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1

General introduction

1.1 Land use history of Puerto Rico

The island Puerto Rico is the smallest of the Greater Antilles. Measuring roughly
180 x 60 km, it is situated in the eastern Caribbean at 18o15’N and 66o30’W (figure
1.1). Apart from the coastal plains on the north and south coast, the island is moun-
tainous, with the highest peaks in the central and north-eastern part of the island
rising to elevations of 1000-1300 m a.s.l. (figure 1.2).

In pre-Colombian times, the island was largely covered by forest, although
archeological discoveries have revealed that the inhabitants of that time, the Taı́nos
Indians, cleared forest areas for agricultural purposes (Gomez and Ballesteros, 1980).
With the arrival of the Spanish in the early 16th century a major phase in the forest
clearing began. Timber production was one reason, but clearing was also done for
agricultural pursuits including annual cropping, sugar cane, pasture, coffee and
banana plantations. By 1828, 65 percent of the island had been cleared (Wadsworth,
1950). In 1899, forest cover was only 20 percent, while 55 percent had been trans-
formed into pasture and 9 percent into coffee plantations. The forest area was fur-
ther reduced to 9 percent in 1931 (Durland, 1929; Gill, 1931) and as little as 6 per-
cent in the late 1940’s (Koenig, 1953). As the hill sides were subject to erosion and
plantations were frequently damaged by hurricanes, cropland and pasture were
abandoned in the uplands, and the forest gradually recovered (Aide et al., 1995).
Furthermore, U.S. and Puertorican government policies intended to shift the focus
of the island’s economy from agriculture toward industrial activities (Dietz, 1986).
In 1980, reforestation had taken place to the point that 28 percent of the formerly
deforested areas had recovered, making Puerto Rico one of the few tropical sites
where reforestation is taking place at a higher rate than deforestation (Birdsey and
Weaver, 1982, 1987), while at the same time, urbanizations and industrial areas con-
tinued to use more space. In 1990, 32 percent of the land was forested (Franco et al.,
1997), mostly regenerative secondary forest.

1
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Figure 1.1: Map of Central America and the Caribbean. The arrow indicates the island Puerto
Rico.

1.2 Evidence of climate change on Puerto Rico

There are indications that the climate on Puerto Rico is changing. For example,
trend analysis of annual precipitation totals at the eight stations with the longest
periods of record on the island, shows that precipitation totals have decreased sig-
nificantly during the last century, for 6 out of these 8 stations (figure 1.3, see also
appendix A for details, figure 1.2 for the location of the stations). Although the 10
driest years are distributed fairly even over the century, Larsen (2000) found that
1997, 1994 and 1991 were the 2nd, 3rd and 6th driest years of the 20th century.

Furthermore, the observation that, after widespread defoliation due to the pas-
sage of hurricane Hugo over Puerto Rico in September 1989, the cloud base was
well above the highest peaks (>1000 m) in the Luquillo Experimental Forest in the
north-eastern part of the island for a number of months, whereas the peaks are nor-
mally enveloped in clouds F.N. Scatena (personal communication), suggests a link
between the development of clouds and the vegetation cover (see also Bruijnzeel
and Hamilton (2000)).

The probability that deforestation of the island may induce a reduction of pre-
cipitation totals, is relevant, because during prolonged drought periods, the fresh-
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Figure 1.2: Topographical map of Puerto Rico. The contour interval is 200 m.

water storage capacity on the island may not be sufficient to meet demands for
domestic, agricultural, industrial and ecological purposes. In fact, the mandatory
water rationings, which were implemented six times during the 1990’s for periods
of up to six months (Larsen, 2000), had a strong impact on the population, as well
as on agriculture, with an estimated economic loss of $165 million in 1994 (Lugo and
Garcı́a-Martinó, 1996).

From an ecological point of view, a change in the lifting condensation level
may affect the biotope of the already endangered ecosystem known as the tropi-
cal montane cloud forest (Pounds et al., 1999; Bruijnzeel and Hamilton, 2000). The
often stunted, epiphyte-loaded trees in these forests receive a considerable amount
of their water supply through the process of cloud stripping, i.e. filtering of wind-
driven mist and low clouds by the vegetation, a process that is also referred to as
horizontal precipitation (Bruijnzeel and Procter, 1995; Bruijnzeel, 2000). The existence
of this vulnerable forest type, that is still widespread in the uplands of Central
America and the Caribbean (LaBastille and Pool, 1978; Vazquez-Garcia, 1995), is es-
pecially sensitive to a lifting of the cloud base, because this would raise the lower
boundary of occurrence (Still et al., 1999; Foster, Submitted).

The island of Puerto Rico provides a particularly suitable location to study the
impacts of land cover transformation, because detailed long-term climatic, hydro-
logic and land use records are available. The results of such a study will, at least
partially, be applicable to other maritime tropical areas, such as other Caribbean
islands, Central America and also parts of South-east Asia and the Pacific.

1.3 Review of model studies of climate impact of land
cover change

Many researchers have investigated the effects of deforestation on regional climate,
making use of general circulation models. Most attention has been paid to large-
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Figure 1.3: Trends in annual precipitation in the 20th century for eight selected stations on
Puerto Rico. α represents the confidence level. Data source: National Climatic Data Center
(1999).
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scale deforestation under continental tropical conditions, notably the conversion
to pasture of the Amazonian rain forest block (Costa, in press). The least complex
models only take the associated increase in albedo (i.e. the fraction of sunlight
reflected at the surface) into account (Mylne and Rowntree, 1992; Dirmeyer and Shukla,
1994; Polcher and Laval, 1994a; Yukuan et al., 1994). In such cases, the first direct effect
of forest conversion is the reduction of absorbed sunlight, which means that less
energy becomes available to warm up the air near the surface (sensible heat) and to
evaporate water from the surface or from the vegetation (latent heat). Considering
that 30-50 percent of the precipitation is thought to originate from local evaporation
in the Amazon region (Lean and Warrilow, 1989; Eltahir and Bras, 1994; Costa and
Foley, 1999), the reduction in evaporation will also reduce precipitation. Polcher
(1995) stresses that a reduced sensible heat flux lowers the frequency of convective
events, thereby also diminishing regional precipitation. The net effect of decreased
precipitation (P ) and evaporation (E) is usually called moisture convergence (P -
E), which may thus increase or decrease, depending on the respective changes in
P and E predicted by the models (Costa, in press).

Model studies with advanced vegetation schemes are able to incorporate the re-
sponse of the plants to changes in soil moisture (Shukla et al., 1990; Lean and Rown-
tree, 1993; Ashby, 1999). When precipitation becomes less, the soil moisture content
decreases. The vegetation usually responds by reducing its transpiration rate. It
depends on the specific situation, such as the sensitivity of the vegetation or the
rainfall distribution in time, whether the change in transpiration is greater or less
than the change in precipitation. In most model studies the predicted moisture con-
vergence has become smaller after tropical deforestation (Lean and Warrilow, 1989;
Shukla et al., 1990; Lean and Rowntree, 1993; Dolman et al., 1999), but this is not nec-
essarily so, as shows the work of Dirmeyer and Shukla (1994). Similarly, Polcher and
Laval (1994b) obtained a reduction in moisture convergence for south-east Asia and
Amazonia after a simulated change from rain forest to grassland, but not for Africa.

It may be clear that the potential for climatic change due to land cover trans-
formation is greater when the transformation is taking place on a larger scale, im-
plying that atmospheric feedback mechanisms could then become stronger as well.
For example, an increase in albedo associated with deforestation will reduce the
potential for convection, which can modify the large-scale atmospheric circulation
when occurring on a large scale (Eltahir, 1996; Costa and Foley, 2000).

There are numerous other processes and feedback mechanisms that complicate
the simplified impression above. For example, if the vegetation responds to a re-
duction in soil moisture by strongly reducing the transpiration rate, more energy
will become available to heat the surface and the air above it, thereby increasing the
potential for convection and related precipitation (Shukla et al., 1990). Another feed-
back mechanism exists in shading of the ground surface by clouds: as mentioned
before, deforestation increases the albedo, resulting in less absorbed solar radiation
at the surface. However, if this results in less clouds, the first effect may partly be
compensated because more solar radiation will reach the surface when the cloud
cover has decreased (Polcher and Laval, 1994b).

Other factors of importance are the reduction of the rainfall interception storage,
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the smaller roughness length and the shallower root zone associated with defor-
estation. The small interception storage of grassland areas compared to most forest
types, leads to a smaller part of the total precipitation being intercepted and evap-
orated directly back into the atmosphere. On the one hand, the vegetation benefits
from the increased soil moisture content resulting from the reduced interception,
while on the other hand, more water is removed from the atmosphere this way.
The reduction in surface roughness results in less turbulence mixing, therefore al-
lowing larger gradients of temperature and moisture to exist near the surface. It
depends on the situation whether the sensible heat or the moisture flux benefits
more from the larger gradients. In the case of interception evaporation (when the
surface resistance to evaporation is zero), a reduced aerodynamical roughness di-
rectly means slower evaporation (Lean and Warrilow, 1989).

As forests usually root deeper than other vegetation types, deforestation gener-
ally means that a shallower part of the soil is rooted, thereby directly decreasing the
total amount of soil moisture available to the plants (Nepstad et al., 1994). However,
Polcher and Laval (1994a) point out, that soil moisture content is only important un-
der conditions that it would be limiting plant growth. For example, the change in
soil moisture predicted after forest conversion for south-east Asia was considered
unimportant, because water is abundant anyway.

Giambelluca (1996); Giambelluca et al. (1999, 2000) stress the need to distinguish
between the post-deforestation vegetation of pasture and secondary forest, as the
latter may in many places cover considerable portions of previously cleared land
and resembles the original forest more than pasture vegetation, which is often as-
sumed as post-deforestation land cover in climate change studies using global cir-
culation models.

Studies of climatic impact of smaller scale tropical deforestation are scarce. Nair
et al. (Submitted) and Lawton et al. (Submitted) have investigated the effect of de-
forestation in the Atlantic lowlands of Costa Rica on the formation of clouds. By
analysis of satellite imagery, they found that clouds became less abundant over de-
forested areas, whereas in meso-scale atmospheric model simulations, they showed
that the lifting condensation level increased after deforestation due to an assumed
reduction of the evapo-transpiration rate and an enhanced sensible heat flux. How-
ever, these changes in the surface energy balance were not checked against obser-
vations.

The studies cited above give an indication of the meteorological and ecological
processes that relate land cover to precipitation. However, the results cannot be
merely copied and applied to the situation in Puerto Rico, or other maritime tropi-
cal areas, because deforestation on Puerto Rico has taken place under quite different
conditions than those prevailing in the continental settings of tropical Amazonia or
Africa (Shuttleworth, 1989; Bonell and Balek, 1993).

In the first place, the island of Puerto Rico is much smaller than the equatorial
continental tropical areas that most studies are focused on. Secondly, the island is
surrounded by warm seas and is located away from the equator and in the trade
wind belt. The trade winds constantly supply warm and moist air to the island. As
a result, the recycling of precipitated water through (local) evaporation is no longer
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essential to prevent the air from gradually drying out after forest conversion, as
supposedly occurs in Amazonia (Polcher and Laval, 1994b). Thus the atmosphere is
modified on a smaller spatial and therefore temporal scale in Puerto Rico.

Furthermore, and again in contrast to Amazonia, the presence of fairly high
mountains on Puerto Rico induces orographic rain and clouds. Additionally, dur-
ing daytime the island becomes warmer than the surrounding ocean, with the de-
velopment of a sea breeze as a result. This sea breeze brings cool air from the ocean
to the warmer land and moves inland over a typical distance of several tens of
kilometers (Xian and Pielke, 1991). Given Puerto Rico’s relatively small size of 180
km x 60 km, the sea breeze has the capability to strongly influence the atmospheric
circulation (Malkus, 1955).

A final contrast with more equatorial continental situations relates to the degree
of rainfall interception by tall forests under wet tropical maritime conditions such
as found on Puerto Rico. There is increasing evidence that the amount of rainfall
intercepted by forest in and around the Caribbean is much higher than observed
in Amazonia (typically 30-50 percent vs. 5-15 percent of incident rainfall, respec-
tively). The underlying mechanisms are not fully understood as yet but must in-
clude a combination of low rainfall intensity, high surface roughness of forests, due
to irregular regrowth after frequent hurricane damage and, especially, advection of
heat from the surrounding ocean (Schellekens et al., 2000).

1.4 Objectives and general approach

The specific conditions under which deforestation occurred on Puerto Rico, as com-
pared to continental tropical areas, and the potentially strong impacts on the is-
land’s population and economy, call for a separate study of the impacts of defor-
estation on the atmospheric circulation over Puerto Rico. This thesis delivers the
results of an investigation that addresses this subject and that meets the objectives
specified below.

The smaller scale at which deforestation took place, the presence of mountains
and the occurrence of a sea breeze all make the application of atmospheric general
circulation models inappropriate in the Puertorican case. The island would be rep-
resented by no more than a few grid points in such a model, so that it could not
resolve the smaller scale circulations, that characterize the Puertorican situation.
Instead, the use of a mesoscale circulation model, with its higher horizontal resolu-
tion, is desirable. Because the time scale of the modifications of the atmospheric
flow, inflicted by the island of Puerto Rico, is typically in the order of an hour
to one day, there is no need to simulate the flow longer than this, provided that
longer-term feedbacks to atmospheric changes, e.g. through soil moisture content,
are either unimportant or known and dealt with.

Vegetation is connected to the atmosphere through the surface fluxes of radi-
ation, heat, moisture and momentum. In order to correctly simulate the effect of
deforestation on the atmospheric flow, these fluxes need to be quantified for the
corresponding vegetation types occurring before and after forest conversion. As
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this could not be done with existing data, a micro-meteorological field campaign
was organized to collect the necessary data. This field campaign took place from
May 1997 until May 1998, so that an entire annual cycle was covered. Appropriate
micro-meteorological observations were performed at a forested and a deforested
(pasture) site in the northern coastal plains of Puerto Rico. In addition, measure-
ments were made at a number of locations in the eastern Luquillo mountains in
order to characterize the climatic conditions and surface energy budgets associated
with a series of natural forest types along an elevational gradient.

The results from the field campaign have been upscaled from the micro-scale to
the meso-scale by the use of a numerical meso-scale atmospheric circulation model,
RAMS (Walko et al., 2000). This model was configured in such a way that it simu-
lated the air flow over Puerto Rico and the surrounding ocean for two contrasting
scenarios, i.e. with the coastal plains fully forested or entirely converted to pasture.
The characteristics of the forest and post-forest vegetation, required in the computer
model, were derived from the results of the field campaign. The upland vegetation
was not changed, but always represented by the appropriate forest type. The model
simulations were usually started at midnight and were run for 24 hours. The model
solutions are analyzed in terms of changes in cloud cover, cloud base height, total
liquid water content and precipitation, due to land cover transformation.

1.5 Departmental context

The department of Environmental GeoSciences at the Faculty of Earth Sciences of
the Vrije Universiteit Amsterdam has a history of studying the water (and nutrient)
dynamics of forests and the effects of land cover transformations under tropical
maritime conditions (http://www.geo.vu.nl/ ∼geomil ). For example, Water-
loo (1994) studied the effect of reforesting fire-climax grasslands in south-west Viti
Levu, Fiji with Pinus caribaea, as well as the hydrological impacts of hurricane dis-
turbance and forest felling and burning. Hafkenscheid (2000) investigated the hy-
drology and biochemistry of montane cloud forests of contrasting stature in the
Blue Mountains in Jamaica, elsewhere in the Caribbean, whereas Schellekens (2000)
studied hydro-meteorological processes in the sub-montane tabonuco forest in the
Luquillo Experimental Forest (LEF) in Puerto Rico, including the determination of
the water budgets at the catchment scale. Recently, a third investigation has been
started in the LEF to ascertain the physical causes of the high wet canopy evapora-
tion rates in the study area cited earlier. Performing detailed surface energy budget
observations over various types of terrain is a specialism of the department as well,
as shown by Smeets (2000) and Vermeulen (2001), who carried out measurements
over melting glaciers in Austria and Iceland and over heterogeneous terrains in the
Netherlands, respectively. Experience of modeling meso-scale circulations, specifi-
cally the sea breeze circulation at the Dutch Wadden islands off the north coast, has
been acquired by Meesters (1991). The present study, as well as those of Schellekens
(2000) and the follow-up research in the LEF by F. Holwerda M.Sc. are carried out in
close cooperation with the International Institute of Tropical Forestry (IITF), USDA
Forest Service, Rio Piedras, Puerto Rico (Dr F.N. Scatena).
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1.6 Outline of the thesis

This thesis continues in chapter 2 with an introduction to the physiography of
Puerto Rico including the climatology of the trade winds and the set-up of the
measurement campaign, the selection of the field sites, instrumentation and the
collection of additional data.

Chapter 3 describes the procedures that were followed to analyze the raw data.
More specifically, chapter 3 discusses the methods used to calculate the turbulence
fluxes of sensible and latent heat and the other terms in the surface energy balance.
The degree of closure of the obtained surface energy balance is used as a means to
validate the observations.

The resulting observations are presented in chapter 4. Particular attention is
paid to a micro-meteorological comparison of the lowland forest and pasture sites.
The results obtained for the natural forest sites in the mountains are given as well.

The surface observations presented in chapter 4 are intended to serve in the
derivation of appropriate vegetation parameterizations to be used in a meso-scale
atmospheric circulation model (RAMS), capable of linking processes and mecha-
nisms at the surface, in the atmospheric boundary layer and at the circulation at the
synoptic scale. Chapter 5 treats the model’s dynamics and the modifications that
were made. It is not intended to give a detailed description of all the parameteriza-
tions in the model, as they are widely available, e.g. Tripoli and Cotton (1982); Pielke
et al. (1992); Walko et al. (1995b, 2000). However, arguments for the use of specific
model options are presented, along with a detailed description of the vegetation
parameterization.

The results of the simulations are presented in chapter 6. At first the model
is validated using the surface observations and existing rawinsonde data. Next,
model simulations with pasture and lowland forest vegetation are compared. This
comparison leads to a first understanding of the impact of land use change on the
meso-scale atmospheric circulation. Subsequently, a number of model runs are per-
formed to investigate the relative importance of several factors that affect the circu-
lation, such as the topography, the speed and direction of the trade winds and the
strength and height of the temperature inversion.

Finally, the conclusions of the present investigation are drawn in chapter 7 and
various suggestions made for future research.
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