
AN OBJECT-BASED SOFTWARE
DISTRIBUTION NETWORK

ARNO BAKKER

COPYRIGHT c© 2002 BY ARNO BAKKER

The cover of this dissertation illustrates the difficulty of content moderation.

VRIJE UNIVERSITEIT

AN OBJECT-BASED SOFTWARE DISTRIBUTION
NETWORK

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. T. Sminia,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen

op woensdag 4 december 2002 om 13.45 uur
in het auditorium van de universiteit,

De Boelelaan 1105

door

ARNO BAKKER

geboren te Zaandam

promotoren: prof.dr. A.S. Tanenbaum
prof.dr.ir. M.R. van Steen

Iedereen bedankt!

CONTENTS

1 INTRODUCTION 1
1.1 Developing large-scale applications 2
1.2 The Globe Distribution Network 6
1.3 Contributions . 8
1.4 Structure of the dissertation . 8

2 GENERAL REQUIREMENTS 9
2.1 Terminology . 9
2.2 Basic distribution functionality 12
2.3 Basic query functionality . 14
2.4 Notification and automatic update 15
2.5 Security requirements . 16

2.5.1 Ensuring Authenticity and Integrity of Content 17
2.5.2 Preventing Illegal Distribution 18
2.5.3 Providing Anonymity . 19
2.5.4 Availability and Integrity of Servers 20

2.6 Fault-tolerance requirements . 22
2.7 Management requirements . 23
2.8 Focus of this dissertation . 24

3 THE GLOBE MIDDLEWARE PLATFORM 25
3.1 Distributed shared objects . 25
3.2 Implementation of a DSO . 28
3.3 Naming and binding . 30
3.4 Replication interfaces . 32

3.4.1 Stage 1: Shipping the Invocation to the Master Replica . . 33
3.4.2 Stage 2: Performing the Invocation on the Master Replica 35
3.4.3 Stage 3: Updating the Slave Replica 38
3.4.4 Stage 4: Returning the Invocation’s Result to the Client . . 40

3.5 Creating DSOs . 42

VIII CONTENTS

3.6 The Globe Location Service . 42
3.7 The Globe object server . 44
3.8 The Globe Infrastructure Directory Service 46

4 DISTRIBUTED REVISION OBJECTS 47
4.1 Efficient distribution of software 48
4.2 Mapping software packages to DSOs 51

4.2.1 Revision and DistributionArchive DSOs 51
4.2.2 Discussion . 52
4.2.3 Alternative Mappings . 62

4.3 Interface and semantics of a revision object 64
4.3.1 Handling Large Up– and Downloads 65
4.3.2 Stateless Downloads . 69
4.3.3 Alternative Interfaces . 73
4.3.4 Semantics of a Revision Object 82

4.4 Referring to packages, revisions and variants 83
4.5 Implementation of a revision object 84

4.5.1 Handling Large State . 84
4.5.2 Persistent Revision Objects 88
4.5.3 Downloading over Multiple TCP Connections 90

4.6 Implementation: the replication protocol 91
4.6.1 Basic Replication Protocol 92
4.6.2 Mid– to Long-Term Network Optimization 95
4.6.3 Server Load and Replication 101
4.6.4 Handling Flash Crowds 105
4.6.5 Alternative Replication Protocols and Policies 106
4.6.6 Initial Implementation 106

5 SECURITY 107
5.1 Preventing illegal distribution . 107

5.1.1 Content Moderation . 109
5.1.2 Cease and Desist . 111
5.1.3 Reputation . 114
5.1.4 Other Approaches . 115
5.1.5 Comparison . 115

5.2 The GDN and illegal distribution 117
5.2.1 Traceability via Digital Signatures 118
5.2.2 Discussion . 120
5.2.3 Using Other Protection Measures 123
5.2.4 Anonymity . 123

5.3 Authenticity and integrity of software 124

CONTENTS IX

5.4 Availability . 125
5.4.1 Access Control . 126
5.4.2 Internal Attackers . 129
5.4.3 Countermeasures Taken by the GDN 132
5.4.4 Alternative Countermeasures 134

5.5 Initial implementation . 135

6 FAULT TOLERANCE 141
6.1 Requirements and system model 141
6.2 Availability and reliability . 144

6.2.1 Level 1: Fast Object-Server Recovery 144
6.2.2 Level 2: Availability and Reliability of the Read Service . 147
6.2.3 Level 2: Availability and Reliability of the Read/Write Service147
6.2.4 Level 3: Availability and Reliability of the Revision-DSO Service148
6.2.5 Level 4: End-to-End Integrity Protection 148

6.3 AWE failure semantics . 148
6.3.1 Well-behaved Downloads 148
6.3.2 Well-behaved Uploads 149
6.3.3 Side Effects of Failures 152

7 PERFORMANCE 153
7.1 Server performance . 153

7.1.1 Experiment 1 . 154
7.1.2 Experiment 2 . 155
7.1.3 Experiment 3 . 156
7.1.4 Experiment 4 . 157

7.2 Wide-area performance . 159
7.2.1 End-to-End Performance 161
7.2.2 Performance Analysis 161
7.2.3 Comparison to HTTP . 171

8 RELATED WORK 173
8.1 Early systems . 174
8.2 Akamai’s Freeflow . 175
8.3 RaDaR . 178
8.4 Freenet . 180
8.5 The Cooperative File System . 182
8.6 PAST . 185
8.7 OceanStore . 187

X CONTENTS

9 SUMMARY AND CONCLUSIONS 191
9.1 Summary . 191
9.2 Observations . 194

9.2.1 Step 1: Making Distribution Fast and Efficient 195
9.2.2 Step 2: Meeting Application-Level Security Requirements 197
9.2.3 Step 3: Countering External and Internal Attacks 198
9.2.4 Step 4: Ensuring Fault Tolerance 198

9.3 Future work . 199

SAMENVATTING 203

BIBLIOGRAPHY 209

LIST OF CITATIONS 220

INDEX 224

LIST OF FIGURES

1.1 The remote-object model. 4
1.2 The distributed shared object model. 5

2.1 The relationship between packages, revision and variants. 10

3.1 A distributed shared object. 26
3.2 Structure of a local representative. 28
3.3 Globe’s two level naming scheme. 31
3.4 Interface of our integer DSO. 32
3.5 Replication scenario of our integer object. 33
3.6 A replication object’s repl interface. 34
3.7 First stage of the invocation of the integer object’s integer::set method. 34
3.8 A replication object’s commCB interface. 36
3.9 A control object’s replCB interface. 36
3.10 Second stage of the invocation of the integer DSO’s set method. . 37
3.11 A semantics object’s semState interface. 38
3.12 The first part of stage 3 of the invocation of the DSO’s set method. 39
3.13 The second part of stage 3 of the invocation of the DSO’s set method. 40
3.14 An invocation of a state-modifying method on a master/slave replicated distributed shared object. 4
3.15 Domains and directory nodes in the GLS. 43

4.1 Reshaping communication using distribution and replication. . . . 49
4.2 The mapping scheme applied to the GIMP application. 52
4.3 The mapping of the RedHat Linux distribution to DSOs. 53
4.4 RPM file sizes in RedHat 4.1–6.2β for Intel. 57
4.5 Archive-file sizes of ftp://ibiblio.org/pub/Linux. 58
4.6 Numbers of revisions per package on ftp://ftp.gnu.org/gnu. 60
4.7 Static view of the Globe Distribution Network in UML notation. . 63
4.8 First part of the package interface. 65
4.9 Second part of the package interface. 70
4.10 The risk of file replacement during paused downloads. 71
4.11 The complete package interface. 72

XII LIST OF FIGURES

4.12 Uploading a file via the pass-by-value mechanism. 75
4.13 Uploading a file via the argument-DSO mechanism. 79
4.14 The adjusted replCB and semState interfaces. 86
4.15 The basic replication protocol for revision DSOs. 93

5.1 General model of the GDN. 118
5.2 Basic operation of the GDN with traceable content. 119
5.3 Principals in the GDN. 126
5.4 The certification hierarchy in the GDN’s initial security implementation.136
5.5 A successful accusation. 139

6.1 Simplified dependency model for the GDN. 142
6.2 A successful invocation of a write method. 150

7.1 Setup for the server-performance experiments. 154
7.2 Average throughput per client for Apache and the GDN. 156
7.3 Average throughput per client for a single and for multiple DSOs. 157
7.4 Setup for the server-performance experiment using multiple client machines.158
7.5 Average throughput per client for Apache and the GDN with 1+50 client machines159
7.6 Geographic location of the test sites. 160
7.7 Steps involved in a GDN download. 162
7.8 Measurement points for the GDN download. 164
7.9 Comparison of the Amsterdam and the Ithaca download. 166
7.10 Comparison of the Amsterdam and the Ithaca download (log scale). 167

8.1 Content retrieval in RaDaR. 178
8.2 The architecture of CFS. 183

LIST OF TABLES

4.1 Object granularities and total number of objects. 61

5.1 Comparison of the content moderation and cease-and-desist schemes.116

7.1 Apache configuration. 154
7.2 Results of Experiment 3. 157
7.3 Hardware and software configuration of the test machines. 160
7.4 Comparison of end-to-end performance for GDN downloads from Amsterdam and Ithaca.161
7.5 ICMP Ping times between the test sites. 169
7.6 Results for GDN with blocksize 1 MB. 169
7.7 Summary of GDN test results. 170
7.6 Results for GDN with blocksize 1 MB. 170
7.8 Comparison of end-to-end performance for HTTP downloads from Amsterdam and Ithaca.171
7.9 Comparison of end-to-end performance for HTTP and GDN with blocksize 1 MB.171
7.10 Explanation of the difference between HTTP and GDN. 172

CHAPTER 1

Introduction

The Internet has radically changed the lives of millions of people. Researchers
rarely frequent university libraries anymore, because so many research publica-
tions are available “on line.” Grandparents communicate with their grandchildren
studying or traveling abroad via electronic mail. Students and companies load
their computers with free software distributed via the Internet, developed by pro-
grammers from all continents collaborating over that same Internet. More and
more people buy books, CDs, concert tickets and clothes via the Net. Some even
do their banking and manage their stock portfolio on line.

Many believe this is only the beginning. Over the last few years, large amounts
of capital have been invested in Internet companies, trying to invent the next
“killer” Internet application. However, building new Internet applications that
can provide service to millions of people, distributed all over the world, 24 hours
a day is very difficult. The World Wide Web is currently the most frequently used
application-development platform, but was never designed to be used on the scale
it is today and provides only limited facilities. Add-on technologies such as Java
applets, dynamic HTML and plug-ins have failed to address many of the problems
of developing large-scale distributed applications. Other application-development
platforms, such as object request brokers and DCOM, also have yet to meet these
challenges, as they were developed with local-area networks in mind.

The research and development community will have to create better platforms
for developers to build Internet applications which are large-scale, secure, reliable
and highly available. Designing and building a middleware platform that facili-
tates the development of new, large-scale Internet applications is the goal of the
Globe project. This middleware platform is, like the project, called Globe, an
abbreviation for GLobal Object-Based Environment.

This dissertation describes the design and implementation of a new Internet
application built using the Globe middleware platform. This new application,

2 INTRODUCTION CHAP. 1

called the Globe Distribution Network, or GDN for short, is an application for the
efficient, worldwide distribution of freely redistributable software packages. The
purpose of this research is to show how a nontrivial distributed application can be
built using Globe, and thus evaluate the Globe middleware.

The remainder of this chapter is structured as follows. Sec. 1.1 discusses the
problems of developing large-scale distributed applications and the need for a new
middleware platform. Sec. 1.2 introduces the Globe Distribution Network and
explains why we chose to develop this particular application. Sec. 1.3 presents the
contributions of this research and Sec. 1.4 describes the structure of the rest of the
dissertation.

1.1. DEVELOPING LARGE-SCALE APPLICATIONS

The scale of a distributed application has three dimensions: numerical, geo-
graphical and administrative [Neuman, 1994]. The numerical dimension classifies
the application in terms of the number of users and components making up the ap-
plication. The geographical dimension describes the size of the geographical area
over which the users and components are distributed. Finally, the administrative
dimension indicates the number of organizations in control of (parts of) the appli-
cation.

Developing distributed applications that are large in any of the three dimen-
sions in this taxonomy is hard. Dealing with millions of users and components
introduces many engineering and management issues. It requires the extensive
use of techniques such as caching, replication, and distribution of functionality to
reduce and distribute the load over the available infrastructure [Neuman, 1994].
These techniques, in turn, introduce technical and managerial problems of their
own, such as maintaining consistency of caches and replicas, and how to keep
track of a (replicated) component’s current location(s). Large geographical dis-
tances introduce unavoidable and significant (by today’s performance standards)
communication delays, whose impact again have to be minimized by caching,
replication, and distribution of functionality. Having to deal with many organi-
zations makes it hard to administer and secure the application, in particular, if
these organizations operate in different parts of the world. In addition to the prob-
lems introduced by the large scale of the applications, a developer also has to deal
with machine and network failures, and heterogeneity in hardware and (system)
software.

The key to making large-scale application development easier is therefore to
provide the developer with the means for dealing with these complex (nonfunc-
tional) aspects and required techniques in a comprehensive manner. Particularly

SEC. 1.1 DEVELOPING LARGE-SCALE APPLICATIONS 3

important for a development platform, in addition to comprehensiveness, is flex-
ibility. To build an application with hundreds of millions of users operating on a
worldwide scale, it is necessary that the development platform allows the devel-
oper to employ the techniques, protocols and policies that are best suited for the
application [Van Steen et al., 1999a]. This implies that the platform should sup-
port many different mechanisms and policies and it should also allow new ones
to be introduced easily. In short, to accommodate applications of this scale, a
platform should allow application-specific optimizations of the middleware itself.

Related to flexibility is scalability. Homburg [2001] defines scalability of a
design as the “ability to support smaller and larger implementations of that design
with adequate performance.” Scalability can therefore be considered an additional
requirement for an application-development platform: it should allow applications
to evolve from small-scale (either numerically, geographically or administratively)
to large-scale, while preserving the design and retaining required performance lev-
els. Supporting scalability enhances flexibility for the application developer be-
cause his1application is then able to accommodate future changes in scale which
could not have been predicted in advance. It should be clear that supporting scala-
bility further complicates the design of the development platform. More on devel-
oping scalable distributed applications can be found in [Van Steen et al., 1998b].

For successful application development more is needed, however, than flex-
ible and comprehensive support for scaling nonfunctional complexity. During
application development, a developer should be able to separate the functionality
of the application from its nonfunctional aspects, such as performance and fault
tolerance. A middleware platform for large-scale distributed applications should
therefore provide not only the means for dealing with the nonfunctional complex-
ity of such applications, but should also make these aspects transparent, such that
a developer is able to focus on just functionality in the relevant stages of devel-
opment. In other words, a middleware platform should provide transparency for
distribution, migration, replication and failure [ISO, 1995].

Many researchers have recognized the usefulness of the object-oriented pro-
gramming (OOP) paradigm in providing these transparencies [Jul et al., 1988;
Dasgupta et al., 1991; Birrell et al., 1993; Mitchell et al., 1994; Makpangou et al.,
1994]. The OOP paradigm is based on the concept of an object combining data
and the operations on that data into a single package. The fact that the object’s
data can be accessed only via the object’s operations provides a natural mecha-
nism for shielding the application programmer using the object from the details
of how and where the operations on the data are actually performed. Using this
mechanism we can also hide distribution, migration, replication of the object and
(in many cases) mask failures from the client. Generally, the operations on the ob-

1Please read “his” as “his or her” throughout this dissertation.

4 INTRODUCTION CHAP. 1

Distributed objectProxy

Process 1

Client

Process 2

Middleware

Network

Figure 1.1: The remote-object model.

ject’s data can be implemented without considering the distribution of the object
and the application developer can design and implement his application as a col-
lection of interacting objects as in the nondistributed case. Of course, he still faces
the problems of software engineering in-the-large if there is much functionality to
be provided [Tichy, 1992].

Although many of today’s middleware platforms are object-based, they cur-
rently lack the extensive and flexible support we argue are necessary for devel-
oping large-scale distributed applications. An important reason for this lack of
support is that these platforms were developed with local-area networks in mind,
which place less demanding requirements on the middleware due to their smaller
scale. Extending these platforms to make them suitable for increased scale may
be possible, but we believe that this will result in platforms with are hard to use,
and instead suggest a different approach, which entails adopting a different model
of what a distributed object is [Bakker et al., 1999].

The current object-based middleware platforms, such as CORBA-based object
request brokers [Object Management Group, 2001], Microsoft’s DCOM [Eddon and Eddon,
1998] and Java RMI [Wollrath et al., 1996] are all based on a similar model. In
this model, which we call the remote-object model, a distributed object is an object
running on a remote machine, but which is presented to clients as a local object by
means of proxies. A middleware layer mediates between the clients and the object
and, in particular, takes care of the transport of requests and replies between the
client and the object over the network. This model is illustrated in Figure 1.1.

The implication of the remote-object view is that all distribution aspects of the
distributed object are managed by the middleware layer. This approach implies, in
turn, that to support large-scale distributed applications this layer should be flexi-

SEC. 1.1 DEVELOPING LARGE-SCALE APPLICATIONS 5

Distributed objectClient

Process 2Process 1

Network

Figure 1.2: The distributed shared object model.

ble enough to allow an application developer to plug-in and configure application-
optimal protocols and policies. It is not yet clear how such a middleware layer
can be made flexible. A number of efforts at improving the flexibility of these
middleware layers are, however, underway [Hayton et al., 1998], [Eliassen et al.,
1999; Wang et al., 2001; Bea Systems et al., 1999]; many of them are based on
reflective techniques [Kiczales et al., 1991].

In the Globe project, an alternative way of looking at distributed objects was
developed. This model of distributed objects is called the distributed shared object
(DSO) model. In this model, a distributed shared object is a distributed entity, an
object physically distributed over multiple machines with the object’s local rep-
resentatives (proxies and replicas) cooperating to make the object’s functionality
available to local clients. In other words, a distributed shared object is a wrapper
encompassing all the object’s proxies and replicas, rather than a remotely accessi-
ble object implementation. This model is illustrated in Figure 1.2.

The advantage of this model over the remote-object model is that the dis-
tributed object itself is in charge of its distribution aspects. This results in flexibil-
ity for the application developer because he is no longer bound by the facilities of a
middleware layer, but can apply any technique, protocol, and policy to any object
and thus customize the nonfunctional behavior of his application. We claim that
this model is a better basis for a development platform for large-scale applications
because it provides a more natural, flexible, and extensible way for handling the
complex nonfunctional aspects of such applications, in isolation from functional
aspects.

To show the validity of the project’s claim we have developed a middleware
platform based on this object model and a number of large-scale management

6 INTRODUCTION CHAP. 1

services in support of this platform. We have currently built two large applications:
GlobeDoc, a more efficient replacement of the World Wide Web (as a hypertext
system) [Van Steen et al., 1999b], and the Globe Distribution Network (GDN),
which is the topic of this dissertation.

1.2. THE GLOBE DISTRIBUTION NETWORK

With the rise of the home and personal computers came the ability for people
to write their own software. The willingness of the authors to share these pro-
grams with others, and the interest of others led to widespread sharing of these
programs. Sharing via transportable media (i.e., tapes or floppies) evolved into
sharing via bulletin board systems (BBSes) with the advent of modems. In re-
cent years, the Internet has greatly accelerated the sharing and development of
this so-called freely redistributable software, to a point where millions of people
are using the software, hundreds of thousands are participating in its development,
and corporations are built around packaging the software for users.

The Globe Distribution Network is an application for the efficient, worldwide
distribution of freely redistributable software packages, such as the GNU C com-
piler, the GIMP graphics package, Linux distributions, and shareware [Bakker et al.,
2000, 2001a, b, 2002]. In the future we may extend it to distribute also other free
content, such as free digital music. Distribution of software via the Globe Dis-
tribution Network is made efficient by encapsulating the software into distributed
shared objects employing a replication protocol that efficiently replicates them in
areas with many downloading clients, based on past and present usage patterns.
The Globe Distribution Network takes a novel, optimistic approach to stop the
illegal distribution of copyrighted and illicit material via the network. Stopping
illegal distribution is important, because otherwise people and organizations mak-
ing resources available to the GDN run the risk of being prosecuted for enabling
illegal publication. The GDN is designed to be high available and behaves in a
well-defined manner when failures can no longer be masked.

For its basic functionality the GDN can be compared with a number of sys-
tems. It is similar to the commercial content distribution networks, such as Aka-
mai’s Freeflow/EdgeSuite [Akamai Technologies, Inc., 2002], Exodus’ 2Deliver
Web Service [Exodus, 2002] (formerly Digital Island), and Speedera’s Content
Delivery [Speedera Networks, Inc., 2002]. It can be compared with wide-area file
systems such as AFS [Howard et al., 1988], or to the rapidly growing class of
peer-to-peer networks [Oram, 2001], such as Freenet [Clarke et al., 2002], CFS
[Dabek et al., 2001b] and OceanStore [Rhea et al., 2001]. It is not targeted at
cooperative development of free software over the Internet and is therefore not re-

SEC. 1.3 THE GLOBE DISTRIBUTION NETWORK 7

lated to distributed source-code control systems such as (remote) CVS [Cederqvist et al.,
2001], GTE [Goa et al., 1999] or Visual SourceSafe [Microsoft Corporation, 2001b;
Source Gear Corporation, 2001].

We chose the distribution of freely redistributable software as an example ap-
plication for a number of reasons. The most important reason is that the applica-
tion itself has many interesting aspects. Many people are interested in free soft-
ware, and many people are creating free software2, resulting in an application that
is large in terms of numbers of users and reasonably large in the amount of data
that needs to be handled. To give an example, the SourceForge Web site aimed
at supporting the development of free software over the Internet has over 450,000
registered users, and hosts close to a Terabyte of software (July 2002). The inher-
ent worldwide nature of the application implies it has a large scale geographically.
The application also has interesting security aspects. Unauthorized modification
of the software being distributed must be impossible and malicious persons should
not be able to use the GDN to illegally distribute copyrighted or illicit material.
Furthermore it is our intention to let the GDN use spare server capacity provided
by many different people and organizations, resulting in a large administrative
scale for the application. This design goal also allows us to study the impact of
untrusted servers on application design.

A second reason for choosing software distribution is that the current Internet
applications for distributing free software are in need of an update. FTP and HTTP
have proven to scale quite well, but replication and security have been added onto,
instead of integrated into the applications. As a result, a lot of things in particular
with respect to replication still have to be done by the user. These include finding
out which mirror sites exist, dealing with site failures and handling inconsistencies
between mirrors (caused by the periodic pull model applied in many mirroring
solutions). The Globe Distribution Network provides an integrated solution where
failures only very rarely require human intervention. Modern content delivery
networks also offer an easy-to-use, integrated solution, but are not yet (widely)
available to free-software publishers. The source code of the GDN is made freely
available.

Note, however, that the primary purpose of designing the Globe Distribution
Network is to show how a distribution network can be built using the Globe mid-
dleware, as a validation of the middleware, rather than designing the best distribu-
tion network that solves the problems of FTP and HTTP.

2The term “free software” should be read as “freely redistributable software” in this dissertation,
although the former term usually denotes open-source software (a subset of freely redistributable
software as it does not include shareware).

8 INTRODUCTION CHAP. 1

1.3. CONTRIBUTIONS

This dissertation makes the following contributions:

• It shows how a distribution network for free software can be and has been
built using the Globe middleware platform. The architectural principles and
design are discussed in detail in this dissertation.

• It shows how the illegal distribution of copyrighted works and illicit content
in a (software) distribution network can be prevented using an optimistic
cease-and-desist method.

• It demonstrates how these ideas can be applied in practice. As of December
2001, our prototype implementation is running on five hosts located around
the world, hosting up to 20 GB of data.

1.4. STRUCTURE OF THE DISSERTATION

Chapter 2 outlines the requirements for a worldwide distribution network for
freely redistributable software packages and offers brief analyses of the problems
involved in implementing these requirements. Chapter 3 gives an overview of the
Globe middleware platform, providing the necessary background for the rest of the
dissertation. In Chapter 4, I discuss how software is encapsulated in distributed
shared objects, how these objects replicate themselves over a network of object
servers, and how this leads to an efficient system for distributing software. The
measures necessary to ensure secure and legal operation of the Globe Distribution
Network are identified in Chapter 5, which also describes our initial implementa-
tion of these measures. In Chapter 6, I address the application’s requirements with
respect to fault tolerance and durability and our initial approach to satisfying these
requirements. Chapter 7 presents some performance figures for the initial imple-
mentation running on a number of sites around the world. Chapter 8 discusses
related work. Finally, conclusions of this dissertation are drawn in Chapter 9.

CHAPTER 2

General Requirements

In this chapter, we will identify general requirements for a worldwide distribu-
tion network for freely redistributable software and briefly analyze the problems
associated with implementing these requirements. Due to the complexity in their
implementation, a number of requirements will not be investigated further in this
dissertation as they warrant a separate investigation.

To be able to better describe the desired functionality, we first introduce some
terminology in Sec. 2.1. This terminology is based on definitions by Conradi and Westfechtel
[1998]. Sec. 2.2 identifies requirements and implementation issues regarding ba-
sic distribution functionality. Sec. 2.3 deals with query functionality and Sec. 2.4
discusses desired functionality and issues with respect to notifying users of new
releases of software packages and automatic updates of installed software. Secu-
rity requirements, fault-tolerance and application-management requirements are
discussed in Sec. 2.5, 2.6 and 2.7, respectively. Sec. 2.8 lists the selection of
requirements that are investigated in this dissertation.

2.1. TERMINOLOGY

A software package is an application, a library, or any piece of software that
is published as a separately named entity. Examples are the GNU C compiler,
the Ghostscript Postscript interpreter and the Linux kernel. A software package
continuously evolves as bugs are fixed, new functionality is added, or when it is
adapted to changes in other software packages on which it depends (e.g. libraries).
This evolution results in a string of revisions; that is, versions that are meant to
replace other, earlier versions. Often software development is not linear but pro-
ceeds along a number of parallel paths. For example, in one line of revisions new
functionality and new designs are tried out, while in another line no new func-

10 GENERAL REQUIREMENTS CHAP. 2

Variant

Package

Revision

e.g. The GIMP 1.1.29

e.g. The GIMP

e.g. binaries for the GIMP 1.1.29
for Linux on Intel hardware

Figure 2.1: The relationship between packages, revision and variants in
pseudo-UML notation[Rumbaugh et al., 1999]. The open arrows represent
a generalization relationship.

tionality is added and the code is changed only to fix bugs and to handle changed
application programming interfaces (APIs).

Each revision of a package can have a number of variants; that is, versions
somehow derived from that revision which are not meant to replace it, but instead
coexist with that revision. An example of variants is formed by compiled binaries
for different platforms. However, a revision can also have multiple source-code
variants specifically targeted towards a particular platform when the code cannot
be or is intentionally (e.g. for performance reasons) not made platform indepen-
dent. Multiple source-code variants may also be found in cases where the software
package needs to support a user interface in widely differing languages (Western
vs. Arabic or Asian). The term version is used to denote either a revision or
variant of a software package. The relationship between packages, revisions and
variants is shown in Figure 2.1.

A variant may be published in one or more file formats. These can be generic
file archive formats (ZIP, GZIP-ed TAR) or specialized formats for packaging
software, such as RPM [Bailey, 1998] (used in the RedHat Linux distribution) or
the DEB format [Software in the Public Interest, Inc., 2001] as used in Debian’s

SEC. 2.1 TERMINOLOGY 11

Linux distributions.
The term diff or patch is used to denote the set of differences between the

source code of two successive revisions of a software package. Diffs are generally
distributed in specialized file formats readable by tools such as diff and patch on
UNIX systems. These tools are able to change the source code of the older version
to that of the new version based on the differences specified in the diff file.

As already mentioned, a software package may depend on several other soft-
ware packages which provide part of its functionality, such as libraries. As a
software package evolves it may come to depend on different packages at differ-
ent points in time. Each revision of a software package generally depends on a
specific set of other software packages. A revision of a software package does,
however, not always depend on specific revisions of the required packages. A re-
vision of software package A may be able to function with any revision from a
set of compatible revisions of a specific software package B. A dependency where
a revision of a software package depends on a specific revision of another soft-
ware package is called a specific dependency (sometimes referred to as a bound
dependency). The term generic dependency is used for a dependency of a revi-
sion on a set of revisions of another package, identified by some expression. An
example of generic dependencies can be found in the RPM software distribution
format [Bailey, 1998]. This package format allows the specification of generic
dependencies of the form

<package name> <operator> <revision ID>

where operator is a standard comparison operator (<,<=,=,>,>=.) The
revision ID is a package-specific identifier (e.g. 2.4.2). When a package in RPM
format is installed (using the associated rpm tool), the dependencies for the pack-
age being installed are matched against the database of packages already installed
on the computer and if the dependencies are not satisfied (because either the in-
stalled packages are too old or too new) the installation is aborted. RPM also
checks dependencies when installed packages are updated or removed.

A specific revision of a software package and the (sets of) revisions of other
software packages it depends on is an example of a configuration. A configuration,
in general, is a collection of revisions or variants of revisions that have certain
properties. An example configuration is the collection consisting of the latest
revisions of a software package and all the packages it depends on, which may be
of interest to anyone wanting to use the bleeding edge of all software packages.
Another example is a set of revisions which are known to be working together
reliably. Such a tested configuration may be of interest to a system administrator
striving for stability on his system. Orthogonal to properties related to revision
histories are variant and file-format properties. For example, one user may be

12 GENERAL REQUIREMENTS CHAP. 2

interested in the source-code variant of the packages in GZIP-ed TAR format and
while another might prefer compiled Linux-i386 binaries in RPM format.

A distribution is a named collection of software packages. A distribution has
its own revision history (unlike a configuration), and can be published in multiple
variants (i386, Alpha, SPARC). Well-known examples of distributions are the free
operating systems, such as RedHat Linux, Debian Linux, and FreeBSD. However,
a distribution does not necessarily encompass a complete operating system. Other
collections of packages, such as the GNOME and KDE desktop environments, are
also considered distributions since they are separately numbered (e.g. GNOME
1.4, KDE 2.0).

A software producer is a person who develops or currently maintains one or
more software packages. Some packages have more than one producer at a time
and the group of producers of a package may vary over time. In the free-software
community such a person is often referred to as the maintainer of a software
package.

A local software management system (LSMS) is an application for managing
the installation and deinstallation of software on a particular computer. Examples
are RedHat’s RPM [Bailey, 1998], Debian’s APT-GET [McCarty, 1999], Sun Mi-
crosystems’ pkg suite, and Microsoft’s Windows Update. For the purpose of this
dissertation this term also applies to site-wide software management systems such
as Microsoft’s SMS [Microsoft Corporation, 2001a].

2.2. BASIC DISTRIBUTION FUNCTIONALITY

The basic functionality of a software distribution network is to allow producers
of free software to make available different variants, new revisions and diffs of
their software packages in various file formats to anyone who is interested. The
challenge in implementing this functionality is how to deal with the large amount
of work for servers and network being created by the large number of interested
users and the amount of the free software being made available.

Currently, many people are interested in utilizing free software, although their
number is hard to quantify as reliable statistics are not readily available. Free
software has traditionally been popular at educational institutions, and more and
more people are using free Web browsers, audio players and such at home. Look-
ing at free operating systems, the number of Linux users is estimated at 5 to 15
million [Penfield Jackson, 1998; IDC, 2001], and Linux is growing rapidly in the
$0–$100K server market [IDC, 2000]. Many people are still installing the soft-
ware from a free or low-cost CD, but I expect that as people get access to more and
cheaper bandwidth, more will start using the Internet to download the software.

SEC. 2.2 BASIC DISTRIBUTION FUNCTIONALITY 13

The current volume of free software being published is unknown, but evidence
suggests it is considerable. We can get an impression of this volume by looking at
two Internet sites prominent in the open-source community: sourceforge.net and
ibiblio.org (formerly sunsite.unc.edu). In March 2001, the SourceForge site hosted
Web pages for 17000 open-source projects, corresponding to at least 17000 soft-
ware packages.1 The total amount of freely redistributable software made avail-
able through their FTP servers at that time was 774 Gigabytes (measured using
a directory listing of the complete site). This collection consists of various revi-
sions and variants of software packages, as well as various revisions and variants
of Linux and *BSD distributions. There is considerable overlap because, for ex-
ample, distributions are offered in a number of ways, for example, both as an
ISO9660 Compact-Disc image and as a “live” file system (i.e., as it would appear
on a user’s hard disk after installation). More than half of the data is in a com-
pressed data format. The ibiblio.org site hosts an archive containing most software
that runs on the Linux operating system. Measured from a directory listing of this
archive, it currently holds 67 GB of data, which includes a number of distribu-
tions. Looking at these two sites, the current volume of free software appears to
be in the order of several hundred Gigabytes.

How much work the servers and network have to do when running a free
software distribution network depends on

1. the number of downloaders,

2. how often they download software, and

3. the size of software packages being downloaded.

The frequency of downloads is, in turn, determined by (1) how often new packages
and new revisions appear, (2) how often people download software packages they
did not use before and (3) how often people update already installed packages.
The amount of work to be done by servers and network can be characterized as
large, given that there are potentially many downloaders and their number is likely
to increase when they get access to more bandwidth. Moreover, there are many
free applications available for various (free) operating systems.

The actual amount of work for a free software distribution network at a partic-
ular point in time depends, of course, on the number of simultaneous downloaders
and how much software is being downloaded. It is hard to estimate what the size
of this work load would currently be, and how it will develop in the future. What
is known is that, at present, it exhibits peaks, generated by so-called flash crowds
[Nielsen, 1995]. When a new revision of a popular software package is released,

1In June 2002, the number of projects on SourceForge was 43000, a considerable increase.

14 GENERAL REQUIREMENTS CHAP. 2

it frequently happens that a very large group of users tries to download the newly
released version at the same time.

In summary, the challenge to implementing the basic functionality of a soft-
ware distribution network is to distribute the download traffic such that efficient
use is made of the available servers and network, and overload is avoided. Prefer-
ably, the implementation should be scalable to accommodate longer-term increases
(and decreases) in work load that may occur in the future. In the past people have
partially solved this problem using crude mirroring solutions. More recently, con-
tent distribution networks have provided a more elegant solution, but they are not
(widely) available to free software publishers. The Globe Distribution Network
will have to solve this problem using the facilities of the Globe middleware.

2.3. BASIC QUERY FUNCTIONALITY

It is important that a software distribution network enables the interested users
to find the software they are looking for. A software distribution network should
enable various ways of finding the desired software.

A basic requirement is that a user is able to retrieve the software he is looking
for based on the unique name for the package and the identification of the specific
revision and variant, as assigned by the software producer (e.g. “gcc 2.95.2”).
The challenge here is to provide location-transparent naming of the software. Be-
cause of the load balancing required for efficient distribution, software may be
replicated in many locations. This set of locations is dynamic and changes due to
failures, deliberate migration and introduction and removal of servers. A location-
transparent naming facility is therefore necessary to provide users with long-lived
identifiers for software which can be freely stored and communicated (cf. Uni-
form Resource Names [Sollins and Masinter, 1994]). Pitoura and Samaras [2001]
provide a survey of large-scale location-independent naming systems.

A software distribution network should also allow users to browse the set of
available revisions and variants of a package to find the desired one. To this ex-
tent, a structured overview of the revision history, which includes the relationships
between revisions and which names the different development paths is helpful.
Furthermore, a software distribution network should allow a user to find packages
based on their properties. Based on a specification of the desired properties of the
package sought, both in terms of functionality and in terms of supported platform,
a user should be able to find the package in the software distribution network
that best matches these properties. An example of a Web site that provides these
facilities is http://www.download.com/ (in May 2002).

Implementing this functionality appears to be relatively straightforward: cre-

http://www.download.com/

SEC. 2.4 NOTIFICATION AND AUTOMATIC UPDATE 15

ate a database containing the required information and configure a query-process-
ing engine that can scale to a large number of simultaneous users. Apart from
query handling, the challenge is to prevent malicious persons from polluting the
database, which would diminish its usefulness. Possible solutions for the latter
problem are censorship by moderators or reputation systems [Lethin, 2001]. We
discuss security matters in more detail below.

Related to attribute-based retrieval of software packages is the retrieval of a
software package along with the packages it depends on. The ability to retrieve
and install a consistent configuration of software packages (i.e., a configuration
that matches the specified dependencies) in a specific variant is highly valued.
This functionality is, for example, provided by Ximian’s RedCarpet software man-
agement system [Ximian, Inc., 2002]. Implementation issues here lie again in set-
ting up a database, keeping this database up-to-date and accommodating the query
load. This type of database is very much akin to design and engineering databases,
in which component dependencies, and multiple configurations (tested/untested)
are also part of the application domain [Katz, 1990]. Important in the context of
software distribution is the relationship of the query software to the local software
management system (LSMS). The LSMS has information about already installed
packages and their internal dependencies. Service to the user is greatly improved
if this information is used as additional input to their queries. It enables the query
processor to determine which required packages are missing and signal conflicts
with already installed software. Information about what revisions of packages
are installed on a (networked) computer is security sensitive information. We re-
turn to the relationship between a software distribution network and local software
management systems in the next section, and to the security issue in Sec. 2.5.

2.4. NOTIFICATION AND AUTOMATIC UPDATE

Other useful functionality is the ability to be notified of the publication of
new variants or new revisions of a specific software package. This functionality
is useful for both regular users and software producers. Users should be able to
subscribe to notifications for their favorite software packages, relieving them of
the burden of regularly checking (i.e., give them the advantage of automatic push
of notifications vs. periodic, manual pull). Producers can register to be notified of
new versions of packages their own software depends on, allowing them to check
for changes in those packages that may affect them.

To implement this functionality we need a publish/subscribe system that can
keep track of the subscriptions of, and send notifications to, large numbers of
users. The publish/subscribe system should support asynchronous notification;

16 GENERAL REQUIREMENTS CHAP. 2

that is, store notifications for people not currently online. To support changes in
usage patterns the system should also be scalable. The challenge in building such
a system lies in distributing the notification to the potentially millions of interested
parties without generating excessive duplicate network traffic. Large-scale event
notification is a well-researched subject, see, for example, PIM [Deering et al.,
1996], the Cambridge Event Architecture [Bacon et al., 2000], or Siena [Carzaniga et al.,
2000]. The SourceForge free-software site currently supports notifications of up-
dates via e-mail.

Related to notifications about new versions is auto-update functionality; that
is, support for the automated retrieval and possibly installation of updates (i.e.,
new revisions) of software packages already installed on your system. This re-
quires a coupling between the local software management system and the dis-
tribution network, in particular to make sure that the set of installed packages
remains internally consistent (i.e., no dependencies are broken), as outlined in the
previous section. Various degrees of coupling are possible, ranging from a man-
agement system using the dependency, query and/or notification facilities of the
distribution network, to a solution where the publisher or vendor of a particular
operating-system distribution only uses the distribution facilities of the network.
Such flexibility is necessary to allow distribution publishers and vendors to re-
tain full control over (the collection of) installed packages if they wish to do so.
Hence, many Linux distributions today support this functionality (e.g. RedHat).
An important issue here is authentication of the source of the updates, which we
discuss next.

2.5. SECURITY REQUIREMENTS

Security is of particular importance to distributed applications operating in
a public network such as the Internet. This statement holds even stronger for
a software distribution network because of the sensitive nature of the content it
distributes and the fact that is permits large-scale data sharing. Four (classes of)
security requirements are identified:

1. ensuring authenticity and integrity of the distributed software

2. preventing illegal distribution of copyrighted or illicit material

3. anonymity of up- and downloads, and

4. high availability and protecting the integrity of the machines running the
distribution network

We examine each of these requirements in turn.

SEC. 2.5 SECURITY REQUIREMENTS 17

2.5.1. Ensuring Authenticity and Integrity of Content

From a security perspective, download and execution of binaries or source code,
without considering their origin, constitutes a considerable risk to the integrity
of the computer the code is run on. The literature says little about the occur-
rence of backdoors or purposely destructive code in freely redistributable soft-
ware. Dailey Paulson [2001] reports on an incident where a hacker published a
malicious patch to BIND, a popular DNS-server, on a well-known security site.
Many people applied the patch enabling the hacker to launch a denial-of-service
attack against a network-security software company. A well-known example of a
freely available application acting unethically is the case of Real Network’s Re-
alJukebox. This audio player sent back information about its user’s listening habits
which could be tied to the user’s personal information without making this known
to its users [Robinson, 1999]. According to Martin et al. [2001], freely down-
loadable software components from commercial organizations frequently show
insufficient concern for users’ privacy. The risk involved in using free software
therefore, currently, appears to be disclosure of private information, which may
include credit-card numbers and such.

Obviously, trust plays an important role in the domain of free software, and
will continue to do so. Verifying that source code is benign is time-consuming,
complex and beyond most users’ capabilities. People often trade security for con-
venience and download a binary instead of compiling the source themselves, thus
throwing away a possibility for checking the extent of the damage after an inci-
dent. Although the use of digital signatures [Schneier, 1996] to provide end-to-end
authenticity and integrity guarantees cancels the risk of malicious modification of
a package after publication, it does not provide guarantees about the good inten-
tions of the original publisher.

A minimal requirement is therefore that a software distribution network allows
its users to (easily) assure themselves of the origin and authenticity of the software
downloaded and that it has not been modified while in the distribution network.
It should preferably enforce the use of these facilities, because, at present, these
facilities are not used by all software producers. Moreover, many of the down-
loading users do not perform the required associated checks, despite the fact that
the current distribution infrastructure (DNS, FTP servers) is known to have se-
curity holes. Fortunately, authenticity checks are increasingly becoming part of
development environments and run-time systems [Chappell, 1996; Gong, 1999],
or are provided by publishers of (e.g. Linux) distributions.

The challenge in implementing this requirement first of all lies in devising a
security process that allows these authenticity and integrity guarantees to be made
with a sufficient level of certainty. A security process is defined as the procedures
to be followed by the persons involved and the software measures to support and

18 GENERAL REQUIREMENTS CHAP. 2

ensure safety of these procedures.

2.5.2. Preventing Illegal Distribution

One of the most pressing legal problems concerning the Internet today is the ille-
gal distribution of copyrighted or illicit works, which it enables on a large scale
[Samuelson, 1997; Macedonia, 2000; Davis, 2001]. With the transition from re-
search to public network and the advances in bandwidth and compression methods
over the last few years, the Internet has become the primary medium via which
illegal copies of copyrighted works, such as software, music and videos, are being
distributed. In addition, certain groups are using the Internet to share and publish
materials such as child pornography and racist texts which may not be distributed
or legally owned in most countries. Also considered potentially illicit content
is controversial free software. Controversial free software is defined as software
that uses patented technology, software that can be used to circumvent copyright-
protection measures, software that employs strong cryptography, or software that
contains (potentially) offensive material. The legality of such software varies from
country to country.

A software distribution network should incorporate measures which make it
impossible or at least difficult for malicious persons to illegally distribute these
types of content via the distribution network. Or, more precisely, a software dis-
tribution network should adhere to all requirements imposed by international and
local law to prevent illegal distribution. Otherwise, the persons or organizations
participating in the software distribution network (i.e., running a component of
the network on their machines) may be prosecuted for copyright infringements or
illegal ownership or distribution of illicit content.

The challenging issue here is (again) finding a security process that, in this
case, prevents the illegal distribution to the extent required by law. This pro-
cess should encompass the differences that exist between countries with respect
to what constitutes illicit content and illegal distribution. The process will impose
restrictions on where (in which country) what software may be stored and thus
influences the basic distribution functionality, as discussed in Sec. 2.3. It may
even require access control to prevent people from downloading material illegal
in their country from another country where it is legal. An important additional
goal here is to protect software producers against false allegations. For example,
it should not be possible for a malicious system administrator participating in the
distribution network to accuse a software producer of doing illegal uploads.

This security process is likely to depend heavily on current regulations. A par-
ticularly complex problem is how to allow a software distribution to support dif-
ferent security processes over time, as regulation evolves, without radical changes
to the application. I call this legal evolvability. We return to general evolvability

SEC. 2.5 SECURITY REQUIREMENTS 19

of a distribution network in Sec. 2.7.

2.5.3. Providing Anonymity

The third class of security requirements concerns anonymity of the actions per-
formed by users and producers. A software distribution network should allow
people to download software from the distribution network anonymously. What
software people like to use can be considered private information and should
therefore be kept secret. Implementation complexity depends on the level of
privacy required. If users simply do not want the distribution network to know
who is downloading what, a simple mediator service such as the Anonymizer
[Anonymizer.com, 2001] can be used, which adds a single layer of indirection and
is aware of the hosts the users access. Systems such as Crowds [Reiter and Rubin,
1999] and Onion Routing [Goldschlag et al., 1999] allow a higher level of anonymity.
They hide the origin and destination of traffic by forwarding it through multiple
servers. A challenge for a large-scale implementation is therefore to ensure ef-
ficient use of network resources, while making sure the system still provides the
expected anonymity guarantees.

In addition to keeping their downloads private, people will want to keep hid-
den which software is already installed on their machine while downloading. It
is of interest to hackers intending to gain access to a certain site to know which
revisions of which software packages are installed. By matching this information
against a list of revisions and the known security bugs that exist in those revisions,
they can easily find vulnerabilities in the system and exploit those. An imple-
mentation issue is how to keep the information about which revisions are installed
private while using it to determine which software packages can be safely down-
loaded and installed (i.e., without breaking dependencies, see also Sec. 2.3).

The complementary requirement to anonymous downloads is allowing anony-
mous upload of software. The reason for providing this functionality is that for
some controversial free software packages it is not clear whether or not they con-
stitute illicit material, since the software has both legitimate and illegitimate uses.
To resolve the ambiguity, the creators of the software would have to go to court.
To not run the risk of a conviction and subsequent legal penalties, some creators
prefer to publish the software anonymously. A well-known example of ambiguous
software is the DeCSS code [Simons, 2000], which can be used both for playing
Digital Versatile Discs (DVDs) on open-source operating systems and for obtain-
ing the unprotected video material from the disc, thus allowing lossless and unre-
stricted further copying. An example of a system providing anonymous publica-
tion to ensure riskless free speech2 is Publius [Waldman et al., 2000]. A number

2Source code has been recognized as a form of free speech in the United States [Burk, 2001].

20 GENERAL REQUIREMENTS CHAP. 2

of peer-to-peer networks also provide anonymous uploads [Oram, 2001].
The desire for publishing software without revealing your identity conflicts

with some of the possible measures for preventing illegal distribution of content.
For example, when the publisher is anonymous it is hard to block that person from
the software distribution network when it is ruled that he illegally published the
code (as in the DeCSS case at this time (March 2001)).

2.5.4. Availability and Integrity of Servers

A global software distribution network should be highly available; that is, it must
be up and running most of the time. One reason for imposing this requirement,
other than convenience, is the global nature of the application: when people in
one time zone switch off their computer to go to bed, the people a few time zones
later are fully awake and, as a consequence, the distribution network should be
available 24 hours a day. Two factors can threaten the availability of a distributed
application: deliberate attacks and hardware or software failures. The latter factor
is discussed in the next section.

So, in addition to attempting to gain access to or destroy data on user’s com-
puters via malicious software, or use the distribution network for illegal distri-
bution, we can expect that malicious persons may try to launch denial-of-service
(DoS) attacks against the application. Countering denial-of-service attacks, such
as flooding network connections to servers, is outside the scope of this disserta-
tion because they can only be dealt with at the network/operating-system level.
Nonetheless, a number of things can be done at the application level. Three types
of DoS attacks are distinguished:

1. attempts to overload servers running the application

2. attempts to crash the application or servers, and

3. attempts to impede the operation of the application by corrupting its data

We briefly summarize how these type of attacks are generally dealt with.

Overloading: An important observation to make is that a denial-of-service at-
tack poses, to a large degree, the same challenge as a crowd of people all trying
to download a new package immediately. Hence, the facilities for handling flash
crowds also help in countering DoS attacks. In general, the way to counter DoS
attacks is to have the clients accessing the service do more work than the server(s)
offering the service. One example is for a server to create an easy to generate
but hard to solve cryptographic puzzle for each new client and accept the service
request from the client only when the client has shown it solved the cryptographic

SEC. 2.5 SECURITY REQUIREMENTS 21

puzzle [Dwork and Noar, 1992]. Because the puzzle is easy to generate but hard
to solve the client has to do more work than the server, making it harder for the
client to overload that server.

It is clear that this method affects performance, in particular, it increases the
latency of operations. The challenge lies in providing a scalable mechanism which
increases the workload for the client as the load on the service increases. For a
software distribution network, this protective measure should be activated only
when the available server resources are nearly exhausted to prevent severe degra-
dation of performance during flash-crowd traffic. There is evidence that some
denial-of-service attacks can be distinguished from flash crowds, in which case
the countermeasures can be activated during attacks only [Jung et al., 2002].

Crashing and corrupting: A particular class of denial-of-service attacks is
denial-of-service by resource destruction; that is, hackers trying to crash servers
by exploiting programming errors in the application. The risk of this type of at-
tacks occuring is larger when the source code of the application is available. These
attacks can be countered by employing sound programming practices (e.g. rigor-
ous input checking), authenticating users and logging their actions such that when
they act maliciously they can be blocked, and enable fast upgrade of the appli-
cation to deploy fixes quickly. For a software distribution network, requiring that
users authenticate themselves not just for uploads but also for read operations such
as downloads may be considered too strict by its prospective users and could con-
flict with the anonymity requirements just discussed. As with denial-of-service
attacks by overloading, the challenge is to balance the counter measures with the
other requirements of the application.

Attempts at exploiting programming errors to corrupt the application’s data
can be countered using the same methods as attempts to crash the application.
Sound programming practices ensure that little vulnerabilities exist. User authen-
tication limits the number of possible attackers, and action logging ensures that
when vulnerabilities are exploited the time frame and extent of the damage are
known. Requiring user authentication may not be possible for download opera-
tions in a free software distribution network, as just mentioned. An important new
dimension is containment; counter measures should be introduced to prevent the
spreading of corruption. Containment is required to keep a large-scale application
manageable. We come back to manageability in the next section when discussing
failure requirements.

Server Integrity: Programming errors cannot only be exploited to crash servers
or corrupt data, they are also frequently used to gain access to the computers
hosting the application. Again, what is needed are sound programming practices,

22 GENERAL REQUIREMENTS CHAP. 2

authentication and logging, enabling rapid distribution of fixes and limiting what
an attacker can do, for example, by assigning only minimal permissions to the
application, such as enabled by the Java 2 platform [Gong, 1999].

2.6. FAULT-TOLERANCE REQUIREMENTS

In this section we identity fault-tolerance requirements for a software distribu-
tion network. As already mentioned in the previous section, an important require-
ment is high availability. Providing near-continuous service despite hardware and
software failures in a wide-area network with many computers is nontrivial, to say
the least.

Preferably, a software distribution should also be reliable; that is, provide
uninterrupted service for long periods of time.3 Reliability is important because it
keeps a large-scale distributed application manageable. Operations on a software
distribution network may involve a large number of computers (e.g. uploading a
new version of a popular software package to a large set of hosts in anticipation
of a flash crowd). This property makes the application more susceptible to partial
failures, while at the same time making it hard for an application’s administrators
to correct (the effects of) these failures. What adds to the complexity of recovery
is the fact that the distribution network processes many simultaneous operations.
To keep the distribution network manageable it is therefore important that the
application itself tries to recover from failures whenever possible.

Making a large-scale distributed application operate reliably is complex. First,
reliability is a systemwide property and implementing this requirement therefore
affects all components of the application. Second, redundancy is a powerful tech-
nique for coping with failures, but fault tolerant replication protocols capable of
handling all possible failure scenarios are complex to design, verify and imple-
ment. This statement holds in particular for protocols to be used over the In-
ternet, given the Internet occasionally suffers from network partitions. The ISIS
toolkit [Birman and Van Renesse, 1994] offers the most successful protocol suite
for building reliable applications. Third, combining fault tolerant replication pro-
tocols with distributed object-based programming can raise a number of complex
issues [Bakker et al., 1998]. Fourth, it is unclear how to accurately and securely
detect failure of an application component in the Internet. There is evidence to
suggest failure detection is practically feasible with a sufficient degree of reliabil-
ity [Stelling et al., 1998]. Finally, a software distribution will, most likely, have
to be made reliable by means of software. Hardware fault tolerance, for example,

3Availability of an application concerns the total uptime of the application in a given period (e.g.
a year), the reliability of an application is measured by the mean time between failures.

SEC. 2.7 MANAGEMENT REQUIREMENTS 23

fault-tolerant servers, costs money and given that most freely redistributable soft-
ware is also free in monetary sense, cannot be afforded unless donated or some
business model for generating revenue exists.

As an additional requirement to reliability, a software distribution network
should exhibit strong failure semantics [Cristian, 1991] in case a failure cannot
be compensated for. In other words, when a failure can no longer be masked, the
application should at least attempt to restore the application to a clearly defined
state. This requirement is imposed, again, to keep the application manageable in
the presence of failures. For a global software distribution network, operations
must either succeed or fail and in the latter case restore the application to its state
before the operation was started. These failure semantics are referred to as atomic
with respect to exceptions (AWE) semantics.

Exhibiting strong failure semantics, like reliability, is also a systemwide prop-
erty and equally complex to implement. The complexity lies in analyzing the
application to determine all single and multiple-failure scenarios, devising the ap-
propriate measures and verifying that they indeed provide the desired guarantees
in all scenarios. This process is particularly complicated if the application has a
large number of components.

2.7. MANAGEMENT REQUIREMENTS

A software distribution network may need a resource management system for
managing the available server and network resources, at both the global and the
local level. If there are limited resources available to the application, a global
management system is required to prevent popular or large software packages
from taking up too many resources, and thus hindering the efficient distribution
of other software packages. As this functionality may be required by multiple
applications it should be provided by the middleware platform. Fair allocation
of resources on a global scale is a relatively new field of research. Current ef-
forts concentrate on resource allocation and accounting in computational grids
[Foster and Kesselman, 1998], as discussed in [Wolski et al., 2000; Grid Forum,
2001].

The distribution network may also need to support a local, that is, per-server
resource management system. When a person or organization provides server ca-
pacity they should be able to specify how many resources (bandwidth, memory,
disk space) the distribution network is allowed to use. This functionality should be
provided either by the operating system or the middleware platform. Some oper-
ating systems allow servers to impose quotas on resources, but these facilities are
not always used and other operating systems do not have these facilities. If these

24 GENERAL REQUIREMENTS CHAP. 2

facilities are missing or turned off because they are too expensive to use, the mid-
dleware should provide application-level facilities to limit resource usage. WebOS
[Vahdat et al., 1998] is an example of a middleware platform that provides its own
local resource management system. JRes extends the Java run-time environment
to provide resource management [Czajkowski and von Eicken, 1998].

It is important that a distribution network can be adapted to new functional re-
quirements and changes in usage patterns and in its operating environment, that is,
the Internet. I call this evolvability. At the lower end of the evolvability spectrum
is, for example, the ability to support new, more efficient, replication protocols;
at the other end is the ability to dynamically update the application while it is
running. Scalability of an application can be seen as the ability to adapt to new
usage patterns without modification to its design. If we consider high availability
as the ability of the application to survive in space, we can consider evolvability
the ability of the application to survive in time.

2.8. FOCUS OF THIS DISSERTATION

Unfortunately, it is beyond the scope of this research to develop a software dis-
tribution network that satisfies all the requirements identified above, in particular,
because of the complexity involved in implementing some of these requirements.
I therefore confined myself to investigate the following requirements:

• Basic upload and download facilities,

• All security requirements,

• All fault-tolerance requirements,

• Global and local resource management.

This selection means I will not investigate (1) how to specify, store and re-
solve dependencies between software packages and downloading consistent con-
figurations of required packages, (2) querying functionality more advanced than
downloading a software package using location-independent identifiers, (3) the
ability to receive notifications of new software releases and auto-update facilities,
and (4) evolvability of the application.

CHAPTER 3

The Globe Middleware Platform

This chapter gives an overview of the Globe middleware platform. It provides
the background necessary to understand the description of the design and imple-
mentation of our worldwide software distribution network, the Globe Distribu-
tion Network presented in the following chapters. The Globe middleware plat-
form is sometimes referred to as a worldwide distributed system. These desig-
nations are considered to be the same for the purpose of this dissertation. The
Globe middleware platform is designed to support 1 billion (109) users. Homburg
[2001] provides a more complete description of Globe and its relationship to other
worldwide distributed systems such as Globus [Foster and Kesselman, 1997] and
Legion [Grimshaw et al., 1999].

Sec. 3.1 describes Globe’s distributed shared object model. The implementa-
tion of this model is explained in Sec. 3.2. Sec. 3.3 discusses the various nam-
ing services of Globe and how they can be used to gain access to a distributed
shared object. Sec. 3.4 describes the steps involved in a method invocation on a
distributed shared object, and Sec. 3.5 explains how a DSO is created. Sec. 3.6
gives a more detailed explanation of Globe’s object-location service. The basic
functionality of our special server software for hosting local representatives and
our services for locating available servers willing to host local representatives are
discussed in Sec. 3.7 and Sec. 3.8, respectively.

3.1. DISTRIBUTED SHARED OBJECTS

Globe, like other object-based or object-oriented1 middleware platforms, is
based on the concept of distributed shared memory (DSM) [Li and Hudak, 1989].

1Object-based systems, unlike object-oriented systems, do not support inheritance [Wegner,
1987].

26 THE GLOBE MIDDLEWARE PLATFORM CHAP. 3

A1 A2

A3 A4

representative
Local

A5

object
Address

Network

Distributed
shared

space

Figure 3.1: A distributed shared object distributed over four address spaces
(A1-A4). In each address space, the DSO is represented by a local repre-
sentative. Address space A5 does not currently participate in the distributed
shared object. This figure is reproduced from [Homburg, 2001].

In DSM systems, processes communicate by reading and writing a (logically)
shared address space. In the case of object-based shared memory systems, this
address space consists of a collection of objects combining a piece of data with
user-defined methods for manipulating that data. Remote processes communicate
indirectly by invoking methods on these distributed objects, thus reading and writ-
ing the encapsulated data. In general, the distributed-object concept allows for a
uniform representation of both information and services and provides implemen-
tation flexibility by decoupling interface and implementation.

As briefly described in the first chapter, a design goal for the Globe mid-
dleware is supporting many different implementations and enabling application-
specific solutions when necessary. This idea is reflected in its model of objects.
Globe differs from other object-based or object-oriented middleware platforms in
its view of what constitutes a distributed object. In our view, a distributed object
should have complete control over its (distributed) implementation. As a result,
in Globe, a distributed object manages all its nonfunctional aspects itself, such
as transport of method invocations, location and replication of its state, and se-
curity, using only a minimum of supporting services. We have called this model
of distributed objects the distributed shared object (DSO) model [Van Steen et al.,
1999a; Homburg, 2001].

Figure 3.1 illustrates the distributed shared object model. We view a dis-
tributed object as a logical unit that is physically distributed over multiple address

SEC. 3.1 DISTRIBUTED SHARED OBJECTS 27

spaces. The distributed shared object in Figure 3.1 is distributed over four address
spaces (A1–A4). In each of the address spaces the distributed shared object is rep-
resented by a local representative (address space A5 in Figure 3.1 currently does
not participate in the DSO and therefore does not contain a local representative).
The power of the DSO model is that the implementation of a local representative
can differ not only from address space to address space (cf. proxies and replicas)
but also from DSO to DSO. By allowing each DSO to have different implemen-
tations of its local representatives, we are enabling per-object and per-application
specialization of a DSO’s implementation. The freedom to implement local repre-
sentatives differently allows a distributed shared object to use the communication,
replication, and security protocols best suited for that particular DSO or the appli-
cation it is part of. In other words, the flexibility we argued is necessary for suc-
cessfully developing large-scale distributed applications in Chapter 1 is provided
by enabling each DSO to select the implementation of its local representatives.

Globe’s philosophy and object model can be best illustrated by focusing on
the management of the location and replication of a distributed shared object’s
state. Different applications have different nonfunctional requirements with re-
spect to security, fault tolerance and performance. As a result, different applica-
tions have different requirements with respect to how, where, and to what degree
the state of its objects should be replicated and with which consistency model
[Adve and Gharachorloo, 1996]. Globe supports this multiplicity of replication
protocols and policies as follows. Because replication and location of the state
of a DSO is an aspect of a DSO’s implementation, they are under control of the
DSO itself. Concretely, they are under control of the object’s local representatives.
In other words, the local representatives of a distributed shared object contain all
code for doing replication and communication. Combined with the freedom to
select the implementation of local representatives on a per-object basis, we are
able to use different replication protocols and policies for different objects and
therefore different applications.

The implementation of local representatives is not completely left to the ap-
plication programmer, however. The structure of local representatives (described
in the next section) separates application, replication and communication code.
Furthermore, all replication protocols are accessible via a standardized interface.
This separation and standardization enables the creation of a library of reusable
replication and communication-protocol implementations from which a program-
mer can select the ones appropriate for each object in his application (cf. Horus
[Van Renesse et al., 1996]). Of course, it remains possible to implement a new
application-specific protocol if no appropriate protocol is available.

The Globe philosophy is not just applied to the replication of an object’s state.
Research is currently also concentrating on the design and implementation of a

28 THE GLOBE MIDDLEWARE PLATFORM CHAP. 3

Local
representative

Client

subobject
Semantics

subobject
Control

subobject

Communi-
cation

subobject

Replication

Network

Figure 3.2: A local representative composed of four subobjects. Arrows in-
dicate only an invocation, not the return of the invocation. Upward pointing
arrows therefore represent upcalls.

framework to easily incorporate security [Leiwo et al., 2000; Hänle and Tanenbaum,
2000; Leiwo et al., 1999], and, in the future, fault tolerance. This framework
will enable application programmers to choose the security and fault tolerance
measures most suitable for their application and to introduce application-specific
measures when desired.

3.2. IMPLEMENTATION OF A DSO

Physically, a distributed shared object consists of multiple local representa-
tives. Each local representative resides in a single address space and communi-
cates with local representatives in other address spaces. A local representative
is composed of several so-called subobjects as shown in Figure 3.2. A typical
composition consists of the following four subobjects:

Semantics subobject: This subobject contains the actual implementation of the
distributed object’s methods and logically holds the state of the object. The se-

SEC. 3.2 IMPLEMENTATION OF A DSO 29

mantics subobject is written by the application programmer in a programming
language such as Java, C, or C++. It can be developed without having to take
many distribution or replication issues into account, but some issues an appli-
cation programmer cannot ignore, as will be shown in Chap. 4. Accesses to a
semantics subobject are serialized: at most one thread is active in a semantics
subobject at a particular point in time.

Replication subobject: A DSO may have semantics subobjects in multiple lo-
cal representatives for reasons of fault tolerance or performance. The replication
subobject is responsible for keeping the state of these replicas consistent accord-
ing to the consistency model for the distributed shared object. To this extent,
the subobject communicates with its peers in other local representatives using an
object-specific replication protocol. Different local representatives may contain
different replication subobjects, implementing different roles of the replication
protocol (e.g. proxy, master, slave). Different distributed shared objects will use
different (sets of) replication subobjects depending on their needs, as just dis-
cussed. Also, as already mentioned, an important aspect of replication subobjects
is that there is one standardized interface for all replication subobjects. Sec. 3.4
describes this interface in more detail.

Communication subobject: This subobject is responsible for handling com-
munication between the local representatives of the distributed object residing in
different address spaces, usually on different machines. Depending on what is
needed by the other subobjects, a communication subobject may offer (reliable or
unreliable) primitives for point–to–point communication, group communication,
or both. This is generally a system-provided subobject (i.e., taken from a library).

Control subobject: The control subobject takes care of invocations from client
processes, and controls the interaction between the semantics subobject and the
replication subobject. This subobject is needed to bridge the gap between the
programmer-defined interfaces of the semantics subobject, and the standardized
interface of the replication subobject. For example, the control subobject mar-
shalls and unmarshalls method invocations and replies. Because of its bridging
function a control subobject has both a standardized interface used by the repli-
cation subobject and programmer-defined interfaces used by client processes (in
Globe, as in Java, a (sub)object can have multiple interfaces.) In general, the
control object is generated using a stub compiler.

A local representative acting as replica for the distributed shared object con-
tains these basic four subobjects. A local representative that only forwards method
invocations and return replies (a proxy) does not contain a semantics subobject.

30 THE GLOBE MIDDLEWARE PLATFORM CHAP. 3

In the initial design of Globe, other subobjects have been defined, for example,
for handling security functions. This design is currently being refined to proper
security and fault-tolerance frameworks and will therefore not be discussed here.
It is important to realize that, in principle, an application programmer can even
define his own structure for local representatives, because the implementations
of local representatives are loaded dynamically from an implementation reposi-
tory, as discussed below. From a software engineering and reuse point of view,
however, utilizing our structure is to be preferred.

3.3. NAMING AND BINDING

To access a distributed shared object (i.e., to invoke its methods), a client pro-
cess first needs to install a local representative of the object in its address space.
The process of installing a local representative in an address space is called bind-
ing. Before explaining binding, however, we first have to describe how naming is
done in the Globe middleware [Ballintijn et al., 2001].

Each DSO in Globe is identified by a worldwide unique object handle. This
object handle, consisting of an object identifier and some additional information,
never changes during the lifetime of the object and, most importantly, is location
independent. The actual locations of the DSO, that is, where (network address,
port number) its local representatives are located, and how (which replication and
communication protocol) they can be contacted is maintained by a special service,
the Globe Location Service (GLS) [Van Steen et al., 1998a]. The information that
identifies the location of a local representative and how to communicate with it
is called a contact address of the distributed shared object. The Globe Location
Service is designed to store contact addresses for 1012 objects.

Object handles are long strings of bits and therefore not human friendly. To
improve usability, an additional name service has been introduced that maps sym-
bolic names to object handles, the Globe Name Service (GNS). This design results
in a two-level naming scheme: symbolic object names are mapped to object han-
dles by the Globe Name Service which are, in turn, mapped to one or more contact
addresses for the object by the Globe Location Service. This process is illustrated
in Figure 3.3.

Distributed shared objects are free to decide how much use they make of the
Globe Location Service. Typically, an object will register (only) its local repre-
sentatives acting as replicas in the GLS. But, following the Globe philosophy, an
object may, for example, decide to register only a single central contact point and
keep track of the location of its local representatives itself, when it can do so more
efficiently.

SEC. 3.3 NAMING AND BINDING 31

Globe Name Service

Globe Location Service

Name

Object handle

Contact address

Figure 3.3: Globe’s two level naming scheme.

Binding to a DSO (i.e., loading a local representative) now works as follows.
For brevity let us assume that the client process has already acquired an object
handle of the DSO whose methods it wants to invoke. The client calls a special
function in the run-time system, named bind, passing it the object handle. The
run-time system takes the object handle and asks the Globe Location Service to
map it to one or more contact addresses. The returned contact addresses will iden-
tify the most convenient (e.g. geographically nearest) replica of the DSO. Using
the information in the contact addresses, the local run-time system then creates a
new local representative in the client’s address space and integrates this new rep-
resentative into the DSO. Creating a new local representative involves loading the
implementation of the local representative from a nearby (trusted) implementation
repository. The implementation consists of several local class objects which are
loaded and then instantiated to create the local representative and the appropriate
set of subobjects. Local class objects in a repository are identified by so-called
implementation handles. The subobjects are initialized with information from the
contact address. This initialization mechanism is used, for example, to supply the
replication subobject with the details of the replication policy to be used. This
procedure is similar to remote class loading in Java [Liang and Bracha, 1998].

Binding is described in more detail in [Homburg, 2001]. The design of the
Globe Name Service can be found in [Ballintijn et al., 2000]. The inner workings
of the Globe Location Service are described in Sec. 3.6.

We conclude this section by introducing some additional terminology. The

32 THE GLOBE MIDDLEWARE PLATFORM CHAP. 3

interface integer
{

int set(in int i);
int get();

};

Figure 3.4: Interface of our integer DSO. For didactic purposes the set
method is made to return a result, namely the value of its in parameter.

replication policy of an item (either a distributed shared object, data item, or ser-
vice part), is defined as an abstract specification detailing how (using which pro-
tocol and following which consistency model) an item is distributed or replicated
and where (a specification of a set of hosts) the item or a replica of the item may
be located. An item’s replication scenario is the concrete implementation of that
policy at a particular point in time; that is, it describes on which actual hosts copies
of the item are currently located and (for DSOs) which replication subobjects are
currently used. The set of hosts concretely hosting replicas of the item are called
the item’s home set, after Jalote [1989]. Roughly speaking, the replication sce-
nario of a DSO is described by the set of contact addresses stored in the Globe
Location Service at a particular point in time.

3.4. REPLICATION INTERFACES

This section describes the standardized interfaces of the replication and con-
trol subobjects in more detail. The interfaces are explained using a simple exam-
ple distributed shared object encapsulating a single integer. Its interface, called
integer, is shown in Figure 3.4. Globe has its own Interface Definition Lan-
guage, but for clarity OMG/CORBA IDL [Object Management Group, 2001] is
used throughout this dissertation.

For this example it is assumed that the integer DSO uses a master/slave repli-
cation protocol and currently has two replica local representatives: one master
and one slave. Furthermore, it is assumed that a client process has bound to the
distributed shared object and thus already has a proxy local representative in its
address space. This situation is illustrated in Figure 3.5.

To explain the replication interfaces we will go over the steps which are taken
by the various subobjects during an invocation of the object’s set method by the
client process, in the following manner. The series of steps is split into four stages.
For each stage, we first describe one or more of the interfaces used and then show
how it is used in this stage of the method invocation. For a more detailed explana-
tion of the interfaces and the rationale behind them, see [Homburg, 2001].

SEC. 3.4 REPLICATION INTERFACES 33

Co

R

Ct

S

Co

R

Ct

SR

Server process 2Server process 1Client process

CoProxy

Ct

SlaveMaster

Network

Figure 3.5: Our integer object has three local representatives, a proxy run-
ning in a client process and two replicas. The object uses master/slave
replication, with the replica on server process 1 acting as master. Ct, R,
S and Co, are abbreviations for control subobject, replication subobject,
semantics subobject and communication subobject, respectively.

3.4.1. Stage 1: Shipping the Invocation to the Master Replica

The replication subobject’s repl interface is shown in Figure 3.6. As can be seen
from the figure, the code of a replication subobject is application independent and
operates on opaque invocation messages.

The first series of steps involved in the invocation of the integer object’s set
method is depicted in Figure 3.7. The CORBA-IDL syntax

<interface>::<method>

is used to denote a method in a specific interface. The invocation will set the
integer in the integer object to the value 481.

1. The invocation on the integer DSO starts by the client process invoking
integer::set(481) on the proxy local representative. The local representative
delegates this call to its control subobject by making the same invocation on
it.

2. To signal the start of the method invocation to the replication subobject,
the control subobject invokes the start method in the replication subobject’s
repl interface. An argument to this call is a flag indicating that the method
to be invoked on the integer object will change its state. Knowledge about
which methods modify the state and which do not is encoded in the control
subobject and would, for example, be derived from programmer annotations

34 THE GLOBE MIDDLEWARE PLATFORM CHAP. 3

enum action t { SEND, INVOKE, RETURN };

interface repl
{

action t start(in boolean ModifiesState);
action t send(in boolean ModifiesState,

in sequence<octet> MarshalledRequest,
out sequence<octet> MarshalledReply);

action t invoked(in boolean ModifiesState);
};

Figure 3.6: A replication object’s repl interface. Error parameters have
been left out for simplicity.

commCB

Client

4

integer

32

1

repl

comm

Proxy

cation
Communi-

local
representative

Replication

Control

Network

replCB

5

Figure 3.7: First stage of the invocation of the integer object’s integer::set
method. The client process invokes the set method on the proxy local rep-
resentative in its address space. Rectangles represent interfaces; arrows
indicate only an invocation, not the return of the invocation.

SEC. 3.4 REPLICATION INTERFACES 35

to the integer interface by the stub generator creating the control subobject.
These annotations are not shown in Figure 3.4.

3. The invocation of repl::start returns the value SEND, by which the replication
subobject instructs the control subobject to marshall the integer::set(481)
invocation and pass the marshalled invocation to the replication subobject
using the repl::send method.

4. The replication subobject creates a replication-protocol message contain-
ing the marshalled method invocation and its own additional headers. The
replication subobject implements the client part of a master/slave protocol
and, following this protocol, ships the invocation message to its peer in the
master local representative using the communication subobject. This subob-
ject’s comm interface contains standard communication primitives and will
not be discussed further. The location of the master local representative was
contained in the contact address used to construct this proxy representative,
obtained from the Globe Location Service during binding.

5. The communication subobject interfaces with the operating system’s net-
work layer to send the message to the master replica.

3.4.2. Stage 2: Performing the Invocation on the Master Replica

To understand the sequence of steps that occur when the replication-protocol mes-
sage carrying the method invocation is received at the master replica, the concept
of a callback interface has to be introduced first. A callback interface is an inter-
face of a subobject which is used only by threads created as part of an upcall from
the network layer. For the purpose of this dissertation a callback interface can be
considered a regular interface.

There are two callback interfaces in a local representative: the commCB in-
terface used by a communication object to pass an incoming replication-protocol
message to the replication subobject, and the replCB interface of the control sub-
object which is used by the replication subobject. These interfaces are shown in
Figure 3.8 and Figure 3.9, respectively.

The next stage in the method invocation is depicted in Figure 3.10.

6. The invocation message is delivered to the communication subobject by the
operating system.

7. The communication subobject removes its own headers and forwards the re-
sulting replication-protocol message to the replication subobject by calling
commCB::msgArrived.

36 THE GLOBE MIDDLEWARE PLATFORM CHAP. 3

interface commCB
{

void msgArrived(in NetworkAddress SourceAddress,
in sequence<octet> ReplProtoMessage,
out sequence<octet> ReplProtoReplyMessage);

};

Figure 3.8: A replication object’s commCB interface. “NetworkAddress”
is an opaque type for, for example, IP addresses (cf. struct sockaddr in
UNIX networking [Stevens, 1998].) Error parameters have been left out for
simplicity.

interface replCB
{

void handleRequest(in sequence<octet> MarshalledRequest,
out sequence<octet> MarshalledReply);

void getState(out sequence<octet> MarshalledState);
void setState(in sequence<octet> MarshalledState);

};

Figure 3.9: A control object’s replCB interface. Error parameters have been
left out for simplicity.

SEC. 3.4 REPLICATION INTERFACES 37

commCB

9

integer semState

8

7

comm

repl

integer

Semantics

local
representative

Control

Master

Communi-
cation

Replication

replCB

Network

6

Figure 3.10: Second stage of the invocation of the integer DSO’s set
method. The replication-protocol message originating in the client pro-
cess arrives at the master replica and is processed, resulting in the actual
execution of the integer::set method.

8. The replication subobject decodes the message’s headers and finds the in-
coming message is a state-modifying method invocation. If there are no
other invocations currently underway, the replication subobject asks the
control subobject to unmarshall the method invocation and perform the
actual invocation on the semantics subobject by calling the handleRequest
method in the control subobject’s replCB callback interface. An argument
to this call is the remainder of the replication-protocol message, that is, the
marshalled method invocation.

9. The control subobject invokes integer::set(481) on the semantics subobject.
The semantics subobject executes the method, setting the encapsulated inte-
ger (its state) to its new value. Next, the control subobject marshalls the re-
sult of the invocation, in this case just the return value of the set method (the
integer 481). Finally, it leaves the replCB::handleRequest method, returning
the marshalled reply as an out parameter to the replication subobject.

38 THE GLOBE MIDDLEWARE PLATFORM CHAP. 3

interface semState
{

void getState(out sequence<octet> MarshalledState);
void setState(in sequence<octet> MarshalledState);

};

Figure 3.11: A semantics object’s semState interface. Error parameters
have been left out for simplicity.

3.4.3. Stage 3: Updating the Slave Replica

Since the integer::set method modifies the state of the integer DSO, the replication
subobject should now update or invalidate the copy of the state stored in the slave
local representative (see Figure 3.5). The update variation is described here.

In Globe, a semantics subobject is currently responsible for creating mar-
shalled versions of its state (and thus that of the distributed shared object) and
update its state from a marshalled version. To this extent, each semantics object
has a semState interface that the application programmer must implement. This
interface is depicted in Figure 3.11. Observe the overlap with the replCB interface
in Figure 3.9. The reason that a control object implements the replCB interface,
and not the semState interface and an additional interface containing just the han-
dleRequest method, is due to historical reasons.

The description of this stage of the method invocation is split into two parts.
The first part is illustrated in Figure 3.12.

10. The replication subobject, knowing that the method it asked the control
subobject to perform changed the state, calls the control subobject’s re-
plCB::getState method.

11. This invocation is directly transformed into a semState::getState call to the
semantics subobject. The semantics subobject creates a marshalled version
of its state and returns this to the control subobject which, in turn, returns it
to the replication subobject as a result of the invocation of replCB::getState.

12. The replication subobject creates a “state-update” message from the mar-
shalled state by adding its own headers and passes this message to the com-
munication subobject for transportation to the replication subobject’s peers
in the slave local representatives.

13. The communication subobject forwards the message to the network layer.

The second part of stage 3 of the invocation is illustrated in Figure 3.13.

SEC. 3.4 REPLICATION INTERFACES 39

commCB

11

comm

12

10

integer semStaterepl

integer

Semantics

Master
local
representative

Control

Communi-
cation

Replication

13

replCB

Network

Figure 3.12: The first part of stage 3 of the invocation of the DSO’s set
method. The master local representative creates a marshalled version of the
new state and forwards it to the slave representative such that it can update
its semantics subobject and make the two replicas consistent again.

14. The replication-protocol message containing the updated state is delivered
to the communication subobject of the slave by the operating system.

15. The communication subobject, in turn, delivers the message to the replica-
tion subobject using that object’s commCB::msgArrived method.

16. The replication subobject determines that the message contains a state up-
date and calls the control subobject’s replCB::setState method to instruct it
to install this new state in the semantics subobject.

17. The control subobject does so by invoking the semState::setState method
on the semantics subobject. Note that the semantics subobject unmarshalls
a state that was marshalled by its peer semantics subobject in the master in
step 11.

40 THE GLOBE MIDDLEWARE PLATFORM CHAP. 3

commCB

comm

16

15

17

integer semStaterepl

integer

Semantics

representative
local
Slave

Control

Communi-
cation

Replication

14

replCB

Network

Figure 3.13: The second part of stage 3 of the invocation of the DSO’s
set method. The marshalled version of the updated state is received at the
slave local representative and installed in its semantics subobject, making
the master and slave replica consistent again.

3.4.4. Stage 4: Returning the Invocation’s Result to the Client

18. After the successful installation of the new state in the semantics subobject,
the slave’s replication subobject returns an “OK” message to its peer in the
master.

19. When the master replica’s replication subobject receives the “OK” message
it converts the marshalled reply of the invocation it received from the control
subobject in step 8 (page 37) into a invocation-reply message. It passes
this reply message to the communication subobject by returning from the
commCB::msgArrived invocation. The communication subobject returns the
reply message to the proxy local representative in the client process (see
Figure 3.5).

20. The proxy’s replication subobject was blocked waiting for a reply to its
invocation message from the master replica. The receipt of the invocation-
reply message unblocks it. The replication subobject was blocked in the

SEC. 3.5 REPLICATION INTERFACES 41

3
2

1

1716

15

10

Client

11

4

9
8

7 12

Proxy SlaveMaster

S

Ct Ct

S

Co

R

Ct

6

R

Co Co

R

13 145

Network

Figure 3.14: The steps involved in an invocation of a state-modifying
method on a master/slave replicated distributed shared object. Circles rep-
resent subobjects, rounded boxes represent local representatives. Ct, R, S
and Co, are abbreviations for control subobject, replication subobject, se-
mantics subobject and communication subobject, respectively.

control subobject’s call of its repl::send method. The replication subobject
extracts the marshalled reply from the protocol message and returns it to
the control subobject via the MarshalledReply parameter of the repl::send
method (see Figure 3.6), and returns RETURN as action value.

21. As before, this value signals to the control subobject that it should return
the result of the invocation to its caller. The control subobject unmarshalls
the reply and returns the value to the client process by returning from the
integer::set method, thus completing the method invocation on the integer
DSO.

What is not discussed in this example is the use of the INVOKE replication
action shown in the definition of the repl interface (see Figure 3.6). This value is
returned by a replication subobject of a local representative in a client’s address
space when that local representative is stateful. In other words, when a client has a
replica local representative in its address space and the replication protocol allows
the method invocation to be carried out in the local address space (e.g. because it
is a read operation) the return value of the repl::start method is INVOKE instead of
SEND, signaling that the control subobject should perform the method invocation
on the local semantics subobject.

The whole sequence of steps is summarized in Figure 3.14.

42 THE GLOBE MIDDLEWARE PLATFORM CHAP. 3

3.5. CREATING DSOS

We have not yet discussed how DSOs are created, and, in general, this is still a
topic of research. We therefore briefly look at how DSOs are created in our current
implementation of the Globe middleware. To create a distributed shared object at
least one local representative for the object should be created. In the current Globe
implementation, this initial LR is constructed in two steps.

1. A client wanting to create a distributed shared object first creates a descrip-
tion of the implementation of a local representative. This description speci-
fies which subobjects the LR be composed of, and some initialization data.
This description is similar to those found in a contact address of a DSO
stored in the Globe Location Service.

2. Next, the client sends a “create first replica” request to a Globe object server
(see Sec. 3.7) that contains the description. Based on this description the
object server creates the initial local representative for the DSO. Generally,
this local representative will register itself in the Globe Location Service.

3.6. THE GLOBE LOCATION SERVICE

To efficiently map object handles to contact addresses on a worldwide scale,
the Internet is organized into a hierarchy of domains. The domains at the bottom
of the hierarchy represent moderate-sized networks, such as a university’s cam-
pus network or the office network of a corporation’s branch in a certain city. The
next level in the hierarchy is formed by combining these leaf domains into larger
domains (e.g. representing the city’s metropolitan-area network). This procedure
is applied recursively up to the root domain, which encompasses the whole In-
ternet. Note that domains in this hierarchy do not correspond to domains in the
Internet’s Domain Name System (DNS) [Mockapetris, 1987] and the subdivision
can be based on metrics other than geographical distance (e.g. routing domains).

With each domain in the hierarchy we associate a directory node, as shown in
Figure 3.15. Each directory node keeps track of the locations of the distributed
shared objects in its associated domain, as follows. For each DSO that has lo-
cal representatives in the node’s domain, a directory node stores either the actual
contact address (network address and protocol information for contacting the rep-
resentative) or a set of forwarding pointers. A forwarding pointer points to a child
directory node and indicates that a contact address can be found somewhere in the
subtree rooted at that child node. Because a DSO may consist of multiple replicas
located in different child domains, a directory node may store more than one for-
warding pointer per DSO. Normally, the contact addresses are stored in the leaf

SEC. 3.6 THE GLOBE LOCATION SERVICE 43

France

Paris

UK

GlasgowLondon RotterdamAmsterdamLyon

French domain

European domain

Netherlands

World domain

Europe

Parisian domain

World

Figure 3.15: The Globe Location Service divides the Internet into a hier-
archy of domains, represented by dashed, rounded rectangles in the figure.
Associated with each domain is a directory node, represented by a small
rectangle. For simplicity the domains for cities and countries other than
Paris and France have been left out.

44 THE GLOBE MIDDLEWARE PLATFORM CHAP. 3

directory nodes. However, storing the addresses at intermediate nodes may, in the
case of highly mobile objects, lead to considerably more efficient lookup opera-
tions, as explained in [Van Steen et al., 1998a]. This design has some (seemingly)
radical consequences. For each distributed shared object on the Internet, there is a
tree of forwarding pointers from the root node to the directory nodes that contain
the actual contact addresses. Before explaining that this, in fact, does not cre-
ate a single point of failure or bottleneck, we first look at how object handles are
resolved.

During binding (see Sec. 3.3), the client sends a look-up request to the direc-
tory node of the leaf domain the client is located in. The leaf node checks to see
if it has a contact address for that DSO in its tables (i.e., it checks if the DSO has
a representative in this (leaf) domain). If not, it forwards the request to its parent
node, which, in turn, checks its tables. This process is repeated until either (1) a
contact address for the object is found or (2) a forwarding pointer is discovered
or (3) the root of the tree is reached, in which case the object has no registrations
in the GLS. In case a forwarding pointer is found, the lookup operation continues
down into the subtree pointed to by the forwarding pointer and follows the tree of
forwarding pointers to a node in that subtree that stores an actual contact address.
If multiple forwarding pointers are found, one is selected at random.

The advantage of this design is, that if a distributed shared object has a repre-
sentative near to the client, the Globe Location Service will find that representative
using only “local” communication. In other words, the cost of a lookup is propor-
tional to the distance between the client and the nearest local representative of the
distributed shared object.

An apparent problem with this design is that the root node, or in general,
the higher-level nodes in the hierarchy have to store a lot of forwarding pointers
and handle a lot of requests (if representatives of the DSO are not located near
their prospective clients). Our solution to this problem is to partition a directory
node into one or more directory subnodes. Each subnode is made responsible for
a specific part of the object-identifier space via a special hashing technique and
can run on a separate machine. For further details, see [Van Steen and Ballintijn,
2002].

3.7. THE GLOBE OBJECT SERVER

We have developed special server software for hosting local representatives
of (long-running) distributed shared objects: the Globe Object Server (GOS). It
provides facilities for local representatives running in the GOS to handle reboots
and crash failures of the host computer and support their passivation and activation

SEC. 3.8 THE GLOBE OBJECT SERVER 45

for server resource management. A GOS is application independent; it, and the
local representatives running in it can be managed remotely.

This section describes the initial implementation of the Globe Object Server,
which allows local representatives to survive just a reboot, not failures. Chap. 6
will describe extensions that allows an object server and its contents to also sur-
vive ungraceful shutdowns. The Globe object server is currently implemented as
single user-level process and consists of three components: the server manager,
the persistence manager and the communication-object manager.

The server manager controls the operation of the object server. It processes the
object-management commands the server receives over the network, such as “cre-
ate replica” and “destroy replica.” At present, a simple RPC protocol is used. The
communication-object manager and the persistence manager are resource man-
agers. The persistence manager provides an operating-system independent inter-
face to the persistent storage of the host machine. Replicas that need large amounts
of storage use this interface to store and retrieve these parts of their state. The per-
sistence manager keeps track of the persistent resources a replica uses such that
when a replica crashes it can free those resources. The communication-object
manager manages the communication resources of an object server. In particular,
the communication-object manager provides transparent multiplexing of commu-
nication streams to the same hosts, reducing the number of TCP connections re-
quired.

As already mentioned, the current Globe object server provides facilities for
local representatives (generally replicas) to survive the graceful shutdown and
restart of a server. When an object server is shut down, it signals this fact to
the running replicas. Based on their own (object specific) policy, the replicas then
decide to stay or remove themselves from the object server. When a replica de-
cides to stay it marshalls its internal state (which includes the state of the object)
and writes it to persistent storage using the persistence manager. The server man-
ager records which replicas are staying and need to be restored after rebooting and
stores this information in a persistent log. When the object server restarts it reads
this log and recreates the replicas which then, in turn, recreate their internal state
from disk and contact their peers to check for missed updates. Special measures
are in place to make sure the network contact points (i.e., TCP port numbers) of
the replicas remain the same. If these contact points changed after a reboot, the
contact addresses for these replicas in the Globe Location Service would have to
be updated. By making sure the same contact points are used again the impact of
a reboot is minimized.

46 THE GLOBE MIDDLEWARE PLATFORM CHAP. 3

3.8. THE GLOBE INFRASTRUCTURE DIRECTORY SERVICE

A large-scale distributed application makes use of multiple object servers. The
set of object servers are used varies with time under the influence of failures,
deliberate migrations and changes in clients’ usage patterns. The set of object
servers potentially available to a particular application also varies over time, as
servers are decommissioned or new servers are introduced. To allow applications
to easily discover which object servers are available to them we introduced a new
middleware service.

The Globe Infrastructure Directory Service (GIDS) [Kuz et al., 2001] keeps
track of all object servers that are currently available worldwide. The GIDS al-
lows applications to discover suitable object servers based on a specification of
desired properties, related to technical capabilities (amount of memory, available
bandwidth, operating system and hardware platform), security attributes (which
person or organization operates this object server), and the location of the object
server. Once a matching server has been found the application and server enter a
negotiation phase to determine whether or not they want and can cooperate, and
negotiate the exact details of that cooperation.

Typically, an application developer would specify the required properties of
the object servers when the application is started. When an application, or rather
the distributed shared objects making up the application, discover they need a
new object server (to maintain their required fault-tolerance degree or to optimize
server load or network usage by creating a new replica somewhere), they contact
the GIDS to supply them with the contact information for a new object server
that matches the specified properties. As shown in the next chapter, this service
is in particular useful for applications with varying usage patterns which also ex-
hibit peaks and dynamically changing server pools such as the Globe Distribution
Network.

The current implementation of the GIDS uses the Light-weight Directory Ac-
cess Protocol (LDAP) and standard LDAP servers [Loshin, 2000]. The GIDS
divides the world into a set of base regions (generally subdivisions of the leaf
domains identified for the Globe Location Service.) Per base region there is an
LDAP server, called the Regional Service Directory that keeps track of the avail-
able object servers and their properties. The base regions are organized into a
hierarchy, currently based on their geographical location, which allows clients
(i.e., objects looking to create a new replica somewhere) in other base regions to
locate the appropriate Regional Service Directories.

CHAPTER 4

Distributed Revision Objects

As explained in the previous chapter, Globe uses a uniform model to represent
information and services: distributed shared objects. Any Globe application, in-
cluding the Globe Distribution Network (GDN), can therefore be thought of as a
group of processes communicating through a collection of distributed shared ob-
jects. Concretely, the GDN is modeled as a group processes inserting software into
distributed shared objects (programmers producing software) and a (large) num-
ber of processes retrieving software from those distributed shared objects (people
downloading the software).

This chapter explains how software is encapsulated in distributed shared ob-
jects, that is, the mapping from software packages, revisions and variants to dis-
tributed shared objects, and how these “software DSOs” are implemented such
that the distribution of software from producer to user is done efficiently. Sec. 4.1
explains what is meant by efficient distribution and how it can be achieved. Next,
the mapping from software packages, revisions and variants to distributed shared
objects is discussed in Sec. 4.2. The interface and semantics of the “software
DSOs” are discussed in Sec. 4.3. Sec. 4.4 describes how packages, revisions and
variants can be referred to now that they are encapsulated in DSOs. Sec. 4.5
describes the basic implementation of the DSOs. Their replication protocol is dis-
cussed in detail in Sec. 4.6, in particular, how it allows the Globe Distribution
Network to handle flash crowds.

Designing mappings from the application domain to Globe DSOs is an aspect
of application design that has not been studied until now, and therefore represents
a valuable contribution of this dissertation. The practical problems of interface
design, and how the Globe middleware handles objects with large state are also
aspects that are described for the first time in this dissertation. In the areas of per-
sistence and replication protocols I borrow from existing work by others, which
are not my contributions, although I was involved in the design of the persistence

48 DISTRIBUTED REVISION OBJECTS CHAP. 4

facilities. The key ideas of the replication protocol are borrowed from Pierre et al.
[2000, 2001]. The details of the scenario reevaluation and load balancing aspects
are my extensions. I have provided a detailed description of the replication proto-
col used to give a complete and concrete picture of how the GDN makes distribu-
tion efficient, and the roles of the Globe middleware services in this process.

4.1. EFFICIENT DISTRIBUTION OF SOFTWARE

A software distribution network efficiently distributes its content when it places
the content such that optimal use is made of the underlying data network. What is
meant by optimal use is explained in the following paragraphs.

The Internet currently suffers from temporarily or permanently overloaded
network links that act as bottlenecks. To remove these bottlenecks there are two
solutions. The hardware solution is to increase the available bandwidth on the
overloaded links. However, instead of increasing bandwidth the problem can also
be solved by reshaping communication in such a way that the overloaded links
are used less. This solution can be applied to situations where the network is used
by many people to retrieve the same data or use the same services from the same
parties.

The tools for reshaping communication are distribution, replication and cach-
ing (DRC). By caching I mean temporarily storing results of service requests. The
use of these three tools is illustrated in Figure 4.1. Figure 4.1(a) shows a group of
users in Network 1 communicating with a shared object in Network 2. The size of
the communication has caused the link between Network 1 and 2 to become over-
loaded. Replication can be used to create another instance of the shared object in
Network 1, reducing the load on the link, as illustrated in Figure 4.1(b). Distribu-
tion, or more precisely, migration can be used instead of replication to relocate the
data or service in the overloading part, when this move does not simply shift the
direction of the overload on the link (see Figure 4.1(c)). Caching, like replication,
can prevent having to go over the network link altogether.

A prerequisite for being able to use DRC is that computing resources are
available to migrate to or install a replica on. To a large extent the choice be-
tween using DRC or upgrading a network link is determined by the price of server
capacity compared to network bandwidth. Historically, the price of (wide-area)
bandwidth has been considerable, making it more cost effective to setup caching
proxy servers or mirror sites. In many cases setting up a caching server or replica
can be done autonomously, enabling organizations to work around network prob-
lems that exist outside of their realm of influence.

Another prerequisite is the ability to identify hot spots in the network. Hot

SEC. 4.1 EFFICIENT DISTRIBUTION OF SOFTWARE 49

Shared object

Users
Link

Network 2Network 1

(a)

Shared object Shared object

Users
Link

Network 2Network 1

(b)

Shared object

Users
Link

Network 2Network 1

(c)

Figure 4.1: (a) A shared link connecting Network 1 and Network 2 is over-
loaded (illustrated by the large arrow head going into Network 2) because
many users in Network 1 are accessing the shared data/service located in
Network 2 (the shared object is assumed to be able to handle to the load).
(b) Overload of the link is avoided by replicating the shared data/service
in Network 1. (c) Overload of the link is avoided by migrating the shared
data/service to Network 1.

50 DISTRIBUTED REVISION OBJECTS CHAP. 4

spots are congested links or overloaded routers. Some hot spots are permanent,
such as, at present, the transcontinental network links, whereas others are just
temporary. Effective use of DRC by an application requires short-term (by the
application itself) and long-term (e.g. by its administrators) analysis of usage
patterns, of both the application itself and the data network it is running on. From
these analyses the application or its administrators should infer where to best place
replicas, and whether it is useful to do migration or caching.

Besides the availability of servers and knowledge of usage patterns, there are
other factors that may restrict the applicability of DRC. In general, security con-
straints may prohibit data or services from being replicated or migrated. Further-
more, when data or services are more frequently updated than read, replication
may not reduce traffic over the shared link. For example, when the read/write ratio
is low, more network traffic may be generated by the replication protocol keeping
the replicas consistent than is saved by creating a replica near to the users. In a
software distribution network content is more read than it is written and there are
no strong security requirements prohibiting replication.

Distribution, replication and caching, as tools for optimizing network usage,
will continue to play a role in the Internet in the near and mid-term future. Net-
working technology is progressing rapidly both in terms of link and switching
capacity [Stix, 2001; Edwards, 2000]. However, it may be some time until these
advanced technologies have been deployed and bandwidth has become cheaper
than server capacity. Furthermore, the required bandwidth in the backbone of the
network is proportional to the number of people simultaneously accessing the net-
work times the (average) amount of bandwidth they use. As more and more people
get access to more and more bandwidth, this required capacity will increase many
times. It is therefore likely that links in the backbone of the network become
overloaded, either temporarily or for longer periods of time.

Distribution, replication and caching are not used only for optimizing network
usage. They are also used for server load balancing (e.g. handling flash crowds)
and achieving fault tolerance. Hence, whatever role DRC may play in the future
for optimizing network usage, they will always be an important part of a software
distribution network’s implementation.

A software distribution network, such as the Globe Distribution Network,
should support distribution, replication and caching of its contents. Given that
in the GDN content is encapsulated in Globe distributed shared objects, these ob-
jects will have to be implemented such that their state is distributed and replicated
in a way which optimizes the use of the Internet. The following sections explain
the interface and implementation of these distributed shared “software” objects.
Note that in this chapter we look only at using replication for network and server
load balancing; replication for fault tolerance is discussed in Chap. 6.

SEC. 4.2 MAPPING SOFTWARE PACKAGES TO DSOS 51

4.2. MAPPING SOFTWARE PACKAGES TO DSOS

This section describes how software is encapsulated in distributed shared ob-
jects, that is, the mapping from entities and relationships in the free-software
domain to distributed shared objects. Recall that in this dissertation a software
package is an application, a library, or any piece of software that is published as a
separately named entity. A software package evolves and as a result, multiple revi-
sions are created, that is, versions that are meant to replace other, earlier versions.
Each revision can have a number of variants, such as source code and binaries for
different hardware platforms. Variants, in turn, can be stored in archive files with
different file formats (e.g. .gz, .rpm). A distribution is a named collection of soft-
ware packages A distribution has its own revision history, and can, like a software
package, be published in multiple variants (i386, Alpha, SPARC). Examples of
distributions are RedHat Linux and FreeBSD, but also more general collections of
packages, such as the GNOME desktop environment.

4.2.1. Revision and DistributionArchive DSOs

In the Globe Distribution Network, a software package is published as a set of
revision DSOs (also called revision objects). Each revision DSO contains archive
files that contain all available variants of that revision. The same variant may be
offered in multiple archive files with different file formats. So a revision DSO is ba-
sically a collection of archive files, containing the different variants of a particular
revision of a software package in various file formats.

The mapping scheme for software packages is illustrated in Figure 4.2 using
the GIMP application as an example (GIMP manipulates images in various image
formats). Each revision of the GIMP package is turned into a separate distributed
shared object. The revision DSO encapsulating revision 1.1.29 would, for example,
consist of the source code in tar.gz format and binaries for Linux on i386 and
Alpha processors in .deb and .rpm package formats.

A distribution is published in the GDN as a set of DistributionArchive DSOs.
Each DistributionArchive DSO contains a variant of a revision of the distribution
in a specific file format, for example, the ISO9660 CD-image of the i386 variant
of revision 7.1 of the distribution, or the collection of archive files in .rpm for-
mat, containing the i386 binaries of the packages that make up revision 7.1 of the
distribution. This mapping scheme is illustrated in Figure 4.3.

For distributions that contain packages developed by others than the publisher
of the distribution, we assume that that a distribution is published separately from
its individual packages; that is, even though a package may already be published
via the GDN by its original producer, the publisher of a distribution will pub-
lish his own copy, possibly with his own modifications. For example, if revision

52 DISTRIBUTED REVISION OBJECTS CHAP. 4

- src.tar.gz
- linux-i386.rpm
- linux-alpha.rpm
- linux-i386.deb
- linux-alpha.deb

Contents:

- linux-i386.rpm
- linux-alpha.rpm
- linux-i386.deb
- linux-alpha.deb

- src.tar.gz
Contents: Contents:

- src.tar.gz
- linux-i386.rpm
- linux-alpha.rpm

Name: revision 1.1.28 Name: revision 1.1.29 Name: revision 1.2.0

GIMP

Figure 4.2: (Rounded boxes represent distributed shared objects) The
GIMP package is published as a set of revision DSOs in the Globe Dis-
tribution Network. For brevity, only three revision objects are shown in
the figure. Each revision DSO contains the different variants in which the
revision is published, in multiple file formats.

7.1 of RedHat for i386 hardware includes revision 1.2.1 of the GIMP package
(compiled for the i386 platform), the publisher of RedHat 7.1 will not link to the
revision DSO containing v1.2.1 published by the maintainer of GIMP, but instead
publish its own copy of the 1.2.1 binaries for Intel. This separate publishing is
standard practice because distribution publishers want to keep control over their
distribution.

4.2.2. Discussion

Before discussing the choice for revision DSOs and DistributionArchive DSOs, we
first look at the general considerations to make when designing a mapping from
application domain to DSOs.

From a technical viewpoint, two data items A and B should be turned into two
separate distributed shared objects if they have differing nonfunctional require-
ments. For example, item A may be much more popular than B; that is, A may be
accessed many times more. To provide fast and network-efficient access to item A
it has to be replicated many times, whereas it would be wasteful from a resource
and consistency-management perspective to also replicate item B to such a large
degree. In this case it would therefore be more efficient to encapsulate A and B
in different distributed shared objects, following perhaps the same replication pol-
icy but with different replication scenarios (item A being replicated on more hosts
than B). The terms replication policy and scenario were defined in Sec. 3.3.

There are, however, costs associated with turning something into a DSO.
These costs preclude fine-grained mappings where large numbers of small data

SEC. 4.2 MAPPING SOFTWARE PACKAGES TO DSOS 53

ISO9660
format

RPM
format

source

ISO9660
format

RPM
format

i386

- a2ps-4.13b-13.i386.rpm
- abiword-0.7.13-2.i386.rpm
- adjtimex-1.11-4.i386.rpm
- alchemist-0.16-3.i386.rpm
- am-utils-6.0.5-1.i386.rpm
- amanda-2.4.2p2-1.i386.rpm
 ...
- zip-2.3-8.i386.rpm
- zlib-1.1.3-22.i386.rpm
- zlib-devel-1.1.3-22.i386.rpm
- zsh-3.0.8-8.i386.rpm

ISO9660
format

RPM
format

source

7.1

Name:
Contents:

Name:ISO9660 format
Contents:

RPM format

- image.iso

i386

RedHat

7.0

Figure 4.3: (Rounded boxes represent distributed shared objects) The map-
ping of the RedHat Linux distribution to DSOs. For brevity, only two revi-
sions of the distribution (7.0 and 7.1) are shown. The objects are organized
into a tree for presentation purposes. Following the tree from root to leaf
together with the label of the object gives a description of the DSO’s con-
tents.

54 DISTRIBUTED REVISION OBJECTS CHAP. 4

items are encapsulated in separate DSOs, as the combined costs become too high.
We focus on four factors:

1. Memory footprint of local representatives

2. Use of scarce communication resources (i.e., multicast groups)

3. The costs of using the Globe Location Service to register and locate replicas
of the DSO (when the object cannot efficiently keep track of its replicas
itself).

4. Replication-protocol overhead (which can be high in intelligent/adaptive
protocols)

We discuss each of these four factors in turn.
The state of a replica local representative is defined as the state of the object as

contained in the semantics subobject and information used by the other subobjects,
such as replication-protocol state, to function as a local representative of the DSO.
The memory footprint of a replica local representative depends on how much of
its state it keeps in virtual memory and how much it keeps on disk. Although
local representatives with large state will store most of it on disk (see Sec. 4.5.1),
a local representative will always consume a certain amount of virtual memory.
This amount can be rather small, but if the state of the object (i.e., the data item it
encapsulates) is rather small the overhead can be considerable, as is the case for
the GDN (see below).

In general, the costs of using multicast are the costs of maintaining the multi-
cast trees in the Internet’s routers, and the relative scarceness of IP version 4 mul-
ticast addresses (250 million maximum) compared to the number of distributed
shared objects the Globe middleware is being designed for (1012 [Van Steen et al.,
1998a]). The latter implies that multicast can be used in DSOs only sparingly, or,
in other words, it can be used only in those DSOs where applying multicast saves
large amounts of bandwidth.

The costs of using the Globe Location Service are not yet known. A factor to
consider is that the Globe middleware is to support 109 users1 and 1012 objects,
implying the GLS has a capacity of 1000 objects per user. This number is not
extremely high. On the other hand, it is an average and objects are not required
to use the GLS when they can handle replica location and registration efficiently
themselves. The capacity of the GLS in terms of the number of objects it can
register is, however, something that should be kept in mind.

1More precisely, the set of applications running on the Globe middleware can have 109 users in
total.

SEC. 4.2 MAPPING SOFTWARE PACKAGES TO DSOS 55

The costs of using an adaptive replication protocol depends on how much data
needs to be shared between replicas to make decisions about the most efficient
locations for replicas and their number based on the clients’ access patterns. This
amount of data, in turn, depends on the number of replicas of the DSO.

Finally, a Globe application developer may also have to consider the time re-
quired to bind to a DSO when designing a mapping from application domain to
DSOs [Bakker et al., 1999]. In particular, binding is expected to require a signif-
icant amount of time, as it involves contacting one or more middleware services
over the network. These services, in particular the GLS, internally also may have
to communicate over the network. If fast response time is necessary, an applica-
tion developer should therefore take care that the mapping supports this require-
ment. In particular, the mapping must preclude the application from binding to
(many) random DSOs; that is, preclude the application from making accesses to
DSOs which cannot be predicted in advance. For, if the set of DSOs that will be
accessed cannot be identified in advance, the application developer cannot make
sure that binding to these objects is started in advance, and thus cannot ensure that
these objects are directly accessible by the application client when they need to
be.

Revision-sized DSOs

We now look at how these factors affected the choice for revision-sized DSOs
for distributing software packages. For the GDN, there are expected different
nonfunctional requirements and thus replication scenarios for packages, revisions
and variants and archive files:

1. Some packages may be more popular than others

2. Some revisions of a package may be more popular than other revisions

3. Some variants of a revision of a package may be more popular than other
variants

4. A specific file format may be more popular than others, meaning that a
variant stored in a file in format X may be more more popular than the same
variant stored in a file in format Y.

These properties suggest that for maximum efficiency each archive file should
be turned into a distributed shared object. Such a fine-grained mapping is, how-
ever, considered too expensive. We discuss three of the four factors mentioned
above to show where the costs are (the costs of using the Globe Location Service
are not discussed as they are currently unknown.)

56 DISTRIBUTED REVISION OBJECTS CHAP. 4

Memory footprint In the initial Java implementation of Globe an empty local
representative of a master/slave replicated DSO with the initial security measures
enabled (see Chap. 5) takes up approximately 30 Kilobytes of (virtual) memory.
This value was measured by creating 1000 local representatives and measuring
the increase in the amount of memory used as reported through the Java Virtual
Machine’s Runtime.freeMemory() and Runtime.totalMemory() methods.

I assume that for each Kilobyte of virtual memory the machine hosting the lo-
cal representative needs more or less 1 Kilobyte of disk space. This number could
possibly be reduced by using an implementation of the Globe run-time system that
swaps local representatives in and out of virtual memory itself (i.e., at the applica-
tion level rather than operating-system level), as explained in Sec. 4.5.2. Such an
implementation might namely reduce the disk-space requirements by compress-
ing the swapped-out local representatives. The gain depends on the achievable
compression factor.

An overhead of 30 Kilobyte of disk space per local representative is consider-
able if we compare it to the average size of archive files. The average size of an
archive file containing an i386 variant of a software package in the RedHat Linux
distribution is 116 Kilobyte (measured using revisions 4.1 to 6.2β of the distribu-
tion). This average is the median of the file sizes rather than the mean (which is
622 KB), as the distribution is skewed, as shown in Figure 4.4. For all archive
files (i.e., all .tar.gz, .tgz, .tar.bz2, .rpm, and .deb files) in the pub/Linux directory of
ibiblio.org on 10 July 2002, the median is 144 KB and the mean 990 KB, as shown
in Figure 4.5.

These median file sizes imply that the overhead of using a DSO per archive
file in terms of disk space is, at present, 20–25%. This is viewed as considerable
overhead and implies that placing each archive file in a separate DSO is too costly
at the moment.

Multicast Whether or not DSOs used for free software distribution belong to
the class of DSOs that needs multicast to be efficient is unclear. This depends on
(1) the amount of data such an object sends to groups, and (2) the size of those
groups. The first factor can be roughly estimated for the GDN. Group communi-
cation in a DSO consists of sending updates or invalidates to groups of replicas,
both of which are the physical result of logical updates to the DSO. Although the
popularity of software packages largely differs, the rate at which new revisions,
variants and archive files in different file formats of a package are published is
fairly stable. No more than a few new instances of the package are published per
day, implying that the read/write ratio and thus the number of updates to a DSO
containing software (of whichever granularity) is low. The second factor, the size
of the groups being sent to, that is, the number of replicas of a free-software DSO

SEC. 4.2 MAPPING SOFTWARE PACKAGES TO DSOS 57

RPM file size (bytes)

44,000,000

40,000,000

36,000,000

32,000,000

28,000,000

24,000,000

20,000,000

16,000,000

12,000,000

8,000,000

4,000,000

0

F
re

qu
en

cy
 (

fil

es
)

4000

3000

2000

1000

0

Std. Dev = 1,798,498
Mean = 636,926
Median = 119,023
N = 4,126

Figure 4.4: Histogram and normal curve of file sizes of i386-RPMs for
RedHat 4.1–6.2β. The highest number on the X-axis indicates the size of
the largest file in the set of files, rounded to the axis unit.

58 DISTRIBUTED REVISION OBJECTS CHAP. 4

Archive-file sizes of ftp://ftp.ibiblio.org/pub/Linux (bytes)

440,000,000

400,000,000

360,000,000

320,000,000

280,000,000

240,000,000

200,000,000

160,000,000

120,000,000

80,000,000

40,000,000

0

F
re

qu
en

cy
 (

fil

es
)

70,000

60,000

50,000

40,000

30,000

20,000

10,000

0

Std. Dev = 4,336,901

Mean = 1,013,263

Median = 147,472

N = 60,809

Figure 4.5: Histogram of archive-file sizes for ibiblio.org. The highest num-
ber on the X-axis indicates the size of the largest file in the set of files,
rounded to the axis unit.

SEC. 4.2 MAPPING SOFTWARE PACKAGES TO DSOS 59

is hard to estimate. The number of replicas depends on the popularity of the soft-
ware item, the total capacity of the system (i.e., if there are lots of resources,
objects can be aggressively replicated), and the capacity of the average machine
(i.e., if the average machine offers only limited capacity more replicas are needed
for a certain capacity than if the average machine has high capacity). As a re-
sult, the average number of replicas is hard to estimate, making it, in turn, hard to
assess whether free-software DSOs need multicast. If they need multicast, large
number of objects and thus fine-grained mappings become infeasible.

Adaptive Replication The average number of replicas for a free-software DSO
is hard to estimate, as noted above, implying that the cost of adaptive replication is
not easily estimated. For small numbers of replicas the adaptive protocol used for
free-software DSOs described in Sec. 4.6.2 is, however, relatively cheap to use.

Total number of objects While designing the GDN only a rough estimate of
the number of objects required for each mapping was made, based on the size of
the free software offering at that time. The total number of packages available was
estimated at 50,000, a rough doubling of the number of projects registered at the
SourceForge free-software site (see Sec. 2.2) at that time.

The average number of revisions per package was estimated around 5. An
analysis of the FTP site of the Free Software Foundation which hosts many of the
early free-software packages (i.e., the GNU software) shows that the number of
revisions for a such package has median 5 , viewed over almost 11 years (see Fig-
ure 4.6). This number appears to contradict Raymond [2000] who argues that the
development process of free software is characterized by the fact that developers
“release early and release often”. The actual average viewed over the complete
set of free software may therefore be higher. For example, the Globe project has
published 16 revisions to date, and the Linux kernel had 381 revisions in February
2000.

The average number of variants and number of file formats were estimated
as follows. The volume of the free software in March 2001 was estimated to
be several hundred Gigabytes in Sec. 2.2. The part of this volume taken up by
individual packages is assumed to be around 200 Gigabyte for the calculation
at hand (the various distributions make up the rest). With 50,000 projects and
5 revisions per project, an average revision is then 839 Kilobyte in size. If we
assume the median file size of an archive file to be 130 Kilobyte (the mean of the
median size of an i386 RPM in RedHat distributions and that of an archive file
on ibiblio.org, see above) the number of archive files per revision is approximately
6. In other words, the average number of variants of a revision multiplied by the
average number of file formats in which a variant is published is 6. If we assume

60 DISTRIBUTED REVISION OBJECTS CHAP. 4

Number of revisions per package

4035302520151050

F
re

qu
en

cy
 (

pa

ck
ag

es
)

120

100

80

60

40

20

0

Mean = 6.31
Median = 5.00
N = 195

Std. Dev = 5.38

Figure 4.6: Histogram and normal curve of the number of revisions per
package of ftp://ftp.gnu.org/gnu measured over the period April 1991–July
2002.

SEC. 4.2 MAPPING SOFTWARE PACKAGES TO DSOS 61

Table 4.1: Total number of objects in the GDN for different object granu-
larities for the March 2001 volume of free software.

Mapping Number of objects

Package-sized 50,000
Revision-sized 250,000
Variant-sized 750,000
Archive file-sized 1,500,000

two different file formats (e.g. .tar.gz and .rpm), the average number of variants is
approximately 3.

The total number of objects for each mapping resulting from these estimates is
shown in Table 4.1. The values in this table represent the minimum number of ob-
jects in the GDN, as they are based on the estimates of the current volume of free
software. For a long-running distribution network that acts as a permanent store
for the software (i.e., old packages and revisions are not removed), the number of
packages will continuously increase, as new packages are created and old pack-
ages do not disappear. Hence, the number of DSOs in the GDN will also grow. It
is not clear what happens to the average number of revisions per package, as this
depends on the development activity and longevity of the package. The average
number of variants and file formats depends on the number of popular hardware
platforms and distribution formats, and is also hard to predict.

The coarsest-grained mapping is the one in which a complete package with
all its revisions and variants is put into a single DSO. This mapping is also not a
good idea. The reason is that it is the release of a new revision (or variant) of a
popular package that generally attracts a flash crowd (see Chap. 2). As a result,
replicating more than that revision (or variant) when handling a flash crowd is
a waste of storage space and bandwidth (when transferring the copy to the new
replica site). Some packages may have many revisions, leading to considerable
overhead, in particular, when the package and thus its revisions are large.

One can argue that this granularity argument holds against revision-sized DSOs
as well: if a particular variant of a revision is more popular than the other variants
it is not useful to replicate those other variants as well. A mapping with a DSO
per variant may be possible if the costs are acceptable. However, I currently do
not have sufficient insight into the overhead of turning something into a DSO to
warrant such an alternative.

In conclusion, the choice for revision-sized DSOs has been primarily de-
termined by the overhead associated with more fine-grained mappings and the
fact that replicating more than a single revision would be inefficient during flash
crowds because of the resulting size of the DSO’s state. The choice for using re-

62 DISTRIBUTED REVISION OBJECTS CHAP. 4

vision-sized distributed shared objects is therefore a trade-off between the cost of
turning something into a distributed shared object and application requirements.
We briefly return to the “DSO per archive-file” mapping in Sec. 4.2.3.

Mapping Distributions to DistributionArchive DSOs

The choice of representing a distribution as a set of DistributionArchive DSOs, each
containing a variant of a revision in a particular file format, is simple. The size
of a distribution like RedHat 7.1 for the i386 platform in ISO9660 format is so
large that it should be placed in a distributed shared object by itself. Aggregating
multiple file formats, let alone multiple variants or revisions, of a distribution into
a distributed shared object leads to DSOs with such a large state that they are ex-
pensive to replicate. A replica of such a large DSO would require large amounts
of disk space and it would take much time to transfer the state to the new replica
location, making it difficult to quickly increase the number of replicas. Further-
more, it prevents us from exploiting differences in popularity of file formats by
replicating only those formats widely, thus reducing overhead.

Consider the example of the current RedHat Linux distributions. Revision 7.3
of the RedHat Linux distribution is published in two language variants: English
and Japanese. The English variant is, in turn, published as source code and as
binaries for the i386 architecture. The source code variant is published in RPM
file format and as ISO9660 CD images and is already 2.5 Gigabyte in size. The
i386 variant in all file formats is 3.3 Gigabytes. This implies that publishing all or
even a single RedHat revision in a single distributed shared object leads to objects
that consume considerable amounts of disk space.

A DistributionArchive DSO has the same interface and implementation as a revi-
sion DSO. Therefore, in the following sections and chapters, revision DSOs should
be read as “revisions DSOs and DistributionArchive DSOs”. The former are used
to distribute all variants of a specific revision of a package in one or more archive-
file formats, the latter to distribute a single variant of a distribution in a single
archive-file format.

4.2.3. Alternative Mappings

There are not many other ways in which software can be encapsulated in dis-
tributed shared objects. We briefly return to the “DSO per archive file” mapping
in this section and discuss one other alternative mapping.

SEC. 4.2 MAPPING SOFTWARE PACKAGES TO DSOS 63

attributes

operatingSystem: String
hardwarePlatform: String

Variant

Package

description: String

revisionID: String

Revision

fileFormat: String

ArchiveFile

class name

fileContents: ByteArray

Figure 4.7: Static view of the Globe Distribution Network in UML nota-
tion [Rumbaugh et al., 1999]. The open arrows represent a generalization
relationship. A class name in italics represents an abstract class.

A Direct Mapping

The previous section discussed a mapping from application domain to distributed
shared objects based on technical arguments rather than using data-modeling prin-
ciples. Data modeling principles prescribe that each entity and relationship in
the application domain should be modeled as an object in the actual application.
The application domain of published software modeled in UML [Rumbaugh et al.,
1999] is illustrated in Figure 4.7. Taking this model, each archive file (containing
a variant of a specific revision of a software package in some file format) should be
encapsulated in an ArchiveFile DSO. Packages, Revisions and Variants are abstract
classes and therefore have no concrete representation other than in the lowest level
instances: the ArchiveFile DSOs.

64 DISTRIBUTED REVISION OBJECTS CHAP. 4

The advantage of this mapping is that it is based purely on functional consid-
erations. Archive files are separate distributed shared objects and not aggregated
into a revision DSO because they are a separate entity in the model. This map-
ping also has advantages at the nonfunctional level. In particular, this mapping
implies that ArchiveFile DSOs are read-only objects; that is, the software is put
in the DSO at the time the DSO is created and is never changed afterwards. This
property simplifies the implementation of replication protocols and access control
mechanisms. The disadvantage of this mapping and the reason for not choosing it
is the overhead it introduces, as already indicated.

Generic Objects

An alternative approach is to not define an explicit mapping between software
packages, revisions, variants, archives and distributed shared objects at all. The
idea would be to provide the producer of a software package with a generic DSO
in which he could store archive files. The choice of what to store in these generic
DSOs and therefore the granularity of replication is left to the producer of the
software. For example, for a package whose variants (e.g. binaries) are small,
he could create a single DSO in which to publish all revisions, variants and file
formats.

The disadvantage of this approach is that the producer of the software package
is made responsible for choosing the most efficient granularity. This choice should
not be his to make, as it is the job of the Globe Distribution Network to make
distribution of the software from producer to users efficient, not the producer of the
software. Not all software publishers are experts in efficient distribution, and a bad
choice by the producer can negatively impact the GDN. Consider, for example, the
producer of a large package who puts all revisions, variants and archive files in a
single DSO. If a new revision of the package becomes popular in a short period of
time (i.e., attracts a flash crowd) the GDN would have to create many replicas of
a large DSO of which only a small part (the new revision) would be of interest to
the flash crowd, thus wasting resources.

4.3. INTERFACE AND SEMANTICS OF A REVISION OBJECT

This section explains the interface of a revision DSO, the semantics of the
methods, and the rationale behind it. The implementation of revision DSOs is
discussed below in Sec. 4.5. The interface is called the package interface. Two
factors significantly influenced the design of this interface: (1) the need for sup-

SEC. 4.3 INTERFACE AND SEMANTICS OF A REVISION OBJECT 65

interface package // upload methods only
{

void startFileAddition(in string FileName,
in long long FileSize,
in traceCert traceCertificate);

void putFileContent(in string FileName,
in long long Offset,
in sequence<octet> Block);

void endFileAddition(in string FileName,
in traceSig traceSignature);

...
};

Figure 4.8: First part of the revision’s DSO interface: the methods for up-
loading a file into the DSO. Error parameters have been left out for clarity.

porting uploads and downloads of large files (e.g. 650 Megabyte2 CD-images in
ISO9660 format) into a revision DSO, and (2) statelessness as a basic design prin-
ciple for DSO interfaces. We discuss each of these factors and their influence on
the interface in turn in the two following subsections. At the end of the section
we discuss advantages and disadvantages of the chosen interface and alternative
interfaces.

4.3.1. Handling Large Up– and Downloads

As explained in the previous section, a revision DSO is a collection of files. These
files may range in size from 0 bytes to 650 MB or more. The interface and im-
plementation of a revision DSO have to be such that files in the upper parts of the
size range can be distributed efficiently. The issue of a producer loading too many
large files into a single revision DSOis discussed in Sec. 5.4.3.

The time-tested solution for handling a large amount of data is to chop it up
into blocks and process the blocks one at a time. Traditionally, to prevent a user
from reading an only partially uploaded file there are methods such as open and
close for signaling the start and end of an upload. For a revision DSO’s interface,
this solution results in the interface shown in Figure 4.8. Only the methods related
to uploading a file are shown; download methods require more consideration and
are discussed in the next section.

The usage of this part of the package interface is straightforward. To add
a file, a client first calls startFileAddition passing the intended name for the file

2Quantifiers are capitalized to indicate a base of 1024, instead of 1000. E.g. Megabyte = 1024
times 1024 bytes.

66 DISTRIBUTED REVISION OBJECTS CHAP. 4

and its size.3 Next, the client makes repeated calls to putFileContent to place the
contents of the file in the distributed shared object. Finally, it calls endFileAddition
which makes the file accessible to other clients. During the upload the file is not
accessible to other clients, although it is visible. In particular, a client trying to
upload a file with the same name will receive a “name already in use” error.

Discussion

A block interface was chosen because it is the only way to pass or retrieve large
amounts of data to or from a distributed shared object in the current Globe design.
The current Globe design has no efficient support for methods that take large ar-
guments. As described in Sec. 3.4.1, a method invocation must be marshalled by
the control subobject, and must then be passed to the replication subobject for
transmission as a single block of data. This choice of internal interfaces implies
that if we pass a 650 Megabyte file as an argument to a file-upload method, the
control subobject will have to marshall the 650 MB in a single block of virtual
memory, which is very inefficient. The internal interfaces of a distributed shared
object therefore require large amounts of data to be passed to the DSO by means
of multiple method invocations. In other words, the DSO must have a block-based
interface.

An important issue is the size of the blocks used to upload a file and who con-
trols this size. The optimal block size depends on two factors, which we discuss
in turn:

1. The available bandwidth of the network connections to the replica(s).

2. (to a lesser extent) The capacity of an object server.

Block size and bandwidth Optimal block size depends on the bandwidth and
communication latency to the replicas as follows. An optimal block size allows
local representatives to fully utilize the network connections between each other
when the connections are available to them. For example, an upload from the local
proxy local representative to a set of remote replica local representatives should be
able to use all available bandwidth when possible to minimize upload time. The
same statement holds for downloads from a replica local representative to a proxy.

To achieve maximum utilization when possible, the block size used should at
least be larger than the network connections’ delay-bandwidth product [Partridge,
1994], because of the properties of Globe distributed shared objects. Method in-
vocations on a Globe distributed shared object are, at this point in time, all syn-

3The “why” of this method’s FileSize and traceCert parameters and endFileAddition’s traceSig
parameter are explained in Chap. 5 and Chap. 6.

SEC. 4.3 INTERFACE AND SEMANTICS OF A REVISION OBJECT 67

chronous, which means that control is not returned to the invoking client by the
local representative until a reply has been received from its remote peer(s).

This property implies that, to fully exploit the network, the size of the blocks
uploaded by the client should be large enough to allow the local representative
to fill the network links to its peers. The higher the capacity and the latency,
the larger the block size should be to get full utilization. For example, to fill a
1 Gigabit per second connection to a host 25 milliseconds away, the block size
should be at least 3 Megabytes. Furthermore, the block size cannot be static, as it
will have to grow when bandwidth becomes more abundant.

The risk of choosing a block size that is too small is that the proxy local repre-
sentative may not be able to use the available network links to their maximum. As
a result, up and download times become high (when link delay is high) or people
may feel the application is not making full use of their network connection (when
delay is low).

The obvious solution is therefore to simply choose a large block size. The
communication subobject will prevent congestion due to the large amount of data
being sent and can do flow control when necessary. In general, these facilities
will be provided by the TCP protocol. When using UDP or group communication
they will have to be implemented by the local representatives themselves in their
communication subobjects.

Block size and server capacity The problem with this solution is, however,
that block sizes must not be too large, as they impact memory usage at the object
servers hosting the replicas of the revision DSO. A large block size can have a neg-
ative impact on the performance of the object servers because of the way DSOs
are implemented, as follows. The performance of an object server, in terms of the
number of simultaneous clients that can be supported, is bounded by the available
hardware resources and how the object-server software makes use of them. Per-
formance can be limited by either the capacity of the network connection, CPU
power, memory size, I/O bandwidth to persistent storage, or storage capacity it-
self.

In the current Globe design the block size used by the revision DSO’s interface
determines directly the amount of memory needed at a replica local representative
to process the method invocations for uploading or downloading a block to or
from a DSO. As can be seen in Sec. 3.4, the control subobject of a replica makes
the same method invocation with the same parameters on the semantics subobject
as the client made on the proxy local representative. Therefore, if the block size
is large, there is a small risk of available memory becoming the bottleneck of the
object server before any of the other resources, preventing it from supporting more
clients at the same time. Our clients currently use a block size of 1 Megabyte.

68 DISTRIBUTED REVISION OBJECTS CHAP. 4

In the proposed interface the client is in charge of the size of the blocks, which
is a disadvantage of this interface. Globe adheres to a separation-of-concerns
principle in which the nonfunctional aspects of the application are handled by the
middleware, and the functional aspects are handled by the client and the semantics
subobject. As just shown, the block size must not be to small and not be too large,
and depends on network and server capacities. This conclusion implies that block
size is a nonfunctional aspect of the application, and should therefore, in principle,
be controlled by the middleware, rather than the client of the revision DSO.

A block interface in Globe does not, however, allow the middleware to control
the block size. When uploading a file via the block interface, the middleware, in
particular, the control subobject has access only to the block of data given to it
by the client. To get access to more data at a time the middleware would have to
give feedback to the client, which is currently not possible or desirable in Globe.
A similar argument holds for downloading files. When a client requests a block
from a revision DSO, this method invocation is shipped to a replica. Next, the
control subobject of the replica invokes the “download block” method on the se-
mantics subobject which then returns a block of data. If the middleware wants to
control the size of the block returned by the semantics subobject, it will have to
communicate with this semantics subobject. The Globe design currently does not
allow such communication, as it also represents a violation of the separation-of-
concerns principle.

As mentioned above the block size problems are introduced by the fact that
Globe has synchronous method invocations. We can work around the synchronous
nature of method invocations by using multiple threads and doing parallel invo-
cations. Consider the following example. A client creates a small number of
threads, say 3. The client makes thread 1 invoke the method to download the
first block, makes thread 2 download the second block and makes thread 3 down-
load the third block, with a small delay between each invocation to prevent them
from competing for resources. As soon as a block is returned the thread returning
from the invocation starts downloading the next block the client does not have yet.
This solution, sometimes called prefetching, increases throughput. Unfortunately,
it complicates the client code considerably and is not an elegant solution to the
problem. An alternative interface for revision DSOs that does provide an elegant
solution but is complex to implement is discussed in Sec. 4.3.3.

The advantage of the block interface is that it is easy to implement. In addition,
these methods are pseudo-idempotent; that is, their implementation is idempotent
or their implementation can detect duplicate calls (such as, for example, the start-
FileAddition method). Pseudo-idempotent methods can make some fault-tolerance
measures easier to implement. On the other hand, an upload using this interface
is no longer an atomic operation that can either fail or succeed, the operation

SEC. 4.3 INTERFACE AND SEMANTICS OF A REVISION OBJECT 69

now consists of several method invocations. The loss of atomicity makes failure
handling harder because a multi-method operation is generally harder to rollback
when it fails halfway through and requires application-specific knowledge. We
return to this issue in Chap. 6.

4.3.2. Stateless Downloads

In the previous section we discussed the part of the revision DSO’s package in-
terface related to uploading files, and how to handle large arguments to methods
(related to both upload and download of files) in general. This section explains
the methods in the package interface related to downloading.

The design of the download methods has been dictated by two principles.
The first principle is that methods should be made read-only (i.e., not modify
the state of the DSO) whenever possible. In most replication protocols, doing
a read operation is cheaper than doing a write operation, because the latter type
of operation generally requires that all replicas are (eventually) made consistent,
requiring interreplica communication and administration.

The second principle concerns scalability: a distributed shared object should
not store any per-client state whenever possible, as storing this information may
cause troubles when the DSO is used by large numbers of clients. Moreover,
keeping per-client state turns a method that might otherwise be implemented as
read-only into a write method (the client-related entries in the DSO’s state have
to be updated, implying a write on the DSO), and thus violates the first principle.
Furthermore, if a DSO has many clients that fail permanently or misbehave, a
garbage collection mechanism is needed to purge their stale entries, complicating
the implementation. Note that letting an individual replica keep track of the state
of its clients is not an option since it does not allow a client to easily fail over to
another replica.

The application of these two design principles has led to the two methods for
downloading shown in Figure 4.9, both of which are read-only methods. A client
downloads a file by repeatedly calling the getFileContent method. The client itself
is responsible for adjusting the offset into the file, thus avoiding per-client state in
the distributed shared object. The last block of the file has been downloaded when
the amount of data is returned is less than the requested block size.

Not having a revision DSO keep track of per-client state introduces a concur-
rency issue, however. The package interface as defined above provides protection
against simultaneous upload of two files under the same name, but does not en-
tirely protect a client downloading a file against replacement of that file. In other
words, the GDN does not support immutable files. To replace an existing file, the
uploader first deletes the old file (using the deleteFile method discussed below) and
then uploads the new file under the same name using the regular upload methods

70 DISTRIBUTED REVISION OBJECTS CHAP. 4

interface package // up- and download methods
{

void startFileAddition(in string FileName,
in long long FileSize,
in traceCert traceCertificate);

void putFileContent(in string FileName,
in long long Offset,
in sequence<octet> Block);

void endFileAddition(in string FileName,
in traceSig traceSignature);

void getFileContent(in string FileName,
in long long Offset,
in long long MaxBlockSize,
out sequence<octet> Block);

long long getFileSize(in string FileName);
...

};

Figure 4.9: Second part of the revision’s DSO interface: the methods for
downloading a file from the DSO. Error parameters have been left out for
clarity.

SEC. 4.3 INTERFACE AND SEMANTICS OF A REVISION OBJECT 71

User starts
download

Producer starts
replacing file

User resumes
download

User stops
download

Producer finishes
replacing file

time

Figure 4.10: A user downloads a file from a revision DSO in two sessions.
In between the sessions, the producer managing the DSO replaces the file
with another.

(startFileAddition, putFileContent and endFileAddition).
In most cases, a client receives an error when a file it is downloading is being

replaced. The client either receives a “file not found” when calling getFileContent
after the deletion of the file and before the upload of the new file has started or a
“file in use” error, when calling getFileContent after the upload started. However,
when the file replacement takes place entirely between two consecutive invoca-
tions of getFileContent, the client receives no error and does not immediately no-
tice the replacement. Only at the end of the download the client is likely to notice
that something went wrong in most cases, when the size of the file downloaded
turns out to be smaller or larger than indicated by getFileSize at the start of the
download. If the DSO were aware of the download it could signal the problem to
the downloading client.

Although this replacement problem is not likely to occur frequently in a soft-
ware distribution network where the files are versioned, some software producers
might, however, not practice correct publishing procedures and replace existing
files. In addition, the problem is not entirely theoretical given that the GDN should
support discontinuous downloads (and uploads). In today’s Internet the average
bandwidth available to a user is such that it requires a long time to download a
large file. It is therefore useful to allow a user to stop an up or download and
restart the operation at a time convenient to the user. This functionality requires
support in the up- and download tools and does not affect the package interface,
except for the exceptional case indicated above.

Because downloads may be paused by the user, the scenario of a file being
replaced between two calls to getFileContent becomes more likely, as illustrated in
Figure 4.10. As it is annoying to find out at the end of a discontinuous download
that the large file downloaded is corrupt, the package interface is changed to allow
the replacement to be detected, as shown in Figure 4.11.

The interface is changed as follows. We basically make files in a revision DSO
immutable by assigning them a so-called incarnation ID, a 64-bit random number,
when they are uploaded. The incarnation ID changes when a new file is uploaded
under the same name. As a result, when a file is deleted (using the deleteFile

72 DISTRIBUTED REVISION OBJECTS CHAP. 4

typedef long long incarnationID t;

interface package // final
{

void startFileAddition(in string FileName,
in long long FileSize,
in traceCert traceCertificate);

void putFileContent(in string FileName,
in long long Offset,
in sequence<octet> Block);

void endFileAddition(in string FileName,
in traceSig traceSignature);

incarnationID t getIncarnationID(in string FileName);

getFileContent(in string FileName,
in incarnationID t IncarnationID,
in long long Offset,
in long long MaxBlockSize,
out sequence<octet> Block);

long long getFileSize(in string FileName,
in incarnationID t IncarnationID);

void getTraceInfo(in name fileName,
in incarnationID t IncarnationID,
out traceSig traceSignature,
out traceCert traceCertificate);

void deleteFile(in string FileName);
void allFiles(out sequence<string> FileNames);

};

Figure 4.11: The complete package interface of a revision DSO. Error pa-
rameters have been left out for clarity.

SEC. 4.3 INTERFACE AND SEMANTICS OF A REVISION OBJECT 73

method, explained below) and a new file under the same name is uploaded into
the revision DSO, these files have different incarnation IDs. A replacement-safe
download proceeds as follows: at the start of the download the client obtains the
incarnation ID of the file by calling getIncarnationID and stores this value locally.
The signature of the getFileContent method for downloading the contents of a file
is changed such that it now takes an incarnation ID as an additional parameter.
If the incarnation ID passed as parameter and the incarnation ID stored in the
distributed shared object do not match, the getFileContent returns a “stale incarna-
tion” error. These changes allow a download tool to detect the replacement of the
file immediately after resuming the download.

Shown in Figure 4.11 are the three methods of the package interface which we
did not yet discuss. The getTraceInfo method is explained in Chap. 5, the deleteFile
method can be used to remove files from the DSO and the allFiles method can be
used to obtain the list of names of all the files in the DSO.

In the next section we discuss alternative interfaces before going into the se-
mantics and implementation of revision DSOs.

4.3.3. Alternative Interfaces

The disadvantage of the block interface is that it puts the client in control of the
size of the blocks in which a file is transferred. This section shows two alterna-
tive interfaces that put control over the block-size parameter in the hands of the
network-aware parts of a revision DSO. Another alternative is to extend Globe with
asynchronous method invocations which we discuss first.

Alternative 0: Asynchronous Method Invocations

A solution that achieves full network utilization (largely) irrespective of the block
size chosen is to introduce asynchronous method invocations to Globe. With asyn-
chronous method invocations, during an upload, the proxy local representative re-
turns control to a client after an invocation to the “upload block” method without
waiting for the reply from the replica(s). A client can then immediately reinvoke
the method to upload the next block, allowing the proxy local representative to uti-
lize the network to its full potential and thus reducing upload time for the client.
The disadvantages are that asynchronous method invocations not only make client
code more complex, but implementing them also require significant changes to
the generic implementation of a local representative, or the introduction of a com-
pletely application-specialized implementation.

74 DISTRIBUTED REVISION OBJECTS CHAP. 4

Alternative 1: Transferring Files via Serializable Local Objects

To understand this alternative interface we first have to take a look at a particular
aspect of Java’s Remote Method Invocation (RMI) mechanism [Wollrath et al.,
1996; Riggs et al., 1996]. Java RMI supports the passing of regular Java objects
as arguments in calls to remote Java objects via a pass-by-value mechanism. This
mechanism copies the regular Java objects to the remote host and is based on the
standard Java marshalling facilities.

The mechanism works as follows. When a client invokes a method on a remote
Java object that takes a regular (local) object as an “in” parameter, a reference to
the local object is passed to the remote object’s proxy in the local address space.
The proxy uses this reference to create a marshalled copy of the local object by
calling the object’s standard serialization method writeObject. This marshalled
copy is sent, along with the rest of the method invocation, to the host running
the remote object. At the remote host, the marshalled object is unmarshalled by
creating a new instance and calling its readObject method, thus creating a copy
of the local object on the remote machine. When the run-time system makes the
actual invocation on the remote object, a reference to the copy of the local object
is passed. A similar procedure of marshalling and unmarshalling is used for local
objects that are “out” parameters of a remote object’s methods, only the local
object is initially created at the server side and then copied to the client side.

By introducing a similar pass-by-value mechanism for local objects in Globe
we can upload and download large files into a Globe distributed shared object
without putting clients in charge of block sizes, as follows. The basic idea is that
files are encapsulated in local Globe objects4 that are subsequently copied to re-
mote hosts via the pass-by-value mechanism. Since, in this mechanism, the local
representatives (proxies and replicas) of the remote object are in charge of mar-
shalling the local objects, control over the block size in which the file is transferred
is in their hands, and not in the clients’. To illustrate how the object-by-value
mechanism works in Globe, we look at how a file is uploaded into and how a file
can be downloaded from a revision DSO in turn.

Uploading files The upload is illustrated in Figure 4.12. A client wishing to
upload a large file first creates a local object that logically encapsulates the file;
that is, it holds a reference to the file but not the file’s contents, which are kept on
disk (arrow 1 in Figure 4.12). This local file object (labeled F in the figure) imple-

4Globe, in addition to having its own distributed-object model, also has a specific model for local
objects, where objects are accessed via binary interfaces to achieve programming language indepen-
dence. The model is similar to the model adopted by Microsoft’s COM [Rogerson, 1997]. For the
purpose of this dissertation, however, Globe local objects can be considered regular programming-
language objects.

SEC. 4.3 INTERFACE AND SEMANTICS OF A REVISION OBJECT 75

Ct

R

Co

R

Co

Ct

S

Disk Disk

Client process

F

Proxy

F

Replica

Server process

3

4

Network

6

7

5

2

9
810

1

Figure 4.12: The file to be uploaded is encapsulated in a local object which
can marshall itself and can thus be transmitted by the control subobject to
its peers, similar to marshalling a semantics subobject during slave updates
or the installation of a new replica. Arrows indicate only an invocation, not
the return of the invocation.

76 DISTRIBUTED REVISION OBJECTS CHAP. 4

ments a modified version of the semState interface that is normally used for mar-
shalling and unmarshalling the semantics subobject, called semLargeState. This
semLargeState interface allows the state of a local object to be marshalled in parts.
To upload the file into the distributed shared object, the client invokes a method
on the local representative called, for example, addFile (arrow 2 in Figure 4.12).
This method takes as parameters a global identifier for the file and a pointer to the
local file object. When the invocation is being marshalled, the control subobject
uses the new semLargeState interface of the local file object to read out its con-
tents (arrow 3 in the figure). The local object implements this interface by reading
a block of the file from disk (arrow 4), adding some administrative information,
and passing this data on, until the whole file has been marshalled. The local object
can optimize disk access by reading ahead if such facilities are not provided by
the operating system.

The control subobject of the proxy sends the marshalled blocks to its peers
in the replica local representatives (arrows 5 and 6 in Figure 4.12). The control
subobject of each replica creates an empty local file object and starts filling it
with the marshalled contents received from the sending control object (arrow 7).
This local file object creates a new file on the local file system and writes the
unmarshalled blocks into the file, thus creating a local copy of the original file
(arrow 8 in the figure). When the transfer is complete, the normal invocation
procedure is resumed and the addFile invocation is made on the local semantics
subobject, with a reference to the newly created local object encapsulating the
local copy of the file as second parameter. The semantics subobject can now
access the file via other, potentially application-defined, interfaces of the local file
object (arrows 9 and 10 in Figure 4.12).

Downloading files Consider a getFile method for downloading files from a revi-
sion DSO that takes two arguments, the (global) identifier for the file to be down-
loaded and an “inout” parameter, in particular, a pointer to an empty local file
object. The idea is that this empty file object will be copied to the machine host-
ing the replica of the revision DSO, where it will be filled with the contents of the
desired file and then copied back to the client machine, using the pass-by-value
mechanism.

In detail, this procedure works as follows. The local file object is initialized
with a target local filename to which it writes its state, which will be the down-
loaded file. The target file name is specified by the user of the download tool.
To download the file, the client invokes the getFile method on the revision DSO’s
local representative. Because getFile’s file-object parameter is an “inout” parame-
ter the local representative marshalls the (empty) file object (the target filename is
ignored) and sends it, along with the rest of the marshalled method invocation, to

SEC. 4.3 INTERFACE AND SEMANTICS OF A REVISION OBJECT 77

a replica local representative. The replica’s control subobject, before making the
getFile invocation on the semantics subobject, creates an empty local object and
unmarshalls the empty state of the original local object in it. A pointer to this local
object is passed as the actual parameter of the getFile invocation on the semantics
subobject.

The semantics subobject getFile method now logically copies the file from its
state into the local file object. Physically, the semantics subobject simply invokes
a method on the local file object instructing it, when asked to marshall itself, to
read file X from local storage and present that as its state. When the semantics
subobject returns control to the control subobject of the replica, the control sub-
object marshalls the local file object and ships it as the result of the getFile method
invocation to the proxy local representative in the download tool. The control
subobject in the proxy unmarshalls the local object into the empty local file ob-
ject supplied by the client, using the file object’s semLargeState interface. The
file object writes the file data to the local file system under the target file name
with which the file object was initialized at the beginning, thus completing the
download operation.

Using an inout parameter instead of an out parameter to pass the local file
object, and setting the target filename beforehand avoids an extra copying step at
the client side. With an inout parameter, the file object can directly write the file to
the location specified by the user of the download tool beforehand. Limiting the
number of copy operations is important, in particular for large files, for copying
can negatively affect performance and increases disk-space requirements.

Discussion As already mentioned, the advantage of this alternative over the
block interface is that it puts the whole contents of the file at the disposal of the lo-
cal representative in one action, enabling it to send the file out in blocks as large as
optimal. Furthermore, it makes the up- and download of a file an atomic operation
again, simplifying failure handling.

Extending Globe with a pass-by-value mechanism for local objects is, how-
ever, nontrivial, as it complicates the implementation of the control and replication
subobjects. In particular, the implementation of these subobjects should be such
that multiple method invocations can be processed in parallel. Processing in this
case refers to the handling of the method-invocation requests and the replies, and
not the execution of the methods which is always done serially (as Globe requires
that all method invocations on a semantics subobject are serialized, see Sec. 3.2).
Parallel processing is necessary to achieve good up- and download times. In the
block-based interface, methods do not take a lot of time to process, and this can
therefore be done serially. In the pass-by-value solution, however, the up- and
download methods operate on the whole file, requiring longer processing. If these

78 DISTRIBUTED REVISION OBJECTS CHAP. 4

methods cannot be handled in parallel, clients have to wait for all previous clients
to finish their operations before theirs is executed, which means that the time be-
tween the start of an upload or download and its completion, as perceived by the
user, will increase.

Allowing parallel processing complicates the subobjects’ code and has signif-
icant impact on the standardized interfaces of the subobjects. Significant adjust-
ments have to be made to the repl interface (discussed in Sec. 3.4.1). In particular,
the repl::send should be changed to allow a control subobject to send large mar-
shalled method invocations and invocation replies. The replCB interface should
be changed to allow the replication subobject to pass a large marshalled method
invocation to the control subobject in parts. Furthermore, the old semState mar-
shalling interface has to be upgraded to allow marshalling and unmarshalling of
objects with large state. As we will see below, this upgrade of the semState in-
terface is also necessary to support semantics subobjects (i.e., distributed shared
objects) with very large states. The exact changes to the interface and the resulting
semLargeState interface can be found in Sec. 4.5.1.

The pass-by-value solution presented here requires more concurrency mea-
sures. In case of a download, the file is not accessed by the semantics subobject
but by the control subobject. As a result it is possible that the file is deleted by a
subsequent method invocation while the control subobject is still reading the con-
tents. The Globe run-time system will have to be changed to prevent such con-
currency. Another implementation issue is how the local representatives access
the local file system. To keep its implementation operating-system independent,
a local representative should use a standardized interface provided by the local
run-time system that hides the operating-system specific features. Filenames, or
persistent IDs in general, are valid only on the local machine and care should be
taken that these identifiers are not transmitted. For example, when these names are
stored in the state of the local semantics subobject, the marshalling code should
marshall the contents of the file rather than their names.

Alternative 2: Encapsulating The File in a Distributed Shared Object

An alternative to turning files into local Globe objects and passing them by value
is to use temporary distributed shared objects to transfer files between hosts. The
idea is that the host containing the file to be transferred encapsulates the file in
a temporary distributed shared object, thus making the file remotely accessible.
The hosts that need the file bind to the temporary DSO and read the file using its
methods. The temporary DSO can be specialized for one-to-many and one-to-one
communication patterns (i.e., uploads or downloads, respectively) thus optimizing
the transfers. We discuss upload and download of files via temporary DSOs in
turn.

SEC. 4.3 INTERFACE AND SEMANTICS OF A REVISION OBJECT 79

Ct

R

R

Ct

S

Co

CoCo

R

Co

R

Ct

Ct1

2

Client

Client process

4

Server process

5

3

R

AA

F F

6

R

Figure 4.13: Uploading a file into DSO R using DSO A. The local repre-
sentatives of DSO A are drawn dashed to indicate it is a dynamically created
and temporary DSO.

Uploading files The use of temporary DSOs to upload files into a revision DSO
is illustrated in Figure 4.13 for a revision DSO R using a master/slave replication
protocol. A client wishing to upload a file into the revision DSO creates a tem-
porary distributed shared object, called the argument DSO. This argument DSO
(labeled A in Figure 4.13) has a single replica local representative on the client’s
machine and the state of object is the file to be uploaded. The file is put into the
argument DSO via method invocations, or is passed as initialization data at cre-
ation time, after which the DSO becomes read-only. The replica of the argument
DSO does not register itself with the Globe Location Service. These steps are
represented by arrow 1 in Figure 4.13.

To upload the file, the client invokes a method called addFile on the revision
DSO (arrow 2 in Figure 4.13). This method takes two arguments: the global iden-
tifier for the file and a reference to the argument DSO, more precisely, a pointer
to its local representative. When marshalling the addFile method invocation, the
control subobject of the revision DSO replaces the pointer to the argument DSO’s
local representative with the contact address of the argument DSO. The marshalled
method invocation is then transmitted to all relevant replicas of the revision DSO

80 DISTRIBUTED REVISION OBJECTS CHAP. 4

(arrow 3 in the figure).
The replicas, when receiving the method invocation, extract the marshalled

contact address and use it to bind to the local representative of the argument DSO
on the client machine (arrow 4 in the figure). During binding, a new local repre-
sentative of the argument DSO is created in the local address space, in particular,
the run-time system creates a replica local representative which means that a copy
of the state of the argument DSO (the file to be uploaded) is transferred from client
to replica host (arrow 5).

When binding is finished, the control subobject of the revision DSO invokes
the addFile method of the revision DSO’s semantics subobject, passing the global
identifier of the file and a pointer to the argument DSO’s newly created local
representative as arguments. The addFile of the semantics subobject can now read
the file and add it to its state by invoking methods on the argument DSO (arrow 6
in Figure 4.13.

Downloading files Files can be downloaded from a revision DSO using tem-
porary DSOs as follows. Consider a getFile method for downloading files that
takes just the global identifier for the file as a parameter and that returns the con-
tact address of a distributed shared object. When the client invokes the getFile
method, the invocation is marshalled and shipped to the nearest replica in the
usual way. The getFile method of the replica’s semantics subobject, when invoked
by the replica’s control subobject, creates a new temporary distributed shared ob-
ject. This argument DSO has one local representative, co-located with the replica
and has the desired file to be downloaded as its state. After the argument DSO
has been created, the semantics subobject obtains its contact address and returns
this as the result of the getFile method. The contact address is marshalled and sent
back to the proxy local representative of the revision DSO in the client’s address
space, which, in turn, returns it to the client.

Using this contact address, the client binds to the argument DSO, thus creating
a local representative of the argument DSO in its address space. The client then
reads the contents of the file by invoking methods on this local representative.
The local representatives of the argument DSO are specialized for file transfer
and use a prefetching mechanism to make sure the network connection between
source and destination hosts is used efficiently. Their implementation is therefore
different from the argument DSOs used for uploads.

Discussion For downloads, I choose prefetching over creating a slave replica
at the destination host, as is done during uploads. The reason for doing so is
that prefetching avoids an extra copying step for large files. When creating a
slave replica, the state of the argument DSO has to be transferred to the client

SEC. 4.3 INTERFACE AND SEMANTICS OF A REVISION OBJECT 81

as a whole, unmarshalled and written to disk by the semantics subobject when
the state is large (see Sec. 4.5.1). This copying step is not necessary when doing
prefetching since the specialized local representatives can prefetch blocks of the
file small enough to be kept in core.

The argument DSO’s local representatives (both for up and for downloading)
cannot be registered in the Globe Location Service, since this would result in an
insert operation on the Location Service for each invocation of the addFile and
getFile method, thus increasing the load the Globe Distribution Network generates
on the GLS considerably.

The advantage of using temporary distributed shared objects is that the argu-
ment DSO can control how the state and thus the file is transmitted to its local
representatives. Unfortunately, this solution also has three disadvantages. First,
the implementation of argument DSOs may have to be tuned to the replication
protocol used by the revision DSO. For example, if the revision DSO is actively
replicated [Schneider, 1990] and the argument DSO is not aware of this, there is a
risk of overloading the client machine, as follows. During an addFile method invo-
cation (i.e., an upload) on an actively replicated revision DSO, the client machine
will receive many bind requests for the argument DSO (one for each replica of
the revision DSO). As a result, it will have to marshall and transmit its state many
times, which may overload the machine. To prevent this problem the argument
DSO should be specialized to be used in conjunction with an actively replicated
revision DSO. In particular, the argument DSO’s state-transfer mechanism, which
normally pulls the state from a replica, would have to be replaced with a simulta-
neous push to all binding hosts, which is more efficient for an actively replicated
revision DSO.

Second, the argument-DSO mechanism cannot be used in conjunction with
all replication protocols, in particular, not with protocols that use a lazy form of
replication. When doing lazy replication, a write-method invocation on the revi-
sion DSO may return before the method has been executed at all replicas. This
form of asynchrony works as long as a method invocation is self-contained. This
is not the case when using temporary DSOs to upload files, because executing
the addFile method requires the existence of the argument DSO. There is no sim-
ple solution to this problem, because it is difficult to determine when a method
invocation has been processed by all replicas of a lazily replicated revision DSO.

The third disadvantage of this solution is that it also has a negative impact on
upload and download times. Recall that all method invocations on a semantics
subobject are serialized (see Sec. 3.2). This property, and the fact that in this
solution the up- and download methods operate on the whole file, imply that all
uploads and downloads are now strictly serialized, whereas in case of a block-
based interface multiple up and downloads can proceed in parallel. As a result,

82 DISTRIBUTED REVISION OBJECTS CHAP. 4

clients have to wait for all previous clients to finish their operations before theirs
is executed, which means that the time between the start of an upload or download
and its completion, as perceived by the user, will increase for large files.

4.3.4. Semantics of a Revision Object

The semantics of an object is the way an object behaves observed by means of
the effect of method invocations on the (state of the) object and the possible val-
ues returned by each invocation and the meaning of those values. Knowing the
semantics of an object is important for the clients of the object. In most object-
oriented programming languages today there is no formal definition of an object’s
semantics because creating this definition is generally considered not worth the
effort, and an informal definition generally suffices.

I believe that for distributed objects it is important to define one part of the
object’s semantics. In particular, every replicated object should make explicit the
consistency model used. The consistency model describes the effects of write op-
erations on a replicated data item as observed by different clients. The consistency
model of a distributed object therefore describes the results of read-only methods
and the effects of state-modifying methods on the (replicated) state of the object.

The consistency model determines to a large extent the semantics of the dis-
tributed object. For example, when a replicated object uses the single-copy con-
sistency model, every client of the object will get the same result when invoking
the same read-only method with the same parameters at the same time. However,
when a replicated object uses a weak consistency model, two clients may get dif-
ferent results when the object has multiple replicas that are not (yet) consistent
and each client talks to a different replica. In other words, the observed behavior
of the object is different for each client.

For most applications, a distributed object should behave as if it were an ob-
ject running on a single machine. Sticking to strict single-copy semantics (i.e.,
sequential consistency [Lamport, 1979]), however, can seriously impede perfor-
mance and is not required for all applications. If possible and when necessary
from a performance perspective, an application developer should therefore select
a weaker consistency model. Selecting a different consistency model is relatively
easy and merely consists of selecting a replication protocol for the object that im-
plements the desired consistency model. We return to the process of selecting a
replication protocol for an object in Sec. 4.6.

I require for the Globe Distribution Network that revision DSOs have single-
copy semantics, as a software distribution network that does not provide each user
with an accurate listing of its contents is not useful. People accessing the GDN
expect to see all revisions and variants that are published by the producer at that
point in time, otherwise they will use other distribution channels that are more

SEC. 4.5 REFERRING TO PACKAGES, REVISIONS AND VARIANTS 83

up-to-date. This means that a revision DSO should contain the archive files of all
available variants and should keep its replicas consistent at all times, such that
when a user binds to the revision DSO and lists its contents he will always see all
available archive files.

4.4. REFERRING TO PACKAGES, REVISIONS AND VARIANTS

This section describes how packages, revisions and variants are named in the
Globe Distribution Network. Recall that in the naming scheme of the Globe mid-
dleware (explained in Sec. 3.3), distributed shared objects are identified by a sym-
bolic name which is mapped to an object handle using the Globe Name Service.
The object handle is, in turn, mapped to contact addresses using the Globe Loca-
tion Service.

The symbolic names for revision DSOs are structured as follows:

globe:<prefix>/<package name>/<revision ID>

The prefix part of the name denotes the name space in which the revision DSO’s
name is registered. At present there is a single global name space for all Globe
distributed objects, and the prefix denotes the part of the global name space in
which the registrar of the object is allowed to register (name, object handle) pairs.
We return to the issue of who registers names for objects in the chapter on security
(Chap. 5). For the purpose of this dissertation, a prefix describes a path through
a hierarchy of domains in which the Internet is divided, as in the Domain Name
System [Mockapetris, 1987]. An example prefix is /nl/vu/cs/globe/arno. Package
name and revision IDs, the other components of the object name, are currently
free-form, but this might change in the future when more advanced querying fa-
cilities, such as those described in Chap. 2, are added to the GDN. Examples of
full Globe object names are:

• globe:/nl/vu/cs/globe/arno/lstreeviz/1.0

• globe:/org/gimp/gimp/1.2.1

Archive files in a revision DSO can be referred to by concatenating their file
name to the revision DSO’s object name. For example,

globe:/org/gimp/gimp/1.2.1/sparc-solaris.tar.gz

Distributions and DistributionArchive DSOs are named in a similar fashion. The
DSO containing the ISO9660 image of RedHat 7.1 for i386 processors is named:

globe:/com/redhat/distribution/7.1/i386/ISO9660

84 DISTRIBUTED REVISION OBJECTS CHAP. 4

4.5. IMPLEMENTATION OF A REVISION OBJECT

Sec. 4.3 discussed the interface and semantics of a revision DSO. This sec-
tion describes the essentials of the implementation of a revision DSO. Security and
fault-tolerance aspects are discussed in Chap. 5 and Chap. 6, respectively. There
are three important implementation issues for a revision DSO: (1) how to deal with
a semantics subobject with large state, (2) how to make a revision DSO persistent,
and (3) what replication protocol should be used to achieve efficient distribution.
The first two issues are discussed in this section. The latter issue warrants a sepa-
rate discussion in Sec. 4.6. This section and the following chapters also include a
description of our initial implementation of the Globe Distribution Network.

4.5.1. Handling Large State

The state of a revision DSO, or rather, the states of the individual semantics subob-
jects in the DSO’s various local representatives, can grow large because of large
files being uploaded into the DSO. As a result it becomes undesirable and infea-
sible to keep these states in memory. The solution to this problem is to either
partition the state over multiple machines or to use secondary storage. Given the
low cost of hard-disk space compared to memory we discuss only using hard disks
for storing large states.

To keep memory footprint small, the revision DSO’s semantics subobject di-
rectly stores files that are uploaded on disk. The files are written to disk using
an operating-system independent interface to the local file system offered by the
Globe run-time system, which uses a numerical persistence IDs to identify files.
The semantics subobject keeps only the mapping from global file identifier (i.e.,
the filename passed by the uploader in the call to startFileAddition) to persistence
ID in core. When the object’s users store many files in the revision DSO, this map-
ping becomes large, in which case it is also stored on disk. The operating system
is assumed to cache files in memory to optimize performance.

A potential disadvantage of having semantics subobjects access persistent
storage is that local representatives are always kept in virtual memory. Sec. 4.5.2
describes a passivation/activation mechanism for local representatives that allows
an object server to swap out local representatives and thus support many local rep-
resentatives without an infinite amount of virtual memory. How failures such as
running out of disk space and media failures are handled is discussed in Chap. 6.

Transferring Large States

The current replication interfaces replCB and semState (shown in Figure 3.9 on
page 36 and Figure 3.11 on page 38, respectively), can marshall, transmit and

SEC. 4.5 IMPLEMENTATION OF A REVISION OBJECT 85

unmarshall the state of a DSO only atomically. Atomic operations are no longer
desirable or feasible if the size of the state becomes large: they are not feasible
when the state is larger than the host’s virtual memory and not desirable from a
performance viewpoint.

Before explaining the modifications made to these interfaces we first briefly
recapitulate when state transfers take place. In the current Globe implementation
state updates or retrievals are always initiated by the replication subobject. State
transfers occur in two cases: (1) when a new replica is created and (2) in some
replication protocols (e.g., master/slave) after a state-modifying method has been
executed. In the former case, the replication subobject of the new replica sends a
GETSTATE request to a nearby replica. Following this request, the replication sub-
object at the existing replica calls replCB::getState on the control object, which is
turned into a semState::getState invocation on the semantics subobject. The same
procedure is followed in the latter case in a master/slave protocol that uses inval-
idates. In the case of a master/slave replication protocol where the master’s repli-
cation subobject sends out the new state after each update, the state is transmitted
to the slaves in a NEWSTATE message which is turned into calls to replCB::setState
and semState::setState on, respectively, the control and the semantics subobject,
as described in Sec. 3.4.3.

The replCB and semState interfaces are adapted to accommodate large state
as follows. The idea is to enable transfer of states in blocks. To this extent, the
getState methods in both interfaces are extended with two additional arguments:
a MaxBlockSize “in” parameter and a boolean “out” parameter named MoreBlocks.
The MaxBlockSize is used by the client (replication or control subobject) to indi-
cate the maximum size of a marshalled block of state it is able to process. The
MoreBlocks parameter is used by the control or semantics subobject to signal to the
client that not all of the state has been marshalled. A client will continue request-
ing blocks of marshalled state until the object sets this flag to false. The setState
method is extended with one “in” parameter: a boolean MoreBlocks parameter,
used by the client to signal more blocks are forthcoming. This parameter is in a
sense superfluous, because the object can probably also derive the fact that more
blocks are coming from the marshalled data, but is added for convenience. The
updated interfaces, called replLargeStateCB and semLargeState, respectively, are
shown in Figure 4.14.

The disadvantage of this solution is that it makes the application program-
mer’s job (the implementor of the semantics subobject) harder. Implementing
marshalling and unmarshalling methods that use blocks is tedious. The advan-
tage of this solution is that it does not require major changes to the current Globe
implementation.

86 DISTRIBUTED REVISION OBJECTS CHAP. 4

interface replLargeStateCB
{

void handleRequest(in sequence<octet> MarshalledRequest,
out sequence<octet> MarshalledReply);

void getState(out sequence<octet> MarshalledStateBlock
in long long MaxBlockSize, out boolean MoreBlocks);

void setState(in sequence<octet> MarshalledStateBlock,
in boolean MoreBlocks);

};

(a)

interface semLargeState
{

void getState(out sequence<octet> MarshalledStateBlock,
in long long MaxBlockSize,
out boolean MoreBlocks);

void setState(in sequence<octet> MarshalledStateBlock,
in boolean MoreBlocks);

};

(b)

Figure 4.14: The (a) replCB and (b) semState interfaces adjusted to handle
distributed shared objects with large state.

SEC. 4.5 IMPLEMENTATION OF A REVISION OBJECT 87

Alternative Solutions

Using Virtual Memory to Handle Large State An alternative way for han-
dling semantics subobjects with large state is to use the operating system’s virtual
memory facilities. The idea is to configure the host running the local representa-
tive in such a way that the disk space that is normally used to store files is available
for swapping. Such a configuration allows the semantics subobject to ignore I/O
issues and just store the state in virtual memory.

Requiring a specific host configuration conflicts with the design goal of the
GDN to allow many different people and organizations to contribute server ca-
pacity, which makes this alternative less interesting. Furthermore, the files in the
local representatives have to be stored on disk persistently to allow server reboots
and handling server failures without requiring a re-fetching of all files from an-
other replica. Most operating systems do not provide persistent and fault-tolerant
virtual memory, implying that a host needs double the disk space. Persistent local
representatives are discussed in the next section.

To circumvent the special configuration and double disk space problems and
to improve performance over the direct file I/O solution used above, the semantics
subobject could use memory-mapped files. Most modern operating systems have
facilities to allow a process to access files on persistent storage as if they were
regions in memory by clever use of the virtual memory subsystem. The advan-
tage of this approach is performance: memory-mapped files are not cached in the
kernel, nor does the data need to be copied from kernel to user space for a user
process to access it. This optimization might require operating-system specific
semantics subobjects, but these are supported via our binding mechanism. An-
other solution is to use the facilities of the language environment. For example,
Jaguar is an extension to Java which supports memory-mapped files presented as
Java objects [Welsh and Culler, 1999]. To use these facilities in Globe, one has to
replace only the implementation of the operating-system independent interface to
persistent storage offered by the Globe run-time system.

Using Stream-Based Interfaces for Transferring Large State An alternative
way to transfer large states is to use stream-based interfaces such as used in
Java’s serialization/deserialization model. The methods for marshalling and un-
marshalling a Java object use output, respectively, input streams to which the ap-
plication programmer can directly write all of the marshalled state, or read out the
marshalled state without having to take into account externally imposed bound-
aries. Furthermore, using streams relieves him of the burden of keeping adminis-
trative information between (un)marshalling calls.

Using streams in Globe local representatives is possible, but requires consid-
erable reworking of the subobjects’ interfaces. We therefore only briefly discuss

88 DISTRIBUTED REVISION OBJECTS CHAP. 4

how the subobjects would interact with stream-based interfaces. A replication
subobject wanting to transfer a state to a peer local representative asks the com-
munication object for an output stream for sending data to that peer. The replica-
tion subobject passes this stream to the control subobject via the replCB::getState
call, which, in turn, passes it to the semantics subobject. The semantics subobject,
when invoked, simply marshalls the state and writes it to the output stream, thus
transmitting the data to the peer local representative via the communication sub-
object. At the receiving end, the replication subobject passes the control subobject
an input stream logically connected to the output stream at the source local repre-
sentative, via the setState methods. The semantics subobject uses this input stream
to read the marshalled state. At both sides, the communication subobjects handles
communication failures and make sure communication proceeds efficiently.

This alternative has conceptual advantages but complicates the implementa-
tions of subobjects. Consider the example of a replication subobject implement-
ing a master/slave replication protocol with state shipping (i.e., after an update the
master sends the new state to the slaves). In the proposed block-transfer method,
the master replication subobject interacts with the communication subobject di-
rectly to send out the state during an outbound state transfer. When a slave crashes
during the transfer (signaled by a SIGPIPE signal from the TCP connection), this
error can be directly reported to the master replication subobject, which can then
appropriate action (e.g. update its list of slaves). In the stream-based solution,
special measures would have to be taken to ensure that such errors are reported
to the replication subobject and not to the semantics subobject that is writing to
the outbound stream. Another example is when a semantics subobject is receiving
new state from a replica and this replica’s host machine crashes during the transfer.
Special care must be taken that the thread active in the semantics object reading
the inbound state stops attempting to read the state and returns to the replication
subobject, such that the replication subobject can select another replica to retrieve
the state from. This can be complex if failure detection is done by other subobjects
in the local representative. Streams may also require complex buffer management
in the communication subobject.

As the design of distributed shared objects continues to evolve, it is preferable
to keep the old interfaces until either the interactions between the existing subob-
jects and possibly new ones have stabilized or if it turns out that a stream-based
interaction model would facilitate the integration of new subobjects. Furthermore,
this alternative offers no immediate performance or scalability gains.

4.5.2. Persistent Revision Objects

Revision DSOs should be made persistent as this makes it easier to implement
fault tolerance and allows reboots of individual or all object servers (i.e., support-

SEC. 4.5 IMPLEMENTATION OF A REVISION OBJECT 89

ing longevity). In this section we discuss only how revision objects are able to
survive server reboots by storing their state on hard disk. Fault-tolerance aspects
and the use of persistent storage for this purpose are discussed in Chap. 6. The use
of persistent storage to handle distributed shared objects with large state, which
we discussed above is orthogonal to this issue. It can, however, be exploited to
achieve a more efficient implementation, as explained below.

Persistence Support of the Globe Object Server

The initial implementation of the Globe Distribution Network uses the persistence
facilities offered by the Globe Object Server, which were discussed in Sec. 3.7.
These persistence facilities are currently used for graceful reboots, which work as
follows.

When the administrator of an object server instructs the server to shutdown for
a reboot, the server manager part of the object server signals this fact to the per-
sistence manager. The persistence manager, in turn, tells all local representatives
running in the server to passivate themselves. A local representative that wants to
stay on this object server then starts marshalling its state, which consists of data
private to the local representative and the states of its various subobjects. The
local representative first creates a new file using the run-time system’s operating-
system independent interface (which is implemented by the persistence manager).
Next, it asks each of the subobjects for a marshalled version of their state using a
special interface implemented by all subobjects, called lrSubobject. The semantics
subobject creates a marshalled version of its state that can be used (unmarshalled)
only locally, as opposed to creating a globally usable version when invoked by the
control subobject during state shipping. Concretely, the semantics subobject of a
revision DSO marshalls only the table mapping global filenames to the persistence
IDs of the files in its state (or the persistence ID of the file containing the table, if
the table was too large too keep in memory).

The replication subobject marshalls replication protocol state and the contact
addresses it registered in the Globe Location Service. The latter are stored such
that it can reallocate the same network contact points (e.g. TCP ports) when re-
activated. The local representative completes its passivation by writing its own
private (administrative) data and returning the persistence ID of the file containing
all marshalled state to the persistence manager. The persistence manager stores
the identifiers for all local representatives in a file, after which the server manager
shuts down the object-server process.

90 DISTRIBUTED REVISION OBJECTS CHAP. 4

Discussion

The advantage of the solution is that it avoids double storage which is important
when the state of the semantics subobject is very large, as it is here. This solution
also avoids extra copying steps (from disk to memory and from memory to disk),
which can impact performance of the object server. In particular, not doing extra
copying can speed up the reboot of an object server.

Fast passivation and activation is also useful for resource management, in par-
ticular, for managing the object server’s use of virtual memory. In the initial im-
plementation an object server always keeps all local representatives in memory.
Keeping them in memory does not pose a problem, since the local representatives
of revision DSOs are small, given most of their state is on disk. However, if a ma-
chine has more free regular disk space than virtual memory an object server can
use passivation and activation to increase the total number of local representatives
it can support (the number of local representatives that can run simultaneously,
i.e., the server’s working set is still bounded by virtual memory). It would passi-
vate least-used local representatives and reactivate passivated local representatives
when requests come in, based on some replacement policy. Our initial implemen-
tation of the object server does not yet support passivation and activation for these
resource management purposes.

The disadvantage of this solution is that the programmer of the semantics sub-
object has to implement two sets of state marshalling and unmarshalling methods,
one for local and one for global serialization/deserialization.

Alternatives

Homburg [2001] describes another solution where the replication subobject inter-
faces with a new persistence subobject to persistently store the state of the seman-
tics subobject. The replication subobject keeps the persistence subobject informed
about updates and supplies the persistence subobject with the marshalled state of
the semantics subobject via the control subobject’s replCB::getState interface.

The conceptual advantage of this solution over our solution is that the applica-
tion programmer has to implement only one marshalling interface. An implemen-
tation disadvantage is that it does not allow the optimization just described, where
state of the semantics subobject already on disk is not copied and stored on disk
again.

4.5.3. Downloading over Multiple TCP Connections

According to The Globus Project [2000], using multiple TCP connections for a
transfer can improve throughput on wide-area links, even between the same source

SEC. 4.6 IMPLEMENTATION: THE REPLICATION PROTOCOL 91

and destination. This property is exploited in the GridFTP protocol [The Globus Project,
2000; Allock et al., 2001], an extension of the FTP protocol that, in addition to
having improved performance, allows random file access, strong centralized au-
thentication and access control, and restarts of transfers that failed due to commu-
nication or server errors.

The GDN can, unfortunately, make only limited use of this property of TCP
on wide-area links. In particular, the GDN can use parallel transfers, that is, a
transfer from a single server using multiple connections, but not striped trans-
fers: a transfer of a single file from multiple (replica) servers [The Globus Project,
2000]. Parallel transfers can be supported by implementing a replication subob-
ject that sends large requests and replies in blocks over multiple TCP connections,
using a non-multiplexing communication subobject.

Striped transfers are difficult to implement in a distributed shared object. In a
striped transfer different parts of the same file should be retrieved from different
servers, which is incompatible with the distributed object model. Basically, n
getFileContent method invocations should be sent to n different servers, and each
method invocation should retrieve a different partition of the file (controlled by the
Offset parameter). This behavior cannot be implemented inside a revision DSO’s
local representative given its current structure (i.e., the current decomposition in
subobjects and their interfaces), because of the separation between application-
specific and application-independent aspects. To allow striped transfers a revision
DSO’s local representative would have to be optimized specifically for the GDN.
Striped transfers can be implemented by a GDN client, but only if it can create
n different proxies (i.e., bindings) for the same DSO that each forward a method
invocation to a different replica. Allowing a client such fine-grained control over
binding behavior is considered undesirable from a transparency viewpoint.

4.6. IMPLEMENTATION: THE REPLICATION PROTOCOL

Given that in the GDN content is encapsulated in Globe distributed shared ob-
jects, these objects will have to be implemented such that their state is distributed
and replicated in a way that optimizes the use of the Internet and the GDN servers.
This section describes the replication protocol used and how it achieves this goal.
The replication protocol is application specific, but is useful for other applications
as well.

I propose to use a simplified version of the adaptive replication mechanism
for World Wide Web documents developed by Pierre et al. [2000, 2001]. In this
scheme a distributed shared object monitors its own read- and write-access pat-
terns, and based on this information periodically adapts its replication policy and

92 DISTRIBUTED REVISION OBJECTS CHAP. 4

replication scenario (for the definition of these terms see Sec. 3.3). In other words,
the object re-evaluates which replication protocol is optimal for its current access
patterns and on which hosts replicas should be placed. This scheme has similar-
ities with the SPREAD architecture [Rodriquez and Sibal, 2000], but operates at
a higher level (i.e., SPREAD optimizes HTTP traffic by intercepting messages at
the IP level).

In the adaptive replication mechanism, the distributed object takes a number
of evaluation criteria into account to determine the best scenario, in particular
Pierre et al. [2000]:

1. The download time perceived by the client

2. The number of times a client reads from an inconsistent replica

3. The amount of wide-area traffic generated

By applying weights to these three criteria, a distributed object is able to select a
replication scenario that optimizes one or more criteria [Pierre et al., 2000, 2001].

To simplify matters, only one protocol is considered, but one that can be tuned
on a per-object basis. Tuning concerns the number and placement of replicas (i.e.,
the object’s replication scenario). The replication protocol chosen and the ratio-
nale for choosing this protocol is discussed in Sec. 4.6.1. Sec. 4.6.2 discusses how
the replication protocol determines where to place replicas and how it balances
network load. Server load balancing is discussed in Sec. 4.6.3. Handling flash
crowds involves both network and load balancing and is discussed in Sec. 4.6.4.
The influence of security and fault-tolerance requirements on the replication pro-
tocol are discussed in Chap. 5 and Chap. 6, respectively.

4.6.1. Basic Replication Protocol

The replication protocol used for all revision DSOs uses active replication; that is,
when a method is invoked that changes the state of the object, the (marshalled)
method invocation is sent to all replicas, and each of the replicas carries out the
method invocation individually (in contrast, when passive replication is used, only
a single replica (the master) executes the write method). A client invoking a state-
modifying method sends it to a central replica, called the core replica. The core
replica imposes a total order on these method invocations, forwards them to all
other replicas, and also carries out the invocation itself. The core replica sends
the reply of the invocation to the invoking client. The protocol is illustrated in
Figure 4.15.

SEC. 4.6 IMPLEMENTATION: THE REPLICATION PROTOCOL 93

Object
Server 2Replica

Core

Replica

Object Server 1

Replica

Proxy

Object Server 3

Client

Figure 4.15: The basic replication protocol for revision DSOs. Squares
represent processes, circles local representatives, and arrows (marshalled)
method invocations. Replies are not shown.

94 DISTRIBUTED REVISION OBJECTS CHAP. 4

Discussion

I arrived at an active replication protocol by a process of elimination. We can elim-
inate protocols from the set of replication protocols currently used in Pierre et al.’s
adaptive replication scheme by looking at which of the three evaluation criteria
are important for revision DSOs. For revision DSOs, all three evaluation criteria are
important, as well as scalability. Download time and consistency are important for
user satisfaction, as argued in Sec. 9 and Sec. 4.3.4, respectively. Low wide-area
traffic is important for efficient distribution, as discussed in Sec. 4.1.

The requirements for strong consistency and scalability reduces the set of can-
didate protocols to four: (1) client/server (i.e., no replication), (2) master/slave
replication with a check on each read to see if the slave is still consistent with
the master, (3) master/slave with a master invalidating a slave after updates, and
(4) active replication. The first two protocols I dismiss because they do not scale
to large numbers of readers. This leaves active replication and master/slave with
invalidation.

Active replication was chosen over master/slave with invalidation because, in
most cases, the former uses less bandwidth when updates are made to a revision
DSO. In master/slave with invalidation, slaves that are asked to perform a read
method after an update always have to retrieve the new state from the master. This
procedure uses more bandwidth than active replication if two conditions hold:

1. After an update to the state, replicas are asked to execute a read-method
invocation at least once.

2. The (marshalled) state of the object is large compared to the updates on the
object (i.e., the marshalled write-method invocations).

The latter condition holds for revision DSOs, which generally consist of multiple
files and whose updates are small because of the block-based interface. Even if
we count an upload of a whole file as an update, the state of the DSO is larger
in most cases, as it is likely to already contain one or more files. Assuming that
the former condition also holds for replicas of revision DSOs, active replication
is therefore to be preferred over an invalidation-based protocol. The rationale for
this choice was taken from Bal et al. [1992] who describe a number criteria for
selecting replication protocols for large-grain parallel applications, which apply
well to distributed shared objects.

The risk of the core replica becoming a bottleneck is low. A revision DSO is
used to publish only a particular revision of a software package. As a result, the
number of clients simultaneously uploading files into the DSO is low, and thus the
amount of work for the core replica is small.

The GDN does not make use of caching in the implementation of revision
DSOs. Recall that in this dissertation the term caching exclusively denotes the

SEC. 4.6 IMPLEMENTATION: THE REPLICATION PROTOCOL 95

caching of replies of method invocations, which can be done at both proxies (cach-
ing for the local client) and at replicas (caching for a collection of remote proxy
local representatives).

Caching in proxies is useful only when a client downloads the same file or
asks the object to list its contents at least twice. In our initial implementation
of the GDN we have an HTTP-to-Globe gateway that allows a user to access
distributed shared objects via a standard Web browser. Because it serves multiple
users, caching of replies in the proxy local representative in the HTTP-to-Globe
gateway may be beneficial. However, replacing the proxy with a (temporary)
replica local representative may achieve the same network-traffic reducing gains.
Furthermore, using a replica instead of a caching proxy reduces the complexity
of the replication protocol (i.e., the protocol does not have to keep track of the
consistency of cached replies).

Caching of replies at a replica is useful only when storing the reply in the repli-
cation subobject is cheaper than regenerating the reply by reexecuting the method
on the semantics subobject. For a revision DSO storing the reply is more expen-
sive: keeping blocks of downloaded files in core adds to the local representatives’
memory footprint, and keeping the cached replies on disk will make caching as
expensive as redoing the method invocation.

4.6.2. Mid– to Long-Term Network Optimization

The complexity of applying replication to achieve optimal network usage for a
software distribution network primarily lies in how to determine where the replicas
should be placed given the fact that network usage patterns are dynamic and are
caused by many different Internet applications sharing the network. This section
concentrates on how a software distribution network can optimize its own network
traffic and performance, in particular, it focuses on replica placement in the mid- to
long-term. Short-term placement (i.e., how to deal with flash crowds) is discussed
in Sec. 4.6.4. The policy presented here should be considered a feasible, but not
necessarily the best, solution.

Replica-Placement Policy

To explain replica placement the following terminology is introduced. The Au-
tonomous System (AS) [Bates et al., 1995] of a machine connected to the Internet
indicates the routing domain a machine belongs to. A routing domain is defined
as a group of networks having a single routing policy. For example, all universi-
ties in the Netherlands are grouped together in a single Autonomous System. Au-
tonomous Systems are identified by a small integer, called the Autonomous System
Number (ASN). The ASN for an IP address can be obtained by doing a query on

96 DISTRIBUTED REVISION OBJECTS CHAP. 4

RIPE’s WHOIS database [Réseaux IP Européens, 2001]. Pierre et al. [2000] de-
fine wide-area traffic as any traffic from a host in one AS to a host in another AS
(i.e., all inter-AS traffic). This definition is based on the observation that most
ASes contain a large number of routers and computers. The current [May 2001]
estimate of the number of ASes making up the current 109 million host Internet
[Internet Software Consortium, 2001] is 8000, resulting in an average of 13,000
hosts per Autonomous System.

Looking at this definition we can make two interesting observations:

• If clients have a replica in their Autonomous System, they do not generate
any wide-area traffic, by definition,

• Under the assumption that intra-AS bandwidth is plentiful, a client having
a replica in its Autonomous System has an optimal download time.

Observe that following the above definition of wide-area traffic, all network-
load problems are solved by creating 8000 replicas, one in each of the 8000 ASes
of the Internet. As this is currently not feasible, I define the following policy for
the placement of replicas of revision DSOs:

1. Initially, a DSO consists of a single core replica. How the location of this
core replica is chosen is discussed in Chap. 5.

2. The DSO creates additional replicas in the Autonomous Systems that have
the most downloads (i.e., generate the most reads).

3. The DSO adjusts the placement of replicas from time to time. The num-
ber of replicas a DSO O is allowed to have is determined by how many
read-method invocations the object received in the last measurement pe-
riod, relative to the total number of reads on the GDN in that period, and
denoted by the following formula:

#replicas(O,Tn+1) =
#reads(O,Tn) · total #object servers in GDN(Tn)

total #reads on GDN(Tn)

where #reads denotes the number of read operations (i.e., invocations of
methods which do not modify the state) on the object in the period Tn, total
reads on GDN denotes the estimated total number of reads on the GDN in
that period, and total #object servers in GDN denotes the estimated number
of object servers in the GDN in the period Tn.

SEC. 4.6 IMPLEMENTATION: THE REPLICATION PROTOCOL 97

For the remainder of this dissertation the total number of reads on the GDN
divided by the number of object servers in the GDN is referred to as the Ob-
jectServerClientRatio (OCR). The above formula can therefore be written
more concisely as:

#replicas(O,Tn+1) = #reads(O,Tn) ·OCR

4. The length of the measurement period, called the scenario–re-evaluation
interval is the same for all revision DSOs, but they do not necessarily re-
adjust the placement of their replicas at the same point in time.

5. To prevent a popular package from creating too many replicas, a maximum
is imposed on the number of replicas. This maximum is not an absolute
number, but is relative to the OCR parameter.

Implementing the Policy

The replica-placement policy is implemented as follows. Each proxy local rep-
resentative includes its Autonomous System Number in the marshalled method
invocations it sends out. The proxy’s ASN can be retrieved from the Globe run-
time system (RTS), which it obtained by doing a WHOIS query at the time the
RTS software was installed on the client host. Each replica of the revision DSO
collects a log of the clients that invoke its read methods, in particular, it records
the client’s Autonomous System Number. These logs are summarized and period-
ically (e.g. daily) sent to the core replica. These summaries simply list the num-
ber of read-method invocations the replica received from each AS. The summary
message includes the replica’s own Autonomous System Number. Summaries are
stored on disk by the core replica’s replication subobject.

The core replica, at fixed intervals, does a calculation based on these sum-
maries to determine which replication scenario is optimal for this revision DSO.
More precisely, the core replica determines on how many and which hosts it
should place replicas. This calculation is done, for example, once a week (i.e.,
the scenario re-evaluation interval is a week). The output of the calculation is
a list of the Autonomous Systems that generated the most reads in the previous
period and the number of replicas to create in each AS.

The total number of replicas in the list (i.e., the number of replicas the DSO
is allowed to have) is determined by the formula described above. Both the total
number of reads on the GDN and the number of object servers in the GDN and
thus the OCR parameter are estimated and adjusted periodically. An object always
obtains the latest value of the OCR parameter, which is considered a global tun-

98 DISTRIBUTED REVISION OBJECTS CHAP. 4

ing parameter of the replica-placement policy, before re-adjusting its replication
scenario.

When this list differs from that of the previous period, the core replica adjusts
the revision DSO’s replication scenario in five steps.

1. The core replica determines which ASes do not yet host sufficient replicas.

2. The core replica maps these new entries in the list to geographical loca-
tions. The geographical location of an Autonomous Systems can either be
obtained from the WHOIS database directly, or from a service such as Net-
Geo [Moore et al., 2000; CAIDA, 2001] that builds on the WHOIS database
and can map an ASN to a latitude and longitude pair.

3. The geographic locations of the Autonomous Systems are used to find ap-
propriate object servers by doing lookups on the Globe Infrastructure Di-
rectory Service (GIDS), as discussed in Sec. 3.8.

4. The core replica of the revision DSO asks these object servers to create a
replica of the DSO.

5. Existing replicas no longer on the list are asked to delete themselves.

Discussion

This replica-placement policy optimizes network usage and performance for the
Globe Distribution Network, as it reduces wide-area traffic and provides optimal
download time for a large number of a DSO’s clients. Network usage and perfor-
mance are further optimized by using the Globe Location Service, which, for this
dissertation, is assumed to connect clients that do not have a replica in their Au-
tonomous System to the nearest Autonomous System that does.5 The advantage
of this policy is therefore that it does not explicitly require information about the
topology of the network. In particular, no knowledge is required about the band-
width of the links connecting two Autonomous Systems. Topological information
is used implicitly by using the Globe Location Service. The disadvantage is that
clients may wind up using a bad link.

This policy does not take into account the cost of installing replicas and up-
dates. Revision DSOs will be read more than written—otherwise someone is
rapidly publishing software that no one is interested in—and we can therefore use
replication without worrying too much about the overhead of maintaining con-
sistency. Given this high read/write ratio, the consistency overhead is therefore

5The GLS currently returns the contact addresses of replicas which are geographically nearest,
which does not necessarily correspond to the nearest replica in terms of network distance.

SEC. 4.6 IMPLEMENTATION: THE REPLICATION PROTOCOL 99

largely determined by the number of replicas that need to be kept consistent. The
cost of installing a new replica can also be ignored here, as a DSO’s replication
scenario is updated only periodically (e.g. once a week). The cost of creating a
new replica are primarily determined by the size of the state of the object that must
be transferred to the new server.

The OCR parameter plays an important role in the policy. It governs the
macroscopic behavior of the Globe Distribution Network via the microscopic be-
havior of its many revision DSOs. At first glance, it may appear that the effective-
ness of this policy depends on the value of the OCR parameter being accurate,
which would require the estimates of the total number of object servers and the
total number of reads on the GDN to be precise. Fortunately, however, a wide
margin of error is permitted in these estimates. More precisely, the problems in-
troduced by under- or overestimation of the OCR parameter are handled by the
server load balancing and flash-crowd control mechanisms of the GDN, which we
discuss in detail in Sec. 4.6.3 and Sec. 4.6.4, respectively. Here we briefly describe
how these two mechanisms neutralize the effects of under- and overestimation. In
the following, it is assumed that there are enough object servers available to handle
the actual load and that only the OCR estimate is wrong.

OCR estimated too low As a result, a revision DSO creates too few replicas com-
pared to the actual number of reads it receives. This under allocation might
cause object servers to become overloaded.

There are, however, two factors that prevent overloading from occurring.
First, the GDN evenly distributes the load over the available servers. In
particular, when the core replica maps the list of ASes to a concrete set
of object servers using the GIDS, it uses the load of the object server as a
selection criterion, thus avoiding heavily loaded servers.

Second, when a server does become overloaded due to a sharp increase in
accesses on the replicas it hosts, the revision DSOs’ mechanism for handling
flash crowds is activated and the replicas start reducing the workload by cre-
ating new replicas on other object servers. Given the assumption there are,
in fact, enough object servers available, the overload is quickly removed.

OCR estimated too high When the OCR is set too high, a DSO creates more
replicas than is necessary for serving its actual number of clients. This does
not create a problem as the costs for creating and maintaining a replica of
a revision DSO are relatively low. The cost of a replica is dominated by
the amount of persistent storage it requires and the bandwidth required to
transfer the state to the new object servers. Memory footprint is small as
the state of the DSO is kept on disk. The costs in terms of CPU usage are
also low in this case, because there are more replicas than required, which

100 DISTRIBUTED REVISION OBJECTS CHAP. 4

causes the load on the revision DSOs to be more evenly distributed over the
set of object servers.

The risk of an estimate that is too high is therefore waste of secondary stor-
age and networking resources. The GDN has two mechanisms to prevent
excessive overallocation of these resources. First, there is the maximum
that the policy imposes on the number of replicas a DSO may create. This
maximum, which is relative to the OCR parameter, prevents any DSO to
replicate to more than, for example, 20% of the available object servers.
Therefore, if the OCR estimate is too high, the maximum prevents a DSO
with only a limited number of actual clients from creating excessively many
replicas.

Second, the server load balancing mechanism allows object servers to im-
pose a limit on the number of replicas it is willing to host. When this limit,
called the object server’s LR limit, is reached and the object server is asked
to create another replica by a core replica of a DSO, the object server re-
fuses. To keep DSOs from continuously trying to create replicas on “full”
object servers (i.e., to prevent thrashing behavior), when a core replica of
a DSO has received a number of refusals from an object server it refrains
from asking other object servers.

There is another problem associated with estimating the OCR parameter too
high. The problem is that revision DSOs that re-evaluate their replication scenario
soon after the OCR parameter has been set too high will allocate too much object-
server capacity. As a result, there may be a shortage of capacity for the DSOs that
re-evaluate their scenarios later.

Consider the following micro example. In this example, there are two DSOs
(A and B) each receiving a fair number of accesses, a DSO C with a large number
of accesses, and the number of available object servers is too low to accommodate
all accesses. We assume the OCR parameter has not yet stabilized and has just
been set to a value which is too high, and that the two moderately popular DSOs
A and B calculate their optimal replication scenario before highly popular DSO C.

Because of the large OCR value, A and B create more replicas than they should
given their load, resulting in a situation where the two DSOs take up a significant
part of the available object servers. We assume the creation of the replicas of A
and B causes these servers to reach their limits. As a result, later, when C starts to
re-evaluate its replication scenario, it encounters overloaded servers, causing it to
forcibly limit its replication degree. The popular DSO C now has too few replicas
to serve its clients, resulting in increased wide-area bandwidth consumption and
increased download times for these clients.

In other words, the problem is that the interval between the introduction of

SEC. 4.6 IMPLEMENTATION: THE REPLICATION PROTOCOL 101

the high OCR parameter and the time when a DSO does its replication-scenario
calculation determines how fair a share of the available object servers a DSO can
use. It is not clear whether this problem occurs in practice, and further investiga-
tion into this issue is necessary. It is clear, however, from all the issues described
above that an application such as the Globe Distribution Network would benefit
from a global resource management system, as already indicated in Chap. 2.

In the above policy, Autonomous Systems are mapped to a geographical lo-
cation using the WHOIS database or a service such as CAIDA’s NetGeo which
builds on the WHOIS database. There does not seem to be a need to offload this
task to a special service in the Globe Distribution Network to reduce the load on
WHOIS and/or NetGeo servers. If there are 50.000 software packages with with
an average number of 25 revisions, these packages will occupy 1.250.000 dis-
tributed shared objects. For a scenario–re-evaluation interval of one week and an
even distribution of scenario re-evaluations over this interval, in theory, 2 revision
DSOs are doing a re-evaluation each second. This load can easily be handled by
existing services.

Taking Into Account Network Conditions

To use replication to achieve efficient distribution, we need the ability to deter-
mine current and potential hot spots in the underlying network. We just discussed
how the Globe Distribution Network can optimize its own usage of the Internet.
Further optimization will be possible if the GDN takes into account actual net-
work conditions. With knowledge about which links are more-or-less permanently
overloaded, revision DSOs can adjust their replication scenario to reduce any load
they might create on those links. Information about current networking conditions
can be obtain from services such as the Network Weather Service [Wolski et al.,
1999]. As incorporating network conditions is a large research topic in itself this
issue will not be addressed further in this dissertation.

4.6.3. Server Load and Replication

This section presents the details of the Globe Distribution Network’s server load
balancing scheme. Server load balancing in the GDN comes after network load
balancing, that is, network load balancing dictates in which region replicas should
be placed and server load balancing determines on which object server(s) in that
region the replicas should be hosted. Server load balancing has two aspects: bal-
ancing the revision DSOs over the available servers and balancing the clients over
the available replicas. These aspects are discussed in turn.

102 DISTRIBUTED REVISION OBJECTS CHAP. 4

Balancing Replicas over Regional Object Servers

The basic idea of our load-balancing scheme is that the load of the server is taken
into account by the core replica when readjusting a revision DSO’s replication sce-
nario. In particular, object-server load is taken into account when mapping the list
of Autonomous Systems with the most clients to a concrete set of object servers.
As explained above, the identifiers (ASNs) of the Autonomous Systems with the
most clients are first mapped to a geographical location and then to concrete object
servers using the Globe Infrastructure Directory Service (GIDS).

The mapping procedure is as follows. To enable load balancing, object servers
register whether they are overloaded or not as one of their properties in the GIDS.
The core replica doing the mapping selects the servers that are not overloaded.
When an underloaded object server cannot be found in the desired geographical
location, the core replica attempts to find one in the general vicinity. By moving
up in the hierarchy of GIDS regions (see Sec. 3.8), the core replica can discover
the sibling regions of the geographical location it is interested in and look for
servers there.

As already mentioned in Sec. 4.6.2, if this procedure fails to return a usable
object server for a certain percentage of the ASes in the list, the core replica re-
frains from asking other object servers. The reason for stopping the search is to
prevent DSOs from endlessly trying to find underloaded object servers when there
are none available, for example, because the OCR parameter was set too high in
relation to the actual number object servers available, and many objects allocated
more replicas than they should.

The object servers in an AS may not be able to handle all clients in the servers’
and neighboring ASes that are interested in the revision DSO . This situation is han-
dled by the flash-crowd control mechanism (as discussed in Sec. 4.6.4). Basically,
each replica monitors client traffic and when this suddenly increases tries to find
object servers in its clients’ ASes and asks them to also create a replica. The
client-over-server load balancing scheme, discussed below, then takes care that
the clients in the AS are balanced over the new and existing replicas.

An issue not yet addressed is how an object server determines whether it is
overloaded or not. I propose to extend the Globe run-time system with a method
called rts::overloaded that returns a boolean value indicating whether the object
server as a whole is overloaded. The method calculates the server’s load using
conventional methods, such as looking at relative CPU and memory utilization,
and also takes into account limits imposed by its owner, for example, the LR limit
introduced in Sec. 4.6.2 that simply limits the number of local representatives on
the server, independent of their resource consumption. The object server periodi-
cally invokes this method and registers the return value in the GIDS as one of the
server’s properties.

SEC. 4.6 IMPLEMENTATION: THE REPLICATION PROTOCOL 103

Discussion A possible improvement over the proposed rts::overloaded method
with a boolean return value is to have it load values in a standardized metric,
which will make it easier for the GIDS to compare object servers.

An alternative to registering load information in the GIDS is to have an object
server indicate it is overloaded to the core replica at a later stage. As described
in Sec. 3.8, the GIDS is used only to make an initial selection from the avail-
able object servers. Whether or not object and server are willing to cooperate is
determined in the negotiation phase that follows. This phase provides a natural
opportunity to let the object server indicate whether or not it is willing to create a
new replica. However, if we assume that the server decides autonomously whether
or not it is willing to create another replica, and does not take into account who
is making the request, indicating server load in this way may be too expensive.
If no real negotiation between client and server is necessary, this alternative only
unnecessarily increases the time it takes to find a suitable object server.

Balancing Clients over Regional Replicas

As described in Chap. 3, clients find a nearby replica of the revision DSO they are
interested in via the Globe Location Service (GLS). The Globe Location Service
as such helps to achieve network-load balancing, because it returns the contact
addresses of nearby replicas and thus directs clients to replicas that exist in their
Autonomous System or near to it. When there are two or more replicas in a region,
the GLS, however, does not do load balancing over these replicas. The reason is
that different objects may have different load balancing policies and load balanc-
ing is therefore not part of the GLS.

I propose to spread the clients in a region over the available replicas as fol-
lows. The idea is to introduce an explicit negotiation phase at bind time (i.e.,
when a client application tries to install a local representative of a revision DSO
in its address space). To enable bind-time negotiation, the contact addresses of a
DSO are extended with a reference to an implementation of a particular binding-
control protocol. When binding starts, this protocol implementation is loaded and
used by the run-time system to check whether the replica referred to in the con-
tact address is willing to accept new clients, before actual binding begins. If so,
binding continues as usual. If the replica is heavily loaded and refuses, the RTS
tries other replicas. The idea of a negotiation phase before the actual binding is
not new, Homburg [2001] introduced this phase and refers to it as the destination-
selection phase. In addition to refusing new clients a replica can also proactively
control its load by telling existing clients (i.e., the proxy local representatives they
use) to rebind to another replica.

This mechanism allows replicas to make their own decisions about whether
to accept a new client or not. For example, each replica could check its current

104 DISTRIBUTED REVISION OBJECTS CHAP. 4

resource consumption relative to the total capacity of the object server and accept
clients only when this will not cause it to use more than its fair share of the re-
sources. In principle, this mechanism can even be used to allow different objects
to use different policies. However, as an interim solution I propose to have repli-
cas look just at the overall load of the object server as indicated by the value of
the rts::overloaded method.

Replicas can also tell existing clients to rebind to a replica on another server.
This facility is necessary to handle clients that have long-lasting bindings to a
replica. These clients can keep the load of the server above an acceptable level by
doing many method invocations even after the replicas have started refusing new
clients.

Discussion For the GDN the Globe Location Service is used as the service for
locating nearby replicas. It is possible to use other location services, for exam-
ple, some of those found in (hierarchical) Web caching systems. An example of
this class of location services is the one used in the CRISP Web caching system
[Gadde et al., 1998; Rabinovich et al., 1998]. In CRISP, Web caches can be orga-
nized into groups based on proximity to each other. Each group of nearby Web
caches has its own location server that keeps track of the group’s contents (i.e.,
which Web pages they cache). Clients are assumed to contact a nearby cache
server, which, if it does not cache the page itself, contacts the local location server
to see if the content is cached in the vicinity. If not, the origin Web server is
contacted directly. This location service is based on the observation that retriev-
ing content from far-away caches may be slower and more expensive than con-
tacting the origin server. This observation allows the location servers to work
autonomously, resulting in the decentralized architecture.

A issue that needs to be resolved when using location services from Web cach-
ing systems in the GDN is that of locating the origin server of a distributed shared
object, when a nearby replica cannot be found. For Web pages, the URL directly
identifies the origin server, that is, there is a one-to-one mapping from object iden-
tifier to origin server. To use these services in GDN, there should be a fast and
scalable way of locating the origin server of a distributed shared object, which is
the object server hosting the core replica of the object. Whether or not there is
a scalable way of locating a DSO’s origin server depends largely on the mobility
of core replicas. The mobility of core replicas determines the number of changes
to the mapping from object identifier to origin server, which, in turn, determines
whether a one-to-one mapping scheme such as in the Web is possible and, for
other schemes, whether the mapping is efficiently cachable and replicable.

The level of mobility of core replicas in the GDN is unlikely to be high. Core
replicas are expected to be moved only for management reasons (e.g. when the

SEC. 4.6 IMPLEMENTATION: THE REPLICATION PROTOCOL 105

owner of the host decides it no longer wants it there), and not, for example, to
bring the content closer to the downloaders. Core replicas may be moved to a host
with more capacity, although, in general, capacity will be increased by creating
more replicas (as explained in Sec. 5.4.3). In addition, some forms of mobility
can be handled by using DNS (i.e., by using DNS names instead of IP addresses a
class of migrations can be supported without changes to the “DSO to core-replica
host” mapping).

If mobility of core replicas were an issue the GDN would have to use a location
service that supports mobile objects. The Globe Location Service already includes
support for handling mobile objects (rather, it has been specifically designed with
mobile objects in mind). Other location services that support replicated and mo-
bile objects are described by Pitoura and Samaras [2001]. The GLS was chosen
for the GDN as the purpose of this dissertation was to test the Globe middleware
and its services.

The rts::overloaded method can be used as a poor man’s approach to local
resource management, by making the thresholds it uses to calculate the load con-
figurable by the object-server owner. By allowing an object-server owner to, for
example, set the overload threshold for CPU utilization to 50% he can prevent an
object server from accepting new clients when the CPU is still only half utilized.
An extension of this load-control scheme is to introduce client priorities. Client
priorities can, for example, be used to increase the number of clients that is served
by a replica. By assigning a certain class of clients (e.g. faraway clients) a lower
priority (resulting in a lower transfer rate for those clients), the replica can keep
its load at the same level but serve more clients simultaneously. This is an im-
provement over the scheme without client priorities where the extra clients would
have been refused because the replica’s server was full. Note that actually refus-
ing accesses from faraway clients to benefit nearby clients is an incorrect policy,
because it implies that no accesses by remote clients will be recorded and, as a
result, no replicas will be created in these remote regions (see Sec. 4.6.2).

4.6.4. Handling Flash Crowds

The term flash crowd is used to denote a large group of people all trying to visit the
same Web site or download the same item at the same time [Nielsen, 1995]. Due
to such a large influx of traffic, servers, their network connections, and network
links in the path from clients to servers may become overloaded.

I adopt Pierre et al. [2001]’s solution for handling flash crowds. Each replica
monitors the rate at which it is accessed. If this rate suddenly increases, the replica
autonomously finds other object servers in the ASes the traffic is predominantly
coming from, using the same mechanisms as used by the core replica when re-
evaluating the overall replication scenario. Each new object server then creates

106 DISTRIBUTED REVISION OBJECTS CHAP. 4

a new replica, which is registered in the Globe Location Service. By virtue of
the binding-control protocol just introduced, a significant part of the new clients
are then directed to the new replicas and no longer to the original replica. The
original replica, in addition to creating new replicas, also signals the sudden influx
to the core replica, allowing it to do more global optimization for dealing with the
problem. To prevent uncontrolled allocation (i.e., not subject to the limits of the
replica-placement policy), the number of additional replicas an overloaded replica
can create autonomously is limited.

Discussion

A limit is imposed on the number of additional replicas a replica can create on its
own authority to prevent unlimited growth of the number of replicas and interfer-
ence with the replica-placement policy which attempts to achieve a fair allocation
of the available object servers to the revision DSOs.

4.6.5. Alternative Replication Protocols and Policies

As argued in Sec. 4.6.1, there are no alternatives for the active replication protocol
chosen. Our requirements with respect to consistency and scalability rule out a
number of protocols and the characteristics of revision DSOs in terms of size and
access patterns shrink the selection to one. Note that the choice for an active
replication protocol and the replication policy is made on the assumption that
server space is cheaper than wide-area bandwidth. Therefore, if this situation
should change in the future, both policy and protocol will have to be chosen anew.

There are clearly many variations possible on the replica-placement policy.
Unfortunately, there was not enough time to investigate alternative policies or ex-
perimentally validate the outlined policy, as the focus of this dissertation was on
creating a complete design of the GDN and significant time was spent investigat-
ing, in particular, the security aspects of the GDN. Hence, the policy presented
here should be considered one possible solution that highlights the issues that a
replication protocol for a revision DSO in the Globe Distribution Network should
address.

4.6.6. Initial Implementation

The initial implementation of the Globe Distribution Network uses a master/slave
protocol with invalidation and does not support network or server load balancing.
Replication of revision DSOs is therefore controlled by the owner of the object (a
person) at this point in time, and not by the object itself.

CHAPTER 5

Security

In Chap. 2 we identified the major security requirements for a software distribution
network. In this chapter we look at how the Globe Distribution Network meets
these requirements. Four (classes of) security requirements were identified:

1. Ensuring authenticity and integrity of the distributed software

2. Preventing illegal distribution of copyrighted or illicit material

3. Anonymity of up- and downloads

4. High availability and protecting the integrity of the machines running the
distribution network

We start our discussion in Sec. 5.1 and Sec. 5.2 with how the GDN handles
illegal distribution, as this requirement affects the security design of the GDN
most. Sec. 5.2 also discusses GDN’s support for anonymity. Sec. 5.3 discusses
how users can determine the authenticity and integrity of software distributed via
the GDN. Sec. 5.4 describes the GDN’s measures for ensuring availability of the
distribution network and its hosts. Finally, in Sec. 5.5 the initial implementation
of this security design is described. The security design for the Globe Distribution
Network has been published in [Bakker et al., 2001b].

5.1. PREVENTING ILLEGAL DISTRIBUTION

A free software distribution network allows authors to make their free soft-
ware available to a large audience. This ability to share information with a lot of
people makes it an interesting target for people who want to illegally distribute
copyrighted or illicit content. In this section we look at ways to prevent this type
of abuse and how they can be used in the Globe Distribution Network.

108 SECURITY CHAP. 5

We must take action to prevent the illegal distribution of copyrighted works
or illicit content via the GDN so that the persons or organizations participating
in the GDN (e.g., the owners of object servers storing and providing the GDN
content) do not run the risk of being prosecuted for copyright infringement or
the distribution of illicit material. In some countries, in particular in the United
States, the computer owner himself is liable for copyright infringement if copy-
righted content is served from his computer even if the owner did not place it there
[United States Government, 1998]. The same risk of liability exists for pornogra-
phy and other illicit materials.

Before looking at illegal distribution we first briefly examine the legal ba-
sis of the free distribution of software. Software is generally considered a literary
work and hence protected by copyright [World Intellectual Property Organization,
1996].1 Allowing free redistribution of software therefore requires the legal con-
sent of the copyright holder, generally the author. For software, but also for other
types of works, standard licenses, such as the GNU General Public License (GPL)
[Free Software Foundation, Inc., 1991] have emerged that, amongst other things,
permit free distribution by anyone who wishes to do so. For the purpose of this
dissertation, software is defined as not just source or binary code but also includes
the associated documentation, example files (images, audio, video), etc.

The above suggests that we could define legal distribution of software as the
distribution of software that has been made freely redistributable by its copyright
holder. This definition is, however, incorrect as not all types of software can be
legally owned and distributed. In Chap. 2 we distinguished a class of software
called controversial free software. Controversial free software was defined as soft-
ware that

1. Uses patented technology,

2. Can be used to circumvent copyright-protection measures,

3. Employs strong cryptography, or

4. Contains racist or potentially offensive material (e.g. Nazi symbols, nudity).

Whether or not instances of this class of software can be legally owned and dis-
tributed differs per country. For the first type of controversial free software it
depends on the geographical scope of the software patents whether or not the soft-
ware is illicit in a particular country. The legality of the second type depends on
the current copyright laws of the country in question. Software whose sole pur-
pose is the circumvention of copyright protection is illegal in most countries, but

1For an interesting discussion about whether software should be protected under copyright law,
patent law, or free speech legislation, see [Burk, 2001].

SEC. 5.1 PREVENTING ILLEGAL DISTRIBUTION 109

for software that has legitimate purposes as well (“dual use software”), different
countries have different regulations. In many countries the use and ownership of
software that uses strong cryptography is legal, and distribution is allowed ex-
cept to certain nation states. Furthermore, the distribution of strong cryptographic
software generally does not require the original publisher to follow special proce-
dures. A notable exception is the United States [U.S. Department of Commerce,
2001]. Finally, for the fourth type of controversial free software it also depends
on local legislation whether this software can be owned and distributed. In other
words, what constitutes legal distribution and therefore what is illegal distribu-
tion differs per country, and a mechanism for preventing illegal distribution via a
worldwide software distribution network should take this fact into account, which
complicates matters considerably.

In addition, in some countries governments are imposing restrictions on what
content may be accessible from within their country. A famous example is the
case of a French court requiring the American company Yahoo to make their auc-
tion Web site, on which Nazi memorabilia were being sold, inaccessible to French
citizens [Zacks, 2001]. If such regulations were extended to certain types of soft-
ware, a worldwide distribution network might have to take these into account.
The risk for the distribution network is that if it does comply with a country’s
restrictions on remotely accessible content it may be forbidden to operate in that
country, even if none of the disputed content is handled by the distribution net-
work within the borders of the country. This particular issue will not be addressed
in this dissertation.

In the following section we discuss the various solutions for preventing illegal
distribution via a software distribution network, and how per-country differences
can be taken into account with these solutions. Per-country differences will only
be looked at briefly in this dissertation.

5.1.1. Content Moderation

The basic model of a software distribution network (SDN) is that one group of
people uploads software into the SDN and another group downloads that soft-
ware from the SDN. The most obvious solution to preventing illegal distribution
is therefore to check content before it is uploaded. We call this solution con-
tent moderation. In content moderation, one or more people, called moderators,
manually check all content before it is allowed onto the SDN. Manual checking is
required because a computer cannot tell copyrighted from noncopyrighted content
nor illicit from legal content.

For this solution to work the moderators have to do their job properly, making
neither intentional nor accidental errors, otherwise illegal content will get onto
the SDN. This requirement also represents the first disadvantage of content mod-

110 SECURITY CHAP. 5

eration. Manual checks are error prone and, furthermore, may be defeated by
cleverly encoding illicit content into inconspicuous content. As a result, content
moderation cannot always prevent illegal content from getting onto the network
and therefore does not provide 100% protection against liability for the parties
participating in the SDN.

The amount of work that has to be done by the group of moderators is deter-
mined by two factors:

1. The amount of new content published

2. The amount of checking that has to be done on a piece of content.

Moderators should always check whether the content is actually free software.
What additional checks need to be done depends on the rules about what software
constitutes legal software. Doing these checks is tedious and time consuming,
in particular, the checks that require manual inspection of the source code, such
as checking whether or not a software package infringes on a patent, uses strong
encryption or can be used to circumvent copyright measures.

The second disadvantage of content moderation is that, when abuse is low,
most of this work is done in vain. As a result, if there is little abuse, we expect
moderators to perceive the moderation work as superfluous, become demotivated,
and no longer volunteer their time for moderating the software distribution net-
work’s content.

The fact that the amount of work required is proportional to the amount of
content published might imply that this solution is limited in scale. To accom-
modate a large volume of new content, a large group of moderators is necessary,
assuming moderators have only a limited moderation capacity. The latter assump-
tion can be safely made in light of the fact that we are talking about a distribution
network for free software, making content moderation a voluntary job. Having a
large number of moderators makes it harder to fulfill the requirement that moder-
ators are trustworthy. Its limited scalability is considered the third disadvantage
of content moderation.

The fourth disadvantage is that content moderation introduces a long delay
between the initial submission for publication and the actual publication in the
distribution network, especially if the moderator has to check many patents, court
rulings, etc. We expect that software maintainers wanting to publish via the SDN
will find this delay irritating.

The advantage of content moderation is that, in principle, it does catch all ob-
vious attempts at illegal distribution, such as attempting to upload MP3-encoded
Top 100 songs. Table 5.1 (page 116) summarizes the advantages and disadvan-
tages of content moderation.

SEC. 5.1 PREVENTING ILLEGAL DISTRIBUTION 111

An example where content moderation is being used to prevent illegal distri-
bution is ibiblio.org’s free-software archive. Ibiblio’s Metalab Archive (formerly
sunsite.unc.edu) is the primary archive for free software that runs on Linux and
is heavily mirrored by many sites around the world. Uploads to the archive are
checked for obvious attempts at illegal distribution [Ibiblio, 2001].

Content Moderation and Per-Country Differences

There are basically three ways of using content moderation such that a software
distribution network (SDN) adheres to local regulations.

1. The software distribution network is partitioned into countries/jurisdictions
and any content to be stored and distributed in a country/jurisdiction via the
SDN is first moderated by the moderators for that country/jurisdiction. To
be able to enforce export regulations, each partition must be accessible only
to the people of its jurisdiction.

2. There is one group of moderators for the whole worldwide SDN that accepts
only software that is legal everywhere. In other words, out of all software
legislation the lowest common denominator is established and only software
that meets this standard is accepted.

3. There is a group of moderators for the whole worldwide SDN that label
software in such a way that each country can configure its part of the SDN
to accept only the content that is legal there using the information on these
labels. An example label is “uses 128-bit cryptography”. Labels such as
“cannot leave United States” could be used to indicate export regulations.

5.1.2. Cease and Desist

Content moderation at upload time is the only solution that can prevent illegal
content from getting onto a network. It is therefore the only solution that can
catch all illegal distribution, with the restriction of the human ability to identify
the content. If, however, some (temporary) illegal distribution is legally acceptable
there are alternative solutions to a priori content moderation.

One such solution is the cease and desist scheme of my design [Bakker et al.,
2001b]. In the cease-and-desist scheme, users of the software distribution network
can freely publish content, but the content a user publishes remains traceable to
that user. If content is suspected of having been published illegally, its presence
in the distribution network is reported to a group of moderators. This group of
moderators checks whether or not the content was published illegally, and if so,

112 SECURITY CHAP. 5

blocks the publishing user’s access to the distribution network and has his publi-
cations removed. In other words, the cease-and-desist scheme tries to limit illegal
distribution by banning (provably) malicious users from the distribution network.
Abuse is proven by making uploads nonrepudiatable.

Intuitively, the software distribution network becomes similar to a world-writ-
able directory on a UNIX operating system: everybody can place files in the direc-
tory but the files always remain traceable to the user that put them there because
of the associated ownership information.

This scheme for handling the problem of illegal distribution of copyrighted
or illicit content is in line with current legal developments. For example, in the
United States legislators have recognized that it is often not feasible to moderate
content beforehand. Hence, in the recent changes to copyright law “provider[s]
of online services,” such as Internet Service Providers can request legal protection
from copyright infringements by their users [United States Government, 1998]. If
a user publishes other people’s copyrighted works on the ISP’s servers, the ISP
cannot be held liable and is required only to remove the copyrighted content once
they have been notified by the copyright holders. France has similar legislation
[Oram, 2001].

The cease-and-desist scheme does not prescribe who should report illegal dis-
tribution, as this depends on legislation. In the above example, making moderators
aware of copyrighted works in the distribution network is the legal responsibility
of the copyright holders. Likewise, it could be the legal responsibility of law
enforcement agencies to report illicit content. In other cases it may be the joint
responsibility of the software distribution network’s users.

The amount of work for the moderators in the cease-and-desist scheme de-
pends on two factors:

• The number of reports of illegal content

• The amount of checking that needs to be done on the allegedly illegal con-
tent.

As the amount of work depends on the number of reports, ideally, it is proportional
to the level of abuse. If there are few users doing unlawful publication there will
be few reports. If there are many abusers the number of reports will be high. As
a result, the work of the moderators is always useful and will not be perceived as
superfluous.

To achieve this ideal situation, however, there should be few false reports.
False reports would be submitted by malicious people trying to undermine the
protection scheme. Their number can be kept at a minimum only if there is a
threshold for an accuser to make an allegation. The most effective threshold is
one where the accuser stands to lose something when the allegation is false. The

SEC. 5.1 PREVENTING ILLEGAL DISTRIBUTION 113

threshold I chose is to require that allegations are made by a user who will be
blocked from the software distribution network himself if the allegation proves
false (i.e, he will lose his right to publish on the SDN).

For the cease-and-desist scheme to work efficiently, more is necessary than
preventing false allegations. It should also be impossible or at least difficult for
a violator to regain access to the software distribution network after he has been
blocked. The following method was chosen to satisfy this requirement. Candi-
date users are required to prove their real-world identity, which is published on a
black list when the user is found guilty of illegal distribution. This black list is
checked at each application for access to the software distribution network, thus
keeping violators reapplying for access out. Alternative ways of preventing false
allegations and regaining access are discussed in Sec. 5.2.2.

Cease-and-Desist and Per-Country Differences

There are basically three ways in which cease-and-desist can be used to have a
software distribution network (SDN) take into account local regulations:

1. There is a group of moderators for each country/jurisdiction. Access to the
distribution network is given at country/jurisdiction granularity, and object-
server owners allow content on their machines only from publishers with
access to the local part of the distribution network. For publishers this ap-
proach implies that they must obtain access to the SDN for each country
they wish to distribute their software in. The moderator groups of differ-
ent countries/jurisdictions could cooperate to block publishers who violate
widespread laws (e.g. illegally publish copyrighted works or child pornog-
raphy). To be able to enforce export regulations, each partition must be
accessible only to downloaders from its jurisdiction.

2. There is one group of moderators for the whole worldwide SDN that accepts
only software that is legal everywhere. In other words, out of all software
legislation the lowest common denominator is established and only software
that meets this standard is accepted.

3. A publisher determines in which countries his content is legal. He labels
the content with the names of the countries in which it is allowed. If he
mislabels intentionally, or unintentionally (e.g. his software violates a soft-
ware patent in France which he didn’t know about) he is blocked in those
parts of the network where his content violates the law. Allegation checking
and blocking is done by either a global group of moderators or a group per
country.

114 SECURITY CHAP. 5

5.1.3. Reputation

The reputation of a software publisher can also be used as a method for preventing
illegal distribution. We can distinguish two variations on this idea:

Variant 1: Per-Site Access Currently, people who want to setup a mirror of free
software often select a collection of software packages or distributions based on
the good reputation of the author/publisher and configure their servers to directly
mirror the primary publication sites. This method is applied, for example, for the
Linux kernel and for well-known distributions such as RedHat and FreeBSD.

Abuse is nearly impossible with this method. To have software published by
other sites, a malicious publisher not only has to establish a good reputation, but
he has to also create a large user base such that site owners start considering the
software as a candidate for replication. As establishing a reputation and creat-
ing an audience is time consuming and hard, the risk of abuse and thus illegal
distribution in this method is low.

The need to establish a reputation is also the disadvantage of this approach.
Ideally, a software distribution network should give equal access to all publishers
such that each publisher can immediately benefit from the SDN’s resources and
facilities when demand for his software grows. This approach also requires replica
site owners to monitor which producers are popular and trustworthy. Otherwise
not enough resources will be available for replicating the producers’ software.
This is considered a disadvantage.

Variant 2: List of Trusted Producers The disadvantage of each site owner
having to monitor the reputation of producers could be overcome by introducing a
group of reviewers who maintain a central list of trusted producers. In other words,
a group of reviewers monitors producers’ reputations on behalf of all site owners
and place trustworthy producers on a trusted-producer list. Site owners configure
their sites to accept only content published by the producers on this list. Although
a simple solution, it still suffers from the problem that resources are not available
to all publishers of free software. The latter problem cannot be solved by lowering
the reputation threshold as that will make it easier for malicious publishers to get
access.

Reputation and Per-Country Differences

For taking into account per-country differences in which software may and may
not be legally distributed, the fact that site owners have fine-grained control over
what content is replicated on their site is an advantage. Site owners can choose the
producers making software that is compatible with the laws of their country. On

SEC. 5.1 PREVENTING ILLEGAL DISTRIBUTION 115

the other hand, this can also be considered a disadvantage as not everybody with
some spare server capacity wants to get into which software is legal and thus might
not bother with making that capacity available for free-software distribution.

Introducing reviewers who establish a list of trusted producers can again be
used to reduce the individual site owner’s burden. There are basically two ways in
which this could be set up.

1. There is a group of reviewers per country/jurisdiction, and site owners use
the list of trusted producers as defined by their country/jurisdiction’s re-
viewers.

2. There is single group of reviewers for the whole software distribution net-
work. Only producers that publish software that adheres to the lowest com-
mon denominator of all software legislation are put on the trusted-producer
list.

5.1.4. Other Approaches

Several efforts are underway to prevent users from accessing (e.g. viewing) ille-
gally copied works (e.g. copyrighted music or videos) at the hardware level. The
general idea is that the computer hardware does not allow copying or viewing of
content unless authorized by the copyright holder [Stefik, 1997; 4C Entity LLC,
2000]. Ignoring the feasibility and desirability of such measures, for the Globe
Distribution Network it could mean that preventing illegal distribution of copy-
righted works is no longer the designer’s concern as it is now handled by the
hardware. However, preventing the distribution of offensive material and illegal
free software still is a matter for the GDN, and therefore these approaches do not
offer a complete solution.

5.1.5. Comparison

Table 5.1 compares content moderation (CM), cease-and-desist (C&D) and the
second reputation-based scheme, focusing on a number of criteria. The criterion
“application procedure for users” means that to get access to the distribution net-
work users have to go through a non-trivial application procedure. The criterion
“reporting procedure for illegal content” means that to report illegal content a non-
trivial reporting procedure has to be followed. As indicated above, the amount of
work for moderators in the C&D scheme is lower than for CM if abuse is low,
and assuming there are few false reports. This property is the prime advantage
of C&D, as a distribution network for free software will depend on volunteers to
make it work, and should therefore keep the amount of work for these volunteers

116 SECURITY CHAP. 5

Table 5.1: Comparison of the content moderation and cease-and-desist
schemes.

Scheme Content Cease and Reputation∗:
moderation: desist:

Abuse level Low High Low High Low High

Amount of work for
moderator / reviewer

large small� large medium† large‡

Amount of work for
end user

none tiny� small� none

Publication delay high none none

Application procedure
for producers

no yes yes�

Reporting procedure
for illegal content

no yes no

Open to all yes yes no

Applicable only if
some illegal distribu-
tion allowed

no yes yes

∗ = The information about the reputation-based scheme is true under the assumption that pro-
ducers that have been given access because of their good reputation never turn rogue.
Otherwise we have to introduce measures to catch these producers which may require
extra work from either reviewers or end users.

� = Only when measures are in place to prevent false reports.
† = Reputation reviewers have to actively look for candidate producers eligible for access.
‡ = When most candidate producers are not to be trusted, the reputation reviewers will have

to invest a lot of effort to find eligible ones.
� = In the cease-and-desist and reputation schemes, end users or third parties have to report

illegal content. In the end-user case, as the population of end users is many times larger
than the group of moderators the amount of work required from an end user will, on
average, be rather small.

� = The “application procedure” in the reputation scheme is nontrivial as this consists of es-
tablishing a reputation and a considerable user base.

SEC. 5.2 THE GDN AND ILLEGAL DISTRIBUTION 117

as low as possible. In a situation where there is a lot of abuse CM may be more ef-
fective at preventing illegal distribution, because it is proactive. The fact that there
is an intrinsic delay between submitting the software for publication and the time
of publication in the CM scheme makes CM less suitable for use in a software-
publication context, where rapid publication of new releases is sometimes crucial.

In my research for this dissertation I did not look at the reputation-based
schemes. In retrospect, a reputation-based approach, in particular the second vari-
ant (i.e., having a group of reviewers decide which users get access to global
resources), might work reasonably well. However, as shown in Sec. 5.2.3 the
way cease-and-desist is incorporated in the Globe Distribution Network is rather
generic, and also supports a reputation-based scheme for preventing illegal distri-
bution. Furthermore, the CM and C&D schemes are not compared with respect
to their ability to handle per-country differences, as this aspect is not fully investi-
gated in this dissertation.

5.2. THE GDN AND ILLEGAL DISTRIBUTION

To explain how cease-and-desist is used in the GDN we first recapitulate
briefly the general model of the GDN, illustrated in Figure 5.1. The GDN con-
sists of a collection of object servers running replicas of distributed shared revi-
sion DSOs, containing revisions of software packages. Software producers upload
archive files containing software into the GDN’s revision DSOs which are subse-
quently requested from the objects by downloaders.

It is our design goal to allow many different people and organizations to run
object servers and make them available to the GDN. These operators are referred
to as object-server owners. In this section we discuss only how the fact that the
GDN spans multiple administrative domains is taken into account in the cease-
and-desist design. Object-server owners are therefore assumed to be trustworthy
in this section. An analysis of the problems that untrustworthy and malicious
object-server owners can cause, and solutions to a number of these problems are
given in Sec. 5.4.2.

What the design currently does not fully take into account are the differences
between countries with respect to which content may be legally distributed in
that country. Moreover, the GDN also does not currently provide measures to
prevent people in a country with strict laws from downloading illegal content from
countries where this content is legal. These issues require further investigation. In
the meantime, we define our own global policy of what can be distributed via the
GDN. Given that the GDN is to be used for the distribution of free software, we
define inappropriate content as anything that is not freely redistributable software

118 SECURITY CHAP. 5

Object server

Revision DSOs

���
���
���
���

���
���
���
���

����
����
����
����

���
���
���
���
���

���
���
���
���
���

����
����
����

����
����
����

Local representative

GDN

���
���
���
���
���

���
���
���
���
���

File

Software
producer

Downloader
File

Figure 5.1: General model of the GDN. Stick men represent people, rect-
angles represent object servers, rounded boxes represent distributed shared
revision DSOs, and circles represent local representatives of revision DSOs.

or part thereof.

5.2.1. Traceability via Digital Signatures

Content traceability is incorporated in the GDN as follows. When a software
maintainer wants to start publishing his software through the GDN he has to con-
tact one of the so-called access-granting organizations. An access-granting orga-
nization, or AGO for short, verifies the candidate’s identity by checking his pass-
port or other formal means of identification. In addition, the organization checks
if this person has not been banned from the GDN by any of the other AGOs by
consulting a central black list. If the candidate is clean, the access-granting orga-
nization creates a certificate linking the identity of the candidate to a candidate-
supplied public key and digitally signs this certificate. This certificate is called the
trace certificate and the key pair of which the public key on this certificate is one
part is called the trace key pair. In addition to creating a trace certificate, the AGO
supplies the producer with Globe security credentials that allow him to access the
GDN.

An owner of an object server specifies which producers it wants to give access
to his object server. In principle this is done at AGO-granularity: the server owner
specifies which AGOs it trusts to do a proper identity and black-list check, and
only producers that have credentials and certificates signed by those AGOs will
be allowed to place content on that owner’s object server. Owners can also give
access to or block individual producers.

An upload now proceeds as follows. Assume the producer has created a re-

SEC. 5.2 THE GDN AND ILLEGAL DISTRIBUTION 119

1
2

4

Passport
Certificate +
Credentials

Credentials

Credentials +

AGO

Server

Object

Object
Software
producer

3

File +
Signature +
Certificate Downloader

File +
Signature +
Certificate

Figure 5.2: Basic operation of the GDN with traceable content.

vision DSO on one of the object servers that trusts the AGO the producer got his
credentials from. Before uploading a file into the GDN, the producer creates a
digital signature for this file using the trace key pair. This signature is referred to
as the trace signature. The trace signature and associated trace certificate are up-
loaded into the revision DSO along with the file. To this extent, the startFileAddition
and endFileAddition method signaling the begin and end of an upload (discussed
in Sec. 4.3) were modified as follows. The startFileAddition method invoked at the
beginning of an upload takes as extra parameter the trace certificate. The trace
signature is passed as an argument to the endFileAddition method.

When the upload is finished, the revision DSO verifies the trace signature. If
the signature is false, either because the certificate did not contain the right public
key, the file did not match the digital signature, or the producer has been banned
from the GDN, the object removes the uploaded file from its state. As only files
that are provided by an active (i.e., nonblocked) producer and that carry a valid
signature are allowed in an object, all content in the GDN is always traceable.

The whole procedure is summarized in Figure 5.2. To get access to the GDN a
software publisher first identifies himself to an AGO and receives a trace certificate
and Globe credentials in return (arrow 1 in Figure 5.2). Second, the producer
requests an object server, using his Globe credentials, to create a revision DSO
(arrow 2). Third, the producer creates a digital signature for the archive file to
be published and uploads it along with the file and the trace certificate into the
revision DSO (arrow 3). Finally, a user downloads the archive file, trace certificate
and trace signature from the revision DSO and verifies that they match (arrow 4).

To ban a producer from the GDN when illicit content traceable to him is found,
the following procedure is executed. When someone finds illicit content in the

120 SECURITY CHAP. 5

GDN he contacts a GDN producer who will make the accusation on his behalf.
The accusing producer notifies all object-server owners and the access-granting
organization that gave the suspected producer access of the publication of illicit
content by the suspect. The access-granting organization, in addition, receives a
copy of the signed illicit content, and verifies that this content is indeed inappro-
priate and digitally signed by the violator. If this is the case, the producer’s Globe
credentials are revoked and the violator is placed on the central black list shared
by all AGOs and is thus effectively banned from the GDN. The accusing producer
is banned himself if the accusation he makes proves false.

The actions taken by the object-server owners upon notification depend on
their content-removal policy. They may destroy their replicas of all objects that
contain content signed by the violator, or delete the replicas of only the objects
mentioned in the allegation. They may do so immediately upon notification by
the accusing producer, or only after the allegation has been verified by the AGO.
Object-server owners can also decide not to remove the content but instead tem-
porarily block accused producers from their server.

What policy object-server owners will adopt depends on the requirements im-
posed by the law, the level of abuse and whether or not people report the abuse.
In principle, object-server owners are autonomous and can decide for themselves
which policy they adopt. However, the GDN may also impose a systemwide pol-
icy to guarantee certain systemwide properties with respect to illegal distribution.
We currently require object servers to follow a systemwide policy where all con-
tent published by a violator is deleted, but only after verification of the evidence.
This policy provides protection against malicious GDN producers trying to re-
move well-known software packages from the GDN.

5.2.2. Discussion

In Sec. 5.1.2 we identified two issues that need to be resolved to successfully use
the cease-and-desist scheme. The first issue is how to make sure people who have
been previously banned from the software distribution network cannot regain ac-
cess. In the GDN this problem is solved by requiring candidate producers to prove
their real-world identity, which is published on a (public) central black list shared
by all access-granting organizations for the GDN if the producer is found guilty of
violating GDN policy with respect to content. Formal means of identification are
necessary as they cannot be easily faked. It is assumed that the candidate presents
his passport or other identification means to a local representative of the access-
granting organization, or sends a copy of the document to the AGO, certified by a
mutually trusted third party.

Other methods of access control are also possible, for example, requiring the
endorsement of a certain number of other GDN producers, or a refundable fee

SEC. 5.2 THE GDN AND ILLEGAL DISTRIBUTION 121

which is lost when the producer violates the rules. Which method for blocking
access are permitted depends on the legal requirements, as some methods make it
easier to regain access than others. For example, the law may require publishers of
child pornography to be locked out permanently. Directly and permanently block-
ing violators, as I propose, is necessary if there are many violators, just to keep
the amount of illicit content in the distribution network at a (legally) acceptable
level.

At present, I do not allow for fair mistakes, for example, by blocking a violator
only after n violations. This particular method can be used in the future if it
meets the legal criteria just mentioned. A method for handling mistakes where
a producer appeals against decisions may be too labor-intensive for the access-
granting organizations.

The second issue is how to keep the amount of work for the moderators low
when abuse is low. The moderator task is in this solution carried out by the AGOs.
Keeping the amount of work low when abuse is low comes down to keeping the
number of false allegations to a minimum. The approach chosen in the GDN is
to require that allegations are made through an active GDN producer who will be
blocked himself if the allegation proves false. Although blocking the accusing
producer himself when the accusation is false may seem like a drastic measure, I
believe it is necessary to have a threshold for an accuser in the form of a possible
sanction in order to keep the amount of work for access-granting organizations
low. It may, however, not be necessary to block a false accuser the first time round
or block him permanently. One could allow for a few mistakes and revoke access
just for a period of time, as long as the number of false reports made remains low.

It is in the interest of the accusing producer to make these accusations, as in
the long run, not participating in banning malicious producers will result in the
collapse of the GDN and deprive the accusing producer of a cheap distribution
channel for his own software. In other words, making an accusation on behalf
of other users is the price producers have to pay for access to the resources of the
GDN. One can also imagine people specializing in the role of accuser, that is, peo-
ple with access to the GDN acting as public prosecutors and explicitly requesting
users to report illicit content to them.

Alternative methods for keeping false allegations low are similar to those for
keeping violators out of the GDN, for example, a refundable fee which is lost
when the accusation is false. Requiring that a group of users or producers make
the allegation may not be a good alternative to blocking a false accuser. The
effectiveness of the group method depends on the number of malicious persons in
the user community. If there are many and they are organized it will be easy for
them to swamp the AGOs with false reports. This method basically lacks a way
to stop malicious users or producers from repeatedly making false allegations.

122 SECURITY CHAP. 5

An interesting topic for future research is to see whether an effective method for
limiting false allegations can be devised based on (end-)user reputation [Lethin,
2001], which would enable users to make allegations directly. An example of such
a reputation system is the one used on the slashdot.org news and discussion Web
site [Malda, 1999].

The correct operation of the GDN’s scheme for limiting illegal distribution
depends on two factors: (1) the goodwill of the GDN producers and (2) the cor-
rect functioning of the access-granting organizations. In theory, the scheme works
even if the majority of Internet users want to abuse the GDN for illegal distribu-
tion. Eventually, all abusers will have been black listed and only truthful peo-
ple will have access. However, by the time we have reached this situation no
person with truthful intentions will be making object servers available anymore.
This scheme therefore practically depends on the goodwill of the GDN producers.
Given that their good name is at stake (the black list of GDN abusers is public),
we expect most GDN producers will behave.

The scheme itself provides some protection against misbehaving access-grant-
ing organizations. When a truthful access-granting organization mistakenly gives
a previously blocked producer access again, an object server ends up serving illicit
content. However, as before, this illicit content will be removed and its uploader
is blocked when it is detected. When an access-granting organization (purposely
or not) does not respond to accusations of abuse by producers it gave access to or
(purposely) gives blocked producers access again, the AGO will get a bad reputa-
tion. Object-server owners will start refusing any producers the AGO accredited
and eventually the AGO will be ousted from the GDN.

The relationship between a producer and the AGOs that gave him access
should be viewed as a contract. A producer is given access to the GDN in ex-
change for which he promises not to abuse this right. If he does, it is the other
party in the contract, the AGO, that establishes this fact and terminates the con-
tract on this ground. In principle, the contract requires a GDN producer not to
violate the GDN’s global policy on what content may or may not be allowed. An
AGO could, however, also impose additional restrictions on content and revoke
only the credential it gave the producer instead of blocking him at all AGOs. This
per-AGO flexibility can be used to incorporate per-country differences, as outlined
in Sec. 5.1.2. What can also be made to differ per access-granting organization is
to what level a candidate has to prove his identity to the AGO. The policy speci-
fying the AGO’s requirements is called its access-granting policy. For example,
a group of object-server owners could setup their own AGO and define their own
access-granting policy and thus their own rules about who gets access to their
servers. A minimum requirement for an access-granting policy is, however, that
the AGO is able to reveal a producer’s real name when that producer is proven to

SEC. 5.2 THE GDN AND ILLEGAL DISTRIBUTION 123

illegally distribute content.
When implementing cease-and-desist, attention should be paid to the cryptog-

raphy used to create the digital trace signatures. Attackers may attempt to uncover
a trace private key so that they can embarrass the publisher owning that key by ille-
gally publishing content as if it originated from the publisher. A protection against
such an attack is to use large key lengths [Schneier, 1996]. Large key lengths are
particularly important in the GDN for two reasons. First, the archive files and their
associated trace signatures will be stored in the Globe Distribution Network for
long periods of time, giving an attacker ample time to perform his attacks. Second,
the trace signatures are basically cryptographic digests of the archive file created
using known digest algorithms, implying that both the ciphertext and the plaintext
are available to the attacker, allowing a known-plaintext attack [Schneier, 1996].
Increasing the chances of a successful attack may be the fact that I plan to use
composite trace signatures that contain a cryptographic digest for each block of a
file published for fault tolerance (see Sec. 6.3.1), increasing the amount of plain-
and ciphertext available to the attacker.

5.2.3. Using Other Protection Measures

Although designed for supporting the cease-and-desist scheme, this architecture
is also able to support other schemes for preventing illegal distribution. Content
moderation could be supported by having access-granting organizations act as
moderators and requiring users to upload content via their AGO. A reputation-
based approach is also supported. An AGO could grant access to users based
on their reputation rather than their willingness to show their passport and not
appearing on the central black list. (i.e., have an access-granting policy based on
reputation).

5.2.4. Anonymity

The GDN was not explicitly designed to support anonymous uploads and down-
loads, but does offer support for weakly anonymous uploads. Anonymous down-
loads can be provided by setting up a HTTP-to-GDN gateway and using existing
solutions such as the Anonymizer [Anonymizer.com, 2001], Crowds [Reiter and Rubin,
1999] and Onion Routing [Goldschlag et al., 1999].

The need for supporting anonymous uploads in a free software distribution
network is small. The reason for supporting it would be to allow people who are
unsure about the legal status of their free software to publish that software with-
out immediate risk of prosecution. The GDN only supports weakly anonymous
uploads as follows. It is not necessary for access-granting organizations to put
the software publisher’s real name on the trace certificate that it issues. As stated

124 SECURITY CHAP. 5

above, the minimum requirement is that the AGO is able to reveal a producer’s
real name when he is proven to illegally distribute content. This property opens
the possibility for publication under a pseudonym. The minimum requirement
still holds, however, so there is a risk for the publisher that when the content he
uploads in the GDN cannot be legally published his name will be revealed. Again,
this condition can be viewed as part of the contract between AGO and software
publisher.

5.3. AUTHENTICITY AND INTEGRITY OF SOFTWARE

People downloading software from a software distribution network want to be
assured of the authenticity and integrity of the software downloaded; that is, is the
package that they just downloaded the actual GIMP application or does it contain
a malicious Trojan horse?

In the GDN, establishing the authenticity of software is the responsibility of
the downloading user. In principle, the GDN guarantees only the integrity of
the distributed software. It provides no authenticity guarantees other than the
verified identity of the uploader as it appears on the trace certificate (which may
be a pseudonym), as discussed above. Guarantees concerning the authenticity of
software should therefore come from mechanisms outside the GDN. The GDN
does, however, provide hooks for such external verification.

Currently, free software distributed via HTTP or FTP is authenticated us-
ing public-key cryptography. Maintainers of software packages digitally sign
the archive files with a private key and publish the associated public key on the
well-known Web site of the software package (e.g. www.kernel.org for the Linux
kernel). People that download the software obtain the public key from the well-
known Web site and use it to check the digital signature, thus establishing the au-
thenticity of the software. We refer to this signature as the end-to-end signature,
to distinguish it from the trace signature introduced in the previous section. This
authentication scheme requires that the associated public key is obtained from a
trustworthy source that guarantees that the key actually belongs to the maintainer
of the package. Note that even though Web sites currently do not meet this re-
quirement they are nonetheless used for this purpose in practice.

Another disadvantage of this approach is that end-to-end signatures do not
protect against the renaming of files. Renamed files pose a risk because a mali-
cious person may, for example, change the name of an archive file containing an
old version of a software package with a known bug or security hole to that of the
most recent version of that package. Downloaders should therefore always check
that they indeed have the correct version by looking at the contents of the archive

SEC. 5.4 AVAILABILITY 125

file downloaded.
The GDN supports only the automatic verification of end-to-end signatures.

The GDN makes it the responsibility of the downloading user to obtain the proper
public key. Concretely, when downloading a file from the GDN the end-to-end
signature is downloaded along with it. The GDN client software then does the end-
to-end authenticity check, using a set of public keys supplied by the downloading
user. If the set does not contain the required public key, the user is prompted to
supply it.

Another result of the GDN’s approach to authenticity is that the naming of
files and revision DSOs in the GDN is not regulated. GDN producers are free to
name their revision DSOs and files as they want. Downloaders should therefore
not rely on names as an indication of what content they are downloading. They
should make sure that they have the real name of the software they are looking for.
The Globe Name Service is assumed to reliably translate Globe symbolic object
names to the object handle of the object.

The reason for not having the GDN provide strong authenticity guarantees is
that we expect users not to trust any statements a software distribution network
makes about the authenticity of the software they download. We expect users will
want to verify themselves that the software they downloaded and which they will
be running on their systems is what they expect it to be. Furthermore, it is also
difficult for a distribution network such as the GDN to provide strong authenticity
guarantees. Consider the following example. To guarantee that the revision DSO
named “GIMP 1.1.29” actually contains revision 1.1.29 of the GIMP application
we would have to establish who is the maintainer of GIMP and make sure that
only that person can create a revision DSO named “GIMP 1.1.29” in the GDN
and can upload files into that object. Making sure only a certain person can use
certain names and edit certain objects is relatively easy, but establishing who is
the maintainer of a specific package is, in general, rather difficult.

5.4. AVAILABILITY

The Globe Distribution Network should have high availability; that is, it must
be up and running most of the time. Two factors influence availability: deliberate
attacks on the GDN, which we discuss here, and failures, discussed in Chap. 6.
Two types of attackers are identified:

1. External attackers (e.g. crackers)

2. Internal attackers, in particular, malicious producers and malicious object
servers.

126 SECURITY CHAP. 5

Replica
Core

Infrastructure
Directory
Service

Name
Service

Location
Service

Globe middleware services

Downloader

Object Server 1

Replica

Object Server 2

producer
Software

Figure 5.3: Principals in the GDN.

We do not consider denial-of-service attacks by network flooding.

5.4.1. Access Control

External attackers should not be able to delete content from the GDN or otherwise
render the distribution network unavailable. Such a requirement is often better
expressed positively by defining what legitimate users are allowed to do and to
refuse all other actions. To this extent a simple (role-based) access-control model
[Sandhu et al., 1996] was developed that describes the security requirements for
the GDN. Producers and object servers are initially assumed not to misbehave.
We drop this assumption and study the consequences and counter measures later
in Sec. 5.4.2.

The basic model of the GDN and the parties involved as established in Chap. 4
are recapitulated in Figure 5.3. Producers upload software into revision DSOs.
Each revision DSO consists of one core replica and a number of additional replicas,
kept consistent via an active-replication protocol. In this protocol, the core replica
is responsible for forwarding the state-modifying method invocations invoked by
the producer (e.g. as part of an upload) to the other replicas. Users download
the software by invoking read-only methods on the revision DSO. As the Globe
Distribution Network is an application running on top of the Globe middleware,
it uses the middleware’s services, in particular, the Globe Location Service (for
keeping track of the location of replicas), the Globe Name Service (for assigning
symbolic names to revision DSOs) and the Globe Infrastructure Directory Service
(used by revision DSOs to find suitable object servers to create replicas on).

For this dissertation, we assume that there is a trusted organization called the

SEC. 5.4 AVAILABILITY 127

GDN Administration. The GDN Administration is responsible for running the
Globe middleware services, for allowing people or organizations to become an
access-granting organization for the GDN, and has the right to update the GDN
software itself. In addition, we assume that the middleware services are secure
and have their own measures to protect against availability attacks.

The access-control model for the GDN is as follows. When a software pro-
ducer is given access to the GDN he is given object-creator rights, that is, he is
able to request object servers to create revision DSOs. When creating a revision
DSO the producer becomes the owner of that DSO, which means he can

• Make updates to the state of the object (i.e., invoke state-modifying meth-
ods).

• Request object servers to create or delete replicas of the object.

• Register and deregister contact addresses for the object with the Globe Lo-
cation Service.

• Delegate these rights to other Principals.

As described in Chap. 3, creating a DSO currently consists of creating an ini-
tial replica local representative. At creation time, the owner of the object assigns
the initial replica the core-replica role, thus delegating the following rights to this
replica:

• Authorize state updates to other replica local representatives. As described
in Sec. 4.6.1 it is the responsibility of a core replica to forward state-modifying
method invocations made by clients to all replicas.

• Request object servers to create or delete replicas of the object. As de-
scribed in Sec. 4.6.2), the core replica coordinates replica placement for the
whole object.

• Register and deregister a replica’s contact addresses with the GLS.

• Delegate the latter two rights (minus replica deletion) to other replica local
representatives.

When a core replica decides the revision DSO needs a new replica it contacts
a suitable object server and, in the process, delegates replica rights to the new
replica. An authorized replica is allowed to

• Register and deregister its own contact address for the object with the GLS.

• Register itself at the core replica such that it can receive updates.

128 SECURITY CHAP. 5

• Retrieve a copy of the state of the object from the core replica.

• Report statistics about its client population to the core replica.

• Request object servers to create replicas of the object. This right is required
to allow a replica to autonomously handle server overload (see Sec. 4.6.4).

• Delegate these rights to other replica local representatives.

The owner of a revision DSO may assign uploader privileges to other GDN
producers, enabling them to update the state of the object. For example, if a group
of people are cooperating to make binary variants of a software package available
for different platforms (Alpha, Intel), the chief maintainer of the software package
could assign them uploader privileges to the revision DSO, such that the others
can autonomously upload new variants. When the owner of the object leaves the
development team he either transfers his ownership rights to another member of
the team or the remaining members of the team have to republish the software
in new objects. Which method is chosen depends on the terms on which the
developer leaves and whether or not the security system implementing this access
control model allows transfer of ownership rights.

An issue not yet addressed by this model is the ownership of symbolic object
names (see Sec. 3.3 and Sec. 4.4). It is assumed that (at least) the owner of the
object owns a name space in a name or directory service in which he can register
the object. More precisely, the owner has the right to register names in that name
space, but he does not have the exclusive right to register names for that particular
object; other people, for example, other developers can register other names for
the object in their own name spaces.

Discussion

The access-control model ensures that external attackers cannot reduce the avail-
ability of the Globe Distribution Network by attacks other than network flooding
and sending many download requests. The latter case is handled by the flash-
crowd control mechanism of Sec. 4.6.4. It is assumed that the implementation
of this access-control model also takes into account basic security risks, such as
message replays [Schneier, 1996].

If symbolic object names from the owner’s name space are frequently used
to refer to the published software, a problem can occur when there are multiple
developers. The problem occurs when the owner leaves the team on unfriendly
terms, without transferring the right to register names or object ownerships. In
that case the remaining developers should republish the software in other objects
but are not able to register these new objects under their old, well-known names.

SEC. 5.4 AVAILABILITY 129

For example, assume a person X publishes revision 1.0 of his jointly developed
software package in a revision DSO and names the object /org/x/revision-1.0/ in the
/org/x name space which is owned by him. Furthermore, assume this name be-
comes the well-known name for this revision of the software package. If X leaves
the development team without transferring any ownership, the remaining team
members cannot republish the 1.0 revision in a new object and register the object
under the well-known name /org/x/revision-1.0/. It is assumed that the remaining
developers will reregister in a different name space when this problem occurs.

5.4.2. Internal Attackers

As mentioned in Sec. 5.2 one of the design goals of the GDN is to allow many dif-
ferent people and organizations to run object servers and participate in the GDN.
Until now we have assumed that these object-server owners are trustworthy. How-
ever, people may attempt to undermine the availability of the GDN from the inside
by running a modified and maliciously acting object server. Modifying object
servers is easy as the source code of GDN is assumed to be publicly available.
We, as GDN designers, do not have and can never have complete control over
object-server machines and thus cannot prevent this malicious behavior.

Furthermore, although we have looked at how to prevent GDN producers from
publishing illegal content we have not looked at attacks on the availability of the
GDN they could mount. In this section we first analyze how the GDN’s availabil-
ity could be reduced by malicious producers, maliciously modified or maliciously
operated object servers, or malicious clients. Next, we present a number of solu-
tions for disarming these internal attackers.

Malicious Producers A GDN producer can play three roles: that of object cre-
ator, that of owner of an object, and that of uploader. The object-creator rights can
be used to do a denial-of-service attack by means of resource allocation. An ob-
ject creator could create many revision DSOs (i.e., initial replicas) on many object
servers, thus reducing the total available object-server capacity, which, in turn,
makes the GDN less available to other producers and objects. The owner rights
can also be used to create superfluous replicas. Owner and uploader privileges can
be used by a malicious producer to make the state of the revision DSOs large such
that they take up large amounts of persistent storage. An owner can also make
many registrations for his objects in the GLS. This latter problem is considered
outside the scope of this dissertation.

Malicious Object Servers The most basic attack for a malicious object server
is to serve downloaders different content. Doing so only hinders downloaders, as

130 SECURITY CHAP. 5

the integrity of the content is protected by the trace signature. However, if the
content served is not what the user expects but still traceable (i.e., a malicious
object server could serve the user the content of a totally different object), users
will not notice a problem until they do the end-to-end authenticity check. The
fact that object servers may not be trustworthy makes the end-to-end authenticity
check absolutely vital to the secure downloading of software from the GDN.

Object servers can be delegated core-replica and replica rights. In general, a
GDN producer will select an object server that he trusts as the host for the core
replica of the revision DSO. At present, it is assumed that if a producer does not
know which servers to trust he will consult other GDN software producers to
discover trustworthy servers. In the future reputation systems may be used for
this purpose, see Sec. 5.4.3. As the server hosting the core replica is trusted we
can consequently assume that the core-replica rights will not be abused. However,
an object server might turn out not to be so trustworthy, and, more seriously, a
malicious producer may himself run malicious object servers, create core replicas
on them and use those to attack the availability of the GDN. The core-replica
rights can be used to overallocate resources similar to a producer’s owner rights.
A core replica can create many replicas on other object servers, with large states,
thus making those servers’ resources unavailable for others.

If all object servers except the one running the core replica cannot be trusted,
the core replica becomes the only trustworthy source of the object’s state, which
introduces a capacity problem. A new replica when it is created needs to obtain a
copy of the state in order to serve clients. This copy can now be safely obtained
only from the core replica, significantly increasing its workload. This increased
workload may overload the machine the core replica runs on. Other tasks of the
core replica such as sending the state-modifying method invocations to replicas are
not expected to generate much more work for the core replica when the number
of replicas scales up, due to the low frequency of updates on a revision DSO.

When an object server is granted replica rights this includes the right to report
statistics to the core replica about the number of clients that access it and where
they are located (i.e., their autonomous system). This right can be abused to

1. Create more replicas than necessary

2. Trigger the core replica to delete replicas

3. Trigger the core replica to create replicas in the wrong location

The first can be achieved by reporting more accesses than actually seen. The
second can be achieved by generating low-usage statistics for a replica and re-
porting those to the core replica as if they originated from that (well-behaved)
target replica. These low-usage numbers may cause the core replica to delete the

SEC. 5.4 AVAILABILITY 131

seemingly underutilized replica when it re-evaluates the revision DSOs’ replication
scenario (see Sec. 4.6.2).

In the third attack a malicious replica or group of replicas attempts to deprive
a group of clients in a particular region from getting their own replica. This attack
can be mounted when the clients use these malicious replicas as the object repre-
sentatives most convenient for them. In that case, the replicas could refrain from
reporting the clients’ downloads to the core replica of the object, and it would not
create a replica in the clients’ region. This attack is only possible in this particular
situation, and thus unlikely to occur. In all other situations, the clients are con-
nected to well-behaved replicas that will allocate them a replica by means of the
flash-crowd control/server load balancing mechanism (described in Sec. 4.6.4), a
mechanism that cannot be interfered with by non-participating malicious replicas.

There are potentially also vulnerabilities in the replication protocol used by
revision DSOs. For example, if state update messages need to be acknowledged by
the receiving object servers and the core replica does not proceed until replies have
been received from all replicas, malicious object servers could sabotage this up-
date by not replying. In general, malicious object servers can sabotage collective
decisions to be made by the object’s local representatives.

Another (general) problem at the protocol level is that of principals sending
maliciously modified protocol messages. In contrast to sending correct messages
that have negative availability effects, these messages are purposely incorrect and
are sent to unnecessarily allocate resources, cause a crash of the peer process, cor-
rupt the peer’s data, or enable the sender to gain access to the peer’s host computer.
As indicated in Chap. 2, the counter measures against this type of attack are sound
programming practices, authentication of users and logging their actions, and en-
abling fast upgrade of the application when exploitable bugs are discovered. We
will not discuss actual vulnerabilities of the replication protocol used, as describ-
ing the replication protocol at the level of detail required for such an analysis is
outside the scope of this dissertation.

Malicious Downloaders The third class of internal attackers are downloaders
running maliciously modified clients. Although the access-control mechanisms
and replication protocol prevent them from doing real harm, they can easily mount
a denial-of-service attack against a revision DSO by specifying a huge block size
(e.g. 650 MB) when downloading or uploading a large file (e.g. an ISO9660 CD
image). This specification will cause an object server to allocate huge amounts of
memory, leading to out-of-memory errors and a slowdown of the server.

132 SECURITY CHAP. 5

5.4.3. Countermeasures Taken by the GDN

In this section we describe the measures employed by the GDN to prevent or
counter the internal attacks just identified.

Keeping Producers In Check

A GDN producer is kept from creating too many revision DSOs as follows. Al-
though the popularity of software packages largely differs, the rate at which new
revisions of a package are published is fairly stable. Rarely more than one new
revision is published per day. In terms of GDN, a well-behaved software producer
will not create more than a few revision DSOs per day. This property enables us to
limit both the rate at which a malicious producer can create revision DSOs, and put
an upper limit on the total number he is able to create. For this purpose the GDN
Quota Service (GDNQS) is introduced.

To create a new revision DSO that is, create an initial replica (see Chap. 3), the
producer now first has to contact the GDNQS to obtain an object-creation ticket.
Object servers will only create an initial replica if the request is accompanied by
such a ticket. The GDNQS keeps track of how many tickets have been granted to
a producer in the last 24 hours and does not issue tickets to producers who exceed
the limit, thus limiting the creation rate. The GDNQS also roughly imposes a
limit on the total number of revision DSOs a producer is allowed to create. The
total number of revisions of a software package depends largely on the age of the
package, as the revision-publication rate of software is relatively stable and low.
We therefore assign a producer an annual quota of revision DSOs he is allowed to
create, enforced by the GDN Quota Service. The GDNQS can be considered the
global resource management system for the GDN.

We keep a producer from allocating too many resources on a particular object
server by introducing a local resource management system for object servers. The
local resource management system keeps track of how many resources are used by
each (replica) local representative and to which producer this local representative
belongs, and denies allocation requests if a producer has already been allocated his
fair share. In addition, we impose a limit on the size of the state of a revision DSO
(e.g. 1 GB), enforced by the code of the object’s local representative. The limit is
set centrally for the whole GDN and is adjustable to allow growth in average file
size.

Furthermore, the server’s resource management system deletes local represen-
tatives which are not frequently used, thus providing protection against producers,
core replicas, and regular replicas trying to reduce availability of the GDN by al-
locating useless additional replicas. An exception is made for initial replicas, to
prevent revision DSOs containing old, and therefore unpopular revisions of soft-

SEC. 5.4 AVAILABILITY 133

ware packages from being deleted when they should be kept for archive purposes.
An attacker could counter this measure by setting up clients that access the super-
fluous “malicious” replicas, thus keeping up their replicas’ usage, but this requires
a sustained effort from the attacker, and is therefore assumed unlikely.

These solutions for keeping a GDN producer in check require that each soft-
ware publisher operates under a single identity such that his or her resource usage
can be correctly recorded. Otherwise, if a software publisher could use multi-
ple identities he could allocate n times the resources (where n is the number of
separate identities he can assume), making the resource-management measures
much less effective. Implementing this requirement in the GDN is complicated by
the fact that a software publisher can become GDN producer via multiple access-
granting organizations, and is identified by the trace certificate issued by an AGO.
To meet the single-identity requirement AGOs must coordinate their actions such
that they issue trace certificates all listing the same identity. This measure makes
the GDN less suitable for anonymous publication (see Sec. 5.2.4), as this coordi-
nation between AGOs will require disclosing the publisher’s real-world identity
to all AGOs.

Keeping Object Servers In Check

To prevent malicious object servers from affecting other object servers and hinder-
ing downloaders the following measures are taken. First, to give the object-server
owners some control over which object servers his server cooperates with, object-
server owners are allowed to specify preferred object servers and block servers
they do not like (e.g. by specifying certain IP-address ranges). These rules are
also used for evaluating “create replica” requests the object server receives.

As a second counter measure, the replication protocol for revision DSOs is
changed as follows. Replicas no longer report statistics to the core replicas. In-
stead, replication is handled solely by the revision DSO’s flash crowd control mech-
anism discussed in Sec. 4.6.4, and now works as follows. Each replica monitors
its own load. When this load becomes too high, the replica tries to find object
servers in the regions the traffic is predominantly coming using the Globe Infras-
tructure Directory Service, and requests them to create extra replicas of the DSO.
When client demand drops, the underutilized replicas are garbage collected by the
resource management system of the object servers, freeing up resources for other
objects, as explained above. As this mechanism also takes into account the loca-
tion of clients, this change does not affect the capability of the GDN to do network
load balancing. More research is needed to determine what the effects of losing a
global coordinator for replication are on the efficiency of the replication protocol.

A result of not being able to trust object servers is an increased workload
for the core replica, as it becomes the only trustworthy source for the state of

134 SECURITY CHAP. 5

the object. To handle the increased workload a revision DSO is now allowed to
have multiple core replicas. They are assumed to run on trustworthy hosts and
coordinate their actions. The use of multiple core replicas for fault tolerance is
discussed in the next chapter.

The most important measures for protecting a downloader against a misbe-
having object server are the end-to-end authenticity and integrity checks (see
Sec. 5.3). If these checks are properly carried out, an object server can be only
obnoxious to a downloading user since any malicious modifications to the soft-
ware will be detected. As an additional, albeit limited protection against badly
behaved object servers, the GDN allows users to black-list object servers in their
client software or to specify preferences (e.g. preferably connect to object servers
from the .edu domain).

An interesting new area of research is trust models, sometimes also referred to
as reputation systems [Lethin, 2001; Cornelli et al., 2002]. These systems record
the reputation of a server, as established from previous interactions with that server
by clients and other servers. Using the reputation system, new clients and servers
can then select a server with a good reputation to interact with or check a server’s
reputation before interacting. The application of reputation systems to Globe ap-
plications is currently under investigation [Pierre and Van Steen, 2001].

Keeping Clients In Check

The current implementation of Globe distributed shared objects requires that the
problem of huge arguments in method invocations be handled at the replication-
protocol level. To prevent replicas from allocating large amounts of memory to
handle a large method invocation sent by a malicious client the replication sub-
object is changed to refuse method invocations larger than a certain value. The
exact value is a configuration parameter of the replication protocol, allowing it to
evolve as server and network capacity increases and to be configured according to
application-specific requirements.

5.4.4. Alternative Countermeasures

A simple alternative to the GDN Quota Service for making sure that GDN pro-
ducers cannot create too many revision DSOs, is as follows. Recall that creat-
ing a revision DSO consists of creating an initial replica on an object server (see
Sec. 3.5). The alternative solution is to require that producers create and run the
initial replicas on their own hosts. GDN producers without a permanent Internet
connection should approach an object-server owner and negotiate permission to
host their initial replicas on his server. I prefer the GDNQS solution as it never

SEC. 5.5 INITIAL IMPLEMENTATION 135

requires active participation from object-server owners, and thus allows the GDN
to operate more automatically.

5.5. INITIAL IMPLEMENTATION

I have written an initial implementation of the design described above. The
access-control part of the implementation is a temporary solution as a security
subsystem for the Globe middleware is still being researched. In our implemen-
tation there is no uploader role, ownership of an object is nontransferable, and
registration and deregistration of contact addresses in the Globe Location Ser-
vice currently does not require special privileges. Furthermore, as indicated in
Chap. 4, revision DSOs currently do not support automatic replication, but use a
master/slave protocol where the object’s owner has to create replicas manually.
The initial implementation also does not support automatic end-to-end signature
checking, nor does it take into account malicious object servers, or producers at-
tacking the availability of the GDN. In the future I hope to replace this implemen-
tation by a more complete one that uses the Globe security framework currently
being researched.

The initial implementation works as follows. For an overview of the basic
operation of the GDN with content tracability, see Figure 5.2 on page 119. Part of
the GDN Administration (i.e., the governing body of the GDN, see Sec. 5.4.1) is
the Certification Authority for Access-Granting Organizations (AGOCA). Organi-
zations wanting to act as AGO for the GDN send an application to the AGOCA
that includes a public key generated by the AGO. If approved, the AGOCA returns
to the AGO a certificate signed by the AGOCA. This certificate is called the AGO
certificate.

An author of free software wanting to publish it via the GDN first creates a
public/private key pair, in particular, a 1024-bit RSA key pair. After applying for
access at one of the GDN’s AGOs and passing the identity tests, the producer is
given an X.509 version 3 certificate [Housley et al., 1999] containing the public
key he supplied signed by the AGO. This certificate acts both as trace certificate
and as Globe security credential. The certificate hierarchy is shown in Figure 5.4.

The AGO creates a record for this producer in an LDAP server [Loshin, 2000].
This record is uniquely identified by the serial number of the producer’s trace cer-
tificate and the name of the AGO, and contains a field stating whether the producer
is currently active, accused of publishing illegal content, or blocked by this AGO.
This field is referred to as the status of a producer. The AGO’s LDAP server may
be replicated around the world for performance. The collection of LDAP servers
used by the GDN is collectively named the GDN Access Control Service (GDN

136 SECURITY CHAP. 5

AGOCA

AGO 1

Producer 1 Producer 2

Figure 5.4: The certification hierarchy in the GDN’s initial security imple-
mentation. Arrows represent “certified by” or “signed by” relationships.

ACS), as it is the authoritative source for determining whether or not a producer’s
access to the GDN has been revoked.

Next, the producer installs the trace certificate in his GDN producer tool, and
is now ready to upload software into the GDN, as follows. First, he uses the
producer tool to create an empty revision DSO. As explained in Chap. 3, creating
a DSO currently consists of creating an initial replica of the object on an object
server. The object server and producer tool use a Transport Layer Security (TLS)
library for authentication (and secure communication) [Dierks and Allen, 1999].
As described above, each object-server owner can specify which AGOs he trusts
and thus is willing to accept producers from. He does so by creating a key store
containing the AGO certificates of the AGOs he trusts, and configuring the TLS
library such that this key store is used as “Certification Authority key store.” In
other words, a client sending a request to the object server must authenticate itself
with a certificate signed using one of the certificates in that key store.

Assuming the producer tool successfully authenticates itself to the chosen
object server, the producer has now created an empty revision DSO. Ownership
of the object is assigned to the producer creating it by encoding an SHA-1 di-
gest [Schneier, 1996] of the producer’s public key in the object’s object handle.
Recall that a DSO’s object handle is its life-long, worldwide unique, location-
independent identifier (see Chap. 3). The initial replica of the revision DSO con-
figures itself to accept only state-modifying method invocations that are received
from its owner over a TLS connection. In particular, the replica requires the peer
at the other side of the connection to authenticate itself using the trace key pair that

SEC. 5.5 INITIAL IMPLEMENTATION 137

matches the SHA-1 digest in the DSO’s object handle. A trace key pair matches
the SHA-1 digest if the peer proves it knows the private key of the trace key pair,
and an SHA-1 digest of the public key of the trace key pair is equal to the SHA-1
digest in the object handle.

In our current master/slave replication protocol the initial replica acts as the
master. We make sure that slave replicas accept updates only from this replica
as follows. Each object server has its own public/private key pair. When a pro-
ducer asks an object server to create the initial replica, the object server executes
the request and returns the contact address of the master replica, and the object
server’s public key. To create a slave replica, the producer sends this information
to a candidate object server. This object server creates a slave local representative
of the DSO using the master’s contact address. In addition, the slave object server
configures the slave replica using the master object server’s public key such that
the slave replica accepts updates only when received over a TLS connection from
the master local representative of the DSO located on the master server.

Only the owner of a revision DSO is allowed to create or delete additional slave
replicas. An object server asked to create or delete a slave replica will execute this
request only when received from the object’s owner over a TLS connection. To
establish that it is the owner making the request, the object server uses the SHA-
1 digest of the owner’s public key in the object’s object handle. Our security
mechanism ensures crackers cannot modify the state of the revision DSO or alter
the DSO’s replication scenario, given that only the producer has access to the trace
private key and the master replica’s authorization is tied to the key pair of its own
object server which is trusted.

Having created the empty revision DSO the producer can now upload a file
into the GDN. The producer tool first binds to the revision DSO. Next, the tool
calculates an MD5 signature for the file and uploads the file into the DSO by
invoking the startFileAddition method (which takes the producer’s trace certificate
as parameter), a number of invocations of putFileContent and finally invoking the
endFileAddition method that has the MD5 signature as parameter.

Contrary to what is described in Sec. 5.2.1, the revision DSO does not check
itself whether the trace signature is correct. Instead, to simplify the implementa-
tion, the traceability of a file is checked by a back-end traceability checker (BETC)
(pronounced “betsy”). A BETC is a user-level process that runs in parallel to each
object server and checks the traceability of the files in the local representatives
the object server hosts. If a local representative contains untraceable files, BETC
instructs the object server to unbind from that object, thus deleting its replica of
the content. In other words, when an untraceable file is uploaded into a revision
DSO all object servers hosting a local representative of the object will delete that
local representative.

138 SECURITY CHAP. 5

The BETC works as follows. Periodically, its associated object server is asked
to list which local representatives it hosts. The BETC selects from this list the
local representatives that are new (i.e., created since the last check) and the local
representatives whose state has been updated. The latter information is obtained
from the local representatives which each record the time it was last notified or
received an update of the state of the object.

The BETC checks each file in the selected local representatives. First, the
BETC downloads the file to local storage, and retrieves the trace signature and
trace certificate from the revision DSO. Second, it verifies that the trace certifi-
cate is issued by one of the access-granting organizations trusted by the owner of
the object server, following the certificate-chain checking rules of [Housley et al.,
1999]. Third, BETC verifies that the trace signature indeed matches the down-
loaded file by recalculating the MD5 digest and comparing it to the digest in the
trace signature. Finally, the BETC contacts the GDN Access Control Service
(GDN ACS) to determine whether the publisher of this file has been accused or
is blocked from the GDN. If one of the first two tests fails the BETC instructs
the object server to remove the local representative. If GDN ACS reports that
the producer is accused, it depends on the configured content-removal policy (see
Sec. 5.2.1) whether or not the replica is deleted. The replica is always deleted if
the producer is blocked.

In addition to checking new or updated replicas, the BETC also periodically
checks the status of the producers of every file stored in the object server. In other
words, rather than receiving notification from accusing producers or the access-
granting organization about a change in the producer’s status (i.e., a push model)
as described in Sec. 5.2.1, a pull model is used to see whether producers have been
accused or blocked by their access-granting organization.

At present, accusations are made via e-mail for simplicity. A producer making
an accusation sends a report containing the file with the disputed content, the as-
sociated trace signature and certificate to the access-granting organization of the
violator. The report is digitally signed by the accuser. Upon receipt, the AGO
changes the producer’s status in the GDN Acces-Control Service to “accused.”
When the accusation proves correct, the accused producer’s status is changed to
“blocked” and his real name is placed on the central black list. This central black
list is stored on the root ACS server, an LDAP server operated by the GDN Ad-
ministration. The steps of a successful accusation and the resulting removal of
content is illustrated in Figure 5.5.

SEC. 5.5 INITIAL IMPLEMENTATION 139

Signature
Certificate +
File +

Report

replica’’
‘‘Delete

Status->
BLOCKED

Accuser

AGO

1

2

4

ObjectObject
Server

53

BETCACS

Figure 5.5: The steps of a successful accusation. (1) The accusing producer
sends a report to the violator’s AGO. (2) The AGO finds the accusation to
be true and revokes the violator’s access by contacting the Access Control
Service. (3) Periodically, each BETC checks the content hosted by its as-
sociated object server. (4) Part of this check is obtaining the status of the
content’s producer from the ACS. (5) The status of the malicious producer
is “blocked” so a BETC instructs the object server to destroy the replicas
that contain content traceable to the violator.

140 SECURITY CHAP. 5

CHAPTER 6

Fault Tolerance

This chapter describes how the Globe Distribution Network can be made fault
tolerant. Fault tolerance has three aspects: availability, reliability and failure se-
mantics. Availability indicates the probability of a system being available at any
moment in time. The reliability of a system indicates how often it exhibits failure.
Failure semantics define the state of the system after a failure. Sec. 6.1 reiterates
the fault-tolerance requirements for the GDN, lists the assumptions about the type
and frequency of failures the GDN must be able to handle, and presents a model
of the dependencies between the different components of the GDN that helps in
presenting and understanding our measures for making the GDN meet its require-
ments. Sec. 6.2 describes how the GDN is made highly available and reliable.
Finally, in Sec. 6.3 we describe how the GDN is made to exhibit strong failure
semantics when failures can no longer be masked. Unless stated otherwise, object
servers in this chapter are assumed to be well trustworthy (i.e., are not setup to
purposely attempt to disrupt the GDN by sending harmful protocol messages or
return false replies).

6.1. REQUIREMENTS AND SYSTEM MODEL

Chapter 2 identified the fault tolerance requirements for the Globe Distribution
Network. The GDN should be highly available, as it has large numbers of users
that depend on it.The GDN should also be reliable and have strong failure seman-
tics. Reliability implies that the application itself handles most failures and masks
them from its users and administrators. Strong failure semantics ensure that when
failures can no longer be masked, the application is at least brought into a well-
defined state before reporting the error. The GDN is required to be atomic with
respect to exceptions (AWE), that is, its semantics for a failure during an operation

142 FAULT TOLERANCE CHAP. 6

Implementation

Service
Read

Rev.DSORev.DSO
Read/Write

GIDS

GLS

GNS

repository

Object Server Object Server

Revision-DSO Service

Producer Tool

Service

Download Tool

Downloader

GDN ACS

G
lo

be
 m

id
dl

ew
ar

e
se

rv
ic

es

Level 1

Level 2

Level 3

Level 4

X

producer
Software

X

S T

X

Figure 6.1: Simplified dependency model for the GDN, showing only a
single revision DSO and two object servers. Arrows represent dependencies,
boxes represent services, and a rounded dashed box represents a collection
of services. Each GDN component/service is classified using a number
of levels, shown on the right-hand side. The dependencies between the
middleware services and the right-hand column of GDN components have
been left out for simplicity, that is, all GDN components depend on the
Globe middleware services

should be that either the operation is carried out, or it is not and the application
is returned to the state it was in before the start of the operation [Cristian, 1991].
Both reliability and AWE failure semantics are necessary to make the GDN, an
application with many components and many parallel operations, easy to manage.

In order to determine how an application can be made fault tolerant it is im-
portant to know how the components of the application interact. In particular, it is
important to know which components depend on each other to see which compo-
nent may be affected when a certain component fails. Cristian [1991] introduced
the idea of defining a model of a distributed application in terms of services and
dependencies between services to aid failure analysis. The model for the Globe
Distribution Network is shown in Figure 6.1. It has been simplified to show only
a single revision DSO X and two object servers, S and T.

The rationale behind the model is the following. Downloaders and software
publishers depend on their tools to give them access to the GDN. These tools, in
turn, depend on the collection of revision DSOs that hold the GDN’s content to

SEC. 6.2 REQUIREMENTS AND SYSTEM MODEL 143

serve the requests from their users. A revision DSO X is modeled as three services:
a revision-DSO service, a read/write service and a read service. The revision-
DSO service is implemented by the proxy local representatives (see Chap. 3) of the
revision DSO running in the up- and download tools, and depends on the read/write
and read services to carry out its work. The read/write service is implemented
by the revision DSO’s core replica and the read service by the object’s regular
(i.e., noncore) replicas. The read service depends on the read/write service as
the core replica is sometimes used as a source of state for a new regular replica
(in particular, when the core replica is the object’s only replica). The read/write
service depends on the read service as the former service’s task is to update the
state of the object, which includes the copies in the object’s regular replicas. The
reason for modeling a DSO in terms of three services is that, in principle, different
mechanisms could be used to make the read and read/write services meet their
fault-tolerance requirements. The revision-DSO service is added to provide an
extra layer between the client and the read and read/write services that can be
used to mask failures in these latter two services, if they chose not to mask their
failures from their clients.

Read/write and read services depend on a set of Globe object servers. Globe
object servers host the revision DSO’s local representatives implementing the read
and read/write services and provide access to persistent storage. All services
depend on the Globe middleware services: the Globe Name Service, the Globe
Location Service, the Globe Infrastructure Directory Service, an implementation
repository and the GDN Access Control Service. Not shown in Figure 6.1 (for
simplicity) is the lowest level in the dependency hierarchy: the hosts running the
tools and object servers and the network that connects them.

To complete the system model we need to make explicit the assumptions about
what faults can occur in each GDN component. The hosts running the GDN com-
ponents are assumed to exhibit only crash and performance failures, and no re-
sponse or state-transition failures [Cristian, 1991]. This assumption implies that
the hosts may crash or be slow, but always correctly execute the GDN compo-
nents’ code. The network can exhibit omission (i.e., packet loss) and performance
failures (i.e., delay messages), although the former are assumed to be masked by
the transport-level network protocols, in general. Partitions of the network are as-
sumed not to occur. The GDN software is assumed to exhibit only crash failures,
that is, the software either works or stops abruptly and does not exhibit Byzantine
behavior such as response or state-transition failures.

The following sections describe how the GDN is made highly available, reli-
able and exhibits AWE failure semantics given the system model just presented.
This dissertation does not discuss how Globe’s middleware services are made fault
tolerant, see, for example, Ballintijn et al. [1999].

144 FAULT TOLERANCE CHAP. 6

6.2. AVAILABILITY AND RELIABILITY

Making sure a distributed application is highly available and reliable starts, in
principle, at the host and network level. Hosts and network can be made highly
dependable using hardware redundancy (e.g. processors with a hot backup, disk
arrays [Chen et al., 1994], and multiple independent network connections). How-
ever, given the free nature of the Globe Distribution Network, we cannot employ
hardware solutions to increase availability and reliability. Instead, we start one
level higher: making sure Globe object servers are up and running most of the
time.

6.2.1. Level 1: Fast Object-Server Recovery

Globe object servers can be made highly available by enabling them to quickly
recover after a crash with most of their state intact. To this extent, Globe object
servers currently support a simple checkpointing mechanism. Periodically, the
object server creates a checkpoint by halting the processing of incoming requests,
waiting until current requests have been processed, and then saving its state to
disk. The state of an object server consists of the states of the local representatives
it hosts and the administration the object server maintains about these local repre-
sentatives. Once the object server’s state is stable on disk, the previous checkpoint
is deleted in an atomic disk operation. After a crash, the new object server reads
the last complete checkpoint back from disk, recreates the local representatives,
and passes them their marshalled state. Each local representative then reinitializes
itself and synchronizes with its peers in an application- or even object-specific
manner. How a local representative of a revision DSO synchronizes with its peers
is discussed below.

Checkpointing the state in this fashion negatively affects the object server’s
availability as it does not process requests during a checkpoint. The assumption
underlying this mechanism is therefore that checkpoints can be made quickly. In
general, this assumption holds for an object server containing just GDN revision
DSOs, as follows. First, none of the methods on a revision DSO take a lot of time
to execute, so the checkpointing thread does not have to wait long before it can
start checkpointing the server’s state to disk after it has stopped the server from
accepting new requests. Second, although the state of an object server used for
GDN can be large, most of it is already stored on disk, in particular, the large
states of the local representatives. Therefore, most of the object server’s state
need not be saved again, considerably decreasing checkpoint time. As described in
Sec. 4.5.2, a local representative of a revision DSO stores the large parts of its state,
in particular, the archive files containing the software, on disk, and implements the
lrSubobject interface that allows the object server to quick marshall and unmarshall

SEC. 6.2 AVAILABILITY AND RELIABILITY 145

the local representatives’ remaining in-core state. The parts of the object server’s
state that is already stored on disk at the time of a checkpoint is referred to as
the server’s stored state. So, in general, the amount of work to be done during
a checkpoint of an object server hosting local representatives of revision DSOs is
small and is not expected to significantly impact availability. This mechanism
can be called user-directed checkpointing rather than incremental checkpointing
[Plank et al., 1995], as we logically checkpoint everything, but use the fact that
the application already has data stable on disk to reduce the actual amount of data
to checkpoint.

A revision DSO’s local representative (LR) recovers from a crash as follows.
The revision DSO’s replication protocol is changed such that each write-method
invocation or copy of the state sent to a replica by the revision DSO’s core replica
now contains a state-version number that identifies the state. In case of a write-
method invocation the state-version number identifies the version of the state that
results from executing the method. There is a well-defined total order for state-
version numbers as the core replica imposes a total order on all write-method
invocations (see Sec. 4.6). To recover from a crash a local representative of a
revision DSO contacts one of its peers and sends it its current state-version num-
ber. If trusted servers are used the recovering LR can contact any peer; in case of
untrusted servers it must contact the core replica. If the peer has a higher state-
version number, the recovering LR destroys itself (required to implement AWE
failure semantics, see Sec. 6.3.2). What happens when the recovering local repre-
sentative is still in sync with the peer is described below.

This recovery method for local representatives of revision DSOs assumes the
stored states of the LRs (i.e., the archive files containing the software) are not
damaged during a crash. To ensure that file data is not lost during a crash and
that, when a file is damaged this is detected and appropriate action can be taken,
the following measures are taken. First, before the actual checkpoint is made,
the persistence manager of the object server, which handles disk I/O for local
representatives (see Sec. 4.5.1) is asked to make sure all data are written to disk
and not just to operating-system buffers. This measure ensures that the archive
files are safe on disk even if the server crashes just after the checkpoint. Second,
the integrity of the files making up the stored state is checked before they are used.

For the GDN, the local representatives of revision DSOs control and perform
the integrity checks themselves. The checks are done after the LR has determined
it still has the most recent version of the state (by exchanging state-version num-
bers with its peer). If this is the case, the LR checks the integrity of the archive
files it stored on disk using the files’ trace signatures and certificates (i.e., a trace
signature of a file includes a cryptographic digest of the associated file which can
be used to check its integrity, see Sec. 5.2.1 and Sec. 6.3.1). If this integrity check

146 FAULT TOLERANCE CHAP. 6

fails, the LR deregisters itself with the rest of the object and destroys itself.
A checkpointing and recovery mechanism improves not only the availability

of the services it hosts, but also the manageability of the application. In particular,
if there is an automatic recovery mechanism an application administrator does not
have to concern himself with each host failure. This is useful, in particular, for
applications where replication is done manually.

Alternative

An alternative way of checkpointing the local representatives in an object server
is as follows. Instead of saving just the remaining in-core state of an LR, the
checkpointing mechanism creates its own copy of the complete state of a local
representative (i.e., including the archive files). To keep checkpointing time to a
minimum (and thus maximize availability) the checkpointing mechanism check-
points only local representatives whose state was updated since the last checkpoint
(i.e., incremental checkpointing). This status information should be provided to
the checkpointing mechanism by the local representatives.

The advantage of this approach is that the programmer of the local representa-
tive’s semantics subobject has less to do with fault tolerance: he does not need to
implement the lrSubobject quick marshalling interface (if we integrate this check-
pointing mechanism with the current server-passivation facilities, see Sec. 4.5.2).
The disadvantage of this approach is, however, that we need double the storage
space as it effectively requires maintaining a complete backup copy of every lo-
cal representative hosted by the object server. Furthermore, if a lot of large local
representatives were updated since the last checkpoint, the checkpoint may take
considerable time as it involves copying large amounts of data. For an applica-
tion storing large amounts of data, such as the GDN this alternative is too ex-
pensive. This alternative represents a trade-off between ease-of-programming and
disk space.

The present checkpointing scheme can provide the local representatives of
DSOs with a number of choices with respect to who checks the integrity of their
stored state. The integrity checks can be performed by the local representatives
themselves, as in the GDN, or by the object server’s persistence manager. In
particular, a local representative can request the persistence manager to recover
it only when its checkpointed state is intact. The advantage of this approach is
that the programmer does not have to concern himself with integrity checking.
The disadvantage is that the integrity checks are done always, even if the LR
decides to destroy itself, which increases recovery time, as checking the integrity
of the stored state may be time-consuming. Having the local representative itself
control the integrity checking of its stored state does not have this disadvantage,
and enables it to check the integrity of the files using application-specific methods

SEC. 6.2 AVAILABILITY AND RELIABILITY 147

(as in the GDN), although this is not necessary. The LR could still request the
persistence manager to verify the integrity.

6.2.2. Level 2: Availability and Reliability of the Read Service

As discussed in Chap. 4, revision DSOs create replicas to optimize download
speeds, and to balance network and server load. We use these extra replicas,
created for performance reasons, to improve the availability and reliability of the
read service of a revision DSO.

As shown in Figure 6.1, the read service of a revision DSO has two clients: the
revision-DSO service and the read/write service. To make the read service highly
available to the revision-DSO service, hierarchical masking of failures is used, as
follows. Recall that the revision-DSO service is considered to be implemented by
the proxy local representatives of the revision DSO. These proxy local representa-
tives are connected to the nearest replica of the DSO. When this nearest replica
does not respond quickly enough to a (read) method-invocation request, the proxy
reconnects to a different replica, thus masking the failure from the download tool,
and allowing the user to continue.

The other client that depends on the read service is the revision DSO’s read/-
write service. Its task is to update all copies of the state of the revision DSO, in
particular, those in the replicas of the read service. As this operation involves all
replicas that are operating correctly at the time of update, no special measures can
be taken to improve availability or reliability of the read service to the core replica.

6.2.3. Level 2: Availability and Reliability of the Read/Write Service

In the replication protocol used by revision DSOs (described in Sec. 4.6.1) the core
replica plays a central role. It keeps track of the replicas of the revision DSO.
Proxies send all write-method invocations to the core replica which then forwards
them to all other replicas. If there are no regular replicas (because the object is
not popular or due to crashes) the core replica also services reads from clients. In
addition, when we allow replicas on untrusted servers, the core also is the only
trustworthy source for the state of the object. The availability and reliability of
this read/write service is improved by introducing multiple core replicas. It is
the responsibility of the revision DSO’s owner to create these extra core replicas.
The core replicas coordinate all actions previously taken by the single core (e.g.
ordering updates, replication-scenario reevaluation) using a consensus protocol.

148 FAULT TOLERANCE CHAP. 6

6.2.4. Level 3: Availability and Reliability of the Revision-DSO Ser-
vice

The revision-DSO service is implemented by the proxy local representatives of
the revision DSO. Proxy local representatives run inside the user’s producer and
download tools, and are created dynamically when binding to the revision DSO
(see Sec. 3.3). The reliability of the service these local representatives provide to
the tools can therefore not be improved using redundancy, only by sound program-
ming. Availability can be said to be guaranteed by the Globe Location Service and
the implementation repository containing the code of the proxies, as they ensure
that if a user wants to use the revision-DSO service he can dynamically load an
instance.

6.2.5. Level 4: End-to-End Integrity Protection

Chap. 5 describes how the GDN relies on digital signatures to guarantee the in-
tegrity of a file distributed through the GDN. This integrity check also detects any
data corruption that has occured due to failures inside the GDN that may have gone
unnoticed. In this sense, the trace signatures on files in the GDN (see Sec. 5.2.1)
provide end-to-end integrity protection, a desirable property [Saltzer et al., 1984].

6.3. AWE FAILURE SEMANTICS

This section describes how the GDN is made to exhibit strong failure seman-
tics when failures cannot be masked. Operations on the GDN should be atomic
with respect to exceptions (AWE). More specifically, our goal is to make not only
individual method invocations on revision DSOs exhibit AWE semantics, but also
uploads and downloads, which are higher-level operations consisting of multiple
method invocations. Recall that files are uploaded and downloaded in blocks (see
Sec. 4.3). We discuss how method invocations, downloads and uploads can be
given AWE failure semantics in the following sections.

6.3.1. Well-behaved Downloads

Making downloads exhibit AWE failure semantics is easy. In most cases a down-
load will be successful given that the download tool can fail-over to other replicas.
This statement holds for read-method invocations in general. There are two cases
where a download may need to be rolled back: when all replicas have become
unavailable and when the download tool itself crashes. In both cases rollback is
simple because revision objects do not keep track of the state of a download (i.e.,

SEC. 6.3 AWE FAILURE SEMANTICS 149

which parts of the files have been downloaded by the client). Rolling back the
operation therefore involves only deleting the incomplete file from the download-
ing user’s disk. This can be done by the download tool, immediately (all replicas
crashed) or when it is restarted (tool crash).

For downloads the GDN actually provides semantics stronger than AWE. As
a convenience to the GDN user, special measures are taken to allow a user to con-
tinue a download after a crash of his download tool or temporary unavailability
of the revision DSO. In other words, the download tool allows the user to choose
between aborting (AWE semantics) or restarting the download. Restartable down-
loads are supported as follows. The download tool starts a download by retrieving
the desired file’s trace signature (see Sec. 5.2.1) from the revision DSO and storing
it on disk. Our trace signatures are special signatures that can be used to check not
only the integrity of the whole file, but also of its individual blocks. In particular, a
trace signature is a record consisting of the cryptographic digests [Schneier, 1996]
of the individual blocks and a cryptographic digest of the whole file encrypted with
the producer’s trace private key (required for traceability).

If the tool crashes during this first step, its reincarnation simply downloads the
trace signature again. Next, the tool starts downloading the file from the object
in blocks. When the tool or the machine it is running on crashes at this point,
the reincarnation reads the trace signature from the local disk. The trace signature
contains a checksum, allowing the tool to detect if the signature has been damaged.
Using the trace signature, the tool checks if any of the already downloaded blocks
of the file were damaged during the crash. In particular, it recalculates the digest
of each block and compares it to the block’s digest in the trace signature. If any
blocks are damaged, the tool downloads these blocks again.

After the integrity checks on the downloaded data, the tool resumes the down-
load at the point where its previous incarnation crashed. The final step in the
download procedure is verification of the complete file and downloading the end-
to-end signature, both of which can be repeated after a nonhalting crash of the
tool.

6.3.2. Well-behaved Uploads

Making write-method invocations and file uploads atomic with respect to excep-
tions is complex. Implementing these semantics basically means developing a
transaction mechanism that allows single writes and sequences of writes to be
executed atomically, as Globe currently lacks such a mechanism. Developing a
transaction mechanism for Globe is an extensive research topic and therefore out-
side the scope of this dissertation. I therefore resort to an ad hoc solution with
weaker semantics that strives to make writes and uploads succeed whenever pos-
sible. This solution sacrifices replicas in order to prevent having to report failure,

150 FAULT TOLERANCE CHAP. 6

C

P

C

2

1

1

4

4

R

R

R

R

3

3

3

3

Figure 6.2: A successful invocation of a write method. Circled Ps denote
proxies, circled Cs denote core replicas and circled Rs regular replicas.

assuming that replicas will be recreated by the object if client demand requires
it. This solution is considered sufficient for the time being, given the number of
uploads into a revision DSO is expected to be low.

As an upload consists of a number of write-method invocations we first ex-
plain how individual writes are handled. A successful write-method invocation
proceeds as shown in Figure 6.2. When a client invokes a write method on a
proxy local representative, the proxy forwards the marshalled invocation to all
core replicas (the arrows labeled 1 in Figure 6.2). The core replicas then execute a
consensus protocol to uniquely order the write relative to other writes (i.e., impose
a total order on writes) (arrows labeled 2 in the figure). Next, each core replica for-
wards the request to the regular replicas it knows about (i.e., each regular replica
is known at only one core replica at a time) (arrows labeled 3 in the figure). All
core and regular replicas carry out the method, after which all core replicas return
the results of the method invocation to the proxy (arrow 4 in Figure 6.2).

We distinguish three types of failures that can happen during a write: crash
failure of a replica (halting or nonhalting), noncrash-failure of a replica (e.g. out
of disk space), and crash failure of the upload tool. To handle the first type of
failure we take the following measures. When a replica, either core or regular,
crashes during the upload it is pronounced dead and no longer considered part
of the object even if the object server recovers. When a core replica crashes, the
regular replicas connected to it contact the Globe Location Service to discover
another core replica, retrieving a new version of the state if necessary. When all
core replicas fail, this is detected by the remaining regular replicas which destroy
themselves thereby destroying the object.

Replica failures other than crashes are handled as follows. A regular replica
that fails to execute the method because of a local failure destroys itself. Core
replicas report the result (failure or success) of the method execution to their peers.

SEC. 6.3 AWE FAILURE SEMANTICS 151

When at least one core replica reports success, the core replicas that failed to
execute the method destroy themselves. Core-replica failures are reported to the
upload tool along with the results of the method invocation. It is the object owner’s
responsibility to recreate failed core replicas. We take no special measures to
handle crash failure of the upload tool.

With this strategy for executing write methods, an upload consisting of mul-
tiple writes is successful if at least one of the core replicas succeeds in carrying
out all method invocations. The only case where our measures are not sufficient
is when all core replicas fail to execute one of the methods. In this case, the core
replicas instruct the remaining regular replicas to destroy themselves. The core
replicas will not destroy themselves, instead they report a failure of the method
invocation to the upload tool. It now is the responsibility of the upload tool to
rollback the upload by deleting the partially uploaded file from the revision DSO.
Should the delete method fail the only option is to recreate the object.

To reduce the chance that an upload fails due to a lack of disk space at a par-
ticular replica (i.e., a noncrash failure), we reserve the required disk space at the
start of the upload. As explained in Chap. 4, to prevent clients from seeing a par-
tially uploaded file, uploads of a file start and end with special method invocations
(i.e., startFileAddition and endFileAddition). By having the startFileAddition method
reserve the required disk space we reduce the chance of an upload failing half-way
through. This explains the FileSize parameter of the startFileAddition method (see
Figure 4.11).

This approach to achieving AWE failure semantics for uploads also works if
servers are untrusted. As untrusted servers are assumed to run only regular replicas
and not core replicas, there is no opportunity for them to sabotage the upload as
they are not involved in making the decision to abort.

Alternative

An alternative protocol for write-method invocations (see Figure 6.2) is to have
the proxy send the method invocation to just one core replica and have that core
replica distribute the invocation to the other core replicas. This approach requires
extra measures to make sure the proxy receives a reply when the core replica
to which it sent the request fails. These extra measures may make this protocol
harder to implement when TCP (i.e., a connection-oriented protocol) is used as
transport protocol. In particular, the reply would have to be cached at the other
core replicas to be retrieved by the proxy when it reconnects to another core replica
after the crash, or the other core replicas would setup a connection back to the
proxy to deliver the reply, complicating the proxy’s implementation. The latter
would also reverse the normal direction of connection setup which may present
problems when firewalls are used.

152 FAULT TOLERANCE CHAP. 6

6.3.3. Side Effects of Failures

Failures of object servers can cause the Globe Location Service (GLS) and Globe
Infrastructure Directory Service (GIDS) to be out of sync with the actual situation.
In particular, they could list replicas or object servers that are no longer available.

To handle inconsistencies in the GLS, proxy local representatives are made to
fail over to another replica if the one identified by the contact address returned by
the GLS does not respond quickly. To handle inconsistencies in the GIDS (which
keeps track of the available object servers) the revision DSO’s replication subobject
is adjusted such that it will ask for another candidate object server if it does not
get a reply to its “create replica” request.

In addition, measures are taken to avoid inconsistencies from occurring. When
considering the GLS, inconsistencies due to halting crashes of object servers (i.e.,
they do not recover) are avoided by having object servers periodically register con-
tact addresses again. Object servers that suffered just nonhalting crashes dereg-
ister the contact addresses of replicas that could not be recovered after a crash.
Periodic reregistration is also used to prevent inconsistencies between GIDS and
which object servers are actually up and running.

Object-server failures can have other side effects. In specific circumstances
replica failure can cause overload on the GLS and remaining replicas of the object,
but they are too specific to discuss in this dissertation, see [Ketema, 2000].

CHAPTER 7

Performance

This chapter describes a number of small performance tests that were conducted
with the initial implementation of the Globe Distribution Network. Sec. 7.1 com-
pares the performance of a single Globe object server hosting revision DSOs to
that of an Apache HTTP server [The Apache Software Foundation, 2002]. The
second set of tests, described in Sec. 7.2, looks at the performance of the initial
implementation in a wide-area environment.

7.1. SERVER PERFORMANCE

The goal of the first set of experiments is to compare the performance of a
Globe object server to that of the Apache HTTP server. In particular, we are in-
terested in the average throughput per client when large numbers of clients are
accessing a server, and the number of downloads per second each server can sup-
port.

The experimental setup is shown in Figure 7.1. All clients are run on a sin-
gle host (Host 1) and access server processes running on Host 2. The hosts have
identical hardware and software. For the tests with Apache, we used the version
that comes with RedHat 7.1 (Apache 1.3.19), and the wget HTTP client (version
1.6). The Apache server is configured following advice from RedHat [Likins,
2002]. Its configuration is shown in Table 7.1. For the tests with GDN, we used
version 1.0 of the GDN implementation (available from http://www.cs.vu.nl/globe)
which is written in Java. To execute the Java code we used the IBM Devel-
oper Kit for Linux, Java 2 Technology Edition, version 1.3-2001-09-25, which
includes a high-performance just-in-time (JIT) compiler and is available from
http://www-106.ibm.com/developerworks/java/jdk/linux130/.

In the first two experiments we compare the throughput achieved to that of the

http://www.cs.vu.nl/globe
http://www-106.ibm.com/developerworks/java/jdk/linux130/

154 PERFORMANCE CHAP. 7

Dual PIII 933 MHz, 2 GB memory, 100 Mb/s Ethernet (Intel Ether Pro 100 onboard),

Adaptec 29160 Ultra-160 SCSI controller, 2x Seagate 73 GB 10.000 rpm disks,

RedHat 7.1, Custom configured 2.4.9 kernel,

Configuration of both Host 1 and Host 2:

with SCSI driver from Adaptec.

Host 1 Host 2

Fast Ethernet Switch
(full duplex)

Client
Server

Figure 7.1: Setup for the server-performance experiments.

Table 7.1: Apache configuration.

Apache parameter Value

MinSpareServers 20
MaxSpareServers 80
StartServers 32
MaxClients 256
MaxRequestsPerChild 10000

maximum theoretical throughput of TCP over 100 Mb/s Ethernet, which is 11.3
MB/s1.

7.1.1. Experiment 1

The first experiment is aimed at measuring the average throughput per client for a
large number of clients simultaneously downloading the same file. In this experi-
ment with the Globe object server, the 30 Megabyte file to download is stored in

1We arrive at this number as follows. The maximum size of an Ethernet frame is
1526 bytes, and the interframe gap is 12 bytes, giving a total of 12304 bits per frame
[The Institute of Electrical and Electronics Engineers, Inc., 2000]. The bit time for FastEthernet is
1 bit/100 Mb/s = 10 nanoseconds, implying that 1 / (12304 · 10 · 10−9) = 8127 frames can be sent
over a FastEthernet link in a second. Of a 1526-byte frame, 1460 bytes can be used for data when
TCP/IP is used, resulting in a maximum theoretical bandwidth of 1460 bytes/frame ·8127 frames =
11.3 MB/s.

SEC. 7.1 SERVER PERFORMANCE 155

just one revision DSO. This revision DSO consists of a single replica local rep-
resentative running in the object server. For the Apache server we start n HTTP
clients in parallel. These clients immediately begin downloading the file from the
server.

For the GDN we also start n GDN clients in parallel, but these clients do
not start downloading immediately, for the following reason. When starting a
large number of GDN clients, which are Java programs, the time between when
the client that was started first commences downloading, and the time the client
that was started last commences its download is considerable. This large gap is
due to the fact that Java programs take more resources, and can thus affect the
test results. Hence, the GDN clients wait until all other clients are running and
ready before starting to download. As a result, the tests with GDN clients do
not take into account connection-setup time, whereas the tests with HTTP clients
do. Modifying the HTTP clients such that connection time is also not taken into
account was dismissed, as it would change the client behavior as observed by the
Apache server. Instead of connecting and immediately receiving the request there
would be a (small) delay between connection and reception. In this experiment,
the GDN client does not check the trace signature of the file after download, as
we are measuring server performance. Both the HTTP client and the GDN client
discard the downloaded data by writing it to /dev/null, so there is no real disk I/O
at the client side. GDN clients download the file in blocks of 1000 KB.

The results of this experiment are shown in Figure 7.2. We repeated the exper-
iment 3 times for both types of servers. The numbers used are the average of the
3 runs. As the figure shows the performance difference between Apache and the
Globe object server is less than 10 percentage points for large numbers of clients.
The performance bottleneck is the 100 Mb/s Ethernet network.

7.1.2. Experiment 2

In Experiment 1, all clients downloaded the file from a single revision DSO with
a single replica. In Experiment 2, each client downloads the file from a different
(single replica) revision DSO. The reason for conducting this particular experiment
is as follows. Globe serializes all method invocations on a replica (see Sec. 3.2).
As a result, the single revision DSO of Experiment 1 may be a bottleneck for server
performance as clients have to wait for method invocations by others to complete.
The hypothesis is therefore that the average throughput per client for a Globe
object server is better if the clients are not reading from a single revision DSO.

The results of the experiment, shown in Figure 7.3, shows that the hypothesis
is false. For 10–100 concurrent clients the average throughput per client when
downloading from different objects is practically the same as when using a single
revision DSO. The maximum difference between the throughputs is 3%. In other

156 PERFORMANCE CHAP. 7

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
Number of concurrent clients

’Apache’
’GDN’A

ve
ra

ge
 th

ro
ug

hp
ut

 p
er

 c
lie

nt
 (

pe
rc

en
ta

ge
)

Figure 7.2: Average throughput per client for Apache and the GDN as a
percentage of TCP’s maximum theoretical throughput over 100 Mb/s Eth-
ernet. This theoretical throughput of TCP is 11.3 Megabyte per second
divided by the number of concurrent clients.

words, local serialization of method invocations does not appear to hamper server
performance.

7.1.3. Experiment 3

In the previous two experiments the clients always downloaded large files from
the servers. To see how the servers compare with a heterogeneous workload, the
following experiment was conducted. Both servers were loaded with the 50 most
popular files on the SourceForge free-software site in October 2001. In the GDN
case each file was placed in a separate object. The size of these files ranged from
21 KB to 15 MB (average 1.5 MB). At the client side 50 clients were started. Each
client continuously downloaded the same file from the server. After 30 minutes
we killed all clients and count the total number of successful downloads.

Both the GDN and the HTTP client setup a new TCP connection for each
download. The GDN client did not use the Globe Name Service or Globe Location
Service during binding, instead it read the contact addresses of the replicas on the
object server from a file. Both the HTTP client and the GDN client discarded
the downloaded data by writing it to /dev/null, so there was no real disk I/O at the
client side. GDN clients downloaded the file in blocks of 1000 KB.

The results of Experiment 3 are shown in Table 7.2. The experiment was

SEC. 7.1 SERVER PERFORMANCE 157

0

100

200

300

400

500

600

700

800

900

1000

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 th
ro

ug
hp

ut
 p

er
 c

lie
nt

 (
K

B
/s

)

Number of concurrent clients

’SingleDSO’
’MultipleDSOs’

Figure 7.3: Average throughput per client for a single DSO and for multiple
DSOs in Kilobytes/second.

Table 7.2: Results of Experiment 3.

Server Downloads per 30 minutes Downloads per second

GDN 29306 16.28
Apache 30522 16.96

repeated three times, and the numbers shown are the average of the three runs.
In this test GDN is only slightly slower than Apache. The bottleneck is also not
processing at the servers, but the 100 Mb/s Ethernet network. It would therefore
be interesting to repeat the set of experiments on Gigabit Ethernet hardware.

7.1.4. Experiment 4

Experiments 1–3 were conducted with a single machine hosting all client pro-
grams. To make sure this single machine did not create an artificial bottleneck,
Experiment 1 was repeated using multiple client machines. The setup of this ex-
periment is shown in Figure 7.4, and uses 1–50 dual-processor client machines.
For the measurements with 1–50 concurrent clients each node ran a single GDN
or HTTP client. For the measurements with 60–100 concurrent clients, each node
ran 2 client programs, one on each CPU. The GDN clients do not wait with the
download until all clients are running, as the times between the start of the first

158 PERFORMANCE CHAP. 7

2 GB memory, 100 Mb/s Ethernet (Intel Ether Pro 100 onboard),

Adaptec 29160 Ultra-160 SCSI controller, 2x Seagate 73 GB 10.000 rpm disks,

RedHat 7.1, Custom configured 2.4.9 kernel,

Dual PIII 933 MHz,

Configuration of Server

with SCSI driver from Adaptec.

Node 1

. . .

Node n

Configuration of Nodes

Server

Dual PIII 1 GHz, 1 GB memory,

RedHat 7.2, Custom configured 2.4.19-pre10 kernel.

100 Mb/s Ethernet (IBM Mobile onboard)

Fast Ethernet Switch
(full duplex)

Client

Client

Server

Figure 7.4: Setup for the server-performance experiment using multiple
client machines.

and the last client do not differ significantly, unlike in Experiment 1. As a result,
in this experiment the time to setup a connection to the replica of the DSO on the
server machine (i.e., binding time) is taken into account. The GDN client does not,
however, use the Globe Name Service or Globe Location Service during binding,
which results in small bind times. Another difference with Experiment 1 is that
the Ethernet switch used was different (Lucent vs. Extreme Networks).

The results of the experiment compared to those of Experiment 1 are depicted
in Figure 7.5. The curves with the ‘-1’ prefix indicate the results of Experiment 1
with the single client machine. The curves with the ‘-n’ prefix indicate the results
of the experiment with many client machines. The curves are the average of three
runs. Surprisingly, for larger numbers of clients the Apache server has better per-
formance when the clients are on a single machine. The performance of GDN is
better when multiple client machines are used. As a result, Apache and GDN are
closer together in terms of performance when multiple client hosts are used. Fur-
thermore, it makes it unclear whether or not the single client machine constitutes
a bottleneck, which was the purpose of this experiment, although performance is
close to TCP’s theoretical maximum in both cases.

SEC. 7.2 WIDE-AREA PERFORMANCE 159

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 th
ro

ug
hp

ut
 p

er
 c

lie
nt

 (
pe

rc
en

ta
ge

)

Number of concurrent clients

’Apache-1’
’GDN-1’

’Apache-n’
’GDN-n’

Figure 7.5: Average throughput per client for Apache and the GDN as a
percentage of TCP’s maximum theoretical throughput over 100 Mb/s Eth-
ernet, measured using 1 or n = 1–50 dual-processor client machines.

7.2. WIDE-AREA PERFORMANCE

The final experiment is aimed at gaining insight into the performance of the
current GDN implementation when used in an actual wide-area environment. In
particular, this experiment measures in which parts of the implementation the
GDN spends its time when downloading files over the Internet (i.e., the experi-
ment provides an execution profile for the GDN on the Internet). In the future, I
hope to do more extensive wide-area experiments (e.g. multiple clients, different
network loads) for which time and resources lacked at present.

In this experiment we simulate a single user downloading a single file from a
revision DSO. The user’s machine is located in San Diego (California, USA). The
revision DSO has its master replica on a machine in Amsterdam (The Netherlands),
and a slave replica on a machine in Ithaca (New York, USA). The geographic
locations of the sites involved in the experiment are shown in Figure 7.6. Table 7.3
lists the hardware and software configuration of the machines.

The experiment consists of the following two tests.

1. The client in San Diego downloads a 1 Megabyte file from the master replica
in Amsterdam, which involves transfer over a transatlantic link.

2. The client in San Diego downloads the 1 Megabyte file from the slave
replica in Ithaca, which is on the same continent.

160 PERFORMANCE CHAP. 7

San Diego

Ithaca
Amsterdam

Figure 7.6: Geographic location of the test sites.

Table 7.3: Hardware and software configuration of the test machines.

Site Processor Memory Network OS JDK

San Diego Celeron 367.5
MHz

256 MB 10 Mb/s FreeBSD 4.2 Sun JDK
1.2.2

Cornell UltraSPARC-IIi
440 MHz

256 MB 10 Mb/s Solaris 2.8.0 Sun JDK
1.4.0

Amsterdam UltraSPARC-
IIe 502 MHz

640 MB 100 Mb/s Solaris 2.8.0 Sun JDK
1.3.1

SEC. 7.2 WIDE-AREA PERFORMANCE 161

Table 7.4: Comparison of end-to-end performance for GDN downloads
from Amsterdam and Ithaca.

GDN Test Average download time Average throughput
(min–max) in µs (min–max) in KB/s

1 MB download from 14,707,742 69.6
Amsterdam (14,259,718–15,128,651) (67.7–71.8)
1 MB download from 7,952,904 128.8
Ithaca (7,598,283–8,421,981) (121.6–134.8)

The one Megabyte file size was chosen as to not interfere with operations at the
San Diego test site (the San Diego machine is located at an Internet measurement
center). The results of the experiment are presented as follows. We first look at
the end-to-end performance in terms of download time as perceived by the user.
Next, we analyze the differences between the download times by looking at the
steps involved in a GDN download and the time each step consumed during the
downloads. Finally, we compare the download times of GDN to those of an HTTP
client and server running on the same test machines.

7.2.1. End-to-End Performance

Table 7.4 shows the download times and throughput for the two tests (commas are
just used as separators). The download times are the average of 99 downloads. The
tests were conducted on a weekday in March 2002 at 13:00 GMT. At those times
there was little activity on the machines used. The blocksize used is 1 Megabyte
in this experiment. As the table shows, a download from Ithaca is faster than
downloading from Amsterdam.

7.2.2. Performance Analysis

A download via GDN consists of the following steps (for a description of the
methods of a revision DSO, see Sec. 4.3), illustrated in Figure 7.7.

1. The client binds to the revision DSO. Binding consists of four steps:

(a) Mapping the symbolic object name to the object’s object handle using
the Globe Name Service

(b) Mapping the object handle to the contact address of the replica using
the Globe Location Service

162 PERFORMANCE CHAP. 7

proxy create

proxy registration

processing

marshall reply

processing

marshall reply

proxy init

Proxy

Replica

getFileContent

marshall reply

GNS

GLS

lookup

lookup

T
im

e

Client

1a.

1b.

1c.

1d.

getIncarnationID2.

2a.marshall request
2b.

2c.

2d.

2e.

unmarshall reply

2f.

2g.

3.

1. bind

marshall request3a.
3b.

3c.

3d.

3e.
3f.

3g. unmarshall reply

actual invocation

actual invocation

1. bind

unmarshall req.

unmarshall req.

Figure 7.7: Steps involved in a GDN download. Boxes represent processes
or services. Arrows represent inter-process or network communication. The
last method invocation of the download is not shown here for simplicity.

SEC. 7.2 WIDE-AREA PERFORMANCE 163

(c) Creating a proxy local representative from the contact address. This
proxy local representative is referred to as “the proxy” in the remain-
der of this description

(d) Initializing the proxy from the contact address. This step includes
setting up a TCP connection with the remote replica

2. The client invokes the package::getIncarnationID method on the proxy of the
revision DSO just created, to find out the current incarnation ID of the file to
be downloaded. A method invocation consists of the following steps:

(a) The proxy in the client marshalls the method invocation

(b) The proxy sends the marshalled invocation over the TCP connection
to the replica

(c) The replica receives the marshalled invocation and unmarshalls it

(d) The replica makes the requested method invocation on its semantics
subobject

(e) The replica marshalls the result of the method invocation

(f) The replica sends the marshalled result back to the proxy

(g) The proxy receives and unmarshalls the result and returns it to the
client

3. The client repeatedly invokes the package::getFileContent method to down-
load the file in blocks of 1 Megabyte (MB). As the file is 1 MB in size in the
tests, the transfer of the file’s contents takes two getFileContent invocations:
one to transfer the complete contents, and one to find out that the whole file
was downloaded in the first invocation

We measured the following times. The measurement points referred to in the
text are shown in Figure 7.8.

Bind total The time spent binding, defined as T7 minus T0. This time is further
subdivided into

GNS-lookup the time spent in the Globe Name Service, defined as T2 mi-
nus T1.

GLS-lookup the time spent in the Globe Location Service, defined as T4
minus T3.

Proxy-create the time spent creating the proxy local representative, de-
fined as T6 minus T5.

Proxy-init the time spent initializing the proxy, defined as T7 minus T6.

164 PERFORMANCE CHAP. 7

T
im

e

2c.

2g.

Replica

unmarshall req.

1. bind

actual invocation

1. bind

2f.

unmarshall reply

2e.

2d.

2b.
marshall request

2g.

2a.

processing

2. getIncarnationID

marshall reply

2a.

proxy create

proxy registration

processing

Proxy

proxy init

GNS

GLS

lookup

lookup

Client

1a.

1b.

1c.

1d.

T0

T3

T6

T7

T13

T11

T1

T8

T4

T9
T10

T15
T16

T12

T14

T2

T5

T17

Figure 7.8: Measurement points for the GDN download. A measurement
point is represented by a labeled ellipse. This figure shows only the binding
steps and the first method invocation of the download for simplicity.

SEC. 7.2 WIDE-AREA PERFORMANCE 165

MethodX total The time between the invocation of method MethodX by the client
and the client receiving the result of the invocation. MethodX is one of:

• getIncarnationID,

• getFileContent(first block), or

• getFileContent(last block).

For getIncarnationID, getIncarnationID total is equal to T17 minus T8.

This MethodX total time is subdivided into the following three times:

Proxy MethodX The time spent in the proxy while preparing to send the MethodX
method invocation request, and while processing the received result of the
method invocation. This time therefore includes both marshalling of the
request and the unmarshalling of the reply. For getIncarnationID, proxy get-
IncarnationID is equal to T10-T9 + T16-T15.

Replica total MethodX The total time spent in the replica local representative.
For getIncarnationID, replica total getIncarnationID is equal to T14 minus
T11. This time is subdivided into:

Actual invocation the time spent executing the actual method in the se-
mantics subobject. For getIncarnationID the actual invocation time is
T13 minus T12.

Pre/post invocation the time spent passing the request from the communi-
cation subobject to the control subobject, unmarshalling the request,
marshalling the result after the invocation and passing it to the commu-
nication subobject for transmission. For getIncarnationID the pre/post
invocation time is T12-T11 + T14-T13.

TransmissionMethodX The time required to transmit the marshalled MethodX
method invocation from the proxy to the replica, plus the time required to
transmit the marshalled result of the method invocation from the replica to
the proxy. In other words, the transmission times for request and reply are
combined. The reason for not measuring request and reply times separately
is simplicity. The combined time can be measured simply by subtracting
the time spent in the replica from the time that passes between the proxy
sending the invocation request and the proxy receiving the result of the in-
vocation. For example, for getIncarnationID we calculate transmission time
by subtracting T14-T11 from T15-T10.

The breakdown of the first test (i.e., client in San Diego downloads from mas-
ter replica in Amsterdam) and the second test (i.e., client in San Diego downloads

166 PERFORMANCE CHAP. 7

0
2,

00
0,

00
0

4,
00

0,
00

0
6,

00
0,

00
0

8,
00

0,
00

0
10

,0
00

,0
00

12
,0

00
,0

00
14

,0
00

,0
00

bi
nd

 to
ta

l

G
N

S
 lo

ok
up

G
LS

 lo
ok

up

P
ro

xy
 c

re
at

e

P
ro

xy
 in

it

ge
tIn

ca
rn

at
io

nI
D

 to
ta

l

pr
ox

y
ge

tIn
ca

rn
at

io
nI

D

re
pl

ic
a

to
ta

l g
et

In
ca

rn
at

io
nI

D

re
pl

ic
a

pr
e/

po
st

 g
et

In
ca

rn
at

io
nI

D

re
pl

ic
a

ac
tu

al
 g

et
In

ca
rn

at
io

nI
D

tr
an

sm
is

si
on

 g
et

In
ca

rn
at

io
nI

D

ge
tF

ile
C

on
te

nt
1

to
ta

l

pr
ox

y
ge

tF
ile

C
on

te
nt

1

re
pl

ic
a

to
ta

l g
et

F
ile

C
on

te
nt

1

re
pl

ic
a

pr
e/

po
st

 g
et

F
ile

C
on

te
nt

1

re
pl

ic
a

ac
tu

al
 g

et
F

ile
C

on
te

nt
1

tr
an

sm
is

si
on

 g
et

F
ile

C
on

te
nt

1

ge
tF

ile
C

on
te

nt
2

to
ta

l

pr
ox

y
ge

tF
ile

C
on

te
nt

2

re
pl

ic
a

to
ta

l g
et

F
ile

C
on

te
nt

2

re
pl

ic
a

pr
e/

po
st

 g
et

F
ile

C
on

te
nt

2

re
pl

ic
a

ac
tu

al
 g

et
F

ile
C

on
te

nt
2

tr
an

sm
is

si
on

 g
et

F
ile

C
on

te
nt

2

T
im

e
sp

en
t (

m
ic

ro
se

co
nd

s)

A
m

st
er

da
m

Ith
ac

a

Figure 7.9: Comparison of the Amsterdam and the Ithaca download.

SEC. 7.2 WIDE-AREA PERFORMANCE 167

1
10

10
0

1,
00

0
10

,0
00

10
0,

00
0

1,
00

0,
00

0
10

,0
00

,0
00

10
0,

00
0,

00
0

bi
nd

 to
ta

l

G
N

S
 lo

ok
up

G
LS

 lo
ok

up

P
ro

xy
 c

re
at

e

P
ro

xy
 in

it

ge
tIn

ca
rn

at
io

nI
D

 to
ta

l

pr
ox

y
ge

tIn
ca

rn
at

io
nI

D

re
pl

ic
a

to
ta

l g
et

In
ca

rn
at

io
nI

D

re
pl

ic
a

pr
e/

po
st

 g
et

In
ca

rn
at

io
nI

D

re
pl

ic
a

ac
tu

al
 g

et
In

ca
rn

at
io

nI
D

tr
an

sm
is

si
on

 g
et

In
ca

rn
at

io
nI

D

ge
tF

ile
C

on
te

nt
1

to
ta

l

pr
ox

y
ge

tF
ile

C
on

te
nt

1

re
pl

ic
a

to
ta

l g
et

F
ile

C
on

te
nt

1

re
pl

ic
a

pr
e/

po
st

 g
et

F
ile

C
on

te
nt

1

re
pl

ic
a

ac
tu

al
 g

et
F

ile
C

on
te

nt
1

tr
an

sm
is

si
on

 g
et

F
ile

C
on

te
nt

1

ge
tF

ile
C

on
te

nt
2

to
ta

l

pr
ox

y
ge

tF
ile

C
on

te
nt

2

re
pl

ic
a

to
ta

l g
et

F
ile

C
on

te
nt

2

re
pl

ic
a

pr
e/

po
st

 g
et

F
ile

C
on

te
nt

2

re
pl

ic
a

ac
tu

al
 g

et
F

ile
C

on
te

nt
2

tr
an

sm
is

si
on

 g
et

F
ile

C
on

te
nt

2

T
im

e
sp

en
t (

m
ic

ro
se

co
nd

s)

A
m

st
er

da
m

Ith
ac

a

Figure 7.10: Comparison of the Amsterdam and the Ithaca download on a
logarithmic scale.

168 PERFORMANCE CHAP. 7

from slave replica in Ithaca) are shown in Figure 7.9. To better compare the fast
steps in a GDN download Figure 7.10 shows the same data as Figure 7.9 but with
the times plotted on a logarithmic scale.

As can be seen in Figure 7.10, binding time is considerable for the download
from Amsterdam. The lookup in the Globe Name Service is high, in this experi-
ment, as it involves contacting a machine in Amsterdam. The lookup in the Globe
Location Service also requires communication over the transatlantic link. Finally,
inter-continental communication is also required to initialize the proxy, as initial-
ization of the proxy involves setting up a TCP connection with the replica and
exchanging a number of messages, which adds up significantly when using a high
latency link.

The binding time when downloading from Ithaca is lower, as expected. This
is mainly due to proxy-initialization time being lower, as the replica to connect
to is on the same continent. Furthermore, because of the property of the Globe
Location Service that lookup times are proportional to the distance between client
and nearest replica, the GLS lookup time is also significantly lower; in fact, it is
reduced by 55%.

The method-invocation times for both Amsterdam and Ithaca are dominated
by transmission times. These transmission times, in turn, are dominated by the
amount of data to be transferred. For the getIncarnationID method of the revision
DSO there are few data to be sent, as the method does not have large input or
output arguments. As a result, the transmission time for the method is almost
equal to the round-trip times measured using ICMP ping (see Table 7.5). The
transmission time for the first invocation of getFileContent is much higher, as it
involves transferring the 1 MB file from the replica to the proxy. The transmission
time of the second getFileContent invocation is small, as it does not transfer any
file contents, but merely signals that the whole file has been transferred.

If we ignore transmission times, Amsterdam and Ithaca differ in the times
used for marshalling and passing the 1 MB block between subobjects inside the
replica, as well as the time required to execute the actual method invocation. An
inspection of the measurements reveals that the average pre/post invocation time
of Ithaca is affected by a few outliers (11 measurements larger than 50,000 µs),
caused by other processes being started on the Ithaca machine during the course
of the experiment. It is therefore better to look at the medians which are 18,372 µs
for Amsterdam and 9,194 µs for Ithaca. The difference between these pre/post in-
vocation times is due to the different versions of the Java Development Kit (JDK)
being used (1.3.1 vs. 1.4.0), as established by repeating part of the experiment
with JDK 1.3.1 on the Ithaca machine. Local scheduling also affected the average
actual invocation time in Amsterdam and, to a lesser extent, in Ithaca. The median
values are 78,536 µs for Amsterdam and 99,234 µs for Ithaca. The difference is

SEC. 7.2 WIDE-AREA PERFORMANCE 169

Table 7.5: ICMP Ping times between the test sites. These numbers are the
average of 1000+ pings.

From ping to Cornell (µs) ping to Amsterdam (µs)

San Diego 87,779 189,009

most likely due to the different versions of the JDK and Amsterdam’s faster pro-
cessor (502 vs. 440 MHz). The disks used in both machines are comparable (both
7200 RPM ATA/66 disks), although Amsterdam’s disk has a faster seek time (1
ms faster).

The time spent in the proxy of the revision DSO is rather high for the first
getFileContent method invocation, compared to the pre/post invocation time in the
replica. The high value is due to more frequent copying of the 1 MB block inside
the proxy during marshalling, which takes considerable time on Sun JDKs.

For completeness, Table 7.6 shows the actual measurement data. Table 7.5
lists the round-trip times between the test sites, measured using ICMP Ping mes-
sages, for reference.

Table 7.6: Results for GDN with blocksize 1 MB.

Download from Download
Interval name Amsterdam (µs) from

Ithaca (µs)

Bind total 1,245,384 759,059
GNS-lookup 250,247 254,070
GLS-lookup 330,223 149,763
Proxy-create 27,867 27,819
Proxy-init 620,330 310,633
getIncarnationID total 191,718 94,442
Proxy getIncarnationID 1,696 1,702
Replica total getIncarnationID 977 1,034
Replica pre/post getIncarnationID 868 919
Replica actual getIncarnationID 108 116
Transmission getIncarnationID 189,045 91,705
getFileContent(first block) total 13,020,547 6,945,754
Proxy getFileContent(first block) 58,251 57,365
Replica total getFileContent(first block) 143,963 147,341
Replica pre/post getFileContent(first block) 18,585 38,349
Replica actual getFileContent(first block) 125,378 108,992
Transmission getFileContent(first block) 12,818,332 6,741,047

170 PERFORMANCE CHAP. 7

Table 7.7: Summary of GDN test results.

Interval name DL from Amsterdam DL from Ithaca
(microseconds) (microseconds)

client end-to-end 14,707,742 7,952,904
bind total 1,245,384 759,059
total transmission 13,196,793 6,928,361
total processing 265,565 265,484

Table 7.6: Results for GDN with blocksize 1 MB.

Download from Download
Interval name Amsterdam (µs) from

Ithaca (µs)

getFileContent(last block) total 192,436 98,654
Proxy getFileContent(last block) 1,767 1,784
Replica total getFileContent(last block) 1,252 1,261
Replica pre/post getFileContent(last block) 1,038 1,127
Replica actual getFileContent(last block) 215 134
Transmission getFileContent(last block) 189,416 95,609

Summary

Table 7.7 summarizes the measured transmission and processing times. The client
end-to-end time is the end-to-end download time as perceived by the user (taken
from Table 7.4). The bind times are taken from Table 7.6. The total transmission
time is the aggregate of all transmission times of the method invocations on the
revision DSO required for the complete download. The total processing time is the
sum of the time spent in the client itself, in the proxy of the revision DSO, and
in the replica of the revision DSO. This time is calculated by subtracting the total
transmission and bind times from the end-to-end download time.

This table shows that transmission time is the largest factor in both downloads.
Processing times are the same for Amsterdam and Ithaca, which is not surprising,
as the sites use rather similar hardware. As expected, binding time is significantly
lower for a download from the slave replica in Ithaca. There may be room for
improvement of binding times in general, as it may be possible to reduce the
number of messages exchanged between proxy and replica at proxy-initialization
time.

SEC. 7.2 WIDE-AREA PERFORMANCE 171

Table 7.8: Comparison of end-to-end performance for HTTP downloads
from Amsterdam and Ithaca.

HTTP Test Average download time Average throughput
(min–max) in µs (min–max)in KB/s

1 MB download from 13,181,869 77.7
Amsterdam (12,988,514–13,472,358) (76.0–78.8)
1 MB download from 6,739,778 151.9
Ithaca (6,512,681–7,068,944) (144.9–157.2)

Table 7.9: Comparison of end-to-end performance for HTTP and GDN
with blocksize 1 MB.

Test HTTP GDN GDN/HTTP

1 MB download from 13,181,869 µs 14,707,742 µs + 11.6%
Amsterdam = 77.7 KB/s = 69.6 KB/s
1 MB download from 6,739,778 µs 7,952,904 µs + 18.0%
Ithaca = 151.9 KB/s = 128.8 KB/s

7.2.3. Comparison to HTTP

To compare GDN to HTTP in a wide-area environment, Apache servers were set
up on the machines in Amsterdam and Ithaca and 99 downloads of a 1 MB file
were done from each server from the machine in San Diego using the wget HTTP
client. These tests were conducted interleaved with the GDN tests on the weekday
in March 2002. Table 7.8 shows the results.

Table 7.9 compares the results of the HTTP tests to the GDN tests. HTTP
outperforms GDN in both the Amsterdam and Ithaca case. The difference between
HTTP and GDN is mainly due to HTTP not having a binding step before the actual
download, in both cases. If we ignore the binding step the difference is 2.1%
(280,489 µs) in the Amsterdam case, and 6.7% (454,067 µs) in the Ithaca case.

These differences, referred to as the end-to-end differences, can be explained
as follows. Recall that a GDN client contacts the object server three times: once
to retrieve the file’s incarnation ID, once to retrieve the 1 MB file, and once to
read the (empty) remainder of the file (the TCP connection over which these re-
quest travel is setup in the binding step and therefore not counted). The HTTP
client contacts the server only twice: once to setup a TCP connection and once to
retrieve the 1 MB file. The differences can now be attributed to four factors. The
calculation of the difference is shown in Table 7.10.

First, before connecting to the HTTP server the HTTP client does a DNS

172 PERFORMANCE CHAP. 7

Table 7.10:Explanation of the difference between HTTP and GDN.

Factor Amsterdam (µs) Ithaca (µs)

HTTP does DNS lookup –14,027 –12,947
TCP connect faster than getIncarnationID +4,983 +5,607
GDN downloads and writes file slower than
HTTP

+98,500 +364,413

GDN does more network communication:
getFileContent(last block)

+192,436 +98,654

Total 281,892 455,727
End-to-end difference 280,489 454,067
Unexplained 1,403 1,660

lookup to resolve the name of the server to an IP address, which takes 14,027 µs
in the Amsterdam case, and 12,947 µs in the Ithaca case. The GDN does not do
such a lookup, so this factor increases the differences.

Second, an HTTP client sets up a TCP connection slightly faster than a GDN
client retrieves a file’s incarnation ID. This factor explains 4983, respectively,
5607 µs of the difference between GDN and HTTP.

Third, GDN is slower in the time it takes to send the download request to
the server, read the 1 Megabyte from disk, transfer it to the proxy and write it to
disk there. More specifically, GDN is 98,500 µs slower in the Amsterdam case,
and 364,413 µs slower in the Ithaca case. This factor explains why the difference
between GDN and HTTP is larger in the Ithaca case (18.0% vs. 11.6%). The
explanation for GDN being slower is two-fold. (1) GDN has more overhead as
it does marshalling and unmarshalling, does more (inefficient) copying of the 1
MB block, and uses slower disk I/O (the Apache server on Solaris uses memory-
mapped files). (2) in case of Ithaca, the experiment most likely suffered from
congestion in the network, which caused TCP to limit its throughput.

The fourth factor explaining the differences is the fact that a GDN client con-
tacts its server one additional time compared to HTTP, in particular, to read the
(empty) remainder of the file. The extra round trip to the server makes GDN
192,436 µs slower in the Amsterdam case, and 98,654 µs in the Ithaca case.

These four factors explain most of the differences between HTTP and GDN.
The small remaining discrepancies are attributed to the HTTP client being a little
slower in pre- or post-download processing.

CHAPTER 8

Related Work

This chapter discusses the designs of a number of systems for distributing data to
a worldwide audience, and compares them to the design of the Globe Distribution
Network. For each system we give a general introduction, explain how the system
achieves scalability and efficient distribution, and describe its security and fault
tolerance features. The systems discussed are:

• The early file-sharing systems, such as AFS, Coda, FTP and HTTP (Sec. 8.1).

• Freeflow/EdgeSuite, a content distribution network operated by Akamai
Technologies, Inc. (Sec. 8.2).

• RaDaR, an architecture for content distribution networks developed by AT&T
(Sec. 8.3).

• Freenet, a peer-to-peer file-sharing system for anonymous publication and
retrieval of information (Sec. 8.4).

• CFS, a fully decentralized peer-to-peer file-sharing system developed at
MIT (Sec. 8.5).

• PAST, a largely decentralized peer-to-peer file-sharing system (Sec. 8.6).

• OceanStore, a worldwide distributed storage system developed at the Uni-
versity of California at Berkeley (Sec. 8.7).

174 RELATED WORK CHAP. 8

8.1. EARLY SYSTEMS

The Andrew File System and Coda

One of the first systems to allow transparent file sharing over a wide-area network
was the Andrew File System (AFS) [Howard et al., 1988; Satyanarayanan, 1990;
Zayas, 1991]. File sharing is transparent in AFS as file names do not contain
information about the location of the file and are valid globally (i.e., there is a
single global name space for files). The architecture of AFS is as follows. At the
highest level, AFS consists of a collection of administrative domains called cells.
Each cell consists of a number of file servers and client machines. To read or
write a file a client first creates a temporary copy of the (parts of the) file it needs,
which are then read or written locally. The file server holding the master copy of
the file records some information about the client such that it can invalidate the
client’s copy when an update is made by another client. For administrative pur-
poses, files are grouped into volumes which are collections of related files (e.g.
a user’s home directory). Volumes may be replicated to improve access perfor-
mance and availability of frequently-used files. Replicated volumes can, however,
not be updated by clients. Clients cannot add, modify or delete files in a repli-
cated volume; updating a replicated volume requires running a separate program
and system administrator privileges.

AFS cannot easily be used for large-scale free-software distribution. To effi-
ciently distribute software to a large user community, the files must be available
from machines near to these users. The only mechanism in AFS suited for this is
volume replication. Volume replication in AFS is, however, rather inflexible as it
hard to update a replicated volume. Using this mechanism to do software distri-
bution therefore requires extra administration to keep the number of updates low.
For example, all new revisions and variants could be first placed on a read/write
volume and moved to a replicated read-only volume once a day. The file caching
mechanism in AFS does not scale to large numbers of users. Each user is assumed
to have his own machine that caches files individually. The file server holding the
master copy may therefore become overloaded if too many users access the file
concurrently.

The Coda distributed file system is based on AFS and is more resilient to
server and network failures [Satyanarayanan, 1990]. Its replication facilities are
more suited for software distribution, as it allows replicated volumes which are
mutable and lets a client use a preferred replica server which is near. Coda, how-
ever, assumes that the location and number of replicas of a volume do not change
frequently. This assumption may restrict Coda’s performance when used for large-
scale software distribution. In particular, Coda’s staticness means it can handle
long-term changes in access patterns, but it may not be able to handle short, local

SEC. 8.2 AKAMAI’S FREEFLOW 175

peaks in load.

FTP and HTTP

The File Transfer Protocol (FTP) is the protocol that is traditionally used to dis-
tribute free software. To improve download performance and availability the soft-
ware is placed on one or more servers, where the number of servers depends on
the popularity of the software. Selection of these servers is done manually. As
FTP does not support automatic replication of files over multiple servers, several
protocols and programs have been developed for this purpose, for example, rsync
[Tridgell, 2000]. Server and network load balancing is done by the users. A user
will select the server that he expects or knows to have good performance and select
another if that one happens to be down or performing badly.

The three largest problems of FTP are (1) no location transparency or auto-
matic fail over, (2) inconsistency between replicas and (3) vulnerability to flash
crowds. Users themselves are responsible for selecting the closest server and fail-
ing over to another server if that server is unavailable, which is not very user
friendly. After a new version of a software package has been uploaded, it takes
some time (e.g. several hours) before all replica servers have a copy, which is
annoying for users. Flash crowds occur when a new version of a popular pack-
age is published and lots of users try to get at it. Often the capacity of the set
of FTP servers hosting the package is insufficient to handle this peak load, and
there are no facilities for temporarily allocating more server resources. Inconsis-
tency of replicas can augment the flash crowd problem: if the new version is not
yet available from all servers, users will focus on the servers that do have them,
concentrating their load on this subset of the servers.

With the rise of the World Wide Web, people also started to use the Hyper Text
Transfer Protocol (HTTP), as a download protocol for free software. Although
HTTP has some facilities for replication (i.e., caching HTTP proxies) and load
balancing (i.e., HTTP redirects), these are not adequately used, if at all. As a
result, software distribution via HTTP suffers from the same problems as FTP-
based distribution. This situation is different for the distribution of content that
generates revenue for its publishers, as discussed in the following sections.

8.2. AKAMAI’S FREEFLOW

In recent years, Content Distribution Networks (CDNs) have emerged as a
way for publishers to deliver up-to-date digital content to their users quickly
and reliably, and at lower monetary cost. The best-known content distribution
network is offered by Akamai under the product names Freeflow or EdgeSuite

176 RELATED WORK CHAP. 8

[Akamai Technologies, Inc., 2002; Leighton and Lewin, 2000]. The CDN is com-
monly referred to as just Akamai. Akamai builds on the Internet’s DNS system
to direct users’ Web browsers to a nearby copy of the requested content stored on
servers not operated by the content provider itself but by Akamai. Akamai uses
knowledge about the Internet to select a server that is network topologically near
to the user, optimizing for access latency.

Publishing of content via Akamai proceeds as follows. A content provider
wishing to publish content via Akamai first akamaizes his Web pages. A Web
page consists of a base HTML document that contains hyperlinks to other pages
and references to images, audio or video. Akamaizing a Web page consists of
replacing the references (e.g. local file names) in the base document that refer to
static content by Akamai URLs. By replacing the references to this static content
by Akamai URLs causes it to be delivered not by the content provider’s own Web
server but by the Akamai content distribution network. For many Web pages,
this static content represents the bulk of the content to be transferred to the user
when the page is requested, which implies that the content provider itself needs
less infrastructure and system administration. The original akamaizing process as
described in [Leighton and Lewin, 2000] has been simplified by the use of DNS
delegation [Rabinovich and Spatscheck, 2001].

Akamaized content is accessed as follows. Assume the user’s browser has an
Akamai URL and needs to retrieve the content it identifies. To this extent, the
browser starts resolving the server name in the URL to an IP address via DNS.
The user’s local DNS server delivers this lookup request to a DNS server operated
by Akamai. Akamai’s DNS server determines the region of the network the user
is in by looking at the IP address of the user’s DNS server and redirects the request
to another Akamai DNS server in that region. This lower-level DNS server knows
about the Akamai Web servers operating in its region, and returns the IP address
of the server that is close to the user, not overloaded, and likely to already have the
required content. Having resolved the server name, the user’s browser establishes
a connection with the designated Akamai Web server and sends it the remainder
of the URL. If the Web server already has the requested content it first verifies that
it still holds the latest version using a checksum of this latest version encoded in
the URL. If it does not have the content or the content is out-of-date it retrieves
the data from the content provider’s Web site or another Akamai Web server, and,
finally, returns it to the browser.

The scalability and speed of this retrieval procedure is due to two reasons:
First, caching of DNS query results by the user’s machine and the DNS server
of its ISP makes it unnecessary for browsers to contact the Akamai DNS servers
frequently. Second, Akamai selects a server that is network-topologically near,
ideally located at the user’s ISP, thus avoiding shared network links and decreasing

SEC. 8.3 AKAMAI’S FREEFLOW 177

access latency.

Akamai has limited facilities for handling flash crowds. It can return a smaller
piece of content asking the user to try again later, or provide a ticket (presumably
an HTTP cookie) that will allow a client to retrieve the content at a later time,
implementing a form of priority queuing for clients. To prevent flash crowds from
consuming too many resources, Akamai can impose limits on how many resources
specific content is allowed to consume.

Publishers have to pay to put material on the Akamai content distribution net-
work. How access control is done is not disclosed. Akamai does not provide
special guarantees with respect to integrity and authenticity of content, as Akamai
DNS and Web servers are trusted.

Fault tolerance of Akamai is ensured by using replicated DNS servers and
letting the low-level DNS servers return the addresses of multiple suitable Web
servers. In addition, each Web server has a buddy, another Web server that takes
over its work by taking over its IP address when the former server fails. The
available publications do not explain how Akamai guarantees data availability.

Discussion

Akamai is a commercial system and hence not all details about it are public. For
example, it is not clear how Akamai ensures that most clients will be directed to a
nearby server that already has the desired content. There is evidence that Akamai
is generally able to select a server from the set of available servers that delivers the
content to the user quickly [Johnson et al., 2001], and that using Akamai instead
of the content provider’s servers improves access latency [Krishnamurthy et al.,
2001] (for small files). On the other hand, Akamai depends on the IP address
of the user’s local DNS server rather than the IP address of the user’s machine
directly to determine the best Web server for that user. A recent study shows that,
in many cases, the DNS servers that people use are not located nearby, making a
server’s IP address an inaccurate approximation for the user’s location, and thus a
less suitable metric for selecting an Akamai Web server [Mao et al., 2002].

Akamai’s techniques are patented, and using them requires obtaining a li-
cense from the Massachusetts Institute of Technology (MIT). Apparently, the li-
cense agreement between Akamai and MIT does not exclude MIT from licensing
the technology “for non-commercial [...] purposes” [Akamai Technologies, Inc.,
2000]. Obtaining a license is, unfortunately, likely to be only the first step in build-
ing a free-software distribution network on Akamai technology, as many details
about the actual implementation of Akamai are kept secret.

178 RELATED WORK CHAP. 8

Browser

Distributor Redirector Host

RaDaRLocal
1

1

7

3

4 5

6

DNS Server DNS Server

2

2

Figure 8.1: Content retrieval in RaDaR (the steps are explained in the text).

8.3. RADAR

Rabinovich and Aggarwal [1999] developed an architecture for content distri-
bution networks called RaDaR. The RaDaR architecture aims to reduce the system
administration effort required to run the CDN, and to prevent overload of servers
and network backbone. To achieve the latter goal it exploits information from the
Internet’s routing protocols to serve content from a server that is lightly loaded
and network topologically near [Rabinovich et al., 1999].

RaDaR does not modify URLs, so a URL of a site that uses a RaDaR-based
content distribution network contains no special information. The process of re-
trieving a file from RaDaR given its URL is illustrated in Figure 8.1. The client
machine running the user’s browser contacts its local DNS server to resolve the
server part of the URL to an IP address (arrow 1). The DNS server for the do-
main, operated by RaDaR, uses the client’s IP address to return the address of a
RaDaR distributor near to the client (arrow 2). The client connects to the distribu-
tor, which acts as an HTTP server and sends it the URL (arrow 3). The distributor
determines which RaDaR redirector is responsible for keeping track of which
hosts have replicas of the file identified by the URL using a hash function map-
ping URLs to redirector IP addresses. The distributor forwards the URL to the
responsible redirector (arrow 4). The redirector, in turn, determines which host is
closest to the client machine using information from the Internet’s routing proto-
cols, and forwards the URL to that host (arrow 5). The host returns the content to
the distributor initially contacted by the client (arrow 6). The distributor returns
the content to the browser (arrow 7), completing the file retrieval.

Publishing a Web site via RaDaR is simple from a publisher’s perspective. The
Web site’s contents are placed on a RaDaR server and are subsequently replicated
through the content distribution network based on client demand and server loads.
Each RaDaR server has a limited view of the paths client requests take through the

SEC. 8.4 RADAR 179

network. A server uses this information to detect if many clients for a particular
file are located far away. If so, it contacts RaDaR’s replication service to find
underutilized servers in the clients’ regions and asks them to create replicas of
the file. Servers register the fact that they hold a particular file with the RaDaR
redirector responsible for the file.

The replication service consists of an hierarchy of replicators. There is a leaf
replicator in each OSPF area (an Autonomous System usually consists of one
or more OSPF areas) that monitors the load of the RaDaR servers in that area.
This information is digested and propagated up the hierarchy. This hierarchy of
replicators offers a quick and scalable way for finding a lightly-loaded server in
a particular network region. In addition to monitoring where clients come from,
servers also monitor their own load, and start offloading work by replicating and
migrating files to other servers when it gets too high, again using the replication
service.

Discussion

RaDaR and the GDN architecture are similar in structure. Both RaDaR and GDN
have dedicated services for mapping the location-independent name for a resource
to its network topologically nearest replica, and for finding an appropriate server
in a specific region (i.e., the replication service and the Globe Infrastructure Di-
rectory Service, respectively). As scalable resource location and discovery is a
complex research topic, a detailed comparison of the RaDaR services to the Globe
services is left to the principal investigators of the latter services (Ballintijn et al.
[2001] and Kuz et al. [2002]).

The replication protocols used have similar goals: reducing the load on shared
links (i.e., the backbone) and preventing server overload. In principle, RaDaR
bases its decisions on detailed knowledge about where in the network requests
come from. The current replication protocol for GDN uses a larger granularity
(i.e., Autonomous Systems), suggesting that RaDaR will be able to make better
decisions about where to place replicas. Simulations with a workload from a Web
hosting service show that RaDaR is able to significantly reduce the amount of
bandwidth consumed and improves client response times compared to a situation
where there is no replication [Rabinovich and Aggarwal, 1999]. However, like
Akamai, RaDaR depends on the IP address of the user’s local DNS server to de-
termine the user’s location, which often is not an accurate measure [Mao et al.,
2002]. As a result, RaDaR may place replicas in suboptimal locations.

180 RELATED WORK CHAP. 8

8.4. FREENET

Freenet is a storage system that enables anonymous publication and retrieval
of information [Clarke et al., 2002; Oram, 2001; Clarke et al., 2001]. It is largely
decentralized and makes clever use of replication to make it resistant to censorship
and to avoid performance bottlenecks.

Information in Freenet is stored as files. The way files are identified leads to
two types of files: read-only files identified by a cryptographic digest of their con-
tents, and writable files identified by a signed-subspace key. The signed-subspace
keys allow files to be linked to a public/private key pair, which can be used to
provide authenticity. The cryptographic digest that identifies a read-only file is
called a content-hash key. The suggested method for publishing information that
is subject to change is to create a subspace-signed file that contains the key of the
read-only file containing the current version of the information.

Files are retrieved from the network of Freenet servers as follows. To retrieve
a file a client sends a lookup request containing the file’s key to a nearby server.
This server looks in its cache of files to see if it already has a copy of the requested
file. If this is not the case, the server forwards the request to another Freenet server
based on the file’s key. The lookup is forwarded to another server until the file is
found or the time-to-live value of the lookup has been exceeded. If a server has
already seen this request it returns an error, which causes the forwarding server to
try another server. The same happens when a chosen server is down. When the
file is found it is returned to the client along the path of servers traveled by the
lookup request. Servers along the path place the file in their own cache.

Files are uploaded into Freenet in a similar fashion. After the user has chosen
a file type (read-only or subspace-signed) and computed the file key, he sends an
insert request to a nearby server. The insert request consists of just the file key
and the number of servers the file should be stored on. Servers decrement this
number and route the insert request to other servers based on the file’s key until
the required number of servers has been reached, at which point an OK message is
returned to the requester along the path of servers. In response to this message the
uploading client sends the actual data which are propagated along the established
path and stored in each server’s cache. File caches are the only storage space in
Freenet, that is, data does not have a permanent storage location.

Freenet’s routing and replication mechanism ensure that files are usually found
after querying only a few servers. The routing mechanism is based on a list of (file
key, server network address) pairs that each server maintains locally. Lookups are
forwarded to the server whose associated file key is lexicographically nearest to
the key of the file requested. The list of (file key, server address) pairs is continu-
ously updated as a server processes requests in such a way that the server chosen

SEC. 8.4 FREENET 181

as the next step in the path is the server that is able to locate the file in a short
number of forwarding steps. The details of this procedure are outside the scope of
this dissertation, see [Clarke et al., 2001].

Freenet takes the following measures against attackers trying to modify or
delete files. Writable files identified by subspace-signed keys can be updated only
by the owner of the associated public/private key pair. In particular, a server will
modify a file only if the new version is signed and is more recent. Read-only files
are protected against overwrites by Freenet’s upload mechanism. If during the
initial phase of an upload a server discovers it already has an entry for the file in
its database it changes the insert request into a lookup and returns the contents
of the old file to the uploading client. Freenet’s current design is, however, not
completely protected against outside attackers trying to remove content. There is
a chance that uploading lots of junk content into Freenet can cause already stored
content to be lost, as a Freenet server may discard unpopular files to make room
for new uploads. Malicious modification of content by internal attackers (i.e.,
malicious servers) is possible but always detected as the integrity of read-only
files is protected by their naming scheme, and that of writable files is protected
by means of digital signatures created with the file’s associated public/private key
pair.

Anonymity of uploaders and downloaders is provided by Freenet’s hop-by-
hop forwarding. Hop-by-hop forwarding makes it hard to determine the original
source or ultimate destination.

Freenet is able to handle server and network failures. Its routing mechanism
ensures that other servers are tried when the most optimal server is down or cannot
be reached. Availability of files is ensured by Freenet’s aggressive replication
strategy.

Discussion

At first glance, Freenet appears to be a suitable system for distributing free soft-
ware because it has a number of interesting properties. First, Freenet is self main-
taining. Self maintenance means there is less system administration to be done,
which means the system is easier to use and, important for free-software distribu-
tion, cheaper to operate. Second, Freenet uses untrusted servers which makes it
easier to set up a large-scale software distribution network. Third, Freenet aggres-
sively replicates content which enables it to handle flash crowds.

What makes Freenet less useful for free-software distribution is its perfor-
mance. In theory, performance is good as Freenet lets users find files after con-
sulting only a few servers. However, Freenet routing is based on file keys and not
on network performance. As a result, it is unlikely that Freenet will make optimal
use of the underlying network. For example, a server that is logically only a few

182 RELATED WORK CHAP. 8

hops away can be located on the other side of the world. Although the choice of
routing mechanism is justified by Freenet’s design goals, it does make Freenet less
attractive for large-scale software distribution.

As argued in Chap. 2, Freenet’s facilities for anonymous retrieval and publi-
cation of software are useful for a software distribution network. Anonymous re-
trieval protects the privacy of users and anonymous publication enables authors to
publish controversial software without risk of personal prosecution. However, in
Freenet publication is anonymous by default, which I consider unsuitable for pub-
licly accessible distribution network, as it fosters large-scale abuse (see Sec. 5.1).

8.5. THE COOPERATIVE FILE SYSTEM

The Cooperative File System (CFS) is a file storage and sharing system that is
fully decentralized yet offers provable guarantees with respect to efficiency of file
retrieval and storage, server load balancing and robustness [Dabek et al., 2001b].

Users perceive CFS as a collection of read-only file systems each identified by
a public key. Users can add new file systems, and replace or remove an existing
file system if they know the private key associated with its public key. The abstrac-
tion of a collection of file systems is implemented on top of a storage layer called
DHash. DHash implements a distributed hash table that reliably stores blocks of
data and allows for fast retrieval of those blocks. This latter property is primar-
ily due to DHash’s tight cooperation with a decentralized location service called
Chord [Stoica et al., 2001; Dabek et al., 2001a]. Chord allows DHash to quickly
locate servers hosting the persistent replicas of the desired block and has the prop-
erty that lookups for a particular block travel a similar path of CFS servers. The
tight cooperation of DHash and Chord allows DHash to exploit this property and
cache the data block on servers on the lookup path, speeding up future retrievals
by other clients. The architecture of CFS is shown in Figure 8.2.

Files are retrieved from CFS as follows. Assume the CFS client knows the
identifiers of the blocks that make up the desired file. The CFS client starts fetch-
ing these blocks from DHash asynchronously starting with a small number of
blocks and requesting the next block whenever a requested block comes in (i.e.,
the CFS client does prefetching to speed up retrieval). The DHash client code
issues a Chord lookup for each block. Chord starts routing this lookup request to-
wards the servers hosting the persistent replicas of the block based on the block’s
identifier. At each routing step, a check is made to see if the desired block is
cached on the local server. If so, the block is returned to the client; otherwise the
lookup continues until a server hosting a replica is reached. After receiving the
block, the client sends a copy of the block to (at present) each server on the lookup

SEC. 8.5 THE COOPERATIVE FILE SYSTEM 183

CFS

DHash

Chord Chord

DHash

Chord

DHash

CFS client CFS server CFS server

Figure 8.2: The architecture of CFS, taken from [Dabek et al., 2001b].

path just traveled, which then cache the block.

Chord implements fast lookups by combining a scalable routing mechanism
based on fixed-length identifiers with measured network latency between servers.
Without going into further detail, Chord allows a server storing a particular block
to be reached in a number of steps that is in the order of the logarithm of the
total number of servers in the system (i.e., the number of steps is O(logN) where
N is the total number of servers). In addition, at each routing step, Chord can
choose from a number of servers as the next step in the lookup. Chord will select
the server that results in the fastest lookup in terms of network latency. In short,
Chord will find one of the servers storing the desired block in a small number of
steps, where “small” is relative to the total number of servers in the system.

DHash stores blocks as follows. Each block is identified by an SHA-1 hash
of its contents. Using Chord, this identifier is mapped to a specific set of servers
on which the block is subsequently stored. Servers can control the number of
blocks they may be asked to store and thus their load. However, they cannot
cause Chord to assign them a particular set of blocks, providing protection against
malicious servers trying to make certain content unavailable. Chord currently has
no protection against malicious servers misrouting lookups, but its designers are
confident Chord can be made to deal with this kind of attack. To protect CFS
from users trying to make the system unavailable by loading large amounts of
junk content, it imposes quotas. In particular, a CFS server will allow each client,
identified by its IP address, to use only a small percentage of its storage space.

CFS builds on earlier work to provide authenticity and integrity of the file
systems it stores [Fu et al., 2000]. The integrity of blocks in CFS is protected
against malicious servers by the fact that blocks are identified by an SHA-1 hash
of their contents. As file systems are completely stored as blocks, this mechanism
recursively ensures the integrity and consistency of the whole file system. The
origin (authenticity) of a file in a file system can be established using the public

184 RELATED WORK CHAP. 8

key identifying the file system. In other words, any file in CFS can be traced to a
particular public/private key pair.

To improve data availability, DHash replicates each block on a set of servers.
This set is chosen such that the Chord lookup algorithm will home in on this set of
servers when asked to locate that particular block. The DHash/Chord cooperation
ensures that a nonfaulty server is selected automatically. If a server fails, DHash
creates a replacement replica on a server with similar properties to maintain the
degree of replication for the block. Because of the way Chord identifies servers,
the set of servers storing a particular block are not likely to be physically close,
and thus not likely to fail, leave the system or become unreachable at the same
moment. The Chord location service itself is extremely fault tolerant and retains
its fast performance even if there is massive server failure (e.g. 50% of the servers
failing).

Discussion

The designers of CFS explicitly mention software distribution as one of its appli-
cations. Looking at its replication and caching facilities and location service it
appears well suited for the job. Downloads will use the copies of the blocks near
to the client in terms of network latency, and dynamic caching ensures that it can
handle flash crowds.

CFS is, however, limited and inflexible when it comes to replica placement.
The replication and caching policy of CFS is strongly tied to the properties of
its location service, and hardwired into the system. GDN is more flexible and can
gather more information about client location, access patterns, and network condi-
tions. As a result, GDN may be able to make better decisions about where to create
copies of the data. In addition, GDN’s replication policy can be changed without
significant impact on the implementation, as GDN is built on top of Globe. As it
is yet unclear what the best policy is for worldwide replication of free software,
the flexibility of GDN is considered an advantage.

What is currently lacking in CFS is support for preventing illegal distribution
of copyrighted or illicit material, which is present in GDN. Adding such func-
tionality, in particular my cease-and-desist scheme appears relatively simple, as
follows. Assume there is a single access-granting organization that certifies pub-
lic keys for publishers and revokes these certificates when the publisher publishes
illegal content. The publisher of a CFS file system uses his certified key pair to
sign every block he publishes through CFS, in such a way that a server can ver-
ify the origin of a single block in the file system without having to retrieve other
blocks. When a server is asked to store or cache a block, it not only verifies the
integrity of the block by computing the SHA-1 hash of its contents and comparing
it to the block’s ID (as is done now), but also checks that the block is signed by

SEC. 8.6 PAST 185

a publisher certified by the CFS’ access-granting organization, and that this pub-
lisher is not blocked at present. The latter can be done, for example, by reading
a certificate-revocation list published by the CFS AGO via CFS. Servers should
also periodically perform this check for blocks they already store or cache to make
sure they don’t serve content of publishers that have been blocked after the server
accepted the block.

The advantages of CFS over GDN are its decentralized architecture, mak-
ing the application easier to maintain (GDN requires an organization to maintain
Globe’s middleware services, such as GLS and GIDS), and its support for un-
trusted servers.

8.6. PAST

PAST is a largely decentralized storage and data sharing system similar to CFS
in architecture and techniques used to achieve scalability and good performance
[Druschel and Rowstron, 2001; Rowstron and Druschel, 2001b]

The PAST API offers three operations: upload a file, retrieve a file and stop
persistent storage of a file. The last operation is basically a delete operation with
weak semantics, as users may still be able to retrieve the file for some time after
this operation. Files are immutable and each one is owned by a single user. A
file is identified by the cryptographic hash of the file’s textual name, the owner’s
public key and a random value. Associated with each file is a file certificate that
can be used to verify the integrity and authenticity of the file.

Like CFS, PAST works in close cooperation with a fault tolerant, decentral-
ized location and routing service for fast file retrieval, in this case called Pastry
[Rowstron and Druschel, 2001a]. Pastry has properties similar to CFS’s Chord:
it is able to locate a server hosting a replica quickly, and lookups for a particular
file partially visit the same servers. Like CFS, PAST uses its cooperation with
its location service to cache the requested file on the commonly visited servers to
speed up future retrievals.

As PAST and CFS are so similar in architecture and techniques used we de-
scribe only their differences here. PAST stores, replicates and caches complete
files instead of blocks. This is likely to affect performance, although it is not
clear how [Rowstron and Druschel, 2001b]. It does require PAST to have a more
sophisticated storage management system, as the distribution of files over avail-
able servers is uniform, but the sizes of the files differ greatly, implying that some
servers may have to store much more data than others. PAST servers can therefore
offload file replicas to servers nearby, or refuse to store a file altogether when stor-
age is already low. In the latter case, PAST will automatically select a new group

186 RELATED WORK CHAP. 8

of servers to create replicas on. Simulations suggest the storage management sys-
tem is very effective as it allows almost all available storage to be used. Fur-
thermore, PAST uses trustworthy smart cards to impose storage quotas on users
instead of restricting storage to a certain percentage of the available storage per IP
address.

Security in PAST, in general, currently revolves around the use of smart cards.
One must obtain a smart card from a smart card issuer to use PAST for publishing
or to host a PAST node. A smart card contains a public/private key pair that is
certified by the card issuer, and, when used by a publisher, a specific storage quota.
The smart card is used to securely generate file certificates and server identifiers,
and to administer a user’s storage quota.

In particular, when a publisher’s smart card creates a file certificate it is signed
with the public/private key pair, and the storage required by the file and its replicas
is subtracted from the user’s quota as stored on the card. A server asked to repli-
cate the file has its smart card check that the signature on the file certificate was
made by a trusted smart card, and thus establishes that the publisher is allowed to
use PAST (i.e., the smart cards do access control). In addition, if the signature is
from a trusted smart card (e.g. by the same issuer) the server also knows that the
storage it provides for the file was debited against the publisher’s quota. When
deleting a file, the user’s smart card creates a reclaim certificate for the file that is
also signed with the key pair, and which is sent to the servers storing the persistent
replicas. These servers’ smart cards compare the signature on reclaim certificate
against that on the file certificate, and release the file only if they match. When re-
leasing a file they return a reclaim receipt to the user which he can use to increase
the quota on his smart card. Smart cards are assumed to be tamper proof.

The stated advantages of using smart cards is that

• they prevent certain denial of service attacks by malicious users and servers,

• they maintain storage quota efficiently and securely, and

• they allow users to anonymously join PAST as publisher or storage provider
[Druschel and Rowstron, 2001], for example, by selling the cards for cash
in stores.

Discussion

PAST’s storage management system allows for high utilization of the available
persistent storage. This property means that PAST is able to operate with less
storage than others. It is unclear if the current GDN design will achieve high
storage utilization. In GDN, the publishers of software select the location of the
revision DSO’s core replicas which may or may not cause a reasonable distribution

SEC. 8.7 OCEANSTORE 187

over the available servers. Furthermore, for regular replicas, GDN first selects the
network location to create the replica in and then looks for a server in that location.
It is also not clear to what level of utilization this procedure leads.

As mentioned above, there are several advantages associated with using smart
cards. These advantages, however, will not greatly benefit the GDN, and therefore
employing smart cards in GDN would not be a large improvement. The denial of
service attacks by malicious servers that are prevented by the use of smart cards
are specific to PAST and Pastry. In particular, the use of a smart card prevents
malicious servers from becoming the preferred server for storing a particular piece
of content which would then enable them to deny access to that content. GDN
needs to impose quotas only on the number of revision DSOs a publisher can
create; fair allocation of storage and other resources is done automatically. For this
small task it can use a centralized service without creating a scalability problem,
and does not require a decentralized smart card-based solution. Finally, GDN
does not support the fully anonymous publication enabled by anonymously bought
smart cards. GDN forbids fully anonymous publication as this conflicts with its
measures for preventing illegal distribution of content.

Like CFS, PAST is limited and inflexible when it comes to replica placement,
as its replication and caching policy is also strongly tied to the properties of the
Pastry location service, and hardwired into the system.

8.7. OCEANSTORE

OceanStore is a worldwide distributed storage system developed at the Uni-
versity of California at Berkeley [Kubiatowicz et al., 2000; Rhea et al., 2001]. Its
purpose is to provide persistent storage and data sharing to 10 billion users con-
nected to the Internet through various sorts of wired and wireless devices. To keep
a storage system of this scale manageable it has been designed to be self main-
taining, that is, tasks that generally require intervention by a system administrator
have been automated. In particular, OceanStore automatically incorporates new
servers into the system, is able to recover from server and network failures without
intervention and adjusts itself to changing usage patterns. In addition, OceanStore
has been designed to run on untrusted servers and be highly available.

Clients access OceanStore indirectly through applications built on the basic
OceanStore API. This API is based on a model of objects consisting of blocks of
data that can be read or written. The implementation of these objects is, however,
highly sophisticated to meet the self maintenance and high availability require-
ments and to deal with the fact that servers cannot be fully trusted.

The model of an object that can be both read and written is implemented by

188 RELATED WORK CHAP. 8

means of immutable objects. Writing to an object creates a new immutable ob-
ject. Each object has a group of servers, called its inner ring that records which
immutable object represents the current version of the object. Immutable objects
make it easier to recover from failures. The immutable objects are stored persis-
tently across a large number of servers via erasure coding techniques. Erasure
coding techniques, such as interleaved Reed-Solomon codes, split a data block
into n pieces and transform these into 2n or 4n fragments [Plank, 1997]. The in-
teresting property of these techniques is that any n of these fragments are sufficient
to reconstruct the original data block. The use of these techniques and distributing
the fragments over a large number of servers yields an extremely durable storage
system.

Reconstructing an immutable object from n fragments is, however, compu-
tationally intensive and thus time consuming. To provide fast access to data,
OceanStore allows servers to host complete replicas of immutable objects. The
servers that form the inner ring of an object each host a primary replica. Other
servers can host so-called secondary replicas. OceanStore’s message routing and
location service, called Tapestry, ensures that clients access the nearest replica (in
terms of network latency).

OceanStore actively manages the degree of replication and the location of
replicas. First, when a replica receives too many requests OceanStore creates
additional replicas nearby. Second, OceanStore can detect if clients are accessing
replicas that are far away and create replicas nearer to these clients. Finally, it has a
mechanism for discovering which objects are often accessed together. This infor-
mation can be used to improve performance by replicating or migrating objects in
clusters. OceanStore’s automatic replication mechanism also enables OceanStore
to handle replica failures autonomously.

The integrity of data stored and shared via OceanStore is guaranteed by means
of cryptographic digests. In particular, immutable objects are identified by glob-
ally unique identifiers consisting of a cryptographic digest of its data. This form
of identification allows clients to do an end-to-end integrity check on the data
retrieved from OceanStore.

Updates to an object are performed as follows. The client sends the update
to the object’s inner ring and to a number of secondary replicas. The inner ring
checks for write permission and perform the update on the primary replicas if
the update is allowed. An interesting property of the update mechanism is that
it also operates on ciphertext (as servers may be untrustworthy, all client data
stored in OceanStore is generally encrypted). Next, the inner-ring servers execute
a Byzantine agreement protocol to decide whether or not to commit the update.
A Byzantine agreement protocol is necessary to deal with untrusted servers inside
the object’s inner ring. When the commit is approved, the servers send out an

SEC. 8.7 OCEANSTORE 189

update command to all secondary replicas, which are organized in an application-
level multicast tree. This update command is signed by the inner- ring servers
using a special cryptographic technique that produces a valid signature if suffi-
ciently many servers are trustworthy and functioning. In addition to sending out
committed updates, the inner ring erasure-codes the data and distributes the frag-
ments to a large number of servers.

In parallel to the inner ring’s activities the secondary replicas that also received
the update from the client distribute this update to the other secondary replicas
via the application-level multicast tree. How these replicas react to this mes-
sage depends on the consistency requirements that were specified for the client.
OceanStore objects can provide different consistency guarantees to clients, rang-
ing from weak to single-copy semantics, similar to session guarantees in the
Bayou system [Terry et al., 1994]. What consistency is required can be specified
by the application programmer via the OceanStore API. For some consistency
models a secondary replica will tentatively perform updates instead of waiting for
the committed update from the inner ring.

Users get access to OceanStore via an OceanStore Service Provider (OSP).
Each OSP contributes a number of servers to OceanStore. Access to OceanStore
is not free. Users pay, for example, a monthly fee to their OSP. OceanStore does
not explicitly support anonymous publication or retrieval at present.

Fault tolerance is built into OceanStore from the ground up. OceanStore has
its own communication and routing layer which allows communication between
servers even when many network links have failed and normal Internet routing
would not allow communication (in simulations). This routing layer is part of
Tapestry, which also acts as OceanStore’s location service. The location service is
used to locate the inner ring of an object, its replicas and its fragments. This loca-
tion information is also stored such that it can survive server failures. As explained
above, user data is made durable and highly available via erasure codes and repli-
cation. OceanStore has additional mechanisms to ensure that data remains avail-
able even over a long period of time and many server failures. The Byzantine
agreement protocol and special signature scheme for authenticating commits en-
sure that updates on an object can progress despite failures of inner-ring servers.

Discussion

Like the Globe Distribution Network, OceanStore optimizes network usage by
connecting clients to nearby replicas and creating replicas near to clients when
there are none. They both employ a location service that is able to find the nearest
replica at cost proportional to the distance between the client and this nearest
replica [Kubiatowicz et al., 2000].

OceanStore is, however, much more ambitious than the GDN. It has robust

190 RELATED WORK CHAP. 8

routing that can deliver messages in cases where normal IP routing fails. It pro-
vides extremely durable storage of information, even checking disks for signs of
imminent failure. It is designed from the ground up to be self-maintaining and
works around any malicious servers. What the OceanStore design, unfortunately,
does not address is measures for preventing illegal distribution, one of the most
pressing problems of today’s worldwide file sharing systems. It should be possi-
ble to apply my cease-and-desist scheme in OceanStore, similar to how it can be
applied in CFS (see Sec. 8.5).

CHAPTER 9

Summary and Conclusions

This final chapter consists of three sections. Sec. 9.1 summarizes the previous
chapters. Sec. 9.2 presents my observations from the research conducted. Finally,
Sec. 9.3 discusses future directions for the research.

9.1. SUMMARY

Chapter 1 argues that developing a new large-scale application for the present
Internet is a daunting task, because, in addition to the complexity of the func-
tionality of the application, developers of large-scale Internet applications have to
deal with complex nonfunctional requirements. These requirements with respect
to performance, security, and fault tolerance are introduced by the scale of the
application and the properties of the Internet.

The way to make Internet application development less daunting is therefore
to provide developers with comprehensive means to meet these complex nonfunc-
tional requirements. This is the approach taken by the Globe middleware. In
the Globe middleware, the comprehensive means consist of: (1) a model of dis-
tributed objects, called distributed shared objects, which allows a developer to
separate functional from nonfunctional aspects, and which offers the flexibility to
apply any protocol, technique or policy to meet the nonfunctional requirements;
and (2) a large library of implemented protocols and techniques. Flexibility with
respect to protocols, techniques and policies is considered paramount, as meeting
the difficult nonfunctional requirements of Internet-scale applications will require
that the solutions best suited to each application are used.

To validate that the Globe middleware is indeed a good platform for develop-
ing large-scale distributed applications, several applications have been built on top
of it. One of these is the Globe Distribution Network (GDN), which is an appli-

192 SUMMARY AND CONCLUSIONS CHAP. 9

cation for the efficient, worldwide distribution of freely redistributable software
packages, such as the GNU C compiler, the Apache HTTP server, Linux distribu-
tions and shareware. In other words, the GDN allows Internet users to efficiently
download a copy of the free software packages they are interested in, whenever
and wherever they are located. This dissertation describes the design of the Globe
Distribution Network, providing insight into how large-scale applications can be
designed and built using Globe, and aiming to validate the approach taken by the
Globe middleware.

Chapter 2 identifies the functional and nonfunctional requirements for a world-
wide free-software distribution network. The fact that many people are using and
producing free software, and that this interest is worldwide, requires that the ap-
plication makes efficient use of the network and is available 24 hours a day. The
latter requirement implies that the application must be fault tolerant and resistant
to denial-of-service attacks. The domain and nature of the application also make
the GDN an attractive target for other types of attack. Malicious users will try to
use the GDN as a convenient channel for illegally distributing copyrighted works,
such as commercial software or digital music. Furthermore, malicious users may
attempt to alter the software being distributed in order to gain access to the ma-
chines that run that software. A distribution network such as the GDN should take
measures against these attacks.

After providing the necessary background on the Globe middleware in Chap-
ter 3, we go into how the Globe Distribution Network meets the identified require-
ments in Chapters 4, 5, and 6. Chapter 4 describes how software distribution is
made efficient, that is, how the GDN makes sure most software downloads do not
use shared wide-area network links on which bandwidth is generally scarce. To
achieve this goal, the GDN encapsulates the free software in Globe distributed
shared objects (DSOs) that use a replication protocol that replicates the DSO near
to the clients. In particular, each revision of a software package is placed in its
own Revision DSO. To publish large collections of software, such as Linux dis-
tributions, DistributionArchive DSOs are used that contain a specific revision and
variant of the whole software collection in a specific file format.

The replication protocol of the Revision and DistributionArchive DSOs mon-
itors client accesses. For each download, the free-software DSOs record the au-
tonomous system the downloading client is located in. The DSOs use this infor-
mation to periodically evaluate their replication scenario, that is, the number of
replicas of the DSO and their location in the network. When the DSO’s current
replication scenario is not efficient, that is, the downloads from the object consume
too much bandwidth on shared wide-area links, additional replicas are created in
autonomous systems with many downloads, and underutilized replicas are deleted.
A DSO also automatically adapts its replication scenario when a sudden sharp in-

SEC. 9.1 SUMMARY 193

crease in the number of downloads is detected, a common phenomenon with new
releases of popular software packages (the so-called flash crowds phenomenon).

How the GDN meets its security requirements is discussed in Chapter 5. To
prevent illegal distribution of copyrighted works or illicit content, the GDN takes
a novel approach. Instead of checking the content of files before allowing them
onto the network (which is nearly impossible anyway), files are made permanently
traceable to their publisher. When illegal content is found in a file, its publisher’s
access to the network is permanently revoked and the content removed. The ad-
vantage of this approach is that when there are few illegal publications, the amount
of work for the administrators of the distribution network is small, an important
property for a distribution network that does not generate any revenue. The GDN’s
architecture also supports other approaches to preventing illegal distribution. Au-
thenticity and integrity of the software distributed via the GDN are considered
properties that should be checked by the downloader in cooperation with the pub-
lisher, without intervention from the GDN. The GDN protects itself against out-
side denial-of-service attacks by enforcing a simple access-control model. Chap-
ter 5 also identifies possible attacks on the GDN’s availability by insiders (soft-
ware publishers and server operators), and how these attacks can be countered.
The chapter also describes an initial implementation of the security measures for
preventing illegal distribution and outside interference.

Chapter 6 addresses how the GDN maintains high availability, is made reli-
able, and remains manageable despite failures of machines, networks and GDN
components. High availability and reliability are achieved by a combination of
fault-tolerant servers, exploiting the fact that the distributed shared objects con-
taining the software are replicated for performance, and explicitly introducing ex-
tra DSO replicas to guarantee availability and to avoid having to report an error.
Manageability is primarily achieved by making strong guarantees about the result
of a GDN operation when failures occur. In particular, GDN operations should be
atomic with respect to exceptions, that is, an operation should either succeed or
fail without altering the state of the application.

To demonstrate the feasibility of the design of the GDN, an initial implemen-
tation has been built. Chapter 7 describes a number of small experiments that
were conducted with this implementation, aimed at measuring the performance of
the GDN compared to software distribution via the HyperText Transfer Protocol
(HTTP). In these experiments, the performance of a GDN server was only 10%
worse than that of an Apache HTTP server, or less, for large numbers of clients. In
an experiment with downloading software via the GDN and HTTP on the Internet,
downloads via the GDN were slower mainly due the considerable time required to
map a distributed shared object’s symbolic name to a contact address of the near-
est replica, and creating a proxy of the DSO that connects to this replica. These

194 SUMMARY AND CONCLUSIONS CHAP. 9

actions took considerable time, either intrinsically or because the initial imple-
mentations of the application and the middleware were not yet complete and fully
optimized. The advantages of the GDN over a pure HTTP-based solution are that
the GDN automatically locates the nearest replica, automatically handles fail-over
to others replicas, and ensures strong consistency for replicas.

Chapter 8 discusses the designs of other systems that are or can be used for
worldwide software distribution. In particular, it looks at older systems such as
HTTP, FTP, and AFS, modern content distribution networks such as Akamai, and
state-of-the-art file sharing systems, such as CFS (a peer-to-peer network) and
OceanStore. The older systems are not well-suited for large-scale software dis-
tribution, either from a technical or a user-friendliness point of view. Content
distribution networks are much better suited as they have solved the problems of
the older systems. The latest file sharing systems appear well-suited although
some may trade in some efficiency in exchange for a decentralized architecture.

9.2. OBSERVATIONS

I make the following observations from the research described in this disser-
tation:

1. When designing the interfaces of distributed shared objects one cannot ig-
nore the fact the objects will generally be replicated, nor can one ignore
client-perceived performance and scalability.

2. The availability of services such as the the Globe Location Service and the
Globe Infrastructure Directory Service considerably facilitates the develop-
ment of replication protocols for distributed shared objects.

3. If a large-scale distributed application is to be operated by volunteers, the
amount of system administration work for most volunteers should be low,
and there should be no legal risks to these volunteers for participating in the
application.

4. Distributed shared objects can be easily made secure using a TLS library.

5. A large-scale distributed application with many users may need to protect
itself against abuse by these users as thoroughly as it protects itself against
outside abuse.

6. Modeling an application in terms of services and dependencies between
services is valuable while designing the measures to make a Globe-based
application fault tolerant.

SEC. 9.2 OBSERVATIONS 195

I will present these observations in more detail by going over the four steps
that constituted the design process of the Globe Distribution Network:

1. Making software distribution fast and efficient.

2. Preventing illegal distribution, ensuring the integrity and authenticity of the
software distributed, and anonymous publication and download (i.e., meet-
ing the application-level security requirements).

3. Adding measures against external or internal denial-of-service attacks to the
mechanisms for efficient distribution.

4. Ensuring the software distribution mechanism is available and reliable, and
easy to manage despite failures.

9.2.1. Step 1: Making Distribution Fast and Efficient

Step 1 in the design process of the GDN consisted of the following substeps:

1. Defining a mapping from application domain (free software distribution) to
DSOs. This step is prescribed by the Globe middleware, as all services and
shared data must be implemented by Globe distributed shared objects.

2. Defining the interfaces for each type of DSO which includes defining the
semantics of the methods in these interfaces.

3. Investigating how to efficiently deal with DSOs with large state.

4. Selecting a replication protocol for each type of DSO from the set of known
protocols.

5. As no suitable one was available, a replication protocol was designed.

Observation 1 The design of the GDN provides more evidence that program-
ming with distributed objects is intrinsically different from programming with
objects in a single address space, as most famously noted by Waldo et al. [1994].
In particular, the design shows that the programmer should explicitly take into
account the fact that the objects will be replicated for performance. If this fact is
ignored, it may be impossible to make the application perform as required.

Replication, caching and partitioning are the means by which to achieve good
performance in a distributed system. However, whether or not replication and
caching can be applied successfully depends on the read/write ratio on the repli-
cated or cached data item, as only data items that are updated infrequently can be
efficiently replicated or cached. For the GDN this requirement implies that the

196 SUMMARY AND CONCLUSIONS CHAP. 9

majority of operations on the the distributed shared objects used for distributing
the software should just read the state of the object and not modify it.

The read/write ratio of a distributed shared object depends on the nature of
the object and its interface. The nature of the DSO, that is, roughly speaking,
which entities or relationships in the application domain the DSO represents is
determined by the mapping from application domain to DSOs. As some entities
and relationships in the application domain change more frequently than others,
the read/write ratio of a DSO depends on which entities or relationships it presents.
This implies that the read/write ratios of the DSOs in the application, and thus their
achievable performance, are in part determined in the mapping stage of application
development.

The other factor determining the read/write ratio of a DSO is its interface. The
interface of a DSO is defined in the interface-definition stage of development, the
stage that follows the mapping stage. An interface specifies the functionality of the
DSO. There are different sets of methods and method signatures that provide the
same functionality. However, some sets of methods will result in more updates
to the state of the object than others. Consider, for example, the interface of a
hash-table object. If this interface allows only single elements to be inserted into
the table but frequently multiple elements are inserted in sequence, an interface
with an insert method that allows batches of elements to be inserted results in less
updates to the state of the hash-table object. The choices made in the interface-
definition stage can thus also affect the read/write ratio of DSOs and therefore
their ultimate performance.

In addition to affecting the read/write ratio of objects, the interfaces of a DSO
can also influence end-user performance and scalability. A badly chosen inter-
face can hamper end-user performance, which translates to download speed in
the GDN, as illustrated by the discussion on block sizes in Sec. 9. An interface
that requires a DSO to keep per-client state, for example, about the progress of
a download, affects not only the read/write ratio of the DSO, but may also limit
its scalability in terms of the maximum number of clients supported. The perfor-
mance of DSOs is also determined by their semantics, in particular, as specified
by their consistency model (see Sec. 4.3.4). The stage in which the DSOs’ consis-
tency models are selected are therefore also important for the overall performance
of the distributed application.

Observation 2 In Step 1 we can make a favorable observation about the claim
that Globe provides flexible and comprehensive means to deal with the complex
nonfunctional aspects of large-scale applications. Not only does it allow new repli-
cation protocols to be added, it also makes developing new replication protocols
easier by providing two useful building blocks. The availability of the function-

SEC. 9.2 OBSERVATIONS 197

ality provided by the Globe Location Service and Globe Infrastructure Directory
Service (directing clients to the nearest replica, and discovering available object
servers in a particular network region, respectively) greatly simplified the design
of the replication protocol for the GDN’s DSOs.

9.2.2. Step 2: Meeting Application-Level Security Requirements

It is not easy to ensure that a free-software distribution network is not abused for
the publication of copyrighted or illicit content. The difficulty lies in designing
an efficient security process that prevents or limits this type of abuse. The term
security process was defined as a set of procedures to be followed by the different
parties involved and software measures that support and ensure safety of these
procedures. For the GDN, it was necessary that the security process was efficient,
that is, did not require a lot of work from the parties involved, such as software
publishers and object-server owners. For example, to attract publishers to use the
GDN it is important that software publication via the GDN is relatively easy.

Observation 3 More important, however, for the GDN is that the total effort
involved in administering the GDN is low, as the application does not generate
revenue and will therefore have to be operated by volunteers. I expect that vol-
unteers will not join in running the application if it requires them to invest much
time and effort. This assumption implies that large-scale Internet applications
that depend on volunteers for infrastructure and administration, such as the GDN,
cannot be successfully deployed unless maintenance costs are low. As operational
costs are also an important factor for commercial large-scale applications, a lesson
(re)learned is therefore that a good middleware platform should not only facilitate
development, but should also deliver applications that are manageable at low cost.

Another factor that can influence the success or failure of deploying a large-
scale application on the Internet is legal responsibility. For the GDN, preventing
illegal distribution is necessary, in particular, to protect the people and organiza-
tions who make resources available to the GDN from prosecution. The Internet
is now in a phase where governments and stake holders are imposing regulations
on what goes on in the network and are actually enforcing those regulations (e.g.,
prosecution of hackers and music-sharing services). It is therefore necessary that
a distributed application adheres to the law, especially if that application depends
on volunteers for its infrastructure. The risk is that volunteers may not make their
resources available to the application if there is a legal risk attached. As a result,
it may not be possible to run the application due to lack of resources.

It may thus not be possible to apply replication as a technique for improving
the performance of large-scale distributed applications if they depend on volun-
teers, as these people and organizations do not want to be held accountable for, or

198 SUMMARY AND CONCLUSIONS CHAP. 9

associated with, illegal content or services provided by others. In cases where the
infrastructure is provided by commercial companies such as content-distribution
networks the risk of prosecution for the infrastructure providers does not exist,
as these companies are contracted by the publishers to distribute the content, and
can, most likely, claim the publishers are responsible. Whether or not the GDN’s
measures for keeping illegal content out are legally sufficient to avoid prosecution
remains unclear, as legislation regarding the Internet is still evolving.

9.2.3. Step 3: Countering External and Internal Attacks

After having described how the GDN meets its application-level security require-
ments, the next step in securing the Globe Distribution Network was specifying
how the GDN can be protected against external and internal attacks. Unfortu-
nately, the security facilities of the Globe middleware did not crystallize suffi-
ciently in the period this research was conducted, and I therefore cannot provide a
clear picture of what this step in the development process of the GDN looks like.

Observation 4 Consequently, only a (simple) access control model for the GDN
was defined, giving a high level description of what the legitimate GDN users
are allowed to do, and therefore implicitly defining what outsiders should not be
allowed to do. In addition, for the initial implementation of the GDN I designed
and built a mechanism for disallowing unauthorized updates to a DSO’s state and
securing replica management (described in Sec. 5.5), based on the Transport Level
Security (TLS) protocol. Arguing in favor of Globe is the fact that implementing
this mechanism did not require radical changes to the existing architecture of the
Globe middleware.

Observation 5 A noteworthy observation is that when an application has large
numbers of users, it may need to protect itself against internal abuse as thor-
oughly as it protects itself against outside abuse. For the GDN, designing mea-
sures against internal denial-of-service attacks was relatively straightforward due
to the properties of the application. What again played an important role during
design was finding counter measures that require little system administration to
run, as the GDN as a whole should be easy to maintain (see above).

9.2.4. Step 4: Ensuring Fault Tolerance

Observation 6 Fault tolerance of applications is an area in which the Globe
middleware still leaves much to the application developer. An important improve-
ment would be the addition of a method prescribing how to design fault-tolerant
applications, which is a complex undertaking as the applications are large and

SEC. 9.3 FUTURE WORK 199

fault tolerance should be an application-wide property. The method should prefer-
ably decompose this design problem into smaller problems that can be studied
individually. The approach I took for the GDN was to define a model describing
the dependencies between GDN components, and study the possibilities for mak-
ing each of these components fault tolerant, starting with the components that do
not depend on components other than the physical hardware (i.e., the leaf compo-
nents in the dependency graph). This bottom-up approach worked fairly well for
the GDN.

9.3. FUTURE WORK

To better assess the claim that Globe constitutes a useful middleware plat-
form for developing large-scale applications, more applications will need to be
designed, preferably in two phases. The purpose of designing applications in the
first phase is to gain more experience with designing large-scale applications and
to identify requirements for Globe’s distribution, security, and fault tolerance fa-
cilities. After this phase, the experience gained and the requirements identified
should be translated into (improved) designs for these facilities, and a method, or
at least, guidelines describing how to develop applications using these facilities.
The purpose of the second phase of developing applications is then the verification
of the method and the facilities.

Creating a development method for Globe in addition to providing the nec-
essary facilities is important if Globe is to be a usable tool for large-scale appli-
cation development in addition to being a powerful tool. Such a method should
address the issues identified above: (1) how to translate an application domain to
distributed shared objects in a way that separates functionality from performance
and scalability concerns as much as possible, and that results in DSOs with good
performance, and (2) how to design fault-tolerant applications. The former is
important, because for applications with more complex application domains and
domain-to-DSO mappings than the GDN, it may be hard for a developer to de-
termine which are the mapping and interface choices that result in the required
performance. A first guideline put forward in this dissertation are two principles
for designing interfaces of DSOs: (1) methods of DSOs should be made read-
only whenever possible, and (2) a DSO should not store any per-client state when
possible (see Sec. 4.3.2).

Some of the resource-management solutions designed for protecting the Globe
Distribution Network against denial-of-service attacks are fairly generic (e.g. local
resource management); others are specific to the application domain. For example,
the GDN Quota Service limiting the number of DSOs a user can create depends on

200 SUMMARY AND CONCLUSIONS CHAP. 9

the fact that the rate at which free software is published is rather stable and low.
I speculate that the observation that efficient solutions against denial-of-service
attacks are found in the application domain is one that can be made in other appli-
cations as well, due to the fact that how resources should be allocated is ultimately
prescribed by the application. If this speculation holds true, an interesting chal-
lenge for the developers of the Globe security facilities is to design a framework
that can support application-specific solutions against DoS attacks.

Fault-tolerance facilities for the Globe middleware is an interesting research
area. We should further develop our checkpointing mechanism for object servers
to allow even more application- and object-specific optimizations, and develop
replication protocols that can handle failing and recovering object servers. The
latter encompasses an interesting research topic, specifically, efficient failure de-
tection for distributed shared objects. Two research questions in this area are how
large-scale, wide-area failure detection can be made efficient, and what the role of
application-specific optimizations in this area is.

When designing the security and fault-tolerance facilities, special attention
should be paid to the system-administration effort associated with the facilities.
In particular, failure handling and recovery can require a considerable amount
of work from administrators. An important requirement for the fault tolerance
measures offered by Globe is therefore that they enable an application to auto-
matically repair itself, or at least, recover itself to a consistent state. Mechanisms
for self-repair will, most likely, require application-specific knowledge as input,
or completely application-specific solutions, and is therefore an area in which we
may find more evidence in support of the claim that middleware for large-scale
distributed applications should be highly flexible. Low maintenance effort and
self-repair are currently receiving much attention, for example, in IBM’s research
into autonomic computing [IBM Corporation, 2002].

How to design large-scale applications with low-maintenance cost in mind and
what support the middleware should offer is an important area of future research,
in general. A worthwhile research area related to system administration is evolv-
ability of an application. Evolvability of an application was defined as its ability
to adapt to new functional requirements and changes in usage patterns and in its
operating environment. At the lower end of the evolvability spectrum is, for ex-
ample, the ability to support new, more efficient, replication protocols; at the other
end is the ability to dynamically update the application while it is running. Scal-
ability of an application can be seen as the ability to adapt to new usage patterns
without modification to its design. A large-scale application that is to be durable,
that is, persist for a longer period of time should have some form of evolvability.

With respect to the Globe Distribution Network there are three interesting ar-
eas for future research. The first area is to further develop and test replication

SEC. 9.3 FUTURE WORK 201

protocols for efficient wide-area distribution of data. In particular, we should try
to develop protocols that can take into account network topologies and current
network-link conditions. A challenging subclass of these protocols are protocols
that can deal with untrusted object servers. A notable observation that may be
exploited to achieve better performance is the observation that the flash-crowd
phenomenon is generally caused by people, as the name suggests, and not by au-
tomated procedures. As a result, the region in which flash crowds occur is most
likely the part of the Earth where people are currently active, that is, where is it
daytime or evening. The GDN object servers in other parts of the world and their
wide-area connections might therefore be underutilized. It would be interesting
to investigate whether there is indeed underutilization and whether this dormant
capacity could somehow be used to deal with flash crowds, or even for normal
network load balancing.

The second area of future research into the Globe Distribution Network is
extending the GDN’s measures for preventing illegal distribution of content to
incorporate per-country differences with respect to what constitutes legal content.

Finally, it is interesting to investigate how one can efficiently distribute other
types of content via the GDN. For each type of content we should analyze:

1. How the content can be mapped to distributed shared objects. Content
types such as streaming audio or video can present interesting technical
challenges.

2. How we can achieve fair allocation of resources among the publishers of
that content, some of whom will have bad intentions, without introducing a
lot of system administration.

3. How to prevent illegal distribution of copyrighted instances of the new type
of content. An important factor is again the amount of work for the adminis-
trators. For example, distribution of free digital music via the GDN may not
be practically feasible due to the administrative effort involved. The risk of
abuse for this type of content is high, and would require content moderation
to keep the amount of illegal content low. As content moderation is labour
intensive for the GDN’s administrators, it may not be feasible to distribute
free digital music via the Globe Distribution Network.

202 SUMMARY AND CONCLUSIONS

SAMENVATTING

Een software distributie netwerk
gebaseerd op objecten

Het Internet heeft het leven van miljoenen mensen radicaal veranderd. Onder-
zoekers bezoeken nog zelden de bibliotheken omdat zoveel publicaties on line
beschikbaar zijn. Studenten en bedrijven gebruiken gratis software die niet alleen
verspreid wordt via het Internet, maar ook ontwikkeld is door programmeurs van
over de hele wereld die samenwerken via datzelfde Internet. Steeds meer mensen
kopen boeken, CD’s, concertkaartjes en kleding via het Net. Sommigen doen zelfs
hun bankzaken en aandelentransacties on line.

Veel mensen geloven dat dit slechts het begin is. De afgelopen jaren is er veel
geld geı̈nvesteerd in bedrijven die de volgende succes applicatie voor het Inter-
net proberen te ontwikkelen. Het ontwikkelen van applicaties die in staat zijn 24
uur per dag miljoenen mensen verspreid over de hele wereld te bedienen is echter
lastig. Dit komt vooral door het ontbreken van een goed ontwikkelplatform dat
programmeurs in staat stelt grootschalige, veilige en betrouwbare Internet appli-
caties te bouwen. Het doel van het Globe project is het ontwerpen en bouwen van
zo’n zogeheten middleware platform [Van Steen et al., 1999a].

In dit proefschrift beschrijf ik het ontwerp en de implementatie van een nieu-
we Internet applicatie welke ontwikkeld is met behulp van het Globe middleware
platform, met als doel de ideeën achter, en het ontwerp van, dit middleware plat-
form te valideren. Deze nieuwe applicatie, genaamd het Globe Distribution Net-
work maakt het mogelijk vrij verspreidbare software, zoals de GNU C compiler,
de Apache HTTP server en Linux distributies efficiënt wereldwijd te distribueren.
Met andere woorden, het Globe Distribution Network (afgekort GDN) stelt In-
ternet gebruikers op een efficiënte manier in staat waar en wanneer dan ook een
kopie van de vrije software waarin ze geı̈nteresseerd op te halen.

Hoofdstuk 1 van het proefschrift legt uit dat de moeilijkheid bij het ontwik-

204 SAMENVATTING

kelen van nieuwe grootschalige applicaties niet alleen ligt bij de complexe func-
tionaliteit van de applicatie, maar vooral bij de complexe niet-functionele eisen
waaraan voldaan moet worden. Deze eisen met betrekking tot prestaties, veilig-
heid en fout tolerantie worden geı̈ntroduceerd door de schaal van de applicatie en
de eigenschappen van het Internet.

De manier om het ontwikkelen van Internet applicaties minder lastig te ma-
ken is daarom de ontwikkelaars de juiste middelen te geven om met deze com-
plexe niet-functionele aspecten om te gaan. Dit is de insteek die gekozen is voor
de Globe middleware. De juiste middelen bestaan in de Globe middleware uit:
(1) een model van gedistribueerde objecten, genaamd distributed shared objects,
dat een ontwikkelaar in staat stelt om functionele van niet-functionele aspecten
te scheiden, en dat de flexibiliteit biedt om alle mogelijke protocollen, technie-
ken en strategieën toe te passen teneinde aan de niet-functionele eisen te voldoen,
en (2) een grote bibliotheek met implementaties van protocollen en technieken.
Flexibiliteit met betrekking tot protocollen, technieken en strategieën is van het
allerhoogste belang. Om aan de lastige niet-functionele eisen van een applicatie
van Internet grootte te kunnen voldoen is het namelijk noodzakelijk dat de oplos-
singen gebruikt worden die het meest geschikt zijn voor die applicatie. Om aan
te tonen dat de Globe middleware inderdaad een goed platform is zijn hiermee
een aantal grootschalige applicaties ontwikkeld, waaronder het Globe Distributi-
on Network.

Hoofdstuk 2 identificeert de functionele en niet-functionele eisen voor een
wereldwijd distributie-netwerk voor vrije software, zoals het GDN. Het feit dat
veel mensen vrije software gebruiken en ook produceren en dat deze interesse we-
reldwijd is vereist dat de applicatie efficiënt gebruik maakt van het onderliggende
netwerk en 24 uur per dag beschikbaar is. De laatstgenoemde eis impliceert dat de
applicatie fouttolerant moet zijn en bestand moet zijn tegen aanvallen die pogen
de applicatie buiten werking te stellen. Het domein en de aard van de applicatie
maken het GDN ook een aantrekkelijk doelwit voor andere soorten aanvallen. Het
is zeer waarschijnlijk dat men zal proberen het GDN te gebruiken als een handig
distributie-kanaal voor de illegale verspreiding van auteursrechtelijk beschermde
werken, zoals commerciële software of digitale muziek. Verder bestaat er het ri-
sico dat kwaadwillende personen zullen proberen de vrije software die verspreid
wordt te wijzigen om zo toegang te kunnen krijgen tot de computers waarop deze
software gedraaid wordt. Een distributie-netwerk als het GDN dient maatregelen
tegen te nemen tegen dit onrechtmatig gebruik.

Na de presentatie van de noodzakelijke achtergrondinformatie over de Globe
middleware in hoofdstuk 3 gaan we in de hoofdstukken 4, 5, en 6 in op hoe het
Globe Distribution Network aan de geı̈dentificeerde eisen gaat voldoen. Hoofd-
stuk 4 beschrijft hoe de distributie van software efficiënt gemaakt wordt, dat wil

SAMENVATTING 205

zeggen, hoe het GDN ervoor zorgt dat bij het ophalen van de software door
cliënten er weinig gebruikt gemaakt wordt van gedeelde lange-afstandsverbind-
ingen waarop de bandbreedte vaak beperkt is. Om dit doel te bereiken kapselt
het GDN de vrije software in Globe distributed shared objects (DSO’s) welke
een replicatie-protocol gebruiken die het object dicht bij zijn cliënten repliceert.
Om precies te zijn wordt elke revisie van een software pakket in zijn eigen Re-
vision DSO geplaatst. Om grote collecties van software, zoals Linux distributies,
te publiceren wordt gebruikt gemaakt van DistributionArchive DSO’s welke een
specifieke variant van een revisie van de gehele software collectie in één bepaald
bestandsformaat bevatten.

Het replicatie-protocol van Revision en DistributionArchive DSO’s houdt bij
hoe vaak en waarvandaan de software in het object opgehaald wordt. Iedere keer
dat een cliënt software ophaalt wordt er geregistreerd in welk autonomous sys-
tem de cliënt zich bevindt. De DSO’s gebruiken deze informatie om periodiek
hun replicatie-scenario te herzien, dat wil zeggen, het aantal replica’s van het
DSO en hun plaats in het Internet. Als het huidige replicatie-scenario van het
DSO niet efficiënt is, d.w.z., als het ophalen van de software uit het object teveel
bandbreedte gebruikt op lange-afstandsverbindingen, dan worden er extra repli-
ca’s gecreëerd in de autonomous systems van waaruit de software vaak opgehaald
wordt en worden onderbenutte replica’s verwijderd. Een DSO past ook automa-
tisch zijn replicatie-scenario aan als er een plotselinge scherpe toename is in het
aantal keren dat de software opgehaald wordt. Dit is een veel voorkomend feno-
meen bij het uitkomen van een nieuwe versie van een populair software pakket
(het zogenaamde flash crowd fenomeen).

Hoe het Globe Distribution Network aan de gestelde veiligheidseisen voldoet
wordt besproken in hoofdstuk 5. Het GDN heeft een nieuwe aanpak voor het pro-
bleem van de illegale verspreiding van beschermde of verboden werken. In plaats
van de inhoud van bestanden te controleren vóór deze op het netwerk toegelaten
worden (wat hoe dan ook nagenoeg onmogelijk is), maakt het GDN bestanden
slechts traceerbaar naar degene die ze gepubliceerd heeft. Wanneer er illegale in-
formatie aangetroffen wordt in een bestand wordt de uitgever van het bestand per-
manent de toegang tot het distributie-netwerk ontzegd en het bestand verwijderd.
Het voordeel van deze aanpak is dat de hoeveelheid werk voor de beheerders van
het distributie-netwerk klein is als er weinig illegale publicaties zijn, een belang-
rijke eigenschap voor een distributie-netwerk dat geen inkomsten genereert. De
architectuur van het GDN ondersteunt ook andere manieren om illegale distributie
tegen te gaan.

Het vaststellen van de authenticiteit en integriteit van de software die via het
GDN verspreid wordt, wordt gezien als een taak die door de eindgebruiker in
samenwerking met de auteur van de software uitgevoerd dient te worden, zon-

206 SAMENVATTING

der tussenkomst van het GDN. Het GDN beschermt zichzelf tegen aanvallen van
buitenaf door het handhaven van een simpel toegangsbeheersingsmodel (access
control model). Hoofdstuk 5 identificeert ook mogelijke aanvallen tegen de be-
schikbaarheid van het GDN door ingewijden (software-uitgevers en beheerders
van computers gebruikt door het GDN) en hoe deze aanvallen afgeslagen kunnen
worden. Dit hoofdstuk beschrijft verder een eerste implementatie van de veilig-
heidsmaatregelen ter voorkoming van illegale verspreiding en verstoringen van
buitenaf.

Hoofdstuk 6 beschrijft hoe het GDN in hoge mate beschikbaar blijft, betrouw-
baar gemaakt wordt en beheersbaar blijft ondanks het falen van computers, net-
werken en GDN onderdelen. Een grote mate van beschikbaarheid en betrouwbaar-
heid worden bereikt door een combinatie van fouttolerante servers, het benutten
van het feit dat de distributed shared objects die de software bevatten reeds ge-
repliceerd zijn t.b.v. prestatieverbetering, en het expliciet introduceren van extra
replica’s t.b.v. beschikbaarheid. Beheersbaarheid wordt voornamelijk bereikt door
het geven van sterke garanties met betrekking tot het resultaat van een operatie in
het GDN wanneer er fouten optreden. In het bijzonder garandeert het GDN dat
operaties atomic with respect to exceptions zijn, dat wil zeggen, dat een operatie
of slaagt of faalt, waarbij in het laatste geval de toestand van de applicatie niet
veranderd wordt.

Om de haalbaarheid van het ontwerp van het Globe Distribution Network aan
te tonen is er een eerste implementatie van de applicatie gebouwd. Hoofdstuk 7
beschrijft een aantal kleine experimenten die uitgevoerd zijn met deze implemen-
tatie. Deze experimenten zijn gericht op het meten van de prestaties van het
GDN in vergelijking met software-distributie via het HyperText Transfer Proto-
col (HTTP) [Fielding et al., 1999]. Uit deze experimenten bleek dat de prestaties
van een GDN server slechts 10% slechter waren dan die van een Apache HTTP
server [The Apache Software Foundation, 2002], of minder, bij grote aantallen
cliënten. Uit een experiment over het Internet waarbij software opgehaald werd
m.b.v. het GDN en HTTP bleek dat software ophalen via het GDN vooral lang-
zamer is door de aanzienlijke tijd die nodig is om de symbolische naam van een
distributed shared object te vertalen naar een contactadres van de dichtstbijzijnde
replica en het creëren van een proxy van het DSO dat verbinding legt met deze re-
plica. Deze acties kostten aanzienlijk veel tijd, danwel van nature, danwel omdat
de eerste implementatie van de applicatie en de middleware nog niet compleet en
volledig geoptimaliseerd zijn. De voordelen van het GDN over een puur op HTTP
gebaseerde oplossing zijn dat het GDN automatisch de dichtsbijzijnde replica lo-
kaliseert, zorgt voor automatische omschakeling naar een andere replica bij fouten
en dat het sterke consistentie van replicas garandeert.

Hoofdstuk 8 bediscussiëert de ontwerpen van andere system welke gebruikt

SAMENVATTING 207

worden of kunnen worden voor wereldwijde verspreiding van software. We kijken
met name naar oudere systemen zoals HTTP, FTP en AFS [Howard et al., 1988],
moderne content distribution networks zoals Akamai en moderne bestanduitwis-
selingssystemen zoals CFS [Dabek et al., 2001b] en OceanStore [Rhea et al., 2001].
De oudere systemen zijn minder geschikt voor grootschalige software-distributie,
uit technisch danwel uit gebruiksvriendelijkheids oogpunt. Content distribution
networks zijn veel beter geschikt aangezien deze de problemen van de oudere sys-
temen opgelost hebben. De nieuwste bestanduitwisselingssystemen lijken goed
toegerust voor de distributie van vrije software, alhoewel sommigen mogelijk eni-
ge efficiëntie inruilen voor een gedecentraliseerde architectuur.

Hoofdstuk 9 bevat een samenvatting van de dissertatie, beschrijft mijn obser-
vaties over het ontwerp en de implementatie van het Globe Distribution Network
en identificeert een aantal onderwerpen voor toekomstig onderzoek. Het onder-
zoek naar het GDN leidt tot acht belangrijke observaties:

1. Bij het ontwerpen van de interfaces van distributed shared objects kan men
niet negeren dat objecten over het algemeen gerepliceerd zullen worden en
moet men ook rekening houden met schaalbaarheid en de prestaties zoals
ervaren door de gebruiker.

2. De beschikbaarheid van diensten als de Globe Location Service en de Glo-
be Infrastructure Directory Service vereenvoudigen het ontwikkelen van
replicatie-protocollen voor distributed shared objects aanzienlijk.

3. Wil men een grootschalige gedistribueerde applicatie laten draaien en behe-
ren door vrijwilligers dan dient van de meeste vrijwilligers deze systeembe-
heertaak weinig werk te vereisen. Tevens dienen er voor deze vrijwilligers
geen wettelijke risico’s verbonden te zijn aan hun medewerking aan zo’n
applicatie.

4. Distributed shared objects kunnen eenvoudig beveiligd worden door middel
van een Transport Layer Security [Dierks and Allen, 1999] bibliotheek.

5. Een grootschalige gedistribueerde applicatie met veel gebruikers moet zich
mogelijk net zo goed beschermen tegen zijn eigen gebruikers als het zich
beschermt tegen misbruik van buitenaf.

6. Het modelleren van een applicatie in termen van diensten en afhankelijkhe-
den tussen diensten is waardevol bij het ontwerpen van maatregelen om een
op Globe gebaseerde applicatie fouttolerant te maken.

BIBLIOGRAPHY

4C Entity LLC (2000). Content Protection System Architecture: A Comprehensive
Framework for Content Protection. http://www.4centity.com/data/tech/cpsa/cpsa081.pdf.
revision 0.81.

Adve, S. V. and Gharachorloo, K. (1996). Shared Memory Consistency Models: A
Tutorial . IEEE Computer, 29(12):66–76.

Akamai Technologies, Inc. (2000). Annual Report to the Securities and Exchange Com-
mission (FORM 10-K). http://www.akamai.com/en/html/investors/10k_2000.html.

Akamai Technologies, Inc. (2002). EdgeSuite. http://www.akamai.com/.

Allock, W., Bester, J., Bresnahan, J., Chervenak, A., Liming, L., and Tuecke,
S. (2001). Internet Draft: GridFTP: Protocol Extensions to FTP for the Grid.
http://www-fp.mcs.anl.gov/dsl/GridFTP-Protocol-RFC-Draft.pdf. (work in progress).

Anonymizer.com (2001). Anonymous Web Surfing. http://www.anonymizer.com/.

Bacon, J., Moody, K., Bates, J., Hayton, R., Ma, C., McNeil, A., Seidel, O., and Spiteri,
M. (2000). Generic Support for Distributed Applications. IEEE Computer, 33(3):2–10.

Bailey, E. (1998). Maximum RPM – Taking the Red Hat Package Manager to the Limit.
Red Hat Press, Durham, NC, USA, 1.1 edition.

Bakker, A., Amade, E., Ballintijn, G., Kuz, I., Verkaik, P., Van der Wijk, I., Van Steen,
M., and Tanenbaum, A. (2000). The Globe Distribution Network. In Proceedings 2000
USENIX Annual Technical Conference (FREENIX track), pages 141–152, San Diego,
CA, USA.

Bakker, A., Kuz, I., Van Steen, M., Tanenbaum, A., and Verkaik, P. (2002). Global
Distribution of Free Software (and other things). In Proceedings System Administration
and Networking Conference (SANE 2002), Maastricht, The Netherlands.

Bakker, A., Van Steen, M., and Tanenbaum, A. (1998). Replicated Invocations in Wide-
Area Systems. In Proceedings of the 8th ACM SIGOPS European Workshop, Sintra,
Portugal.

Bakker, A., Van Steen, M., and Tanenbaum, A. (1999). From Remote Objects to Physi-
cally Distributed Objects. In Proceedings of the 7th IEEE Workshop on Future Trends in
Distributed Computing Systems (FTDCS’99), pages 47–52, Cape Town, South Africa.
IEEE Computer Society.

http://www.4centity.com/data/tech/cpsa/cpsa081.pdf
http://www.akamai.com/en/html/investors/10k_2000.html
http://www.akamai.com/
http://www-fp.mcs.anl.gov/dsl/GridFTP-Protocol-RFC-Draft.pdf
http://www.anonymizer.com/

210 BIBLIOGRAPHY

Bakker, A., Van Steen, M., and Tanenbaum, A. (2001a). A Distribution Network for Free
Software. Technical Report IR-485, Division of Mathematics and Computer Science,
Faculty of Sciences, Vrije Universiteit Amsterdam.

Bakker, A., Van Steen, M., and Tanenbaum, A. (2001b). A Law-Abiding Peer-to-Peer
Network for Free-Software Distribution. In Proceedings IEEE Symposium on Network
Computing and Applications (NCA’01), Cambridge, MA. IEEE Computer Society.

Bal, H., Kaashoek, M., Tanenbaum, A., and Jansen, J. (1992). Replication Techniques
for Speeding up Parallel Applications on Distributed Systems. Concurrency Practice &
Experience, 4(5):337–355.

Ballintijn, G., Van Steen, M., and Tanenbaum, A. (1999). Simple Crash Recovery in a
Wide-Area Location Service. In Proceedings 12th International Conference on Parallel
and Distributed Computing Systems, pages 87–93, Fort Lauderdale, FL, USA.

Ballintijn, G., Van Steen, M., and Tanenbaum, A. (2000). Scalable Naming in Global
Middleware. In Proceedings 13th International Conference on Parallel and Distributed
Computing Systems (PDCS-2000), pages 624–631, Las Vegas, NV, USA.

Ballintijn, G., Van Steen, M., and Tanenbaum, A. (2001). Scalable User-Friendly Re-
source Names. IEEE Internet Computing, 5(5):20–27.

Bates, T., Gerich, E., Joncheray, L., Jouanigot, J.-M., Karrenberg, D., Terpstra, M., and
Yu, J. (1995). RFC 1786: Representation of IP Routing Policies in a Routing Registry.

Bea Systems, Expersoft Corporation, GDM Fokus, Hewlett-Packard, Inprise, IBM,
IONA Technologies, Objective Interface Systems, Object Oriented Concepts, Sun Mi-
crosystems, Adiron LLC, and Humboldt-Universität zu Berlin (1999). Portable Intercep-
tors: Joint Revised Submission. OMG Document orbos/99-12-02, Object Management
Group, Framingham, MA, USA.

Birman, K. P. and Van Renesse, R., editors (1994). Reliable Distributed Computing with
the Isis Toolkit. IEEE Computer Society Press, Los Alamitos, CA, USA.

Birrell, A., Nelson, G., Owicki, S., and Wobber, E. (1993). Network Objects. In Pro-
ceedings 14th ACM Symposium on Operating Systems Principles (SOSP’93), pages 217–
230, Asheville, NC, USA.

Burk, D. (2001). Copyrightable Functions and Patentable Speech. Communications of
the ACM, 44(2):69–75.

CAIDA (2001). NetGeo - The Internet Geographic Database.
http://www.caida.org/tools/utilities/netgeo/.

Carzaniga, A., Rosenblum, D., and Wolf, A. (2000). Achieving Expressiveness and
Scalability in an Internet-Scale Event Notification Service. In Proceedings 19th ACM
Symposium on Principles of Distributed Computing (PODC’2000), Portland, OR, USA.

Cederqvist et al. (2001). Version Management with CVS.
http://www.cvshome.org/docs/index.html.

Chappell, D. (1996). Understanding ActiveX and OLE. Microsoft Press, Redmond, WA,
USA.

http://www.caida.org/tools/utilities/netgeo/
http://www.cvshome.org/docs/index.html

BIBLIOGRAPHY 211

Chen, P., Lee, E., Gibson, G., Katz, R., and Patterson, D. (1994). RAID: High-
Performance, Reliable Secondary Storage. ACM Computing Surveys, 26(2):145–185.

Clarke, I., Hong, T., Miller, S., Sandberg, O., and Wiley, B. (2002). Protecting Free
Expression Online with Freenet. IEEE Internet Computing, 6(1):40–49.

Clarke, I., Sandberg, O., Wiley, B., and Hong, T. (2001). Freenet: A Distributed Anony-
mous Information Storage and Retrieval System. In Federrath, H., editor, Designing Pri-
vacy Enhancing Technologies: International Workshop on Design Issues in Anonymity
and Unobservability, number 2009 in Lecture Notes in Computer Science. Springer Ver-
lag, Berlin, Germany.

Conradi, R. and Westfechtel, B. (1998). Version Models for Software Configuration
Management. ACM Computing Surveys, 30(2):232–282.

Cornelli, F., Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., and Samarati, P.
(2002). Choosing Reputable Servents in a P2P Network. In Proceedings 11th Interna-
tional World Wide Web Conference, Honolulu, HI, USA.

Cristian, F. (1991). Understanding Fault-Tolerant Distributed Systems. Communications
of the ACM, 34(2):56–78.

Czajkowski, G. and von Eicken, T. (1998). JRes: A Resource Accounting Interface
for Java. In Proceedings ACM Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA’98), pages 21–35, Vancouver, Canada.

Dabek, F., Brunskill, E., Kaashoek, M., Karger, D., Morris, R., Stoica, I., and Balakrish-
nan, H. (2001a). Building Peer-to-Peer Systems With Chord, a Distributed Lookup Ser-
vice. In Proceedings of the 8th Workshop on Hot Topics in Operating Systems (HotOS-
VIII), Schloss Elmau, Germany. IEEE Computer Society.

Dabek, F., Kaashoek, M., Karger, D., Morris, R., and Stoica, I. (2001b). Wide-area Co-
operative Storage With CFS. In Proceedings of the 18th ACM Symposium on Operating
System Principles (SOSP’01), Chateau Lake Louise, Banff, Canada.

Dailey Paulson, L. (2001). Hacker Lauches Cyberattack from Security Site. IEEE Com-
puter, 34(4):23.

Dasgupta, P., LeBlanc, R., Ahamad, M., and Ramachandran, U. (1991). The Clouds
Distributed Operating System. IEEE Computer, 24(11):34–44.

Davis, R. (2001). The Digital Dilemma. Communications of the ACM, 44(2):77–83.

Deering, S., Estrin, D., Farinacci, D., Jacobson, V., Liu, C.-G., and Wei, L. (1996).
The PIM Architecture for Wide-Area Multicast Routing. IEEE/ACM Transactions on
Networking, 4(2):153–162.

Dierks, T. and Allen, C. (1999). RFC 2246: The TLS Protocol Version 1.0.

Druschel, P. and Rowstron, A. (2001). PAST: A Large-Scale, Persistent Peer-to-Peer
Storage Utility. In Proceedings of the 8th Workshop on Hot Topics in Operating Systems
(HotOS-VIII), Schloss Elmau, Germany. IEEE Computer Society.

212 BIBLIOGRAPHY

Dwork, C. and Noar, M. (1992). Pricing via Processing or Combating Junk Mail. In
Brickell, E., editor, Advances in Cryptology — Crypto’92, volume 740 of Lecture Notes
in Computer Science, pages 139–147. Springer-Verlag.

Eddon, G. and Eddon, H. (1998). Inside Distributed COM. Microsoft Press, Redmond,
WA, USA.

Edwards, J. (2000). Building the Optical-Networking Infrastructure. IEEE Computer,
33(3):20–23.

Eliassen, F., Andersen, A. Blair, G., Costa, F., Coulson, G., Goebel, V., Hansen, Ø.,
Kristensen, T., Plagemann, T., Rafaelsen, H., Saikosi, K., and Yu, W. (1999). Next Gen-
eration Middleware: Requirements, Architecture, and Prototypes. In Proceedings of the
7th IEEE Workshop on Future Trends in Distributed Computing Systems (FTDCS’99),
pages 60–65, Cape Town, South Africa.

Exodus (2002). 2Deliver Web Service. http://www.exodus.net/solutions/2deliver/.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and Berners-Lee,
T. (1999). RFC 2616: Hypertext Transfer Protocol – HTTP/1.1.

Foster, I. and Kesselman, C. (1997). Globus: A Metacomputing Infrastructure Toolkit.
International Journal of Supercomputer Applications and High Performance Comput-
ing, 11(2):115–128.

Foster, I. and Kesselman, C. (1998). The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, San Francisco, CA, USA.

Free Software Foundation, Inc. (1991). GNU General Public License Version 2.
http://www.fsf.org/licenses/gpl.txt.

Fu, K., Kaashoek, M., and Mazières, D. (2000). Fast and Secure Distributed Read-Only
File System. In Proceedings 4th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 2000), San Diego, CA, USA.

Gadde, S., Chase, J., and Rabinovich, M. (1998). A Taste of Crispy Squid. In Proceed-
ings Workshop on Internet Server Performance (WISP98), Madison, WI, USA.

Goa, J., Chen, C., Toyoshima, Y., and Leung, D. (1999). Engineering on the Internet for
Global Software Production. IEEE Computer, 32(5):38–47.

Goldschlag, D., Reed, M., and Syverson, P. (1999). Onion Routing for Anonymous and
Private Internet Connections. Communications of the ACM, 42(2):39–41.

Gong, L. (1999). Inside Java 2 Platform Security (Architecture, API Design, and Imple-
mentation). The Java Series. Addison-Wesley, Reading, MA, USA.

Grid Forum (2001). Grid Forum Account Management Working Group.
http://www.gridforum.org/groups/wg.html#AM.

Grimshaw, A., Ferrari, A., Knabe, F., and Humphrey, M. (1999). Wide-Area Computing:
Resource Sharing on a Large Scale. IEEE Computer, 32(5):29–37.

http://www.exodus.net/solutions/2deliver/
http://www.fsf.org/licenses/gpl.txt
http://www.gridforum.org/groups/wg.html#AM

BIBLIOGRAPHY 213

Hänle, C. and Tanenbaum, A. (2000). A Security Architecture for Distributed Shared
Objects. In Proceedings 6th Annual ASCI Conference, pages 350–357, Lommel, Bel-
gium. Advanced School for Computing and Imaging, Delft, The Netherlands.

Hayton, R., Herbert, A., and Donaldson, D. (1998). Flexinet: A Flexible, Component-
Oriented Middleware System. In Proceedings 8th ACM SIGOPS European Workshop,
pages 17–24, Sintra, Portugal.

Homburg, P. (2001). The Architecture of a Worldwide Distributed System. PhD thesis,
Faculty of Sciences, Division Mathematics and Computer Science, Vrije Universiteit,
Amsterdam, The Netherlands.

Housley, R., Ford, W., Polk, W., and Solo, D. (1999). RFC 2459: Internet X.509 Public
Key Infrastructure: Certificate and CRL Profile.

Howard, J., Kazar, M., Menees, S., Nichols, D., Satyanarayanan, M., Sidebotham, R.,
and West, M. (1988). Scale and Performance in a Distributed File System. ACM Trans-
actions on Computer Systems, 6(1):51–81.

Ibiblio (2001). Linux Archives: How to Submit.
http://www.ibiblio.org/pub/linux/howtosubmit.html.

IBM Corporation (2002). Autonomic Computing.
http://www.research.ibm.com/autonomic/.

IDC (2000). Linux Is Red Hot in the Server Market.
http://www.idc.com/Hardware/press/PR/ES/ES041000pr.stm. Press Release.

IDC (2001). Microsoft Strengthens Its Grip, Narrowing the Window of Opportunity for
Other Operating Environments. http://www.idc.com/software/press/PR/SW022801pr.stm.
Press Release.

Internet Software Consortium (2001). Internet Domain Survey.
http://www.isc.org/ds/WWW-200101/index.html.

ISO (1995). Open Distributed Processing - Reference Model - Part 3: Architecture.
International Standard / ITU-T Recommendation 10746-3 / X.903, ISO/IEC.

Jalote, P. (1989). Resilient Objects in Broadcast Networks. IEEE Transactions on Soft-
ware Engineering, 15(1):68–72.

Johnson, K., Carr, J., Day, M., and Kaashoek, M. (2001). The Measured Performance
of Content Distribution Networks. Computer Communications, 24(2):202–206.

Jul, E., Levy, H., Hutchinson, N., and Black, A. (1988). Fine-Grained Mobility in the
Emerald System. ACM Transactions on Computer Systems, 6(1):109–133.

Jung, J., Krishnamurthy, B., and Rabinovich, M. (2002). Flash Crowds and Denial
of Service Attacks: Characterization and Implications for CDNs and Web Sites. In
Proceedings 11th International World Wide Web Conference (WWW2002), Honolulu,
HI, USA. ACM Press.

Katz, R. H. (1990). Toward a Unified Framework for Version Modeling in Engineering
Databases. ACM Computing Surveys, 22(4):375–408.

http://www.ibiblio.org/pub/linux/howtosubmit.html
http://www.research.ibm.com/autonomic/
http://www.idc.com/Hardware/press/PR/ES/ES041000pr.stm
http://www.idc.com/software/press/PR/SW022801pr.stm
http://www.isc.org/ds/WWW-200101/index.html

214 BIBLIOGRAPHY

Ketema, J. (2000). Towards a Fault-Tolerant Globe. Master’s thesis, Faculty of Sciences,
Vrije Universiteit Amsterdam, The Netherlands.

Kiczales, G., Rivières, J., and Bobrow, D. (1991). The Art of the Metaobject Protocol.
MIT Press, Cambridge, MA, USA.

Krishnamurthy, B., Wills, C., and Zhang, Y. (2001). On the Use and Performance of
Content Distribution Networks. In Proceedings ACM SIGCOMM Internet Measurement
Workshop (IMW’2001), San Francisco, CA, USA.

Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gummadi, R.,
Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., and Zhao, B. (2000). OceanStore:
An Architecture for Global-Scale Persistent Storage. In Proceedings 9th International
Conference on Architectural Support for Programming Languages and Operatings Sys-
tems (ASPLOS’2000), Cambridge, MA, USA. ACM Press.

Kuz, I., Van Steen, M., and Sips, H. (2002). The Globe Infrastructure Directory Ser-
vice. Computer Communications, 25(9):835–845. Elsevier Science, Amsterdam, The
Netherlands.

Kuz, I., Van Steen, M., and Tanenbaum, A. (2001). The Globe Infrastructure Direc-
tory Service. Technical Report IR-484, Faculty of Sciences, Division Mathematics and
Computer Science, Vrije Universiteit, Amsterdam, The Netherlands.

Lamport, L. (1979). How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers, C-28(9):690–691.

Leighton, F. and Lewin, D. (2000). Global Hosting System. United States Patent
6,108,703.

Leiwo, J., Hänle, C., Homburg, P., Gamage, C., and Tanenbaum, A. (1999). A Security
Design for a Wide-area Distributed System. In Proceedings 2nd International Confer-
ence on Information Security and Cryptology (ICISC’99), pages 236–256, Seoul, South
Korea. (Lecture Notes in Computer Science #1787).

Leiwo, J., Hänle, C., Homburg, P., and Tanenbaum, A. (2000). Disallowing Unau-
thorized State Updates in Distributed Shared Objects. In Qing, S. and Eloff, J., edi-
tors, Proceedings IFIP TC-11 16th Annual Working Conference on Information Security
(SEC2000), Beijing, PRC. Kluwer Academic Publishers.

Lethin, R. (2001). Reputation. In Oram, A., editor, Peer-to-Peer: Harnessing the Power
of Disruptive Techn ologies, chapter 17, pages 341–353. O’Reilly and Associates, Se-
bastopol, CA, USA.

Li, K. and Hudak, P. (1989). Memory Coherence in Shared Virtual Memory Systems.
ACM Transactions on Computer Systems, 7(4):321–359.

Liang, S. and Bracha, G. (1998). Dynamic Class Loading in the Java Virtual Machine. In
Proceedings ACM Conference on Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA’98), pages 26–44, Vancouver, Canada.

Likins, A. (2002). System Tuning Info for Linux Servers.
http://people.redhat.com/alikins/system_tuning.html.

http://people.redhat.com/alikins/system_tuning.html

BIBLIOGRAPHY 215

Loshin, P., editor (2000). Big Book of Lightweight Directory Access Protocol (LDAP)
RFCs. Morgan Kaufmann, San Francisco, CA, USA.

Macedonia, M. (2000). Distributed File Sharing: Barbarians at the Gates? IEEE Com-
puter, 33(8):99–101.

Makpangou, M., Gourhant, Y., Le Narzul, J.-P., and Shapiro, M. (1994). Fragmented
Objects for Distributed Abstractions. In Readings in Distributed Computing Systems.
IEEE Computer Society.

Malda, R. (1999). Slashdot Moderation. http://slashdot.org/moderation.shtml.

Mao, Z., Cranor, C., Douglis, F., Rabinovich, M., Spatscheck, O., and Wang, J. (2002). A
Precise and Efficient Evaluation of the Proximity Between Web Clients and Their Local
DNS Servers. In Proceedings 2002 USENIX Annual Technical Conference, Monterey,
CA, USA.

Martin, D., Smith, R., Brittain, M., Fetch, I., and Wu, H. (2001). The Privacy Practices
of Web-Browser Extensions. Communications of the ACM, 44(2):45–50.

McCarty, B. (1999). Learning Debian GNU/Linux. O’Reilly and Associates, Sebastopol,
CA, USA.

Microsoft Corporation (2001a). Software Management System.
http://www.microsoft.com/smsmgmt/.

Microsoft Corporation (2001b). Visual SourceSafe. http://msdn.microsoft.com/ssafe/.

Mitchell, J., Gibbons, J., Hamilton, G., Kessler, P., Khalidi, Y., Kougiouris, P., Madany,
P., Nelson, M., Powell, M., and Radia, S. (1994). An Overview of the Spring System. In
Proceedings of the IEEE International Computer Conference (COMPCON’94), pages
122–131, San Francisco, CA, USA.

Mockapetris, P. (1987). RFC 1034: Domain Names – Concepts and Facilities.

Moore, D., Periakaruppan, R., Donohoe, J., and Claffy, K. (2000). Where in the World is
netgeo.caida.org? In Proceedings 10th Annual Internet Society Conference, Yokohama,
Japan.

Neuman, B. C. (1994). Scale in Distributed Systems. In Casavant, T. and Singhal, M.,
editors, Readings in Distributed Computing Systems. IEEE Computer Society.

Nielsen, J. (1995). Multimedia and Hypertext: The Internet and Beyond. AP Profes-
sional, Boston, MA, USA.

Object Management Group (2001). The Common Object Request Broker: Architecture
and Specification. Revision 2.4.2. OMG Document formal/2001-02-01, Object Manage-
ment Group, Framingham, MA, USA.

Oram, A., editor (2001). Peer-to-Peer: Harnessing the Power of Disruptive Technolo-
gies. O’Reilly and Associates, Sebastopol, CA, USA.

Partridge, C. (1994). Gigabit Networking. Addison-Wesley, Reading, MA, USA.

http://slashdot.org/moderation.shtml
http://www.microsoft.com/smsmgmt/
http://msdn.microsoft.com/ssafe/

216 BIBLIOGRAPHY

Penfield Jackson, T. (1998). Findings of Facts.
http://www.microsoft.com/presspass/trial/c-fof/fof.asp. United States District Court
for the District of Columbia – Civil Action No. 98-1232/98-1233: Antitrust case against
Microsoft Corporation.

Pierre, G., Kuz, I., Van Steen, M., and Tanenbaum, A. (2000). Differentiated Strategies
for Replicating Web Documents. Computer Communications, 24(2):232–240. Elsevier
Science, Amsterdam, The Netherlands.

Pierre, G. and Van Steen, M. (2001). Globule: a Platform for Self-Replicating Web
Documents. In Proceedings 6th International Conference on Protocols for Multimedia
Systems, Enschede, The Netherlands.

Pierre, G., Van Steen, M., and Tanenbaum, A. (2001). Self-Replicating Web Documents.
Technical Report IR-486, Faculty of Sciences, Division Mathematics and Computer Sci-
ence, Vrije Universiteit, Amsterdam, The Netherlands.

Pitoura, E. and Samaras, G. (2001). Locating Objects in Mobile Computing. IEEE
Transactions on Kowledge and Data Engineering, 13(4).

Plank, J. (1997). A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-like
Systems. Software Practice and Experience, 27(9):995–1012.

Plank, J., Beck, M., Kingsley, G., and Li, K. (1995). Libckpt: Transparent Check-
pointing under Unix. In Proceedings USENIX Winter 1995 Technical Conference, pages
213–223, New Orleans, LA, USA.

Rabinovich, M. and Aggarwal, A. (1999). RaDaR: A Scalable Architecture for a
Global Web Hosting Service. In Mendelzon, A., editor, Proceedings of the 8th Inter-
national World Wide Web Conference, Toronto, Canada. Elsevier Science, Amsterdam,
The Netherlands.

Rabinovich, M., Chase, J., and Gadde, S. (1998). . Not All Hits Are Created Equal: Co-
operative Proxy Caching Over a Wide-Area Network. In Proceedings 3rd International
WWW Caching Workshop, Manchester, UK.

Rabinovich, M., Rabinovich, I., Rajaraman, R., and Aggarwal, A. (1999). A Dynamic
Object Replication and Migration Protocol for an Internet Hosting Service. In Proceed-
ings International Conference on Distributed Computing Systems (ICDCS’99), Austin,
TX, USA. IEEE Computer Society.

Rabinovich, M. and Spatscheck, O. (2001). Web Caching and Replication. Addison
Wesley Professional, Reading, MA, USA.

Raymond, E. (2000). The Cathedral and the Bazaar Giving the
original Cathedral and Bazaar paper at Linux Kongress, May 1997.
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/.

Reiter, M. and Rubin, A. (1999). Anonymous Web Transactions with Crowds. Commu-
nications of the ACM, 42(2):32–38.

Réseaux IP Européens (2001). RIPE Whois Database. http://www.ripe.net/whois.

http://www.microsoft.com/presspass/trial/c-fof/fof.asp
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/
http://www.ripe.net/whois

BIBLIOGRAPHY 217

Rhea, S., Wells, C., Eaton, P., Geels, D., Zhao, B., Weatherspoon, H., and Kubiatowicz,
J. (2001). Maintenance-Free Global Data Storage. IEEE Internet Computing, 5(5):40–
49.

Riggs, R., Waldo, J., Wollrath, A., and Bharat, K. (1996). Pickling State in the Javatm

System. In Proceedings 2nd USENIX Conference on Object-Oriented Technologies
(COOTS’96), Toronto, Ontario, Canada.

Robinson, S. (1999). CD Software Is Said to Monitor
Users’ Listening Habits. The New York Times on the Web.
http://www.nytimes.com/library/tech/99/11/biztech/articles/01real.html.

Rodriquez, P. and Sibal, S. (2000). SPREAD: Scalable Platform for Reliable and Effi-
cient Automated Distribution. In Proceedings 9th International World Wide Web Con-
ference, Amsterdam, The Netherlands.

Rogerson, D. (1997). Inside COM. Microsoft Press, Redmond, WA, USA.

Rowstron, A. and Druschel, P. (2001a). Pastry: Scalable, Decentralized Object Location
and Routing for Large-Scale Peer-to-Peer Systems. In Proceedings IFIP/ACM Inter-
national Conference on Distributed Systems Platforms (Middleware 2001), Heidelberg,
Germany.

Rowstron, A. and Druschel, P. (2001b). Storage Management and Caching in PAST,
A Large-Scale Persistent Peer-to-Peer Storage Utility. In Proceedings of the 18th ACM
Symposium on Operating System Principles (SOSP’01), Chateau Lake Louise, Banff,
Canada.

Rumbaugh, J., Jacbobson, I., and Booch, G. (1999). The Unified Modeling Language
Reference Manual. Addison Wesley Longman, Reading, MA, USA.

Saltzer, J., Reed, D., and Clark, D. (1984). End-To-End Arguments in System Design.
ACM Transactions on Computer Systems, 2(4):277–288.

Samuelson, P. (1997). The Never Ending Struggle For Balance. Communications of the
ACM, 40(5):17–21.

Sandhu, R., Coyne, E., Feinstein, H., and Youman, C. (1996). Role-Based Access Con-
trol Models. IEEE Computer, 29(2):38–47.

Satyanarayanan, M. (1990). Scalable, Secure, and Highly Available Distributed File
Access. IEEE Computer, 23(5):9–21.

Schneider, F. (1990). Implementing Fault-Tolerant Services Using the State Machine
Approach. ACM Computing Surveys, 22(4):299–319.

Schneier, B. (1996). Applied Cryptography. John Wiley & Sons, New York, NY, USA,
2nd edition.

Simons, B. (2000). From the President: To DVD or Not To DVD. Communications of
the ACM, 43(5):31–32.

Software in the Public Interest, Inc. (2001). Debian Linux. http://www.debian.org/.

http://www.nytimes.com/library/tech/99/11/biztech/articles/01real.html
http://www.debian.org/

218 BIBLIOGRAPHY

Sollins, K. and Masinter, L. (1994). RFC 1737: Functional Requirements for Uniform
Resource Names.

Source Gear Corporation (2001). SourceOffSite. http://http://www.sourceoffsite.com/.

Speedera Networks, Inc. (2002). Speedera Content Delivery. http://www.speedera.com/.

Stefik, M. (1997). Trusted Systems. Scientific American, 276(3):78–81.

Stelling, P., Foster, I., Kesselman, C., Lee, C., and von Laszewski, G. (1998). A Fault
Detection Service for Wide Area Distributed Computations. In Proceedings 7th IEEE
Symposium on High Performance Distributed Computing, pages 268–278, Chicago, IL,
USA.

Stevens, W. R. (1998). UNIX Network Programming. Prentice-Hall, Upper Saddle River,
NJ, USA, 2nd edition.

Stix, G. (2001). The Triumph of the Light. Scientific American, 284(1):80–86.

Stoica, I., Morris, R., Karger, D., Kaashoek, M., and Balakrishnan, H. (2001). Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications. In Proceedings of the
ACM SIGCOMM ’01 Conference, San Diego, CA, USA.

Terry, D. B., Demers, A. J., Petersen, K., Spreitzer, M. J., Theimer, M. M., and Welch,
B. B. (1994). Session Guarantees for Weakly Consistent Replicated Data. In Pro-
ceedings 3rd International Conference on Parallel and Distributed Information Systems,
pages 140–149, Austin, TX, USA.

The Apache Software Foundation (2002). The Apache HTTP Server.
http://www.apache.org/.

The Globus Project (2000). GridFTP–Universal Data Transfer for the Grid.
http://www.globus.org/datagrid/deliverables/C2WPdraft3.pdf.

The Institute of Electrical and Electronics Engineers, Inc. (2000). IEEE Standard 802.3,
2000 Edition. New York, NY, USA.

Tichy, W. F. (1992). Programming-in-the-large: Past, Present, and Future. In Proceed-
ings of the 14th International Conference on Software Engineering (ICSE’92), pages
362–367.

Tridgell, A. (2000). Efficient Algorithms for Sorting and Synchronization. PhD thesis,
Australian National University, Canberra, Australia.

United States Government (1998). Digital Millennium Copyright Act. United States
Public Law No. 105-304.

U.S. Department of Commerce (2001). Commercial Encryption Export Controls.
http://www.bxa.doc.gov/Encryption/Default.htm.

Vahdat, A., Anderson, T., Dahlin, M., Culler, D., Belani, E., Eastham, P., and Yoshikawa,
C. (1998). WebOS: Operating System Services For Wide Area Applications. In Pro-
ceedings 7th IEEE Symposium on High Performance Distributed Computing, Chicago,
IL, USA.

http://http://www.sourceoffsite.com/
http://www.speedera.com/
http://www.apache.org/
http://www.globus.org/datagrid/deliverables/C2WPdraft3.pdf
http://www.bxa.doc.gov/Encryption/Default.htm

BIBLIOGRAPHY 219

Van Renesse, R., Birman, K., and Maffeis, S. (1996). Horus, a Flexible Group Commu-
nication System. Communications of the ACM, 39(4):76–83.

Van Steen, M. and Ballintijn, G. (2002). Achieving Scalability in Hierarchical Loca-
tion Services. In Proceedings 26th International Computer Software and Applications
Conference (COMPSAC’02), Oxford, UK.

Van Steen, M., Hauck, F., and Tanenbaum, A. (1998a). Locating Objects in Wide-Area
Systems. IEEE Communications Magazine, pages 104–109.

Van Steen, M., Homburg, P., and Tanenbaum, A. (1999a). Globe: A Wide-Area Dis-
tributed System. IEEE Concurrency, 7(1):70–78.

Van Steen, M., Tanenbaum, A., Kuz, I., and Sips, H. (1999b). A Scalable Middle-
ware Solution for Advanced Wide-Area Web Services. Distributed Systems Engineering,
6(1):34–42.

Van Steen, M., Van der Zijden, S., and Sips, H. (1998b). Software Engineering for Scal-
able Distributed Applications. In Proceedings 22nd International Computer Software
and Applications Conference (CompSac), Vienna. IEEE Computer Society.

Waldman, M., Rubin, A., and Cranor, L. (2000). Publius: A robust, tamper-evident,
censorship-resistant web publishing system. In Proceedings of the 9th USENIX Security
Symposium, Denver, CO, USA.

Waldo, J., Wyant, G., Wollrath, A., and Kendall, S. (1994). A Note on Distributed
Computing. Technical Report SMLI TR-94-29, Sun Microsystems Laboratories, Inc.,
Mountain View, CA.

Wang, N., Parameswaran, K., Schmidt, D., and Othman, O. (2001). The Design and Per-
formance of Meta-Programming Mechanisms for Object Request Broker Middleware.
In Proceedings 6th USENIX Conference on Object-Oriented Technologies and Systems
(COOTS’01), San Antonio, TX, USA.

Wegner, P. (1987). Dimensions of Object-Based Language Design. In Proceedings ACM
Conference on Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA’87), pages 168–181, Orlando, FL, USA.

Welsh, M. and Culler, D. (1999). Jaguar: Enabling Efficient Communication and I/O in
Java. Concurrency: Practice and Experience, 12(7):519–538. (Special Issue on ACM
1999 Java Grande Conference).

Wollrath, A., Riggs, R., and Waldo, J. (1996). A Distributed Object Model for the
Java System. In Proceedings 2nd USENIX Conference on Object-Oriented Technologies
(COOTS’96), Toronto, Ontario, Canada.

Wolski, R., Plank, J., Brevik, J., and Bryan, T. (2000). Analyzing Market-based Re-
source Allocation Strategies for the Computational Grid. Technical Report UT-CS-00-
453, University of Tennessee, Knoxville, TN, USA.

Wolski, R., Spring, N., and Hayes, J. (1999). The Network Weather Service: A Dis-
tributed Resource Performance Forecasting Service for Metacomputing. Journal of Fu-
ture Generation Computing Systems, 15(5):757–768.

220 BIBLIOGRAPHY

World Intellectual Property Organization (1996). WIPO Copyright Treaty. In WIPO
Diplomatic Conference on Certain Copyright and Neighbouring Rights Questions,
Geneva, Switzerland. http://www.wipo.int/treaties/ip/copyright/index.html.

Ximian, Inc. (2002). Red Carpet. http://www.ximian.com/products/ximian_red_carpet/.

Zacks, M. (2001). French Court Claims Jurisdiction over Yahoo! IEEE Internet Com-
puting, 5(2):10–11.

Zayas, E. (1991). AFS-3 Programmer’s Reference: Architectural Overview. Transarc
Corporation, Pittsburgh, PA, USA, 1.0 edition.

http://www.wipo.int/treaties/ip/copyright/index.html
http://www.ximian.com/products/ximian_red_carpet/

LIST OF CITATIONS

4C Entity LLC [2000], 115
Adve and Gharachorloo [1996], 27
Akamai Technologies, Inc. [2000], 177
Akamai Technologies, Inc. [2002], 6,

176
Allock et al. [2001], 91
Anonymizer.com [2001], 19, 123
Bacon et al. [2000], 16
Bailey [1998], 10–12
Bakker et al. [1998], 22
Bakker et al. [1999], 4, 55
Bakker et al. [2000], 6
Bakker et al. [2001a], 6
Bakker et al. [2001b], 6, 107, 111
Bakker et al. [2002], 6
Bal et al. [1992], 94
Ballintijn et al. [1999], 143
Ballintijn et al. [2000], 31
Ballintijn et al. [2001], 30, 179
Bates et al. [1995], 95
Birman and Van Renesse [1994], 22
Birrell et al. [1993], 3
Burk [2001], 19, 108
CAIDA [2001], 98
Carzaniga et al. [2000], 16
Cederqvist et al. [2001], 7
Chappell [1996], 17
Chen et al. [1994], 144
Clarke et al. [2001], 180, 181
Clarke et al. [2002], 6, 180
Conradi and Westfechtel [1998], 9
Cornelli et al. [2002], 134
Cristian [1991], 23, 142, 143

Czajkowski and von Eicken [1998],
24

Dabek et al. [2001a], 182
Dabek et al. [2001b], 6, 182, 183,

207
Dailey Paulson [2001], 17
Dasgupta et al. [1991], 3
Davis [2001], 18
Deering et al. [1996], 16
Dierks and Allen [1999], 136, 207
Druschel and Rowstron [2001], 185,

186
Dwork and Noar [1992], 21
Eddon and Eddon [1998], 4
Edwards [2000], 50
Eliassen et al. [1999], 5
Exodus [2002], 6
Fielding et al. [1999], 206
Foster and Kesselman [1997], 25
Foster and Kesselman [1998], 23
Free Software Foundation, Inc. [1991],

108
Fu et al. [2000], 183
Gadde et al. [1998], 104
Goa et al. [1999], 7
Goldschlag et al. [1999], 19, 123
Gong [1999], 17, 22
Grid Forum [2001], 23
Grimshaw et al. [1999], 25
Hayton et al. [1998], 5
Homburg [2001], 3, 25, 26, 31, 32,

90, 103
Housley et al. [1999], 135, 138

222 LIST OF CITATIONS

Howard et al. [1988], 6, 174, 207
Hänle and Tanenbaum [2000], 28
IBM Corporation [2002], 200
IDC [2000], 12
IDC [2001], 12
ISO [1995], 3
Ibiblio [2001], 111
Internet Software Consortium [2001],

96
Jalote [1989], 32
Johnson et al. [2001], 177
Jul et al. [1988], 3
Jung et al. [2002], 21
Katz [1990], 15
Ketema [2000], 152
Kiczales et al. [1991], 5
Krishnamurthy et al. [2001], 177
Kubiatowicz et al. [2000], 187, 189
Kuz et al. [2001], 46
Kuz et al. [2002], 179
Lamport [1979], 82
Leighton and Lewin [2000], 176
Leiwo et al. [1999], 28
Leiwo et al. [2000], 28
Lethin [2001], 15, 122, 134
Li and Hudak [1989], 25
Liang and Bracha [1998], 31
Likins [2002], 153
Loshin [2000], 46, 135
Macedonia [2000], 18
Makpangou et al. [1994], 3
Malda [1999], 122
Mao et al. [2002], 177, 179
Martin et al. [2001], 17
McCarty [1999], 12
Microsoft Corporation [2001a], 12
Microsoft Corporation [2001b], 7
Mitchell et al. [1994], 3
Mockapetris [1987], 42, 83
Moore et al. [2000], 98

Neuman [1994], 2
Nielsen [1995], 13, 105
Object Management Group [2001],

4, 32
Oram [2001], 6, 20, 112, 180
Partridge [1994], 66
Penfield Jackson [1998], 12
Pierre and Van Steen [2001], 134
Pierre et al. [2000], 48, 91, 92, 96
Pierre et al. [2001], 48, 91, 92, 105
Pitoura and Samaras [2001], 14, 105
Plank et al. [1995], 145
Plank [1997], 188
Réseaux IP Européens [2001], 96
Rabinovich and Aggarwal [1999], 178,

179
Rabinovich and Spatscheck [2001],

176
Rabinovich et al. [1998], 104
Rabinovich et al. [1999], 178
Raymond [2000], 59
Reiter and Rubin [1999], 19, 123
Rhea et al. [2001], 6, 187, 207
Riggs et al. [1996], 74
Robinson [1999], 17
Rodriquez and Sibal [2000], 92
Rogerson [1997], 74
Rowstron and Druschel [2001a], 185
Rowstron and Druschel [2001b], 185
Rumbaugh et al. [1999], 10, 63
Saltzer et al. [1984], 148
Samuelson [1997], 18
Sandhu et al. [1996], 126
Satyanarayanan [1990], 174
Schneider [1990], 81
Schneier [1996], 17, 123, 128, 136,

149
Simons [2000], 19
Software in the Public Interest, Inc.

[2001], 10

LIST OF CITATIONS 223

Sollins and Masinter [1994], 14
Source Gear Corporation [2001], 7
Speedera Networks, Inc. [2002], 6
Stefik [1997], 115
Stelling et al. [1998], 22
Stevens [1998], 36
Stix [2001], 50
Stoica et al. [2001], 182
Terry et al. [1994], 189
The Apache Software Foundation [2002],

153, 206
The Globus Project [2000], 90, 91
The Institute of Electrical and Elec-

tronics Engineers, Inc. [2000],
154

Tichy [1992], 4
Tridgell [2000], 175
U.S. Department of Commerce [2001],

109
United States Government [1998], 108,

112
Vahdat et al. [1998], 24
Van Renesse et al. [1996], 27
Van Steen and Ballintijn [2002], 44
Van Steen et al. [1998a], 30, 44, 54
Van Steen et al. [1998b], 3
Van Steen et al. [1999a], 3, 26, 203
Van Steen et al. [1999b], 6
Waldman et al. [2000], 19
Waldo et al. [1994], 195
Wang et al. [2001], 5
Wegner [1987], 25
Welsh and Culler [1999], 87
Wollrath et al. [1996], 4, 74
Wolski et al. [1999], 101
Wolski et al. [2000], 23
World Intellectual Property Organi-

zation [1996], 108
Ximian, Inc. [2002], 15
Zacks [2001], 109

Zayas [1991], 174
Bea Systems et al. [1999], 5

INDEX

access-granting policy, 122
access-granting organization, 118
active replication, 92
AFS, see Andrew File System
AGO, see access-granting organiza-

tion
AGO certificate, 135
AGOCA, see Certification Authority

for Access-Granting Orga-
nizations

Akamai, 175
Andrew File System, 174
AS, see Autonomous System
ASN, see Autonomous System Num-

ber
atomic with respect to exceptions, 23
Autonomous System, 95
Autonomous System Number, 95
AWE, see atomic with respect to ex-

ceptions

back-end traceability checker, 137
BETC, see back-end traceability checker
binding, 30
binding-control protocol, 103
bound dependency, 11

caching, 48
callback interface, 35
CDN, see Content Distribution Net-

work
cease and desist, 111
Certification Authority for Access-Granting

Organizations, 135

CFS, see Cooperative File System
comm interface, 35
commCB interface, 35
communication-object manager, 45
configuration, 11
consistency model, 82
contact address, 30
Content Distribution Network, 175
content moderation, 109
content-removal policy, 120
controversial free software, 18, 108
Cooperative File System, 182
core replica, 92
core-replica role, 127

delay-bandwidth product, 66
denial-of-service, 20
diff, 11
directory node, 42
distributed object, 26
distributed shared object, 5, 26
distribution, 12, 51
DistributionArchive DSO, 51
domain, 42
DoS, see denial-of-service
DSO, see distributed shared object

EdgeSuite, 175
efficient distribution, 48
end-to-end signature, 124
erasure coding techniques, 188
evolvability, 24

file formats, 10

INDEX 225

File Transfer Protocol, 175
flash crowd, 13, 105
free software, 7
Freeflow, 175
freely redistributable software, 6
Freenet, 180
FTP, see File Transfer Protocol

GDN, see Globe Distribution Network
GDN Access Control Service, 136
GDN ACS, see GDN Access Control

Service
GDN Administration, 127
GDN producer tool, 136
GDN Quota Service, 132
GDNQS, see GDN Quota Service
generic dependency, 11
GIDS, see Globe Infrastructure Di-

rectory Service
Globe, 1
Globe Distribution Network, 6
Globe Infrastructure Directory Ser-

vice, 46
Globe Location Service, 30
Globe Name Service, 30
Globe Object Server, 44
Globe security credentials, 118
GlobeDoc, 6
GLS, see Globe Location Service
GNS, see Globe Name Service
GOS, see Globe Object Server

home set, 32
HTTP, see Hyper Text Transfer Pro-

tocol
Hyper Text Transfer Protocol, 175

implementation handles, 31
implementation repository, 30, 31
inappropriate content, 117
incarnation ID, 71

inner ring, 188
integer interface, 32

legal evolvability, 18
local class objects, 31
local representative, 5, 27
local software management system,

12
LR limit, 100
lrSubobject interface, 89
LSMS, see local software manage-

ment system

memory-mapped files, 87
moderator, 109

object handle, 30
object identifier, 30
object-creation ticket, 132
object-creator role, 127
object-server owners, 117
ObjectServerClientRatio, 97
OceanStore, 187
OceanStore Service Provider, 189
OCR, see ObjectServerClientRatio
OSP, see OceanStore Service Provider
owner role, 127

package interface, 64, 71
parallel transfer, 91
passive replication, 92
PAST, 185
patch, 11
persistence ID, 84
persistence manager, 45, 89
persistence subobject, 90
prefetching, 68
pseudo-idempotent, 68

RaDaR, 178
read service, 143
read/write service, 143

226 INDEX

Regional Service Directory, 46
reliable, 22
remote-object model, 4
repl interface, 33
replCB interface, 35
replica role, 127
replication policy, 32, 91
replication scenario, 32, 92
replLargeStateCB interface, 85
revision, 9
revision DSO, 51
revision objects, see revision DSO
revision-DSO service, 143
root ACS server, 138

scalability, 3
scenario–re-evaluation interval, 97
security process, 17
semantics of an object, 82
semLargeState interface, 76, 85
semState interface, 38
sequential consistency, 82
server manager, 45, 89
software, 108
software package, 9
software producer, 12
specific dependency, 11
state of a replica local representative,

54
state-version number, 145
status of a producer, 135
stored state, 145
striped transfer, 91
strong failure semantics, 23
subobject, 28

trace certificate, 118
trace key pair, 118
trace signature, 119

uploader role, 128

variant, 10
version, 10

wide-area traffic, 96
working set, 90

	Introduction
	Developing large-scale applications
	The Globe Distribution Network
	Contributions
	Structure of the dissertation

	General Requirements
	Terminology
	Basic distribution functionality
	Basic query functionality
	Notification and automatic update
	Security requirements
	Ensuring Authenticity and Integrity of Content
	Preventing Illegal Distribution
	Providing Anonymity
	Availability and Integrity of Servers

	Fault-tolerance requirements
	Management requirements
	Focus of this dissertation

	The Globe Middleware Platform
	Distributed shared objects
	Implementation of a DSO
	Naming and binding
	Replication interfaces
	Stage 1: Shipping the Invocation to the Master Replica
	Stage 2: Performing the Invocation on the Master Replica
	Stage 3: Updating the Slave Replica
	Stage 4: Returning the Invocation's Result to the Client

	Creating DSOs
	The Globe Location Service
	The Globe object server
	The Globe Infrastructure Directory Service

	Distributed Revision Objects
	Efficient distribution of software
	Mapping software packages to DSOs
	Revision and DistributionArchive DSOs
	Discussion
	Alternative Mappings

	Interface and semantics of a revision object
	Handling Large Up-- and Downloads
	Stateless Downloads
	Alternative Interfaces
	Semantics of a Revision Object

	Referring to packages, revisions and variants
	Implementation of a revision object
	Handling Large State
	Persistent Revision Objects
	Downloading over Multiple TCP Connections

	Implementation: the replication protocol
	Basic Replication Protocol
	Mid-- to Long-Term Network Optimization
	Server Load and Replication
	Handling Flash Crowds
	Alternative Replication Protocols and Policies
	Initial Implementation

	Security
	Preventing illegal distribution
	Content Moderation
	Cease and Desist
	Reputation
	Other Approaches
	Comparison

	The GDN and illegal distribution
	Traceability via Digital Signatures
	Discussion
	Using Other Protection Measures
	Anonymity

	Authenticity and integrity of software
	Availability
	Access Control
	Internal Attackers
	Countermeasures Taken by the GDN
	Alternative Countermeasures

	Initial implementation

	Fault Tolerance
	Requirements and system model
	Availability and reliability
	Level 1: Fast Object-Server Recovery
	Level 2: Availability and Reliability of the Read Service
	Level 2: Availability and Reliability of the Read/Write Service
	Level 3: Availability and Reliability of the Revision-DSO Service
	Level 4: End-to-End Integrity Protection

	AWE failure semantics
	Well-behaved Downloads
	Well-behaved Uploads
	Side Effects of Failures

	Performance
	Server performance
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	Wide-area performance
	End-to-End Performance
	Performance Analysis
	Comparison to HTTP

	Related Work
	Early systems
	Akamai's Freeflow
	RaDaR
	Freenet
	The Cooperative File System
	PAST
	OceanStore

	Summary and Conclusions
	Summary
	Observations
	Step 1: Making Distribution Fast and Efficient
	Step 2: Meeting Application-Level Security Requirements
	Step 3: Countering External and Internal Attacks
	Step 4: Ensuring Fault Tolerance

	Future work

	SAMENVATTING
	BIBLIOGRAPHY
	LIST OF CITATIONS
	INDEX

