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1

Introduction

The central keywords of this thesis are “verification” and “distribution”. Verification

refers to the process of finding, by formal means, design errors in complex hardware

and software systems, or assessing their absence. The necessity of formal verification

is supported by many examples of fatal, dramatic, expensive, or just annoying design

errors, see for example [Der]. Distribution, the art of making many different, some-

times geographically distant, computers cooperate to achieve a common goal, plays a

role in this thesis both as means (Part I) and as object (Part II) of verification.

Verification is usually performed by use of various formal methods that allow the

precise description of systems and their desired properties, as well as reasoning about

them. The systems are modeled in a language with clear mathematically defined

syntax and semantics, like logics, automata and process algebra. Using axioms, rules

and proof techniques, one can check whether properties are met, show that different

models have equivalent behaviors, etc.

This thesis consists of two parts, one about distributed tools to support the veri-

fication process and the other about verifying a specific type of distributed software

architectures. The following sections detail the background and contributions of each

part separately.

Distributed verification

Analyzing formal specifications can be done manually for simple systems, but for large

real-life systems automated support is essential. The formal verification tools fall

roughly in two categories: theorem provers and model checkers [CGP00]. In the theo-

rem proving approach, the system and the desired property are expressed as formulas

in some logic, then the theorem prover assists in finding a proof of that property for

that system. This requires some degree of human expert intervention, which makes it
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an insightful approach, but also specialized and time-consuming. In the model check-

ing approach, on which we focus in this thesis, a finite model (state space) of a system

is built and the required properties are checked against it. Model checking does not

require a high degree of expertise from the users and can be completely automatized,

which makes it a usually fast operation. Moreover, when violations of the properties

are found, counterexamples are produced (representing subtle errors in design) that

can be very helpful for debugging.

But there is one serious problem that model checking has: the combinatorial ex-

plosion of the state space when the system specified is made up of many interacting

components. For complex industrial systems, the state space can become huge, much

larger than the internal memory of one machine. Many techniques have been devel-

oped to cope with this problem: symbolic representations, abstractions, compositional

verification, partial order reduction, on-the-fly processing, using the disk as extra stor-

age, or using clusters of computers. The latter approach, distributed processing, is

the topic of intensive research in recent years, due to the availability at low cost of

clusters. Distributed solutions for many verification problems are produced, from

state space generation to the actual model checking.

The first part of this thesis contributes to this direction by proposing distributed

message passing algorithms for computing state space equivalences. These algorithms

allow reducing huge state spaces while preserving interesting properties. It is often

the case that a state space needs the memory of a few machines to be stored, while

its equivalent minimized version does fit in the memory of one machine and can be

model checked by single-threaded tools. The algorithms and implementations that we

propose achieve the property that the memory usage per machine decreases almost

linearly with the number of machines employed. Since memory usage is the bottleneck,

this is an important feature that ensures that linearly larger state spaces can now be

verified.

The equivalence reduction algorithms can be used for equivalence checking as well.

Equivalence checking is a way to compare a specification with an implementation. If

the two models can be identified, then this is a proof that the implementation correctly

implements the specification, according to the notion of correctness captured by the

chosen equivalence.

Verified distribution

A distributed software system is generally seen as a number of single-threaded appli-

cations together with a distributed communication layer that coordinates them. To

solve the task of coordination, various models have been proposed, among which the

shared dataspace is one of the most popular. A shared dataspace architecture is a

(possibly distributed) storage of information and/or resources, viewed as an abstract

global store, that applications use to coordinate their actions by reading, writing and
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removing pieces of data. These architecture models are used in parallel computing

applications (Linda, Gamma), network applications (Bonita), WCL), command and

control systems (Splice), management of federations of devices (JavaSpaces).

There is a vast literature devoted to modeling, analysis and verification of this type

of architectures. Research issues include comparison of the expressive power of differ-

ent shared dataspace paradigms, formal semantics for them, efficient implementations,

etc. The attention is justified by the vital role that the choice and implementation of

the architecture plays in the correctness and the performance of a software system.

In the second part of this thesis, we approach some of these issues with process

algebraic modeling and proof techniques and we explore the possibility of applying

existing model checking tools to the verification of shared dataspace architectures.

Overview

In order to facilitate reading, we have kept the chapters as self-contained as possible.

The two parts can be read independently and each has its own introductory chapter.

Part I

Chapter 2 provides an introduction to parallel and distributed model checking, out-

lines our framework and fixes the most important definitions, notations and conven-

tions occurring in the first part.

In Chapter 3 we present two distributed algorithms for the reduction of state spaces

modulo strong bisimulation equivalence. Until now this problem has only been solved

by sequential or parallel (shared memory) algorithms. Our algorithms are a straight-

forward and an optimized distributed version of the “naive” reduction method given

by Kanellakis and Smolka in [KS83]. We give a detailed description and analysis

of both, including correctness and complexity proofs. We also show by performance

data that they scale up well in both memory and time and comment on how the two

solutions compare to existing (sequential) tools and to each other.

Chapter 4 continues the development of the basic algorithm from Chapter 3 by adapt-

ing it to deal with another behavior equivalence, namely branching bisimulation. This

is more complicated due to the fact that the transitive closure of the τ -transitions

must be taken into account. We prove the correctness of the adapted basic algorithm,

discuss its complexity and show that the implementation scales up. This is the first

non-sequential solution given for branching bisimulation.

Chapter 5 treats the well known problem of detecting strongly connected components

of a graph. This problem has a linear sequential solution, but which unfortunately

is difficult to implement in a parallel/distributed setting. However, for the specific

type of graphs that represent state spaces, we give a collection of heuristics that solve
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it (distributedly) in reasonable time. Finding the strongly connected components

has applications both to the reduction modulo branching bisimulation and to model

checking state spaces against LTL/CTL formulas.

Part II

Chapter 6 provides a short literature survey on coordination models, shared data-

spaces and issues regarding their distribution.

Chapter 7 is a study on the expressiveness and distributed implementation of the

simplest imaginable shared dataspace coordination architecture, namely a data set

with two primitives: one to write an element and another to read an element. First

we give — and prove correct — a distributed implementation of this architecture,

where the global storage is replaced by local caches. Next, we formalize a notion

of implementation on this architecture and we show that in fact any specification of

system requirements admits such an implementation. This proves that this minimal

setting has maximal expressiveness.

Chapter 8 introduces a modeling language (space calculus) for distributed dataspace

architectures. We give a syntax and an operational semantics to this language and

provide tool support for the functional and performance analysis of its expressions.

This is also a step towards establishing a formal link between the implementation

model and the actual implementation, for the specific case of distributed dataspace

systems. We illustrate the approach with two small examples of studying transparent

replication in Splice and transparent distribution in JavaSpaces.

Chapter 9 draws some global conclusions and examines possible future plans.

Chapters 3 and 4 are the result of joint work with Stefan Blom and have been pub-

lished as [BO02, BO03b, BO03a]. An extended version of [BO02] will appear as

[BO05]. Chapters 5, 7 and 8 are joint work with Jaco van de Pol. The latter two are

based on [OP02, OP03]. Chapter 5 has not yet been published.



Part I

Distributed Algorithms for

Verification
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Parallel and Distributed Model Checking

Parallel and distributed data processing is a very active area of research, driven by the

ever growing need for speed and space. Many scientific and engineering applications

use fast multiprocessor supercomputers or networks of computers to deliver better

performance. Examples include real-time video processing, factoring large numbers,

large-scale simulations for difficult problems like weather forecasting, numerical appli-

cations, etc. Our main concern and motivation is the verification of large industrial

systems, which is a big challenge to the current technological possibilities. From

the many techniques and tools being developed for it, we choose to concentrate on

exploiting the power of distributed memory machines, or clusters of workstations.

Part I presents four distributed algorithms belonging to the area of enumerative

model checking of large state spaces. In this chapter, we introduce the most relevant

concepts, namely enumerative model checking (Section 2.1), distributed algorithms

(Section 2.2) and state spaces (Section 2.3).

2.1 Model checking

Symbolic versus enumerative. Verification by model checking has been developing

in two main directions: symbolic model checking, and enumerative, or explicit state,

model checking. In the symbolic approach, compressed representations of state spaces

are used. They seem especially advantageous for hardware verification, where a system

is described as a set of processes progressing together synchronously. The enumerative

approach, where all the states are generated and all transitions computed, is usually

considered more appropriate for software verification. The enumerative generation

tools can be sub-divided into on-the-fly and full-generation. An on-the-fly tool will

compute the transitions of a state on demand, while it is checking a property. (Sym-

bolic tools can also work on-the-fly.) A full-generation tool will first compute the
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whole state space and only then start checking the property. The main advantage of

on-the-fly tools is that if the property can be proved or refuted by exploring only a

small part of the state space, the unnecessary generation of the rest of the state space

is avoided. However, if proving a property requires visiting the whole state space then

full-generation tools have an important advantage: after generating a state space it

can be reduced modulo an equivalence that preserves the properties to be checked.

State space explosion. The most serious problem that all verification methods have

to face, and especially the full-generation ones, is the state space explosion, which is

the combinatorial growth of the state space of a process when it is made out of several

parallel components. State space explosion is the reason why the size of systems that

verification tools can handle is traditionally very small, and why many interesting

applications still remain out of reach.

2.1.1 Parallel and distributed approaches to model checking

The easiest solution to solving this memory shortage problem is to use a machine

with more memory. However, machines with a really big amount of memory are very

expensive. Due to recent advances in the development of networks, clusters have

become an appealing low-cost alternative platform for parallel computing. Besides

wide availability and scalability, they also have the advantage of open-source software

like Linux, file systems (NFS, PVFS) and communication libraries (MPI, PVM).

Therefore, a lot of effort is currently invested in building distributed tools, in both

the symbolic and the enumerative verification communities.

Below we highlight different problems that occur in the model checking process and

we take a look at some parallel and distributed algorithms developed for them.

State space generation. Quite a few state space generation methods have been pro-

posed that use shared and distributed memory to obtain better performance. A few

examples are [HBB99, CCM01, Cia01]. In [GMS01], large state spaces are generated

on a cluster of workstations.The run time performance is drastically improved with

respect to similar sequential tools, but the size of the state spaces that can be gener-

ated is not bigger, since in the end the whole state space is collected on one machine.

In [BLL03], the state space is generated in a distributed format [BLL03] (see also

paragraph 2.3.4), on which the reduction tools described in the next three chapters

are applied.

Equivalence reduction. Reduction of a state space modulo some property preserv-

ing equivalence can considerably decrease the size of the state space that needs to

be verified. This operation is particularly important in cases where the original state

space is too big to fit on a single machine, as it happened in some recent case studies
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with the µCRL toolset [PFHV03, PV03], where only the reduced state space could fit

on one machine. The most well known solutions for the reduction problem have been

given by Kanellakis-Smolka [KS83] and Paige-Tarjan [PT87]. These are sequential

algorithms, and based on them parallel shared memory algorithms have been con-

structed as well [ZS93, RL98]. The algorithms that we propose in this thesis are the

first that make use of distributed memory.

Equivalence checking. Since the reduction algorithms actually compute the equiva-

lence classes, it turns out that they can also be used for checking equivalence of two

state spaces. More precisely, if we apply the reduction algorithm on the union of the

two state spaces, their roots get collapsed to the same reduced state if and only if the

state spaces are equivalent. This holds for any equivalence. Unlike equivalence reduc-

tion, equivalence checking can easily and naturally be performed on-the-fly. Recently,

on-the-fly equivalence reduction has been distributed [JM04].

State space exploration and model checking. To actually check desired properties

on the generated (and possibly reduced) state space, or on-the-fly, a logic to specify

these properties is used. Common logics are LTL (Linear Temporal Logic), CTL

(Computation Tree Logic) and µ-calculus. The properties expressed are of two basic

types: safety, stating that “something bad never happens”, and liveness, stating

that “something good eventually happens”. Parallel and distributed model checking

started with the parallelization of the Murφ verifier [SD97] and continued with the

distribution of the algorithm used by SPIN to verify safety properties [LS99] and

the distribution of the symbolic model checker UPPAAL [BHV00]. The algorithm

in [LS99] was later extended [BBS01] in order to cover liveness properties too. Also

µ-calculus model checking has been parallelized [BLW01].

2.2 Distributed algorithms

We now introduce a number of useful notions and explain the context and the as-

sumptions under which we later develop the algorithms in Chapters 3, 4 and 5.

2.2.1 Distributed algorithms and parallel algorithms

A clear distinction should be made between the parallelism on shared memory ma-

chines (SMM) (for instance [RL98, KR90]) and the parallelism on distributed memory

machines (DMM) (for instance [BBS01, FHP00], this thesis). The algorithms in the

first category usually assume, besides a huge amount of memory, the presence of many

processors as well. The number of processors available is in the order of the problem

size, while for distributed memory machines the number of processors is much much



10 2 Parallel and Distributed Model Checking

smaller. Also, for shared memory, communication between processors is not an issue,

while for distributed memory the latency of communication plays an important role.

So, in our opinion, programs designed for shared memory cannot easily run on a

DMM, because most of the time the latencies of a virtual shared memory system are

too high. (However, if the algorithm is really tolerant to high latencies then of course

this is possible. In this case, there is also the possibility of using a disk as extra

storage rather than remote memory.) In the other direction however (from DMM to

SMM), program migration does produce acceptable results, as we will show on some

examples in Chapter 3.

2.2.2 Distributed algorithms and distributed algorithms

The term “distributed algorithms” as used in the emerging field of distributed verifi-

cation – and in this thesis – does not refer to classical distributed algorithms like the

Dining Philosophers, Leader Election, Stabilization etc. From our viewpoint these lat-

ter algorithms are rather distributed protocols, since communication plays the essential

role and the goal is mostly to achieve some kind of global decision, synchronization

or consistency.

Our distributed algorithms act on top of such distributed protocols and could some-

times use them as communication primitives. They focus on the computation side,

on solving together a large problem. They are actually parallel algorithms working

on distributed memory machines. But we prefer to call them distributed in order to

make the distinction with parallel algorithms working on shared memory machines,

for which the problem is again different. The main difficulty in designing “our” dis-

tributed algorithms is dividing the computation in such a way that communication is

triggered rather infrequently, but in the same time avoiding large idle times.

Another relevant difference is that in a classical distributed algorithm the network

topology plays an important role, while our distributed algorithms live at a higher level

of abstraction and are not aware of topology aspects. We take the simple approach

that every two processors can send/receive messages to each other.

2.2.3 Complexity measures for distributed algorithms

To evaluate the performance of our designs, we use the time/message/bit complexity

measures for distributed algorithms, as defined in [AW98]. We call the parallel pieces

of such an algorithm workers.

Definition 2.1 (time complexity) The worst-case time complexity is the maximal time,

among all possible executions for all possible inputs, elapsed between the moment when

the first worker starts execution and the moment when last worker stops.

Sending a message counts as one time unit.
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Definition 2.2 (message complexity) The worst-case message complexity is the maxi-

mal number of messages sent by all workers during a run (largest out of all runs).

Definition 2.3 (bit complexity) The worst-case bit complexity is the maximal number

of bits (messages × their size) sent by all workers during a run (again, largest out of

all possible runs).

2.2.4 Performance measures for distributed algorithms

In many cases, the worst-case theoretical complexity of a distributed algorithm is not

a good indication of its usefulness in practice. To show the qualities of a distributed

tool, also performance measurements are made, usually on input types to which the

tool is targeted (in our case, state spaces).

An important measure for the practical performance of a (parallel or) distributed

algorithm is the speedup. If D is a distributed algorithm, S its fastest sequential

version, and T(D,p), T(S) the times they need on p processors and one processor,

respectively, then the speedup of D on p processors is

speeduppD =
T(S)

T(D,p)

2.2.5 Clusters of workstations

The target architecture of the algorithms that we develop is a cluster whose nodes are

connected by a high bandwidth network (a Distributed Memory Machine). We assume

that both the nodes and the network are reliable (no node failure, no message loss) and

that the order of messages between nodes is preserved (the communication channels

are FIFO queues). We also assume that the channels are unbounded. Processes

communicate by executing SEND TO and RECEIVE operations; SEND TO is non-

blocking, RECEIVE is blocking. A few other communication primitives built on top

of these two will be used as well. They will be explained when they first occur.

We implemented all communication primitives using the LAM/MPI library (Mes-

sage Passing Interface) [SL03]. The correctness proofs of our distributed algorithms

assume correctness of these primitives. For a thorough discussion regarding imple-

mentation of communication primitives in the distributed model checking literature,

see [Jou03].

We will sometime mention the latency, bandwidth or throughput of a network. These

notions are explained below.

The message delay D(s) of a message of size s is its travel time.

The latency of a network is the time it takes a small packet to travel from its source

to its destination. Formally, it is D(s0 ), meaning the message delay of the smallest

message admissible by the communication system (s0).



12 2 Parallel and Distributed Model Checking

The (asymptotic) bandwidth of a network is the amount of data that can be trans-

mitted in a fixed amount of time. Formally, it is the value of the function size
D(size) as

size > 0 approaches infinity. Bandwidth is expressed in bps (bits per second). The

most often encountered networks nowadays are Fast Ethernet, with a bandwidth of

100 Mbps, and Gigabit Ethernet (bandwidth 1 Gbps).

The (transmission) throughput is the transfer rate measured at the sender, that is

the data rate at which an infinite stream of messages can be pushed into the network

without causing data loss.

2.2.6 P-completeness

In complexity theory, P is the class of problems for which an efficient (i.e. deter-

ministic polynomial time) solution exists. When moving from sequential to parallel

computation models, the question arises which problems in P also admit an efficient

parallel solution, that is one that runs in polylogarithmic time (O ((logN)O (1)))

using a polynomial number of processors (O (NO (1))). The class NC contains the

problems with an efficient parallel solution. It is known that NC ⊆ P ⊆ NP and it is

widely believed that both inclusions are strict, although the proofs of that are difficult

open problems. Just like NP-complete problems are collected in order to shed some

light on the difference between P and NP, P-complete problems are believed to form

the difference between NC and P and considered to be not efficiently parallelizable,

or inherently sequential. Formally, a problem is P-complete if it is in P and reducing

any other problem in P to it is in NC.

The relational coarsest partition problem [KS83], which is the basis of equivalence

checking problems, has been proved P-complete [ABG91]. Also the standard depth

first search, typically used by the algorithms for detection of strongly connected com-

ponents, is P-complete [Rei85]. Although these results do not directly apply to our

setting, which is distributed, rather than parallel (O (1) processors instead of O (N)),

they are an indication that the equivalence checking and the detection of strongly con-

nected components are challenging problems to solve in a distributed manner. Note

that for verification purposes good memory performance is more important than time

and also that the P-completeness results do not exclude the existence of polynomial

time parallel algorithms that could still give a good speedup.

2.3 State spaces

2.3.1 Labeled transition systems

Let Act be a fixed set of labels, representing actions. Act contains a special action

τ that stands for an internal (silent) step. A labeled transition system (LTS) is a

triple (S, T, s0) consisting of a set of states S, a set of transitions T ⊆ S × Act × S

and an initial state s0 ∈ S. The transition relation will also be denoted by −→ and
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we will write p a−→T q for (p, a, q) ∈ T or p a−→ q when T is understood. LTSs

are a convenient representation format for the behavior of systems, requirements

specifications, implementations etc.

2.3.2 Behavioral equivalences

Verification techniques use behavioral equivalences and preorders to decide, prove,

check or test that two systems can be identified, or that a system implements a

specification. Some equivalences are also congruences with respect to parallel com-

position and thus allow application of efficient compositional verification techniques

(see for example [TLG03]). A comprehensive presentation of many equivalences is

given in [Gla01]. Here we introduce four popular LTS equivalences that are used or

mentioned at various points in the thesis. They are all based on the concept of bisim-

ulation, which captures the relation between two systems that behave in a similar

manner, matching each other’s moves.

Strong bisimulation equivalence is the most powerful behavioral equivalence. It lets

two systems be equal only if they perfectly simulate each other.

Definition 2.4 (strong bisimulation equivalence [Par81]) Let (S1,−→1, s
1
0) and (S

2,−→2

, s20) be two LTSs. A binary relation R⊆ S1 × S2 is a strong bisimulation if for all

a ∈ Act and all p ∈ S1, q ∈ S2 such that p R q:

• if p a−→1 p
′ then ∃q′ ∈ S2 : q a−→2 q

′ ∧ p′ R q′

• if q a−→2 q
′ then ∃p′ ∈ S1 : p a−→1 p

′ ∧ p′ R q′

The union of all strong bisimulation relations is itself a strong bisimulation and more-

over an equivalence relation; it is therefore named strong bisimulation equivalence.

Two states identified by strong bisimulation equivalence are called strongly bisimilar.

Two LTSs are bisimilar if their initial states are bisimilar.

Bisimulations that abstract from internal computation are particularly useful, be-

cause they equate more states while preserving interesting properties. Weak bisim-

ulation equivalence is the equivalence obtained from strong bisimulation equivalence

by relaxing the transition relation such that an arbitrary number of internal steps

( τ−−→) is allowed before and after a visible step ( a−→). Branching bisimulation abstracts

from the execution of internal steps too, but only of those that do not participate in

a choice, so that the branching structure of processes is preserved. τ ∗a-equivalence,

weaker than branching and stronger than weak equivalence, is useful because it pre-

serves safety properties (“something bad never happens”).

Definition 2.5 (weak bisimulation equivalence [Mil89]) Let (S1,−→1, s
1
0) and (S2,−→2

, s20) be two LTSs. A binary relation R⊆ S1 × S2 is a weak bisimulation if for all

a ∈ Act and all p ∈ S1, q ∈ S2 such that p R q:
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• if p a−→1 p
′ then (a ≡ τ ∧ p′ R q) ∨ (∃q′ ∈ S2 : q τ−−→

∗
2

a−→2
τ−−→
∗
2 q
′ ∧ p′ R q′)

• if q a−→2 q
′ then (a ≡ τ ∧ p R q′) ∨ (∃p′ ∈ S1 : p τ−−→

∗
1

a−→1
τ−−→
∗
1 p
′ ∧ p′ R q′)

Weak bisimulation equivalence, or observational equivalence, is the union of all weak

bisimulations and it is the largest weak bisimulation [Mil89]. Two LTSs are weakly

bisimilar if their initial states are weakly bisimulation equivalent.

Definition 2.6 (branching bisimulation equivalence [GW96]) Let (S1,−→1, s
1
0) and

(S2,−→2, s
2
0) be two LTSs. A binary relation R⊆ S1 × S2 is a branching bisimulation

if for all a ∈ Act and all p ∈ S1, q ∈ S2 such that p R q:

• if p a−→1 p
′ then

(a ≡ τ ∧ p′ R q) ∨ (∃q′, s ∈ S2 : q τ−−→
∗
2 q
′ a−→2 s ∧ p R q′ ∧ p′ R s)

• if q a−→2 q
′ then

(a ≡ τ ∧ p R q′) ∨ (∃p′, s ∈ S1 : p τ−−→
∗
1 p
′ a−→1 s ∧ p

′ R q ∧ s R q′)

Like in the strong bisimulation case, it turns out that the union of all branching

bisimulations is an equivalence relation [Bas96], branching bisimulation equivalence,

or branching bisimilarity. Two LTSs are branching bisimilar if their initial states are

branching bisimilar.

Definition 2.7 (τ∗a-equivalence [BFG+91]) Let (S1,−→1, s
1
0) and (S2,−→2, s

2
0) be two

LTSs. A binary relation R⊆ S1 × S2 is a τ∗a-bisimulation if for all a ∈ Act and all

p ∈ S1, q ∈ S2 such that p R q:

• if p a−→1 p
′ then (a ≡ τ ∧ p′ R q) ∨ (∃q′ ∈ S2 : q τ−−→

∗
2

a−→2 q
′ ∧ p′ R q′)

• if q a−→2 q
′ then (a ≡ τ ∧ p R q′) ∨ (∃p′ ∈ S1 : p τ−−→

∗
1

a−→1 p
′ ∧ p′ R q′)

The τ∗a-equivalence is the equivalence relation obtained by considering the union of

all τ∗a-bisimulations. Two LTSs are τ ∗a-equivalent if their initial states are.

2.3.3 State spaces are special!

All the algorithms that we propose exploit the fact that the LTSs on which they act

represent state spaces. Due to the way they are generated, namely as interleavings of

several parallel processes, state spaces have some special characteristics:

• there is a special initial state (root);

• there are multiple labels, but in a small constant number compared to the

number of states;

• the number of transitions originating in each state is bounded by a constant

(bounded fanout);
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• the depth (i.e. longest distance between any state and the root) is relatively small

compared to the size of the state space (given by the number of transitions);

• the diameter (longest shortest path between any two connected states) is also

much smaller than the size;

• strongly connected components (SCCs) are usually not very long cycles, but

small dense knots, and many larger SCCs are built out of smaller ones.

An analysis of typical state space characteristics has recently been made in [Pel04].

The tool proposed in [GH03] offers insights in the structure of state spaces by means

of visualization techniques. Some of the characteristics mentioned above are visible

on the 3D images of various state spaces. A collection of state spaces is created and

maintained [CI] under the name VLTS benchmark.

The input of our algorithms is always an LTS (S, T, s0) with N states and M tran-

sitions. Since it represents a state space, this LTS usually conforms to the description

above. Our algorithms, presented in the following three chapters, are designed with

these characteristics in mind and will perform best on state spaces. This does not

imply any technical restriction on the input – our algorithms are correct and work for

any LTS.

2.3.4 Input/output formats

Due to the growing number of model checking tools and the many different directions

in which they evolve, efforts are now being made on the development of standard

state space storage formats and standard interfaces. Some examples are the FC2

file format [Mad92], Aldebaran’s textual format AUT [FGK+96], the Binary Coded

Graphs format BCG [FGK+96], the SVC format [BLL03].

The main input/output format used by the tools described in this thesis is SVC2

[BLL03], which was especially designed for distributed settings. In this format, the set

of states is divided into n subsets (segments) and the set of transitions into n2 subsets,

accordingly (one transition subset for each pair of segments). In order to allow easy

access, each transition subset is ordered – i.e., transformed into a list – and split into

3 sublists: source states, labels, destination states. In the current implementation,

every sublist is stored as a different file. Our sequential tools (Sections 3.2, 3.4, 4.3)

accept inputs in AUT and BCG format.





3

Strong Bisimulation Reduction

In this chapter two distributed algorithms for strong bisimulation reduction of LTSs

are presented. They are useful in the context of enumerative verification, when large

state spaces (represented as transition systems) are first fully generated, and only

then analyzed. To make analysis easy, such a state space is first reduced modulo

an equivalence preserving interesting properties. Strong bisimulation preserves all

properties expressible as HML formulas [HM80].

Related work Very good sequential algorithms have been described for bisimilarity

reduction and bisimilarity checking: [KS83, PT87] and based on these, [Fer90]. In

[BGS92], the bisimilarity checking problem was proved P-complete, which means that

it is hard to have it parallelized efficiently (Section 2.2.6 contains detailed explana-

tions).

Parallel versions of [KS83] and [PT87] have been proposed [ZS93, RL98], with

time complexity O (N1+ε) using M
Nε CREW PRAM processors (for any fixed ε <

1), and O (N logN) with O (MN ) CREW PRAM processors, respectively. These

algorithms are designed for shared memory machines and they are difficult to translate

efficiently to a distributed memory setting. [JKOK98] proposes a randomized parallel

implementation of the Kanellakis-Smolka algorithm for bisimilarity checking, that

works in linear time O (N) on O (N 2) processors. This solution does not consider

the case of multiple labels, and it is not precise (has some small probability of error).

Like the Kanellakis-Smolka [KS83] and Paige-Tarjan [PT87] solutions, our algo-

rithms are based on partition refinement. The computed refinements are precisely

the refinements computed by the “naive” reduction algorithm mentioned by Kanel-

lakis and Smolka. That is, in the initial partition all states are in the same block

and in every refinement step the next partition distinguishes everything that can

be distinguished with respect to the previous partition. This is different from the
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Kanellakis-Smolka and Paige-Tarjan algorithms, which in each iteration will select

two blocks and a label and then refine the first block with respect to possible transi-

tions to the second block, having the selected label.

In our implementations, a unique ID (an integer) is assigned to each block and

partitions are represented as arrays of IDs indexed by states. The signature of a state

x with respect to a partition is a set of pairs of labels and IDs, such that a pair (a, id)

is in the set if and only if there is a transition with the label a from the state x to

another state belonging to the block with the ID id. Two states are distinguishable

with respect to a partition if they have different signatures with respect to that

partition.

The straightforward implementation, presented in Sections 3.2 and 3.3, computes

the signatures of all states in every iteration and randomly assigns IDs to each signa-

ture. It terminates if the number of signatures becomes stable.

The optimized implementation, discussed in Sections 3.4 and 3.5, does not recom-

pute the signatures on each iteration. Instead, it modifies the old signatures. While

this recomputation goes on, the states with modified signatures are marked. Next, we

assign new IDs to the signatures of marked states as follows: if some of the states in

a block are unmarked then the signatures of the marked states all get new IDs; if all

states in a block are marked then the old ID is reused for the signature which occurs

most often and new IDs are assigned to the others. The algorithm terminates if there

are no more changes. By assigning the old ID to the most often occurring signature,

we minimize the number of signatures which must be recomputed in the next iter-

ation. Note that this is similar to the strategy used in the Paige-Tarjan algorithm,

which always splits with respect to the smallest block.

Why Kanellakis-Smolka and not Paige-Tarjan? As starting point for our distributed

algorithms, we chose a very simple bisimulation reduction, called “the naive method”

by Kanellakis and Smolka [KS83]. From the point of view of theoretical complexity,

it cannot compete with the Paige-Tarjan algorithm (O (MN+N 2) vs. O (M logN)),

but in practice it performs quite well. Moreover, the Paige-Tarjan algorithm cannot

easily be extended to branching bisimulation and weak bisimulation. For the naive

algorithm this is feasible (see Chapter 3).

Both the Paige-Tarjan algorithm and the naive algorithm use iterations. The Paige-

Tarjan algorithm in each iteration carefully selects a number of states to work on.

The naive algorithm works on all states independently. The data structures needed

to make the selection cost a lot of memory in any case and require modification to

allow an efficient distributed implementation. In contrast, the naive algorithm has

a natural parallel implementation. For both algorithms the worst case number of

iterations is the number of states. However, in practice the Paige-Tarjan algorithm

needs many more iterations then the naive algorithm.

Another practically relevant difference is that Paige-Tarjan is efficient for unlabeled
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transition systems. Adapting it to work on LTSs is at the cost of accepting extra iter-

ations, while the naive algorithm exploits the different labels, by multi-way splitting,

precisely to reduce the number of iterations.

3.1 The relational coarsest partition problem

For the definitions of LTS and strong bisimulation equivalence, we refer to the pre-

liminaries chapter, Section 2.3.1.

The problem that we focus on, bisimulation minimization, is to find the equivalence

classes of the largest strong bisimulation on the states of a given LTS. Or, in other

words, given an LTS, find the LTS that is strongly bisimilar to it and has the minimal

number of states.

A related problem is that of bisimilarity checking: given an LTS S = (S, T, s0)

and two states p, q ∈ S, decide whether p and q are strongly bisimilar. This problem

reduces to the minimization problem, since it suffices to check whether p and q are

in the same equivalence class of the largest bisimulation relation definable on the

states of S. The way of deciding whether two transition systems represent the same

behavior is to apply a bisimulation minimization algorithm to the compound LTS

(S1 ∪ S2, T 1 ∪ T 2, s10) and see whether s10 and s20 end up in the same class.

For an LTS (S, T, s0), a partition of the elements of S is a set of disjoint blocks

{Bi | i ∈ I} s.t. ∪i∈IBi = S. An equivalence relation can be represented as a

partition with a block for every equivalence class. A partition π′ is a refinement of π

if every block of π′ is contained in a block of π: ∀C ∈ π′ : ∃B ∈ π : C ⊆ B.

The bisimilarity minimization problem is equivalent to the relational coarsest par-

tition problem which is to find, for a given LTS and a given initial partition π0 of S,

a partition π s.t.:

1. π is a refinement of π0

2. ∀p, q ∈ B ∈ π : ∀a ∈ Act : ∀B′ ∈ π :

∃p′ ∈ B′ : (p, a, p′) ∈ T iff ∃q′ ∈ B′ (q, a, q′) ∈ T

3. π has the fewest blocks among all partitions satisfying 1 and 2.

The algorithms discussed in this chapter solve the bisimulation minimization prob-

lem by solving the Relational Coarsest Partition Problem with π0 = {S}.

3.2 A naive sequential solution

In Figure 3.1 we have described an implementation of the naive algorithm, for a given

LTS (S, T, s0). The idea is that signatures computed with respect to the current

partition determine the next partition. More precisely, the blocks of the new partition

are sets of states with identical signatures. Keeping track of the current partition is
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1 for x ∈ S do ID(x) := 0 enddo
2 oldcount := 0; newcount := 1
3 while oldcount 6= newcount do
4 /* compute the signatures */
5 for x ∈ S do
6 sig(x) := {(a, ID(y)) | x a−→ y}
7 enddo
8 for x ∈ S do
9 insert sig(x) in HashTable

10 and get new value for ID(x)
11 enddo
12 /* count the blocks of the new partition */
13 oldcount := newcount

14 newcount := card({ID(x) | x ∈ S})
15 enddo
16 return ID

Figure 3.1: (SSN). Single threaded implementation of the naive algorithm

done by assigning every block an unique identifier (natural number). The function

ID : S → N indicates to which block every state belongs. Thus, the current partition

is represented by the ID function. We define the signature of a state x with respect

to it as

sig(x) = {(a, ID(y)) | x a−→ y}.

Since our signatures of interest are always computed with respect to the current

partition, we will not index them; instead, we will make sure it is always clear what

the current partition is. In steps 8-11, new values are assigned to ID, such that

∀x, y ∈ S :

the new value of ID(x) = the new value of ID(y)

iff

sig(x) w.r.t. the old ID = sig(y) w.r.t. the old ID.

A hash table HashTable, being a set of 〈oldsig, newID〉 pairs, is used for this purpose.

The hash values are signatures. Let us denote by IDf the ID returned by the algorithm;

IDf determines the final partition.

Note that, unlike the general partition refinement scheme, SSN (Sequential Strong

bisimulation Naive algorithm) only computes the new signatures and does not explic-

itly replace blocks of the old partition with new blocks. The following lemma justifies

that the partitions computed in this manner are indeed successive refinements, under

the hypothesis that the initial partition is {S}:
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Lemma 3.1 For n ≥ 0, denote IDn, sign the ID and sig functions as they are before

execution of step 8 of the nth iteration of SSN (first iteration has index 0). Then for

every n > 0 and for every x, y ∈ S:

sign−1(x) 6= sign−1(y) =: sign(x) 6= sign(y).

Proof: Let us first examine the relation between the IDn(n ≥ 0) and sign(n ≥ 0)

series of functions. Due to step 6, for every x ∈ S and every n ≥ 0,

sign(x) = {(a, IDn(y)) | x a−→ y} (3.1)

Also, steps 8-11 of the (n− 1)th iteration (∀n ≥ 0) take care that, for every x, y ∈ S,

IDn(x) = IDn(y) iff sign−1(x) = sign−1(y). (3.2)

We prove the lemma by induction on n. The initial partition is {S}, which means

that ∀x, y ∈ S : sig0(x) = sig0(y). Therefore the claim is true for n = 1. Let n > 1

and suppose there exists a pair of states x, y ∈ S for which

sign−1(x) 6= sign−1(y) (3.3)

and sign(x) = sign(y) (3.4)

Then (w.l.o.g.) there must exist a transition x a−→ z (a ∈ Act, z ∈ S) such that

(a, IDn−1(z)) /∈ sign−1(y), meaning that

@t ∈ S : (y a−→ t ∧ IDn−1(t) = IDn−1(z)) (3.5)

The pair (a, IDn(z)) occurs in sign(x) (3.1). From 3.4 it then follows that there exist

a state v ∈ S such that y a−→ v and IDn(v) = IDn(z). From this last equality we derive

(3.2) that sign−1(v) = sign−1(z) and, from the induction hypothesis, sign−2(v) =

sign−2(z). But that also means, applying 3.2 once more, that IDn−1(v) = IDn−1(z),

which gives a contradiction with 3.5. Â

3.3 ...and its distributed implementation

The obvious way to distribute a partition refinement algorithm is to distribute the data

and keep the control flow centralized. More precisely, the workers perform iterations in

which they independently do some refinement and then synchronize the results. This

approach is fine in theory, but in practice it turns out that synchronization can take a

lot of time. This is another reason to choose the naive algorithm: typically it needs far
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1 read Inji(∀j), read Outij(∀j)
2 newcount := 1
3 for ever do
4 /* phase 1: compute signatures */
5 for x ∈ Si do
6 sig(x) := {(a, p) | 〈x, a, p〉 ∈ Outij , 0 ≤ j < W}
7 enddo
8 /* phase 2: compute new IDs */
9 N expected answers := 0

10 Send Signatures
f
Handle Messages

11 /* decide whether this is the last iteration */
12 oldcount := newcount

13 DBSUM(newcounti , newcount)
14 if (oldcount = newcount) break fi
15 /* phase 3: update ID */
16 Update IDs
17 enddo
18 return ID

Figure 3.2: (DSN) Distributed version of SSN (WORKERi)

1 for x ∈ Si do
2 SEND / hash insert : i, sig(x) . TO worker(hash(sig(x)))
3 N expected answers := N expected answers+ 1
4 enddo
5 for j : 0 ≤ j < W do SEND / endsig : . TO j enddo

Figure 3.3: The Send Signatures routine of WORKERi

less iterations than Kanellakis-Smolka and Paige-Tarjan, thus fewer synchronizations.

3.3.1 Description

Our distributed reduction algorithm (Figure 3.2) is based on the sequential one (Fig-

ure 3.1). The states of the input LTS are evenly divided over the W workers. Worker

i is in charge of the set of states Si. Every iteration, it has to compute the signatures

of states in Si and keep track of the ID of these signatures. It is also responsible for

the administration of a part of the hash table used at step 10 (step 8-11 in SSN). We

denote i’s part by HashTablei.

Let Tij be the indexed list of transitions having the source state in Si and the

destination state in Sj . About a transition in Tij , worker i needs to know its source

state, its label and the current ID of its destination state, in order to be able to

compute the source state’s signature. It is worker j’s job to keep i informed about

the current ID of the destination state. Therefore, the Tij-concerned knowledge needed
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1 N active workers := W

2 while N active workers > 0 ∨ N expected answers > 0
3 do
4 RECEIVE msg

5 case msg

6 / hash insert : j, s .
7 insert s in HashTablei and obtain ID(s)
8 SEND / hash ID : s, ID(s) . TO j

9 / endsig : .

10 N active workers := N active workers− 1
11 / hash ID : s, sid .
12 ID(s) := sid

13 N expected answers := N expected answers− 1
14 endcase

15 enddo
16 newcounti := card(HashTablei)

Figure 3.4: The Handle Messages routine of WORKERi

1 for j : 0 ≤ j < W do
2 SEND / update : i, [ID(y) | y ∈ Inji] . TO j

3 enddo
4 received := 0
5 while received < W do
6 RECEIVE / update : w, IDList .
7 received := received + 1
8 update Outiw with IDList
9 enddo

Figure 3.5: The Update IDs routine of WORKERi

and maintained by workers i and j is captured in two lists ordered by the same index

as Tij :

Outij = [〈x, a, ID(y)〉 | x a−→ y ∧ x ∈ Si ∧ y ∈ Sj ], residing in the memory of i

Inij = [y | x a−→ y ∧ x ∈ Si ∧ y ∈ Sj ], in the memory of j

Note that elements can occur repeatedly in a list – for instance, a state shows up

twice in Inij if it is the destination of two transitions coming from states on i. Inij

and the first two fields of the elements from Outij represent static information about

the structure of the LTS. The data that changes throughout the run of the algorithm

are the functions sig and ID. Furthermore, workers need to know the number of

different signatures of the states in S in the current and in the previous iteration, in

order to decide whether the final partition has been reached. As in the sequential

case, denote IDf the final assignment for ID, returned at the end of the algorithm.
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The LTS is provided to the workers in the form of the lists Inij and Outij , ∀i, j,

the latter using a constant initial ID function: ID(x) = 0 that reflects the initial par-

tition {S}. Each iteration of DSN (Distributed Strong bisimulation Naive algorithm)

consists of three phases:

1. signature computation (steps 5-7),

2. computing globally unique IDs for signatures (step 10) and

3. exchanging ID information. (step 16)

In the first phase (5-7) of every iteration, each worker computes the signatures of its

own states.

In the second phase (10, detailed in Figure 3.3 and 3.4), all signatures are inserted

in the distributed hash table and are assigned unique IDs. The insertion is based on

a hash function hash : 2Act×N → N and the distribution of the hash table is done by

a function worker : N→ {0 · · ·W − 1}. We assume that worker is capable of ensuring

a balanced load of signatures on workers. WORKERi runs two threads. One is busy

with sending each signature to the worker responsible for the part of the hash table

where it should be inserted (determined using worker). When all signatures are sent,

an endsig message is sent to all workers, to mark the end of the stream. The other

thread handles the incoming messages. A request for inserting a signature in the local

hash table (hash insert) is handled by looking up the signature and fetching its ID,

or, if not found, adding it to the table and assigning it a new ID. The ID is then

returned to the owner of the signature. When receiving an answer (hash ID) to a

request sent earlier by Send Signatures, Handle Messages fills in the new ID value

and decreases the counter of expected answers. Finally, on receiving an end-of-stream

message (endsig), it decreases the counter of workers that might still send hash insert

requests. The Handle Messages thread terminates when all workers announced that

they have no more signatures to send to i and all i’s requests have been answered.

After the second phase, we compute how many different signatures there are now

(steps 12-13). If the number of signatures did not increase w.r.t. the previous iteration,

the stable partition has been reached and the computation must stop (14).

In the third phase (16, shown in detail in Figure 3.5), the lists Outij are updated.

For every transition of the LTS, the new ID of the destination state’s signature is

sent to the owner of the source state. More precisely, every worker j sends ID(Inij)

to worker i, who will substitute this information on the last fields of its Outij . This

happens correctly due to the fact that the lists Inij and Outij have the same index.

At the end of the loop , the IDs are the states of the reduced LTS and its set of

transitions is ∪i,j{〈ID(x), a, p〉 | 〈x, a, p〉 ∈ Outij}. They can be dumped independently

by the workers, possibly after renumbering the IDs to consecutive numbers.
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3.3.2 Correctness and complexity

We now justify that the algorithm described above is correct, i.e. it terminates and

it produces the minimal LTS bisimilar to the input LTS. We also give an analysis of

its performance in terms of time, memory and number of messages needed during the

computation.

Theorem 3.2 (correctness) Let S ≡ (S, T, s0) be an LTS. Then DSN applied to any

distribution of S terminates and the resulting IDf satisfies:

({IDf (x) | x ∈ S}, {〈IDf (x), a, IDf (y)〉 | 〈x, a, y〉 ∈ T}, IDf (s0))

is the minimal LTS bisimilar to S.

Proof: We first argue that every iteration (steps 5-16) of DSN terminates. For this,

we take a closer look at the steps involving communication (10,12-13 and 16). The

first thread of step 10 obviously terminates, since it only executes a finite number of

SEND TO calls (that are always successful).

Handle Messages’s exit condition

N active workers = 0 ∧N expected answers = 0

will eventually be satisfied. N active workers becomes 0 when W hash ID messages

sent to i will have been received. Note that N active workers being 0 is a sign that

all hash insert messages directed to i have been received, and also that all hash insert

messages, originating from all workers, including i itself, have been sent. In par-

ticular, this means that when N active workers of i is 0, N expected answers of i

will not increase anymore. This property rules out the undesired situation that the

exit condition is fulfilled while messages for i are still pending. The termination of

Update IDs is justified mainly by the fixed number of messages exchanged. Every

worker successfully sends exactly W messages (these messages can be very large, but

this is not a problem, since we assumed unbounded channels, see Section 2.2.5), then

picks up from the network the W messages addressed to it.

It can be easily proved by induction that DSN mimics faithfully the sequential

version SSN, depicted in Figure 3.1. That is, formally: for any r, if we consider IDseq

= SSN’s ID, after step 11 of the rth iteration and IDdbi = WORKERi ’s ID, after

step 10 of the rth iteration (∀i), then

∀i, j∀x ∈ Si, y ∈ Sj IDdbi(x) = IDdbj(y) iff IDseq(x) = IDseq(y).

From this and from the fact that the exit condition from DSN and SSN are identical,

it follows that the loop 3-17 of DSN eventually terminates. Moreover, the LTS de-

termined by the IDf values is exactly the one found by SSN, thus the solution of our
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problem. Â

To evaluate the performance of DSN, we use the classical time/message complexity

measures for distributed algorithms, as defined in [AW98] and recalled in Section 2.2.3.

Theorem 3.3 (complexity) Worst-case time complexity of DSN is O (MN+N2

W ) and

message complexity is O (N 2).

Proof: For computing the signatures, every state has to be considered and we assumed

that the cost per state is linear in the number of outgoing transitions of that state.

As workers do this computation independently and we assumed even distribution of

states, the time needed is O (M+N
W ).

The number of signatures each worker has to insert into the global hash table is at

most the number of states it processes: d NW e. Assuming that worker is a perfect hash

function, each worker has to send
⌈

d N
W
e

W

⌉

signatures to every other worker. Every

worker therefore receives at most W ·
⌈

d N
W
e

W

⌉

signatures. (The insertion in the local

hash table takes constant time, as well as the computation of a new ID.) The same

amount of replies must be sent back. Thus, the cost of computing globally unique

identifiers for signatures is O
(

W ·
⌈

d N
W
e

W

⌉)

. Under the assumption that W ¿ N ,

we can forget about rounding upwards and we evaluate the cost to O
(

N
W

)

.

To decide termination, we need to compute the total number of different signatures.

The cost of this operation is W .

To exchange the new IDs, every worker has to prepareW buffers of total size O(MW ),

representing the total number of incoming transitions (see Section 2.2.5). It also has

to receive and process W such buffers, from workers that are in charge of successor

states.

Summing up, the cost of an iteration is O(M+N
W ). Since as many as N iterations

might be needed, the worst case time complexity is O(MN+N2

W ).

The message complexity is given by the total number of messages sent by all workers

in the whole run of the algorithm. In the worst case, exchanging signatures takes N

messages (if every signature has to be sent to another worker), and the update phase

W 2 messages. Synchronizing at steps 12-13 takes always W messages. This results

in at most N(N +W +W 2) messages over the whole run, that is O (N 2 + NW 2).

Since W is insignificant compared to N , we may conclude a message complexity of

O (N2). Â

The number of iterations is the most important factor in the performance of the

algorithm. The worst case is that the number of iterations is the number of states.

An example that has this worst case behavior is an LTS whose state are the numbers
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S := ∅ S := S ∪ {1} S := S ∪ {1}

∅

{1}S :

∅

{1}S :

∅S :

spanning tree edge

other edge

S := S ∪ {3} S := S ∪ {2}

∅

{1}

{1, 3}S :

∅
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{1, 3} {1, 2}

{1, 2, 3}S :

Figure 3.6: Evolution of a set data structure

0..N and the transitions are i→ i+ 1(i = 0..(N − 1)). However, such a long series of

events is not typical in state spaces. The typical phenomenon in state spaces is state

space explosion: the system would consist of P processes each having N states that

run in parallel. The size of the state space would then be NP , which is a huge number

for relatively small N and P . However, if the processes are completely independent

then the reduction algorithm needs at most N + 1 iterations. Of course neither the

long thread nor the complete independence of processes occurs in practice, but they

give some intuition about the worst case and why it is unlikely.

The memory needed by one worker can be estimated as follows: O (M+N
W ) for the

signature information, O (MW ) for the (destination ID, destination state) of incoming

transitions, O (MW ) for the (source state, label, destination ID) of outgoing transitions.

In total, O (M+N
W ), which is the best that can be achieved, W times less than the

space used by the single-threaded implementation.

3.3.3 Implementation details

The distributed prototype implements the algorithm in Figure 3.2. In the actual

MPI implementation, messages are not sent one by one, but buffered into larger

messages. For the update phase (step 16), we issue all the SEND TO messages and

post RECEIVE requests, then wait for all RECEIVE requests to be completed. The

two threads from step 10 are implemented with explicit interleaving.

For computing signatures we have used a set datatype on which it is easy to add a

single element and decide equality. The idea is to maintain a directed graph, whose

vertexes are sets and whose labeled edges are an ’obtained by insertion’ relation. That

is, an edge S e−→ S′ is only allowed if S′ = S ∪ {e}. In order to efficiently decide if
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a certain set is present or not, we maintain the graph in such a way that the edges

S \ {max(S)}
max(S)
−−−−−−−→ S form a spanning tree. By doing this the set corresponding

to an ordered list can be found by starting in the empty set and then following the

edges corresponding to the elements in the list. There may be other paths from the

empty set to the same set, but if a set exists then this path exists. In Figure 3.6, we

have drawn the data structure as it would look when starting with an empty set and

adding the elements 1, 1, 3 and 2 in that order. Notice that adding 1 twice creates a

cycle in the graph.

On this data structure, we can decide equality of sets in constant time. The com-

plexity of inserting a single element into a set is linear in the size of the set the first

time and constant afterwards. (The first time we have to create one or more edges

and 0 or more vertexes, afterwards we can find the edge in constant time using a hash

table.)

Using this structure it is very easy to write code that computes signatures. How-

ever, the order in which the signatures are built matters for the performance of the

algorithm. If a set is built in the same order every time then quadratic time is needed

for the first build and linear time for every rebuild. The danger comes from the fact

that quadratic time and memory may be used for every different order in which the

signature is built. This means that to obtain decent performance, we have to sort the

transitions ensuring that the amount of different orders is minimal.

3.4 An optimized sequential solution

In the previous two sections, an algorithm was presented that uses the set of all

outgoing transitions (signatures) as criteria to distinguish states, as opposed to the-

oretically more efficient algorithms that check the states of the same block against

certain other blocks. The main advantage of the new signatures approach is that it

admits a natural distributed implementation.

See the sequential version of this algorithm in Figure 3.1. In that scheme, all

signatures are recomputed in every iteration, which can be an unnecessary and costly

effort in the case of large input LTSs with a structure that needs a lot of iterations

to stabilize and where very few partition blocks can be split per iteration (very few

signatures actually change).

The main idea of our second approach, which we will refer to as “optimized”, is to

mark, in every iteration, those states that might have suffered a signature change, i.e.

the states that have an outgoing transition to a state whose ID changed in the current

iteration. (As before, we indicate the current partition by a function ID : S −→ N

that assigns block identifiers to states.) In the next iteration, only the signatures

of the marked states need to be recomputed. We will refer to the marked states as

unstable. Note that, unlike other algorithms, that mark whole blocks as unstable, we

insist on reasoning about unstable states and not assuming that the states belonging
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1 E := 1; c(0) := card(S) ; U := S

2 for x ∈ S do ID(x) := 0 ; sig(x) := ∅ enddo
3 while U 6= ∅ do
4 for x ∈ U do sig(x) := {(a, ID(y)) | x a−→ y} enddo
5 Reusable := {i | 0 ≤ i < E ∧ c(i) = card(U ∩ {x | ID(x) = i})}
6 ST := ∅; νU := ∅
7 for x ∈ U do
8 oid := ID(x)
9 if (sig(x), i) ∈ ST

10 then ID(x) := i

11 else if ID(x) /∈ Reusable

12 then
13 c(E) := 0
14 ID(x) := E

15 E := E+ 1
16 else Reusable := Reusable− {ID(x)}
17 fi
18 ST := ST ∪ {(sig(x), ID(x))}
19 if oid 6= ID(x)
20 then
21 νU := νU ∪ {y ∈ S | y a−→ x}
22 c(oid) := c(oid)− 1
23 c(ID(x)) := c(ID(x)) + 1
24 fi
25 fi
26 enddo
27 U := νU
28 enddo

29 for x ∈ S IDf (x) := ID(x)

Figure 3.7: (SSO) The optimized algorithm

to the same block are easily retrievable. Extra attention has to be paid to ensure the

correctness of the splitting procedure, but it pays off, since the ability to work directly

on states provides parallel/distributed workers with a high(er) degree of independence.

The optimized algorithm, SSO (Sequential Strong bisimulation Optimized algo-

rithm), is presented in Figure 3.7 and uses the following notations and data struc-

tures:

− U , νU - the set of unstable states for the current and the next iteration,

respectively

− E - the number of blocks in the current partition. Throughout the algorithm,

the invariant is kept that the blocks of the current partition are numbered {0 . . .E−1}.

− c : {0 . . .E− 1} −→ N - the number of states in each block

− Reusable - the set of block identifiers that can be reused in the next iteration,

since all the states belonging to those blocks are marked unstable. These identifiers
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Figure 3.8: A refinement example. The filled circles represent the unstable states at
the beginning of each iteration.

should be reused in order to preserve the above mentioned invariant. Moreover, the

identifier of every block should be reused for one of its own sub-blocks, to ensure

termination of the iterations series.

− ST - a signatures hashtable used to map the signatures of the current iteration

to new IDs (the block identifiers of the next iteration).

IDf is the final partition, the blocks of which represent the states of the minimized

LTS. The termination and correctness of SSO follow from a few properties listed

below.

Lemma 3.4 Let Un, sign, IDn, En denote the set of unstable states, the signatures

mapping, the ID mapping, and the number of equivalence classes at the beginning of

the n-th iteration of the optimized algorithm (i.e. before the n-th execution of step 3)

– the count starts at 0. The following properties hold, for any n ≥ 0:

1. (∀x ∈ S) IDn(x) < En.

2. (∀i : 0 ≤ i < En−1) ∃x ∈ S s.t. IDn(x) = IDn−1(x) = i.

(∀i : 0 ≤ i < En) ∃x ∈ S s.t. IDn(x) = i.

3. (∀x ∈ S IDn(x) = IDn−1(x)) iff Un = ∅

4. (∀x, y ∈ S)

IDn(x) = IDn(y) iff sign(x) = sign(y) and

sign(x) 6= sign(y) =: sign+1(x) 6= sign+1(y).

5. En−1 ≤ En.

En = En−1 iff (∀x ∈ S IDn(x) = IDn−1(x)).

Proof:
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The properties 1, 3 and 4 will be proved independently, by induction on n. Prop-

erty 2 relies on 4 and property 5 relies on 1 and 2.

1 . (∀x ∈ S) ID0(x) = 0 < 1 = E0. In every iteration, the only place where fresh

values are introduced for ID is step 14 (in step 10 an old value is used). But E is also

immediately increased (step 15), therefore the invariant stays true.

2 . For n = 0 the property is obviously true, since ID0(x) = 0 for all states x.

Suppose it is true for En−1, IDn−1 and let us look at how En and IDn are computed,

in the n−1th iteration. First, the set Reusable is constructed (step 5), containing the

identifiers of the blocks whose states are all marked unstable. Let i be any identifier

0 ≤ i < En. We distinguish three cases:

− i ∈ Reusable. Then all states x with IDn−1(x) = i (according to the induction

hypothesis, there is at least one) must be in Un−1. Let y be the first of these states

that is handled in the step 7 of the algorithm. sign(y) cannot be already in ST, since

this would mean that there exist a state z from another block (IDn−1(z) 6= IDn−1(y))

with the same signature (sign−1(z) = sign−1(y)), which contradicts point 4 of this

lemma. Therefore, y will only be affected by steps 16 and 18, that do not modify the

value of ID. Thus, IDn(y) = IDn−1(y) = i.

− i /∈ Reusable∧ i < En−1. Then there must be a state x for which IDn−1(x) = i

and x /∈ Un−1. It follows, since the steps sequence 7-26 does not regard x, that

IDn(x) = IDn−1(x) = i.

− En−1 ≤ i < En. This means that i is “created” in the steps 13-15 as identifier

for a new block. In step 14 the IDn of the first state of this block is explicitly defined

as being i.

3 . Let us consider an iteration n that satisfies ∀x ∈ S IDn(x) = IDn−1(x). This

means that in the iteration n− 1, the condition in the step 19, that compares exactly

IDn(x) and IDn−1(x) was never satisfied, thus νU remains ∅, that is Un = ∅. The

inverse is also true: if Un = ∅ then νU ended up empty in the previous iteration. This

could only happen if the condition on line 19 was never met, that is the value of ID

was not changed for any state. Formally, ∀x ∈ S IDn(x) = IDn−1(x).

4 . We prove this by induction on n ≥ 0. The case n = 0 follows from the fact

that (∀x) sig0(x) = 0 and (∀x) ID0(x) = 0. To prove the first half of the invariant for

an arbitrary n, we consider three cases:

− x, y ∈ Un−1. In this case, both sign(x) and sign(y) are inserted in the

hashtable ST, which ensures the same ID value for (and only for) equal signatures.

− x, y /∈ Un−1. Then the sigs and IDs do not change, i.e. sign(x) = sign−1(x),

IDn(x) = IDn−1(x) and sign(y) = sign−1(y), IDn(y) = IDn−1(y). From the induction

hypothesis, it follows that sign(x) = sign(y) iff IDn(x) = IDn(y).

− x ∈ Un−1 and y /∈ Un−1. Then there must be a state z that has caused the

instability of x, i.e. there is a transition x a−→ z with IDn−1(z) 6= IDn−2(z). Then

IDn−1(z) = i ≥ En−2, therefore the pair (a, i) cannot be in sign−1(y). And since

sign(x) is recomputed and sign(y) not, it follows that sign(x) 6= sign(y). It remains to
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prove that IDn(x) 6= IDn(y) as well. Let us first notice that

if IDn(x) 6= IDn−1(x) then IDn(x) ≥ En−1. (3.6)

If sign−1(x) = sign−1(y) = i, then i /∈ Reusable (since y /∈ Un−1), thus IDn(x) 6= i,

thus (3.6) IDn(x) ≥ En−1, while IDn(y) = IDn−1(y) < En−1. If, on the contrary,

sign−1(x) 6= sign−1(y), then IDn−1(x) 6= IDn−1(y) (induction hypothesis). IDn(x)

is computed in the fragment 7-26 and the outcome can be IDn(x) = IDn−1(x) 6=

IDn−1(y) = IDn(y) or IDn(x) 6= IDn−1(x). In the latter case, IDn(x) ≥ En−1 (3.6),

while IDn(y) = IDn−1(y) < En−1.

And now we prove the second half of the property. Let x and y be two states for

which sign(x) 6= sign(y). Then (w.l.o.g.) there is some pair (a, IDn−1(z)) ∈ sign(x) and

/∈ sign(y). If sign(y) does not contain any pair (a, j) then clearly sign+1(x) 6= sign+1(y).

Otherwise, let y a−→ t be any of the a-transitions from y. Then (a, IDn−1(t)) ∈ sign(y)

and IDn−1(t) 6= IDn−1(z), which means (induction hypothesis) that sign−1(t) 6=

sign−1(z) and, further, sign(t) 6= sign(z). Above we have proved that this is equivalent

to IDn(z) 6= IDn(t). Thus, sign+1(x) contains the pair (a, IDn(z)) and sign+1(y) does

not.

5 . From the points 1 and 2 of this lemma it follows that (∀n) En is exactly the

number of different values for IDn. Therefore, if ∀x ∈ S IDn(x) = IDn−1(x) then

obviously En = En−1.

We will now prove the inverse statement. Let n be so that En = En−1 and suppose

there exist an x ∈ S with IDn(x) = i 6= IDn−1(x). The property 2 says that there

exists y ∈ S such that IDn(y) = IDn−1(y) = i. But this would mean IDn(x) = IDn(y)

and IDn−1(x) 6= IDn−1(y), which comes in contradiction with property 4. Â

Theorem 3.5 (termination and correctness of SSO)

For any LTS (S, T, s0), SSO terminates and the equivalence relation ≈ determined by

IDf (x ≈ y iff IDf (x) = IDf (y)) is the largest strong bisimulation on S.

Proof: It is easy to see that for any iteration n > 0, En ≥ En−1. It is also clear that

En > En−1 can happen only finitely often, since from the points 1,2 of Lemma 3.4

follows that ∀n En ≤ card(S). Hence eventually En = En−1 and then the algorithm

stops (3,5 of Lemma 3.4 and the exit condition of the loop at step 3). This proves

termination.

We will now justify that ≈ is a strong bisimulation on S. Let last be the index of

the last iteration, that is IDf := IDlast . Let x and y be any two equivalent states and

let x a−→ z be any transition from x. To prove that ≈ is a strong bisimulation, we have

to prove that there exists a transition y a−→ t with t ≈ z. From IDlast (x) = IDlast (y)

and property 4 of Lemma 3.4 it follows that siglast (x) = siglast (y). Then, since
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(a, IDlast−1(z)) must be in siglast , there is a state t with IDlast−1(t) = IDlast−1(z)

and (a, IDlast−1(t)) ∈ siglast (y). But last is the final iteration, thus U last = ∅, that

implies (Lemma 3.4, property 3) IDlast (t) = IDlast−1(t) and similarly for z. Thus,

IDlast (t) = IDlast (z), or in other words t ≈ z.

Finally, to prove that ≈ is the coarsest strong bisimulation, let ≈′ be any other

strong bisimulation and show that ∀x, y ∈ S x ≈′ y = : x ≈ y. To this end, we

prove by induction that ∀n ≥ 0 x ≈′ y = : IDn(x) = IDn(y). The base case n = 0

is immediate. Suppose the statement is true for n − 1 and let x,y be two states

such that x ≈′ y. Then ∀x a−→ z∃y a−→ t with z ≈′ t, and thus also (induction

hypothesis) IDn−1(z) = IDn−1(t). According to the signature definition, this means

that sign(x) = sign(y). From property 4 of Lemma 3.4, IDn(x) = IDn(y). Â

3.5 ...and its distributed implementation

3.5.1 Description

There are W workers, each consisting of two threads: a segment manager, that main-

tains a part (a segment) of the LTS and computes the signatures of the unstable

states, and a signatures server, that maintains a part of the signature table ST and

computes the new IDs. The data structures occurring in Figure 3.7 are distributed to

the workers as follows:

• worker i, actually the segment manager i, is responsible for a subset Si of S.

Si∩Sj = ∅,∀i 6= j and
⋃

i Si = S. The function SM : S −→ {0 . . .W −1} maps

every state to its base segment manager.

• transition set T generates for every segment manager i the sets

Ini = {(x, a, y) | y ∈ Si ∧ x
a−→ y}

Outi = {(x, a, ID(y)) | x ∈ Si ∧ x
a−→ y},

where ID identifies the current partition.

• the sets of unstable states U , νU are maintained by managers in the form of

Ui = U ∩ Si and νU i = νU ∩ Si, respectively.

• the set of block identifiers {0 . . .E− 1} is divided into the disjoint sets IDSET0

. . . IDSETW−1 and distributed to the W signatures servers by a mapping

SS : {0 . . .E−1} → {0 . . .W −1}. Server j also maintains the part of the counts
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SEGMENT MANAGER i
1 νU i := ∅
2 for x ∈ Ui do
3 compute sig(x)
4 SEND / hash insert : ID(x), sig(x), x . TO SS(ID(x))
5 enddo
6 do loop

7 RECEIVE msg

8 case msg

9 / hash ID : x, i .
10 for y : (y, a, x) ∈ Ini do
11 SEND / update : y, a, ID(x), i . TO SM (y)
12 ID(x) := i

13 enddo
14 / update : x, a, oid, i .
15 Outi := Outi − (x, a, oid) + (x, a, i)
16 νU i := νU i ∪ {x}
17 enddo
18 U := νU

SIGNATURES SERVER i
1 STi := ∅
2 do loop

3 RECEIVE / hash insert : oid, s, x .
4 if (oid, s, Lx) ∈ STi

5 then Lx := Lx+ [x]
6 else STi := STi ∪ {(oid, s, [x])}
7 fi
8 Reusablei := {oid ∈ IDSETi | c(oid) =

∑

(oid,s,Lx)∈STi
card(Lx)}

9 enddo
10 decide on νIDSETi

11 for (oid, s, Lx) ∈ STi do
12 if oid /∈ Reusablei
13 then take id from νIDSETi

14 else id := oid

15 fi
16 for x ∈ Lx do
17 SEND / hash ID : x, id . TO SM (x) / hash ID : x, id .
18 enddo
19 enddo
20 re-balance c , νIDSET

Figure 3.9: (DSO) A distributed iteration
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array c and of the signature table ST corresponding to IDSETj :

STi = {(oid, s, Lx) | SS (oid) = i ∧

Lx = [x ∈ S | ID(x) = oid ∧ sig(x) = s]}

Here Lx is the list of all unstable states that have s as signature. Lx is necessary

because unlike in the sequential implementation, in the distributed one it is not

possible to generate the new ID at the moment of signature insertion.

The distributed algorithm executes, like the sequential one, a series of iterations. In

between iterations, workers synchronize in order to decide whether the final partition

has been reached. The computation inside an iteration is asynchronous and directed

only by messages, as sketched in Figure 3.9 (DSO = Distributed Strong bisimulation

Optimized algorithm). There are five phases distinguishable within an iteration:

− managers compute the signatures of the unstable states and send them

(hash insert) to the appropriate servers

− servers receive the signatures (hash insert) and insert them in their local ST

− servers compute new IDs for the unstable states and send them (hash ID)

back to the managers

− managers receive the new IDs for their unstable states (hash ID) and send

messages to the parent states of its own states that changed the ID (update)

− managers receive and process the update messages (update)

In order not to overload the presentation, we leave out the simple mechanism that

ensures that the loops SS2-9 and SM6-17 terminate. Since both these loops receive

and treat messages from a fixed number of communication parties, it is enough to let

these parties (the managers, in the case of the first loop; the servers in the second)

signal when their stream of data has stopped and let the party executing the loop

count the stop messages.

Due to the division of tasks between managers and servers, the first and the sec-

ond phase happen in parallel (steps SM2-5, SS2-9 in Figure 3.9). Also the last three

(steps SM6-17, SS11-19) are overlapped. The overlapping limits the amount of CPU

idle time, by allowing computation and communication to proceed in parallel. For

instance, the servers can already proceed with inserting signatures in the table while

managers prepare and send more signature messages. In the actual runs of the pro-

gram, a worker (manager + server) may use one processor. The main advantage of

overlapping the phases is memory gain: since the consumers and producers of mes-

sages are active at the same time, the messages do not have to be stored. Thus, less

memory is used.

3.5.2 Correctness and complexity

Lemma 3.6 The following properties hold for this distributed algorithm:
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1. in every iteration, the signatures of the states in the same block are sent to the

same server

2. every time a block splits, one of the new blocks gets the old id

3. in every iteration, finitely many hash insert and hash ID messages are generated

4. in every iteration, a received hash ID message generates finitely many update

messages.

5. (∀n > 0) if IDdbn is the state partition at the beginning of iteration n of DSO

and IDseqn is the state partition at the beginning of iteration n of SSO, then

(∀x, y ∈ S) IDdbn(x) = IDdbn(y) iff IDseqn(x) = IDseqn(y)

Proof: 1 . Indeed, if ID(x) = ID(y) = i, both sig(x) and sig(y) are sent (steps 2-5 in

the segment manager) to the signature server responsible for i, SS (i).

2 . Consider a block with the identifier i. If there are states x ∈ Sj − Uj with

ID(x) = i, then it is clear: all these states are not touched this iteration, i.e. they keep

their old ID. If, on the contrary, all the states x with ID(x) = i are in some unstable

set (∀x ∈ S ID(x) = i ∃jx ∈ Uj) then all signatures will be computed and sent to

the same server (steps 2-5 in the segment manager). At the signature server side, all

these signatures are inserted in STi and counted – and i is added to the Reusablei set.

Further, in SS6-17 when the first triple (i, s, Lx) is encountered, all the states in Lx

get i as new ID.

3 . The number of hash insert and hash ID messages is limited by the total size of

the sets Ui, i.e. by card(S).

4 . For each / hash ID : x, i . message, card(Ini) messages (that is ≤ card(S))

with the tag update are sent.

5 . By induction on n. Â

Theorem 3.7 (termination and correctness of DSO) For any LTS (S, T, s0), DSO ter-

minates and the IDdbf function computed is the same as the IDf computed by SSO.

Proof: The properties (1), (2) from Lemma 3.6 ensure that the invariants from

Lemma 3.4 are also true in the distributed implementation DSO. (3),(4) ensure that

the computation within an iteration terminates. The global termination is justified by

the one-to-one mapping between iterations in the sequential algorithm SSO and the

iterations in the distributed implementation DSO (5). From (5) and the correctness
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problem original minimized
states transitions disk space states transitions number of

(in 106) (106) (MB) (106) (106) iterations
CCP 0.21 0.68 15 0.077 0.24 66
1394-LL 0.37 0.64 15 0.034 0.076 73
lift5 2.2 8.7 101 0.032 0.14 86
CCP-2p3t 7.8 59 678 1.0 6.6 94
token ring 19.9 132 1513 8.4 51.1 6
lift6 33.9 165 1898 0.12 0.65 91
1394-LE 44.8 387 4430 1.1 7.7 51

Figure 3.10: Problem sizes

of SSO (Theorem 3.5) it follows that the partition computed is indeed the correct

one. Â

3.6 Experiments

To experiment with the distributed prototype implementations, we used an 8 node

dual CPU PC cluster and an SGI Origin 2000. The cluster nodes are dual AMD

Athlon MP 1600+ machines with 2G memory each, running Linux and connected

by both Fast Ethernet (bandwidth 100Mb/s) and Gigabit Ethernet (1Gb/s). The

Origin 2000 is a ccNUMA machine with 32 CPUs and 64G of memory running IRIX,

of which we used 1-16 MIPS R10000 processors. On the cluster, we used LAM/MPI

6.5.6 and on the SGI the native MPI implementation.

The case studies The test set consists of a variety of state spaces generated by case

studies carried out recently with the µCRL toolset and of the collection of anony-

mous LTSs VLTS (Very Large Transitions Systems) [CI]. The µCRL case studies are

mentioned below.

• 1394-LL [Lut97] is a model of the Link Layer of the FireWire high speed serial

data bus, used to connect computers and peripheral devices.

• 1394-LE models the Leader Election protocol implemented within FireWire.

The specification used here is instantiated with 17 nodes and is a variant of the

specification in [SZ98].

• CCP-2p3t [PFHV03] is a cache coherence protocol model for distributed Java

programs. We use the instance with 2 processes and 3 threads. CCP is an older

(and smaller) version of it.

• lift5, lift6 [GPW03] are models of a distributed system for lifting trucks with 5

and 6 legs.
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problem bcg min SSN SSO

time mem time mem time mem
(s) (M) (s) (M) (s) (M)

CCP 15.0 18 21.3 20 4.5 18
1394-LL 18.5 19 6.2 14 3.3 21
lift5 113 184 64 123 43 214
CCP-2p3t 4363 968 779 1187

Figure 3.11: A comparison of single threaded tools

• token ring is the model of a Token Ring leader election protocol for 4 stations 1.

Problem sizes before and after reduction can be found in Figure 3.10.

3.6.1 A comparison of sequential tools

First, in order to validate the use of the naive algorithm, we have compared the

memory usage and run times of our single threaded implementations with those of

the bcg min reduction tool, which is part of the CADP toolset [FGK+96].

The test results can be found in Figure 3.11. These tests were run on a PC running

Linux with dual AMD Athlon MP1600+ CPUs and 2G memory. The version of

bcg min used was 1.3. It is clear from this table that the performance of our sequential

tools is comparable to that of bcg min. Hence, using the naive algorithm is feasible.

It is also clear that the marking strategy (used for the optimized algorithm) can

give spectacular gains in time – see the numbers for both cache coherence protocols.

The sequential optimized implementation needs more memory than the naive, since

it keeps both the straight and the inverse transition systems. On the other hand,

the naive one consumes more memory for the hashtable – all signatures have to be

inserted, while only some have to be considered by the optimized implementation.

Therefore, we expect that the optimized algorithm will be less memory expensive

than the naive one when it comes to large examples. The distributed implementation

confirms this idea.

3.6.2 Comparing the sequential with the distributed implementation

In Figure 3.12, we show how the performance of the sequential naive implementation

compares to that of the distributed naive one with 16 workers on SGI, and how the

latter compares to the performance on the cluster.

3.6.3 The distributed implementation: scalability

For the tests in this subsection we used the PC cluster. The inputs were 26 case

studies from the VLTS benchmark suite. The selection criterion was no less than 105

1the original LOTOS model [GM97] was translated to µCRL by Judi Romijn and extended from
3 to 4 stations
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problem SSN DSN DSN DSO

SGI SGI (16) cluster (16) cluster (16)
time mem time mem time mem time mem

(s) (M) (s) (M) (s) (M) (s) (M)
lift5 64 123 33 460 20 480
CCP-2p3t 10480 1380 1249 5438 550 4430 104 1658
token ring 2505 4367 299 13416 120 10802 231 4508
lift6 15355 2652 1136 15372 702 5958 346 3834
1394-LE 12111 6566 1136 15372 555 15388 428 8737

Figure 3.12: A comparison of single threaded and distributed runs

transitions and small enough to be reduced on a single node. All the values presented

are averaged from 5 runs. The speedup was computed from the real time (wall clock

time) spent on the reduction only. That is, the time spent on doing I/O operations

for reading the LTS and writing the result is not included. The problem size is the

number of transitions.

Time In Figure 3.13 we have plotted the reduction times for each of the problems,

and their translation to speedups relative to the distributed algorithm running on one

node (and one worker). This picture shows clearly that for some problems we obtain

good speedups and for others, on the contrary, we get a slow down. Many of the lines

in this pictures curve downwards. This means that the efficiency decreases somewhat

with the number of processors, due to the increasing influence of communication.

Because we designed the algorithm especially for large transition systems, we were

interested in how the problem size influences the speedup. First, we looked at the

speedup obtained by moving from a single CPU to a minimal distributed system. In

Figure 3.14, we show the speedup relative to the program running on a single CPU

for three possibilities: a single dual CPU node, two single CPU nodes and two dual

CPU nodes. The considerable amount of extra CPU power in the 2 node, 4 CPU

system seems to have had an effect, but apart from that moving from a single CPU

to a minimal distributed system does not seem to have much of an advantage. Next,

we looked at the speedup we got from moving from a minimal distributed system to

larger distributed systems. In Figure 3.15, we show the speedups achieved by using

4 and 8 nodes relative to using 2 nodes for both the single and dual CPU case. Even

though the lines are pretty erratic, it is possible to see a tendency of the 4 node lines

to converge to 2 and for the 8 node lines to converge to 4. In the dual CPU plot it is

also very obvious that using too many CPUs hurts performance.

Finally, the last speedups graphs we show (Figure 3.16) relate the distributed algo-

rithm to the fastest sequential algorithm, thus conforming to the standard definition

of the speedup for parallel programs.
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Memory We also made memory measurements, in order to observe the efficiency of

the distribution and the scalability of the total memory usage. Figure 3.17 shows data

collected by measuring the memory usage of each worker for distributed runs with

2 and with 8 workers. To facilitate comparisons and see the scaling up, we divided

these values by the memory used by the distributed base run, i.e. the distributed

implementation when run with one worker. For each problem, the plots show the

minimum/average/maximum value thus obtained. We see in the figure that when

2 workers are used, memory consumption per worker drops to approximately 0.6 of

the distributed base run and when 8 are used, to approximately 0.2. Thus, the more

workers the less memory needed per worker. Note also that only for three problems

there is a substantial difference between minimum and maximum. This means that

the function we have used to distribute states across workers performs reasonably

well: in most cases the workers need roughly the same amount of memory.

In Figure 3.18 we have plotted the total memory usage against the number of work-

ers for small (≤ 106 transitions) and large (> 106 transitions) systems respectively.

Here the memory is divided by the memory of the sequential implementation, in order

to also provide a distributed/sequential comparison. For small systems the memory

usage often increases quite rapidly with the number of workers, but for large problems
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the total memory usage does not increase much. From these pictures it is quite clear

that for most large problems the memory usage of the distributed tool is between 2

and 3 times as much as the memory usage of the sequential tool. This is not un-

expected: at least two copies of all the signatures must be kept (a local copy and

a global copy) and ID information is sent using buffers, whose size is linear in the

number of transitions.

3.6.4 Distributed naive vs. distributed optimized

Figure 3.12 shows a comparison of the naive and optimized distributed implementa-

tions on the cluster, for a number of large LTSs. The numbers listed for the memory

usage represent the maximum total memory touched on all 8 workstations during a

run.

The runs indicate that the optimized implementation outperforms the naive one

most of the time. The optimized is designed to perform better when the partition

refinement series needs a large number of iterations to stabilize, yet very few blocks

split in every iteration. This is exactly the case for the CCP state space. On the

other hand, for state spaces like the Token Ring protocol, where almost all blocks

split in every iteration, and the whole process ends in just a few rounds, the naive
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Figure 3.19: Runtimes and memory usage for CCP-2p3t and for lift6

algorithm works faster, since it does not waste time on administration issues. In

all larger examples though, the memory gain is obvious – and for the bisimulation

reduction problem, memory is a more critical resource than time.

To test how the optimized distributed algorithm scales, we ran on the cluster series

of experiments using 1-8 machines (2-16 processors). Figure 3.19 shows the runtimes

(in seconds) needed to reduce lift6 and CCP-2p3t. Since lift6 is a real industrial case

study with serious memory requirements, it could not be run single threaded on a

cluster node or distributed on less than 3 nodes. We see that for both distributed

implementations and both case studies presented, the memory usage scales well, i.e.

the total memory needed on the cluster is almost constant, regardless the number of

machines used. Hence, more machines available will mean less resources occupied on

each machine.

On runtimes however, the naive implementation scales in a more predictable man-

ner, while the optimized times do not seem to scale up as nicely. This is partly due to

the nondeterminism present in the optimized implementation – signatures can arrive

at servers in any order, the order influences the new IDs assignment to states, the

new IDs determine how many unstable states are there in the next iteration, thus

how much time will that iteration cost etc. It is also due to the possibly unbalanced

distribution of signatures to servers, which introduces unpredictable idle times. Last,

there is some latency due to the MPI implementation. We compared (Figure 3.21)

the reduction of lift5 on the cluster with the reduction on a shared memory machine

that uses its native MPI implementation. It appears that the optimized algorithm

does scale better on this other MPI.

After analyzing the behavior of the two algorithms on some special case studies, we

turn to “anonymous” state spaces from the VLTS benchmark [CI]. Figure 3.20 shows

the times and total memory usage of the optimized algorithm relative to those of the

naive algorithm. Unlike the other measurements presented, the times considered now

are total, that is the I/O operations are included. The 25 state spaces in this selection
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are small to medium size (between 0.06 and 12 million states, and between 0.3 million

and 60 million transitions) and they get reduced modulo strong bisimulation in less

than 100 iterations. The stars mark the very small state spaces, i.e. those that are

reduced in less than 5 seconds by both algorithms.

We present the state spaces ordered by the number of iterations in which the

reduction procedure stabilizes. This is a relevant order only for the time performance,

not for the memory usage.

As apparent from the figure, the relative time performance of the optimized algo-

rithm is indeed influenced by the number of iterations and the size of the state space.

This is roughly because, compared to the naive one, it spends (much) more time on

the initial setup - and this time pays back only if the reduction process has some

length. Note that for very short reductions, it can be almost 3 times slower than the

naive, but for lengthy ones it is usually much faster (up to 6 times faster).

Regarding the memory usage, we may notice that the optimized algorithm is indeed

almost always an improvement. Exceptions are the small state spaces, where the fixed

size buffers used by the optimized are significantly larger than needed. This could be

fixed by using dynamic buffers.
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problem DSN DSN DSN

cluster fast cluster gbit SGI
1394-LE 1520 475 540
CCP-2p3t 1685 530 670

Figure 3.22: Network analysis

3.6.5 Hardware matters

The Fast Ethernet network connections works at 100 Mbps. The Gigabit Ethernet

works at 1000 Mbps. The performance difference between these two networks can be

seen in Figure 3.22, where the reduction times on different network connections are

shown – as expected, the Gigabit Ethernet outperforms the Fast one.

During our experiments with the 6 leg lift problem, we found that reducing the LTS

is not the only problem. The ext3 file system as implemented in the Linux 2.4 kernels

is not suitable for reading/writing multiple large files in parallel. As a result, reading

the LTS from disk actually took more time than reducing it. For later experiments

we have used PVFS (Parallel Virtual File System [CLRT00]) instead of NFS. This is

a distributed file system, which uses the disks of multiple machines to present a large

file system to the user. Per node the performance of PVFS was roughly equal to that

of NFS, but the performance of PVFS scales linearly with the number of nodes so

effectively it was 8 times better.

3.7 Conclusions

We took a simple algorithm for strong bisimulation reduction and designed and im-

plemented two distributed versions of it: a straightforward one (3.2,3.3) and a more

elaborated and “optimized” one (3.4,3.5). The latter employs a marking technique for

incremental computation of partitions and a setting where communication and com-

putation can proceed in parallel. Therefore the performance is improved in memory

and in some cases also in time.

We argued that, despite a poor worst-case theoretical complexity, in practice both

distributed implementations have a decent speedup for large examples and, more

importantly, the total memory consumed does not grow too much with the number

of machines used.

The concept of signature refinement also works for other equivalences, like branch-

ing bisimulation (treated in the next chapter), weak bisimulation and τ ∗a equivalence.
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Branching Bisimulation Reduction

In the previous chapter, a few sequential and distributed algorithms were presented,

for reduction of large LTSs modulo strong bisimulation equivalence. The starting

point was the “naive method” of Kanellakis and Smolka [KS83]. In this chapter

we adapt that straightforward solution to another very useful equivalence, namely

branching bisimulation.

Related work The most commonly used algorithm for computing branching bisim-

ulation is the one of Groote and Vaandrager [GV90]. It is a very good algorithm,

but there are two reasons why one does not really want to use it for developing a

distributed tool. First, the natural parallelism in the algorithm is very fine grained,

which is a bad idea on a cluster, where the often large message latency leads to un-

acceptable performance. The second reason is that the Groote-Vaandrager algorithm

works on LTSs that do not have cycles of silent steps. Cycle elimination requires

detection of strongly connected components, which is a difficult problem to solve dis-

tributedly, although sequentially the well known Tarjan algorithm [Tar72] solves it in

linear time. That sequential algorithm is based on depth first search traversal (DFS)

of the graph, an idea very difficult to parallelize – it has been proved [Rei85] that

DFS is P-complete (see also Section 2.2.6). The distributed algorithm that we now

propose does not rely on the absence of τ cycles, but we learn from sequential studies

that it would perform better on a cycle-free LTS. Therefore, it is interesting future

work to integrate an initial distributed cycle elimination phase (see also Chapter 5)

and optimize the actual reduction algorithm for LTSs without τ cycles.

Kripke structures are directed graphs with labeled states and unlabeled transi-

tions. Branching bisimulation on LTSs resembles the stuttering equivalence on Kripke

structures [BCG88] up to divergence sensitivity. Namely, stuttering equivalence dis-

tinguishes states where an infinite sequence of invisible steps is possible from states
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where such a sequence is impossible, while branching bisimulation does not. Neverthe-

less, the stuttering equivalence algorithm presented by Browne, Clarke and Grumberg

[BCG88] resembles ours in that it employs a similar partition refinement strategy.

Only the way in which the refinements are computed is different: the Browne-Clarke-

Grumberg algorithm calls for explicit computation of the transitive reflexive closure of

silent steps whereas our algorithm avoids doing so. The naive algorithm that we have

chosen as starting point is a brute force approach to state space minimization that

employs the extensive resources of a cluster. Other approaches to saving space and

time in the minimization process include exploiting the natural modular structure of

systems [BG01].

Outline This chapter is organized as follows. Section 4.1 revisits some basic notions

and gives the signature refinement algorithm for computing branching bisimulation.

Section 4.2 proves it correct. The single threaded and distributed implementations

are commented in Sections 4.3, 4.4 and their performance is discussed in Section 4.5.

We draw conclusions in Section 4.6.

4.1 Partition refinement based on signatures computation

The definitions of LTSs and branching bisimulation equivalence have been given in

Section 2.3.1. Note that the silent action τ is a member of the set of labels Act. In

this section we fix some notations, recall the theory behind the partition refinement

algorithm based on signature computation (presented and used in the previous chap-

ter) and argue that it is applicable to branching bisimulation as well. We work with

a fixed LTS (S,→, s0) and we use the following notations:

s a−→ t short for (s, a, t) ∈→
a−→→ the transitive reflexive closure of a−→
a−−→
R

R ∩ a−→ for any equivalence relation R

a−−→
R
→ the transitive reflexive closure of a−−→

R

π = {Bi | i ∈ I} is a partition of S if

(∀B ∈ π : B 6= ∅) and
⋃

i∈I

Bi = S and (∀B′, B′′ ∈ π : B′ = B′′ ∨B′ ∩B′′ = ∅) .

A partition π′ is a refinement of a partition π if

(∀B′ ∈ π′) (∃B ∈ π) B′ ⊆ B .

The elements of a partition are referred to as blocks. By π(x) we denote the unique

block B of π such that x ∈ B. We also view a partition π as a relation and abbreviate
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π(x) = π(y) as x π y. τ−−→
π
→ is then a particular case of a−−→

R
→ and represents a sequence of

0 or more τ -steps within a block of π.

In Chapter 3 we defined the notion of signature of a state w.r.t. a partition. We

based our sequential and distributed algorithms for strong bisimulation reduction on

this notion. Now we redefine it, taking into account the silent steps and the new

goal, which is characterizing and computing the branching bisimulation equivalence

classes. The signature of S w.r.t. a partition π of S is a function sigπ : S → 2Act×2S :

sigπ(s) = {(a, π(t)) | ∃s
′ : s τ−−→

π
→ s′ a−→ t ∧ (a 6= τ ∨ π(s) 6= π(t))}

The signature refinement of π is a new partition, denoted sigrefπ, where the states of

S having the same signature w.r.t. π are in the same block:

sigrefπ = {{s′ ∈ S | sigπ(s) = sigπ(s
′)} | s ∈ S}

A partition π is stable if sigrefπ = π. The signature refinement algorithm iteratively

computes πn+1 until the stable partition is reached.

π0 = {S}

πn+1 = sigrefπn

(4.1)

For our LTS S ≡ (S,→, s0), let ↔B be the largest branching bisimulation relation

on S, i.e. the one relating most states and the union of all branching bisimulations.

Then the partition determined by ↔B

πB = {{s′ ∈ S | s↔B s′} | s ∈ S}

is the coarsest (has a minimal number of blocks) among all partitions determined by

branching bisimulations. Thus, the LTS with the minimal number of states that is

branching bisimilar to S is

SB ≡ (πB , {(πB(s), a, πB(t)) | s a−→ t ∧ (s↔B t =: a 6= τ)}, πB(s0))

Our goal is to compute ↔B and we claim that the simple signature refinement algo-

rithm above (4.1) does exactly that. However, because of the complex influence of

the silent steps on the branching bisimulation relation, this is not trivial to prove.

4.2 Correctness of the naive algorithm

We first prove that the iterations of the algorithm (4.1) produce successive partition

refinements (Lemma 4.2). Then we show that throughout the algorithm branching

bisimilar states are kept together (Lemma 4.3) and that when the algorithm stops,

a branching bisimulation relation has been reached (Lemma 4.4). Finally, in The-



54 4 Branching Bisimulation Reduction

orem 4.5 we put these facts together and justify that (4.1) correctly computes the

minimal branching bisimulation.

Lemma 4.1 If s0
τ−−→→s1

τ−−→→s2 and s0 ↔B s2 then s0 ↔B s1.

Proof: Follows from the stuttering lemma in [GW96].

Lemma 4.2 (∀n ≥ 0) πn+1 is a refinement of πn .

Proof: We prove this claim by induction on n. The induction basis is immediate:

any partition is a refinement of π0, so in particular π1 is. As induction hypothesis

suppose that for all i < n, πi+1 is a refinement of πi. This guarantees that for any

states x and y and any i, j such that i < j ≤ n:

if πi(x) 6= πi(y) then πj(x) 6= πj(y) (4.2)

if πj(x) = πj(y) then πi(x) = πi(y) (4.3)

if x τ−−→
πj

y then x τ−−→
πi

y (4.4)

To show that πn+1 is a refinement of πn, we proceed by supposing that this is not

the case and deriving a contradiction. If πn+1 is not a refinement of πn then there

exist two states s, t for which πn(s) 6= πn(t) and πn+1(s) = πn+1(t). Then

sigπn(s) = sigπn(t) (4.5)

From the induction hypothesis and the fact that π0(s) = π0(t) it follows that there

is a partition πk (k < n) such that

(∀j : 0 ≤ j ≤ k) πj(s) = πj(t) and (∀j : k < j ≤ n) πj(s) 6= πj(t)

So, sigπk(s) 6= sigπk(t). Without loss of generality, there exists a pair (a,B) with

a 6= τ or B 6= πk(s) such that

(a,B) ∈ sigπk(s) (4.6)

(a,B) 6∈ sigπk(t) (4.7)

(4.6) translates to (∃s1 · · · sq ∈ S,∃x ∈ B ∈ πk) s τ−−−→
πk

s1
τ−−−→
πk
· · · τ−−−→

πk
sq

a−→ x. When

we turn to partition πn, there are two situations possible:

• s1 · · · sq are all in πn(s). Let us then further distinguish two cases:

– a 6= τ . Then it is clear that (a, πn(x)) ∈ sigπn(s) and, according to (4.5),

(a, πn(x)) ∈ sigπn(t). This means that there is a state y with πn(y) = πn(x)

and a state t′ ∈ πn(t) such that t τ−−−→
πn→ t′ a−→ y. With (4.4) and (4.3), it

follows that t τ−−−→
πk
→ t′ a−→ y and πk(y) = πk(x) = B, thus (a,B) ∈ sigπk(t),

which contradicts (4.7).
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– a = τ and B = πk(x) 6= πk(s). Then, according to (4.2), πn(x) 6= πn(s).

Therefore, (τ, πn(x)) ∈ sigπn(s) and, because of (4.5), (τ, πn(x)) ∈ sigπn(t).

Consequently, πn(t) 6= πn(x) and there is a state y with πn(y) = πn(x)

and a state t′ ∈ πn(t) such that t τ−−−→πn→ t′ τ−−→ y. Note that πk(y) = πk(x) 6=

πk(s) = πk(t). It immediately follows that (τ,B) ∈ sigπk(t), contradicting

(4.7).

• Some of the states s1, · · · , sq are not in πn(s). Let x be the first of these. Then

s τ−−−→πn s1
τ−−−→πn · · ·

τ−−−→πn sr
τ−−→ x /∈ πn(s) (sr ≡ s or 1 ≤ r < q),

therefore (τ, πn(x)) ∈ sigπn(s) and thus (4.5) (τ, πn(x)) ∈ sigπn(t) as well. This

means that πn(x) 6= πn(t) and there is a state t′ ∈ πn(t) and a state y with

πn(y) = πn(x) for which t τ−−−→
πk
→ t′ τ−−→ y. This path exists also in πk (4.4):

t τ−−−→πn→ t′ τ−−→ y (4.8)

and moreover πk(y) = πk(x) = πk(s) = πk(t) (4.3). Because k < n, πk+1(x) =

πk+1(y) and thus sigπk(y) = sigπk(x). Since obviously (a,B) ∈ sigπk(x), it

follows that (a,B) ∈ sigπk(y) and with (4.8), we obtain (a,B) ∈ sigπk(t), con-

tradicting (4.7). Â

The following lemma states that refining a partition where branching bisimilar

states are in the same block results in a partition where branching bisimilar states are

still in the same block. (Note that saying that πB is a refinement of π is equivalent

to saying that branching bisimilar states are in the same block of π.)

Lemma 4.3 For any partition π, if πB is a refinement of π then πB is a refinement

of sigrefπ.

Proof: We must show that for any s0, t0 such that s0 π
B t0, s0 sigrefπ t0 holds. This

means that we have to show that sigπ(s0) = sigπ(t0), given that s0 π t0. Due to

symmetry it suffices to show that sigπ(s0) ⊆ sigπ(t0).

For (a,B) ∈ sigπ(s0), we can find a path s0
τ−−→π s1

τ−−→π · · · sn
a−→ s, such that

π(s) = B and (a 6= τ ∨ π(s0) 6= π(s)). We construct a corresponding path starting

from t0: given ti such that ti π
B si and i < n, we define ti+1 by distinguishing two

cases:

− If si+1 π
B si then let ti+1 = ti. Then si+1 π

B ti+1 and ti
τ−−→π→ ti+1.

− Otherwise, due to bisimulation and the stuttering lemma we can find ti+1

such that ti
τ−−−→
πB
→ t τ−−→ ti+1 and si+1 π

B ti+1. So for some t′i, we have ti
τ−−−→
πB
→ t′i

τ−−→ ti+1.

Therefore, t′i π
B ti π

B si π si+1 πB ti+1 . Because πB is a refinement of π, we
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can conclude that t′i π ti+1. Thus, we have that t′i
τ−−→
π

ti+1. Again because πB is a

refinement of π, we have that ti
τ−−→π→ t′i, so we have ti

τ−−→π→ ti+1.

If π(s0) 6= π(s) then πB(sn) 6= πB(s), because π(s0) = π(sn) and π
B is a refinement

of π. So we have a 6= τ∨πB(s0) 6= πB(s). We also know that sn π
B tn, so by definition

of branching bisimulation and the stuttering lemma there exists t such that tn
τ−−−→
πB
→ a−→ t

and s πB t. As πB is a refinement of π, it follows that tn
τ−−→
π
→ a−→ t and s π t. In turn

this implies t0
τ−−→
π
→ a−→ t, which means that (a,B) ∈ sigπ(t0). Â

Finally, we need to establish that a stable partition is a branching bisimulation.

Lemma 4.4 If π is a stable partition then π is a branching bisimulation.

Proof: Given s π t and s a−→ s′, if a = τ and s π s′ then s′ π t′. Otherwise

(a, π(s′)) ∈ sigπ(s). Because the partition is stable, sigπ(s) = sigπ(t). So for some t′

we have t τ−−→
π
→ t′ a−→ t′′ with s′ π t′′ and s π t′. Â

From these three lemmas, the correctness of the partition refinement algorithm for

finite LTSs follows easily:

Theorem 4.5 Given a finite LTS the following program computes πB in π:

π := {S}

repeat

π′ := π

π := sigrefπ
until π = π′

Proof: After the nth iteration of the loop, the variable π contains πn. If the loop exits

after n iterations then the partition π is stable. Due to Lemma 4.4 the resulting π

is a branching bisimulation. Due to Lemma 4.3 it must be πB . From Lemma 4.2 we

get that sigrefπ is a refinement of π. This means that if sigrefπ is not the same as π

then sigrefπ contains more blocks than π. As the number of blocks is limited by the

number of states, termination of the loop is guaranteed. Â

4.3 Sequential branching bisimulation minimization

We now describe a single threaded implementation (depicted in Figure 4.1) of the

algorithm outlined in (4.1) and proved correct in Theorem 4.5. To represent partitions

we assign a unique (integer) identifier to each block and then represent the partition as
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1 for s ∈ S do ID[s] := 0 enddo
2 do
3 /* compute signatures */
4 for s ∈ S do sig[s] := ∅ enddo
5 for all transitions (s, a, t) do
6 if a 6= τ ∨ ID[s] 6= ID[t] then insert (s, a, ID[t]) fi
7 enddo
8 /* reassign ID according to sig */
9 HashTable := ∅

10 count := 0
11 for s ∈ S do
12 if sig[s] /∈ Keys(HashTable)
13 then hash insert (HashTable, sig[s], count)
14 count := count + 1
15 fi
16 enddo
17 for s ∈ S do ID[s] := lookup (HashTable, sig[s]) enddo
18 enddo until ID is stable

insert (t, a, id):
1 if (a, id) /∈ sig[t])
2 then
3 sig[t] := sig[t] ∪ {(a, id)}
4 for all s such that s τ−−→ t ∧ ID[s] = ID[t] do
5 insert (s, a, id)
6 enddo
7 fi

Figure 4.1: (SBN) Single threaded naive branching bisimulation minimization

an array of block identifiers, which is indexed by states. Thus, the initial partition can

be represented as an array of zeros. The definition of signature considers transitions

of all states reachable by τ -steps within blocks. Explicitly computing sets of reachable

states should be avoided because this would require too much time and memory. So

instead of starting at a state and searching the reachable states for information, we

start with the information and propagate it back along the τ -steps within blocks using

a backward depth first traversal. Once all signatures have been computed, unique

identifiers are assigned to signatures and from these identifiers the next partition is

built. Based on the number of identifiers, we can decide if the partition is stable and

iterate if necessary.

4.3.1 Comments on complexity

For an LTS with N states and M transitions, the worst case complexity of our algo-

rithm isO(N2M) time andO(NM) space. This is much worse than theO(N(N+M))
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reduce()
1 for s ∈ S parallel do ID[s] := 0 enddo
2 do
3 for s ∈ S parallel do
4 sig[s] := {(a, ID[t]) | s a−→ t ∧ (a 6= τ ∨ ID[s] 6= ID[t])}

5 pred[s] := {t | t τ−−→ s ∧ ID[s] = ID[t]}

6 enddo
7 new := sig
8 do
9 for s ∈ S parallel do nextnew [s] := ∅ enddo

10 for s ∈ S parallel do
11 for t ∈ pred[s] do
12 nextnew [t] := nextnew [t] ∪ (new [s] \ sig[t])

13 sig[t] := sig[t] ∪ new [s]

14 enddo
15 enddo
16 new := nextnew

17 enddo until∀s : new [s] = ∅
18 reassign ID according to sig
19 enddo until ID is stable

Figure 4.2: (DBN)Distributed branching bisimulation minimization

time and O(N+M) space complexity of the Groote-Vaandrager algorithm. However,

we expect that for typical state spaces (Section 2.3.3) both algorithms perform prac-

tically in O(log(N)(N +M)) time and O(N +M) space. Next we will analyze the

complexity of an example near to the worst case.

Example 4.6 Given a natural number N , consider the LTS with states

1, 1′, 2, 2′ · · · , N,N ′, transitions i a−→ i′, i + 1 τ−−→ i, 1 τ−−→ N , (i + 1)′ b−→ i′ and initial

state N . The signatures for this LTS are

sigπk(i) = {(a, πk(1′)), · · · , (a, πk(N ′))}

sigπk(1′) = ∅

sigπk((i+ 1)′) = {(b, πk(i′))}

and the partitions are

π0 = {{1, 1′, 2, 2′ · · · , N,N ′}}

πk = {{1′}, · · · , {k′}, {(k + 1)′, · · · , N ′}, {1, · · · , N}}

This means that N + 1 iterations are needed to get to a stable refinement of π0. The

cost of computing the signature of i′ is constant in each iteration because the signature



4.4 Distributed branching bisimulation minimization 59

ab

τ

τ

new
sig

new
sig

new
sig {}

{}

{(a,0)}{(b,0)}
{(b,0)} {(a,0)}

ab

τ

τ

new
sig

new
sig

new
sig {}

{}

{(b,0),(a,0)} {(a,0),(b,0)}
{(b,0)}{(a,0)}

ab

τ

τ

new
sig

new
sig

new
sig {}

{}

{(b,0),(a,0)} {(a,0),(b,0)}
{} {}

Figure 4.3: Computation of signatures

size is constant. However, the cost of computing the signature of i in the kth linearly

grows with k because the size of the signature is k. As we have N signatures of each

kind, we get time complexity O(N 3) and space complexity O(N2).

4.4 Distributed branching bisimulation minimization

For details about data distribution and computation of partitions from signatures, we

refer to the first part of Chapter 3. We recall that the states are divided among a set

of workers and we may apply the function worker to a state to get the worker which

owns the state.

Let us now see how a distributed version of the algorithm can be implemented.

The single threaded algorithm uses sequential depth first traversal for propagating

signature information. As the order of signature propagation is irrelevant, we chose

breadth first propagation for the distributed algorithm in Figure 4.2. In order to

present the global picture in a clear way, we write it as a shared memory algorithm

and abstract away the actual location of data. Each worker stores the parts of the

arrays corresponding to its owned states. This means that the underlined references

to arrays are potentially remote references. There are remote references to three

arrays: ID, newsig and sig. In our distributed implementation remote references to

ID are made local by copying the relevant parts of ID. That is, every worker keeps not

only the ID data for its owned states, but also for the successor states of its owned

states. Remote access to newsig and sig is solved in a different way. Instead of

letting the owner of the new array perform the assignments, we let the owner of the

new array send a message containing s, t, and new[s] to the owner of the newsig and

sig arrays. Upon receiving such a message the owner of the newsig and sig arrays

will perform the assignments. This is correct because the order of the assignments to

nextnew and sig does not matter as long as they are atomic (no other assignments

carried out in between).

Message passing replacements for lines 3-6 and 10-15 of the code in Figure 4.2 can

be found in Figures 4.4 and 4.5, respectively. The replacements consist of multiple

threads which are separated by
f
. In Figure 4.4, the initialization of sig is done before
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1 for t ∈ S parallel do sig[t] := ∅ enddo
2 for t ∈ S parallel do
3 for s, a such that s a−→ t do
4 SEND / pi : s, a, t, ID[t] . TO worker(s)
5 enddo
6 enddo
7
f

8 while RECEIVE / pi : s, a, t, id . do
9 ID[t] := id

10 if a = τ and ID[s] = ID[t]
11 then
12 SEND / pred : t, s . TO worker(t)
13 else
14 sig[s] := sig[s] ∪ {(a, id)}
15 fi
16 enddo
17
f

18 while RECEIVE / pred : t, s . do
19 pred[t] := pred[t] ∪ {s}
20 enddo

Figure 4.4: Message passing replacement for lines 3-6 of DBN

starting the parallel threads. The receive statement blocks until there is a message

returning true or until there are no further messages in the system and no further

sends can be initiated in which case they return false. For performance reasons the

actual implementation buffers a few KB worth of small messages before sending.

In Figure 4.3 we have illustrated the process of signature computation. When the

computation starts every state is in partition 0. Initially, the signature sets contain

the (transition,id) pairs which are possible in every state and the new sets are set to

the same value. In every iteration, the new sets are forwarded along the inverse of the

invisible τ -steps, added to the signature sets and the new elements are added to the

new sets. So for example in the first iteration (b,0) is sent along the top edge, inserted

in the signature of the right state and because it is new it is also put into new. In the

second iteration it is sent along the bottom τ -edge and inserted, but because it was

already present it is not added to new. This forwarding continues until the new sets

are empty.

We have omitted the code for reassigning ID according to sig, because the dis-

tributed assignment works the same as the single threaded, with the exception that

hashtable lookups are performed by means of message passing rather than by means

of memory access.
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1 for t ∈ S parallel do
2 for s ∈ pred[t] do
3 for all(a, id) ∈ new[t] do
4 SEND / new : s, a, id . TO worker(s)
5 enddo
6 enddo
7 enddo
8
f

9 while RECEIVE / new : s, a, id . do
10 if (a, id) /∈ sig[s]
11 then
12 sig[s] := sig[s] ∪ {(a, id)}
13 nextnew[s] := nextnew[s] ∪ {(a, id)}
14 fi
15 enddo

Figure 4.5: Message passing code for lines 10-15 of DBN

4.5 Experiments

We have built prototype implementations of both sequential and distributed branching

bisimulation minimization algorithms. The distributed implementation uses MPI for

communication. The tests were made on a cluster of 8 dual AMD Athlon MP1600+

machines with 2G memory each, running Linux and connected by Gigabit Ethernet.

The examples used are the state space of the FireWire Link Layer protocol [Lut97]

(1394-LL), the FireWire Leader Election protocol [SZ98] with 14 nodes (1394-LE), a

cache coherence protocol [PFHV03] (CCP-2p3t ), and a distributed lift system with

5 and 6 legs [GPW03] (lift5, lift6). See Section 3.6 for a short description of these

case studies.

4.5.1 Single-threaded implementations

In order to investigate possibilities, we have implemented four variants of the branch-

ing bisimulation reduction scheme based on signatures. They are showed in Figure 4.6,

all under the same name SBN. The variant called cycle eliminates the τ cycles be-

fore starting the iterations series, while dfs and iter do not. Further, iter computes

the signatures by performing propagation sub-iterations, as done in the distributed

implementation. Finally, mark employs a marking procedure that proved helpful in

the strong bisimulation reduction case (see Section 3.4). Its basic idea is to restrict

the signature recomputation effort of an iteration to those signatures that changed

for sure.

Figure 4.6 displays the total run times (read, reduction and write) of these im-
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problem size bcg min SBN SBN SBN SBN number of
1.4 cycle dfs iter mark iterations

states time time time time time
transitions mem mem mem mem mem

1394-LL 0.37 106 2.27s 0.98s 0.97s 2.5s 1.16s 6
0.68 106 2.2M 2.8M 3.5M 3.5M 4M

lift5 2.2 106 2m42s 1m18s 1m20s 9m03s 2m30s 16
8.7 106 174M 108M 152M 116M 410M

1394-LE 2.5 106 1m18s 1m11s 1m08s 1m25s 1m14s 2
17.6 106 316M 220M 411M 220M 340M

CCP-2p3t 7.8 106 19m26s 22m50s 62m52s - - 46
59 106 1051M 736M 968M - -

Figure 4.6: A comparison of sequential implementations.

plementations and the maximum amount of memory occupied. To show that our

signature refinement scheme is comparable to the block based refinement scheme, we

include bcg min (the reduction tool belonging to the CADP toolset; it implements the

Groote-Vaandrager algorithm [GV90]) in this brief comparison. For the CCP-2p3t

example, the iter implementation takes too much time and mark runs out of memory.

The reason for the iter implementation taking too much time was diagnosed as an

inefficient implementation of one sub-routine. Thus, we could avoid making the same

mistake in the distributed implementation. We stopped the single threaded tool after

more than 24 hours, with only half the job completed. The distributed tool completes

the task in roughly 12 minutes on 16 processors.

The first conclusion of this sequential study is that the signature based reduction

algorithm works for branching bisimulation. The cycle elimination seems to be an

advantage (cycle vs. dfs), therefore it might be interesting to use it also in the dis-

tributed version. From the performance data of iter it is clear that there is no serious

efficiency loss by using mechanisms specific to a distributed implementation. The

marking procedure does not deliver spectacular improvements, in fact no improve-

ments at all. The explanation is that this procedure is efficient in the iterations

when few changes happen – typically towards the end of the reduction process. But

the branching bisimulation algorithm usually stabilizes in a rather small number of

iterations, therefore the administrative penalties paid in the first iterations are not

regained later. (1394-LL, for instance, stabilizes in 73 iterations for strong and in 6

for branching; lift5 in 86 for strong, 16 for branching; 1394-LE in 51 for strong and

only 2 for branching.)

4.5.2 Distributed implementation

Figure 4.7 shows the times and memory usage of the distributed prototype DBN when

run on 4,5,6,7 and 8 workstations (with the input lift6, that cannot be reduced on less

than 4 machines). For comparison, we also show the speedup of the similar distributed



4.5 Experiments 63

 500

 1000

 1500

 2000

 6  8  10  12  14  16

tim
e(

s)

number of CPUs (there are 2 CPUs/node)

lift6 runtimes

DSN
DBN

DBN with BFS sorted input

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 2  4  6  8  10  12  14  16

to
ta

l m
em

or
y 

us
ed

 (
M

B
)

number of CPUs

lift6 memory use

DSN
DBN

Figure 4.7: Time and memory usage for the reduction of lift6 (34 million states, 165
million transitions)

tool developed for strong bisimulation reduction, DSN (Chapter 3). DBN’s memory

needs grow slowly from 7232M for 8 processors to 7656M for 16 processors, while DSN

used 5752M (8 processors) up to 5958M (16). This shows that the memory usage per

worker decreases almost linearly with the number of workers.

As mentioned in the previous subsection, the stable partition with respect to

branching bisimulation is most of the time reached in (a lot) less iterations than

the stable partition with respect to strong bisimulation. This explains why, although

a DBN iteration takes longer than a DSN one, DBN needs on the whole less time. As

regard to memory usage, DBN is in all cases more expensive than DSN. This is due to

two factors. Firstly, the signatures for the branching bisimulation case are in general

larger, since the signatures of a state x must include the signatures of all states reach-

able by silent steps. And secondly, our current implementation is a first prototype,

not yet optimized for memory usage. We expect that a more careful implementation

will visibly reduce this difference.

A more interesting comparison is between the run times of DBN for random and

for sorted input. (Random meaning a copy without caring about the order and

sorted means sorted into the same BFS order written by our distributed state space

generation tool.) The data indicates a much better performance in the case when

the distribution of the states to the workers is done on BFS order. This means that

we should investigate whether other orders exist, which can easily be computed and

show even better performance.

Finally, in Figure 4.8 we show a speedup graph obtained by dividing the runtimes of

SBN-cycle (the best sequential algorithm) to the runtimes of DBN on 1, 4 and 8 nodes

(i.e., 2, 8 and 16 CPUs). The wild shape of this graph is due first of all to the fact that

the sequential and the distributed algorithms compared are fundamentally different:

the sequential eliminates the cycles of internal steps, while DBN incorporates them.
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For most case studies eliminating the cycles is a good idea, as sustained also by the

quite small speedup or even slowdown exhibit by DBN on a number of case studies.

But there are also cases when DBN’s approach works better.

4.6 Conclusions

The work presented here continues the series of distributed minimization algorithms

from Chapter 3. In this chapter we considered branching bisimulation as reduction

relation and we developed a signature based partition refinement algorithm for it,

that works on LTSs with cycles of invisible steps. We proved its correctness, briefly

described its implementation and showed by some experimental results that it scales

up reasonably both in time and memory usage.



5

Detecting Strongly Connected Components

A strongly connected component (SCC) of a directed graph is a maximal subgraph in

which every vertex is reachable from every other vertex. The problem of decomposing

a graph into SCCs is a well known and studied one and has an elegant solution, linear

in the input size, based on depth first search [Tar72]. The SCC detection problem

has applications in many different areas, from data mining to scientific computing

to computer-aided design and model checking. Our motivation to study it comes, as

expected, from verification by enumerative model checking and our graphs of interest

are state spaces. The SCC detection occurs in several stages of this verification

process. For instance, the algorithms for branching bisimulation reduction usually

employ a preprocessing step in which the cycles of invisible steps (τs) are eliminated.

In other words, the SCCs of the τ -subgraph are detected and collapsed. Another use

of SCC detection is in LTL model checking: finding counterexamples means finding

cycles reachable from the root state that contain some special accepting states.

In this chapter we investigate distributed message passing solutions for the detection

of SCCs. We describe a collection of heuristics that explore the characteristic features

of state spaces, especially the small depth and diameter. (See also the discussion in

section 2.3.) We state the SCC problem and present the solution in the context of

unlabeled graphs (transition systems). The algorithms can immediately be applied

to deal with labeled graphs in which only SCCs with a certain label must be found –

for instance, the τ -cycles in the case of state spaces.

Related work The sequential very efficient algorithm of Tarjan [Tar72] essentially

uses depth first search and is not likely to have an efficient parallel implementation

[Rei85]. Therefore, to solve the problem in a parallel/distributed setting, other meth-

ods have been explored. For instance, an NC algorithm for finding SCCs that uses

matrix multiplication is proposed in [GM88] and improved in [CV89]. A more in-
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teresting approach for our application domain is taken in [FHP00] and [MIHPR01],

where a divide-and-conquer algorithm is described, analyzed and implemented. How-

ever, that algorithm is aimed at another type of graph: typically much smaller than

our state spaces and with high outgoing degrees. The essential observation is that

the SCC of any state x is exactly the intersection of its successors and predecessors

sets. Our coloring transformation (Section 5.3.6) also uses this idea, but instead of

picking a pivot state and splitting the graph in three independent (no crossing SCCs)

parts, we use a set of prioritized colors and split the graph in many parts at once.

This rather brute force approach exhibits more parallelism and it works quite well in

practice. The trimming step used in [MIHPR01] is similar to our detection of atomic

components.

In the verification world, the problem of detecting SCCs in a distributed graph has

so far received attention only in the context of (on-the-fly) LTL/CTL model checking

[BČKP01, BBC03, ČP03]. Like in our approach, in [BBC03] the DFS traversal is

abandoned in favor of BFS. The algorithm proposed in [ČP03] is inspired by a

symbolic algorithm and it also contains a phase where atomic SCCs are eliminated.

We encountered the SCC problem when building a distributed tool for branching

bisimulation reduction (Chapter 4) and therefore we focus on this application.

A related problem is that of detecting connected components in undirected graphs,

to which also parallel [HMB01] and distributed [BT01] solutions exist. Since a SCC

is also a CC in the underlying undirected graph, these algorithms could be useful as

a first step in detecting SCCs. But not for our application domain, since state spaces

are always connected graphs.

Outline Section 5.1 introduces the main definitions, motivation and the SCC detec-

tion problem from the verification point of view. Our graph transformation routines

are described briefly in Section 5.2 and in more detail in Section 5.3. In Section 5.4

three SCC reduction algorithms using the transformations are described. Then, in

Section 5.5, some experiments with the three algorithms are presented. Conclusions

are summarized in Section 5.6.

5.1 Preliminaries

Until now, we considered LTSs as representation of state spaces. But for the appli-

cations that we are targeting in this chapter, the SCC labels actually do not matter,

therefore we will work with unlabeled state spaces (S, T ), where S is, like in an LTS,

a set of states and T is a binary relation on S. When T is understood, we will use

the notation p→ q for (p, q) ∈ T and p:q for the reflexive transitive closure of T . We

also introduce the following notations:

T ∗ the reflexive transitive closure of a binary relation T

T−1 the binary relation inverse to T
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The incoming degree of a state is the number of transitions that end in that state.

Conversely, the outgoing degree of a state is the number of transitions originating in

that state.

5.1.1 SCC detection as verification problem

Our intended use of the SCC detection algorithm is as preprocessing step for two

verification algorithms: branching bisimulation reduction/equivalence and LTL model

checking.

The preprocessing phase in the branching bisimulation algorithm consists of merging

the states that can reach each other on invisible paths, since they have the same

(branching bisimilar) behavior. In other words, it consists in collapsing the SCCs in

the graph obtained from the original state space by ignoring the visible transitions.

Although observations on sequential implementations show that the preprocessing

phase is a big advantage, the distributed algorithm in Chapter 4 avoided using it

because a distributed cycle elimination algorithm that can handle very large instances

seemed to be a difficult and challenging problem in itself. This is our main motivation

to study the SCC problem.

For the LTL model checking algorithm the interesting information is whether a

given state belongs to a cycle, no matter what labels that cycle might contain. In

this case a useful preprocessing step is to detect the SCCs of the graph obtained from

the original state space by ignoring the labels and to mark all the states situated on

a cycle. This procedure consists of computing scc, then performing an extra test for

self-loops.

Both applications are instances of:

The SCC detection problem. Given an unlabeled state space (S, T ),

find a representative function scc : S → S such that ∀x, y : scc(x) =

scc(y) iff (x, y) ∈ T ∗ ∩ T ∗−1.

5.1.2 Sequential SCC detection

The classical approach to the detection of strongly connected components is the Tarjan

algorithm [Tar72], that is based on depth-first traversal and solves the problem in

linear time. We present a version of this algorithm, explained and justified in [AHU83].

The input is a state space S = (S, T ).

SCCTarjan(S):

• Perform a depth first search traversal of S and compute the finishing times of

all states. This is done by successively calling the DFS routine below for a not

yet visited state until all states have been visited. The finishing time of x is

the moment when the x and all its successors have been visited. The clock I is
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initialized at 0 and increased with every new state visited.

DFS(x) :

mark x as visited

for each transition (x, y) do

if y unmarked then DFS(y)

finish time[x] := I

I := I + 1

• Construct the reverse state space S−1 = (S, T−1).

• Perform a depth first search traversal of S−1 starting from the state with the

highest finishing time. While there still are unvisited states, call a new DFS

procedure starting in the remaining state with the highest finishing time.

• Each DFS tree resulted in the second traversal is a strongly connected compo-

nent of S.

The correctness of this algorithm, proved in [AHU83], relies on the key observation

that all the states of a strongly connected component are contained in the same DFS

tree. But DFS is a typical difficult-to-parallelize-efficiently algorithm [Rei85]. In the

remainder of this chapter we propose a solution consisting of some local and global

transformations on the distributed graph, that are less time-expensive than a direct

distributed implementation of the Tarjan algorithm.

5.1.3 Distribution of the state space

In the rest of the exposition we will talk about a fixed state space S and we assume

a distribution of S on W machines:

S = S0 ∪ · · · ∪ SW−1 and ∀i 6= j : Si ∩ Sj = ∅.

T =
⋃

0≤i,j<W

Tij , where Tij = {(x, y) ∈ T | x ∈ Si and y ∈ Sj}

The machine (or: processor, worker) i owns the states Si and the transitions (∀j)Tij .

The state spaces are produced in this format by the distributed generation tool

[BLL03] from the µCRL toolset. We also assume a globally known hash function

worker : S → {0 · · ·W − 1} that indicates to which worker every state belongs. In

our implementations the states are identified by pairs (worker, offset), thus the worker

function is just a projection.

We call transitions that cross worker boundaries (i.e. in Tij with i 6= j) cross tran-

sitions. The performance of most algorithms on distributed state spaces is influenced

by the number of cross transitions. Ideally, we would like to have the state space
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distributed in such a way that the number of cross transitions is (much) smaller than

that of inside transitions (in Tii), while the number of states owned by different work-

ers is almost the same (for all i, j, small | Si − Sj |). Finding such a distribution is a

difficult problem, therefore in reality we work with a random balanced distribution,

that ensures about the same number of states to every worker but does not try to

optimize the number of cross transitions.

5.2 Graph transformations

5.2.1 Identify atomic components

Usually, a state space will contain a lot of states that do not connect via cycles with

any other state. That is, they are SCCs on their own. We call these states atomic

SCCs and we describe now a simple procedure to discover some of them. We start

by the states with incoming degree 0. They are for sure atomic components, since

otherwise the state would be reachable from other states. This also means that their

outgoing transitions are not internal to a component, and therefore their presence does

not change the SCC structure of the graph. Thus, we may remove the states without

incoming transitions, together with all their outgoing transitions. This step can be

repeated until all states have at least one incoming transition. Since at every step we

only have to look at the states with no incoming transitions and their successors, this

procedure is quite cheap (one BF pass) and allows for much parallelism. Section 5.3.3

presents it in more detail.

5.2.2 Partial SCC detection

The very efficient (linear) Tarjan DFS algorithm (Section 5.1.2) can be exploited

in a distributed environment as well, in several ways. One possibility is to let it

perform on the local subgraph (Si, Tii) of each processor, in order to find and collapse

the local components. For each component, one of the states, say x, is chosen as

representative and all the others (y) are identified with it by means of the scc function:

scc(y) := x. Then all transitions in the global graph have to be renamed from (x, y)

to (scc(x), scc(y)).

The other extreme application of SCCTarjan on a distributed state space is to send

the whole graph to one manager worker that will then compute its SCCs using the

sequential algorithm and send back the correct values of scc. This is of course only

possible when the global graph is – or has become, by means of other transformations

– sufficiently small.

A good idea for when the global graph is not small enough and the elimination

of local components does not shrink it substantially, is an intermediate approach:

apply the collapse-global-components transformation on disjoint subsets of workers,

in parallel. This way, the managers get a smaller global graph (sometimes, this makes
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the difference between not-feasible and feasible). Moreover, the chance of finding

components is higher than when collapsing locally. By repeatedly collapsing SCCs

on random small sets of workers, we hopefully arrive at a global graph that is small

enough to be further reduced on one worker. This procedure is discussed in more

detail in Section 5.3.4.

5.2.3 Coloring

By a certain coloring of the states of the graph, a partition of the set of states can be

achieved, such that if x and y are in the same SCC then x and y have the same color.

This splits the SCC problem in smaller disjoint instances.

The coloring procedure starts with a color function c : S → N satisfying the

property

∀x, y ∈ S if c(x) = c(y) then (x, y) ∈ T ∗ ∩ T ∗−1 (safety)

If there is no a priori information available that allows the fast construction of such

a c, we can choose the identity function, which trivially satisfies the condition. We

assume an order on the colors, <. The coloring procedure consists in successively

modifying c until no modification is possible anymore. At each modification step,

every state x passes its color to every successor y for which c(x) < c(y). When

the coloring is done, the transitions having their source colored differently than their

destination are definitely between components (see Section 5.3.6 for the justification)

and, consequently, they get removed. The result is a set of disconnected and smaller

state spaces, each of them uniformly colored. Note also that every small state space

has one or more special states that kept their initial color – let us call them roots.

We can now focus on solving separately the subproblems determined by colors.

The final scc mapping is simply the union of the scc sub-mappings thus resulted.

Optionally, we can first exploit the colors somewhat more, by finding and extracting

some SCCs. Pick a root x. Since the initial coloring was safe, the states wearing x’s

color are precisely those reachable from x (Section 5.3.6 contains more details). Thus,

the states belonging to the SCC of x are those colored the same as x and that can

reach x.

The distributed implementations of the coloring procedure and of the procedure

for extracting the roots’ components are described and discussed in Sections 5.3.6

and 5.3.7, respectively.

5.2.4 Eliminate reflexive and multiple transitions

As a result of other transformations, transitions of the form (x, x) and multiple oc-

currences of the same transition can appear, that have no influence on the SCC.

Eliminating these reduces the size of the graph. Since for every state all the outgoing
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transitions are kept on the same worker, this is a simple local operation and requires

no network communication. Therefore, from now on we will ignore it.

5.3 Distributed implementation of the transformation routines

In this section, the distributed implementations of some of the transformations intro-

duced above are presented: the elimination of atomic SCCs (Figure 5.1), the partial

SCC detection (Figure 5.2), coloring (Figures 5.4, 5.5) and an auxiliary routine that

includes elimination of reflexive and multiple transitions (Figure 5.3).

5.3.1 Distributed data structures

The basic data structures are sets and lists. On sets, the usual set union, intersec-

tion and difference (∪, ∩, −) are defined. Lists are sequences X = /x1.x2. · · · .xn/.

We use pairs of lists of equal size to implement relations. For example, the rela-

tion {(1, 1), (2, 1), (2, 5)} is represented as (/1.2.2/, /1.1.5/). This is convenient when

sending/receiving buffered messages (see Section 5.3.2). We consider the following

notations, operations and predicates for lists:

/ /, /x/ the empty list and the singleton list, respectively

X[i] the element at position i in the list X

X.Y list concatenation

(X,Y ) pair of lists with the same length

X − x remove all occurrences of x in X

X + x X./x/

(X,Y ) + (x, y) (X + x, Y + y)

x ∈ X there is at least an occurrence of x in X

(x, y) ∈ (X,Y ) there is at least a position i such that

X[i] = x and Y [i] = y.

We will also use natural extensions of the function scc to sets and lists as follows.

Let S be any set and X any list. Then

scc(S)
def
= {scc(x) | x ∈ S}

scc(/ /)
def
= / /

scc(/x/.X)
def
= /scc(x)/.scc(X)

We consider the current state space (S, T ), the final set of transitions (finalT)

and the current scc values as global variables. Every transformation expects them

to have a special form, expressed by a precondition, and modifies them such that a

postcondition is ensured.

The worker i maintains the following data:
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• Si = the set of owned states.

• scc(Si) = the current scc mapping of the owned states. scc is initialized as

identity.

• Tij = (Sourceij , Destij), for every worker j, including itself. The set of transi-

tions with the state source owned by worker i and destination owned by worker

j is implemented as a pair of lists, one containing the source states (Sourceij)

and the other the destinations (Destij). The order is the same for both. So,

(x, y) ∈ Tij if and only if there is an index p s.t. x is the pth element in Sourceij

and y the pth element in Destij .

• finalTij = the transitions that are definitely in the final set of transitions,

but possibly with another numbering. More precisely, if (x, y) ∈ finalTij then

(scc(x), scc(y)), with scc the final mapping, will be a transition in the SCC-

reduced state space.

We make the convention that all sets or lists occurring in the pseudo-code descriptions

that are not listed as input, are considered initialized as ∅ and / /, respectively.

5.3.2 Communication primitives

As already said in Section 2.2.5, our target architecture is a cluster whose nodes are

connected by a high bandwidth network (Distributed Memory Machine). Our cluster

is not massively distributed, meaning that the number of nodes available is always

much smaller than the problem size (W << N). Processes communicate by executing

nonblocking send/receive operations:

• SEND m TO i - message m to worker i.

• RECEIVE m FROM i - message m from worker i.

We also use the following two communication patterns, that are easily imple-

mentable with the above primitives:

• DBSUM(xi , xall) - for an arbitrary set of local values x0 · · ·xW−1, collectively

compute their sum into a global value xall and store a copy of the result on

each worker. This is useful when all the workers are executing a loop and the

exit condition depends on a global value.

• REQ-REP j : B := f(B) - the worker executing this pattern (i) sends a buffer

(request) B to the worker j (not necessarily 6= i) and expects j to do the same,

i.e. send to i a buffer B′. Upon receiving B′, i creates a list C ′ of the same

length as B′, where if B′[t] = x then C ′[t] = f(x). Then it sends C ′ to j and

waits for a similar reply from j, i.e. a list C. In the end, i replaces B with



5.3 Distributed implementation of the transformation routines 73

elim-atomic-fwd
Postcondition: ∀x ∈ S∃y ∈ S s.t. (y, x) ∈ T .
(i.e. all trivial components {x} reachable from a start node (node with incoming degree 0)
have been identified and removed)

1 /* compute all the incoming degrees */
2 for x ∈ Si do indegree[x] := 0 enddo
3 for all workers j do
4 SEND Destij TO j

f
RECEIVE Destji FROM j

5 for x ∈ Destji do indegree[x] := indegree[x] + 1 enddo
6 enddo
7 /* loop: eliminate all the initial states */
8 /* and their outgoing transitions */
9 while there still are states with indegree 0 do

10 for all workers j : Bij := ∅
11 for x ∈ Si : indegree[x] = 0 do
12 Si := Si − {x}
13 for (x, y) ∈ Tij do
14 Tij := Tij − (x, y)
15 finalTij := finalTij + (x, y)
16 Bij := Bij + y

17 enddo
18 enddo
19 for all workers j do
20 SEND Bij TO j

f
RECEIVE Bji FROM j

21 for x ∈ Bji do indegree[x] := indegree[x]− 1 enddo
22 enddo
23 enddo

Figure 5.1: Forward BFS pass in order to identify atomic components and final tran-
sitions (worker i)

the newly received list C and j replaces B′ with C ′. Thus, the effect of the

request-reply action is B := f(B) and B′ := f(B′). The implementation

with send/receive:

SEND B TO j and RECEIVE B′ FROM j

SEND f(B′) TO j and RECEIVE f(B) FROM j

Occasionally, in the actual implementation we also used MPI primitives that are more

powerful than simple sends and receives. An example is MPI AlltoAll, that transfers

data, in parallel, from every worker to every worker in a careful order so as to avoid

deadlocks. To keep the presentation simple, we abstract away from these details, and

base the exposition of the distributed procedures only on the primitives above.
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5.3.3 Distributed identification of atomic components

Figure 5.1 shows a distributed routine that finds and removes some of the atomic

SCC, namely those reachable only from states without predecessors. Workers begin

by computing together (steps 2-6) the incoming degrees of all states, indegree. As

explained in Section 5.3.1, transitions Tij are stored by worker i as a pair of lists

(Sourceij , Destij). The incoming degree of an arbitrary state x ∈ Sj is the number of

transitions that have x as destination state and it is easily computed by counting the

occurrences of x in all lists Destij . To this end, every list Destij is sent to worker j

(step 4), where the number of occurrences is updated (step 5). Thus, there will be one

message for every pair of workers, and the destination state of every transition will

be transfered once. Therefore, the message complexity of computing the incoming

degrees is O (W 2) and the bit complexity O (M). The time complexity, under the

balanced distribution assumption, is O ((M +N)/W ).

In the second part (steps 9- 23), all states without incoming transitions are marked

as atomic SCCs – in non-atomic SCCs, every state is reachable from any other,

therefore it must have at least one incoming transition. Further, any transition with

an atomic SCC as source will not be on a path inside an SCC, therefore removing it

doesn’t influence the scc partition (steps 14, 15). Then the destination state of such

a transition has to have its incoming degree updated. This happens in steps 19-22.

The total size of the buffers being exchanged in the while loop is at most M . As for

the total number of messages: in the worst case, every buffer gets always only one

transition, which leads to a message complexity of O (M).

In order to detect as many such atomic components as possible, this procedure

should be executed with regard to both forward and backward transitions. We have

only discussed the forward pass. The backward pass can be implemented by reversing

the graph (see steps 2 -5 in the heads-off routine, Figure 5.5) and calling the forward

pass (with the subtle difference that the transitions marked as final should be reversed

again).

Note that this procedure is sound, but not complete. The states placed “in between”

two cycles will never get the degree 0 as long as the cycles are still in place.

5.3.4 Partial SCC detection

For most distributed graphs, and definitely for distributed state spaces, it is usual that

many of the SCCs do not span over all workers, but over a small subset. Figure 5.2

shows three variants of a transformation that employs the very efficient sequential

algorithm based on DFS (see Section 5.1) in order to detect and collapse this kind of

small SCCs. Let SOME be the subset of workers under consideration and let SSOME =

(SSOME, TSOME) be the subgraph induced by the states owned by workers in SOME. The

idea is to simply send SSOME to a special worker M (step 3), that will locally compute

the scc function (step 7) and send it back (step 8) to the workers in SOME. Since
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collapse-partial (SOME)
Postcondition:

(∀x, y ∈ SSOME) ( (x, y) ∈ TSOME
∗ ∩ TSOME

∗−1
iff scc(x) = scc(y) )

1 randomly pick a manager M ∈ ALL

2 /* send the local graph to the manager */
3 if i ∈ SOME then SEND Si,

⋃

j∈SOME Tij TO M fi

4 /* act as manager, if necessary */
5 if i = M then
6 for i ∈ SOME do RECEIVE Si,

⋃

j∈SOME Tij FROM i enddo

7 SCCTarjan (SSOME, TSOME, scc p)
8 for i ∈ SOME do SEND scc p(Si) TO i enddo
9 fi

10 /* get the new scc */
11 if i ∈ SOME then RECEIVE scc(Si) FROM M fi
12 update

collapse-partial-with-colors (SOME, col)
Postcondition: same as collapse-partial

1 for c ∈ {1 · · ·n} do
2 collapse-partial (SOME)
4 with ({x ∈ S | col(x) = c}, T ) as global state space
5 enddo

collapse-partial-all (SOME1 · · · SOMEm)
Precondition: (∀i, j with 1 ≤ i < j ≤ m) SOMEi ∩ SOMEj = ∅

collapse-partial(SOME1, scc)
n
· · ·

n
collapse-partial(SOMEm, scc)

Figure 5.2: Partial SCC detection

disjoint subsets of workers generate disjoint subgraphs, the partial SCC reduction

can be executed in parallel on more subsets of workers (collapse-partial-all).

The number of messages used in collapse-partial is O (card(SOME)), with a total

size of O (card(SSOME) + card(TSOME)). The time complexity is also O (card(SSOME) +

card(TSOME)).

Another variant of this routine is collapse-partial-with-colors that uses the color

information (see Section 5.3.6) to partition the graph SSOME into smaller graphs S1
SOME,

S2
SOME · · · S

n
SOME and process them independently (sequentially). The independence

stems from the fact that the states wearing different colors are definitely not in the

same component. This can be exploited to save memory, by letting the manager

solve them sequentially and thus keeping the manager’s load low (in Figure 5.2).

Alternatively, one could gain time by collapsing the small graphs in parallel and thus

distributing the manager role among the workers.
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update

1 /* update and migrate the transitions */
2 for j ∈ ALL do REQ-REP j : Destij := scc(Destij) enddo
3 for j ∈ ALL do Sourceij := scc(Sourceij) enddo
4 for j ∈ ALL , (s, d) ∈ (Sourceij , Destij) do
5 k := worker(s)
6 l := worker(d)
7 (Sourceij , Destij) := (Sourceij , Destij)− (s, d)
8 (BSikl, BDikl) := (BSikl, BDikl) + (s, d)
9 enddo

10 for k, l ∈ ALL do
11 SEND BSikl, BDikl TO k

12 RECEIVE BSkil, BDkil FROM k

13 Sourceil := Sourceil.BSkil
14 Destil := Destil.BDkil

15 enddo
16 for s ∈ Si do
17 if scc(s) 6= s then Si := Si − {s}
18 enddo

Figure 5.3: Update

5.3.5 Update

The transformations described until now only assign values to the scc function, with-

out actually replacing x with scc(x), that is without renaming the transitions from

(x, y) to (scc(x), scc(y)). This is the role of the update routine (Figure 5.3). For

any transition (x, y), first the destination state y is replaced by scc(y) (step 2), then

the source state (step 3) and finally the updated transitions are moved to their new

owners (steps 4-15).

5.3.6 Reducing the problem by coloring

Figure 5.4 shows a distributed procedure that takes a color function col on the states

of a graph and modifies it repeatedly until it stabilizes, that is until col[x] ≥ col[y]

for every transition (x, y). The modifying step identifies the transitions (x, y) that do

not conform to this condition and copies the color of the parent to the child.

Let (Sstart, T start), colstart be a state space and an initial color function and let

(S, T ), col be the state space and color function after the colorify action. Let us also

define a set Roots = {x ∈ S | colstart(x) = col(x)}. The following facts are true:

• every SCC in T start (and T ) is painted uniformly by col

Proof: at the end of the painting procedure, col[x] ≥ col[y] for every transition

(x, y). This means that col[x] ≥ col[y] for any path x:y. If two states x and
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colorify (colstart) returns col
Precondition: (safe) if colstart(x) = colstart(y) then x:y:x
Postcondition: ∀x, y ∈ S ∀(x, y) ∈ T col(x) = col(y)

1 col := colstart

2 /* loop:the color of the parent propagates */
3 /* to the child, if the color of the child is weaker */
4 DBSUM(card(Si) , totalC)
5 Changed := Si
6 while totalC > 0 do
7 newC := ∅
8 for all workers j do
9 Bij := {(y, col[x]) | (x, y) ∈ Tij and x ∈ Changed}

10 SEND Bij TO j
f

RECEIVE Bji FROM j

11 for (y, c) ∈ Bji do
12 if (c < col[y])
13 then
14 col[y] := c

15 newC := newC ∪ {y}
16 fi
17 enddo
18 enddo
19 Changed := newC

20 DBSUM(card(Changed) , totalC)
21 enddo
22 /* mark as final all the transitions between */
23 /* states of different colors */
24 for all workers j do
25 REQ-REP j : Destij := col(Destij)
26 for (x, y) ∈ Tij s.t. col[x] 6= col[y] do
27 Tij := Tij − {(x, y)}
28 finalT := finalT ∪ {(x, y)}
29 enddo
30 enddo
31 return col

Figure 5.4: Graph coloring (worker i)
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heads-off (col, Roots)
Precondition: ∀(x, y) ∈ T col(x) = col(y)

∧ ∀x ∈ S ∃ a unique r ∈ Roots col(x) = col(r)
1 /* reverse the transitions */
2 for all workers j do
3 SEND Sourceij , Destij TO j

4 RECEIVE Destij , Sourceij FROM j

5 enddo
6 /* paint the roots with their old color */
7 for x ∈ Si do c[x] := N + 1 enddo
8 for r ∈ Roots do c(r) := col(r) enddo
9 c := colorify(c)

10 for x ∈ Si do
11 if c(x) = col(x)
12 then
13 scc(x) := the unique r ∈ Roots s.t. col(r) = col(x)
14 fi
15 enddo
16 /* reverse the transitions again */
17 for all workers j do
18 SEND Sourceij , Destij TO j

19 RECEIVE Destij , Sourceij FROM j

20 enddo
21 update

Figure 5.5: Elimination of root components (worker i)

y are in the same strongly connected component then there are paths x:y and

y:x. Thus col[x] ≥ col[y] and col[y] ≥ col[x], hence equal.

• if x:T y then col(y) = col(x)

Proof: At the end of the coloring procedure (Figure 5.4, steps 24-30), all the

transitions (x, y) with col(x) 6= col(y) are eliminated.

• if colstart is safe then: if x ∈ Roots then col(y) = col(x) iff x:T y

Proof: Since colstart is safe, all the states z with colstart(z) = colstart(x) must

be on a cycle with x. If col(y) = col(x) then there is a path (possibly empty)

from one of these states to y, because the colors propagate only on paths. It

follows that there is also a path from x to y. The other way was proved at the

previous point.

These observations justify the claim that the final coloring partitions S into subsets

S0 · · ·Sn−1 such that any strongly connected component from the initial graph is

completely contained in one of the subgraphs induced (S0, T 0) · · · (Sn−1, Tn−1).

Solving the problem of detecting the strongly connected components in the initial

graph reduces to solving it for the n subgraphs. Moreover, the subgraphs are actually
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the forward reachability sets of a few selected states (roots). The colorify routine

finishes in about M∗diameter steps – this is quite OK for state spaces, that usually

have a very small diameter.

5.3.7 Heads off

This routine gets as input a coloring of the state space together with a set of roots

(one root per color) with the property that every root can reach all (and only) the

states painted in its color. This means that the states that are reachable from their

root also on backward paths, form the root’s strongly connected component. An easy

way to compute the backward reachable states is reversing the state space (steps 2- 5)

and coloring it again, with an initial color function that leaves all the non-root states

unpainted. The nodes that get painted in this new coloring round are in their root’s

SCC and can be marked as such – and removed from S. In the end, the state space

gets back to the original orientation (17- 20).

5.4 Three example algorithms

The intended use of the graph transformations described until now is as building

blocks for algorithms that compute scc. Extra information on the structure of the

graph can help in choosing an optimal combination of transformations. Note that

every transformation eliminates some of the states and transitions, either by collapsing

SCCs or by proving that certain states are atomic or certain transitions are definitely

between different components. When discovered, the atomic states are thrown away

and the transitions crossing components boundaries are stored in the set finalT.

After a number of transformations, the set of transitions left in the state space will

drop to ∅. At that moment, scc and finalT define the reduced graph, which is the

initial one modulo the strong connectivity equivalence relation. But it is possible

that scc of some states does not hook them directly to their head of component, but

via some intermediate states. To get the final scc definition, a flattening phase must

be performed, at the end of which ∀x ∈ S : scc(scc(x)) = scc(x). The distributed

implementation of this phase uses just one BFS pass of the graph. This is possible

because throughout all the transformations, the following invariant is preserved:

∀x ∈ S ∃ a unique y ∈ S s.t.scc(y) = y ∧ scc(scc(· · · scc(x))) = y.

After flattening, the state space without cycles is:

Sscc = {scc(x) | x ∈ S}

T scc = {(scc(x), scc(y)) | (x, y) ∈ finalT}

We describe below three SCC reduction algorithms based on the transformations
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Extreme 1:

elim-atomic
groupsize = 1
while groupsize < W do

partition ALL in groups of size (at most) groupsize :
ALL :=

⋃

0≤i<W/groupsize SOMEi

if ∃i :
∑

j∈SOMEi
card(T j) > MAX

then ERROR : group too large
else
collapse-partial-all (SOME0 · · · SOMEm)

fi
groupsize := 2 ∗ groupsize

enddo

Extreme 2:

while (T 6= ∅) do
elim-atomic
c := colorify (Self)
Roots := {x ∈ S | c(x) = x}
heads-off (c, Roots)

enddo

Combination:

elim-atomic
while (card(T ) > MAX ) do

c := colorify(Self)
Roots := {x ∈ S | c(x) = x}
if card(T i) ≤ MAX )
then

collapse-partial(ALL, 0)
else

if (∃T i : card(T i) > MAX )
then

heads-off(c, Roots)
else

collapse-partial-with-colors(ALL)
fi

fi
enddo
collapse-partial(ALL, 0)

Figure 5.6: Three example algorithms
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proposed (Figure 5.6). A constant MAX is needed to specify the maximum load (in

number of transitions) that a worker can handle.

Extreme 1 Our first algorithm is aimed at speed. It uses a series of collapse-partial-

all calls to reduce quickly the size of the distributed graph. The series begins with

finding, in parallel, the SCCs on the subgraphs local to every worker (level 0, collapse-

partial-all with groupsize 1). Then the groups of workers double in size every step,

until only one group including all the workers is considered. If at any step the maxi-

mum load is reached, the algorithm stops with an error. This approach will work well

for relatively small state spaces and for dense ones, with many small cycles inside of

larger ones.

Extreme 2 Our second example algorithm uses only the color-based transformations.

Self denotes the identity function, Self(x) = x. The algorithm repeatedly colors

the state space starting with Self as initial color function and extracts the head

components. Note that, with Self as initial color, every color gets a unique root. This

algorithm may in general be slower, but it always terminates successfully, because its

memory usage stays more-or-less constant and, moreover, the buffers can be restricted

to a convenient size (while in the case of Extreme 1, the manager has to be able to

simultaneously store the local graphs of several workers in its memory).

Combination A possible hybrid algorithm uses the technique of partitioning by colors

only until the graph pieces are small enough to be collapsed by the groups technique.

5.5 Experiments

We discuss some aspects of the performance of our cycle elimination algorithms on

a series of large distributed state spaces generated for the verification of a system

for lifting trucks [GPW03] (lift5, lift6), a cache coherence protocol [PFHV03] (cache),

some instances of the Sokoban game [sok] (screen.706, screen.801, screen.1) and a

sliding window protocol [FGP+04] (swp piggy). We also included two state spaces

without invisible cycles from the VLTS [CI] benchmark (vasy 8082, vasy 4338). The

problem sizes and some other relevant structural characteristics are summarized in

Figure 5.7. The reduction times presented in Figure 5.8 are recorded on a cluster

of 4 dual AMD Athlon MP 1600+ nodes with 2G memory each, running Linux and

connected by Gigabit Ethernet.

The CE1 and CE2 columns in Figure 5.8 show the runtimes of the first two algo-

rithms, not including the input/output operations. In order to justify that the cycle

elimination algorithms can be useful as preprocessing step for branching bisimulation

reduction, we also show the runtimes of a distributed branching bisimulation reduc-

tion tool [BO03a] on the original state spaces and on the SCC-reduced state spaces.
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state size of the τ -graph size reduced trivial largest
space N M M% N% M% SCCs SCC

(in 106) (in 106) (N%)
cache 7.8 22.8 38.6 99.6 99.7 99.5 248
lift5 2.1 3.8 43.9 99.9 99.9 98.9 165
lift6 33.9 74.1 44.8 99.9 99.9 99.8 486
screen.706 1.2 2.37 87.8 11.4 0 6.6 38
screen.801 20.7 44.9 90.3 9.2 0 4.3 50
screen.1 29.9 65.9 91.2 7.4 3.9 1.2 50
swp piggy 9.6 30.9 57.9 24.9 46.2 10.5 45
vasy 4338 4.3 3.1 19.9 100.0 100.0 100.0 1
vasy 8082 8.0 2.5 5.9 100.0 100.0 100.0 1

Figure 5.7: Some case studies: size, structure

state CE1 CE2 BB BB
after CE original

cache 45 47 1331 1394
lift5 8.6 14.7 79 86
lift6 160 305 930 1039
screen.706 7.7 12.4 9.6 106.8
screen.801 172 112.5 43.6 2819.2
screen.1 210 121 36.7 180 000
swp piggy 125 237 122 341
vasy 4338 6 6 82 82
vasy 8082 11 11 27 27

Figure 5.8: Reduction times (in seconds)

The important observation here is that the cycle reduction times are usually much

smaller than the branching bisimulation reduction times. This means that although

the cycle elimination step is not always advantageous, it is also not harmful and could

be always done, just in case it might provide a spectacular gain (like for the Sokoban

screens). Moreover, the current branching bisimulation algorithm is not optimized

for the case when the input state space is guaranteed not to contain cycles. There

is much space for improving in this direction and then the small penalty paid for

eliminating the cycles would completely pay off.

The very low runtime of CE on the two vasy case studies is due to elim-atomic,

which discovers in one pass that all the states are atomic SCCs. The number of

needed color iterations in E2 depends on the diameter of the graph, which is usually

rather small for state spaces.
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5.6 Conclusions

The cycle detection problem plays an important role in verification algorithms, both

explicit and symbolic. In this chapter we concentrated on distributed algorithms

for explicit verification. We investigated some practical solutions to the problem of

finding strongly connected components in very large distributed state spaces. Given

that the best single-threaded solution is not efficiently parallelizable, we proposed two

(orthogonal) heuristics that approach the problem by reducing it to smaller instances,

solvable in parallel.

The first idea is to use the Tarjan sequential SCC detection algorithm on groups

of workers. The local graphs of several workers get sent to a manager, where the

combined subgraph is solved sequentially. Depending on the size of the workers’

group, this procedure ranges from solving all local subgraphs in parallel to solving the

whole global graph. Due to memory limitations, this approach is obviously not always

successful. Therefore we also proposed an alternative solution, based essentially on

computing forwards and backwards reachability sets. A third heuristics that proved

very helpful uses the observation that if a state is on a non-trivial cycle then it must

be reachable from at least one other state placed on a cycle. Thus, the states without

parents cannot be on cycles. They are their own (atomic) SCC, and so are also all

the states reachable only from atomic SCC. Removing these states is quite cheap and

the state space usually becomes significantly smaller. The same operation applied

on the reversed state space reduces it even more. The most spectacular effect of

eliminating atomic components can be seen on state spaces without cycles, when the

SCC detection finishes in one pass, thus linear time.

The reasonable performance of our algorithms demonstrates that cycle elimination

on very large distributed state spaces is feasible and useful.
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Shared Dataspace Software Architectures

The complexity of designing a distributed system is generally managed by introducing

a software architecture, defining what the components of the system are and how

they are coordinated. The component layer and the coordination layer are usually

designed, analyzed and implemented separately, in order to efficiently address issues

like reusability, compositionality, maintainability and verification.

Coordination models are either data-driven, if the components communicate through

a common pool of data (e.g., Linda [CG89]), or control-driven, if the components com-

municate by adhering to some communication patterns (e.g., Manifold [BAdB+00]).

A comprehensive survey of coordination models can be found in [PA98]. In this thesis,

we are only interested in data-driven coordination models. However, the formal veri-

fication techniques that we advocate are also appropriate for analyzing control-driven

models. In fact, this is already being done [MSA04].

In this chapter, we briefly review a few coordination models based on the shared

dataspace model. In particular, we introduce and discuss Splice, the software archi-

tecture that provided the main inspiration for the research questions in Part II. We

also give a quick introduction to the algebraic specification language µCRL [GR01],

as it plays an important role in the next two chapters.

6.1 Some distributed shared dataspace coordination models

Linda [CG89] was the first coordination language based on shared data. It is based

on generative communication: components communicate by storing and retrieving

tuples from a global shared tuple space. The most convenient characteristics of this

simple mechanism are the time decoupling and the anonymity of components. Tuples

can be both passive (data) and active (executable code). The retrieval works through

associative pattern matching.
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Bonita [RW97] is a successor of Linda and improves both its functionality and per-

formance. Bonita extends the Linda primitives to work with multiple tuple spaces.

For parallel performance reasons, the retrieving operation in Bonita is split into a

request and an obtain part.

KLAIM [DNFP98] (a Kernel Language for Agents Interaction and Mobility) is an-

other successor of Linda designed for distributed environments. Its distinctive feature

is the use of explicit localities in the primitives. This enables the programmer to

distribute the space among different sites.

WCL [Row98] enriches the basic set of Linda primitives, by providing both asyn-

chronous and synchronous tuple space access, bulk primitives and streaming prim-

itives. The novelty of this coordination language is that it specifically targets the

situation of geographically distributed agents. To this aim, it supports location trans-

parency and dynamic analysis of the tuple space (in order to achieve efficiency by

migrating data).

JavaSpaces [FHA99] This rather new coordination language, developed by Sun, uses

one central global dataspace and offers a whole range of useful new primitives: in-

sertion, destructive and non-destructive lookup of shared objects, distributed event

notifications, transactions, leasing. In order to fix a clear semantics for the new primi-

tives, a process calculus was proposed in [BGZ00a] and some consequences of choosing

different semantics were analyzed. The semantics of JavaSpaces has been formalized

in µCRL as well [PV02, PV03], with the goal of allowing automatic verification. Sev-

eral interesting applications were model-checked on this specification.

6.2 Views and models of Splice

Splice [Boa93] is a data-oriented software architecture for complex control systems,

developed and used at the company Hollandse Signaalapparaten BV (currently Thales

Nederland). It is based on the publish-subscribe paradigm and it uses some inter-

esting mechanisms (keys, lifecycles, timestamps, joins) to control the distribution of

data from publishers to subscribers. The architecture of a Splice system consists of

a (variable) number of agents connected by an Ethernet network. Each application

has its own agent, that acts as the application’s buffer to the network and manages

its local database of data items. The applications communicate with the agents using

Splice primitives like read, write, subscribe, publish. The Splice system takes care of

asynchronously transferring data from the databases of publishers to those of sub-

scribers. The communication is decoupled and anonymous, which allows components

to join or leave a Splice system at run-time.
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Splice has been regarded and discussed from many perspectives. Depending on the

aspects that were put on the foreground, it has been referred to as publish-subscribe

software architecture, data distribution middleware, data-driven coordination model,

(real-time) (distributed) shared dataspace, or a combination of these. Roughly three

categories of questions concerning Splice have been addressed in the literature:

Models and formal semantics A dedicated process algebra for Splice has been de-

fined in [DGJU99]. In [DL00], a detailed µCRL specification of Splice is reported,

where the Ethernet layer is modeled, but the data aspects are not of prime impor-

tance. A later µCRL model of Splice [HP02b] is much simpler and focuses on more

relevant functional aspects. Both models contribute to defining a much needed formal

semantics to the Splice primitives. Also a denotational semantics has been developed

for use in compositional verification and refinements and it was proved equivalent to

the operational semantics [HP02a].

Expressiveness of Splice-like models Expressiveness of coordination models that use

a shared dataspace has been extensively investigated. [BHJ00, BKZ99a, BKZ99b]

compare a number of such models that differ in choosing a set or a multiset as data

repository, using destructive or nondestructive primitives, having one global dataspace

or few local caches etc. Chapter 7 is an expressiveness study on a very simple shared

dataspace model, that reduces the set of coordination primitives to the extreme,

namely it only uses reads and writes.

Verification The verification effort on Splice started with [DL00], where properties

like deadlock freedom, soundness and weak completeness were checked in µCRL +

CADP. Theorem proving techniques (PVS) were used in [HH01], where a formal

approach to the top-down design of components on Splice was presented. There the

real-time characteristics play an important part. Both approaches, model checking

with µCRL and theorem-proving with PVS, were used to study transparent replication

of applications on top of Splice [HP02b]. Replication possibilities on Splice were first

explored in [DJ00].

6.3 Introduction to µCRL

The process algebra approach to verification, taken by formalisms like Communi-

cating Sequential Processes (CSP) [BHR84], Calculus of Communicating Systems

(CCS) [Mil80], Algebra of Communicating Processes (ACP) [BK85], provide pow-

erful means to represent and study behaviors, nondeterminism, parallelism, system

equivalences, abstractions.

The specification language µCRL [GR01] is the result of extending the process

algebra ACP with abstract data types, in order to achieve sufficient expressiveness to
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describe real-life applications.

In µCRL, processes are built from atomic actions by certain operators. µCRL in-

herited the typical process algebra connectives from ACP. For any processes p and q,

p + q denotes non-deterministic choice between p and q, p.q denotes their sequential

composition, and p ‖ q denotes the parallel composition (defined in terms of interleav-

ing and synchronous communication). The synchronization is allowed only between

pairs of communicating actions, which are determined by a communication function

γ. There is also an encapsulation operator ∂H , that forces processes to communicate,

by making the actions in H act exclusively in communication. The hiding operator

(τI) abstracts away the actions in I. There are two special processes: δ (deadlock,

the unit of +) and τ (internal action).

In order to use abstract data types in a specification, a signature of multiple sorts

and functions can be declared, and axiomatized by equations.

The following connectives connect processes with abstract data types. First, atomic

actions can be parameterized with data elements, as in get(n). Then,
∑

n:D P (n) de-

notes alternative (possibly infinite) choice over data domain D, i.e. for any value

d0 ∈ D, the process can behave as P (d0). Alternative choice is used to model in-

put. Finally, if b is a term of data domain Bool and p and q are processes, then

the conditional (p / b . q) is the process “p if b, else q”. Conditionals are often

used to put a restriction on the surrounding summation over data. In particular,
∑

n:Nat get(n).P (n) / n < 20 . δ denotes the process that gets an arbitrary n0 < 20,

and continues as the process P (n0).



7

Expressiveness and Distribution of a Simple

Shared Dataspace Architecture

Inspired by the industrial architecture Splice (introduced in Section 6.2), we study the

consequences of choosing an extremely weak and simple coordination model: com-

munication via a global set. The coordination primitives between components are

restricted to writing and reading. We imagine that the application components re-

side at certain physical locations, abstractly represented by natural numbers. The

coordination primitive write(i, v) represents that the component at location i adds

value v to the global set; if v is present already this action has no effect. The other

primitive, read(i, v) denotes a non-destructive, blocking read of a particular value (or

template) v by a component at location i. That is, it waits until it actually finds v

in the global set, and then proceeds. Note that test for absence and deletion of items

is not possible.

Two separate tasks can be distinguished. First, the architecture must be imple-

mented on a distributed network. Second, components must be designed that together

implement the requirements of the system under design, using the coordination prim-

itives provided by the architecture.

The two tasks raise two natural questions. The first question is whether the ar-

chitecture itself has an efficient distributed implementation. This is addressed in

Section 7.2. We define a distributed implementation of the architecture, in which

every component has its own local set. Data items are exchanged between these lo-

cal sets asynchronously. We prove that the implementation based on local sets is

behaviorally equivalent to the specification based on a conceptual global set (that is,

the bottom layer of Figure 7.1(b) is equivalent to the bottom layer of Figure 7.1(c)).

The fact that the difference cannot be noticed is mainly due to the careful selec-

tion of the weak coordination primitives. This result is essentially the same as
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in [BHJ00, BKZ99a, BKZ99b], albeit in a slightly more general setting. However,

the proof is much simpler due to the application of powerful process algebraic proof

principles.

The second question is whether the architecture is sufficiently expressive to allow

the distributed implementation of any system specification. This is investigated in

Section 7.3 from a functional point of view – i.e. without taking into account issues

like performance or fault tolerance. We show that every specification of functional

behavior has a distributed implementation, i.e. one where different types of actions

are performed at different physical locations. In particular, the components only use

the weak coordination primitives read and write on a global set. Figure 7.1(a),(b)

gives a quick view on this implementation. As far as we know, this main result is not

comparable to existing results on expressiveness of coordination models.

Example 7.1 Consider a very simple logging system, with its behavioral specification

input .log, indicating that some input action precedes some log action. This system

probably uses two physical devices (e.g. a monitor and an actuator) with their own

controllers, so input and log happen at different locations. A distributed implemen-

tation with our primitives could be: input.write(l1, d) ‖ read(l2, d).log. Here l1 and

l2 are the locations of the components, and d is some data value. With ‖ we denote

parallel composition. Assuming that the system starts with the empty data space, the

second process is initially blocked, so the only execution of this little program should

be input .write(l1, d).read(l2, d).log. If we hide the communication actions read and

write, we indeed get the desired system behavior input .log. We remark that the sys-

tem button1 + button2 , in which non-deterministically either button1 or button2 is

pressed, also has a distributed implementation, but this is much harder. In particular,

our solution will use an unbounded number of internal communications.

Finally, in Section 7.4, we connect the two results. First, the architecture with

local sets (Figure 7.1(c)) is split into parallel agents (Figure 7.1(d)). Using these,

and combining the results from Sections 7.2 and 7.3, we obtain for any requirements

specification, a truly distributed implementation consisting of components communi-

cating by synchronous message passing (Figure 7.1(e)). Each component consists of

an application process and a local data space agent.

Relationship with Splice The choice of architecture in this chapter is influenced by

Splice (Section 6.2). The advantage of the Splice architecture is that the components

are loosely coupled, thus increasing the amount of fault tolerance. The data is present

at several locations, making replication of components relatively easy. Recent research

papers propose to view Splice conceptually as a shared data space, i.e. a set of data

common to all components [BHJ00, DJ00]. Viewing the data as a global data space

has the advantage that all programs perceive the same data at any moment. In
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Figure 7.1: From requirements to a distributed implementation

addition, viewing it as a set (instead of a multi-set) opens the way to transparent

replication of components [DJ00]. See Section 7.6.1 for further related work.

A Process-algebraic Approach A common theme has been to embed the coordina-

tion primitives in a host language and give semantics to the resulting coordination

language. As an alternative, we adopt a process algebraic point of view. In this

view everything is a process, or more precisely: the behavior of every system can

be modeled as a process. A system can be modeled as a process at various abstrac-

tion levels. Typically, two descriptions are distinguished: Spec and Impl . The process

Spec specifies the global behavior of the system, whereas the process Impl describes its

implementation, typically as the parallel composition of certain communicating pro-

cesses. The typical process algebraic correctness statement is then: Spec = τI(Impl),

i.e. the specification is behaviorally equivalent to the implementation, after abstrac-

tion of internal communications in I.

In our case, the components of the application are processes. Also the architecture

itself will be a process; we will define our architecture as the process GSRW (Global

Set with Read and Write) in Section 7.1.1. Our first problem is to find a distributed

implementation of GSRW, called DSRW (Distributed Set with Read and Write) to-

gether with a proof that GSRW = τI(DSRW). The second problem requires for any

specification of a system’s global behavior B, a number of components Pi (satisfying
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certain syntactic criteria on locations) such that B = τI(P1 ‖ · · · ‖ Pn ‖ GSRW).

We have chosen the process algebraic approach for a number of reasons. First, it

clarifies the concepts. By choosing a formalism, rather vague claims on realizabil-

ity and expressiveness are turned into clear theorems. Process algebra provides the

means to focus on the essential interfaces, by distinguishing external and internal

actions, and by encapsulation of data in processes. The next advantage is that our

approach yields rigorous formal proofs, apt for mechanic verification. The full proofs

are available in Section 7.5. The third advantage is that we can use powerful proof

principles developed for process algebra. Finally, by using a standard process alge-

bra, existing tools [BFG+01] can be used for simulation and model checking. This

has been demonstrated in [HP02b, PV02]. Section 7.4 gives a nice example of process

algebraic manipulation. By just applying some distributivity and associativity laws,

we transform a system description with two layers (applications and data space) to

a system description with components (each consisting of an application part and a

communication part), that communicate by synchronous message passing.

7.1 Process algebra with data

For good introductions to process algebra see [BW90, Fok00]. We will present and

prove our ideas using the formalism µCRL (see Section 6.3).

7.1.1 GSRW in the syntax of µCRL

We will tacitly assume the following µCRL standard sorts with the usual operations:

Bool (booleans), N at (natural numbers, to represent locations), D (to represent data

values, intentionally left unspecified) and Set (finite sets over D). For A : Set and

v : D, A+ v denotes A ∪ {v}. It is routine to specify these types algebraically.

To the end of formally defining GSRW in µCRL, we introduce the parameterized

atomic actions Read(i : N at, v : D) and Write(i : N at, v : D), where i denotes the

location (or: service access point) and v the datum. Given these basic actions, the

architecture GSRW is now defined by the following recursive specification, parame-

terized with the current set A of values of sort D:

GSRW(A : Set) =
∑

i:Nat

∑

v:D

Write(i, v).GSRW(A+ v)

+
∑

i:Nat

∑

v:D

Read(i, v).GSRW(A) / v ∈ A . δ

Thus, GSRW maintains the global set A. At any moment this process allows that

either an element is written, or a value can be read, provided it is actually present in

A. In this way, the blocking character of read is captured.

Application processes can read and write by synchronizing with the Read and
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Write of GSRW. To this end we introduce the actions read(i : N at, v : D) and

write(i : N at, v : D). These actions should synchronize (cf. function calls or method

invocations), so we define the communication function as follows: Read | read = R

and Write | write = W . As usual in µCRL, the unsynchronized actions are encap-

sulated by the ∂{Read,read,Write,write} construct (in order to enforce communication),

and the internal communications are hidden using the τ{R,W} construct (in order to

abstract from internal detail).

The semantics of Example 7.1 is now captured formally by the following µCRL

expression:

τ{R,W}(∂{Read,Write,read,write}(input .write(l1, d) ‖ read(l2, d).log ‖ GSRW(∅)))

And indeed, it is a trivial exercise to prove that this is behaviorally equivalent to the

specification input .log .δ.

7.1.2 Proof methods from process algebra

We noted already that the typical process algebraic notion of refinement is given

by the equation τI(Impl) = Spec. As equivalence relation between processes we

use branching bisimulation. Our results also apply to weak bisimulation, which is a

slightly coarser equivalence relation. (see Section 2.3 for the definitions). In [GR01]

branching bisimulation on µCRL processes is axiomatized algebraically. Recent pa-

pers developed more practical proof methods that will be used here. These methods

are related to a particular process format, called linear process equation.

Linear Process Equations and Invariants In [Use02] it is demonstrated that the

whole class of µCRL specifications can be transformed to linear process equations

(LPE). Process terms have an implicit notion of state. The point of the LPE format

is that the state is encoded explicitly in a data vector. An LPE is essentially a list of

condition-action-effect triples. Given an index i from a finite index set J , action ai
with data parameter fi(d, ei) is enabled in state d, if bi(d, ei) holds. This action leads

to the next state gi(d, ei). Here ei is a local variable, used to encode arbitrary input

from a data set Ei. Formally, an LPE is a recursive specification of the following

form:

Impl(d : D) =
∑

i∈J

∑

ei:Ei

ai(fi(d, ei)).Impl(gi(d, ei)) / bi(d, ei) . δ

The advantage of this format is that properties and proof methods can be uniformly

expressed, in terms of the state d and the constituents fj , gj and bj .

We assume a special action τ , denoting hidden steps. An LPE is convergent, if it

doesn’t admit infinite sequences of τ -steps. The principle CL-RSP (Recursive Speci-
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fication Principle for Convergent LPEs) [BG94, GR01] states that a convergent LPE

has a unique solution.

Reachable states are characterized by means of invariants. A predicate I(d) is an

invariant if and only if it is preserved by all transitions, formally iff the following

conjunction holds:

(∀i ∈ J ∀d : D ∀ei : Ei) ( I(d) ∧ bi(d, ei)→ I(g(d, ei)) )

In [GS01, GR01] the cones and foci method is described for proving equality be-

tween implementation and specifications, which we recall in the next paragraph. This

method is only applicable in case of convergent LPEs. If τ -loops exist, we need a

fairness assumption on executions in order to ensure that eventually an exit from the

τ -loop is chosen. To this end, a fairness rule will be introduced below.

State mappings, cones and focus points The summands of Impl above can be split

into τ -steps and external steps, J = Int ]Ext , where Int = {i ∈ J | ai = τ}. Besides

the implementation, we assume a given specification:

Spec(d′ : D′) =
∑

i∈Ext

∑

ei:Ei

ai(f
′
i(d

′, ei)).Spec(g
′
i(d
′, ei)) / b

′
i(d
′, ei) . δ

Note that the specification must not contain τ -steps. We also assume that the imple-

mentation is convergent. Then every state has internal steps to a focus point, i.e. one

in which no further τ -steps are possible. The focus points can be easily characterized

by the focus condition:

FC (d) = (∀i ∈ Int) (@ei : Ei) bi(d, ei).

An implementation and a specification in the format above can be proved behav-

iorally equivalent by providing a state mapping h : D → D′, and proving that the

matching criteria MCh(d) hold, where MCh(d) is defined as the conjunction of the

following:

1. for each i ∈ Int , ∀(ei : Ei). bi(d, ei)→ h(d) = h(gi(d, ei))

i.e internal steps don’t change the related state.

2. for each i ∈ Ext , ∀(ei : Ei). bi(d, ei)→ b′i(h(d), ei)

i.e the specification can mimic all external steps of the implementation (sound-

ness).

3. for each i ∈ Ext , ∀(ei : Ei). b
′
i(h(d), ei) ∧ FC (d)→ bi(d, ei)

i.e each external step of the specification can be mimicked in the related focus

points of the implementation (completeness).
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4. for each i ∈ Ext , ∀(ei : Ei). bi(d, ei)→ fi(d, ei) = f ′i(h(d), ei)

i.e the data labels on the external transitions coincide.

5. for each i ∈ Ext , ∀(ei : Ei). bi(d, ei)→ h(gi(d, ei)) = g′i(h(d), ei)

i.e the next states after a visible transition are related.

Theorem 7.2 (from [GS01]) For specification and convergent implementation in the

format above, and given a state mapping h and an invariant I such that I(d) holds

and ∀(d : D). I(d)→MCh(d), we have

Impl(d) / FC (d) . τ.Impl(d) = Spec(h(d)) / FC (d) . τ.Spec(h(d))

The essence of this proof method is that given a state mapping h, and invariant I,

the correctness proof boils down to a check of a number of simple criteria.

Fair abstraction The cones-and-foci method only works for convergent LPEs. But

we will encounter τ -loops of arbitrary length. In order to eliminate these loops, we

need a fairness principle, which states that eventually an exit of the loop is chosen.

For this we will use Koomen’s Fair abstraction rule (KFARn for n > 1) [BBK87].

Assume we have a v-loop with exits, of the following form:

X1 = v.X2 + s1
X2 = v.X3 + s2
· · ·

Xn = v.X1 + sn

Then after abstraction from v we would get a non-convergent LPE. However, accord-

ing to KFARn we are sure that after some time one of the exits si is taken, so we

get:

τ.τ{v}(X1) = τ.τ{v}(s1 + · · ·+ sn)

7.2 Distributed implementation

In this section a distributed implementation of GSRW is defined and a correctness

proof is given. We first introduce the data type List , representing a list of local

data spaces. It has constructors ε (empty list) and :: (cons). The elements of the

lists are sets of values. Note that GSRW puts no bound on the number of access

points. Therefore, we can not assume a fixed length on the list of local data spaces.

In order to avoid infinite lists, they are specified in such a way that they ”grow on

demand”. We write Li for the i-th element of L (counting from 0). If i exceeds the

length of L, then Li is taken to be the empty set. With L[i : +v] we denote the list
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L0, . . . , Li−1, Li + v, Li+1, . . . , Ln. When necessary, L[i : +v] extends L with empty

sets to have length at least i, and adds v to Li.

εi = ∅

(A :: L)0 = A

(A :: L)i+1 = Li

ε[0 : +v] = [{v}]

ε[(i+ 1) : +v] = ∅ :: ε[i : +v]

(A :: L)[0 : +v] = (A+ v) :: L

(A :: L)[(i+ 1) : +v] = A :: (L[i : +v])

In the distributed version DSRW, each component i will write to its private set Ki

and reads from its private set Li. Elements of Ki are sent to all the Lj separately,

by executing for each v an action Send(i : Nat, v : D, j : Nat). Therefore, the

distributed implementation of GSRW is a process DSRW, having as parameters the

lists K and L and defined as follows:

DSRW(K , L : List) = (7.1)
∑

i:Nat

∑

v:D

Write(i, v).DSRW(K[i : +v], L)

+
∑

i:Nat

∑

v:D

Read(i, v).DSRW(K,L) / v ∈ Li . δ

+
∑

v:D

∑

i,j:Nat

Send(i, v, j).DSRW(K,L[j : +v]) / v ∈ Ki \ Lj . δ

According to DSRW, written elements are not immediately available. Data items

might even arrive in a different order in different processes. Nevertheless, we have the

following correctness theorem:

Theorem 7.3 GSRW(∅) = τ{Send}(DSRW(ε, ε)).

Proof: We view GSRW as a specification and τ{Send}(DSRW) as its implementa-

tion; the latter equals DSRW with Send(i, v, j) replaced by τ . By the cones-and-foci

method, it suffices to give a state mapping and an invariant, and check the matching

criteria. As state mapping we define h(K,L) = (
⋃

K ∪
⋃

L). We need the invariant

Inv(K,L) = ∀i.Li ⊆
⋃

K, which can be checked easily. The focus condition FC (K,L)

is @(i, j, v). v ∈ Ki \Lj . Assuming the invariant, this can be simplified to ∀j.Lj =
⋃

K

(i.e. all written values have arrived and are ready to be read). Convergence of the

implementation follows easily: in τ{Send}(DSRW) the number
∑

i

∑

j #(Ki \ Lj) de-

creases with each τ -step. Now the matching criteria are (skipping the trivial ones):

(1) v ∈ Ki \ Lj →
⋃

K ∪
⋃

L =
⋃

K ∪
⋃

L[i : +v]

(2) v ∈ Li → v ∈
⋃

K ∪
⋃

L

(3) (v ∈
⋃

K ∪
⋃

L) ∧ (∀j. Lj =
⋃

K)→ (v ∈ Li)
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(4) (
⋃

K ∪
⋃

L) + v =
⋃

K[i : +v] ∪
⋃

L

These can be proved by simple set-theoretic calculations. Initially, we have Inv(ε, ε)

and FC (ε, ε), whence the result follows by Theorem 7.2. Â

In fact this means that GSRW and τ{Send}(DSRW) are indistinguishable. This is a

generalization of [BKZ99a, BHJ00], because the application processes may use non-

deterministic choice, recursion, or even synchronous communication. Our proof is a

standard application of the cones-and-foci method (see Section 7.1.2).

7.3 Expressiveness

In this section we investigate the expressiveness of GSRW, from a system engineering

point of view: given the requirements specification of a system under design, can a

distributed implementation on GSRW be constructed? We assume that the require-

ments specification is given by a description of the global behavior, and a localization

function. The behavioral specification is a process Spec. The alphabet of a process is

the set of action labels that occur in it. Let A be the alphabet of Spec. We also as-

sume some set L of locations, describing for instance physical devices. A localization

function is a function λ : A→ L.

A component X is consistent with the localization function if there exists a fixed

location `, such that the alphabet of X contains only the actions read , write and

external actions a with λ(a) = `. For instance, if λ(scan) 6= λ(log), the implemen-

tation can have a component with the alphabet {read ,write, scan} and another with

{read ,write, log}. This notion can be seen as a syntactic criterion to enforce correct

distribution and to enforce that processes can only communicate via the coordination

primitives.

A distributed implementation of Spec, λ on GSRW consists of an initial database

A0, together with a number of components X1, . . . , Xn that are consistent with λ,

and behave like Spec, i.e.

Spec = τ{R,W}∂{read,Read,write,Write}(X1 ‖ · · · ‖ Xn ‖ GSRW(A0)).

The matter of distributing functionalities of a requirements specification over more

communicating components was also studied in [Lan92] for LOTOS expressions; the

synchronization is solved there with message passing, while GSRW coordinates the

components using persistent data.

Example 7.4 We describe a possible implementation on GSRW of a very simple buffer

specification. For this, we consider the datasort Queue, representing a queue of arbi-

trary data items (data must be sent out in the same order in which it was scanned).
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It has the constant em, representing the empty queue, and the operations:

enqueue : Data × Queue −→ Queue adds an element to a queue;

dequeue : Queue −→ Queue extracts the top element of the

(non-empty) parameter queue;

head : Queue −→ Data returns the top element of the queue;

notempty : Queue −→ Bool true when there is at least one

element in the queue.

The buffer interacts with the world through the actions IN , which inputs a data ele-

ment to the buffer and OUT, which outputs a data element from the buffer. Then the

µCRL specification of the buffer is:

BufSpec (Q : Queue) =
∑

d:Data

(IN (d). BufSpec (enqueue(d,Q)) (7.2)

+ OUT (head(d)).

BufSpec (dequeue(Q)) / notempty(Q) . δ)

In order to build an implementation of BufSpec on GSRW, we use a global set that

memorizes values of sort Nat×Data, representing pairs (sequence number, data item).

We instantiate the architecture to GSRW(A : Set(Nat×Data)) and we choose a local-

ization function λ : λ(IN ) = l1, λ(OUT ) = l2. A possible distributed implementation

on GSRW of the buffer is :

BufImpl = Bin (0) ‖ Bout (0) ‖ GSRW (∅) (7.3)

where

Bin (n : Nat) =
∑

d:Nat

IN (d).write(l1, (n, d)).Bin (n+ 1)

Bout (n : Nat) =
∑

d:Nat

read(l2, (n, d)).OUT (d).Bout (n+ 1)

(7.3) is indeed an implementation of (7.2), since it can be proved that BufSpec (em)

is branching bisimilar to τ{R,W}∂{Read,Write,read,write} BufImpl.

7.3.1 The translation scheme

In the sequel we show how to construct Xi and A0 for any requirements specification.

That is, we describe a translation scheme from an LPE Spec(d) together with a

localization function L to a set of processes X1, · · · , Xn and some initial database A0

satisfying the above criteria. The localization criterion will be solved by mapping each

action label to a different component. This results in the maximally distributed, most

fine-grained implementation of the given specification, from which an implementation
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with less parallel components can always be obtained by bundling several components

Xi. Then we will prove that this translation scheme is correct.

We assume that a requirements specification is given in LPE format (see Sec-

tion 7.1):

Spec (d : D) =
∑

i∈I

∑

ei:Ei

ai(fi(d, ei)).Spec (gi(d, ei)) / bi(d, ei) . δ (7.4)

Each summand of
∑

i∈I defines a set of transitions from state d to state gi(d, ei) and

it is enabled for all ei for which the guard bi(d, ei) is true. Moreover, we assume a

localization function λ : {ai | i ∈ I} → L for a set of locations L.

Let n = card(I). The distributed implementation will have n components, each

responsible for one action ai. They communicate via GSRW, using a global set of

pairs (timestamp, data) of the sort Nat×D. The timestamp represents the moment

when the pair was added to the database or, in other words, the number of visible +

invisible steps executed until the time of insertion.

Components are triggered in turns, by the timestamp, in a circular infinite pass:

component i will be activated at all moments t = k.n+ i (∀k). When activated, it will

choose to execute its action or not to execute it. In both cases, it will increase the

“global time” and pass the turn to its next sister. This cycle is needed to ensure that

the nondeterminism that may exist in the global specification Spec(d) is preserved in

the distributed implementation. At any time, all possible actions must have a chance

to execute.

In a formal definition, the component Xi, responsible of action ai is:

Xi(m) =
∑

d:D read(λ(ai), (m, d)).

(
∑

ei:Ei
( ai(fi(d, ei)).write(λ(ai), (m+ 1, gi(d, ei)))

/ bi(d, ei) . δ )

+ write(λ(ai), (m+ 1, d)))

. Xi(m+ n)

(7.5)

and the initial state of the implementation is

n

i

Xi(i) ‖ GSRW({(0, d)}) (7.6)

The parameter m of Xi is the moment when Xi expects to be activated next. As

mentioned before, m is always of the form k.n+ i. At moment m, read(`, (m, d)) from

Xi synchronizes with Read(`, (m, d)) from GSRW(A), for some d. This activates Xi.

After “acting”, Xi will set its parameter to the next active moment (k + 1).n + i,

i.e. m + n. In its life, Xi passes only through the following local states: 0 –ready

to read, 1 –activated; make a choice (execute action or pass the turn), 2 –action

performed; pass the turn.
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We will prove that this distributed implementation on GSRW of an LPE is almost

equivalent to the specification. That is: if we abstract from the actions dealing with

the global set (R,W ), then we get the specification Spec(d) with an extra initialization

step.

Theorem 7.5 For every requirements specification expressible as an LPE Spec(d), the

components Xi resulted by applying the translation scheme satisfy:

τ.Spec(d) = τ.τ{R,W}∂{Read,Write,read,write}(
n

i

Xi(i) ‖ GSRW({(0, d)})).

7.3.2 Correctness proof

This subsection is devoted to proving that the translation defined above is correct.

That is, to prove Theorem 7.5. We will do this in three steps:

1. First of all, to be able to compare the two processes appearing in the theorem,

we need to bring the implementation (7.6) to a linearized form (the specification

Spec(d) already is, by assumption).

2. Further, having both specification and implementation in linearized form, we

can use the cones-and-foci method to prove their equivalence. But not immediately,

since this method requires that the implementation should be convergent (without in-

finite τ -loops) and this is not the case for ours - infinite τ -loops occur when abstracting

from R and W . Therefore, in the second step, pre-abstraction, we will consider an

intermediate specification Y , in which we abstract only from R’s and the second W

(the one generated by the communication between write(m + 1, d) and Write from

GSRW, see (7.5)), while keeping the other write(m+ 1, gi(d, ei)) as a visible action -

but renamed to an action without arguments v. In Y we also eliminate the database

A.

3. Finally we can prove, using the cones-and-foci method, that the linearized im-

plementation is branching bisimilar to Y . Afterwards we abstract from the remaining

visible action v and prove by fair abstraction that τ.τ{v}Y = τ.Spec.

The three steps are detailed below.

1. Linearization of implementation In the linearized version of a process, we view

everything globally. The state of the system will be described by the parameters A,

~m ∈ Nn, ~l ∈ {0, 1, 2}n and ~d ∈ Dn. A is the set of pairs, the database appearing

as parameter of process GSRW. ~m is the vector of “moments”, an element mi (the

parameter of process Xi) is the moment when Xi will be activated next. ~l is the

vector of local states (li is the current local state of component i). Finally, ~d is the

vector of data items; di is the data that component i knows of, currently. Although

in principle there is only one global view on data, components may have temporary

different views. That’s why we need ~d as parameter, instead of just d.
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In the initial state, A = {(0, d)} (we are at moment 0 and the current data is

the global specification’s parameter d); ~l = 0 (all the components are in the “start”

local state 0); ~m = (0, 1, · · · , n− 1) (component i waits to be activated at moment i

and first component to be activated is 0, triggered by (0, d), the only pair from the

database A); ~d = ~0 (in the initial state the values in this vector don’t matter, since

they will be used only after being initialized by a reading action).

Due to the fact that all components Xi from (7.6) are independent, the linearized

version is just the sum of their separate interactions with GSRW(A). After renaming

one of the write actions to v and hiding the read action and the other write, we get

the following linearized implementation:

Impl (A,~l, ~m, ~d) =
∑n−1

i=0 (
∑

y τ. Impl(A,
~l[li := 1], ~m, ~d[di := y] )

/ li = 0 ∧ (mi, y) ∈ A . δ

+v. Impl(A ∪ {(mi + 1, d)}, ~l[li := 0], ~m[mi := mi + n], ~d)

/ li = 1 . δ

+
∑

ei:Ei
(ai(fi(d, ei)). Impl(A,~l[ li = 2 ], ~m, ~d[di := gi(d, ei)])

/ li = 1 ∧ bi(d, ei) . δ)

+τ. Impl(A ∪ {(mi + 1, di)}, ~l[li := 0], ~m[mi := mi + n], ~d)

/ li = 2 . δ)

(7.7)

The formula

τ{R,W}∂{Read,Write,read,write}(
n

i

Xi(i) ‖ GSRW({(0, d)}) )

= τ{v}Impl({(0, d)},~0, (0, 1, · · · , n − 1),~0) (7.8)

summarizes what has happened in the linearization step.

2. Pre-abstraction We define the intermediate specification Y as follows:

Y (c,d) =
∑n−1

i=0 ( v. Y ((i+ 1) mod n,d) / i = c . δ

+
∑

ei:Ei
(ai(fi(d, ei)). Y ((i+ 1) mod n, gi(d, ei))

/ i = c ∧ bi(d, ei) . δ) )

(7.9)

The parameter c is a natural number from the set {0, · · · , n − 1} and points to the

active component Xc(mc). c’s values in the successive calls of Y reflect the order in

which components become active:

Y (0, ), Y (1, ), Y (2, ), · · · , Y (n− 1, ), Y (0, ), Y (1, ), · · ·

The other parameter, d, is the global state of the system.
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We aim to show, by using an appropriate state mapping, that this intermediate

specification is equivalent to the linearized implementation, i.e. that

τ.Impl({(0, d)},~0, (0, 1, · · · , n− 1),~0) = τ.Y (0, d). (7.10)

The state mapping must relate equivalent states of Impl and Y . To ensure this,

the cones-and-foci method (see Section 7.1.2) requires that certain matching criteria

should be satisfied, which are easy (but tedious) to prove, using invariants on Impl ’s

states. The complete proof of (7.10), including a list of the invariants, is presented

in Section 7.5. Here we will only show some of the invariants and briefly discuss the

state mapping.

One of the invariants is that for any “moment” t there is at most one data item

d such that (t, d) ∈ A. When this item exists, we will denote it by data(A, t).

Another important invariant is that for any state 〈A, ~l, ~m, ~d〉 there is exactly one

x ∈ {0 · · ·n− 1} for which (mx, ) ∈ A (where denotes any data instance). The state

mapping h : States(Impl) −→ States(Y ) can be now defined as follows:

h( 〈A, ~l, ~m, ~d〉 ) =

{

〈x,data(A,mx)〉 if lx ∈ {0, 1} and (mx, ) ∈ A

〈(x+ 1) mod n, dx〉 if lx = 2 and (mx, ) ∈ A

The idea of this mapping is that it extracts from a global state 〈A, ~l, ~m, ~d〉 the essential

information that characterizes it, namely the index of the active component and the

data that this component gets as input.

If we hide v in both Impl and Y , (7.10) becomes

τ.τ{v}Impl({(0, d)},~0, (0, 1, · · · , n− 1),~0) = τ.τ{v}Y (0, d). (7.11)

3. Abstraction By instantiating the definition (7.9) for c ∈ {0 · · ·n − 1} and using

the observation that there are no summands for which i 6= c, we obtain:

Y (0, d) = v.Y (1, d) +
∑

e0:E0

a0(f0(d, e0)). Y (1, g0(d, e0)) / b0(d, e0) . δ

Y (1, d) = v.Y (2, d) +
∑

e1:E1

a1(f1(d, e1)). Y (2, g1(d, e1)) / b1(d, e1) . δ

...

Y (n− 1, d) = v.Y (0, d) +
∑

en−1:En−1

an−1(fn−1(d, en−1)). Y (0, gn−1(d, en−1))

/ bn−1(d, en−1) . δ
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It is easy to see that Y (0, d) · · ·Y (n− 1, d) form a {v}-cluster, with exits

{ai(fi(d, ei)). Y ((i+ 1) mod n, gi(d, ei)) / bi(d, ei) . δ | 0 ≤ i < n , ei ∈ Ei}

KFARn (Koomen’s Fair Abstraction Rule) states that in a fair execution, one of the

exits will eventually be taken. In our case, this means that we can write, for all

k ∈ {0 · · ·n− 1}:

τ.τ{v}Y (k, d) =

τ.
∑n−1

i=0

∑

ei:Ei
ai(fi(d, ei)).τ{v} Y ((i+ 1) mod n, gi(d, ei))

/ bi(d, ei) . δ

(7.12)

The right-hand side of this formula does not depend on k, which allows us to say that

τ.τ{v}Y (0, d) = τ.τ{v}Y (1, d) = · · · = τ.τ{v}Y (n− 1, d). Consequently, we can replace

in (7.12) k with 0 and

ai(fi(d, ei)).τ{v} Y ((i + 1) mod n, gi(d, ei)) with ai(fi(d, ei)).τ{v} Y (0, gi(d, ei)) and

obtain:

τ.τ{v}Y (0, d) = τ.

n−1
∑

i=0

∑

ei:Ei

ai(fi(d, ei)).τ{v} Y (0, gi(d, ei)) / bi(d, ei) . δ

Comparing with (7.4), we see that τ.τ{v}Y (0, d) and τ.Spec(d) are solutions of the

same equation, thus, by CL-RSP (see Section 7.1.2), they are equal. This equality,

together with the linearization (7.8) and the equivalence to the intermediate specifi-

cation (7.11), proves Theorem 7.5.

7.4 Complete distribution of requirements specifications

In this section, we show that using the results from the previous sections, and applying

simple algebraic properties, any requirements specification can be transformed to a

distributed implementation, built of components that communicate by synchronous

message passing (an overview of the transformation steps is given in Figure 7.1).

Each component consists of two parts: an application process, and an agent which

implements the local data space and takes care of the communication aspects. We

indicate how this result leads to a high degree of compositionality.

First, we show how the distributed architecture DSRW can be transformed to a

parallel composition of separate agents. In order to avoid dynamic agent replication,

we only deal with the case that the set of locations is finite and known in advance.

Therefore, we restrict the definition (7.1) of DSRW to the case where the index i of
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locations ranges over a finite set Loc ⊂ Nat – and obtain DSRWLoc:

DSRWLoc(K,L : List) =
∑

i:Loc

∑

v:D

Write(i, v) . DSRWLoc(K[i : +v], L)

+
∑

i:Loc

∑

v:D

Read(i, v) . DSRWLoc(K,L) / v ∈ Li . δ

+
∑

v:D

∑

i:Loc

∑

j:Loc

Send(i, v, j) . DSRWLoc(K,L[j : +v]) / v ∈ Ki \ Lj . δ

This process is equivalent to (even the linearized version of) a parallel composition

of processes representing applications and local databases (agents). We assume the

communication function send | SEND = Send.

DSRWLoc (K,L) = ∂{send,SEND}

(

n

i:Loc

Agent(i,Ki, Li)
)

(7.13)

Agent (i : Nat,A : Set,B : Set) =
∑

v:D

Write(i, v).Agent(i, A+ v,B)

+
∑

v:D

Read(i, v).Agent(i, A,B) / v ∈ B . δ

+
∑

v:D

∑

j:Nat

SEND(i, v, j).Agent(i, A,B) / v ∈ A . δ

+
∑

v:D

∑

j:Nat

send(j, v, i).Agent(i, A,B + v) / v /∈ B . δ

+
∑

v:D

Send(i, v, i).Agent(i, A,B + v) / v ∈ A \B . δ

Note that a Send(i, v, j) action of DSRWLoc is expressed as the communication of a

SEND(i, v, j)-action (agent i tries to send item v to agent j) with a send(i, v, j)-action

(agent j tries to receive a new item v from agent i). As processes cannot communicate

with themselves, a separate line is needed for the Send(i, v, i)-actions.

For readability, we adopt the following notations:

P = {R,W}

H = {Read ,Write, read ,write}

Let us consider a requirements specification expressible as an LPE Spec(d). We can

apply the translation scheme (Section 7.3) and get components X0 · · ·Xn, which sat-

isfy (Theorem 7.5)

τ.Spec(d) = τ.τP∂H
(

n

i:{0...n}

Xi(i) ‖ GSRW({(0, d)})
)

(7.14)
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From the proof of Theorem 7.3, it follows that for any lists K and L that satisfy

∀i.Li ⊆
⋃

K:

GSRW(
⋃

K) = τ{Send}(DSRW(K,L)

In particular, by instantiating Ki with {(0, d)}, for every i ∈ {0 · · ·n} and with ∅ for

every i > n:

GSRW({(0, d)}) = τ{Send}
(

DSRW([{(0, d)}, · · · , {(0, d)}], ε)
)

With this, (7.14) becomes

τ.Spec(d) = τ.τP∂H
(

n

i:{0...n}

Xi(i) ‖ τ{Send}(DSRW([{(0, d)}, · · · , {(0, d)}], ε))
)

and because the number of locations used is finite:

τ.Spec(d) =

τ.τP∂H
(

n

i:{0···n}

Xi(i) ‖ τ{Send}(DSRW{0···n}([{(0, d)}, · · · , {(0, d)}], ε))
)

.

Further, let us expand DSRW{0···n}, according to (7.13) :

τ.Spec(d) =

τ.τP∂H
(

n

i:{0···n}

Xi(i) ‖ τ{Send}∂{send,SEND}(
n

i:{0···n}

Agent(i, {(0, d)}, ∅))
)

(7.15)

In expression (7.15), we still see two layers, on the left the applications, and on the

right the agents implementing the data space architecture. Below we will reorganize

this expression, bringing together the processes and agents at the same location i. This

reshuffle is based on the associativity of the parallel composition, and the distributivity

of hiding (τI) and encapsulation (∂H) over parallel composition (‖). The latter is

only possible under certain restriction on action names. In [KS98], so-called alphabet

axioms are presented, that allow manipulation of expressions based on the alphabets

of the process involved. Here α(p) denotes the alphabet of process p (the set of

action names that occur in it) and α(p) | α(q) denotes the set of actions that may be

the result of a communication between an action in α(p) and an action in α(q). In
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particular, the axioms

CA1 (α(x) | (α(y) ∩H)) ⊆ H ∪ {δ} → ∂H(x ‖ y) = ∂H(x ‖ ∂H(y))

CA2 (α(x) | (α(y) ∩ I)) ⊆ {δ} → τI(x ‖ y) = τI(x ‖ τI(y))

CA3 α(x) ∩H = ∅ → ∂H(x) = x

CA4 α(x) ∩ I = ∅ → τI(x) = x

CA7 H ∩ I = ∅ → τI∂H(x) = ∂HτI(x)

allow moving process expressions inside and outside the encapsulation and the hiding

operators, subject to an independence condition. We can make the convention that

the external actions of the components Xi don’t contain any Send, send, or SEND

actions (otherwise, they should be renamed). Under this hypothesis, the Xi processes

can be pushed inside the ∂ and the τ . Therefore, (7.15) becomes n

τ.Spec(d) =

τ.τP∂Hτ{Send}∂{send,SEND}

(

n

i:{0···n}

(Xi(i) ‖ Agent(i, {(0, d)}, ∅))
)

or (commuting the τs and the ∂s)

τ.Spec(d) =

τ.τ{Send}∂{send,SEND}τP∂H
(

n

i:{0···n}

(Xi(i) ‖ Agent(i, {(0, d)}, ∅))
)

(7.16)

In the definition of Xi, all read and write primitives occurring have the first parameter

constant, namely i and the Read and Write from Agent(i,Ki, Li) also have the first

parameter constant: i. Thus, we could replace the read action by n + 1 actions

read0 · · · readn and view read(i, a) as read i(a). Similarly, write(i, a) can be seen as

writei(a), Read(i, a) as Read i(a) and Write(i, a) as Write i(a). In the next step, we

will apply the alphabet axioms, with read i, writei, etc. viewed as the action names

occurring in the alphabet of processes. In this way we can push τP∂H inside, in order

to obtain:

τ.Spec(d) =

τ.τ{Send}∂{send,SEND}

(

n

i:{0···n}

τP∂H(Xi(i) ‖ Agent(i, {(0, d)}, ∅))
)

(7.17)

This is a truly distributed implementation of Spec(d), built up by components con-

sisting of two clearly separated parts: the computation Xi and the coordination

Agent. The components communicate with each other by synchronous message pass-

ing (namely, by executing Send actions).
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Until now, the locations (i) were needed in order to avoid confusion between ap-

plications and the local data spaces. However, in equation (7.17), the binding of

an application to an agent is already uniquely specified by means of encapsulation.

Therefore, the next step could be to remove all references to locations. This boils down

to renaming read(i, v) to read(v), send(i, v, j) to send(v), etc. The
∑

i-operators be-

come superfluous as well.

Note that the renamed agents are exactly identical. At this point, we have arrived

at a truly compositional description of the system, in which (a number of) compo-

nents can be exchanged by (any number of) branching bisimilar components. This

compositionality forms the basis of transparent agent replication, or even application

replication. However, a detailed description is out of the scope of this chapter (but

see Section 7.6.1 on related work).

7.5 Full proofs

7.5.1 Full proofs of invariants

In the following, ? denotes any instance of data from D. We will need the function

active : States(X) −→ {0 · · ·n− 1},

active( 〈A,~l, ~m, ~d〉 ) = the x for which(mx, ?) ∈ A

Lemma 7.6 The following invariants hold for the implementation X:

1. (∀t) there is at most one pair (t, ?) ∈ A

2. ∃!i (0 ≤ i < n) s.t. (mi, ?) ∈ A (i.e. active is well defined), and mi = max
(t,d)∈A

t.

3. if x = active(〈A,~l, ~m, ~d〉) then ∀i ∈ {0 · · ·n − 1} s.t. i 6= (x − 1) mod n ,

m(i+1) mod n = mi + 1 and mx = m(x−1) mod n + 1− n.

(in other words: in each state we have an arithmetic progression mx < mx+1 <

· · · < mn < m1 < · · · < mx−1, with step 1)

4. ~l = ~0

or ∃i(0 ≤ i < n) : li = 1 and ∀j 6= i lj = 0

or ∃i(0 ≤ i < n) : li = 2 and ∀j 6= i lj = 0.

5. if li > 0 then active(〈A,~l, ~m, ~d〉) = i.

Proof: We first prove that these invariants hold for X’s initial state,

〈A0,~l0, ~m0, ~d0〉 = 〈{(0, d)},~0, (0, 1, · · · , n− 1),~0〉 :

1. immediate.
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2. i=0.

3. active(A0,~l0, ~m0, ~d0) = 0.

(∀i : 0 ≤ i ≤ n− 2) m0i+1 = m0i + 1 = (m0i + 1) mod n.

And m00 = 0 = (n− 1) + 1− n = m0n−1 + 1− n = m0(−1) mod n + 1− n.

4. l0 = ~0.

5. l0 = ~0.

Now, supposing that they hold for an arbitrary state 〈A,~l, ~m, ~d〉, we prove that they

are still true for any of X’s next states, let it be denoted by 〈A′,~l′, ~m′, ~d′〉. We have

to analyze the following possibilities (extracted from the description of process X):

− for some k, lk = 0 ∧ (mk, ?) ∈ A and a τ -step happens.

Then 〈A′,~l′, ~m′, ~d′〉 = 〈A, ~l[lk := 1], ~m, ~d[dk := y]〉.

In this case, (1),(2),(3) remain true because state components that occur in these

properties (database A and moments’ array ~m) haven’t changed.

(mk, ?) ∈ A
inv.(2)
Ã active(A,~l, ~m, ~d) = k Ã j 6= active(A,~l, ~m, ~d),∀j 6= k

inv.(5)
Ã lj =

0∀j 6= k. But lk = 0 too, so ~l = ~0, which means that ~l′ = (0 · · · 1 · · · 0), i.e. (4) is true.

The only index i for which l′i〉0 is k (l′k = 1). k = active(A′,~l′, ~m′, ~d′) (because A′ = A

and ~m′ = ~m), so (5) holds too.

− for some k, lk = 1 and a v action happens.

Then 〈A′,~l′, ~m′, ~d′〉 = 〈A ∪ {(mk + 1, d)}, ~l[lk := 0], ~m[mk := mk + n], ~d〉

1. We have to prove that the newly added pair (mk + 1, d) hasn’t disturbed this

property, i.e. there is no (mk + 1, ?) already in A. This is true, since mk + 1 >

mk
inv.(2)
= max

(t,d)∈A
t.

2. If n > 1, the unique i is (k + 1) mod n, because m′(k+1) mod n = mk + 1 (inv.

(3)) and (mk + 1, d) ∈ A′. Uniqueness is given by inv. (1).

If n = 1, the active process 0 remains active ((m0+1, d0) ∈ A
′ andm′0 = m0+1).

3. x′ = active(A′,~l′, ~m′, ~d′) = (k + 1) mod n. Notice that (x′ − 1) mod n = k.

For i ∈ {0 · · ·n − 1}, i 6= k, i 6= (k − 1) mod n, the property remains true, as

m′ = m for the values involved.

It remains to be shown that m′k = m′(k−1) mod n+1 and that m′x′ = m′k +1−n.

m′k = mk+n
inv.(3)
= (m(k−1) mod n+1−n)+n = m(k−1) mod n+1 = m′(k−1) mod n+

1

m′x′ = mx′
inv.(3)
= mk + 1 = (m′k − n) + 1.

4. l′i = li = 0,∀i 6= k and l′k = 0. So, ~l′ = ~0.

5. ~l′ = 0, by invariant (4).
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− for some k and some ek ∈ Ek, lk = 1 ∧ bk(dk, ek) and an ak action happens.

Then 〈A′,~l′, ~m′, ~d′〉 = 〈A,~l[ lk = 2 ], ~m, ~d[dk := gk(dk, ek)]〉.

(1),(2),(3) hold because the state components involved are not changed by this step.

lk = 1
inv.(4)
Ã li = 0 ∀i 6= k. So, since l′i = li = 0∀i 6= k and l′k = 2, (4) holds in the

current state too.

And, finally, (5) holds too, as the active index did not change (it’s still k).

− for some k, lk = 2 and a τ -action happens.

Then 〈A′,~l′, ~m′, ~d′〉 = 〈A ∪ {(mk + 1, dk)}, ~l[lk := 0], ~m[mk := mk + n], ~d〉.

All the invariants are shown to hold by a reasoning similar to the second case (“for

some k, lk = 1 and a v action happens”). Â

We proved (invariant 1) that for any “moment” t there is at most one data item d

such that (t, d) ∈ A. When this item exists, we will denote it by data(A, t). Note

that data(A,m
active( 〈A,~l,~m,~d〉 )) is defined for all reachable states in States(X).

Lemma 7.7 If li = 1 then data(A,mi) = di.

Proof: If li = 1 then the most recent step inX was a τ -step (a read from the database).

This could happen only if the guard was true: li = 0 ∧ (mi, y) ∈ A, for some y; by

definition, y = data(A,mi). The changes that occur in the state 〈A,~l, ~m, ~d〉 as a

result of this step are li := 1 and di := y. That is, di := data(A,mi). Â

7.5.2 Full proofs of the matching criteria

Lemma 7.8 For X, Y and h defined in the second step of the correctness proof (Sec-

tion 7.3.2), the following matching criteria hold:

1. (a) for all i, (∀y ∈ D) li = 0 ∧ (mi, y) ∈ A −→

h( 〈A,~l, ~m, ~d〉 ) = h( 〈A,~l[li := 1], ~m, ~d[di := y]〉 )

(b) for all i, li = 2 −→

h( 〈A,~l, ~m, ~d〉 ) = h( 〈A ∪ {(mi + 1, di)},~l[li := 0], ~m[mi := mi + n], ~d〉 )

(internal steps in X don’t change the mapped state in Y )

2. (a) for all i, li = 1 −→ c = i (v enabled in X:v enabled in Y )

(b) for all i, (∀ei : Ei) li = 1 ∧ bi(di, ei) −→

c = i ∧ bi(d, ei) (X can do ai(fi(?, ei)):Y can do ai(fi(?, ei)))

(soundness: in each state, for each external action, if X can do it then Y can

do it, too)
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The external actions that X can do are v (that can happen when li = 1) and

{ai(fi(d, ei))} (that are enabled when li = 1 ∧ bi(di, ei) is true).

3. FC (〈A,~l, ~m, ~d〉) : (∃i : 1 ≤ i ≤ n) s.t. li = 1 and lj = 0∀j 6= i,

that is s.t. ~l = (0, · · · , 0, 1, 0, · · · , 0).

(a) for all i, FC (〈A,~l, ~m, ~d〉) ∧ i = c −→ li = 1

(b) for all i, (∀ei : Ei)FC (〈A,~l, ~m, ~d〉) ∧ i = c ∧ bi(d, ei) −→ li = 1 ∧ bi(di, ei)

(completeness: X can do a step :X can do that step, too - eventually after a

number of internal steps)

4. for all i, (∀ei : Ei)bi(di, ei) −→ fi(di, ei) = fi(d, ei) (the data labels on the

visible actions coincide).

5. (a) li = 1 −→ h(〈A ∪ {mi + 1, di},~l[li := 0], ~m[mi := mi + n], ~d〉) = 〈(i +

1) mod n,d〉

(b) li = 1 ∧ bi(di, ei) −→ h(〈A,~l[li := 2], ~m, ~d[di := gi(di, ei)]〉) = 〈(i +

1) mod n, gi(d, ei)〉

(every visible action takes related states to related states, i.e. if the initial states

in X and Y are h-mapped, then the states after executing the action are also

h-mapped)

Proof:

1. Let 〈A,~l, ~m, ~d〉 be X’s state before the τ -step, (c,d) the state in Y mapped from

it, 〈A′,~l′, ~m′, ~d′〉 X’s state after the τ -step and (c′,d′) its h-mapped Y state.

We have to prove that (c,d) and (c′,d′) are equal.

(a) After the τ -step, x and mx are not changed (because A and ~m didn’t

change). The only different value is of lx, but this doesn’t affect h’s defi-

nition since lx := lx + 1 = 1 is still in {0, 1}.

So, 〈c′,d′〉 = 〈x,data(A′,m′x)〉 = 〈x,data(A,mx)〉 = 〈c,d〉.

(b) li = 2
inv.5,def. h
Ã 〈c,d〉 = 〈(i+ 1) mod n, di〉.

If n > 1 then i = x 6= (x − 1) mod n. Then from (inv.3) m(i+1) mod n =

mi + 1, thus active(〈A′,~l′, ~m′, ~d′〉) = (i + 1) mod n. In the new state,
~l = 0, which means that l(i+1) mod n = 0.

〈c′,d′〉
def. h
= 〈(i+ 1) mod n,data(A,m(i+1) mod n)〉

= 〈(i+ 1) mod n, di〉 = 〈c,d〉.

If n = 1 then i = x = (x+1) mod n, so 〈c,d〉 = 〈i, di〉. The active process
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(i = x = 1) remains active in the new state (inv.2). 〈c′,d′〉
l′i=0,def. h

=

〈i,data(A′,m′i)〉. m
′
i = mi + n, i.e. mi + 1 and in A′ there is (mi + 1, di)

Ã data(A′,m′i) = di Ã 〈c′,d′〉 = 〈i, di〉 = 〈c,d〉.

2. Let 〈A,~l, ~m, ~d〉 denote always the current state.

(a) li = 1
inv.5
Ã i = active(〈A,~l, ~m, ~d〉)

def. h
Ã c = i.

(b) True, because d = di from Lemma 7.7 and li = 1 −→ c = i was shown at

(2(a)).

3. (a) Let i0 be the i from FC (li0 = 1). Then, from Lemma 7.6(invariant 5)

and definition of h, c = i0. But c = i, also, so i = i0. This means that

li = li0 = 1.

(b) li = 1 is shown with the same reasoning as in 3(a). bi(di, ei) is true because

bi(d, ei) is true and d = di (Lemma 7.7).

4. The conditions bi(d, ei) are evaluated when li = 1. By Lemma 7.7 and definition

of h, we get d = di, so fi(di, ei) = fi(d, ei).

5. Again, we will denote 〈A,~l, ~m, ~d〉 and 〈A′,~l′, ~m′, ~d′〉 the states of X before and

after executing the discussed action. Similarly, 〈c,d〉 and 〈c′,d′〉 are the corre-

sponding states in Y .

(a) li = 1
Lemma 7.6(5),Lemma 7.7

Ã 〈c,d〉 = 〈i, di〉.

active(〈A′,~l′, ~m′, ~d′〉) = (i + 1) mod n, by a reasoning similar to 1(b).

Because l′(i+1) mod n = 0, we have c′ = (i + 1) mod n and d′ = di. But

according to Lemma 7.7, d = di. So, 〈c
′,d′〉 is indeed 〈(i+ 1) mod n,d〉.

(b) l′i = 2
Lemma 7.6(5)
Ã active(〈A′,~l′, ~m′, ~d′〉) = i

def. h,l′i=2
Ã 〈c′,d′〉 = 〈(i +

1) mod n, d′i〉 = 〈(i+ 1) mod n, gi(di, ei)〉. Â

7.6 Conclusions

We have studied the architecture GSRW, based on write and blocking, non-destructive

read primitives on a global set. By viewing the architecture as a separate component

defined by process algebra, we obtained a nice separation between the tasks of appli-

cation programming on the architecture, and the distributed implementation of the

architecture itself.

GSRW provides a conceptual global view to application programmers, making the

development and analysis of applications easier. Our first result shows that maintain-

ing the global view doesn’t lead to any overhead in the distributed implementation,

like locking protocols. For this, the limited set of coordination primitives is essential.
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Due to these restrictions, application processes just cannot observe that their local

set is not (yet) up-to-date. Our second result supports this architecture, by indicat-

ing that despite these restrictions, the architecture is sufficiently expressive from a

functional point of view.

Finally, non-functional requirements, like performance and fault tolerance might

lead to stronger coordination primitives, such as destructive or non-blocking read, as

in Linda. However, these don’t come for free. Either we have to give up the global

view, as shown in [BKZ99a, BKZ99b], or complicated protocols are needed in order

to guarantee global consistency, as the two-phase-commit protocol in JavaSpacestm.

The former compromises ease of application program construction and analysis, the

latter compromises run-time performance.

7.6.1 Related work

In [DL00] a more detailed description of Splice is given, at the level of agents commu-

nicating on an Ethernet network. However, an abstract specification of this fragment

is not given. Instead the model is validated by verifying that a number of scenarios

satisfy certain desired temporal logic properties. The description of Splice in [HP02b]

is also more detailed, as it includes a description of time stamps and details the

structure of the local databases. That study is devoted to transparent component

replication. Two approaches were investigated: a model checking approach applied

to a µCRL description in the same style as here, and a theorem proving approach

on a denotational semantics specified in PVS. The same specification style was also

applied in [PV02] on the different shared data space architecture JavaSpaces.

The distributed implementation that we give is at the same level of abstraction as in

[BHJ00, BKZ99a, BKZ99b]. This is sufficient to show that for read/write primitives

a global set is equivalent to a number of local sets. In [BKZ99a, BKZ99b] operational

semantics corresponding to these views are given, and it is proved that for each

program these views yield behaviorally equivalent semantics. Several other variants

were considered, based on e.g. multi-sets and stronger coordination primitives. A

semantics of JavaSpaces along the same lines is defined in [BGZ00b]. In [BHJ00]

denotational semantics are given for distributed and local versions, and it is proved

and formally checked by a proof checker, that both semantics yield the same write-

traces and end up in the same data space.

Although our realizability result resembles this work, the setting is quite different.

As we have the architecture as a separate component, we can prove that the global

architecture and its distributed implementation are behaviorally equivalent. There-

fore our result is language independent and immediately applies to the case where

components may use recursion and internal choice. This combination has not been

considered in [BHJ00, BKZ99a, BKZ99b]. The proof we give is simpler in our view,

as it mainly consists of checking some simple matching criteria, which are generated
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by a standard application of the cones-and-foci method.

In [BHJ00] an imperative language is used with as primitive read(x, q); P , which is

blocked until some value v satisfying query q exists which is then bound in P to x. We

obtain the same effect by the process
∑

x(read(x).P / q(x) . δ). Instead of the action

of writing or reading, those authors regard the arrival in the database observable,

which we have hidden by a τ{Send} in DSRW. It is interesting future research to see

how their semantics can be formally connected with ours.

Our expressiveness result should be contrasted with the result of [BGZ97], where

it is shown that additional primitives, like the test-for-absence, are needed to get

Turing completeness. There, components are restricted to finite state machines, and

the computation power entirely comes from the coordination primitives. We take a

system’s engineering view, by focusing on the question whether the read and write

primitives are sufficiently expressive for solving the coordination between (probably

infinite state) application programs. We also focus on the real task of the components:

implement the system’s external global behavior.

Our construction has similarities with transformations in [Lan92], where a re-

quirements specification is split in parallel parts communicating via message passing,

and [NP96], where an encoding of choice in the a-synchronous π-calculus is provided.

Both papers introduce internal loops to resolve external choices, similar to our trans-

lation. However, those papers are based on event-based coordination, whereas our

approach uses a persistent data approach. For this reason, we had to use increasing

sequence numbers, and couldn’t find a finite state solution.





8

Verification and Prototyping of Distributed

Dataspace Architectures

In this chapter, we focus on the problem of designing, verifying and prototyping dis-

tributed shared dataspace systems. Building correct distributed systems is a difficult

task. Typical required properties include transparent data distribution and fault-

tolerance (by application replication and data replication), which are usually ensured

at the price of giving up some performance. Many questions occur when deciding

on the exact shape of the distributed dataspace. For instance: what data should be

replicated (in order to increase efficiency or to prevent single points of failure)? should

the local storages be kept synchronized or should they be allowed to have different

views on the global space? should the migration of data between local storages be on

a subscription basis or rather on demand?

The space calculus, introduced in this chapter, is an experimental framework in

which verification and simulation techniques can be applied to the design of dis-

tributed systems that use a shared dataspace to coordinate their components.

We provide a tool that translates a space calculus specification into a µCRL speci-

fication. From this code a state space graph can be generated and analyzed by means

of the model checker CADP. A second tool generates distributed C code to simu-

late the system. System designers may use the automatic verification and simulation

possibilities provided by the µCRL toolset to verify properties of their architecture.

Complementary, the distributed C prototype can be used for testing purposes, and

to get an indication about the performance (e.g. number of messages, used band-

width, bottlenecks). Several design choices can be rapidly investigated in this way.

Ultimately, the prototype C implementation could even be used as a starting point

for building a production version.

The operational semantics of our space calculus provides the formal ground for
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algebraic reasoning on architectures. Despite its apparent simplicity, our calcu-

lus is highly expressive, capable of modeling various destructive/non destructive,

global/local primitives. By restricting the allowed space connectives and the allowed

coordination primitives, we obtain well known instances, such as the kernels of Splice

and JavaSpaces. Some specific features, like the transactions in JavaSpaces or dy-

namic publish/subscribe in Splice are out of our scope. Our goal is a uniform frame-

work where core characteristics of various dataspace architectures should be present,

in order to allow for studies and comparisons. The verification tool will help getting

fast insights in the replication and distribution behavior of certain architectures, for

instance. The simulation tool can help to identify the classes of applications appro-

priate to each architecture.

Related work An overview of shared dataspace coordination models is given in

[TRG02]. Some work that studies different semantics has been done in [BKZ99a,

BGZ00b, BZ01, BMMZ02], on which we based the style of our operational seman-

tics. [HP02a] proposes a compositional denotational semantics for Splice and proves it

equivalent to an operational semantics. [BZ01] compares the publish/subscribe with

the shared dataspace architectural style by giving a formal operational semantics to

each of them. We also aim at being able to compare the two paradigms, but we take

a more unifying perspective: we consider both as being particular instances of the

more general distributed dataspace model and express them in the same framework.

[CR90] was the first attempt to use a Unity-like logic to reason on a shared dataspace

coordination model (Swarm). [LAC00] has goals similar to ours. It provides a frame-

work for describing software architectures in the theorem prover PVS. However, it

seems that the verification of functional behavior is out of the scope of that chapter.

In [CMP98], a language for specification and reasoning (with TLA) about software

architectures based on hierarchical multiple spaces is presented. The focus there is on

the design of the coordination infrastructure, rather than on the behavior of systems

using it. In [HCS01], a translator from the design language VPL to distributed C++

code is presented. VPL specifications can be verified using the CWB-NC toolset.

Compared to that approach, our work is more specific. We concentrate on shared

dataspace architectures and define a “library” of carefully chosen primitives that are

both handy and expressive. In [DL00], scenario-based verification is introduced as a

useful technique in between verification and testing. Our language also supports that.

In Section 8.1, we present the syntax and semantics of the space calculus and we

comment its main characteristics. Then (Section 8.2) we introduce the supporting

tools. Section 8.3 contains two examples. We end with some concluding remarks

(Section 8.4).
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Figure 8.1: A distributed dataspace architecture

8.1 The space calculus

8.1.1 Informal view

We model the shared space as a graph with atomic spaces as nodes (see Figure 8.1).

We consider two types of links between spaces: eager and lazy. When elements are

written in a local space, they are asynchronously transferred over all eager links that

start in that local space. Eager links are represented in the graph by arcs going from

spaces where data is produced (written) to spaces where data should be transferred

to and can be used to model subscription and notification mechanisms. On the other

hand, the lazy links, represented in the figure by undirected edges, are demand driven.

Only when a data item is requested in some atomic space, it is transferred via a lazy

link from one of the neighboring spaces. Besides modeling the shared space, the space

calculus provides a set of coordination primitives for applications: write, blocking and

non-blocking read, local and global delete operations. Applications are loosely coupled

in the sense that they cannot directly address other applications.

With so many existing shared dataspace models, it is difficult to decide what fea-

tures are the most representative. Some choices that we are faced with are: atomic

spaces can be sets or multisets; when transferring data items between different spaces,

they could be replicated or moved; the primitives can be location-aware or location-

independent; the retrieve operation can be destructive or non-destructive, etc. The

answers depend of course on the specific application or on the purpose of the archi-

tecture. In order to allow the modeling of as many situations as possible, we let the

user make the distinction between data items that should be treated as information

(e.g. data from a sensor), for which multiplicity is not relevant, and data items that

should be treated as resource (e.g. numbers to be added, jobs to be executed), for

which multiplicity is essential. When handling elements, the space takes into account

their type. The transfer between spaces means copying for information items and

moving for resources. Similarly, the lookups requested by applications are destructive

for resources and non-destructive for information items.



120 8 Verification and Prototyping of Distributed Dataspace Architectures

The atomic spaces are multisets in which the elements tagged as information are

allowed to randomly increase their multiplicity. As for the question whether to give to

applications the possibility to directly address atomic spaces by using handles, like for

instance in [RW97], we have chosen not to, in order to keep the application layer and

the coordination layer as separated as possible. The advantage of a clear separation

is that the exact distribution of the space is transparent to the applications.

8.1.2 Syntax and semantics

As mentioned before, in our view a system description consists of a number of program

applications and a number of connected atomic spaces. We refer to the topology of

the distributed space by giving atomic spaces (abstract) locations, denoted by i, j . . . .

The data items come from a set D of values, ranged over by a, b . . . . Furthermore,

we assume a set of patterns Pat(D), which are properties that describe subsets of D .

We assume that the patterns describing singletons are the elements of D themselves,

for instance a describes the subset {a}. Thus, D ⊆ Pat(D). p,q,. . . denote patterns.

We also postulate two predicates on patterns: match : Pat(D) × D → {>,⊥} to

test if a given pattern matches a given value, and inf : Pat(D) → {>,⊥} to specify

whether a given pattern should be treated as information or as resource. The predicate

res : Pat(D) will be used as the complementary of inf.

A process ([P ]
i
) is a program expression P residing at a location i. A program

expression is a sequence of coordination primitives: write, read, read if exists, local

delete, global delete. These primitives are explained later in this section. Formal

parameters in programs are denoted by x,y,. . . , the empty program is denoted by ε,

and ⊥ denotes a special error value.

The lazy and eager behaviors of the connections are specified as special marks:

↓ip (meaning that atomic space i publishes data matching p), ↑ip (i subscribes to

data matching p), pji (i and j can reach each other’s elements). If ↓ip and ↑jq are

present, then all data matching p ∧ q written in the space i by an application will

be asynchronously forwarded to the space j. We say then that there is an eager link

from i to j. The presence of pji indicates that there is a (symmetric) lazy link from

space i to j. That is, all data items of i are visible for retrieve operations issued on

to j by an application.

For administrative reasons, the set of data items (a) is extended with buffered items

that have to be sent (!aj , a has to be sent to space j), pending request patterns (?p,

data matching pattern p were requested) and subscription policies (©k
p and ©k,t

p ).

Subscription policies are inspired by Splice and their function is to filter the data

coming into a space as consequence of a subscription. Based on keys and timestamps,

some of the data in the space will be replaced (overwritten) by the newly arrived

element. The parameters k, t are functions on data k : D → Keys , t : D → N that

describe how the keys and the timestamps are extracted from data items. If the newly
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arrived element a, matching p, meets the filter©k
p, then a will overwrite all data with

the key equal to that of a. If it meets the filter ©k,t
p , it will overwrite the data with

the key equal to that of a and timestamp not fresher than that of a. With this second

filter, it is also possible that the arrival of a is ignored if its timestamp is too old. A

configuration (C) then consists of a number of atomic dataspaces and applications,

each bound to a location, and a number of links. The parallel composition operator

|| is associative and commutative.

Conf ::= Data | Proc | Link | Conf || Conf

Data ::= 〈D〉i, where D is a finite set over data

Proc ::= [P ]
i

Link ::= pji | ↑ip | ↓ip
data ::= a | !aj | ?p | ©k

p | ©
k,t
p

P ::= ε | prim.P

prim ::= write(a) | read(p, x) | read∃(p, x) | ldel(p) | gdel(p)

The operational semantics of the space calculus is defined by means of a transition

relation on configurations, which is defined inductively in Figure 8.2. Note that

the operational semantics rules don’t explicitly reflect the dual information/resource

structure of the systems. This unitary appearance is possible due to a few operators

on data, the definition of which (Figure 8.3) encapsulates this distinction. D, B are

multisets, − and + denote the usual difference and union of multisets and d is a data

element (a or !aj or ?p or ©k
p or ©k,t

p ). We will use the notation inf(d) to express

the value of the predicate inf for the pattern occurring in d. That is, inf(!aj) = inf(a)

and inf(?p) = inf(©k
p) = inf(©k,t

p ) = inf(p). The same holds for res.

We now explain the intuitive semantics of the coordination primitives:

write(a): write data item a into the local dataspace, to be automatically forwarded

to all subscribed spaces. a is added to the local dataspace (W1) and an auxiliary

w(i, a) step is introduced. When pushing w(i, a) to the top level, if amatches a pattern

published by i, then !aj items are introduced for all subscriptions ↑jp matching a

(rules W2, W3). At top level, the auxiliary w(i, a)-step gets promoted to a write(a)-

step (W4). Finally, the a items are sent to the subscribed spaces asynchronously

(W5). The operator ] in the right-hand side of rule (W5) states that the freshly

received data item should be added to the local database taking into account the

local subscription policies.

read(p, x): blocking test for presence, in the local space and its lazy linked neigh-

boring spaces, of some item a matching p; x will be bound to a. This results in

generating a ?p request, keeping the application blocked (Rτ). If a matching a has

been found, it is returned and the application is unblocked (R). Meanwhile, the lazy

linked neighbors of the local space asynchronously respond to the request ?p, if they
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(W1) 〈D〉i || [write(a).P ]i
w(i,a,[a])
−→ 〈D〉i || [P ]i

(W2)
C || 〈D〉i

w(i,a,B)
−→ C′ || 〈D〉i

C || 〈D〉i || ↓ip || ↑
j
q
w(i,a,B ¢ !aj)
−→ C′ || 〈D〉i || ↓ip || ↑

j
q

match(p, a) ∧match(q, a)

(W3)
C

w(i,a,B)
−→ C′

C || X
w(i,a,B)
−→ C′ || X

X ∈ {pkj , [P ]j , 〈D〉j , ↓jq , ↑
l
p }, p : ¬match(p, a)∨ ↓ip /∈ C

(W4)
C

w(i,a,B)
−→ C′

C
w(i,a,B ¢ a)
−→ C′

(W5)
〈D〉i || C

w(i,a,B)
−→ 〈D〉i || C′

〈D〉i || C
write(a)
−→ 〈D ⊕B〉i || C′

(W6) 〈D + [!aj ]〉
i
|| 〈D′〉j

τ
−→ 〈D〉i || 〈D′ ] a〉j

(Rτ) 〈D〉i || [read(p, x).P ]i
τ
−→ 〈D + [?p]〉i || [read(p, x).P ]i ?p /∈ D

(R) 〈D + [?p]〉i || [read(p, x).P ]i
read(p,a)
−→ 〈D − [?p]ª a〉i || [P [x := a]]i

a ∈ D ∧match(p, a)

(R∃1) 〈D〉i || [read∃(p, x).P ]i
read∃(p,a)
−→ 〈D ª a〉i || [P [x := a]]i

a ∈ D ∧match(p, a)

(R∃2) 〈D〉i || [read∃(p, x).P ]i
read∃(p,⊥)
−→ 〈D〉i || [P [x := ⊥]]i

@a ∈ D match(p, a)

(LD) 〈D〉i || [ldel(p).P ]i
ldel(p)
−→ 〈D − [a ∈ D | match(p, a)]〉i || [P ]i

(GD1) [gdel(p).P ]i || ||j 〈Dj〉
j gdel(p)
−→ [P ]i || ||j 〈Dj − [a ∈ Dj | match(p, a)]〉j

(GD2)
C

gdel(p)
−→ C′

C || X
gdel(p)
−→ C′ || X

X 6= 〈D〉i

(TAU) 〈D + [?p]〉i ||pji || 〈D
′〉j

τ
−→ 〈D − [?p]⊕ a〉i ||pji || 〈D

′ ª a〉j

a ∈ D′ ∧match(p, a)

(act)
C

act
−→ C′

C || C′′
act
−→ C′ || C′′

act 6∈ {gdel(p),write(a), w(i, a)}

Figure 8.2: Operational semantics of the space calculus

have an item matching p (TAU).

read∃(p, x): non-blocking test for presence in the local space. If some item a

matching p exists in the local space, it is bound to x; otherwise a special error value

⊥ is returned. Delivers a matching a from the local space, if it exists (R∃1). Otherwise

an error value is returned (R∃2).

ldel(p): atomically removes all elements matching p from the local space (LD).

gdel(p): this is the global remove primitive. It atomically deletes all items matching

p, in all atomic spaces. Note that due to its global synchronous nature, gdel can not
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D ]
p
a = D + [ a ]

D ]
p,k

a = D − [ b ∈ D | k(b) = k(a) ] + [ a ]

D ]
p,k,t

a = D − [ b ∈ D | k(b) = k(a) ] + [ a ]

if @b ∈ D k(b) = k(a) ∧ t(b) > t(a)
D otherwise

D ]
d
d = D − [ b ∈ D | b = d] + [ d ]

D ⊕ d =

{

D ]
d
d if inf(d)

D + [d] if res(d)
D ª a =

{

D if inf(a)
D − [a] if res(a)

D ⊕ [ d1 · · · dn ] = D ⊕ d1 ⊕ · · · ⊕ dn B ¢ d =

{

B ]
d
d if inf(d)

[ d ] if res(d)

D ] a =















D ]
p,k

a if ©k
p ∈ D ∧match(p, a)

D ]
p,k,t

a if ©k,t
p ∈ D ∧match(p, a)

D ⊕ a if @©k
p ,©

k,t
p ∈ D s.t. match(p, a)

Figure 8.3: Auxiliary operators on multisets.

be lifted over atomic spaces (GD2). Finally, the general parallel rule (act) defines

parallelism by interleaving, except for write and gdel which have their own parallel

rules to ensure synchronization.

8.1.3 Modeling some dataspace paradigms

The kernels of some well known dataspace paradigms can be obtained by restricting

the allowed configurations and primitives.

Splice [Boa93] implements a publish-subscribe paradigm. It has a loose semantics,

reflecting the unstable nature of a distributed network. Applications announce them-

selves as publishers or subscribers of data sorts. Publishers may write data items to

their local agents, which are automatically forwarded to the interested subscribers.

Typically, the Splice primitives are optimized for real-time performance, and don’t

guarantee global consistency. The space calculus fragment without lazy links and

restricted to the coordination primitives write, read , ldel corresponds to the reliable

kernel of Splice. Network searches (modeled by the lazy links) and global deletion

(gdel) are typically absent. In Splice, data sorts have keys, and data elements with

the same key may overwrite each other – namely at the subscriber’s location, the fresh

data overwrites the old one. The order is given by implicit timestamps that elements

get in the moment when they are published. The overwriting is expressible in our

calculus, by using the eager links with subscribe policies. Splice’s timestamps mech-

anism is not present, but some timestamping behavior can be mimicked by explicitly
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Atomic (id:Nat, D:TupleSet, Req: TupleSet,

ToSend: NatTupleSet, todel:Tuple,

LL: NatSet, PL: TupleSet, SL: SubscriptionList) =

% W

sum(v:Tuple,

W(v). sum(NewToSend: NatTupleSet,

sum(NewD: TupleSet,

getToSend(v, ToSend, NewToSend, D, NewD).

Atomic(id, NewD, Req, NewToSend,

todel, LL, PL, SL)))

<| and(isData(v), match(v, PL)) |> delta)

+ sum(v:Tuple,

W(v).

Atomic(id, a(v,D), Req, ToSend, todel, LL, PL, SL)

<| and(isData(v), not(match(v,PL)))|> delta )

% async send

+ sum(x:Nat, sum(y:Tuple,

el_send(x,y).

Atomic(id, D, Req, r(x,y,ToSend), todel, LL, PL, SL)

<| in(x,y,ToSend) |> delta ))

% async receive

+ sum(x:Tuple,

el_recv(id,x).

Atomic(id, add(x,D,SL), Req, ToSend, todel, LL, PL, SL))

...

Figure 8.4: Fragment from a µCRL specification of an atomic space

writing and modifying an extra field in the tuples that models the data.

JavaSpaces [FHA99] on the contrary can be viewed as a global dataspace. It typi-

cally has a centralized implementation, and provides a strongly consistent view to the

applications, that can write, read, and take elements from the shared dataspace. The

space calculus fragment restricted to a single atomic space to which all coordination

primitives are attached, and with the primitives write, read , read∃ forms a fragment

of JavaSpaces. Transactions and leasing are not dealt with in our model. Note that

with the mechanism of marking the data as being information or resource, we get

the behavior of both destructive and non-destructive JavaSpaces lookup primitives:

our read , read∃ works, when used for information, like read and readIfExists from

JavaSpaces, and like take and takeIfExists when called for resources.

So, interesting parts of different shared dataspace models are expressible in this
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framework.

8.2 The verification and prototyping tools

We defined a mapping from every configuration in the operational semantics to a

process in the µCRL specification language. An incomplete description of this map-

ping is given later in this section. The generation of the µCRL specification following

this mapping is automated. Therefore, the µCRL toolset can be immediately used

to simulate the behavior of a configuration. This toolset is connected to the CADP

model checker, so that temporal properties on systems in the space calculus can be

automatically verified by model checking. Typical verified properties are deadlock

freeness, soundness, weak completeness, equivalence of different specifications.

The state of a µCRL system is the parallel composition of a number of processes.

A process is, as explained in Section 6.3, built from atomic actions by sequential

composition (.), choice (+,
∑

), conditionals (·/ · .·) and recursive definitions. For our

purpose, we introduce processes for each atomic space and for each application. An

additional process, called the TokenManager, has to ensure that operations requiring

global synchronization (gdel) don’t block each other, thus don’t introduce deadlocks.

Before initiating a global delete operation, a space has to first request and get the

token from the manager. When it has finished, it has to return the token to the

manager, therefore allowing other spaces to execute their gdels. A second additional

process, SubscriptionsManager, manages the list (multiset) of current subscriptions.

When an item a is written to an atomic space, that space synchronizes with the

SubscriptionsManager in order to get the list of the other atomic spaces where the

new item should be replicated or moved.

For simplicity, we model the data items as tuples of natural numbers – fields are

modeled by the µCRL datasort Nat, tuples by Tuple.

An atomic space has two interfaces: one to the application processes, and one to

the other atomic spaces. In µCRL calls between processes are modeled as synchro-

nization between atomic actions. The primitives of the space calculus correspond to

the following atomic actions of Atomic:

{W, R, RE, Ldel, Togdel, Gdel}.

The interface to the other atomic processes is used to send/receive data items and

patterns for read requests. In Figure 8.4, the µCRL specification of a space’s write

behavior is shown.

The application programs are also mapped to µCRL processes. Execution of co-

ordination primitives is modeled by atomic actions, that synchronize with the corre-

sponding local space’s pair actions. This synchronization with the space is described

by a communication function.
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EXTCOMMAND means [E][X][T ][a− zA− Z]+
INTID means [i][a− zA− Z0− 9]?

ID means [a− zA− Z][a− zA− Z0− 9]? (that is not INTID)
INT means [0− 9]+

configuration : settings declarations
settings :

| setting settings
setting : nfields = INT

| upbound = INT
| res pattern

declarations :
| space declarations
| link declarations
| application declarations

space : space ID ( ID )
| space ID

link : LL ( ID , ID )
| ID − > pattern
| ID < − pattern | ID < − pattern intlist
| ID < − pattern intlist INT

pattern : < tuple >
tuple : datum

| tuple , datum
datum : * | INT | INTID
intlist : INT | intlist , INT
intexpression : INT | INTID | projection

| intexpression + intexpression
projection : pattern / INTID | ID / INTID

Figure 8.5: The YACC style syntax definition

Another tool translates space calculus specifications to a distributed implemen-

tation in C that uses MPI for process communication. Different machines can be

specified for different locations, thus getting a real distribution of spaces and appli-

cations. By instrumenting this code, relevant performance measures for a particular

system under design can be computed. The result of the translation is more than

a software simulation. It is actually a prototype, that can be tested in real-time

conditions, in a distributed environment.
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application : app ID @ ID { program }
program :

| command ; program
command : write pattern

| write ID
| read pattern ID
| readE pattern ID
| ID := pattern
| INTID := intexpression
| ldel pattern
| gdel pattern
| publish pattern
| subscribe pattern |subscribe pattern intlist
| subscribe pattern intlist INT
| if condition { program }
| while condition { program }
| EXTCOMMAND

condition : ID | not(ID) | true | false

Figure 8.6: The YACC style syntax definition - continued

8.2.1 The space calculus tool language

In order to make the space calculus usable as specification language, the tools sup-

porting it work with a concrete syntax. The data universe considered is tuples of

naturals and the patterns are incomplete tuples (e.g. <1,*,2>,<*>). Apart from the

syntactical constructions already defined, we allow external actions (e.g. EXTping),

assignment of data variables, assignment of tuple variables and if and while with stan-

dard semantics. Now we give a brief description of this language, including a precise

syntax written in a slightly simplified YACC format.

Since we allow exactly one space per location, it is nice to give names to spaces and

to say, instead of saying that a program stays at location i, that the program runs at

the space <name>. A specification of a configuration consists of:

- (optional) fixing the tuple size (nfields) and the first natural value strictly greater

than any field of any tuple (upbound). The default values are nfields=1, upbound=2.

- (optional) define the inf/res predicates, by mentioning the patterns for which

res should be > . Any pattern p not included by the res declaration has inf(p) = >.

- describing the spaces, by giving each space a name and, optionally, the machine

where it’s supposed to live. The default machine is “localhost”.

- describing the applications, by specifying for each application its name, the name

of the space with which it shares the location (the physical location as well) and its

program.
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nfields = 1

upbound = 2

res <*>

space JS (mik.sen.cwi.nl)

app Ping@JS {

write <1>;

EXTping;

read <0> x;

write <1>;

EXTping;

read <0> x;

}

app Pong@JS {

read <1> x;

write <0>;

EXTpong;

read <1> x;

write <0>;

EXTpong;

}

nfields = 1

upbound = 2

res <*>

space JS (mik.sen.cwi.nl)

space JSbis (boeg.sen.cwi.nl)

JS -> <*>

JS <- <*>

JSbis -> <*>

JSbis <- <*>

app Ping@JS {

write <1>;

EXTping;

read <0> x;

write <1>;

EXTping;

read <0> x;

}

app Pong@JSbis {

read <1> x;

write <0>;

EXTpong;

read <1> x;

write <0>;

EXTpong;

}

Figure 8.7: A Ping-Pong application on one JavaSpace (left) and on two (right)

Apart from the primitives read, readE, write, ldel, gdel, the actual language in-

cludes some extra constructions to provide easy data manipulation and control pos-

sibilities: natural variable names and expressions, projection of a tuple on a field,

assignments, if, while, external actions that can be specified as strings.

The condition of if and while is very simple: a standard boolean value or a variable

name that gets tested for correctness. Namely, “if x” means “if x is not error”.

Extending the conditions is further work.

The key and timestamp functions needed in the subscription policies are considered

to be projections on the fields of the tuples – one field for the timestamp, possibly

more for the key. Therefore, key functions are represented as lists of field indexes and

timestamps functions as one field index.



8.3 Examples 129

nfields = 3

upbound = 3

space A1

space A2

space A3

A1 -> <1,*,*>

A2 -> <2,*,*>

A2 <- <1,*,*> 1 3

A3 <- <2,*,*> 1 3

app Producer@A1 {

itsp := 0; EXTin;

write <1,0,itsp>;

itsp := itsp + 1;

write <1,1,itsp>;

}

app Transformer@A2 {

while (true) {

read <1,*,*> x;

ivx := x/2+1;

itx := x/3;

write <2,ivx,itx>;

};

}

app Consumer@A3 {

while (true) {

read <2,*,*> x;

EXTout;

};

}

nfields = 3

upbound = 3

space A1

space A2

space A3

space A4

A1 -> <1,*,*>

A2 -> <2,*,*>

A2 <- <1,*,*> 1 3

A3 <- <2,*,*> 1 3

A4 -> <2,*,*>

A4 <- <1,*,*> 1 3

app Producer@A1 {

itsp := 0; EXTin;

write <1,0,itsp>;

itsp := itsp + 1;

write <1,1,itsp>;

}

app Transformer@A2 {

while (true) {

read <1,*,*> x;

ivx := x/2+1;

itx := x/3;

write <2,ivx,itx>;

};

}

app Transformer@A4 {

while (true) {

read <1,*,*> x;

ivx := x/2+1;

itx := x/3;

write <2,ivx,itx>;

};

}

app Consumer@A3 {

while (true) {

read <2,*,*> x;

EXTout;

};

}

Figure 8.8: The Producer/Consumer/Transformer application with one (left) and two
(right) transformers
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8.3 Examples

We use the new language to specify two small existing applications, studied in [PV02]

and [HP02b], respectively. The goal of these examples is to show that our language

is very simple to use and to illustrate the typical kind of problems that space cal-

culus is meant for: transparent distribution of data and transparent replication of

applications.

8.3.1 Towards distributed JavaSpaces

One of the initial motivations of our work was to model a distributed implementation

of JavaSpaces, still providing the same strongly consistent view to the applications.

When restricting the primitives as discussed in Section 8.1.3, the expression 〈∅〉0

represents the kernel of JavaSpaces and the expression 〈∅〉0 || 〈∅〉1 || ↓0? || ↑
0
? || ↓

1
? || ↑

1
?

models a distributed implementation of it, consisting of two spaces eagerly linked by

subscriptions matching any item.

Two rounds of the Ping-Pong game [FHA99, PV02] can be written in the space

calculus as follows:

Ping = write(1).read(0, x).write(1).read(0, x)

Pong = read(1, x).write(0).read(1, x).write(0)

(with D = {0, 1} and inf(x) = ⊥,∀x). We wish that the distribution of the space

should be completely transparent to the applications, i.e. that they run on one space

exactly the same that they run on two:

[Ping]0 || [Pong]0 || 〈∅〉0 = [Ping]0 || [Pong]1 || 〈∅〉0 || 〈∅〉1 || ↓0? || ↑
0
? || ↓

1
? || ↑

1
?

We have checked this equivalence by writing the two specifications of the Ping-Pong

game (with a single, respectively replicated space) in the tool syntax (Figure 8.8(a)),

generating the two state spaces and using the model checker provided by the CADP

toolset to verify that they satisfy the safety equivalence relation (defined in Sec-

tion 2.3).

8.3.2 Transparent replication of some Splice applications

Some of the most interesting problems in a system with components are associated

with replication: which components can be replicated and at what costs? We claim

that the space calculus is a good framework for studying this type of questions. In

the sequel we give an example of how our space calculus can be used to rapidly check

transparent replication of some applications on Splice.

Consider a simple Splice system, composed of three applications: a Producer that

writes data to the Splice network, based on observations that it makes on the envi-
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ronment; a Transformer that reads the data, applies some transformations on it and

writes it back; and a Consumer that reads the transformed data items and uses it

further, for instance by displaying it on a screen. The producer and the consumer

are the components that interact with the environment, while the transformer works

“under water”. Therefore it is reasonable to ask whether it is possible to replicate

the transformer without affecting the (external) behavior of the system.

This producer-transformer-consumer example illustrates a specific pattern in Splice

systems. The transparent replication of the middle component was extensively studied

in [HP02b], using both µCRL and PVS. We show how to model the problem in space

calculus (Figure 8.8(b)), for the specific instance when two data items are produced,

with values 0 and 1. The itsp variable models the local clock. The two specifications

have been proved safety equivalent by the CADP model checker.

8.4 Conclusions

This chapter presents our ideas on a unifying framework for the design and analysis

of various distributed dataspace systems. We introduced the space calculus, in which

basic concepts of some dataspace paradigms can be modeled. A formal syntax and

operational semantics provides a rigorous basis to this calculus.

We aim at two goals: comparing the various paradigms with respect to their meta-

properties and facilitating the analysis of individual systems based on heterogeneous

shared dataspace architectures.

For the first goal, we view a particular dataspace paradigm as a fragment of the

space calculus and we address questions like: does a fragment admit transparent

replication of data/processes, what are the costs of a distributed implementation,

what are the typical applications for a certain fragment. An answer to the last

question would facilitate early architectural design decisions. Some of these questions

have been answered for Splice already [DJ00, HP02b, OP02].

The second goal is supported by automatic translations to µCRL and to C. The

µCRL specifications can be used as an input to a model checker, thus formally es-

tablishing the functional correctness of a system. The approach follows a previous

successful attempt for JavaSpaces [PV02]. The distributed C simulator can be used

to find performance bottlenecks in the high-level architecture. These could be solved

by transforming the space calculus expression to a functionally equivalent one with a

better performance.
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Directions for Future Research

In these last pages we briefly comment and speculate on possible interesting directions

of future work.

Distributed verification

Parallel algorithms for computing strong bisimulation equivalence exist in the liter-

ature, based both on the Kanellakis-Smolka and Paige-Tarjan approach [JKOK98,

RL98]. They are designed for shared memory machines (PRAM, Parallel Random

Access Machines), but it seems they are easily mapped to distributed memory ma-

chines, with at most a logarithmic factor of slow down [Lei92]. Therefore, it would

be interesting to see how they work on virtual shared memory; we expect that the

latency of the shared memory simulation would seriously affect their performance.

There are many ways to improve our collection of distributed reduction tools. First

and most important is the development of (distributed) signature refinement algo-

rithms for minimization modulo other equivalences, like weak bisimulation and safety

equivalence. Prototype implementations and preliminary correctness proofs already

exist.

We have argued, and verified in practice, that the two proposed algorithms for

strong bisimulation reduction (Chapter 3) complement each other: the naive approach

functions better on work-intensive iterations, while the optimized version is better on

iterations where few changes are performed. Therefore, a hybrid algorithm, that

could switch between the algorithms as dictated by the current situation, is also an

interesting topic of further research.

Recent developments suggest that our optimized algorithm can reach a theoretical

time complexity of O (N logN). To obtain this in practice, a complete redesign of

the implementation, based on carefully chosen data structures, will be necessary.
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Another potential improvement regards the branching bisimulation tool. By in-

tegrating the distributed τ -cycle elimination algorithm (Chapter 5) as preprocessing

phase, the branching bisimulation reduction tool in Chapter 4 could visibly benefit.

Finally, more clever ways to distribute the state space, possibly dynamically, remain

to be found. One of the ideas is exploiting the information about the structure of the

state space that can be obtained through abstract interpretation [OPV04].

Building a distributed model checker in the style of XTL [MG98] also comprises a

nice continuation of the work presented in this thesis. This would be the last piece

to a complete distributed model checking solution for the µCRL toolset.

Verified distribution

In Chapter 7 we studied the simplest possible shared dataspace coordination model.

We proved that any requirements specification has a “maximal” distributed imple-

mentation on this model, in the sense that every single step is executed on another

location. A challenging future research direction is to investigate distribution imple-

mentations based on other criteria. We could look for “efficient” implementations,

i.e. schemes that would minimize the number of communication steps (i.e. interac-

tions with the database), or schemes that place all actions of a certain type on the

same location, etc. To this end, it might be necessary to add new primitives to the

current GSRW model or to consider weaker equivalences between specification and

implementation. Another interesting possibility is to settle our conjecture that the

compositionality obtained in section 7.4 is the basis of transparent agent and appli-

cation replication.

The space calculus tool language (Chapter 8) is, at present, not sufficiently expres-

sive. In order to be practically useful, it should be embedded in a well developed

modeling language, that would allow the specification of realistic applications on top

of the distributed space. More examples and case studies will provide further sup-

port and feedback on the proposed framework. An extension that would bring the

space calculus closer to modeling real-life examples is allowing dynamic creation of

spaces and applications and dynamic change of the link structure. The investigation

of meta-properties for (fragments) of the space calculus and of behaviour-preserving

transformation rules is an entreprise in its own.
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Summary

This thesis consists of two parts that have in common the themes of distribution and

verification.

Part I considers the question of whether automatic verification can be distributed in

order to make possible the use of the processing power and memory of a network of

computers instead of just one computer.

We investigate this in the specific case of verification by enumerative model check-

ing. To verify a system, its state space, a concrete representation of the system’s

behavior, is automatically generated. Then, the state space is reduced modulo an

equivalence that preserves all relevant properties, and inspected in order to validate

desired properties or to find counterexamples. The only but serious drawback of this

approach is the familiar state space explosion problem: the size of the state space

grows much faster than the complexity of the system represented. A recent approach

to this problem, that we also pursue, is building parallel and distributed tools. They

allow larger state spaces to be handled and thus increase the applicability of formal

verification techniques to real life industrial systems.

We are particularly interested in the problem of reducing state spaces modulo be-

havioral equivalences. Very good sequential solutions for this already exist in the

literature, as well as some adaptations to the parallel shared memory setting. We

propose in Chapters 3 and 4 new distributed memory algorithms for state space

reduction modulo strong and branching bisimulation equivalence. They use commu-

nication by message passing, where, unlike in the case of shared memory, latency

plays an essential role. The three algorithms presented draw their main inspiration

from the sequential ones of Kanellakis and Smolka [KS83]. We prove their correctness

and show by experiments with prototype distributed implementations that both the

run times and memory usage scale up with the number of machines used. This means

that larger state spaces can now be generated and reduced using cheap clusters of

workstations. Most of the time, the reduced state space is small enough to further

allow model checking by sequential tools.
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Further, we approach the well known problem of decomposing a graph into its

strongly connected components (Chapter 5). Since solving an arbitrary graph problem

can usually be translated into solving the same problem for the graph’s strongly

connected components, the decomposition algorithms are applicable in all domains

where graphs are used. We are studying it having in mind its application in verification

(LTL/CTL model checking and branching bisimulation equivalence reduction). Our

distributed message passing solution is based on a series of heuristics that work best for

the special type of graphs representing state spaces. The prototype implementation

shows promising results, though it has not yet been integrated with the tool for

branching bisimulation reduction, nor has it actually been used in model checking.

Part II of the thesis addresses the question whether formal verification methods can

be of help in understanding and designing distributed software architectures. We in-

vestigate this for the specific case of software architectures that use a shared dataspace

to coordinate their distributed components.

We demonstrate the use of powerful process algebraic techniques in modeling and

analysis of a simple shared dataspace software architecture with write and blocking

non-destructive read as its only primitives (Chapter 7). Process algebra allows the

description of the shared dataspace as a separate process, and thus a natural sepa-

ration between the computation and coordination layers is achieved. We show that,

due essentially to the nondestructive character of the read primitive, the dataspace

can be implemented in a fully distributed manner, while keeping the global uniform

view. Despite the restricted set of primitives, this simple architecture is functionally

very expressive: any system requirements specification can be implemented on it.

Due to their simplicity and symmetric treatment of components, shared dataspace

coordination architectures have been intensively studied and many variants have been

implemented (Linda, Bonita, WCL, TSpaces, JavaSpaces). The implementations

range from one central server (like JavaSpaces), to which all components address

requests, to a full distribution, where every component has its own local copy of

the repository (like Splice). From the verification point of view, it is interesting

to understand how the different implementations affect the functionality and the

performance of such a system. We investigate this in in Chapter 8, where we take

a unifying view and build a design framework that allows modeling and verification

of shared dataspace systems with various sets of primitives and various degrees of

distribution. The framework consists of a small specification language and tools that

support verification and prototyping. Verification is done by translation to the more

general specification language µCRL and prototyping is done by a transformation

into distributed C programs.



Samenvatting

Over gedistribueerde verificatie en geverifieerde distributie

Dit proefschrift bestaat uit twee delen die de thema’s distributie en verificatie ge-

meenschappelijk hebben.

Deel I gaat over de vraag of automatische verificatie gedistribueerd kan worden, zodat

het mogelijk wordt om de rekenkracht en het geheugen van een heel netwerk van

computers in te zetten bij het verifiëren van een systeem.

We onderzoeken dit in het specifieke geval van verificatie door middel van enume-

rative model checking. Daarbij wordt, ten behoeve van de verificatie van een systeem,

eerst zijn hele toestandsruimte, een representatie van het systeemgedrag, gegenereerd.

Vervolgens wordt deze toestandsruimte gereduceerd modulo een gedragsequivalentie

die alle relevante eigenschappen bewaart. En tenslotte wordt de gereduceerde toe-

standsruimte gëınspecteerd om de gewenste eigenschappen te valideren, danwel te-

genvoorbeelden te vinden. Het enige, maar belangrijke nadeel aan deze aanpak is de

combinatorische explosie van de toestandsruimte: de omvang van de toestandsruimte

groeit veel sneller dan de complexiteit van het gerepresenteerde systeem. Een recente

manier om toch complexere systemen aan te kunnen, is door parallelle en gedistri-

bueerde tools te bouwen. Deze maken het mogelijk om grotere toestandsruimten te

bewerken en te verifiëren, en vergroten zo de toepasbaarheid van formele verificatie-

technieken in realistische industriële systemen.

We zijn met name gëınteresseerd in het probleem van het reduceren van toestands-

ruimten modulo gedragsequivalenties. Daarvoor zijn in de literatuur zeer goede se-

quentiële oplossingen bekend, en ook enkele aanpassingen die geschikt zijn voor een pa-

rallel shared memory systeem. Wij presenteren in de hoofdstukken 3 en 4 zogenaamde

distributed memory algoritmen voor de reductie van toestandsruimten modulo sterke

en branching bisimulatie equivalentie. Ze maken gebruik van communicatie door mid-

del van message passing, en daardoor speelt latency een essentiële rol (latency speelt

nauwelijks een rol in een shared memory systeem). De drie gepresenteerde algoritmen

zijn gëınspireerd op de sequentiële versies van Kanellakis en Smolka [KS83]. We be-
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wijzen hun correctheid en laten, aan de hand van experimenten met prototypes van

gedistribueerde implementaties, zien dat zowel de looptijd als het geheugengebruik

proportioneel toenemen met het aantal gebruikte machines. Dat betekent dat grotere

toestandsruimten kunnen worden gegenereerd en gereduceerd door gebruik te maken

van goedkope clusters van werkstations. Meestal is de gereduceerde toestandsruimte

klein genoeg voor model checking met sequentiële tools.

Verder behandelen we een aanpak van het bekende probleem van het decompone-

ren van een graaf in zijn strongly connected components (Hoofdstuk 5). Omdat het

oplossen van een graafprobleem veelal kan worden gereduceerd naar het oplossen van

het probleem voor zijn strongly connected components, hebben decompositie algo-

ritmen toepassingen in alle gebieden waar grafen worden gebruikt. We bestuderen

het probleem met in gedachten de toepassing in verificatie (LTL/CTL model chec-

king en branching bisimulatie equivalentie reductie). Onze gedistribueerde message

passing oplossing is gebaseerd op een reeks van heuristieken die zijn toegesneden op

de speciale soort van grafen die toestandsruimten zijn. De prototype implementa-

tie is veelbelovend, alhoewel zij nog niet is gëıntegreerd met de tool voor branching

bisimulatie reductie, noch daadwerkelijk is gebruikt in model checking.

Deel II gaat over de vraag of formele verificatiemethoden behulpzaam kunnen zijn bij

het begrijpen en ontwerpen van gedistribueerde software architecturen. We onderzoe-

ken dit met name voor software architecturen die een zogenaamde shared dataspace

gebruiken om hun gedistribueerde componenten te coördineren.

We demonstreren het gebruik van krachtige procesalgebräısche technieken bij het

modelleren en analyseren van een simpele shared dataspace software architectuur met

write en blocking non-destructive read als enige constructies (Hoofdstuk 7). Procesal-

gebra maakt het mogelijk om de shared dataspace als een apart proces te beschrijven,

waardoor een natuurlijke scheiding van de berekenings- en coördinatielagen wordt be-

reikt. We laten zien dat, door het nondestructieve karakter van de read constructie,

de shared dataspace volledig kan worden gedistribueerd, terwijl deze vanuit de com-

ponenten bezien globaal en uniform blijft. Ondanks het kleine aantal constructies

is deze simpele architectuur functioneel zeer expressief: elke systeemspecificatie kan

erop worden gëımplementeerd.

Vanwege hun eenvoud en symmetrische behandeling van componenten, zijn shared

dataspace coördinatiearchitecturen uitgebreid bestudeerd en zijn er vele varianten

gëımplementeerd (Linda, Bonita, WCL, TSpaces, JavaSpaces). De implementaties

variëren van een enkele centrale server waaraan alle componenten verzoeken sturen

(zoals in JavaSpaces), tot een volledig gedistribueerde implementatie, waarbij elke

component zijn eigen lokale kopie van de dataspace heeft (zoals in Splice). Vanuit

het oogpunt van verificatie is het interessant om te begrijpen hoe de verschillende

implementaties de functionaliteit en performance van zo’n systeem bëınvloeden. We

onderzoeken dit in Hoofdstuk 8, waar we een unificerende kijk op de zaak presente-
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ren en een ontwerpomgeving opzetten die het mogelijk maakt om shared dataspace

systemen met verschillende collecties van constructies en verschillende graden van dis-

tributie te modelleren en te verifiëren. Onze ontwerpomgeving bestaat uit een kleine

specificatietaal en tools die de verificatie en het maken van prototypes ondersteunen.

Verificatie gebeurt via een vertaling naar de meer algemene specificatietaal µCRL en

prototypes worden gemaakt door te vertalen naar gedistribueerde C programma’s.
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