2(min{Vi,j(k), Vi,j(l)}) by sub-
stituting (5.11), (5.3.4), and (5.3.3) in (5.14) and solving the equation:

σ2(min{Vi,j(k), Vi,j(l)}) = 2(1 − α2 − β(i, j + 1)2)σ2(Vi,j(k)). (5.15)

Which corresponds to:

σ(min{Vi,j(k), Vi,j(l)}) =
√

2 − 2α2 − β(i, j + 1)2σ(Vi,j(k)). (5.16)

Note that in our model β(i, j) with i < j represent the β(i, j) parameters that belong to
the equation that approximates the standard deviation of the maximum. From combin-
ing (5.6) and Approximation 5.3.4 follows that β(i, j) = 0 for i ≥ j. Furthermore, for
the equation that computes the minimum of the standard deviation, we only need the
β(i, j) with i = j which can be derived from the β(i − 1, j) values by Approximation
5.3.7. Therefore, to prevent that the model has too many parameters we define

Definition 5.3.8: β(i, i) :=
√

2 − 2α2 − β(i − 1, i)2, for i = 0, 1, . . . , r,
r = 0, 1, . . . , p, p = 0, 1, . . ., 0 < α < 1, and 0 ≤ β(i − 1, i) ≤ 2 − 2α2.

Hence, we derive from (5.16) and Definition 5.3.8 the following equation for the stan-
dard deviation of the minimum which is used in the remainder of the present chapter,
for i = 0, . . . , r, and 0 ≤ β(i − 1, i) ≤ 2 − 2α2:

σ(min{Vi,i(k), Vi,i(l)}) = β(i + 1, i + 1)σ(Vi,i(k)). (5.17)

5.4 Theoretical analysis of speedups

In this section, we derive formulas for the speedups of replicating on homogeneous
nodes by analyzing six different theoretical models, ranging from less realistic and
mathematically simple to realistic and mathematically difficult. Table 5.7 provides an
overview of the choices of the different parameters in the different models. Denote
a1, b1, a2, b2 ∈ � .

Model Values
α β(i, j), ∀i, j : i < j β(i, j), ∀i, j : i = j γ

1.1 1
2 1 1

2 1

1.2 ∈ (0, 1) β1, β1 ∈ [0,
√

2 − 2α2] β2, β2 =
√

2 − 2α2 − β1
2 1

1.3a ∈ (0, 1) (a1 + b1i)(a2 + b2j)
√

2 − 2α2 − β(i − 1, j)2 1

1.3b ∈ (0, 1) ∈ [0,
√

2 − 2α2]
√

2 − 2α2 − β(i − 1, j)2 1
2.1 1

2 1 1
2

1
2

2.2 ∈ (0, 1) β1, β1 ∈ [0,
√

2 − 2α2] β2, β2 =
√

2 − 2α2 − β1
2 ∈ [ 12 , 1]

2.3a ∈ (0, 1) (a1 + b1i)(a2 + b2j)
√

2 − 2α2 − β(i − 1, j)2 ∈ [ 12 , 1]

2.3b ∈ (0, 1) ∈ [0,
√

2 − 2α2]
√

2 − 2α2 − β(i − 1, j)2 ∈ [ 12 , 1]

Table 5.7: Values of α, β(r, p), and γ for the six models
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As can be seen in this table, models 1.1 and 2.1 assume for the ease of compu-
tations that the α equals 1

2 , which corresponds to the result in Table 5.6, the β(i, j)
for i < j equals 1 which means that the formula that approximates the standard de-
viation of the maximum equals to σ(max{Vi,j(k), Vi,j(l)}) ≈ σVi,j(k), and β(i, j)
for i = j equals 1

2 which means that the formula that computes the standard devi-
ation of the minimum equals to σ(min{Vi,j(k), Vi,j(l)}) ≈ 1

2σVi,j(k). As can be
seen in Approximation 5.3.7, this last approximation is not completely correct because
√

2 − 1
2 − 1

2

2
= 1

2

√
5 6= 1, but nevertheless the values are still reasonable. Advan-

tages of applying these values are the simplicity in the computations and the insight
that can be gained by the simplicity of the resulting formulas. Models 1.1 and 2.1 are
closely related to models for JR run-times with exponentially distributed job runtimes.
Differences between those types of models are that (1) β(i, j) = 1, i < j for models
1.1 and 1.2, and β(i, j) = 1

2

√
5, i < j for a model with exponential job runtimes, and

(2) the cX in models 1.1 and 1.2 can take every value above 0, and for exponential
distributed stochastics it is known that cX = 1. This close relation is illustrated further
in this section. Models 1.2 and 2.2 use a fixed α that can take values between 0 and
1. Because of the reason that the value of α depends on the shape of the underlying
job-runtime distribution, relaxation of the constraint that α must equal 1

2 (in models
1.2 and 2.2 it can adopt to each value between 0 and 1) leads to a more realistic model.
In addition, those models assume that all β(i, j) equal a fixed value in [0,

√
2 − 2α2]

which can be adapted to the shape of the job-runtime distribution, instead of the before-
hand chosen fixed values 1 and 1/2 that have been chosen for the ease of computation.
Moreover, models 1.3a, 1.3b, 2.3a and 2.3b are even more realistic, because the β(i, j)
value is considered as a function of i, and j (i.e., r and p). This realistic dependency
is an additional feature of these models. Models 1.3a and 2.3a assume that the β(i, j)s
depend on i and j according to the given function, which is already presented in Table
5.6. In models 1.3b and 2.3b every β(i, j) can take every value in [0,

√
2 − 2α2]. Fi-

nally, models 1.1-1.3 differ from 2.1-2.3 in the assumption of the γ parameter. In the
first set of models, the γ parameter is assumed to be 1, and in the second set as a param-
eter that can be fixed on every value between 1/2 and 1 depending on the correlation
between successive job runtimes. In Section 5.2 two examples have been illustrated by
Figures 5.1 and 5.2 to explain the difference between those sets of models.

In the paragraphs below, we derive with the above described model the speedups
for JR runs with different numbers of processors and different numbers of replications,
given Assumptions 5.3.1 - 5.3.2, Approximations 5.3.3 - 5.3.5 and the assumed values
shown in Table 5.7. For all of the models we analyze the following cases: (1) the
iteration time of a 1-JR run, which equals an ELB iteration time, (2) the iteration time
of a JR-run with R (1 < R < P ) replications, (3) the iteration time of a P-JR-run
which implies that each processor receives a replication of each job and each iteration
consists of P iteration steps, (4) the speedup formula for R-JR runs, (5) the speedups
of P-JR runs, (6) if possible to derive, the optimal number of replications, R∗, and (7)
if possible to derive, the speedup formula for R∗-JR runs. For models 1.1 and 2.1 we
moreover show the derivation of the estimation formula for the iteration times and the
speedups for the JR runs on 2 and 4 processors. Those formulas for the other models
are derived in the same way.
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5.4.1 Model 1.1

In this section, we derive formulas for the iteration times of replicating R = 1, 2 times
on 2 processors, R = 1, 2, 4 times on 4 processors, and R = 2r, r = 0, 1, . . . , p times
on P = 2p, p = 0, 1, . . . processors on the basis of model 1.1, which is described in
Table 5.7. In addition, we obtain formulas for the speedup with input parameters R,
P , and cX . Those parameters together represent the key properties of the experimental
setting. Furthermore, we deduce the optimal number of replications as a function of P
and cX , and moreover, the corresponding speedup. We analyze the resulting formulas
on the basis of graphical representations. We notice that all equations in this model
hold for problem size t > 0, which is described in Section 2.5 and for σ(X) ≤ �

(X)
(i.e., 0 ≤ cX ≤ 1) according to the domain of the approximations, defined in Section
5.3.

Replicating on two processors

Given that there are two homogeneous processors in the resource set, we derive the
following iteration time if no replication has been applied:

Rit(t, 1, 2) = Rit(t, 2
0, 21) =

�
(V0,1(0)) =

�
max{V0,0(0), V0,0(1)}

≈ �
(V0,0(0)) +

1

2
σ(V0,0(0)) =

�
(X) +

1

2
σ(X). (5.18)

The first step is trivial, the second is according to (5.1), the third uses (5.6) and the re-
sulting formula equals

�
max{X111, X211} according to the Xmno notation, the fourth

applies Approximation 5.3.3, and the fifth uses (5.5).
For the 2 replicating setting we derive the following expected iteration time:

Rit(t, 2, 2) = Rit(t, 2
1, 21) =

�
(V1,1(0))

=
� ∑

m=0,1

min{V0,0(2m), V0,0(2m + 1)}

≈ 2
�

(V0,0(0)) − 2 × 1

2
σ(V0,0(0))

= 2
�

(X)− 2× 1

2
σ(X) = 2

�
(X) − σ(X). (5.19)

The first step is trivial, the second is according to (5.1), the third applies (5.6) and the
result equals

� ∑
m=1,2 min{Xm11, Xm12}) in the notation of the Xmno, the fourth

uses Approximation 5.3.6, the fifth applies (5.5), and the sixth is trivial.
For a resource set with two processors speedup can be obtained by replicating if:

Speedup R(t, 2, 2) > 1 ⇔ E(t, 2) > Rit(t, 2, 2)

⇔ V0,1(0) > V1,1(0)

⇔ �
max{V0,0(0), V0,0(1)} > 2

�
min{V0,0(0), V0,0(1)}

∼ σ(X)�
(X)

=
2

3
< cX ≤ 1. (5.20)
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The first step is according to the definition of the speedup in Section 2.5, the second
uses (5.1), the third is according to 5.6, and the fourth makes use of Approximations
5.3.3 and 5.3.6 and Definition 2.5.9 of the coefficient of variation of X , cX .
Consequently, the optimal number of replications can be estimated as follows:

R∗ ≈
{

1, if 0 ≤ cX ≤ 2
3 ,

2, if 2
3 < cX ≤ 1.

(5.21)

According to model 1.1, which is described in Section 5.2, we derive that the speedup
of a two-replication run on two processors equals

Speedup R(t, 2, 2) = Speedup R(t, 21, 21) =
V0,1(0)

V1,1(0)

=

�
max{V0,0(0), V0,0(1)}

2
�

min{V0,0(0), V0,0(1)} ≈
�

(X) + 1
2σ(X)

2(
�

(X) − 1
2 )

=
2 + cX

4 − 2cX
. (5.22)

The first step is trivial, the second is according to the speedup definition in Section 2.5
and additionally to (5.1), the third applies (5.6) for the numerator and the denominator,
the fourth uses Approximations 5.3.3 and 5.3.6 and moreover property (5.5), and the
final step makes use of definition (2.5.9) of the correlation coefficient.

Replicating on four processors

In this section we derive approximations of the speedups gained by replicating on four
processors. First, we derive the estimation of the iteration time for the non-replication
case:

Rit(t, 1, 4) = Rit(t, 2
0, 22) =

�
(V0,2(0)) =

�
max{V0,1(0), V0,1(1)}

≈ �
(V0,1(0)) +

1

2
σ(V0,1(0))

=
�

max{V0,0(0), V0,0(1)} +
1

2
σ(max{V0,0(0), V0,0(1)})

≈ �
(V0,0(0)) +

1

2
σ(V0,0(0)) +

1

2
σ(V0,0(0)) =

�
(X) + σ(X). (5.23)

The first step is trivial, the second is according to (5.1), the third uses (5.6), the
fourth uses Approximation 5.3.3, the fifth applies (5.6) and derived formula equals�

max{X111, X211} + 1
2σ(max{X111, X211}) in the notation of the Xmno, the sixth

uses Approximation 5.3.3 again, and the last is according to (5.5).
The expected iteration time of a 2-replication run on 4 processors is

Rit(t, 2, 4) = Rit(t, 2
1, 22) =

�
(V1,2(0)) =

�
max{V1,1(0), V1,1(1)}

≈ �
(V1,1(0)) +

1

2
σ(V1,1(0))

≈ 2
�

(X) − σ(X) +
1

2
σ

(

∑

m=0,1

min{V0,0(2m), V0,0(2m + 1)}
)

≈ 2
�

(X) − σ(X) +
1

2
× 2 × 1

2
σ(V0,0(0)) = 2

�
(X) − 1

2
σ(X). (5.24)
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The first step is trivial, the second applies (5.1), the third uses (5.6), the fourth uses
Approximation 5.3.3, the fifth applies for the left side (5.19), which approximates�

(Vi,j(0)) for i = j = r = 1, and for the right side (5.6), the sixth uses Approxi-
mations 5.3.5 and 5.3.7, and the last step is according to (5.5) and applies some trivial
computations.
Next, we derive the approximation for the iteration time of a 4-JR run:

Rit(t, 4, 4) = Rit(t, 2
2, 22) =

�
(V2,2(0))

=
� 3
∑

m=0

min{V1,1(2m), V1,1(2m + 1)} ≈ �
4(V1,1(0)) − 4 × 1

2
σ(V1,1(0))

=
�

4 min{V0,0(0), V0,0(1)} − 2σ(min{V0,0(0), V0,0(1)})

≈ 4
�

(V0,0(0)) − 4 × 1

2
σ(V0,0(0)) − 2 × 1

2
σ(V0,0(0))

= 4
�

(X)− 3σ(X). (5.25)

The first step is trivial, the second applies (5.1), the third uses (5.6), the fourth uses
Approximation 5.3.6, the fifth applies (5.6), the sixth uses Approximations 5.3.6 and
5.3.7, and the last step is according to (5.5) and some trivial computations. Note that
we can not use (5.19) in the fifth step, due to the fact that for this equation i = j = 1 6=
r = 2.

In the remainder of this section, we do not present the details of the computations.
The computations follow mainly the same steps as the computations above. Given the
iteration times above, we obtain that replicating 2 times leads to a speedup compared
to ELB if:

2

3
< cX ≤ 1. (5.26)

The speedup of a 2-JR run on 4 processors compared to ELB equals

Speedup R(t, 2, 4) = Speedup R(t, 21, 22) =
1 + cX

2 − 1
2cX

. (5.27)

Replicating 4 times leads to speedup compared to the 2-replication run if:

4

5
< cX ≤ 1. (5.28)

The speedup for replicating 4 times on 4 processors is

Speedup R(t, 4, 4) = Speedup R(t, 22, 22) =
Rit(t, 2

0, 22)

Rit(t, 22, 22)
=

1 + cX

4 − 3cX
. (5.29)

As a result, we advice the following numbers of replications for given cX , 0 ≤ cX ≤ 1:

R∗ ≈







1, if 0 ≤ cX ≤ 2
3 ,

2, if 2
3 < cX ≤ 4

5 ,
4, if 4

5 < cX ≤ 1.
(5.30)
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Replicating R = 2r times on P = 2p processors

In this section, we derive formulas for estimations of the iteration times and speedups
of replicating R = 2r, r = 0, 1, . . . , p, times on P = 2p, p = 0, 1, . . ., processors and
fixed values of parameters α, β(i, j) and γ, which are specified in Table 5.7. In order to
obtain those formulas for general R and P we extend the computations for the settings
with 2 and 4 processors. The descriptions of the computations in this section contain
fewer details than the explanations about the computations in the sections above. We
use the same assumptions and approximations from Section 5.3 and follow the same
type of steps as in the previous computations.

The following approximation for the ELB iteration time has been derived for P =
2p, p = 0, 1, . . .:

Rit(t, 1, P ) = Rit(t, 2
0, 2p) ≈ �

(X) +
1

2
pσ(X). (5.31)

In the notation of the Xmno, Rit(t, 1, P ) can be rewritten to�
max{X111, X211, . . . , X2p11}.

For a JR-run on P = 2p, p = 0, 1, . . . processors given R = 2r, r = 0, 1, . . . , p
replications the expected iteration time equals

Rit(t, R, P ) = Rit(t, 2
r, 2p) ≈ 2r �

(X) + (1 − 2r +
1

2
p − 1

2
r)σ(X). (5.32)

Consequently, for the special case that we replicate R = P = 2p, p = 0, 1, . . . times
on P processors, the iteration time estimation is for 0 ≤ cX ≤ 1

Rit(t, P, P ) = Rit(t, 2
p, 2p) ≈ 2p �

(X) − (2p − 1)σ(X), (5.33)

and for cX > 1 we expect that the iteration time approximately equals

Rit(t, P, P ) = Rit(t, 2
p, 2p) >≈ 0. (5.34)

In the Xmno notation, the Rit(t, P, P ) can be rewritten to
2p �

min{X111, X112, . . . , X112p}.
Formula (5.31) over (5.32) equals the speedup that can be gained by a R = 2r,
r = 0, 1, . . . , p,-replication run on P = 2p, p = 0, 1, . . ., processors, which can be
rewritten to:

Speedup R(t, R, P ) = Speedup R(t, 2r, 2p) ≈ 2 + pcX

2r+1 + cX (2 − 2r+1 + p − r)
.

(5.35)

This formula derives for every cX , 0 ≤ cX ≤ 1, and the given values for r and p a
speedup value between 0 and infinity.
The following speedup of maximal replication (R = P ) for P = 2p, p = 0, 1, . . .:

Speedup R(t, P, P ) = Speedup R(t, 2p, 2p) ≈ 1 + 1
2pcX

(1 − cX)2p + cX
. (5.36)
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Those formulas provide a tremendous insight in the properties of the speedups and
the iteration times for different sets of parameters. Moreover, the optimal number of
replications can be derived and the speedup given the optimal number of replications
which is explained further in this section.

Figure 5.5: Speedup of 2r-replications on 2p processors, cX = 1.00

Next, we illustrate examples of speedup figures for cX = 1.00 and cX = 0.95
that can be derived from the above formulas. With those formulas it is possible to
derive speedups or iteration times for many other situations as presented here. Figure
5.5 depicts the speedup, as defined by Speedup R(t, R, P ) in Section 2.5, against the
number of processors, P = 2r, p = 1, 2, . . . , 6 for different numbers of replications,
R = 2r, r = 1, 2, . . . , p. This definition of the speedup is a comparison of JR to ELB
with the same amount of processors. We observe the following from the graphical
representation. For the case that cX = 1.00 significant speedups can be gained by JR.
Moreover, for a fixed number of processors in the resource set, the speedup consistently
increases if the number of replications increases. Finally, we notice that the run times
decrease maximally if the number of replications equals the number of processors.

Figure 5.6 can be derived by re-shifting the data of Figure 5.5. This figure exhibits
the speedups against the number of replications, R = 2r, r = 0, 1, . . . , p, for different
numbers of processors, P = 2p, p = 1, 2, . . . , 6. We notice from this figure that the
speedup factor for a given number of replications decreases if the number of processors
increases.

As explained above in this section, model 1.1 with cX = 1.00 is closely related
to a model with exponentially distributed job runtimes. Figure 5.7 illustrates for the
same settings as Figure 5.6 the speedups computed by a model that represents the JR
run times with exponentially distributed and completely dependent job runtimes, which
means that α = 1

2 , β(i, j) = 1
2 for i < j, β(i, j) =

√
5/2 for i = j and γ = 1. We

observe that the heights of the speedups correspond to those of Figure 5.6. For higher
numbers of processors (above 8) in combination with higher numbers of replications,
the speedups show the most differences due to the difference between the β(i, j) values
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Figure 5.6: Speedup on 2p processors of a 2r-replication run, cX = 1.00

for i < j, which are often applied in the approximations for those type of cases.

Figure 5.7: Speedup on 2p processors of a 2r-replication run with exponentially distributed job
runtimes

Due to the reason that the speedups presented in Figures 5.5 and 5.6 are compar-
isons between JR and ELB with the same amount of processors it is hard to compare
the speedups for two settings with different numbers of processors. In order to con-
front this, Figure 5.8 depicts for the same R,P -combinations the speedups of JR-runs
compared to the duration of a run on one processor, which is by definition an ELB run.
This figure shows that the speedup consistently increases if the number of processors
or the number of replications increases. It seem that there does not exist a number of
processors for which holds that the optimal number of replications does not equal P .
We get into more detail further in this section.
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Figure 5.8: Speedup on 2p processors of a 2r-replication run, cX = 1.00

Contrary to the figures above, the next figure illustrates that for cX = 0.95 the
optimal number of replications does not equal the number of processors for all settings.
For cX = 0.95, and for P = 2p,p = 1, 2, . . . , 6, Figure 5.9 depicts the speedups
corresponding to different numbers of replications, R = 2R, r = 0, 1, . . . , p. This
figure leads to the following observations about the JR speedups if cX = 0.95. If the
number of processors is 16 or higher, the optimal number of replications equals 16,
for lower numbers the optimal number equals the number of processors. By definition
the P acts as the upper bound of the optimal number of replications. Given that the
P is high enough, the optimal number of replications in the analyzed figures seems to
depend only on the cX : the higher the cX the higher the optimal number of replications.
In order to investigate this in general it is necessary to derive a formula for the optimal
number of replications.

To this end, we compute the derivative of (5.35) to r, equate it with 0 and round it
off to derive an estimated optimal r, r∗, for ln(2)

ln(2)+ 1
2

< cX < 21+p ln(2)
1+21+p ln(2) :

r∗ ≈ b
ln
(

cX

1−cX

)

− ln(2) − ln(ln(2))

ln(2)
+

1

2
c ≈ b1.44 ln

(

cX

1 − cX

)

−0.22c. (5.37)

Consequently, the optimal number of replications for 0 ≤ cX ≤ 1, P = 2p, p =
0, 1, . . . is

r∗ ≈















0, if 0 < cX ≤ ln(2)

ln(2)+ 1
2

≈ 0.58,

p, if 21+p ln(2)
1+21+p ln(2) ≈ 1.39∗2p

1+1.39∗2p < cX ≤ 1,

b1.44 ln
(

cX

1−cX

)

− 0.22c, otherwise.

(5.38)

We observe from (5.38) that if the cX is between ln(2)/ln(2) + 1
2 and

21+p ln(2)/1 + 21+p ln(2) that the r∗ is independent of the number of processors P
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Figure 5.9: Speedup of a 2r-replication run on 2p processors, cX = 0.95

and is an increasing function of cX . In the next section about the computations with
model 1.2 we analyze the dependency between the r∗ and the other parameters on the
basis of a graphical representation. The representation and consequently the observa-
tions are representative for this model. Moreover, from (5.38) we derive that speedup
is gained if

4 ln(2)√
2 + 4 ln(2)

≈ 0.66 < cX ≤ 1. (5.39)

We derive the speedups for each P = 2p, p = 1, 2, . . . and cX
(

ln(2)

ln(2)+ 1
2

< cX < 21+p ln(2)
1+21+p ln(2)

)

by substituting r∗ in (5.35):

Speedup R(t, R∗, P ) = Speedup R(t, 2r∗

, 2p) (5.40)

≈ (2 + pcX) ln(2)

cX

(

3 ln(2) + 1 + p ln(2) + ln(ln(2)) + ln
(

1−cX

cX

)) .

Moreover, for 0 ≤ cX < ln(2)

ln(2)+ 1
2

:

Speedup R(t, R∗, P ) ≈ Speedup R(t, 1, P ) ≈ 1. (5.41)

Furthermore, for 21+p ln(2)
1+21+p ln(2) < cX ≤ 1:

Speedup R(t, R∗, P ) ≈ Speedup R(t, P, P ) ≈ 1 + 1
2pcX

(1 − cX)2p + cX
. (5.42)

In the next section a graphical representation of the speedup with r∗ against cX for
different values for p is shown.
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5.4.2 Model 1.2

In this section, we derive formulas for the iteration times of replicating R = 2r, r =
0, 1, . . . , p times on P = 2p, p = 1, 2, . . . processors on the basis of model 1.2,
which is described in Table 5.7. In addition, we obtain formulas for the speedup with
input parameters r, p, α, β1, β2, and cX . Those parameters together represent the key
properties of the experimental setting. Furthermore, we deduce the optimal number of
replications as a function of α and cX for β2 = 1

2 , and moreover, the corresponding
speedup given that β1 = 1. We analyze the resulting formulas on the basis of graphical
representations. We notice that all equations in this model hold for problem size t > 0,
which is described in Section 2.5 and for σ(X) ≤ �

(X) (i.e., 0 ≤ cX ≤ 1) according
to the domain of the approximations, defined in Section 5.3.

Given the model described by (5.6), the approximations in Section 5.3, and the
details of model 1.2 in Table 5.7, we derive the following iteration times for 0 ≤ α ≤ 1,
R = 2r, r = 0, 1, . . . , p, P = 2p, p = 0, 1, . . ., β1, β2 ≥ 0 and β1, β2 6= 1:

Rit(t, R, P ) = Rit(t, 2
r, 2p) ≈ 2r �

(X)−2rα
1 − βr

2

1 − β2
σ(X)+2rαβr

2

1 − βp−r
1

1 − β1
σ(X),

(5.43)

which leads to the following speedup for the same set of parameter values:

Speedup R(t, R, P ) = Speedup R(t, 2r, 2p) ≈
1 + αcX

1−βp
1

1−β1

2r + 2rαcX (βr
2

1−βp−r
1

1−β1
− 1−βr

2

1−β2
)
,

(5.44)

For 0 ≤ α ≤ 1, R = 2r, r = 0, 1, . . . , p, P = 2p, p = 0, 1, . . ., β1 = 1, β2 ≥ 0 and
β2 6= 1:

Rit(t, R, P ) = Rit(t, 2
r, 2p) ≈ 2r �

(X)−2rα
1 − βr

2

1 − β2
σ(X)+2rαβr

2(p−r)σ(X).

(5.45)

Consequently, the speedup for the same set of parameters is

Speedup R(t, R, P ) = Speedup R(t, 2r, 2p) ≈ 1 + αpcX

2r + 2rαcX (βr
2(p − r) − 1−βr

2

1−β2
)
.

(5.46)

In some cases these speedup formulas derive speedups that are lower than 0 or go to
infinity. We expect that for these settings JR leads to a high speedup (> 5). The formula
does not provide accurate estimations for those cases. Unfortunately, it is not possible
to derive easy equations that illustrate for which parameters the speedup has a value
between 0 and infinity.
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To derive an optimal r∗ we need to take the derivative to r of this formula. That
derivative only exists if α, β1, β2 (6= 1

2 ), p, and cX are known or if β2 = 1
2 . Below we

provide the solution of the r∗ for β2 = 1
2 . To this end, we compute the derivatives of

(5.44) and (5.46) to r and equalize it with 0 to derive r∗ for p = 0, 1, . . ., and β2 = 1
2 ,

for β1 6= 1, and for β1 = 1. Given β1 6= 1, the optimal number of replications before
rounding off equals

r∗ ≈
ln(β1)p + ln( ln(β1)

β1−1 ) + ln(α) + ln( cX

1−2αcX
) − ln(ln(2))

ln(2β1)
, with β1 =

√

1
3

4
− 2α2.

(5.47)

According to Approximation 5.3.7 a value of α = 1
4

√
6 ≈ 0.61 would lead to a β1

value of 1, given that β2 =
√

2 − 2α2 − β2
1 = 1

2 . As a result, for α = 1
4

√
6, β1 = 1,

β2 = 1
2 , and p = 0, 1, . . ., the optimal number of replications equals

r∗ ≈















0, if αcX

1−2αcX
≤ ln(2),

p, if αcX

ln(2)−2 ln(2)αcX
≥ 2p,

b
ln(α)+ln

(

cX
1−2αcX

)

−ln(ln(2))

ln(2) + 1
2c, otherwise.

(5.48)

We conclude from this equation that if α = 1
4

√
6, β1 = 1, and β2 = 1

2 , and there are
enough processors in the resource set, denoted by

p >
1

ln(2)
ln





cX

4 ln(2)√
6

− 2 ln(2)cX



 ≈ 1.44 ln(cX/(1.13− 0.69cX)), (5.49)

the optimal number of replications does not depend on p.
To gain insight in the impact of the α, β1, and cX on the optimal number of replica-

tions given that β2 = 1
2 , we construct Figure 5.10 which depicts the r∗ against different

values of α, β1, and β2 and observe the following. This figure clearly shows the pos-
itive relation between the r∗ and the cX which is stated above. Every r∗ line seem to
have an asymptote and the cX value at which there is an asymptote differs. The higher
the α with a corresponding lower β1, the lower the optimal number of replications, r∗,
for lower cX (below 0.75) and the higher the r∗ for cX higher than 0.75. Moreover, for
those αs the value of the cX at which there is an asymptote is lower.

The speedup formula, given that β1 6= 1, β2 = 1
2 can be derived by substituting

(5.47) in (5.44). Due to the fact that this formula is too long we do not write it down.
Substituting r∗ from (5.48) in the speedup formula (5.46) for β1 = 1, and β2 = 1

2 ,
leads to a shorter and writable speedup-estimation formula. We derive the following
formula given the optimal number of replications for α = 1

4

√
6, β1 = 1, β2 = 1

2 ,
p = 0, 1, . . .:

Speedup R(t, R∗, P ) = Speedup R(t, 2r∗

, 2p) (5.50)

≈















1, if αcX

1−2αcX
≤ ln(2),

1+αpcX

2p−αcX (2p+1−2) , if αcX

ln(2)−2 ln(2)αcX
≥ 2p,

ln(2)+α ln(2)cXp

αcX

(

1+3 ln(2)+ln(ln(2))+ln(2)p+ln
(

1−2αcX
2αcX

)) , otherwise.
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Figure 5.10: r∗ against the cX for β2 = 1
2

, and different α and β1

Consequently, we are able to generate Figure 5.11 which represents the highest
possible speedup against the p for cX = 0.65, 0.70, 0.75, 0.80,

√
6

3 . We conclude that
for the case that cX = 1

3

√
6 the speedup grows linearly with the number of processors.

A higher cX that is not represented by the model, will lead to even higher speedups. If
cX < 1

3

√
6 the speedup first grows by adding more processors to the resource set, and

finally decreases after some number of processors. This number of processors is higher
if the cX is higher and can be derived with (5.50). We conclude that a small increase
in the cX can have a high impact on the speedup.

Figure 5.11: Speedup versus p, for cX = 0.65, 0.70, 0.75, 0.80, 1
3

√

6, given r∗
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In addition, Figure 5.12 provides a graphical representation of the speedups that
can be gained by JR according to model 1.1 and 1.2 for cX , 0.70 ≤ cX ≤ 1.00,
for different numbers of processors, p = 2, 5, 10, 20, 100, given that for every case
the optimal number of replications. As can be seen in the representation there is an
asymptote in the speedup at cX = 1.00 for all of the different numbers of p. This
behavior can moreover be derived from (5.40). For model 1.2 we observe in this figure
that there is an asymptote for a lower value of cX . With (5.50) we derive that this
asymptote is at cX = 1/3

√
6 ≈ 0.82 for p = 1, 2, . . ..

Figure 5.12: Speedup versus cX , given r∗

The graphical representation give insight in the properties of the speedups. In ad-
dition, by combining the representations we get more understanding about their char-
acteristics. For instance, we observe in Figure 5.10 that the optimal number of replica-
tions equals 2 if cX = 0.70, α = 0.60, β1 = 1.01, and β2 = 0.50. For a JR setting
with 210 processors, these parameters can be substituted in (5.44), and we derive that
JR leads to a speedup of 1.09. The same speedup can be derived in Figure 5.12 by
reading off the speedup that corresponds to model 1.2 with p = 10, and cX = 0.70.
Moreover, we notice in Figure 5.10 that the r∗ equals the p if the cX increases to above
0.82. In (5.43), we observe that for this case the expected iteration time is much lower
than for a run without replicating. Consequently, this means that the speedup is high,
which corresponds to what has been presented by Figure 5.12.

5.4.3 Model 1.3

In this section, we derive formulas for the iteration times of replicating R = 2r, r =
0, 1, . . . , p times on P = 2p, p = 0, 1, . . . processors on the basis of model 1.3,
which is described in Table 5.7. In addition, we obtain formulas for the speedup with
input parameters r, p, α, β(i, j), i = 0, 1, . . . , p, j = 1, 2, . . . , p, and cX . Those
parameters together represent the key properties of the experimental setting. We notice
that all equations in this model hold for problem size t > 0, which is described in
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Section 2.5 and for σ(X) ≤ �
(X) (i.e., 0 ≤ cX ≤ 1) according to the domain of the

approximations, defined in Section 5.3.
Given the model described by (5.6), the approximations in Section 5.3, and given

the properties of α, and β(i, j), as stated in Table 5.7, we derive the following iteration
times.
For replicating 2r, r = 0, times on P = 2p, p = 0, 1, . . . processors with 0 ≤ α ≤ 1,
β(i, j) ≥ 0 for i = 0, 1, . . . , p and j = 0, 1, . . . , p the iteration time estimation is

Rit(t, 1, P ) = Rit(t, 2
0, 2p) ≈ �

(X)+ασ(X)



1 +

p−1
∑

i=r+1

i
∏

j=r+1

β(r, j)



 , (5.51)

Moreover, for replicating 2r, r = 0, 1, . . . , p, times on P = 2p, p = 0, 1, . . . processors
with 0 ≤ α ≤ 1, and β(i, j) ≥ 0 for i = 0, 1, . . . , r and j = 0, 1, . . . , p the iteration
time estimation equals

Rit(t, R, P ) = Rit(t, 2
r, 2p) ≈ 2r �

(X) − 2rασ(X)

(

1 +

r−1
∑

i=1

i
∏

k=1

β(k, k)

)

+2rασ(X)
r
∏

i=1

β(i, i)



1 +

p−1
∑

i=r+1

i
∏

j=r+1

β(r, j)



 ,

(5.52)

and given that β(i, j) = 1 for i = 0, 1, . . . , r, j = 0, 1, . . . , p where i < j the iteration
time estimation is

Rit(t, R, P ) = Rit(t, 2
r, 2p) ≈ 2r �

(X) − 2rασ(X)
1 − (

√
1 − 2α2)r

1 −
√

1 − 2α2

+ 2rα
(
√

1 − 2α2
)r

(p − r)σ(X). (5.53)

These iteration times lead to the following speedups. For replicating 2r, r =
0, 1, . . . , p, times on P = 2p, p = 0, 1, . . . processors with 0 ≤ α ≤ 1, and β(i, j) ≥ 0
for i = 0, 1, . . . , r and j = 0, 1, . . . , p the speedup estimation equals

Speedup R(t, R, P ) = Speedup R(t, 2r, 2p)

≈
1 + αcX

∏r
i=1 β(i, i)

(

1 +
∑p−1

i=r+1

∏i
j=r+1 β(r, j)

)

2r + 2rαcX

(

∏r
i=1 β(i, i)

(

1 +
∑p−1

i=r+1

∏i
j=r+1 β(r, j)

)

−
∑r−1

i=1

∏i
k=1 β(k, k) − 1

) ,

(5.54)

and given that β(i, j) = 1 for i = 0, 1, . . . , r, j = 0, 1, . . . , p where i < j the speedup
estimation equals

Speedup R(t, R, P ) = Speedup R(t, 2r, 2p)

≈ 1 + αpcX

√
1 − 2α2

2r + 2rαcX

(

(√
1 − 2α2

)r
(p − r) − 1−(

√
1−2α2)r

1−
√

1−2α2

) . (5.55)
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In some cases these speedup formulas derive speedups that are lower than 0 or go to
infinity. We expect that for these settings JR leads to a high speedup (> 5). The
formula does not provide accurate estimations for those cases. Unfortunately, it is not
possible to derive easy equations that illustrate for which parameters the speedup has a
value between 0 and infinity. We show in Section 5.5 a graphical representation of the
speedups derived by this formula.

In order to derive an optimal r∗ we need to take the derivative to r of (5.54) and
equate it with 0. Unfortunately, the general derivative of (5.54) does not exist and
therefore it is not possible to derive a general formula for the optimal number of repli-
cations. Although the derivative of (5.55) to r does exist, equating it with 0 leads to
a very long formula that contains a LambertW equation, which is defined in the next
section. Due to that reason, we do not present the formula in this thesis.

5.4.4 Model 2.1

In this section, we derive the speedups of replicating on homogeneous nodes. We
derive formulas for the iteration times of replicating R = 1, 2 times on 2 processors,
R = 1, 2, 4 times on 4 processors, and R = 2r, r = 0, 1, . . . , p times on P = 2p,
p = 0, 1, . . . processors on the basis of model 2.1, which is described in Table 5.7.
In addition, we obtain formulas for the speedup with input parameters R, P , and cX .
Those parameters together represent the key properties of the experimental setting.
Furthermore, we deduce the optimal number of replications as a function of P and cX .
We analyze the resulting formulas on the basis of graphical representations. We notice
that all equations in this model hold for problem size t > 0, which is described in
Section 2.5 and for σ(X) ≤ �

(X) (i.e., 0 ≤ cX ≤ 1) according to the domain of the
approximations, defined in Section 5.3.

Unlike the sections about models 1.1-1.3, we do not make the assumption that the
standard deviation of the sum of stochastic variables equals the sum of the standard
deviations. Note that the duration of the iteration time for R = 1 and for R = P does
not depend on that assumption; Rit(t, 1, P ) and Rit(t, P, P ) from the previous section
are the same in model 2.1. For example, the iteration time of a two-replication run on
two processors also equals 2

�
min{X111, X211}:

Rit(t, 2, 2) = Rit(t, 2
1, 21) =

� 2
∑

j=1

min
k=1,2

{X1jk}

=

2
∑

j=1

�
min
k=1,2

{X1jk} = 2
�

min{X111, X211}. (5.56)

However, the speedups for 1 < R < P are different to those of the previous section.
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Replicating on two processors

As explained above, the results for replicating on two processors are the same as in the
previous section and therefore we only shortly present the final results in this section.
For the computation details we refer to model 1.1. The expected iteration times of
replicating are

Rit(t, 1, 2) ≈ �
(X) +

1

2
σ(X), (5.57)

and

Rit(t, 2, 2) ≈ 2
�

(X) − σ(X). (5.58)

The optimal number of replications for cX ≥ 0 is

R∗ ≈
{

1, if 0 ≤ cX ≤ 2
3 ,

2, if 2
3 < cX ≤ 1.

(5.59)

The speedup of a 2-JR run equals

Speedup R(t, 2, 2) ≈ 2 + cX

4 − 2cX
. (5.60)

Replicating on four processors

The following expected iteration time for ELB is known from model 1.1:

Rit(t, 1, 4) = Rit(t, 2
0, 22) ≈ �

(X) + σ(X). (5.61)

For the case of R = 2 replications, we derive the following

Rit(t, 2, 4) = Rit(t, 2
1, 22) = V1,2(0) =

�
max{V1,1(0), V1,1(1)}

≈ �
V1,1(0) +

1

2
σ(V1,1(0))

=
� ∑

m=0,1

min{V0,0(2m), V0,0(2m + 1)}

+
1

2
σ(
∑

m=0,1

min{V0,0(2m), V0,0(2m + 1)})

≈ 2
�

min{V0,0(0), V0,0(1)} +
1

2
21×γ(= 1

2 )σ(min{V0,0(0), V0,0(1)})

≈ 2
�

(V0,0(0)) − 2 × 1

2
σ(V0,0(0)) +

1

2

√
2
1

2
σ(V0,0(0))

= 2
�

(X) + (
1

4

√
2 − 1)σ(X). (5.62)

The first step is trivial, the second applies (5.1), the third uses (5.6), the fourth uses
Approximation 5.3.3, the fifth applies (5.6), the sixth step uses Approximation 5.3.5,
the seventh Approximations 5.3.6 and 5.3.7, and the last step is according to (5.5) and
some trivial computations.
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For the case of R = 4 replications, we know from model 1.1 that the expected iteration
time is

Rit(t, 4, 4) = Rit(t, 2
2, 22) ≈ 4

�
(X) − 3σ(X). (5.63)

The speedup for replicating R = 2 times for cX < 8
4−

√
2

(≈ 3.09) can be obtained by
taking (5.61) over (5.62). We derive:

Speedup R(t, 2, 4) = Speedup R(t, 21, 22) ≈ 4 + 4cX

8 +
√

2cX − 4cX

. (5.64)

As a consequence, we are able to compute for which cX a 2-JR setting leads to a
speedup in comparison with no replication. That is the case if (5.64) is higher than 1,
which can be rewritten to:

cX >
4

8 −
√

2
≈ 0.61. (5.65)

Next, we present the speedup for 4-JR which is the same as the speedup of 4-JR in
model 1.1. The speedup for this setting given cX < 4

3 equals

Speedup R(t, 4, 4) = Speedup R(t, 22, 22) ≈ 1 + cX

4 − 3cX
. (5.66)

For cX ≥ 4
3 we expect that the approximations are inaccurate and therefore further

analyses are needed to investigate the speedups for these cases. We perform no inves-
tigations into those issues because of the fact that it is beyond the scope of this thesis.
A comparison of the 2-JR and the 4-JR speedups illustrates that R = 4 leads to a higher
speedup than R = 2 if:

cX >
8√

2 + 8
. (5.67)

Consequently, combining the above comparisons, we advice the following numbers of
replications for a given cX ≥ 0 is

R∗ ≈











1, if 0 ≤ cX ≤ 4
8−

√
2

2, if 4
8−

√
2

< cX ≤ 8√
2+8

4, if 8√
2+8

< cX ≤ 1.

(5.68)
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Replicating R = 2r times on P = 2p processors

In this section, we derive formulas for the iteration times and speedups for R = 2r,
r = 0, 1, . . . , p, JR on P = 2p, p = 0, 1, . . ., processors and fixed values of parameters
α, β(i, j) and γ, which are specified in Table 5.7. For R = 1, and R = P , the formulas
of model 2.1 are the same as for model 1.1. In order to obtain the formulas for the
iteration times and the speedups given 1 < R < P we extend the computations for the
settings with 2 and 4 processors. For the complete derivations of the formulas we refer
to the previous sections.

As stated above, the iteration time of the non-replication case for p = 0, 1, . . .
equals those of model 1.1 which is

Rit(t, 1, P ) = Rit(t, 2
0, 2p) ≈ �

(X) +
1

2
pσ(X). (5.69)

For P = 2p, p = 0, 1, . . ., processors, and R = 2r, r = 0, 1, . . . , p, replications, the
expected iteration time equals

Rit(t, R, P ) = Rit(t, 2
r, 2p) ≈ 2r �

(X) +

(

1 − 2r +
p − r

2
1
2 r+1

)

σ(X). (5.70)

We know from the previous section that the iteration time of an R = P -replication run
on P = 2p processors for p = 0, 1, . . . is

Rit(t, P, P ) = Rit(t, 2
p, 2p) ≈ 2p �

(X) − (2p − 1)σ(X). (5.71)

Formula (5.69) over (5.70) represents the speedup that can be gained by replication for
r = 0, 1, . . . , p, p = 0, 1, . . .. We derive:

Speedup R(t, R, P ) = Speedup R(t, 2r, 2p)

≈ 2 + pcX

2r+1 + cX

(

2 − 2r+1 + (p − r) ∗
(

1
2

√
2
)r
) . (5.72)

This formula derives for every cX , 0 ≤ cX ≤ 1, and the given values for r and p a
speedup value between 0 and infinity.
To make a comparison between Models 1.1 and 2.1, we demonstrate a speedup figure
for setting with P = 2p, p = 0, . . . , 6 processors and R = 2r, r = 0, . . . , p replications
with cX = 0.95. Figure 5.13 depicts those speedups against the parameter r. We notice
from this figure that the assumption that γ = 1

2 (this model) instead of γ = 1 (model
1.1) leads for many settings to a higher approximation of the speedup. This means that
the lower the dependency between consecutive jobs the higher the speedup that can be
gained by JR.
The speedup of a 2p-replication run on 2p processors equals the following formula that
corresponds to those of model 1.1:

Speedup R(t, P, P ) = Speedup R(t, 2p, 2p) ≈ 1 + 1
2pcX

(1 − cX)2p + cX
. (5.73)



5.4 Theoretical analysis of speedups 91

Figure 5.13: Speedup of a 2r-replication run on 2p processors, cX = 0.95

We need the following definition of the LambertW equation for further investigations.

Definition 5.4.1: Given W as any complex number and eW as an exponential function,
the LambertW-function is defined as the inverse function, f−1(W ), of

f(W ) = WeW .

More information about the Lambert-function can be found in [49].
We compute the derivative of (5.72) to r and equate it with 0 to derive the formula

for the optimal r, r∗ for p = 0, 1, . . .:

r∗ ≈























0, if 0 ≤ cX ≤ 4 ln(2)
4 ln(2)+2+ln(2)p ≈ 2.8

4.7+0.7p ,

p, if 1
1+ 1

2
1+ 3

2
p

ln(2)

≈ 1
1+ 1

1.4∗21+1.5p

≤ cX ≤ 1,

b 6+3 ln(2)p−2LambertW (−6
ln(2)(−1+cX )e

3+ 3
2

ln(2)p

cX
)

3 ln(2) + 1
2c, otherwise.

(5.74)

Formula (5.74) illustrates that the optimal number of replications is a function of cX

and p. Due to the LambertW part it is not easy to observe the characteristics of this
function. For that reason, Figure 5.14 illustrates the r∗ against the 2-log of the number
of processors, p = 0, 1, . . . , 7, for cX = 0.42, 0.70, 0.90, 0.97, 1.00. We observe that
even if cX = 0.42, which is a very low coefficient of variation, the optimal number of
replications equals 1 if p = 7. This indicates that even for this situation, JR leads to
speedups compared to ELB. Moreover, this figure illustrates that if the cX increases the
r∗ increases. In addition, we observe that the r∗ depends on the p, which can be seen
in the jumps of r∗ to higher levels if the number of processors in the resource set is
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higher. A cX of 1.0 leads to an optimal number of replications that equals the number
of processors. This observation corresponds to [47]. As can be seen in (5.38), the r∗

of Model 1.1 differs from Model 2.1 in the dependency on p. Model 1.1 shows that r∗

does not depend on p and a plot of the r∗ in that model would show that the r∗s with
different cX would increase with the p until the maximum of r∗ is reached; for higher
p the r∗ stays constant at that level.

Figure 5.14: r∗ versus p, for cX = 0.42, 0.70, 0.90, 0.97, 1.0

Given the r∗, the speedups can be derived for each p and cX by substituting (5.74)
in (5.72). This formula for r∗ is too long and therefore we do not present it in this thesis.
However, the speedup graph against the 2-log of the number of processors for different
cX given r∗ is presented. Figure 5.15 depicts those speedups for p = 0, 1, . . . , 7, cX =
0.50, 0.65, 0.80, 0.85, 0.95, 1.00. Observe that the speedup consistently increases with
the p for all cX . For a cX = 1.00 the speedup increases linearly with the p. Moreover,
notice that for a fixed number of processors the speedup increases fundamentally with
the cX .

5.4.5 Model 2.2

In this section, we derive formulas for the iteration times of replicating R = 2r, r =
0, 1, . . . , p times on P = 2p, p = 0, 1, . . . processors on the basis of model 1.3,
which is described in Table 5.7. In addition, we obtain formulas for the speedup with
input parameters r, p, α, β(i, j), i = 0, 1, . . . , r, r = 0, 1, . . . , p, j = 1, 2, . . . , p,
p = 0, 1, . . ., and 0 ≤ cX ≤ 1. Those parameters together represent the key properties
of the experimental setting. We notice that all equations in this model hold for problem
size t > 0, which is described in Section 2.5 and for σ(X) ≤ �

(X) (i.e., 0 ≤ cX ≤ 1)
according to the domain of the approximations, defined in Section 5.3.
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Figure 5.15: Speedup versus p, for cX = 0.42, 0.70, 0.90, 0.97, 1.0, given r∗

Given the model described by (5.6), the approximations in Section 5.3, and the
properties of α, β1, β2, and γ as presented in Table 5.7, we derive the following itera-
tion times for r = 0, 1, . . . , p, p = 0, 1, . . ., and β1, β2 6= 1:

Rit(t, R, P ) = Rit(t, 2
r, 2p) ≈ 2r �

(X)−2rα
1 − βr

2

1 − β2
σ(X)+(2r)γαβr

2

1− βp−r
1

1− β1
σ(X),

(5.75)

which leads to the following speedup for the same sets of parameters:

Speedup R(t, R, P ) = Speedup R(t, 2r, 2p) ≈
1 + αcX

1−βp
1

1−β1

2r + αcX

(

(2r)γβr
2

1−βp−r
1

1−β1
− 2r 1−βr

2

1−β2

) .

(5.76)

We derive the following estimation of the iteration time given the properties of α, β1,
β2, γ described in Table 5.7, β1 = 1, β2 6= 1, for r = 0, 1, . . . , p, and p = 0, 1, . . .:

Rit(t, R, P ) = Rit(t, 2
r, 2p) ≈ 2r �

(X)−2rα
1 − βr

2

1 − β2
σ(X)+(2r)γαβr

2(p−r)σ(X).

(5.77)

Consequently, the speedup for the same set of parameters is

Speedup R(t, R, P ) = Speedup R(t, 2r, 2p) ≈ 1 + αpcX

2r + αcX

(

(2r)γβr
2(p − r) − 2r 1−βr

2

1−β2

) .

(5.78)
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In some cases these speedup formulas derive speedups that are lower than 0 or go to
infinity. We expect that for these settings JR leads to a high speedup (> 5). The formula
does not provide accurate estimations for those cases. Unfortunately, it is not possible
to derive easy equations that illustrate for which parameters the speedup has a value
between 0 and infinity.

To derive an optimal r∗ in general we need to take the derivative of (5.76) to r and
equate it with 0. Although the derivatives of (5.76) and (5.78) exist, it is not possible
to equate those derivatives with 0 and derive the solution for r∗.

5.4.6 Model 2.3

In this section, we derive formulas for the iteration times of replicating R = 2r, r =
0, 1, . . . , p times on P = 2p, p = 1, 2, . . . processors on the basis of model 2.3,
which is described in Table 5.7. In addition, we obtain formulas for the speedup with
input parameters r, p, α, β(i, j), i = 0, 1, . . . , p, j = 1, 2, . . . , p, and cX . Those
parameters together represent the key properties of the experimental setting. We notice
that all equations in this model hold for problem size t > 0, which is described in
Section 2.5 and for σ(X) ≤ �

(X) (i.e., 0 ≤ cX ≤ 1) according to the domain of the
approximations, defined in Section 5.3.

Given the model described by (5.6), the approximations in Section 5.3, and the
details of model 2.3 in Table 5.7, we derive the following iteration times. For an ELB
run (R = 2r, r = 0) on P = 2p, p = 0, 1, . . . processors with 0 ≤ α ≤ 1, β(i, j) ≥ 0
for i = 0, 1, . . . , p and j = 0, 1, . . . , p, and 1

2 ≤ γ ≤ 1 we derive the following
iteration time estimation:

Rit(t, 1, P ) = Rit(t, 2
0, 2p) ≈ �

(X)+ασ(X)



1 +

p−1
∑

i=r+1

i
∏

j=r+1

β(r, j)



 . (5.79)

Moreover, for replicating 2r, r = 0, 1, . . . , p, times on P = 2p, p = 0, 1, . . . processors
with 0 ≤ α ≤ 1, 1

2 ≤ γ ≤ 1, and β(i, j) ≥ 0 for i = 0, 1, . . . , r and j = 0, 1, . . . , p
the iteration time estimation equals

Rit(t, R, P ) = Rit(t, 2
r, 2p) ≈ 2r �

(X) − 2rασ(X)

(

1 +

r−1
∑

i=1

i
∏

k=1

β(k, k)

)

+ 2rγασ(X)

r
∏

i=1

β(i, i)



1 +

p−1
∑

i=r+1

i
∏

j=r+1

β(r, j)



 ,

(5.80)

and for the same set of parameters and given that β(i, j) = 1 for i = 0, 1, . . . , r,
j = 0, 1, . . . , p and i < j:

Rit(t, R, P ) = Rit(t, 2
r, 2p) ≈2r �

(X) − 2rασ(X)
1 − (

√
1 − 2α2)r

1 −
√

1 − 2α2

+ 2rγα
(

√

1 − 2α2
)r

(p − r)σ(X). (5.81)
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These iteration times lead to the following speedups. For replicating 2r, r =
0, 1, . . . , p, times on P = 2p, p = 0, 1, . . . processors with 0 ≤ α ≤ 1, 1

2 ≤ γ ≤ 1,
and β(i, j) ≥ 0 for i = 0, 1, . . . , r and j = 0, 1, . . . , p the speedup estimation equals

Speedup R(t, R, P ) = Speedup R(t, 2r, 2p)

≈
1 + αcX

∏r
i=1 β(i, i)

(

1 +
∑p−1

i=r+1

∏i
j=r+1 β(r, j)

)

2r + 2rγαcX

∏r
i=1 β(i, i)

(

1 +
∑p−1

i=r+1

∏i
j=r+1 β(r, j)

)

− 2rαcX

(

∑r−1
i=1

∏i
k=1 β(k, k) − 1

) ,

(5.82)

and for the same set of parameters and given that β(i, j) = 1 for i = 0, 1, . . . , r,
j = 0, 1, . . . , p and i < j:

Speedup R(t, R, P ) = Speedup R(t, 2r, 2p)

≈ 1 + αpcX

√
1 − 2α2

2r + 2rγαcX

(√
1 − 2α2

)r
(p − r) − 2rαcX

1−(
√

1−2α2)r

1−
√

1−2α2

. (5.83)

In some cases these speedup formulas derive speedups that are lower than 0 or go to
infinity. We expect that for these settings JR leads to a high speedup (> 5). The formula
does not provide accurate estimations for those cases. Unfortunately, it is not possible
to derive easy equations that illustrate for which parameters the speedup has a value
between 0 and infinity.

In order to derive an optimal r∗ that generally holds we need to take the derivative
of (5.82) to r and equate it with 0. Unfortunately, the derivative of this formula does
not exist and therefore it is not possible to derive a general formula for the optimal
number of replications. Although the derivative of (5.83) to r exists, it is not possible
to derive the solution of r∗ by equating that derivative with 0.

5.5 Experiments on homogeneous nodes

In this section, we perform trace-driven simulations of JR-runs. Furthermore, we use
the results of the approximation analyses in Table 5.6 and substitute those in the derived
formulas of the previous section which are derived from the assumptions presented in
Table 5.7. Moreover, we compare the speedup graphs to those of trace-driven simula-
tions. The simulation details are described in Chapter 2. The data used in this section
are the job-runtime measurements as described in Section 2.4. In order to create data
as if they are measured on homogeneous nodes, we rescale the data to the same mean
and standard deviation. This represents the situation where all nodes have the same
capacity, receive on average the same load and where the chances on external factors
that influence the job runtimes are the same for each node. In real homogeneous net-
works, however, the mean and standard deviation of the job runtimes slightly differ
per node, which leads to higher speedup than the results show in this section. In or-
der to make a fair comparison between the results of the previous section and of this
section, we assume in the implementations of the experiments of this section that send
and rescheduling times are negligible. Table 5.8 presents the values of the different
parameters that have been applied in the speedup estimations of the different models.
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(a) Model 1.1 with cX = 0.80 (b) Model 1.2 with cX = 0.80

(c) Model 1.3a with cX = 0.80 (d) Model 1.3b with cX = 0.80

(e) Simulation with cX = 0.80 data

Figure 5.16: Speedup estimations of R-JR runs on P processors by models 1.1-1.3b and simu-
lations
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Model Values
α β(i, j), ∀i, j : i < j β(i, j), ∀i, j : i = j γ

1.1 1
2 1 1

2 1

1.2 1
2 0.95 0.77, (i.e.,

√

2 − 2( 1
2 )2 − 0.952) 1

1.3a 1
2 (−0.14i + 1.54)(0.02j + 0.63)

√

2 − 2( 1
2 )2 − β(i − 1, j)2 1

1.3b 1
2 Values Table 5.2

√

2 − 2( 1
2 )2 − β(i − 1, j)2 1

2.1 1
2 1 1

2 0.81

2.2 1
2 0.95 0.77, (i.e.,

√

2 − 2( 1
2 )2 − 0.952) 0.81

2.3a 1
2 (−0.14i + 1.54)(0.02j + 0.63)

√

2 − 2( 1
2 )2 − β(i − 1, j)2 0.81

2.3b 1
2 Values Table 5.2

√

2 − 2( 1
2 )2 − β(i − 1, j)2 0.81

Table 5.8: Applied values of α, β(i, j), and γ for the different models

Figures 5.16(a)-5.16(d) show the results of the speedup estimations by models 1.1,
1.2, 1.3a and 1.3b for a coefficient of variation of 0.80. The histograms depict the
speedups for settings with R = 2r, r = 0, . . . , p replications on P = 2p, p = 1, . . . , 6
processors compared to ELB runs on 2p processors. Note that because of this defini-
tion of the speedups it is possible to make a fair comparison between JR-settings on
different numbers of processors. Moreover, Figure 5.16(e) presents the speedups that
have been realized by trace-driven simulations. Because of the reason that those results
are compared with results of Model 1.1-1.3b, which assume complete dependency be-
tween consecutive job runtimes within one iteration, we make the same assumption in
the simulations. The exact values of speedup estimations higher than 5 are not pre-
sented exactly because we expect that those values are less accurate. Nevertheless,
such values indicate that a significant speedup can be gained by JR. The results illus-
trate that estimations from Model 1.1 are less accurate than those of the other models:
this model underestimates the speedups that can be gained by JR. Model 1.2 shows
for lower number of replications accurate estimations, and for higher numbers of repli-
cations and processors it generates estimations that are higher than the trace-driven
simulations. In addition, the estimations of Model 1.3a are for some settings slightly
too high, but mostly these are quite accurate. Model 1.3b illustrates very accurate
estimations.

Figures 5.17(a)-5.17(d) show the results of the speedup estimations by models 2.1,
2.2, 2.3a and 2.3b for a coefficient of variation of 0.57. The histograms depict the
speedups for settings with R = 2r, r = 0, . . . , p replications on P = 2p, p = 1, . . . , 6
processors compared to ELB runs on 2p processors. Moreover, Figure 5.17(e) presents
the speedups that have been realized by trace-driven simulations. The exact values of
speedup estimations higher than 5 are not presented exactly because we expect that
those values are less accurate. Nevertheless, such values indicate that a significant
speedup can be gained by JR. The results illustrate that estimations from Model 2.1 are
less accurate than those of the other models: this model underestimates the speedups
that can be gained by JR. Model 2.2 shows for lower number of replications at lower
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numbers of processors accurate estimations. However, if the set of processors increases
the accuracy of the speedup estimations for the same number of replications decreases
slightly. For higher numbers of replications and processors it generates estimations
that are higher than the trace-driven simulations. In addition, the estimations of Model
2.3a are for some settings slightly too high, but mostly these are quite accurate. Model
2.3b illustrates very accurate estimations. The results show that extra assumptions for
some cases can have a dramatic impact on the accuracy of the speedup estimations,
especially for high cX (above 2/3).

If the experimental setting contains heterogeneous instead of homogeneous proces-
sors, the speedups are higher for the same coefficient of variations. The differences in
the processor speeds are higher and therefore JR can make more improvements. For
that reason, the speedups presented in this and the previous sections are lower bounds
for the speedups on heterogeneous nodes. In the next section, settings with heteroge-
neous nodes are investigated.

5.6 Experiments on heterogeneous nodes

In the previous sections, we investigated JR in homogeneous settings. In this section,
we analyze the performance of JR in heterogeneous settings on the basis of trace-driven
simulations. We analyze the expected speedups for different numbers of processors,
for different numbers of replications, for the two different sets of datasets, and for
the following different CCR values: 0.01, 0.25, and 0.50. Subsequently, we derive
the optimal number of replications for the different situations. Table 1 depicts which
different situations have been investigated.

P Sets R CCRs
1 1 2 1 0.01, 0.25, 0.50
2 1 2 1 2 0.01, 0.25, 0.50
4 1 2 1 2 4 0.01, 0.25, 0.50
8 1 2 1 2 4 8 0.01, 0.25, 0.50

16 1 2 1 2 4 8 16 0.01, 0.25, 0.50
32 1 2 1 2 4 8 16 32 0.01, 0.25, 0.50
64 2 1 2 4 8 16 32 64 0.01, 0.25, 0.50

Table 5.9: Used datasets, investigated number of replications and CCRs, for a given number of
processors

In order to combine and compare previous research performed on DLB in Chapter
4, we use the same sets of data as described in those chapters. set one contains 40
datasets and set 2 the other 90 datasets. set one only consists of nodes in the USA:
Boston, Pasadena, Salt Lake City, San Diego, Tucson, and Washington DC. The sec-
ond set contains, besides the datasets which are generated on the same nodes as set
one, datasets which are generated on the following different nodes: Amsterdam, The
Netherlands; Cambridge, UK; Beijing, China; Copenhagen, Denmark; Le Chesnay,
France; Madrid, Spain; Moscow, Russia; Santa Barbara, USA; Seoul, South Korea;
Singapore; Sydney, Australia; Tel Aviv, Israel; Taipei, Taiwan (Academica Sinica);
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(a) Model 2.1 with cX = 0.57 (b) Model 2.2 with cX = 0.57

(c) Model 2.3a with cX = 0.57 (d) Model 2.3b with cX = 0.57

(e) Simulation with cX = 0.57 data

Figure 5.17: Speedup estimations of R-JR runs on P processors by models 2.1-2.3b and simu-
lations
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Taipei, Taiwan (National Taiwan University); Vancouver, Canada; and Warsaw, Poland.
Further analysis shows that the job runtimes on the nodes in set 2 show more burstiness
and have higher differences between the average job runtimes on the processors. That
last property is mainly caused by the fact that the nodes in set 2 are globally distributed
and the nodes in set one are distributed within the USA; set one shows more coher-
ence between the generated datasets. In the trace-driven simulations of this section
we include the send and the sending finalize-message times. For further details of the
data-collection procedures and the simulation details we refer to Chapter 2.

Next, we show the results of the JR experiments. Figure 5.18(a) and 5.18(b) de-
pict the speedups in the running times of JR on different numbers of processors with
CCR 0.01 (the original CCR) for set one and two respectively. We use the definitions
of Section 2.5 to compute the speedups, and therefore, it is possible to make a fair
comparison between JR-settings on different numbers of processors. For example, the
white bars show the speedup that can be gained by JR for different Rs on 32 processors.
Subsequently, we present in Table 5.10 the optimal number of replications for different
numbers of processors.

(a) 40 datasets of USA nodes (b) 90 datasets of globally distributed nodes

Figure 5.18: Speedups by JR with sets of 40 and 90 datasets

P R∗ R∗

(set one) (set two)
2 2 2
4 4 4
8 4 8

16 4 4
32 4 4
64 - 4

Table 5.10: R∗s for given P s
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We conclude from Figure 5.18(a) and Table 5.10 that for a given number of processors,
the speedup increases if 2-JR or 4-JR has been applied. The impact of the fluctuations
on the running times is high enough such that 4 replications of each job (i.e., make 3
extra copies of each job) have to be made to maximally decrease the running times.
Replicating more than 4 times leads to a speed down compared to a 4-JR run. Fur-
thermore, we conclude that the impact of JR on the speedup for a given number of
replications increases if the number of processors has been increased.

The results of the set with 90 datasets, which are shown by Figure 5.18(b) and
Table 5.10, show again 4 as the optimal number of replications for most numbers of
processors. Except for the runs with 8 processors, as can be seen in Figure 5.18(b),
a slightly higher speedup can be gained for the 8- in comparison with the 4-JR case.
A difference between the results of this set and the results of the first set is that the
speedups are significantly higher. For example, the highest speedup for set one is
below the 2.0, while for set 2 even speedups of higher than 6.0 have been registered.
This is caused by the differences between set one and two, which is described earlier
in this chapter.

(a) 40 datasets of USA nodes (b) 90 datasets of globally distributed nodes

Figure 5.19: Running times of JR for different CCR

Furthermore, we simulated the running times of JR on parallel applications with a
CCR of 0.25 and 0.50. Figure 5.19(a) and 5.19(b) present the results. We conclude that
JR on parallel applications with a CCR of 0.50 never leads to decreases in the running
times; the best replication strategy is not to replicate, which equals an ELB run. In
addition, JR for the nodes in set one and a CCR of 0.25, JR again does not lead to a
running-time decrease. However, the running times on nodes of set 2 and a CCR of
0.25 show in many cases a small decrease of 30% compared to ELB for the best JR
strategy. The run times with CCR of 0.50 show a consistent increase in running times
if the number of processors increases, which shows that running in parallel in this case
is not effective.
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5.7 Conclusions

In the present chapter, we modeled SPMD programs that apply job replication (JR)
on a set of homogeneous processors. Some very useful and realistic approximations
have been introduced and investigated. Extensive computations with the model pro-
vide insight in the characteristics and sensitivity of the JR speedups. Comparisons of
the results of the computations with the model with those of trace-driven simulations
based on real grid testbed measurements show that the model accurately represents JR
in real grid environments. Moreover trace-driven simulations of JR in heterogeneous
experimental settings illustrate the fundamental speedups that can be gained.

We conclude from the analyses that (1) the speedup that can be gained by JR on
heterogeneous nodes is higher than on homogeneous nodes. (2) On a homogeneous set
of nodes, if there is no dependency between consecutive jobs on a node, speedup can be
gained by JR if the coefficient of variation, cX , is approximately higher than 2.8/(4.7+
0.7p), where p is the 2-log of the number of processors. If there is a high correlation
between consecutive nodes, speedup can be gained if cX > 2/3 (3) The lower the
dependency between consecutive jobs the higher the speedup that can be gained by
JR. (4) A small increase in the cX has a high impact on the speedup. (5) There exists
a threshold value c∗X for which holds that in a resource set with homogeneous nodes
that have a cX higher than this threshold value, the highest speedup can be gained if
the number of replications equals the number of processors. For this case the speedup
grows at least linearly with the 2-log of the number of processors.



6

AN ADAPTIVE

LOAD-DISTRIBUTION STRATEGY

6.1 Introduction

In Chapter 1, we presented the concept of Equal Load Balancing (ELB) which is cur-
rently broadly used in parallel applications. In addition, in Chapters 4 and 5, two dif-
ferent implementation types that deal with fluctuations in grid environments have been
presented: dynamic load balancing (DLB), and job replication (JR). In this chapter∗,
we analyze and compare the effectiveness of ELB, DLB and JR, using trace-driven
simulations based on real data gathered in a global scale grid testbed, called Planetlab
(see Section 2.2). For details of the data-collection procedure and the implementation
details of the trace-driven simulations of DLB, JR, we refer to Chapter 2.

This chapter is organized as follows. In Section 6.2, we compare the performance
of JR to DLB for different settings. In Section 6.3, we identify a statistic and a cor-
responding threshold value such that DLB consistently outperforms JR if the statistic
is higher than the threshold, whereas JR consistently performs better if it is lower.
Furthermore, we develop an adaptive strategy that selects between JR and DLB. Sub-
sequently, we show the results of the experiments with this strategy. Finally, in Section
6.4, we formulate the conclusions.

6.2 Comparison between JR and DLB

In this section, we compare the running times of the best JR strategy, the DLB im-
plementation, and of the ELB. In order to combine and compare previous research
performed in Chapters 4 and 5, we use the same sets of datasets as described in those
chapters. Set one contains 40 datasets, which are generated from nodes in the USA,
and set two contains 90 datasets, which are gathered on nodes located in all over the
world. For more details about the nodes we refer to Sections 4.3 and 5.6. Analysis
shows that the job runtimes on the nodes in set two show more burstiness and have
higher differences between the average job runtimes on the processors. That last prop-

∗This chapter is based on paper [27].
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erty is mainly caused by the fact that the nodes in set two are globally distributed and
the nodes in set one are distributed within the USA; set one shows more coherence
between the generated datasets. For further details of the data-collection procedure we
refer to Chapter 2.

Next, we analyze and compare the effectiveness of ELB, DLB and JR, using trace-
driven simulations based on real data gathered in Planetlab. For implementation details
of the trace-driven simulations of DLB, JR, we refer to Chapter 2. Figures 6.1(a) and
6.1(b) depict the running times of the above mentioned three different strategies for
processors set one and set two respectively.

(a) 40 datasets of USA nodes (b) 90 datasets of globally distributed nodes

Figure 6.1: Run times of DLB and JR with CCR 0.01

From Figures 6.1(a) and 6.1(b) can be concluded that the running times of JR and of
DLB are consistently lower than those of the ELB implementation. We conclude that
if the CCR equals 0.01, deploying more processors for the same amount of load leads
to a speedup for all three types of implementations and for both sets of datasets. Figure
6.1(b) depicts super-linear speedups for JR and DLB if two processors are used instead
of one. This is caused by the effect that if one processor is used, peaks in the job
runtimes have a dramatic impact on the total runtime of the application. In runs with
two processors this effect can be reduced by the faster second processor. A difference
between the results of set one and set two is that the running times of the DLB and JR
implementations of set two decrease faster while the running times of ELB decrease
slower. This is caused by the differences between set one and two, which is described
above.

For further analysis, we compute the speedups, as defined in Chapter 2, of the
best JR strategy and DLB for set one and two from the running times from Figures
6.1(a) and 6.1(b). Figures 6.2(a) and 6.2(b) depict those computed speedups. Figure
6.2(a) shows for the simulations with set one that DLB consistently outperforms or
at least performs as good as JR. We conclude from Figure 6.2(b) that in comparison
with the results of nodes from set one significantly higher speedups can be gained on
the nodes of set two. This insight corresponds to the observations mentioned above
in this section. Moreover, we notice for the experiments with the nodes of set two
that the best JR strategy has a higher speedup than DLB for runs on 2 or 4 processors.
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(a) 40 datasets of USA nodes (b) 90 datasets of globally distributed nodes

Figure 6.2: Speedups of DLB and JR with sets of 40 and 90 datasets with CCR 0.01

However, when more processors are used, DLB outperforms all JR strategies. This is
mainly caused by the fact that when more processors are used, the amount of load per
processor decreases and, as a consequence, the load that has to be redistributed during
the DLB rescheduling phase decreases. For this reason, the overhead time of DLB
shows more sensitivity to the number of processors. Those numbers are the results of
the following trade-off: on the one hand, when more processors have been deployed,
the load per processor and, therefore, the gain by DLB, decreases. On the other hand,
the probability on slow processors increases, which delay the whole process in ELB
implementations. We observe that the results of set one show that the speedup of
DLB has its maximum at 16 processors and for set two the maximal speedup can be
gained when 32 processors are used. This is again caused by the differences in average
processing times between the nodes and the higher fluctuations over time. We remark
that the results of Figure 6.2(a) are consistent with the results in [26]: the DLB runs on
four randomly selected processors of set one show again on average a speedup of 1.8.
Comparing the results of DLB and JR for the different CCR 0.01, 0.25, and 0.50 show
that for a CCR of 0.01, there are some circumstances for which replication shows
the best results. However, for CCRs of 0.25 and 0.50 DLB clearly outperforms JR
for all situations. For many of the cases, replication does not even show speedups in
comparison with ELB. We conclude that when the CCR increases, the gain that can be
obtained by JR insufficient to the compensate the overhead and extra computations of
this method. On the other hand, the overhead of DLB remains low enough when the
CCR increases, to be able to gain speedups.

6.3 The adaptive load-distribution strategy

Next, we introduce the concept of an adaptive strategy that selects between the above
two different types of implementations. This strategy has the aim to select dynamically
the optimal implementation type. The idea behind the strategy is that the performance
of DLB and JR is strongly related to the expected computation time. To this end,
it measures a statistic Y , which is the expected computation time per iteration, and
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defines a threshold Y ∗ during the run, which is the intersection of the performance of
DLB and the JR against the Y . After each Ip iterations, the strategy gives a preference
for a given type of implementation, based on a comparison of Y with the threshold
value Y ∗. In this strategy, the processor that redistributes the load in DLB is moreover
the processor that decides whether JR or DLB is used. When the strategy decides that
a switch to the other type of implementation is necessary, the steps to be taken are
the same as in the DLB rescheduling phase: (1) the nodes send their prediction to the
scheduler, (2) the scheduler computes the optimal load distribution, and (3) the nodes
redistribute their load.

6.3.1 Dynamic adaptive load-distribution strategy

In this section, we first analyze the opportunity to develop a adaptive load-distribution
strategy that is based on a threshold value. Second we propose a adaptive load-
distribution strategy that optimally selects between the two implementation types: DLB
and JR.

6.3.1.1 Analysis

To be able to develop such a adaptive load-distribution strategy, we need to find formu-
las that indicate the height of the iteration times for the different implementations for
a given easy-to-measure statistic. To this end, we first derive an approximation of the
expected iteration time for DLB, which is based on the predictions ŷt, by adding the
expected ST and rescheduling time to (2.26).

Dit(N, f, t, P ) ≈ 1
1
P

∑P
i=1

1�
ŷi

+
�

ST +

�
RSchT

N
. (6.1)

However, this expectation differs from the real measured iteration times, mainly due
to inevitable differences between the expected job runtimes and the realized job run-
times. Therefore, we define an equation for the expected iteration time of DLB
(Dit(N, f, t, P )) with a- and b-values which take into account those differences. We
assume that the send- and rescheduling times can also be included in the b-values.

Dit(N, f, t, P ) = aDit(N,f,t,P )
1

1
P

∑P
i=1

1�
ŷi

+ bDit(N,f,t,P ). (6.2)

Furthermore, because of the reason that the iteration time of JR also has a strong linear
relation to (2.26), we define the expected iteration time of JR as:

Rit(t, R, P ) = aRit(t,R,P )
1

1
P

∑P
i=1

1�
ŷi

+ bRit(t,R,P ). (6.3)

We address that the a- and the b-values generally depend on (1) the MSE between the
predicted and the realized job runtimes, (2) the distribution of the send times, (3) the
distribution of the rescheduling times, and (4) the values of the parameters R and P .

Next, we investigate the relation between the average of 100 realized iteration times
provided by realistic trace-driven simulations and the estimations of the iteration times



6.3 The adaptive load-distribution strategy 107

by the above equations. An effective statistical property to quantify this dependency is
the correlation coefficient. This property can be derived by substituting the data values
of both quantities in the correlation formula. The correlation coefficient varies by defi-
nition between the -1.0, which indicates a complete negative linear dependency, and the
1.0, which indicates a complete positive linear dependency. A correlation of 0.0 indi-
cates no linear dependency. More details can be found in [45]. The high correlation of
0.97 between those values implies that equations (6.2) to (6.3) are accurate indications
of the possibly realizable speedups. Consequently, this means that for a given imple-
mentation and a given choice of parameters (e.g., number of processors), the speedup
strongly depends on the statistic, which is defined in (2.26). In the remainder of this
chapter, we call this statistic Y ( = P/

∑P
i=1

1�
JTi

).
We consider the following situation. We perform 1000 simulations of a 4-JR im-

plementation on 4 nodes and 1000 simulations of a DLB implementation on 4 nodes
with 10 as the number of iterations between two load rescheduling phases. For com-
parison reasons, the 1000 simulations of the DLB implementation have been executed
on the same set of nodes as on the corresponding JR simulation. 1000 as the number
of simulations is high enough in order to derive stable and reproducible results. Figure
6.3 depicts the averages of 100 iteration times of those trace-driven simulated runs of
DLB and JR against statistic Y .

Figure 6.3: Scatter plot of DLB and JR iteration times

Figure 6.3 shows, as expected, the strong linear relation between the statistic Y and
the iteration times. We fitted trend lines by a least-squares fit and derived the R2 values
of those equations, which will both be explained at the end of this section. The trend
line of the iteration times of JR has the following equation:

Rit(2.5, 4, 4) = 2.0475Y + 1224, (6.4)

with a R2-value of 0.9228, and for DLB the trend line equals

Dit(10, DES, 2.5, 4) = 1.2779Y + 7157, (6.5)

with a R2-value of 0.9597.
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The above observations imply the possibility of deriving a threshold value Y ∗ of
statistic Y that defines the optimal implementation choice by equating both equations.
The threshold policy works as follows: when statistic Y is lower than this threshold,
we choose for JR and when Y is higher, we choose for DLB. The threshold for the
above situation would be: Y = 7708, which is the solution of equating the formulas
for Rit(2.5, 4, 4) with Dit(10, DES, 2.5, 4).

The strategy

Given the above equations, we are able to develop a strategy that dynamically chooses
the most effective implementation from both DLB or JR. We propose the following
adaptive load-distribution strategy:

Step 1: Start with DLB as the current choice.

Step 2: Measure for the current implementation choice the job- and iteration times
during Ip iterations.

Step 3: Estimate the job- and iteration times for the other as the current implementa-
tion by straightforward computations, which are shown in Chapter 2.

Step 4: Compute statistic Y = P/
∑P

i=1
1�
JTi

.

Step 5: Fit the values of aDit(N,f,t,P ), aRit(t,R,P ), bDit(N,f,t,P ), and bRit(t,R,P ) in
equations (6.2)-(6.3) by a least-squares fit (more information below) of the collected
data about the iteration times and the statistics [75]. When only one data point has
been collected, go to step eight and take the iteration times of the first Ip iterations as
expected iteration times for the next Ip iterations.

Step 6: In order to derive an expectation of the iteration times of the different
implementations, take the latest computed value of Y and substitute it in (6.2)-(6.3)
with the fitted values of aDit(N,f,t,P ), aRit(t,R,P ), bDit(N,f,t,P ), and bRit(t,R,P ).

Step 7: Choose the implementation with the lowest expected iteration time for the
next Ip iterations.

Step 8: If the run is not finished, go to step two.

A least-squares fit is an effective method that fits a linear equation to a collection of
data points. It is based on minimizing the sum of the squares of the deviations between
the linear equation and the data points. The values of a and b can be derived by a direct
formula of the values of the data points. The R2 value is an indication of the overall
deviation between the trend line and the data points, and ranges between 0.0 (no fit)
and 1.0 (complete fit). We refer to [45] for the formulas for a, b, and the R2.

We chose to take Ip = 100 as the number of iterations between two
implementation-evaluation steps. On the one hand, this number is low enough to react
fast on a change in the best implementation type. On the other hand, an implemen-
tation with this number involves relatively low overhead costs that is caused by the
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switch procedure between DLB and JR.
The results of extensive analysis of iteration-time predictions have shown that an

estimation which is based on substituting measurements of Y in (6.2)-(6.3) is far more
accurate than taking the average iteration time of the last 100 iterations.

6.3.2 Adaptive strategy experiments

In this section, we present the results of the trace-driven simulations of the adaptive
strategy implementation. This strategy selects dynamically during the run between the
two implementations DLB and JR. The details of this strategy are described in 6.3.1.
For example, we perform an experiment with DLB, and 4-JR on 4 processors. Figure
6.4 shows us for this experiment the derived values of statistic Y for the following
different groups of iteration numbers: 1−100, 101−200, . . . , 1901−2000. Moreover,
the figure depicts the corresponding realized iteration times of DLB and JR.

Figure 6.4: Statistic Y against iteration times of DLB and JR

As we have seen above, the threshold value Y ∗ for the comparison between a JR-
run with 4 replications and a DLB run on 4 processors is 7708. Figure 6.4 shows
that for this situation, the Y is lower of equal than 7708 until iteration number 900.
This means that JR has the lowest running times, which corresponds to the measured
average iteration times for these iteration numbers. Until iteration number 1400, the
statistic Y moves around the threshold value and therefore both implementations can
be used. Likewise, the realized iteration times of both implementations do not differ
significantly. After iteration number 1400, the threshold value clearly moves above the
threshold which indicates that DLB is the best choice, because of lower iteration times.

Finally, we compare the speedups of the adaptive load-distribution strategy with
those of the DLB and JR implementations. To this end, we performed 1000 experi-
ments with the adaptive load-distribution strategy on 1, 2, 4, 8, 16, 32, and 64 randomly
chosen nodes from set two. Figure 6.5 depicts the speedups of the strategy compared
to those of DLB and JR.
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Figure 6.5: Speedup of adaptive load-distribution strategy, DLB and JR

We conclude that the strategy that selects between DLB and JR performs at least as
good as both DLB and JR for all situations. The overhead of the switches to the best
performing method is in every experimental setting completely compensated by the
gain in running time resulting from those effective switches. For the cases in which one
of the two implementation types is significantly faster, the performance of the adaptive
load-distribution strategy exactly equals the highest possible performance, because for
those situations it immediately selects the one with the highest speedups. Summariz-
ing, the results in Figure 6.5 show that the introduced dynamic strategy is very effective
in making Bulk Synchronous Processing parallel programs robust against the fluctua-
tions of a globally distributed grid environment and in which there is no knowledge
about which of the methods JR or DLB will perform as best.

6.4 Conclusions

In summary, in this chapter we first made a comparison between DLB and JR. The
results show that both DLB and JR strongly outperform the default ELB, which is
widely deployed in grid environments today. Further, a comparison between DLB and
JR reveals that in some circumstances JR performs better than DLB, but in other cir-
cumstances DLB is preferable. Given the strong unpredictability of the circumstances
in the grid environment, this observation makes it difficult to assess the relative ef-
fectiveness of DLB or JR. Nonetheless, we found that there exists an easy-to-measure
statistic Y and a corresponding threshold value Y ∗ such that DLB outperforms JR for
Y > Y ∗, whereas JR consistently performs better for Y < Y ∗. Based on this observa-
tion, we proposed a simple and easy-to-implement approach that can make on-the-fly
decisions about whether to use to DLB or JR. Simulations based on a large set of real
data in a global-scale grid show that this new dynamic approach always performs at
least as good as both DLB and JR in all circumstances. As such, the new approach pre-
sented provides a promising means to make parallel applications robust in large-scale
grid environments.
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PREDICTION METHODS

7.1 Introduction

In this chapter∗, we focus on the development of a new method to predict the running
times of jobs on shared processors. In Chapter 3, we investigated the statistical proper-
ties of the job runtimes generated on globally distributed grid nodes. In Section 7.2, on
the basis of both this statistical analysis and theoretical analysis we investigate a broad
set of predictors (e.g., NWS, AR-methods, Whybark, STES predictors), and identify
the strengths and weaknesses of those predictors. The analysis reveals that the main
sources of inaccuracy of these existing methods are (1) over reaction to sudden peaks
in the running times, and (2) delayed reaction to “level switches”. Further, in Section
7.3, based on these observations we develop a new prediction method, called Dynamic
Exponential Smoothing (DES). The main idea behind DES is that it uses ES where the
interpolating factor α has a number of levels that can be dynamically adapted to the
height of the outliers in the data. Subsequently, in Section 7.4 we compare the accu-
racy of the predictions resulting from DES to that of the other prediction methods. For
the comparison we use 45 datasets of 18 different Planetlab nodes. The results show
that DES strongly outperforms the existing methods in the vast majority of the datasets.
Furthermore, in Section 7.5, the relation between the quality of the DES predictor and
the statistical properties of the datasets is investigated. Finally, in Section 7.6 we make
some concluding remarks.

7.2 Analysis of existing prediction methods

In this section, we analyze a variety of existing methods that can be used to predict
the running times of jobs on shared processors. In Chapter 3, one of the main con-
clusions was that the datasets of job runtimes contain peaks, which correspond to a
sudden very high or very low job runtimes, and level switches, which correspond to
4 or more successive running times of jobs that significantly differ from the previous
values. Accurate predictors of job runtimes omit peaks and adjust the prediction fastly
if level switches occur. Taking this into account and the other conclusions about the

∗This chapter is based on papers [28], and [29].
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statistical properties of job runtimes, we identify the shortcomings of the existing pre-
diction methods. To this end, we use the following six datasets: two of runs that ran on
a node at Sydney (au01 and au02), one of a run in Tel Aviv (telaviv01), two at Tucson
(ar01 and ar02), and one at Warsaw (warsch01). The details of how the datasets are
generated are described in Section 2.4. In this section, the same abbreviations are used
as that are introduced in that section.

The most commonly used predictors in grid studies are ES [26, 64], NWS [71,
72, 73] and AR [23, 61] (these predictors will be described below). Nevertheless, for
predicting the running times of tasks there are many other useful predictors applicable
from other areas (e.g., economics). We selected the Adaptive Exponential Smoothing
Predictors (AESP) and Smooth Transition Exponential Smoothing (STES) predictors
as potential methods that can give accurate predictions in grids. From the AESP we
discuss Trigg and Leach [67], Whybark [70], Mentzer [55], Pantazopoulos and Pap-
pis [58], and from the STES predictors we discuss STES |e| with γ < 0, STES |e|,
STES e2, and STES Whybark, which we selected from [66]. Below, we describe the
different prediction methods and assess their strong and weak points for making fore-
casts based on the characteristics of the datasets discussed in the previous section.

7.2.1 Common grid predictors

In this section, we consider the most commonly used predictors in grid environments:
Exponential Smoothing (ES), Network Weather Service (NWS) and Autoregression
(AR).

7.2.1.1 Exponential Smoothing

ES is a simple prediction method that surprisingly often works very well in practice.
We define yt as the measured value at time t, ŷt as the prediction for yt, α as a chosen
parameter between 0 and 1. Next, the prediction for yt is defined as:

ŷt = αyt−1 + (1 − α)ŷt−1, where 0 ≤ α ≤ 1. (7.1)

An advantage of ES is that it contains an α value which can be low if the dataset
contains a lot of peaks, such that it does not heavily adapts the prediction to sudden
peaks, and which can be high if there are many level switches in the runtimes, such that
it adjusts the forecast fastly if these switches occur. This means that the most suitable
value of the interpolation parameter α depends on the characteristics of the dataset. A
weak point is that once a parameter is chosen, it always reacts in the same way to peaks
and level switches, even when the structure is changed completely, which were found
to occur frequently in Section 2. For example, Figure 7.1 shows that ES with parameter
0.5 does not react properly to a peak, even when there were many peaks in the history
data. In this chapter we use the ES parameter 0.5, because in [25] is stated that 0.5 is
the value that leads to the most accurate predictions for running times of jobs.
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Figure 7.1: ES reacting on a peak on pre ar02

7.2.1.2 The Network Weather Service

The Network Weather Service (NWS) prediction method conducts post casts using dif-
ferent windows of previous data (always starting with the most recent data and working
backwards in time) and records the ”winning” forecaster for each window size. A post
cast is a forecast of a property at a historical point in time. The prediction accuracy can
be immediately measured. Each window with historic data is subsequently treated as
a separate forecaster and a final accuracy tournament determines which forecaster will
be used. The predictor selects from the following set of predictors: the adaptive me-
dian window 5-21 and 21-51, 30% trimmed median window 31 and 51, sliding median
window 5 and 31, median window 5 and 31, the running mean, the last value, exponen-
tial smoothing with trend 10% and parameter 30%, 20%, 15%, 10%, and exponential
smoothing with parameter 90%, 75%, 50%, 40%, 30%, 20%, 15%, 10%, 5%. Further
details can be found in [72].

A strong point of this method is that it contains a large set of predictors. They
represent many different characteristics of the datasets. Therefore, the NWS prediction
method is able to deliver accurate predictions in many situations. Further investiga-
tions with the 6 analysis-phase datasets show that some parts of the datasets contain
more than 20% peaks, or show an alternating characteristic. For those cases a predictor
based on the average is the most accurate. Some parts of the datasets show a homeo-
static character, for which the sliding median with a window size of 31 gives the best
predictions. Both types (i.e., the average and the sliding median with a window size of
31) of predictors are represented in the NWS set. Another good point of this selection
method is the case of changing characteristics, this predictor rapidly chooses another
predictor that predicts the new situation more accurately. A weak point is that it does
not always react properly to peaks. Figure 7.2(a) shows that when there were small
level switches in history, the NWS method often chooses a predictor that over reacts
to peaks. That is even the case when peaks in history never introduced big changes.
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(a) Peak on pre ar02 (b) Level switch on pre telaviv01

Figure 7.2: NWS-predictor reacting on a peak and a level switch in the running times

Moreover, Figure 7.2(b) shows that the NWS prediction method reacts too slowly on
the new level, despite many peaks introduced a new level for previous values. Clearly,
peaks in datasets have to be interpreted differently than regular values. However, the
NWS does not make a distinction between those types of values.

7.2.1.3 Autoregression

General Autoregressive (AR) predictors multiply previous data-points with some pa-
rameter between 0 and 1 to compute the next prediction. AR predictors have a parame-
ter p which indicates the number of data-points it uses from the history. Generally, AR
predictions (denoted as AR(p)) are calculated in the following way:

ŷt = α1yt−1 + α2yt−2 + . . . + αpyt−p, with − 1 ≤ αi ≤ 1. (7.2)

The α parameters are carefully chosen, based on historical correlations between yt’s
over different time-scales. When the expectation of the yt’s does not equal 0, the mean
of the yt’s is subtracted from those yt’s and finally added to the ŷt. The sum of the
αi values does not necessarily equal 1.0. Dinda [23] has also analyzed a set of other
prediction models, related to AR models, and showed that AR(16) performs the best in
forecasting processor loads and running times of tasks. However, as stated in [23], they
only work well in case of periodicity. As we have seen in Figures 3.5(c) to 3.5(b), we
notice that the datasets do not show periodicity. Dinda used k-steps-ahead prediction
methods and implemented the Yule-Walker technique. However, we only use the part
of Dinda’s software that implements the one-step ahead prediction methods for the
following two reasons. The first reason is the ability to compare the predictions with
the one-step-ahead predictions of other predictors and the second reason is that one-
step ahead predictions are significantly more accurate.

A strong point is that AR methods adapt the parameters to the characteristics.
In case of many peaks, this method will adapt the parameters in a more ’averaging’
way, such that the peaks do not influence the predictions too much. When more level
switches occur, this method chooses for higher values for the first α parameters, such
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that it reacts fast on those switches. A weak point, however, is that the choice of the
parameters is not optimal. For example, when the AR method takes a high first param-
eter because the set shows some small level switches, it will give a highly inaccurate
prediction when a higher peak occurs (see Figure 7.3(a)). Another drawback of this
method is that when the structure of data points is changed it takes a long time before
the method is adapted due to the fact that this method uses more than 100 data points
to fit the parameters. Also in case of a trend upwards or downwards (see for example
Figure 7.3(b)) this method adapts the predictions too slowly, because a significant part
of the prediction is based on the average of the whole dataset.

(a) Peak on pre ar02 (b) Trend down on pre ar01

Figure 7.3: AR16-predictor reacting on a peak and a trend down in the running times

7.2.2 Adaptive Exponential Smoothing Predictors

Adaptive Exponential Smoothing Predictors (AESP) [66] use the following formula:

ŷt = αt−1yt−1 + (1 − αt−1)ŷt−1. (7.3)

and focus on adapting αt such that the αt will always get a good value that is indepen-
dent of the start value, and adapts when the structure of the values changes. We consider
the following variants of AESPs: Trigg and Leach [67], Whybark [70], Mentzer [55],
Pantazopoulos and Pappis [58], and the STES predictors [66].

7.2.2.1 Trigg and Leach

The method of Trigg and Leach [67] defines the smoothing parameter as the absolute
value of the ratio of the smoothed forecast error to the smoothed absolute error.

ŷt = αt−1yt−1 + (1 − αt−1)ŷt−1, (7.4)

with

αt := | At

Mt
|,

At := φ(yt − ŷt) + (1 − φ)At−1,

Mt := φ|yt − ŷt| + (1 − φ)Mt−1,
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Figure 7.4: A trend up and down on pre ar02

where φ is set arbitrarily, with 0.2 being a common choice [67]. Trigg and Leach
explain that this formulation enables αt to vary according to the degree to which biased
forecasts are obtained.

A main advantage of this prediction method is that it chooses a low α parameter
when there is a lot of noise in the dataset and a high α when there is less noise and
there are some level-switches. These properties improve the accuracy of the predictor.
A disadvantage of the proposed method is that it is difficult to find a suitable choice
of the parameter φ and that the approach sometimes delivers unstable forecasts [32].
Another weak point is that when a few successive data-points show a trend up (in
Figure 7.4 from value 710 to 711) and then a trend down (see Figure 7.4 from value
711 to 717) in the α value will first increase to close to 1, which increases the accuracy,
and then decreases to 0 and finally increases back to 1. Consequently, as is shown by
the Trigg and Leach prediction values 713 to 718 in Figure 7.4, the predictor does not
give very accurate predictions. In this case, it would be better when the α-value was
kept fixed to 1. Similar problems occur when there are many level switches up- and
downwards.

7.2.2.2 Whybark

AESP Whybark [70] defines the control limits in terms of multiples of the forecast
error standard deviation, σ. An indicator variable, δt, is defined as:

δt :=







1 if |yt − ŷt| > 4σ,
1 if |yt − ŷt| > 1.2σ, |yt−1 − ŷt−1| > 1.2σ, and (yt − ŷt)(yt−1 − ŷt−1) > 0,
0 otherwise.

The value of δt determines whether αt takes a base value, B, a medium value, M,
or a high value, H. Whybark suggests B = 0.2, M = 0.4 and H = 0.8. Taking
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everything together, the Whybark prediction is computed in the following way:

ŷt = αt−1yt−1 + (1 − αt−1)ŷt−1, (7.5)

with

αt :=







H if δt = 1,
M if δt = 0, and δt−1 = 1,
B otherwise.

A strong point of Whybark is that it distinguishes between normal situations and
those where there was a huge difference between the prediction and the measured
value; characteristics of predictions are always different when big differences occur.
However, further analysis with the 6 datasets shows that the Whybark predictor gets a
higher accuracy when it would distinguish between (1) ’normal’ fluctuations, (2) fluctu-
ations that are higher than 2 times the measured standard deviation, and (3) fluctuations
that are higher than ten times the measured standard deviation. A second strong point
is that Whybarks’ predictor contains a correction part; that is, when two successive
measurements both deviate in the same direction with more than 1.2 times the standard
deviation from the predictions, a different αt value has to be applied. Further analysis
with our analysis-phase datasets shows that this correction part increases the accuracy
of the predictor, but that a value of 1.0 makes better distinctions. A weak point is that it
does not distinguish between up- and downward fluctuations; it is not likely that those
situations can be interpreted the same. Moreover, Whybark reacts in the same way
to huge peaks as to two successive small differences between the prediction and the
measured value. Furthermore, Whybark always uses the same parameters for the same
kind of peaks; 0.8 for high peaks, 0.4 for the value after a high peak and also for two
successive differences, and 0.2 as a base value. In practice, however, characteristics
for each dataset are different. Figure 7.5(a) shows that the Whybark predictor does not
react properly to peaks. Whybark will only work well when peaks introduce a new
’level’ of values. It would be smarter when Whybarks predictor learns from historical
data whether a huge difference introduces a new level or is a peak.

(a) Whybark reacting on the peak (b) Mentzer reacting on the peak

Figure 7.5: Two predictors reacting on a peak in pre au01
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Finally, we conclude that the Whybark predictor contains a useful fluctuations clas-
sification, but that the following improvements can be made: (1) other decision rules to
distinct between the 3 classes of fluctuations, (2) a correction part parameter of 1.0, (3)
different treatment of down- and up-wards fluctuations, (4) different treatment of a data
point after a huge peak and two successive significant, but not enormous, differences,
and (5) adaptive parameters.

7.2.2.3 Mentzer

AESP Mentzer [55] uses the absolute forecast error fraction from the most recent pe-
riod as αt. In order to restrict αt to the interval [0, 1], if the absolute error fraction
exceeds 1.0, then αt is set to 1:

ŷt := αt−1yt−1 + (1 − αt−1)ŷt−1, with αt := min

(∣

∣

∣

∣

yt − ŷt

yt

∣

∣

∣

∣

, 1

)

. (7.6)

A strong point of this method is that when the forecasting error increases (decreases),
the α value also increases (decreases) to improve the forecast. A weak point of this
method is the reaction on peaks: when a peak occurs, the predictor will have a large
forecasting error, which leads to a high next prediction, which in turn causes another
large prediction error. This is illustrated in Figure 7.5(b). Another weak point is that
it is not clear why there should be a 1- 1 relation between the α-value and the last
forecasting error. For example, a forecasting error of 50% is a worse prediction and
probably needs an α value that is higher than 0.5. The height of the α value also
depends on the height of the standard deviation of the value.

7.2.2.4 Pantazopoulos and Pappis

Pantazopoulos and Pappis [58] argue that, since the ideal value for αt would lead to
ŷt+1 = yt+1, this ideal value can be derived by substituting yt+1 for ŷt+1 in (7.3) and
solving for αt to give

αt :=

(

yt+1 − ŷt

yt − ŷt

)

. (7.7)

Since yt+1 is unknown at time t, the ideal value of αt for period t−1 is used for period
t to give

αt :=

(

yt − ŷt−1

yt−1 − ŷt−1

)

, (7.8)

which can be substituted into the standard ES-Formula (7.3). In order to restrict αt to
the interval [0, 1], Pantazopoulos and Pappis propose that if αt /∈ (0, 1) then αt is set
to either 0 or 1, whichever one is closer.

A strong point of this predictor is that it calculates the optimal value of the αt’s for
the last predictor-value combination. With high probability, that optimal choice of αt

is also a very good choice for the next value. Unfortunately, brief consideration of (7.8)
suggests that the approach is unlikely to be of use. Since the one-step-ahead forecast
is also the multi-step-ahead forecast for simple exponential smoothing, the numerator
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Figure 7.6: P&P-predictor in pre warsch01

is a two-step-ahead forecast error, while the denominator is a one-step-ahead forecast
error. This suggests that the expression in (7.8) will very often lead to values larger
than 1. Following the rule of Pantazopoulos and Pappis (P&P), αt would then take
a value of 1. The result is that αt very often takes a value of 1, which is shown by
Figure 7.6. Moreover, this figure shows that the interpolation parameter α of the P&P
predictor is quite unstable, and in many cases results in inaccurate predictions, see for
example data points 171, 172, 185 and 186.

7.2.3 STES predictors

A smooth transition exponential smoothing (STES) method [66] has a smoothing pa-
rameter αt defined as a logistic function of a user-specified transition variable, Vt.
Mathematically, a STES method is defined as:

ŷt = αt−1yt−1 + (1 − αt−1)ŷt−1, (7.9)

where

αt :=
1

1 + eβ+γVt
. (7.10)

If γ < 0, then αt is a monotonically increasing function of Vt. Hence, as Vt increases,
the weight on yt increases, and consequently, the weight on ŷt decreases. The logis-
tic function restricts αt to lie between in the interval (0,1). Historical data is used to
calibrate the adaptive smoothing parameter, αt, through the estimation of β and γ in
(7.10). The derived values for β and γ in (7.10), govern the degree to which the varia-
tion in the transition variable influences the STES smoothing parameter. The choice of
the transition variable, Vt, is of crucial importance to the success of the method. Con-
sideration of the adaptive methods described in the previous section leads to a number
of different possible transition variables. The value of the smoothing parameter in all
of the existing adaptive methods depends to varying degrees on the magnitude of the
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most recent periods forecast error. At the end of this section we describe the different
methods we used: STES |e|, STES e2, and STES Whybark.

In [66], 80 data points are used to fit the parameters, and those parameters are used
to make one-step-ahead predictions of the next 20 values. To make a fair comparison
between the STES- and the other predictors, we fitted the β and the γ after every new
measured value. Moreover, for the STES predictors, we compared 10, 80, and “all
values” as the number of data points used for the fit.

Next, we describe the three specific STES prediction methods we used in the pre-
dictor analysis.

STES |e|
An obvious choice for the transition variable is the absolute value of the forecast error
from the most recent period:

Vt := |yt − ŷt|. (7.11)

In our analyses in Section 7.4 we make distinction between the situation in which we
let the predictor fit β and γ freely, and in which we restrict the γ to be lower than 0.
The purpose of restricting the γ to negative values is to get a high α value when the
absolute error is high.

STES e2

Another obvious choice for the transition variable is the square of the forecast error
from the most recent period:

Vt := (yt − ŷt)
2. (7.12)

STES Whybark

It is possible to use the αt outcome values of all the AESPs. We choose to use the
Whybark parameter as the transition variable, because short analysis showed that the
Whybark parameter was the best transition variable to choose:

Vt :=







H if δt = 1,
M if δt = 0 and δt−1 = 1,
B otherwise,

(7.13)

with

δt :=







1 if |yt − ŷt| > 4σ,
1 if |yt − ŷt| > 1.2σ, |yt−1 − ŷt−1| > 1.2σ, and (yt − ŷt)(yt−1 − ŷt−1) > 0,
0 otherwise.

A strong point of a STES predictors discussed above is that it does not assume
a linear relation between the transition variable and the value αt. With the logistic
function and the freedom of the parameters β and γ many different relations can be
created. Another strong point is that the relation between the transition variable and the
αt’s is fitted with two parameters, based on the history. Therefore, the αt is adapted
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Figure 7.7: STES predictors reacting on a peak in pre au01

in a way that it is optimal according to the history. Moreover, when the transition
variable has no correlation with the right αt, the method automatically adapts the γ to
0 and the smoothing parameter will be constant. The STES method, therefore, enables
re-calibration of the existing adaptive methods.

A weak point, however, is that it is not clear why a logistic function would work
better than other functions. Although previous experimental results have shown that
logistic functions work quite well, it is the question whether it is an optimal function for
the values of running times of jobs. Further on, this method uses the same formula for
peaks as for stable situations. Figure 7.7 shows the predictions around a peak of three
different STES predictors, which are described below. The figure illustrates that using
the same parameters for peaks as for stable situations leads to bad predictions. Besides,
the peaks have a high impact on the optimal parameters β and γ. Consequently, the α
will behave in a stable situation highly influenced by previous peaks.

7.2.4 Other predictors

As stated in [74] a homeostatic or a tendency-based predictor can be very effective in
predicting CPU load. A homeostatic predictor uses the assumption that if the current
value is greater (less) than the mean of the history values, then the next value is likely
to decrease (increase). A tendency-based predictor uses the assumption that when a
current value is greater (less) than the mean of the history values, then the next value is
likely to increase (decrease), because of a trend up- or downwards.

A disadvantage is that before the prediction process is started, a choice between
homeostatic or tendency has to be made. We know from the data analysis that it is
possible that the characteristics in the dataset change, and that during the run the other
type of predictor seemed to be more accurate. During our data analysis we noticed
that trends do not appear very often in the datasets, there are many level switches, and
sometimes homeostatic situations appear. For that reason we think that tendency-based
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predictors are not very accurate in predicting the running times of jobs. A homeostatic
predictor will probably work fine for some datasets, but for the nodes with many level
switches this method is very unlikely to be effective in the grid context. For these
reasons, we have not implemented this prediction method.

Another well-known method is Linear Regression (LR). This method is quite sim-
ilar to AR, when only historical data is used: the predictor is computed by multiplying
historical data with parameters, which are fitted by using a least-squares method and
the history. When not only data from the previous history is used, but also other infor-
mation, like load, this method differs from AR. The parameter used to multiply with
other data will also be fitted by its historical data. Since we focus on prediction meth-
ods based on the use historical data of running times of jobs only, LR is beyond the
scope of this study.

Besides the linear prediction-methods, some experiments on a non-linear predic-
tion method, called a Neural Network, have been performed. The results of the ex-
periments illustrate that Neural Networks are computationally infeasible and are not
accurate enough to be useful for prediction purposes in grids.

7.2.5 Conclusions of analyses

We conclude that although each prediction method has its strong points, none of the
predictors properly reacts to peaks and level switches, which are two of the most im-
portant characteristics of the evolution of running times in a grid environment. This
raises the need for the development of a new prediction method particularly suited for
the specifics of a grid environment. For this reason, in the next section we use the
insights in the pros and cons of the existing prediction methods to develop a new pre-
diction method that effectively reacts to the peaks and level switches observed in a real
grid environment.

7.3 New prediction method

7.3.1 DES prediction method

In this section we propose a method that effectively reacts to the peaks and level
switches: the Dynamic Exponential Smoothing (DES) method. To this end, we take
into account the benefits and drawbacks of the existing prediction methods. The basic
idea of the DES prediction method is that it (1) treats different classes of fluctuations
differently, (2) always computes the optimal parameter for those classes, and (3) has
the possibility to select another predictor from a set, because of performance reasons.
The parameter details are described below the mathematical description of the method.
Furthermore, the method to derive the optimal historical α parameter, α∗

t , is described
in Section 7.3.2. Finally, in Section 7.3.3 we discuss the effectiveness of the proposed
predictor. We propose the following complete DES prediction method for t = 2, 3, . . .:

ŷt =







ŷDES,t if κDES = minjε{DES,µ,median}(κj),
ŷµ,t if κµ = minjε{DES,µ,median}(κj) 6= κDES ,
ŷmedian,t otherwise,

(7.14)
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with

ŷDES,t := α∗
t−1yDES,t−1 + (1 − α∗

t−1)ŷDES,t−1, (7.15)
ŷµ,t := µ((y1, . . . , yt−1)), (7.16)

ŷmedian,t := median((yt−l, . . . , yt−1)), for l < t (7.17)

κi :=

t−1
∑

s=1

(ys − ŷi,s)
2, i ε {DES, µ, median}, (7.18)

where

α∗
t :=

1
∑t

s=2(ys−1 − ŷs−1)21{δs=δt}

t
∑

s=2

αs−1,opt(ys−1 − ŷs−1)
21{δs=δt},

(7.19)

where

αs−1,opt :=
ys − ŷs−1

ys−1 − ŷs−1
(7.20)

δs :=







































H1 if |ys − ŷs| > 10σ((ys−k, . . . , ys−1)),
H2 if (ys − ŷs) > 2σ((ys−k, . . . , ys−1)),
H3 if (ys − ŷs) < −2σ((ys−k, . . . , ys−1)),
M if |ys − ŷs| > σ((ys−k, . . . , ys−1)),

|ys−1 − ŷs−1| > σ((ys−k, . . . , ys−1)),
and (ys − ŷs)(ys−1 − ŷs−1) > 0,

B otherwise,

(7.21)

Note that µ((y1, . . . , yt−1)) is defined in (3.4), σ((yt−k , . . . , yt−1)) is defined in (3.5),
and median((yt−l, . . . , yt−1)) is defined in Definition 2.5.6.

As can be seen in (7.14), the DES prediction method selects the best prediction
method from a set of 3 predictors, by comparing the sum of the squared errors of the
previous measurements. The set contains the running average, the l-sliding window
median, and the DES predictor. The l-sliding window median takes the median of
the last l measurements. The implemented value for l is presented below. The DES-
predictor part classifies different types of fluctuations: three huge fluctuations classes
(H1, H2, and H3), 1 medium fluctuations class (M ), and 1 base class (B). If the
deviation between the measured value and its prediction is more than ten times the
standard deviation of the last k values, the measurement is of class H1. Furthermore,
when the deviation between the measurement and the prediction is higher than two
times (smaller than minus two times) the standard deviation, the measurement is of
class H2 (H3). Two consecutive measurements that both deviate in the same direction
with more than standard deviation from the predictions are of class M . B is the base
class and is defined for the rest of the cases. This classification is defined in (7.21).
When a measurement fits into multiple classes, the first mentioned class in (7.21) will
be chosen. Subsequently, the DES predictor computes the prediction by using the
exponential-smoothing equation with an α parameter that equals the weighted average
of the optimal α’s (see (7.19)) of the previous measurements that are of the same class
as the most recent measurement. Formula (7.19) is derived below.
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We implemented the predictor with k = 20, and l = 31, and fixed the maximal
number of data points to estimate each of the optimal α values for classes H1, H2, H3,
M and B at 500. When no fluctuations of a certain type were registered before, the
default value of 0.5 is taken. On the one hand, when k is higher than 20, the predictor
reacts slower on changes in standard deviations. On the other hand, when less values
are taken, the estimated standard deviations get less accurate. While 20 is a good value
for k, a higher or lower value does not affect the results significantly. The value 31 as
the value for l corresponds to one of the set of medians in [71]. Accuracy comparisons
showed that this sliding-window median performs better than medians with other l
parameters. The same holds for the choice to use all previous measurements for the
computation of the average. The number 500 ensures that on the one hand the α∗

t is
reliable and stable, because it is computed by enough measurements, and that on the
other hand the α∗

t is still able to adapt to new characteristics in the dataset.

7.3.2 Computation of α∗
t

In this section, we derive (7.19). To this end, let ŷs,opt be the ‘best possible prediction’
of ys, for s ε {2, . . . , t}. Then by definition,

ŷs,opt = ys. (7.22)

Moreover, let αs−1,opt be the best possible parameter for prediction of ys. Then

ŷs,opt = αs−1,optys−1 + (1 − αs−1,opt)ŷs−1. (7.23)

We compute the optimal exponential smoothing parameter for the prediction of ys,
αs−1,opt, by solving (7.23) and replacing ys by ŷs,opt, according to (7.22). We derive
the following αs−1,opt.

αs−1,opt =

{

ys−ŷs−1

ys−1−ŷs−1
if ys−1 − ŷs−1 6= 0,

0 else.
(7.24)

At a given time step s, if ys is known, we are able to calculate the Squared Error (SEs)
of one prediction in the following way:

SEs = (ys − ŷs)
2 = (ŷs,opt − ŷs)

2

= (αs−1,optys−1 + (1 − αs−1,opt)ŷs−1 − (αs−1ys−1 + (1 − αs−1)ŷs−1))
2

= (αs−1,opt − αs−1)
2(ys−1 − ŷs−1)

2. (7.25)

These formulas hold for all s ∈ {1, . . . , t}, with t the current time step. Subsequently,
we derive the total MSE of all predictions ys, for all s ∈ {1, . . . , t}. To this end, we
assume that αs = α for all s ε {2, . . . , t}.

MSEt =
1

t − 1

t
∑

s=2

(αs−1,opt − α)2(ys−1 − ŷs−1)
2. (7.26)

Next, we calculate α∗
t , i.e., the value of α in (7.26) that minimizes the MSEt, by taking

the setting derivative of (7.26) to α to 0. This leads to the following expression for α∗
t :

α∗
t =

1
∑t

s=2(ys−1 − ŷs−1)2

t
∑

s=2

αs−1,opt(ys−1 − ŷs−1)
2. (7.27)
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Note that this is equivalent to the weighted average of the values of αs−1,opt, with
weights (ys−1−ŷs−1)

2, for s = 2, . . . , t. Finally, to derive (7.19), an indicator 1(δs=δt)

is added to (7.27) to distinguish between the different classes.

7.3.3 Discussion

Formula (7.14) shows the selection algorithm of the DES prediction method. As we
have seen for the NWS method in Section 7.2.1.2, the datasets sometimes show char-
acteristics for which the average or the sliding median with window size 31 gives the
most accurate predictions. Around 10 % of the measurements show these kinds of char-
acteristics. Analysis shows that measuring the κi’s (see Formula (7.18)) is an effective
way of comparing the different predictors: in all the 10 % of the cases the average or
the sliding-window median is chosen. We note that comparing the κi’s is the same as
comparing the Root of the Mean Squared Errors (as will be described in Section 7.4).

In Chapter 3, we observed that the datasets may have completely different and
continuously changing characteristics. Therefore, as can be seen in Formula (7.19)),
we chose to adapt the αt’s to the situation of the characteristics. We concluded from
the analysis of the AESPs, the STES predictors and the AR method in Section 7.2 that
adapting the αt to the characteristics is an effective way to make the predictor robust
against all the completely different and ever-changing characteristics of the datasets.
However, we showed that improvements were possible on the following aspects: the
choice of the αt was not always clear and the αt’s are unstable in many predictors. The
choice of taking the optimal α of the measured data is very clear and leads to stable
αt’s within the classes of fluctuations.

Next, as shown in (7.21) we classified different types of fluctuations. We con-
cluded in Section 7.2.2.2 that Whybark consists of useful classification elements, but
that improvements are necessary to be made to develop a useful classification of run-
ning times. We incorporated those improvements in our prediction method, as can be
seen in (7.21).

Moreover, easy to measure statistics can be included in the model that compute
the MSE and the RMSE of the DES predictor by computing the squared differences
between the predictions from (7.14) and the data measurements. These statistics can
be applied in an online scheduling system that dynamically decides on the basis of
expectations of job runtimes which nodes in the resource set are used.

Finally, we would like to address that this method can be extended for more gen-
eral situations. We have planned to make those analyses in further research, which is
described in Chapter 8.

7.4 Experimental results

In this section we compare the performance of the DES prediction method with those
of the predictors described in Section 7.2. The following 45 datasets are used for those
accuracy comparisons: Amsterdam (ams), Beijing (china), Le Chesnay (inria), Copen-
hagen (dk), Madrid (mad), Moscow (mos), Pasadena (cal), Salt Lake City (utah), San
Diego (sandiego), Santa Barbara (santab), Singapore (sing), Sydney (au), Taipei (tw),
Tel Aviv (telaviv), Tucson (ar), Vancouver (ca), Warsaw (warsch), and Washington
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(wash). The details of how the datasets are generated are described in Section 2.4. In
this chapter, the same abbreviations are used as that are introduced in that section.

7.4.1 Quality metrics for prediction methods

To make a fair comparison we first have to select a metric for the prediction error.
There are two commonly used error evaluators: the Root of the Mean Squared Error
(RMSE) and the Mean Absolute Errors (MAE). Sometimes the MSE is taken instead
of the RMSE. We selected the RMSE because in the kind of applications we used it is
very important to minimize the number of high forecasting errors. Since the RMSE is
more sensitive to high forecasting errors, we prefer to use this metric. The RMSE of a
given predictor Y is defined as

RMSEY =

√

√

√

√

1

N − 1

N
∑

t=2

(yt − ŷt)2 (7.28)

We also need to define a metric that quantifies the improvement of a predictor in com-
parison to another predictor. As we have seen in Figure 3.8(e), jumps have a strong
impact on the standard deviation or the RMSE of the dataset, which is highly corre-
lated with the standard deviation. When the peaks or level switches do not show up
periodically, it is hard to predict when they occur. Consequently, jumps always have a
strong effect on the RMSE of a predictor. For that reason, we are interested in a mea-
sure that is able to compare the performance of different predictors and is independent
of the influence of the jumps on the standard deviation. Therefore, to compare differ-
ent predictors we define ∆%(A, B) to be the percentage improvement of predictor A
versus B:

∆%(A, B) :=
RMSEB − RMSEA

RMSEB − RMSE∗ ∗ 100%, (7.29)

where the value RMSE∗ is the optimal post-cast selected from the set of the NWS
predictors. It indicates the theoretically maximal forecasting performance (minimum
error) that the method could have achieved if the best predictor at each step was known
(see for more details about the RMSE∗ the definition of the Optimum in [71]). When
a jump occurs, even the optimal forecasting method has the property that it was not
able to predict that jump. But for the successive measurement, the optimal forecast
mostly has a low RMSE. Consequently, the RMSE∗ is the RMSE that a prediction
method would have when it would predict the behavior after jumps perfectly.

7.4.2 Comparison results

To compare the performance of DES with the existing prediction methods, we have
gathered experimental data from 45 datasets, as discussed above in this section. We first
compare the predictors on the basis of the time that it takes to compute each prediction.
Second we extensively compare their accuracies. The results are outlined below.

Table 7.1 shows us the ranking for the different prediction methods in terms of
the time that it takes to compute the prediction for the next value, and it shows the
number of computations needed per prediction. For the NWS and the AR predictor
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those times have been measured in [23] and [72], which is shown by the last column.
The table illustrates that the DES needs to perform a lower number of computations
than the NWS, which takes 161 microseconds on a Pentium III laptop. Consequently,
we conclude that the computational costs of the DES predictor are low enough such
that it can feasibly be implemented in online systems.

Predic- Number of computations Computational time
tor per prediction

1 ES two multiplications and < 161 microseconds
one summation

2 AESP nr. of multiplications < 161 microseconds
and summations

3 DES nr. of multiplications and < 161 microseconds
summations (order of 10)

4 NWS nr. of multiplications and [72]: 161 microseconds on an un-
summations (order of 100) loaded 750 MHz Pentium III laptop.

5 AR fitting procedure [23]: 1.4 ms on an unloaded 500 MHz
Alpha 21164-based workstation

6 STES fitting procedure > 1.4 ms

Table 7.1: Comparison of the computational costs of the prediction methods

Next, we compare the accuracy of the different prediction methods. Figure 7.8
shows the performance improvements of the DES prediction method compared to the
Trigg and Leach predictor and the Whybark predictor. Similarly, Figure 7.9 shows the
results for DES compared to the Mentzer and Pantazopoulos & Pappis predictor.

Figure 7.8: DES-predictor improvements compared to the Trigg & Leach and the Whybark pre-
dictor

The results presented in Figures 7.8 and 7.9 show that the DES prediction method
strongly and consistently outperforms the other predictors. The improvements are re-
markably high: for many datasets the DES prediction method shows improvements of
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Figure 7.9: DES-predictor improvements compared to the Mentzer and Pantazopoulos & Pappis
predictor

Figure 7.10: DES-predictor improvements compared to the STES predictors

more than 30%. From the four AESP predictors considered here, the Whybark predic-
tor gives the most accurate predictions, but is still strongly outperformed by our DES
predictor.

Figure 7.10 shows the prediction performance of in total 12 STES predictor-
parameter combinations for the three randomly-chosen datasets ar07, tw01, and
wash01. We tested the STES |e| predictor with parameter γ < 0, the STES |e| predic-
tor with no restrictions on γ, the STES e2 predictor and the STES Whybark predictor.
For all the four predictors we used 10, 80 and 2000 data points for the fit. We tested
those predictors only with three datasets due to the fact that the STES predictors take
too much time (a whole day per dataset). We observe considerable differences in the
prediction results of the different methods. Although three datasets are not enough to
draw conclusions that are statistically significant, we expect because of those signifi-
cant differences that the following observations hold for almost all the datasets. The
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Figure 7.11: DES-predictor improvements compared to the STES e2 and STES Whybark pre-
dictors

results in Figure 7.10 show for the three datasets that it is better to use all the data (at
least 2000 values) for the parameter fit, and that the STES e2 and the STES Whybark
are the best STES predictors. Those methods need further comparison analysis with
more datasets to conclude more about the quality of their predictions. We used the
following randomly-chosen datasets for the further analysis: ams03, ar04, ar05, ar07,
ar08, au02, ca01, cal03, china02, dk01, inria01, mos01, sandiego02, sing01, telaviv01,
tw01, utah03, warsch01, and wash01. In Figure 7.11 we compare the improvements of
the DES prediction method in comparison with the STES e2 and the STES Whybark
predictor for all those datasets. We clearly observe that the DES prediction method out-
performs the other two predictors. For two of the datasets the DES shows even more
than 50% improvements for both of the other predictors.

Figure 7.12 below shows the improvements of the DES prediction method com-
pared to the ES predictor with α = 0.5, denoted as the ES(0.5) predictor. Despite
the fact that DES is based on ES, the method shows a completely different accuracy:
the difference between the RMSEs of the ES(0.5) predictions and the DES predictions
ranges from −17% to +70% and differs for each dataset. Only for single dataset the
ES(0.5) predicts significantly better than the DES. On average the DES shows 11%
improvement.

Figure 7.13 illustrates the improvement of the DES prediction method in compari-
son with the NWS prediction method. The figure shows that DES mostly outperforms
the NWS prediction method. For 6 of the 45 datasets the NWS prediction method is
only 1 to 5 percent more accurate than the DES prediction method. However, on aver-
age 8% improvements can be performed by implementing the DES prediction method
instead of the NWS prediction method.

Figure 7.14 illustrates the performance improvement of the DES prediction method
in comparison with the AR(16) predictor. Figure 7.14 shows more fluctuations than
Figure 7.13, because the DES and the NWS prediction methods have more similarities.
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Figure 7.12: DES-predictor improvements compared to the ES(0.5) predictor

Figure 7.13: DES-predictor improvements compared to the NWS prediction method
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Figure 7.14: DES-predictor improvements compared to the AR16 predictor

For five datasets the AR(16) predictor shows more than 5% accuracy improvements
compared to the DES prediction method. In fourteen cases the DES prediction method
shows more than 10% improvement. For three datasets the DES prediction method is
even more than 40% more accurate than the AR(16) predictor. On average, the DES
prediction method is 9% more accurate than the AR(16). As we see in Figures 7.12
to 7.14 DES consistently outperforms all other predictors for datasets au02 and tela-
viv02. Further analysis show that the jumps in those datasets have a huge influence on
the standard deviation. We found that the main reason for the enormous performance
improvement is that the DES prediction method is the only method that reacts properly
on the high jumps. Nevertheless, when we filter out the jumps with a deviation above
ten times the standard deviation the DES still clearly outperforms the others predictors.

Next, we investigate the reason for the performance improvement of the DES pre-
diction method in comparison with the best of the other predictors, the NWS prediction
method. To this end, we analyze the situations in the datasets where DES clearly out-
performs NWS. We observe two main reasons why DES outperforms the NWS predic-
tion method: (1) DES reacts more properly on peaks, and (2) DES reacts more properly
on level switches. To investigate this more carefully, we add the predictions of the DES
prediction method in Figure 7.2. The results are graphically represented in Figure 7.15.

We notice the following from Figure 7.15(a). Due to the values before the jump,
the NWS chooses a predictor that gives a high weight to the last value. When the
jump appears, the NWS prediction for the next running time also gets very high, even
though there is a high probability that it is a peak, because almost all the jumps in
history were peaks and not level switches. The DES prediction method also gives a
prediction that is slightly too high due to the fact that one jump in history did introduce
a new level. However, as can be seen in Figure 7.15(a) at data points 300-312, the DES
predictor sometimes shows a too stable pattern after a peak. In that case DES interprets
every fluctuation as a jump without level switch and therefore does not react on the
fluctuations. But, nevertheless, the DES prediction method is far more accurate than
the NWS prediction method.
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(a) Peak on pre ar02 (b) Level switch on pre telaviv01

Figure 7.15: DES- and NWS prediction method reacting on a peak and a level switch in the
running times

In Figure 7.15(b), we have a different situation: jumps introduce a new level of run-
ning times. In this example we see that the NWS also shows a bad performance. Due
to the fact that the values before the jumps need a predictor that has a more averaging
property, the NWS also uses the average to predict the value after the jump despite the
fact that the jumps in history very often introduced a new level. It takes three values
(i.e., jobs durations) before the NWS prediction method realizes that the predictions are
not accurate. The DES prediction method clearly shows a better pattern of predictions
in the level switch.

Despite the two previous mentioned situations where the NWS prediction method
does not react very properly on jumps, there are a lot of situations where the NWS
prediction method does react appropriately. There are three situations where the NWS
does react very accurately: (1) when a more averaging predictor is chosen because
of the values before a jump, and it does not introduce a new level, (2) when a last
value predictor is chosen before a jump and the jump introduces a new level, and (3)
when the jumps appear in quick succession, the NWS still remembers what the best
predictor was during the last jump, because jumps have a high impact on the RMSE,
and therefore on the choice of the predictor.

To summarize, the comparison results show that in general the DES prediction
method outperforms the existing predictions methods. Another well performing pre-
dictor for predicting running times of jobs is the NWS prediction method.

7.5 Correlation DES and statistics

The statistical characteristics of the resources in grid environments which are discussed
in Chapter 3 differ for every grid environment. Consequently, the quality of the dif-
ferent predictors which are discussed in this chapter depends on those properties, and,
therefore, it is hard to know in advance which predictor can be applied for which situ-
ation. In this section we investigate the relation between the statistical characteristics
of the measurements and the quality of the predictors DES, NWS, and AR for these
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measurements. In order to measure the quality difference between two predictors, we
use the percentage improvement ∆%(A, B) (see: (7.29)).

In addition we define the following statistics which potentially have a relation with
the improvement percentage of DES compared to the NWS and the AR. The names of
the quantities in the formulas and the abbreviations correspond to those of Chapter 3.
The statistic rmsejumps/σ is the RMSE impact of the jumps divided by the standard
deviation and indicates how much impact a single jump on average has on the standard
deviation. Statistic rmsejumps/µ is the RMSE impact of the jumps divided by the
average. In addition, rmsejumps/(µ ∗ fjumps) equals the previous statistic divided
by the fraction of jumps. This statistical property indicates the sum of the RMSEs of
all jumps with their previous value, compared to the average of the dataset. Moreover,
rmsejumps/(rmselv∗fjumps) is the RMSE impact of the jumps divided by the RMSE
of the last value and the fraction of jumps. This statistic tells something about the
complete impact of all jumps together on the total amount of fluctuations. Next, the
msejumps/(σ2 ∗ fjumps) is the RMSE impact of the jumps divided by the variance
and the fraction of jumps. This statistic has the property that it illustrates how much
influence each single jump on average has on the variance, compared to the variance
of the dataset. Finally, the msejumps/(mselv ∗ fjumps) corresponds to one of the
above statistics. In order to compute this statistic, take the MSE impact of the jumps
and divide it by the MSE of the last value and the fraction of jumps. This indicates
how much influence each individual jump on average has on the variance, compared
to the total fluctuations in the dataset. Table 7.2 represents the correlation coefficients
between the statistics and the improvement percentages of DES compared to the NWS
and the AR16 predictors.

We conclude from the investigations that many statistics have a positive relation
with the improvement percentage of DES. The Coefficient of Variation has significant
influence; the higher the standard deviation compared to the average, the higher the
improvements that can be made by DES. Further, the standard deviation of the stan-
dard deviations divided by the average and the coefficient of variation of the standard
deviations have a significant influence on the success factor. The RMSE impact of the
jumps themselves does not have a high correlation with the improvement, but when the
RMSE impact of the jumps is divided by the RMSE of the last value, the average, the
average multiplied with the fraction of jumps, or the RMSE of the last value multiplied
with the fraction of jumps, the impact is much higher. The same holds for the MSE
impact of the jumps when it is divided by the variance multiplied with the fraction of
jumps, and the MSE of the last value multiplied with the fraction of jumps. An increase
of those above mentioned statistics leads to a bigger difference in the accuracy of the
DES in comparison with the other predictors. We conclude that when at least one of
the above mentioned statistics of a dataset has a high value, it is very useful to apply
the DES predictor.

Furthermore, we observe the following. There are two statistics that have a slight
negative impact on the accuracy of the DES predictor: the σ/rmselv and the fraction
of jumps. However, due to the fact that the correlation coefficient are not significantly
negative, it is not possible to draw strong conclusions. The height of the rest of the
statistical properties do not have a significant influence on the success of DES in com-
parison with NWS or AR16. We notice some difference between the results of the
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Correlation with Correlation with

Name improvement % improvement %

DES vs. NWS DES vs. AR16

µ 0.03 -0.03

σ 0.07 -0.01

c 0.57 0.35

rmselv 0.12 0.04
σ

rmselv
-0.10 -0.21

σ(µ) 0.03 -0.03

c(µ) 0.36 0.23
σ(µ)

σ
-0.06 0.00

σ(σ) 0.23 0.10
σ(σ)

µ
0.85 0.63

c(σ) 0.83 0.66

fjumps -0.36 -0.19

σjumps 0.17 0.06

rmsejumps 0.20 0.10
σjumps

σ
0.52 0.52

rmsejumps

σ
0.33 0.41

rmsejumps

rmselv
0.49 0.41

rmsejumps

µ
0.65 0.51

rmsejumps

µ∗fjumps
0.90 0.74

rmsejumps

rmselv∗fjumps
0.73 0.63

msejumps 0.09 0.06
msejumps

σ2 0.37 0.48
msejumps

σ2∗fjumps
0.93 0.81

msejumps

mselv∗fjumps
0.80 0.69

Table 7.2: Correlations between the gain of DES and 24 different statistical properties
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NWS compared to the AR16. The correlations belonging to the analyses with the
NWS are higher than those of the AR16.

7.6 Conclusions

The conclusions drawn in Chapter 3 about the grid properties has raised the need for
the development of effective methods for prediction of running times that are able to
deal with those characteristics. In this chapter, we have analyzed the performance of
a variety of prediction methods. Our results show that none of these methods is well-
suited for dealing with the specifics of running times in a grid environment, including
the presence of level switches and sudden peaks. To this end, we have developed a
new prediction method, called DES, that overcomes the shortcomings of the existing
methods by properly reacting to level switches and peaks. The power of DES lays in
the fact that it is able to deal with both peaks and level switches.

Extensive comparisons with a large number of datasets show that DES is a highly
effective method for predicting running times of jobs on shared processors. DES con-
sistently outperforms the common grid prediction methods, such as the NWS predic-
tor, AR(16), and ES, and moreover, gives much more accurate predictions than the
Adaptive Exponential Smoothing Predictors Trigg and Leach, Whybark, Mentzer, Pan-
tazopoulos and Pappis, and four kinds of promising Smooth Transition Exponential
Smoothing predictors. Consequently, the predictor has proved its robustness against
the completely different characteristics of the job runtimes that are measured on het-
erogeneous nodes.

In addition, we investigated the relation between the improvements in accuracy
of the DES predictor compared to the NWS, and the Autoregressive predictor and 24
different statistics. We conclude that the statistic of statistic MSE impact of the jumps
divided by the variance multiplied with the fraction of jumps has the highest correlation
coefficients (0.93 and 0.81) with the improvements percentages.
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8

FURTHER RESEARCH

The results presented in this thesis lead to a number of challenges for further research.
First, in the conducted research of this thesis we have focused on the dynamics of
processing speeds. However, in data-intensive grid applications the uncertainties in
the available amount of network capacity may have a more significant impact than
fluctuations in the processor speeds. To this end, many efforts are being undertaken
to control these changing network capacities (e.g., [19, 71]). It is a challenge in grid
environments to integrate the methods that cope with the dynamics of the processors
and of the network, such that applications are robust against every type of fluctuation.

In addition to the research which is carried out in Chapter 3 it is interesting to inves-
tigate the correlations between the job runtimes on different processors. An effective
statistical method to quantify these relations is the Cross Correlation Function (CCF).
We plan to compute the CCFs of the job runtimes on different nodes and make contour
plots, which will provide insight in those correlations.

An interesting and important question in running dynamic load balancing (DLB)
applications in a grid environment is to derive the optimal number of iterations between
successive load re-balancing steps. In the experiments of Chapter 4, the DLB-actions
were performed each N = 10 iterations. However, due to the random nature of the
grid environment, one may expect that more efficient load balancing schemes can be
achieved by allowing load balancing actions to be performed at any moment, according
to some dynamic algorithm that optimally balances the “cost” of load balancing ac-
tions, which depends on the number of processors, the problem size, and the overhead
of rescheduling load, and the benefits in quickly reacting to load changes. Moreover,
we have performed experiments with the SOR application. SOR has a specific linear
structure, which is shown in Section 2.3. The question arises to what extent the results
presented in this chapter are applicable to other SPMD applications. In-depth analysis
of parallel applications with a non-linear structure is a challenging topic for further
research.

In Chapter 5, we present a model that describes the iteration of a parallel program
based on job replication (JR) and which runs on homogeneous nodes. It would be a
challenge to develop such a model for the case that a program runs on heterogeneous
nodes. This means that the nodes in the grid environment all can have a different job-
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runtime distribution. Consequently, similar to the analyses of this chapter, the charac-
teristics and sensitivity of the JR speedups on heterogeneous nodes can be investigated,
and more insight in the speedups can be obtained.

Finally, the results presented in Chapter 7, which analyzes prediction methods in
grids, lead to a number of challenges for further research as well. First, there is room
for refinement of the DES predictor. For the running times of jobs, the current choice of
parameters for the heights of jumps (i.e. a difference between two consecutive values
of more than two times the standard deviation is a jump, and more than ten times the
standard deviation is a high jump) leads to significant improvements in the predictions.
We expect that those parameters partly depend on the properties of the dataset. We plan
to investigate whether it is possible to adapt these parameters to the statistical proper-
ties of the datasets. Consequently, this means that predictors for job runtimes which are
measured on different nodes choose different values for the above mentioned parame-
ters. Moreover, this strategy can be applied if the job size is adapted. For this case it is
reasonable that the level switches and peaks change their shapes and therefore it is nec-
essary that the parameters adjust to the new characteristics. Second, we aim to apply
the DES prediction method for predicting other types of grid property measurements
(e.g., latency, CPU utilizations) or in other large-scale grid environments. Finally, the
ultimate goal of the development of effective prediction methods in the context of the
computational grid is to decrease the effective running times of distributed applications
by triggering effective load re-balancing actions. Therefore, the next step is to quan-
tify the actual improvements that can be obtained in the running times of distributed
applications, which addresses a challenging area for further study.
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SAMENVATTING

Robuuste applicaties in gedeelde verspreide systemen

De laatste decennia hebben bedrijven en instellingen een groeiende behoefte aan
computerkracht. Het KNMI is een voorbeeld van zo’n instelling omdat zij iedere dag
grote en complexe berekeningen uitvoert om de weersvoorspellingen voor de volgende
dag te berekenen. Het KNMI verbetert ieder jaar haar modellen en heeft daarvoor
steeds meer computerkracht nodig. Ook financiële instellingen, die iedere dag de
actuele situatie berekenen van al hun klanten, voeren grote berekeningen uit. Door de
groeiende hoeveelheid gegevens die bijgehouden wordt door deze instellingen groeit
ook hun vraag naar computerkracht. Een ander toepassingsgebied is de veiligheid op
bijvoorbeeld luchthavens: binnen enkele jaren worden irisscans en vingerafdrukken
van alle passagiers ter plaatse vergeleken met die van wereldwijde databases. Daarbij
is een vereiste dat de applicatie binnen enkele seconden aangeeft of de passagier
geweigerd moet worden. Hieraan kan alleen voldaan worden als er genoeg rekenkracht
beschikbaar is.

Op dit moment voorziet men in de vraag naar computerkracht door per type
toepassing tientallen computers aan elkaar te koppelen in clusters zodat deze
applicaties hierop uitgevoerd kunnen worden. Deze lokale netwerken van computers
zijn kostbaar en moeten vaak worden uitgebreid of er dienen computers vervangen te
worden om aan de groeiende behoefte aan computerkracht te blijven voldoen.

Tegelijkertijd is het aantal computers in de wereld erg hoog en neemt jaarlijks
enorm toe. Bovendien worden zij door nieuwe processortechnologieën steeds sneller.
De bezettingsgraad op deze computers is over het algemeen laag, wat betekent dat de
capaciteit vaak niet volledig of helemaal niet wordt gebruikt. Door de ontwikkeling
van hogesnelheidsverbindingen kunnen deze computers aan elkaar gekoppeld worden
zodat er een groeiende, wereldwijde bron van computerkracht, genaamd een Grid,
ontstaat. Dit Grid is een goed alternatief voor de hierboven genoemde clusters door zijn
grote en steeds groeiende beschikbare capaciteit die ontstaat door de schaalvoordelen.

Een Grid heeft dus voordelen ten opzichte van een cluster van computers, maar
er zijn een aantal punten waar aandacht aan geschonken dient te worden. Zo dient
ten eerste de beveiliging sterk verbeterd te worden. Het aantal mogelijkheden om bij
een computer te kunnen inbreken zal toenemen. Daarnaast moeten alle programma’s
op een dusdanige manier geschreven worden dat de berekeningen op iedere computer
uitgevoerd kunnen worden. Bovendien moet er een geavanceerd systeem komen dat
aan de ene kant alle berekeningen ontvangt en ze aan de andere kant zo goed mogelijk
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distribueert in het Grid. Ook moet er rekening gehouden worden met het feit dat het
aantal beschikbare computers voortdurend verandert.

De toewijzing van de beschikbare capaciteit in een cluster of een Grid kan op
twee manieren plaatsvinden: volgens (1) reservering van de volledige capaciteit: de
gebruikers reserveren de volledige capaciteit van een aantal processoren en wachten
tot deze vrij zijn, en (2) processor sharing: de capaciteiten van de processoren worden
op hetzelfde moment door verschillende gebruikers gedeeld. Wanneer het aantal
gebruikers in het Grid op een moment lager is of iets hoger dan het aantal beschikbare
computers dan is reservering van de gehele capaciteit beter omdat de wachttijd voordat
de berekeningen kunnen beginnen vrij laag is en vervolgens zal het uitvoeren van de
berekeningen minder tijd vergen omdat men de processoren maximaal kan inzetten.
Echter, een hoger aantal gebruikers leidt bij dit reserveringstype tot lagere efficiëntie
van de processoren en significant langere wachttijden. In dit geval is processor sharing
een veelbelovend alternatief: bij dit reserveringstype zijn er per definitie nauwelijks
wachttijden voordat de berekeningen kunnen beginnen. Echter, de rekentijden zijn vaak
langer en fluctueren voortdurend door de veranderende vraag naar processorcapaciteit.

Op dit moment maken clusters over het algemeen gebruik van volledige
capaciteitsreservering en de wereldwijde grids van processor sharing door het grotere
aantal gebruikers op deze grids. Om de wereldwijd verspreide processor-sharing
grids een goed alternatief te laten zijn voor de clusters, die gebaseerd zijn op
volledige capaciteitsreservering, moeten de applicaties robuust gemaakt worden tegen
het veranderende aantal beschikbare computers en de steeds fluctuerende snelheden
van de processoren. In dit proefschrift richten we ons op de ontwikkeling van methoden
om grid applicaties robuust te maken tegen de voortdurend veranderende effectieve
snelheden van de processoren.

Een parallel programma dat berekeningen stuurt naar meerdere computers en
vervolgens moet wachten op alle uitkomsten zal door deze fluctuaties veel vertraging
oplopen. Er zijn over het algemeen twee typen implementaties die gebruikt worden
om hierop te anticiperen: (1) Dynamische Load Balancing (DLB) en (2) Job Replicatie
(JR). DLB past de groottes van de berekeningen dynamisch aan aan de voorspelde
snelheden van de processoren. JR repliceert de berekeningen een aantal keer, verstuurt
ze naar verschillende processoren en wacht totdat één van de processoren klaar is.
Op dat moment worden de nog niet afgeronde gerepliceerde berekeningen beëindigd
en wordt een nieuwe serie van berekeningen verstuurd. JR maakt geen gebruik van
voorspellingen van de processorsnelheden.

In dit proefschrift behandelen we de volgende onderwerpen. In hoofdstuk 2
beschrijven we de gebruikte experimentele grid omgeving, Planetlab [2], en de
gebruikte applicatie, SOR [31]. Bovendien worden diverse termen of begrippen
gedefinieerd, die in het hele proefschrift worden gebruikt en worden de simulaties van
JR en DLB uitgebreid omschreven.

In hoofdstuk 3 zijn de statistische eigenschappen van berekentijden onderzocht.
In dit hoofdstuk concluderen we dat de karakteristieken van deze tijden per processor
sterk verschillen en dat er veel niveausprongen en pieken in de rekentijden zitten.

Verder is in hoofdstuk 4 onderzocht hoe verschillende DLB implementaties in
wereldwijd verspreide grid-omgevingen draaien. Voor dit onderzoek zijn simulaties
en experimenten met een DLB implementatie uitgevoerd. De conclusie is dat DLB
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een effectieve methode is om in te spelen op veranderingen in de rekentijden en dat de
winst toeneemt naarmate grid applicaties meer processoren gebruiken.

Daarnaast zijn in hoofdstuk 5 diverse modellen ontwikkeld om schattingen te
maken van de rekentijden van parallelle programma’s op homogene processoren
die gebruik maken van JR. Bovendien zijn er simulaties van JR implementaties op
homogene en op heterogene processoren uitgevoerd. Hiermee schatten we de winst
van JR ten opzichte van bestaande implementaties. Deze analyses laten zien dat ook
JR een effectieve methode is om in te spelen op een dynamische omgeving.

In hoofdstuk 6 vergelijken we de resultaten van DLB en JR voor verschillende
cases. De conclusie is dat DLB en JR effectiever zijn naar mate er meer en hogere
fluctuaties zijn. DLB verdient de voorkeur boven JR wanneer er goede voorspellingen
van de processorsnelheden te maken zijn, anders verdient JR de voorkeur. Vervolgens
introduceren en motiveren we een eenvoudig te meten statistiek waarbij geldt dat als
deze groter is dan een te bepalen drempelwaarde dat DLB effectiever is en anders JR.
Dit vormt de basis voor een adaptieve methode die dynamisch kiest tussen een DLB en
een JR methode. Deze adaptieve methode presteert in alle situaties op zijn minst beter
als één van de twee enkele methoden.

In hoofdstuk 7 richten we ons vervolgens op het ontwikkelen van een nieuwe
voorspelmethode voor rekentijden op gedeelde processoren. Hiervoor zijn de sterke en
zwakke punten van bestaande methoden geanalyseerd op basis van een theoretische en
een statistische analyse. De conclusie van deze analyse is dat de bestaande methoden
niet goed omgaan met de vele niveausprongen en pieken in de rekentijden. Al het
verkregen inzicht bij diverse analyses is gebruikt om een nieuwe voorspelmethode te
ontwikkelen. Een vergelijking van de nauwkeurigheid van de voorspellers laat zien dat
de nieuwe voorspeller een verbetering is ten opzichte van de bestaande methoden.

Uiteindelijk worden in hoofdstuk 8 een aantal mogelijkheden voor verder
onderzoek aangegeven.
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