
TASK-BASED USER INTERFACEDESIGN

Martijn van Welie

SIKS Dissertation Series No. 2001-6.

The research reported in this thesis has been carried out under the auspices of SIKS,
the Dutch Graduate School for Information and Knowledge Systems.

Promotiecommissie:
prof.dr. J.C. van Vliet (promotor)
dr. G.C. van der Veer (co-promotor)
dr. A. Eliëns (co-promotor)
dr. F. Paterǹo (CNUCE Italy, referent)
prof.dr. M. Rauterberg (IPO & Technische Universiteit Eindhoven)
prof.dr. J.M. Akkermans (Vrije Universiteit Amsterdam)
prof.dr. B. Wielinga (University of Amsterdam)

Copyright c© 2001 by Martijn van Welie.

VRIJE UNIVERSITEIT

TASK-BASED USER INTERFACEDESIGN

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. T. Sminia,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen\Wiskunde en Informatica

op dinsdag 17 april 2001 om 13.45 uur
in het hoofdgebouw van de universiteit,

De Boelelaan 1105

door

Martijn van Welie

geboren te Lisse

Promotor: prof.dr. J.C. van Vliet

Copromotoren: dr. G.C. van der Veer
dr. A. Eliëns

Preface

This thesis could not have been written without the help and inspiration of many people
around me. At the Vrije Universiteit, I was in an interesting environment with many
different ideas. I want to thank Gerrit van der Veer, Anton Eliëns and Hans van Vliet for
their enthusiasm and how they enriched my research by showing me their perspectives.
Thanks to Gerrit for introducing me to the “world of Human Computer Interaction”. I
very much enjoyed our collaboration where we had different approaches to a common
interest. Thanks to Anton for “convincing” me to do a Ph.D. in the first place and for
showing me the use of several interesting techniques during the development of my
tool EUTERPE.

I also want to thank many other people who supported me throughout the last years. A
big part of that was due to Bastiaan Schönhage, by being a friend and roommate for
many years. We sure had a lot of fun in between the “serious” work. It was very good
to have someone like him to discuss “raw” ideas and to keep me from “overdoing” it.
During the last months, we were both writing our dissertation which definitely helped
me to keep up the spirit and finish it in time.

In addition, thanks to my direct colleagues Nico Lassing, Jacco van Ossenbruggen,
Frank Niessink and Jaap Gordijn. During a working day, it is also important to relax
and have pointless discussions, for example during lunch when Arno Bakker and Gerco
Ballintijn used to join us.

Thanks to Hallvard Trætteberg for his work on the patterns. During the development
of the patterns he was my best reviewer and contributor. Without his help I would not
have developed them so fast. Joerka Deen also proved to be a good discussion partner,
always emphasizing the more “philosophical” side of patterns.

And of course, many thanks to my parents, my sister and Merche for all their support
and love during these years.

Contents

1 Introduction 1

1.1 The Task-based Design Process. 2

1.1.1 Analyzing the current task situation (Task model 1). 3

1.1.2 Envisioning the future task situation (Task model 2). 4

1.1.3 Detailed design. 4

1.1.4 Evaluation and usability testing. 4

1.2 Research Goals. 5

1.2.1 Improving the design process. 5

1.2.2 Improving the final product. 5

1.3 Research Approach. 6

1.4 Outline of this Thesis. 7

1.5 Publications. 8

2 Designing for Usability 9

2.1 Introduction. 9

2.2 Potential Benefits of Usability. 10

2.3 Understanding Usability. 11

2.3.1 Understanding humans. 11

2.3.2 Understanding the work. 12

2.3.3 Understanding the interaction. 13

2.4 Definitions of Usability. 14

2.5 Heuristics, Guidelines and Principles. 16

2.6 A Layered Model of Usability . 18

2.7 Usability and Software Quality. 20

2.8 Usability Evaluation and Improvement. 21

viii Contents

2.8.1 Measuring usability. 22

2.8.2 Improving usability. 24

2.8.3 Usability process improvement. 24

2.9 Usability and Design Methods. 25

2.9.1 Modeling humans and work. 25

2.9.2 Modeling the system. 26

2.10 Summary . 27

3 An Ontology for Task Models 29

3.1 Introduction. 29

3.2 A Short History of Task Analysis. 30

3.3 Methods and techniques. 31

3.3.1 Hierarchical Task Analysis (HTA). 31

3.3.2 Goals Operators Methods Selectors (GOMS). 31

3.3.3 Méthode Analytique de Description des tâches (MAD) 34

3.3.4 Groupware Task Analysis. 35

3.4 An Ontology for Task World Models. 37

3.4.1 Modeling work structure. 37

3.4.2 Modeling the work flow . 39

3.4.3 Modeling work artifacts . 40

3.4.4 Modeling the work environment. 40

3.4.5 Defining an ontology. 42

3.5 Related Work. 45

3.6 Summary . 46

4 Task Modeling and Analysis 47

4.1 Introduction. 47

4.2 Representations for Task Modeling. 48

4.2.1 Common representations. 48

4.2.2 A collection of ontology-based representations. 55

4.3 Static versus Dynamic Representations. 62

4.4 Analyzing the Task World . 63

4.4.1 Heuristic model-based evaluation. 64

4.4.2 Model verification . 65

Contents ix

4.4.3 Comparing two specifications. 67

4.4.4 Model validation. 68

4.5 Summary . 68

5 Detailed Design 71

5.1 Introduction. 71

5.2 The Gap between Analysis and Design. 72

5.3 Guidelines for Bridging the Gap. 72

5.4 Designing the User’s Virtual Machine. 74

5.4.1 Designing the functionality. 75

5.4.2 Designing the dialog. 76

5.4.3 Designing the presentation. 77

5.5 Cognitive aspects in UVM Design. 78

5.6 Specifying the User Interface. 79

5.6.1 Informal methods for detailed design. 79

5.6.2 Formal specification techniques. 81

5.7 NUAN: New User Action Notation. 83

5.7.1 Adding an interface pre-state column. 84

5.7.2 A modified interface feedback column. 85

5.7.3 Expanding time capabilities. 85

5.7.4 Mental actions. 85

5.7.5 Generic interaction diagrams. 86

5.7.6 Parallellism. 86

5.8 Evaluating Design Alternatives. 86

5.8.1 Scenarios, guidelines, and patterns. 87

5.8.2 Prototype evaluation tools. 88

5.8.3 Formal usability evaluation of the user interface. 89

5.9 Summary . 92

6 Interaction Patterns in User Interface Design 93

6.1 Introduction. 93

6.2 Guidelines or Patterns?. 94

6.3 An Example. 95

6.4 Patterns as Design Tools. 96

x Contents

6.4.1 Defining a pattern. 97

6.4.2 Anti-patterns. 97

6.4.3 Types of patterns. 97

6.5 Interaction Design Patterns. 98

6.5.1 Taking the user perspective. 99

6.5.2 Categorizing user problems. 100

6.5.3 A focus on usability . 101

6.5.4 A template for interaction patterns. 102

6.6 Towards a Pattern Language. 105

6.6.1 Structuring a pattern collection. 106

6.6.2 Developing a pattern language. 107

6.7 Summary .108

7 Tools for Task-based Design 109

7.1 Introduction. 109

7.2 User Interface Design Tools. 110

7.3 Supporting Task-based Design. 110

7.3.1 Support throughout the process. 111

7.3.2 Integrated modeling and modeling Purposes. 111

7.4 An Overview of Current Task Analysis Tools. 112

7.4.1 Commercially available tools. 113

7.4.2 Research tools. 116

7.5 Requirements for Task Analysis Tools. 123

7.5.1 Base the tool directly on a conceptual framework. 124

7.5.2 Offer consistent and coherent representations. 124

7.5.3 Support cooperative task analysis. 124

7.5.4 Support documentation including multimedia. 124

7.5.5 Support design tracking. 125

7.5.6 Offer stability, robustness and product support. 125

7.6 Discussion. .125

7.7 Summary .126

Contents xi

8 EUTERPE, a design workbench 127

8.1 Introduction. 127

8.2 The Project’s Context. 128

8.3 An Ontology-based Tool. 129

8.4 Supporting Task-based Design. 130

8.4.1 Supporting task modeling. 131

8.4.2 Supporting model analysis. 132

8.4.3 Supporting cooperative design. 134

8.4.4 Supporting documentation. 134

8.4.5 Supporting dialog modeling. 136

8.5 Extending EUTERPE . 137

8.5.1 Adding support for design space analysis. 137

8.5.2 Adding support for simulation. 138

8.6 EUTERPEin Use . 139

8.7 Implementation of Euterpe - a logic approach. 140

8.7.1 A model-view-controller architecture. 141

8.7.2 Embedding a Prolog engine. 142

8.7.3 Mapping the ontology to Object Prolog. 144

8.7.4 Prolog and application functions. 146

8.8 Lessons Learned. 146

8.9 Summary .147

9 Task-based Design in Practice 149

9.1 Introduction. 149

9.2 Applications in Industry . 149

9.2.1 Dutch social security. 150

9.2.2 Seibersdorf. 151

9.3 Application Issues of Task-based Design. 154

9.3.1 Performing task analysis. 154

9.3.2 Integration with current design practice. 156

9.3.3 Designing for usability. 157

9.3.4 Developing design alternatives. 158

9.4 Limitations and Critical Success factors. 159

9.5 Summary .160

xii Contents

10 Conclusions and Future Research 163

10.1 Summary of the Thesis. 163

10.2 Contributions . 165

10.3 Future Research. 166

A NUAN symbol definitions 169

B Interaction Design Patterns 173

Bibliography 187

Samenvatting 197

Index 203

Chapter 1

Introduction

Every day many people get frustrated with systems that do not adequately support
them in their work. Often the software is of high internal quality, but when the system
does not match the users’ tasks and needs, internal software quality becomes almost
irrelevant (Bevan 1999). Users will try to avoid using such systems if they can or may
even reject using them at all. Real users havereal problems trying to doreal work.
Many books such as (Cooper 1999, Norman 1999) are dedicated to describing and
analyzing the problems users are nowadays facing when they use interactive systems.
Although understanding these problems is very important, they often constitute a ”post-
mortem” analysis that does not contribute to improvements of the design processes.

The usage problems so often encountered in practice are not only caused by a lack of
good design methods. It is simply true that marketing issues and business practices
play an important role as inhibitors of delivering usable systems. Perhaps even the
end-users are to blame; e.g. who ever asks to see the remote control before buying a
TV set? This thesis takes the position that user interface designers should try to deliver
usable products, despite the presence of all those inhibiting forces.

As a consequence, user interface design should mature as a discipline that can deliver
usable systems under those restricting circumstances. To do so, we need efficient and
effective design methods complete with the appropriate techniques and tools that allow
us to systematically deliver usable systems. When designing for usability, the focus
should be on usability throughout the process and should not be added in the final
stages of product development. Therefore, user interface design needs to become more
engineering rather than a pure creative or artistic process, focusing on quality in use
instead of artistic qualities.

Many methods rely solely on usability testing to guard the usability of the system. Us-
ability testing is very valuable but ”trying to get it right the first time” should not be
thought of as an illusion. Although incremental development can be very effective,
iteration is often done because there is a lack of effective techniques. The more tradi-
tional engineering disciplines use proven techniques and knowledge to get it right more

2 Introduction

or less thefirst time. There is only room for minor adjustments during the construc-
tion process. User interface design often relies too much on trial-and-error techniques.
The methods and techniques for user interface design need to be improved in order to
systematically develop better systems. Better methods and techniques can improve the
quality of the initial design and less iterations will be needed to get the details right.

This thesis describes”Task-based User Interface Design”(TB-UID)1. It is a design
method that covers the important aspects from task analysis to prototype evaluation.
The main idea behind the method is that a firm understanding of the users’ tasks is
the proper basis for interactive systems development. With a systematic process of
building systems to support users in their tasks, a higher level of usable and useful
systems can be achieved by both expert and novice designers.

Task-based design is not the only existing method for designing interactive systems.
However, most methods cover only specific aspects or activities in the design process.
The method presented in this thesis builds on existing techniques, but it also adds sev-
eral original insights, tools and techniques. In the next sections, the task-based design
process is outlined briefly. All activities in the design process will be discussed in the
following chapters. Additionally the main research goals are discussed, followed by an
outline of the thesis.

1.1 The Task-based Design Process

Over the past years we have taken useful bits of theories and combined them with our
own techniques to form a coherent practical method for designing complex interactive
systems, called DUTCH2. The method has been used successfully in both industry
and education proving the practical value of the method. From our experiences, we
learned that for a practical method it is required to a) define a clear process, b) define
the models and representations including their semantics and c) support the method
and models with tools. In the next chapters these requirements will be discussed in
detail. Our design process is task based, which means that it uses the tasks of users
as a driving force in the design process. The goal is to design both usable and useful
systems. We think it is important to base the design on the work that has to be done
by the users. Therefore, the users play an important role in acquiring knowledge about
their work as well as for usability testing.

Our process consists of four main activities: (a) analyzing a ”current” task situation, (b)
envisioning a future task situation for which information technology is to be designed,
and (c) specifying the information technology to be designed. In parallel to these ac-
tivities, (d) evaluation activities make the process cyclic. Figure1.1gives an overview
of the whole design process with all activities and sources of information. In the next
chapters, the four main activities will be described in detail.

The design process starts by an extensive task analysis using our method Groupware
Task Analysis (GTA). We distinguish two task models. The first task model we make

1Throughout this thesis the phrase ”task-based design” is also used as a synonym.
2Designing for Users and Tasks from Concepts to Handles

The Task-based Design Process 3

work
organization/
practice

Client

users’
knowledge/
behavior/needs

Technology

Task Model 1

Task Model 2

Scenario

Simulation

Prototype

Functionality

Dialog

Representation

Implementation

usability
measuring

ethnography

psychological
knowledge
acquisition/
hermeneutics

problem
analysis/
specification

specification/
negotiation

constraints/
opportunities

feedback

specification

early evaluation

early
evaluation

UVM

maintaining
consistency

Documents/
artifacts

validity analysis

Design
Space

design rationale

Figure 1.1: The DUTCH Design Process

is adescriptivetask model which is used for analyzing the current task situation. The
second task model is aprescriptivetask model for the system to be designed.

1.1.1 Analyzing the current task situation (Task model 1)

In many cases the design of a new system is triggered by an existing task situation.
Either the current way of performing tasks is not considered optimal, or the availability
of new technology is expected to allow improvement over current methods. A system-
atic analysis of the current situation may help formulate design requirements, and at
the same time may later on allow evaluation of the design. Whenever it is possible to
study the ”current” task situation, a thorough analysis is very valuable for the design
of a new system. We use a combination of classical HCI techniques such as structured
interviews (Sebillotte 1988) and CSCW techniques such as ethnographic studies and
interaction analysis (Jordan 1996). The current situation is described by task model 1,
also referred to as the ”current task model”.

4 Introduction

1.1.2 Envisioning the future task situation (Task model 2)

Many design methods in HCI that start with task modeling are structured in a number
of phases. After describing a current situation (task model 1) the method requires a
re-design of the task structure in order to include technological solutions for problems
and technological answers to requirements. Johnson et al. (1988) provide an example
of a systematic approach where a second task model is explicitly defined in the course
of design decisions. Task model 2, the future task model, will in general be formulated
and structured in the same way as the previous model, but in this case it is not con-
sidered a descriptive model of users’ knowledge but a prescriptive model of the future
task world. Task model 2 describes the task situation as it should be when the system
has been developed and is used.

1.1.3 Detailed design

After the task modeling activity, the actual system needs to be designed and speci-
fied. Task model 2 describes the envisioned task world where the new system will
be situated. From there, the details of the technology and the basic tasks that involve
interaction with the system need to be worked out. This activity consists of three sub-
activities that are strongly interrelated: specifying the functionality, structuring the di-
alog between the users and the system, and specifying the way the system is presented
to the user. This activity is focused on a detailed description of the system as far as it
is of direct relevance to the end-user. We use the term User Virtual Machine (UVM)
(Tauber 1988) to indicate the total of user relevant knowledge of the technology, in-
cluding both semantics (what the system offers the user for task delegation) and syntax
(how task delegation to the system has to be expressed by the user). When making
the transition from task model 2 to a detailed design of the UVM, the users’ tasks and
the objects determine the first sketch of the application. The task or object structure is
used to create the main displays and navigational structure. From there on, the iterative
refinement process takes off together with the use of explicit design knowledge such as
guidelines and patterns.

1.1.4 Evaluation and usability testing

During the entire process, some kind of evaluation activity can take place. As soon as
an initial task model is available it can already be evaluated using scenarios and use
cases. Later on when some initial sketches for the new system are known, mockups
and prototypes can be used for early evaluation of design concepts. Each evaluation
activity can cause another iteration. For instance, a task model may turn out to be in-
complete after a mockup is evaluated in a critical scenario. In that case, the designers
need to go back to the task model and rethink their model. When some parts of the
design are worked out in detail, we can begin usability testing with a prototype and
users. Early evaluation can be done by inspecting design specifications or by perform-
ing walkthrough sessions with designers and/or users.

Research Goals 5

1.2 Research Goals

The research goals addressed in this thesis are all concerned with the improvement of
both the design process as well as the final product being designed. Nowadays, many
systems are not usable enough and the question is how to develop usable systems in
practice.

1.2.1 Improving the design process

Many design methods exist but only few of them try to address the entire design pro-
cess. In task-based user interface design, we try to cover the entire process from early
analysis to prototyping. Effective and practical methods are needed in practice and
task-based design is intended to meet that need. The industry’s context can be charac-
terized by limitations in the available resources such as time, money, people, and skills.
These limitations should be taken into account when designing. The main process goals
this dissertation addresses are:

• Improving the available techniques for both task analysis and design.Although
task analysis is an old topic, the techniques have not been developed far enough
to be of sufficient value.

• Reducing the effort of performing a detailed task analysis.Partly because of
poor techniques, performing an effective task analysis takes too much effort.
This often leads to rejection of the entire activity.

• Improving effective use of task analysis results in the design of the actual product.
Most task analysis methods are weak on the topic of how the results lead to
new or improved systems. Consequently, task models often do not contain the
knowledge that is needed in the later stages of design.

In this thesis, we try to address these issues by first analyzing task modeling on the
conceptual level followed by the development of suitable representation techniques.
Those representation techniques are based on the conceptual model for tasks and are
supported by tools. Tools can reduce the effort to build and analyze task models. Con-
sequently, task models will be of higher quality and require less effort to build.

1.2.2 Improving the final product

Although a structured analysis method can improve the final product by dictating the
necessary activities, it is still not a guarantee for high quality products. Most methods
are focussing on analysis activities or specification techniques while the actual design
activities remain largelycreativeand ad hoc. The main problem in ensuring quality of
the final product is to use the analysis results effectively in combination withexplicit
design knowledge. Incorporating design knowledge into the design process makes
detailed design less prone to ad hoc design and increases at least the minimum quality
of the product. The main research goals in designing for usability are:

6 Introduction

• Providing a better understanding of what usability is. Usability is a poorly un-
derstood quality concept. Although most designers have an idea what it is con-
ceptually, the concept remains fuzzy and hard to measure.

• Allowing re-use of successful solutions in design.Besides the use of guidelines,
almost no re-use is done in interaction design. Design knowledge and the use of
it is highly designer dependent. This gives design an ad-hoc character combined
with a trial-and-error mentality.

In this thesis we address these issues first by providing a new framework for the usabil-
ity concept. A better understanding of usability can facilitate measurements and com-
parisons hopefully leading to a more objective notion of quality in use of the system.
Additionally, interaction design patterns are presented as a new way of documenting
explicit design knowledge. Patterns describe solutions in a particular context and allow
for re-use of successful solutions.

1.3 Research Approach

At the start of the project the main structure of the DUTCH design method was al-
ready developed. However, the theory, the tools and the techniques were in need of
improvements. During the project the idea to develop tool support for the method has
been a driving force. Effective tool support requires clear conceptual ideas about the
necessary models and representations. A large part of the research has focused on de-
veloping task analysis to a point were tool support could actually be built. To do that,
it was necessary to define a detailed meta level model of what needs to be described in
task models. The task world ontology we developed is such a meta model. The task
world ontology has been formalized and can be used in tool development. Our tool
EUTERPE provides an operationalization of the ontology by offering ontology based
representations.

The results of task analysis are to be used in the detailed design phase. This gives a
different perspective on what kind of information task models need to contain. Trying
to bridge the gap from analysis to design led to questions regarding the concept of
usability. One of the important insights is that quality of the design is related to both
task knowledge and design knowledge. This led to a refinement of the existing ideas
on usability and the development of interaction design patterns.

An important question regarding the research methodology is how to determine the
quality of our method. Since it is almost impossible to conduct a controlled experi-
ment to compare design methods, we have adopted a more pragmatic approach. By
continuously applying the method whenever we were able to do so, we tried out new
ideas and assessed the value of the used techniques. The methods and techniques as
described in this thesis show the result of this approach.

In the period the work for this thesis was conducted, one new method was published
that has similar goals and activities i.e.Contextual Design(Beyer & Holtzblatt 1998).

Outline of this Thesis 7

Although they both share the main goals and ideas there are many differences. Where
appropriate the differences are discussed in the relevant chapters.

1.4 Outline of this Thesis

The structure of this thesis loosely follows the activities that comprise the DUTCH

design method. Before we discuss the first activity, chapter2 discusses the usability
concept in detail. For user interface design, high quality products are products with
high levels of usability. This chapter explains what it is and how it is related to the
users and their tasks. It gives a frame of reference on what quality in use is and it will
be used in other chapters whenever quality aspects are discussed.

The first step in most design methods is an analysis of the current context of use of the
product. In task-based design this is called task analysis. Chapter3 investigates what
the important aspects of the task world are and puts them into a basic structure called
the task world ontology. It forms the basis of how we look at the tasks and goals that
need to be supported by the system that is to be designed.

The task world ontology gives designers structure and is intended to link the important
concepts from a theoretical perspective. In practice, designers also need techniques to
describe or document all these aspects. Chapter4 discusses representation and anal-
ysis techniques that designers can use in practice. These techniques are based on the
ontology and form an implicit use of the ontology in practice. For producing these
representations quickly, a modeling tool called EUTERPEhas been developed which is
discussed in chapter8.

When the analysis has been more or less completed, the detailed design activities need
to start. Creating detailed design solutions is done on the basis of the analysis results
and the available design expertise. It uses the analysis results as input and produces a
concrete design as output. Chapter5 discusses the transformation of analysis results
and highlights some of the common techniques that can be used. One of those tech-
niques, New User Action Notation (NUAN), is an extension we developed to improve
one of the existing techniques.

All of the techniques for describing the detailed design lack the explicit input of proven
design knowledge. In chapter6, interaction design patterns are introduced as a possible
way to include explicit design knowledge into the design process. Design patterns
capture proven design knowledge and provide means to define a link between user
tasks and suitable design solutions. Some example patterns are included in appendix
B.

In practice, time is always limited. Software tools are necessary for reducing the time
needed to develop specifications throughout the design process. Chapter7 discusses
the state of the art in tools that can be used in task based design. Based on the overview
of tools, several requirements are set for future tools.

EUTERPE is a tool developed to meet those requirements. It is directly based on the
task world ontology and supports designers in creating representations and performing

8 Introduction

semi-automatic analysis of task models. In chapter8, the functionality is discussed
together with an overview of the technical aspects of building an ontology based tool.

Although we have described a method for designing user interfaces that should be
useful in practice, several issues are still present when the method is applied in practice.
Chapter9 gives an overview of the issues encountered when the method is (partly)
applied. They give an informal validation of the method as well as a direction for
further improvements.

In chapter10 the main conclusions are presented together with suggestions for future
research.

1.5 Publications

The chapters of this dissertation are largely based on previous published work. This
section lists the publications this dissertation is based on.

Chapter2 is based on a paper published at theInteract 99 conference(van Welie et al.
1999a).

The task world ontology and most of Chapter3 has been published atDesign Specifi-
cation Verification of Information Systems 98 (DSV-IS)(van Welie et al. 1998a).

Chapter4 is based on two papers published at theEuropean Conference on Cognitive
Ergonomics(van Welie et al. 1998b, van Welie, van der Veer & Koster 2000).

Chapter5 contains work published atDSV-IS99(van Welie et al. 1999b) and theCode-
signing Conference 2000(van Welie & van der Veer 2000).

The theory about patterns and the patterns themselves can be found in chapter6 and
appendixB. They have been published inTools for Working with Guidelines 2000(van
Welie, van der Veer & Elïens 2000) and at thePattern Languages of Programming
conference (van Welie & Trætteberg 2000).

Chapter8 contains portions from publications atDesigning Interactive Systems 2000
(van der Veer & van Welie 2000), and ECCE 9 (van Welie et al. 1998b).

Two papers published atEuropean Conference on Cognitive Science Approaches to
Process Control(van der Veer et al. 1997, van Loo et al. 1999) describe work that is
used in Chapter9 and4.

Chapter 2

Designing for Usability

2.1 Introduction

From a designer’s point of view, the main goal in design is to design a highly usable
and useful system (Hartson 1998). We design for people and the systems we develop
need to be usable by them. The last decade has shown a trend towards systematic
development of systems with a high degree of usability. Users are now recognized as
important participants in the design process, for their knowledge about their work and
sometimes even for active participation in designing a new system. Human centered
design methods all share the thought that systems should be developed around the
people that are going to use them.

These methods are based on the assumption that systems that are developed from a
humanandwork perspective, will have a higher degree of usability. When comparing
different methods on their ability to ”deliver” usable systems, the usability of the final
system is the main measure. Hence, it needs to be clear what usability is, how it can
be determined and preferably how usability is influenced by certain design choices. In
this chapter, we take a detailed look at the concept of usability.

Literature on user interface design frequently uses the term usability. Several defini-
tions exist, some show a high degree of similarity but others may seem very different.
In addition, several guidelines, standards, heuristics and checklists have been produced
that all claim to deal with usability. Although it is not really a problem if each of these
”lists” is designed for slightly different purposes (assessments/ improvement/ standard-
ization), they do need to share a common view on the concept of usability. For design-
ers that have to deal with these ”lists” the question arises whether one list is ”better”
than another and when to use which list. Over the years, frequent usage of the term
usability has cluttered the concept. Therefore, in this chapter we look into the different
views on usability and we give a framework for dealing with these various views on
usability.

10 Designing for Usability

2.2 Potential Benefits of Usability

Although user interface designers may see a high degree of usability as a main design
goal, others may not. For systems where the amount of work that should be done
by users is crucial, designing for usability is a fairly natural goal. For other systems,
commercial or financial goals may be regarded far more important resulting in less
attention for the usability goals. For example, the Dutch Railways introduced ticket
vending machines as a way to reduce the personnel costs for the ticket counters. The
machines were a success. Less personnel was needed although at the cost of a lower
service to their customers. The machines had several usability problems causing longer
waiting times and they were also unusable for several kinds of user groups (elderly
people and non-Dutch speakers).

Usability is strongly of interest to the end users but it is also of interest to other stake-
holders. A high degree of usability could bring several potential benefits (Karat 1994).
These include:

• Increased Efficiency. Systems are often introduced to get more work done in less
time. When the system is not usable the user will waste time struggling with the
interface, making them less efficient in their work.

• Increased Productivity. A usable interface allows users to concentrate on the
work rather than the tools they use.

• Reduced Errors/Increased Safety. A significant portion of the errors humans
make can be related to poor design. In some cases, these errors may cause dan-
gerous situations for both humans and the environment.

• Reduced Training. When a system closely matches the tasks humans have to
perform and care has been taken concerning memorability, the need for extensive
training is reduced. Hence, the time and costs are reduced.

• Reduced Support. A usable product may cause less problems for users and hence
the need for product support is reduced.

• Improved Acceptance. When users like the system because it is very usable, they
are more likely to accept and use it.

• Savings in Development Costs. Making changes early in the design life cycle is
much cheaper than making changes late in the life cycle.

• Increased Sales. A system can have a competitive edge over other systems be-
cause of its usability.

Estimating how much is gained when designing for usability is hard to quantify, but the
benefits have been shown to have a considerable impact in practice (Bias & Mayhew
1994). Some attempts have been made to create models that predict the gains in terms
of costs (Mayhew & Mantei 1994). These benefits are not necessarily benefits for

Understanding Usability 11

all stakeholders of the system. Stakeholders may have different roles such as end-
user, designer, software developer, project manager, or client. For some stakeholders
certain benefits may actually turn out to be disadvantages. For example, companies
whose core business is product support and training may see a decrease in demand
for their services. Other companies may want to release a new version every year
for commercial reasons, adding new needed functionality which requires additional
training. The role of a user interface designer is to make the functionality of the system
available to the users in a usable way. Other stakeholders may have different roles and
consequently other interests.

This conflict in goals is normal and needs to be recognized by designers as well as
the other stakeholders. It is the designers’ task to guard and promote usability aspects
despite the less than ideal circumstances. Unfortunately, in practice usability is a poorly
understood concept and it often has to give way to other goals. Usability does not come
for free and the benefits versus the costs are often discussed (Bias & Mayhew 1994).
This situation can be improved in at least two ways. Firstly by providing a better
understanding of what usability actually is, how to measure it and how to improve it.
Secondly by providing methods and techniques for designing usable systems. Methods
can make usability a manageable concept. The costs can be kept low and the impact
of the effort can be predicted much better. This chapter focuses on understanding what
usability is and the next chapters discuss methods and techniques for developing usable
systems.

2.3 Understanding Usability

The first issue with usability is to understand why a system would be usable in the first
place. Usability is concerned with humans interacting with a system for some purpose
and therefore we need to look at what is known aboutthe users, thework they do and
about theinteractionthat takes place when using a system.

2.3.1 Understanding humans

The systems we design are being used by humans so we need to understand the abil-
ities and limitations of humans. Especially cognitive and perceptual abilities are rel-
evant to design but sensor and motor abilities are important as well. Humans have
serious limitations when it comes to information processing and other tasks such as
decision making, searching and scanning (Shneiderman 1998). The fields of cogni-
tive psychology and ergonomics give a theoretical and practical background on these
matters. Research in those fields has given useful knowledge that can be used in prac-
tice, for instance knowledge about working memory can directly be used to improve
learnability of systems. Methods such as GOMS (Card et al. 1983) and CCT (Kieras
& Polson 1985) have tried to incorporate cognitive aspects to predict the influence of
changes to dialog aspects of a design. Other knowledge such as Fitts’ Law (Fitts 1954)

12 Designing for Usability

and color perception can also be applied directly in screen design and layout (Mullet
& Sano 1995).

When users work with a system they develop a mental model (van der Veer 1990) of
the system. The mental model is part of the long term memory and it is an internal
representation of the system. The mental model is formed through interaction with a
system and is ’activated’ when humans use a system. This mental model guides them
in using the system and is modified when the model is not entirely valid. Generally
speaking, usability problems are often caused by a mismatch between the users’ mental
model and the system structure, procedures and organization that the mental model is
representing.

Another important aspect of knowledge about humans is the social and organizational
viewpoint. Users perform their tasks in a larger context where they have a social and
organizational position that is important to them. In this context they may have to work
together or are part of a team. Consequently there are issues concerning individual and
group knowledge. Contextual aspects about users have a less direct impact on the de-
sign process but are strongly related to the position of a new system in the organization
where it is going to be used (Jordan 1996). Therefore, knowledge about humans as a
social organization may not be immediately used for detailed design decisions but it is
very useful when (re)structuring the work and organization.

2.3.2 Understanding the work

Generally speaking, humans use systems to aid them in their work. Therefore, un-
derstanding the work they do is crucial for designing usable systems. In their work,
users perform tasks in order to achieve certain goals and some of these tasks may be
performed using a computer system. In this respect, we can speak of task allocation
between humans and computer systems. Designing often means changing this task al-
location. A conservative approach to design is to allocate tasks performed by humans
to the computer. However, this may lead to design solutions that do not take full ad-
vantage of the technology. A more innovative approach may change the task structure
because of the available technology. In this case, the user’s technology independent
goals are being preserved while the used technology leads to a new task structure.

One difficult aspect in design is finding out what tasks the users perform and to dis-
tinguish goal directed tasks and instrumental tasks. Instrumental tasks exist because
of the technology currently used. Goal directed tasks are needed for achieving a user
goal. If instrumental tasks are being automated, there is a big danger of automating
”the wrong thing”. For example, if the classical typewriter would have been automated
by replacing all instrumental tasks by corresponding tasks in a computer system, no
usability gains would occur. Sometimes it indeed makes sense to change a large part of
the task structure, especially when the tasks are often instrumental. Innovative design
focuses on the main user goals whereas conservative design may lead to automation of
instrumental tasks.

Understanding the work humans do is important for designing usable systems but using
that knowledge in design can be difficult. Hierarchical models of the task structure are

Understanding Usability 13

widely accepted but many important aspects of work are not covered by these models.
The work is performed in a certaincontext of usewhich also needs to be described
in addition to details of the task structure. According to ISO9241 (ISO 1991c) the
context of use comprises user, tasks, equipment, the social and physical environment.
Understanding of the work is important when design choices are made but a direct
relationship between work models and design solution is often hard to specify. In
chapter3 we look at all aspects of the context of use in detail.

2.3.3 Understanding the interaction

Understanding interaction means understanding what happens when users interact with
a system. Users are confronted with a user interface that allows them to do many possi-
ble things. Users have to ”see” what they can do and how they can use the available pos-
sibilities to reach their goals. Naturally, some interfaces work better than others. Every
designer acquires skills and experiences during projects and that knowledge helps the
designer in later projects. Because of this knowledge, the designer knows what kind
of solutions work for which design problems. This knowledge about interaction comes
not only from both practical experience but also from literature. Currently the amount
of knowledge available in literature is rather limited which makes the personal expe-
rience of the designer an important factor for the usability of the system. The more
explicit knowledge is available the more UI design becomes an engineering discipline.

Basically the only concrete design knowledge that can be used during design is em-
bedded in guidelines. Guidelines deal with both structural (the dialog) and presen-
tational aspects of a user interface. For example, guidelines on color use and but-
ton sizes refer to the presentation and guidelines on feedback and menu structure
(Mayhew 1992, Shneiderman 1998) deal with dialog. Usually no explicit distinction
between dialog and presentation is made, although both have a distinguishable im-
pact on usability. Since guidelines often go into depths on describing a platform’s
style, mainly presentational aspects are covered and there is little guidance for dia-
log and functional aspects. Some guidelines such as the Macintosh (Apple Computer
Inc. 1992) or MS Windows (Microsoft 1995) guidelines mainly describe a platform
styleand hardly contain style independent guidelines. The underlying assumption that
applications that have been designed according to the guidelines have good usability,
remains unjustified. Other guidelines such as those developed by Smith & Mosier
(1986) focus on a narrow scoped list of guidelines dealing with detailed design choices
and consequently they are quickly outdated by new technological developments. Some
of the older guidelines were designed for character based applications and it is not
clear to what extent they apply to e.g. WIMP (Windows, Icons, Menus and Pointers)
interfaces or Virtual Reality interfaces.

Despite the differences in guidelines they certainly embody design knowledge and ev-
ery designer should know them. However, there may be several reasons why the guide-
lines are not followed during the design process. Even if a designer tries to use the
guidelines there are still many problems applying them. In Dix et al. (1998) a num-
ber of problems with guidelines are discussed such as when to apply a guideline or

14 Designing for Usability

choose one out of contradicting guidelines. Also the effectiveness of guidelines is un-
der discussion and research has shown that not all guidelines are as practical as desired
(Scapin & Bastien 1997).

Another way of capturing design knowledge is in design patterns. Such patterns de-
scribe generalized problems and proven solutions that can be immediately used in prac-
tice. Because design patterns work from a problem to a solution it is more likely to find
guidance on structural aspects emphasized in design patterns. Research on design pat-
terns has just started and only a small number of patterns have been written. See chapter
6.

2.4 Definitions of Usability

In this section, definitions of usability are discussed. After a short discussion on heuris-
tics, guidelines and principles, section2.6introduces a framework that provides an inte-
grating view on usability and related concepts. There is not one agreed upon definition
of usability and usability certainly cannot be expressed in one objective measure. Sev-
eral authors have proposed definitions and categorizations of usability and there seems
to be at least some consensus on the concept of usability since they mostly differ on
more detailed levels.

Shackel defines usability of a system as“the capability in human functional terms to
be used easily and effectively by the specified range of users, given specified training
and user support, to fulfil the specified range of tasks within the specified range of
environmental scenarios”(Shackel 1991). The definition is then operationalized by
using four criteria; effectiveness, learnability, flexibility and attitude. This definition
already shows the importance of the context of use and that usability is depending on
it.

Shackel also makes a distinction between usability, utility (also known as usefulness)
and likability. Löwgren (L̈owgren 1995) elaborates on the issue of usability and util-
ity. Whether or not utility is ”included” in usability is a matter of perspective but it is
agreed that both are desirable. Especially the engineering approaches seem to make
this distinction whereas others simply see utility as part of usability. The ISO 9241-11
(ISO 1991c) standard contains another abstract three-parts definition of usability;The
extent to which a product can be used by specified users to achieve specified goals with
effectiveness, efficiency and satisfaction in a specified context of use. ”Effectiveness” is
defined asthe accuracy and completeness with which users achieve specified tasksand
”Efficiency” as the resources expended in relation to the accuracy and completeness
with which users achieve goals. ”Satisfaction” is a subjective measure and concerns
the comfort and acceptability of use by end users. Satisfaction is actually the least
understood aspect of usability. In (Hassenzahl et al. 2000) the relationship between
satisfaction aspects such as fun and challenge are compared to effectiveness and effi-
ciency aspects. One of the interesting conclusions is that the most effective interface is
not necessarily the most fun or pleasant to used, it might even be boring.

Definitions of Usability 15

In another definition by Preece et al. (1990) usability is defined asa measure of the ease
with which a system can be learned or used, its safety, effectiveness and efficiency, and
the attitude of its users towards it. This definition does not make an explicit reference
to the context of use or specified user goals and suggests that usability is a ”property”
of a system.

These definitions approach usability from a theoretical viewpoint and may not be very
practical. Nielsen (1993) has a slightly different definition that is specified in elements
that are more specific, see Table2.1. A similar definition is given by Shneiderman
(1998). Shneiderman does not call his definition a definition of usability but he calls it
“five measurable human factors central to evaluation of human factors goals”. As can
be seen from Table2.1, Shneiderman’s definition is essentially identical to Nielsen’s
definition and only differs in terminology. Note that the potential benefits mentioned
in section2.2are almost completely derivable from the definition given by Nielsen. It
is surprising that both Nielsen and Shneiderman do not mention any aspect concerning
to usefulness (e.g. task completion, can the users complete their tasks).

Table 2.1: Usability as in ISO9241-11, B. Shneiderman and J. Nielsen
ISO 9241-11 Shneiderman Nielsen
Efficiency Speed of performance Efficiency

Time to learn Learnability
Retention over time Memorability

Effectiveness Rate of errors by users Errors/Safety
Satisfaction Subjective satisfaction Satisfaction

Table2.2 shows the usability factors as described by Dix et al. (1998). This catego-
rization looks rather different from the ISO, Shneiderman and Nielsen definitions. Dix
defines three main groups; learnability, flexibility and robustness, suggesting that those
concepts are on the same abstraction level. The groups are specified further by factors
that influencethe concept they belong to. For instance, consistency influences learn-
ability positively when a design is consistent within the application and between appli-
cations on the same platform. Learnability is subdivided into aspects that are mostly of
cognitive nature thereby giving more grip on the important cognitive skills of users in
relation to learnability. Robustness corresponds more or less to effectiveness. In flex-
ibility also some lower level concepts such as multi-threading are mentioned but most
aspects are mainly related to efficiency. This categorization raises the issue of which
forcesinfluenceusability rather than how it is defined.

Table 2.2: Usability categorization by Dix et al.
Learnability Flexibility Robustness
Predictability Dialog initiative Observability
Synthesizability Multi-Threading Recoverability
Familiarity Task Migratability Responsiveness
Generalizability Substitutivity Task conformance
Consistency Customizability

When comparing these categorizations and definitions it is remarkable that Nielsen
and the ISO standard give a concise outline of the term usability while Dix focuses

16 Designing for Usability

more on the concrete elements that influence usability. From a practical viewpoint,
Dix’s categorization gives the designer concrete means for improving the usability of a
design. On the other hand, it is odd that Nielsen’s notions of efficiency or error rate can
not be found in Dix’s categorization, as they are clear indicators of usability. The most
interesting aspect of Dix’s categorization is that it raises the question what the causes
for sub-optimal usability might be and how it might be improved.

2.5 Heuristics, Guidelines and Principles

In addition to definitions of usability, there are also several lists of design principles,
heuristics or criteria. These should help the designer in designing usable systems. The
assumption is that when the guidelines are appropriately applied, they have a positive
effect on the overall usability. Both Nielsen and Shneiderman give a set of design
heuristics to follow that should have a positive effect on his categories. Table2.3shows
that Shneiderman’s eight ”golden rules” for design (Shneiderman 1998) and Nielsen’s
heuristics are very similar:

Table 2.3: Rules and heuristics
Shneiderman Nielsen
Strive for consistency Consistency
Enable frequent users to use shortcuts Shortcuts
Offer informative feedback Feedback
Design dialogs to yield closure
Offer error prevention and simple error handling Prevent Errors / Good Error Messages
Permit easy reversal of actions Forgive the user
Support internal locus of control
Reduce short-term memory load Minimize User Memory Load

Simple and Natural Dialogue
Help and Documentation
Speak the User’s Language
Clearly Marked Exits

Both Dix’s categorization and Nielsen’s heuristics show that the root factors that in-
fluence usability need to be found in the cognitive and perceptual abilities of users
such as working memory, problem solving, decision making, searching and scanning
(Shneiderman 1998). A similar list is given by the ISO 9241-10 (ISO 1991b) standard
and is called a set of dialog principles, see Table2.4. Where Nielsen and Shneiderman
mainly focus on human specific guidelines, the ISO 9241-10 principles also explicitly
mentionsuitability for the taskreferring to the importance ofwork in usability. On the
other hand, none of these principles give concrete hints on how to actuallyachievethis
”suitability”.

Another interesting list is the list of ergonomic criteria developed by Scapin & Bastien
(1997), see Figure2.1. These criteria have been developed for finding usability prob-
lems in a walkthrough evaluation. Most of the criteria can also by found in Nielsen’s
and Shneiderman’s lists but some are new. For example, Scapin’s list of ergonomic

Heuristics, Guidelines and Principles 17

Table 2.4: ISO 9241-10 dialog principles
Dialogue Principles
Suitability for the task
Self-descriptiveness
Controllability
Conformity with user expectations
Error tolerance
Suitability for individualization
Suitability for learning

criteria mentions ”grouping and distinguishing items”. Grouping is concerned with the
”visual organization of information items in relation to one another” and is therefore
concerned with presentational aspects. Usually there is no explicit distinction between
dialog and presentation level aspects and only the design as a whole is considered. It
is useful to realize that measures have both dialog and presentation aspects. However,
often a clear distinction cannot be made. Mullet & Sano (1995) show the importance
of presentational aspects and their effect on usability. In addition, they also provide
techniques for improving presentational aspects such as grouping, grids etc.

Scapin’s list also shows that some aspects are hard to organize. For example,flexibility
is a main category in Dix’s categorization but it is merely an aspect ofadaptabilityin
Scapin’s criteria.

1. Guidance
 1.1 Prompting
 1.2 Grouping and distinguishing items
 1.2.1 Grouping by location
 1.2.2. Grouping by format
 1.3 Immediate feedback
 1.4 Legibility
2. Workload
 2.1. Brevity
 2.1.1. Conciseness
 2.1.2. Minimal actions
 2.2 Information density
3. Explicit control
 3.1. Explicit user actions
 3.2. User control
4. Adaptability
 4.1 Flexibility
 4.2. Users’ experience
5. Error management
 5.1. Error protection
 5.2. Quality of error messages
 5.3. Error correction
6. Consistency
7. Significance of codes
8. Compatibility

Figure 2.1: Ergonomic criteria by Scapin et al.

18 Designing for Usability

Arnold (Arnold 1998) gives another set of heuristics for design. These heuristics are
much more task related with a strong focus on cognitive aspects of interaction.

1. Adapt as much as possible to the user’s knowledge of language, work procedures,
computer operation, etc.

2. Supply means for action preparation, especially for orientation and action pro-
gram design.

3. Contribute to an uninterrupted, swift execution of action programs by giving
signals, and feedback on the course and results of activities.

4. Leave room for modification of action programs and their manner of execution.

5. Supply means for supervision of action execution including anticipation to future
operations or actions.

6. Take into account the capabilities and limitations of sensory, cognitive and motor
mechanisms.

7. Take into account and try to support user’s tendency towards optimization of
action efficiency; allow changes of the regulation level.

8. Contribute to the maintenance of a workload balance.

9. Take into account and try to support user’s tendency to be engaged in more than
one task at the same time.

2.6 A Layered Model of Usability

All the different definitions and principles make usability a confusing concept when
actually designing a new system. Usually authors spend a lot of effort trying to find out
what is the ”best” set of principles or to define a ”complete set of heuristics”. Although
these ”aids” are useful it remains unclear how they are related and how to judge when
an ”aid” is useful to improve usability. Figure2.2 shows a layered model of usability
(van Welie et al. 1999a) that helps understanding the various aids. On the highest level,
the ISO definition of usability is given split up in three aspects: efficiency, effectiveness
and satisfaction. This level is a rather abstract way of looking at usability and is not
directly applicable in practice. However it does give three solid pillars for looking at
usability that are based on a well-formed theory (ISO 1991b). The next level contains a
number of usage indicators which are indicators of the usability level that can actually
be observedin practice when users are at work. Each of these indicators contributes
to the abstract aspects of the higher level. For instance, a low error-rate contributes
to a better effectiveness and good performance speed indicates good efficiency. The
desired ”level” for each of the usage indicators depends on the nature of the system.
For a production system efficiency may be the main goal but for an entertainment web
site satisfaction may be far more important than efficiency.

A Layered Model of Usability 19

Effectiveness Satisfaction

Learnability Satisfaction

MemorabilityPerformance Speed

Errors/Safety

Consistency Feedback

Warnings

Shortcuts
Undo

Task Conformance

Efficiency
Usability

Usage Indicators

Means

User Model Task ModelDesign KnowledgeKnowledge

Adaptability

 has an impact on
 is a source for improving

Grouping

Task Completion

Figure 2.2: A Layered Model of Usability

One level lower is the level of means. Means cannot be observed in user tests and
are not goals by themselves whereas indicators are observable goals. The means are
used in ”heuristics” forimprovingone or more of the usage indicators. For instance,
consistency may have a positive effect on learnability and warnings may reduce errors.
On the other hand, high adaptability may have a negative effect of memorability while
having a positive effect of performance. Hence, each means can have a positive or
negative effect on some of the indicators. The means need to be ”used with care”
and a designer should take care not to apply them automatically. The best usability
results from an optimal use of the means where each means is at a certain ”level”,
somewhere between ”none” and ”completely/everywhere/all the time”. Determining
the appropriate usage of means is looking for the right compromise. It is up to the
designer to find those optimal levels for each means. In order to do that, the designer
must use the three knowledge domains (humans, interaction, and work) to determine
the appropriate levels. For example, when design knowledge is consulted by using
guidelines, it is clear that the guidelines should embody the knowledge of how changes
in use of the means affect the usage indicators.

The means of Figure2.2are examples of means and the given set is certainly not com-
plete. The different lists and heuristics all give suggestions for useful means. More
research is needed to determine which means are most effective for improving usabil-
ity. One interesting issue is what kind of groupings of means can be made. Scapin’s
list shown in Figure2.1 suggests a reasonable set of groupings. The usage indicators
of Figure2.2 are complete, i.e. based on the operational definitions of usability and
usability metrics. However, satisfaction is difficult to measure and may in the future be

20 Designing for Usability

split up in more detailed aspects.

When comparing the definitions of section2.4 and2.5 using our layered model it is
clear that some definitions are on a single level and that others have aspects from more
than one level. For instance the dialog principles of the ISO9241-10 standard men-
tion ”suitability for learning” (which is learnability) and ”error tolerance” which are
both usage indicators, but it also mentions ”suitability for individualization” (which is
adaptability) which is a means. Looking at the usability categorization of Dix it shows
that mainly means are summed up and the categories are a mixture of means and in-
dicators; learnability is an indicator and flexibility and robustness are means. Scapin’s
list of ergonomic criteria is essentially a list of means grouped together. Shneiderman’s
golden rules say to strive for ”a certain level” for each of the eight specific means he
considers the most important.

When means and indicators are mixed in one list the semantics of the list are ambiguous
which causes confusion and makes it more difficult to apply them for actual design
decisions. Additionally, it is good to realize that none of the lists can be regarded as
being complete. Each of the lists has at least one element not mentioned by any of the
others. Therefore, all of the lists can be useful but the most important thing is to realize
what the semantics of a list is. That way, it is clear how a list can be used and what the
limitations are.

2.7 Usability and Software Quality

From a different perspective, that of a software engineer, usability is closely related
to the quality of software. In the ISO 9126 (ISO 1991a) standard, usability is put in
relationship with software quality. Usability is seen as one of the ”six quality aspects of
software quality from a users’ perspective”, see figure2.3. Each aspect can be further
described in factors.

The software quality model suggests that the six aspects are independent. However,
if we look at usability from a user’s perspective we see that it surely depends on the
functionality (e.g. the suitability) as well as efficiency of the system. Usability is split
up in three factors (understandability, learnability and operability) which is a rather
narrow definition in comparison to the definitions of section2.4. Furthermore, these
quality aspects are not explicitly related to any stakeholders. Not every stakeholder has
an interest in all aspects. For end-users maintainability and portability of a system are
probably not of interest. Other factors such as reliability are of interest for end-users
but only indirectly, users mostly expect a system to work and be reliable.

Another important issue is the notion of context. The model suggests that software
quality is a ”property” of the system itself. However, for all aspects and factors it holds
that they do not haveanyabsolute value, they all depend on a context. For example,
fault tolerance depends on the hardware used and environmental conditions. Similarly,
changeability depends on the changes that occur rather than those that are foreseen.
Therefore, it is important to notice that software quality, just like usability, is not an
inherent attribute but depends on a specified context of use.

Usability Evaluation and Improvement 21

accuracy
suitability

interoperability
compliance

security

understandability
learnability
operability

analyzability
changeability

stability
testability

maturity
fault tolerance
recoverability

time behaviour
resource
utilization

adaptability
installability

conformance
replaceability

functionality

usability

reliability

maintainability

efficiency

portability

Figure 2.3: The ISO9216 Software Quality Model

In the software quality model, internal and external quality attributes are distinguished.
Internal quality attributes are related to the product itself. External quality attributes are
related to the product in its environment. However, it remains unclear if users are part
of this environment. The external quality attributes suggested in the ISO 9126 standard
seem directed to the performance of the system when used, not the perceived quality
by a certain user. Therefore, in (Bevan 1999) a revision of the standard is described
that explicitly sets users apart.

The termquality in useis used to indicate the quality when used by a specified user in
a specified context and can hence be regarded as a synonym for usability. The usage
indicators and means are related to the different kinds of quality as is shown in Figure
2.4. It shows the relationships between software quality and quality in use/usability as
we described it. The usage indicators are quality metrics for quality in use which are
influenced by means, possible by changing external attributes of the system. Quality
in use depends on the context of use in the same way external quality depends on the
system’s context.

2.8 Usability Evaluation and Improvement

Evaluation of usability can be done afterwards and during design. The usefulness of all
the guidelines, heuristics and other aids is related to the kind of evaluation that is being
conducted. In terms of our layered usability model, evaluating with users should be
done by looking at the usage indicators. When evaluating during design without users,

22 Designing for Usability

internal
quality

external
quality

quality
in use

depends on

context
of use

depends ondepends on

Computer HumanInteraction

system
context

depends on

means
usage
indicators

expressed bychange

have impact on
hnge

usability
metricsmeasured by

Figure 2.4: Usage indicators, means and software quality

the usage indicators cannot provide any data and designers can only look at how the
means are used and make an estimate on their impact.

2.8.1 Measuring usability

Evaluating with users is a good method for obtaining data about the actual usage. Us-
ing scenarios and other techniques, data about the number of errors or speed of perfor-
mance can be obtained which should provide a good indication of the usability of the
product. The scenarios should be explicitly related to the usability goals for the system.
The actual measuring activities should be done in the actual context of use for which
the system is designed. When this is not possible usability labs may be an inferior sur-
rogate. Measuring of the usage indicators is not always easy. Task performance times
are easy to measure but satisfaction and memorability are harder to quantify. Using
questionnaires such as QUIS and SUMI, a more standardized measurement can be ob-
tained, although these are only valid for certain classes of systems. Measuring of usage
indicators can be done usingusability metrics. In Whiteside et al. (1988) and Nielsen
(1993) lists of metrics are given. Table2.5summarizes all given metrics.

Evaluation during the design process is more problematic than evaluating with users.
Although mockups and paper prototypes can be tested with users, the usage indicators
cannot be evaluated directly. What can be done is looking at the means that influence
the usage indicators. Using walkthroughs and scenarios each of the means can be
evaluated by looking at the way they are present in the design and by estimating the
positive or negative impact on the usage indicators. For instance, it can be checked
if a design is consistent with a platform’s style guideline or if sufficient warnings are
given. This is where the heuristics and ergonomic criteria of Scapin & Bastien (1997)

Usability Evaluation and Improvement 23

Table 2.5: Usability Metrics
Metric Usage Indicator
Time to complete a specific task Performance Time
Number of commands used Performance Time
Percent of task completed per unit time Performance Time
Relative time spent in physical actions Performance Time
Relative time spent in mental actions Performance Time
Time spent waiting for the system responds Performance Time
Number of tasks that can be completed within a given time limit Performance Time
Number of regressive behaviors Memorability
Number of system features users can remember afterwards Memorability
Time spent in errors Errors
Percent of number of errors Errors
Number of repetitions of failed commands Errors
Number of immediately subsequent erroneous actions Errors
Time spent using help or documentation Learnability
Frequency of help and documentation use Learnability
Ration of users using effective vs. ineffective strategy Learnability
Number of good and bad features recalled by users Satisfaction
Percent of favorable/unfavorable user comments Satisfaction
Number of users preferring your system Satisfaction
Number of times user expresses frustration or satisfaction Satisfaction
Number of times interface misleads the user Task Completion
Percent of task completed Task Completion
Number of available commands not invoked Task Completion
Ratio of successes to failures Task Completion
Number of runs of successes and of failures Task Completion
Number of times users need to work around a problem Task Completion
Number of times the user is disrupted from a work task Task Completion
Number of times user loses control of the system Task Completion

and Nielsen (1993) are very useful. This kind of early evaluation does not replace the
need for late evaluation with users but can contribute when good choices of means can
be made.

Another way of ensuring usability during the design process is by using formal de-
sign models. Many models and techniques exist for describing designs using formal
notations. State charts, GOMS (Card et al. 1983), ConcurTaskTree’s (Palanque & Pa-
terǹo 1997) and similar notations are used to describe designs. These kinds of notations
are usually strong in describing structural aspects of a design (the dialog structure)
and very weak at describing presentational aspects. In (Payne & Green 1989) Payne
says,“as far as TAG is concerned, the screen could be turned off”. Although ETAG
(Tauber 1990) also does not consider presentational aspects it deals with functionality.
Reisner’s Action Language (Reisner 1983) also allows knowledge sources to be mod-
eled, e.g. it is possible to model if a user can get needed information from the screen
or from working memory.

In relation to the means of our model, this is already a big limitation since a lot of
means such as consistency, warnings or feedback are strongly related to presentational
aspects. A heuristic that says ”speak the user’s language” is difficult to deal with us-
ing formal models. Another factor is that most formal models are usually built with
the viewpoint of describing ”correct” use of the application and therefore do not de-
scribe error handling or issuing warnings. For formal models to be really valuable, they

24 Designing for Usability

should include the context of use as well and relate properties of the system model to
the context models.

2.8.2 Improving usability

When an evaluation shows that the usability needs to be improved the problem is to
find out which means need to be changed and how they need to be changed. As was
mentioned earlier means may have a positive effect on one usage indicator while hav-
ing a negative effect on another. In some cases, it may be obvious how to improve
usability but in cases where problems are of a more structural kind it may not be so
simple to solve. In that case, the designer has to take a step back and look at the knowl-
edge domains again. The knowledge domains are theonly sources for judging why
and how a means is to be changed. For instance, when the task conformance is seen
as a problem the task model can give the designer information about what is wrong
with the task conformance. Similarly, the user model may give information about the
memory limitations which may require the design to have more or better feedback of
user actions. Unfortunately the knowledge domains are not always available or written
down in a way that makes it easy to use them in practice. Task models may not contain
the right information or the available guidelines do not say anything about a particular
problem.

2.8.3 Usability process improvement

Designing for usability should be a focus in the system development process. However,
most organizations have not sufficiently recognized the importance of usability and
have not incorporated it in their current design methods. Within the field of software
engineering the concept of maturity is often used to indicate how good the process is in
a certain area. To indicate how well an organization is dealing with usability, a usability
maturity scale was developed in the INUSE project (Earthy 1999). The levels are:

• X: Ignorance - “We don’t have problems with usability”, Usability is not dis-
cussed as an issue.

• A: Uncertainty - “We don’t know why we have problems with usability”, User-
Centred processes are not implemented, or fail to achieve their purpose

• B: Awakening - “Is it absolutely necessary to always have problems with usabil-
ity?”, User-Centred processes are implemented but are performed by inappropri-
ate staff using sub-optimal methods

• C: Enlightenment - “Through management commitment and improvement of
human-centered processes we are identifying and resolving our problems”, User-
Centred processes are implemented and produce results, but these results do not
always give the expected benefits to the software development process

Usability and Design Methods 25

• D: Wisdom - “Usability defect prevention is a routine part of our operation”,
User-Centred processes are integrated into the software life cycle and used to
improve all work products

• E: Certainty - “We know why we do not have problems with usability”, The
culture of the organization is user-centered

The experience of the INUSE project was that much of European industry is at level X,
A or sometimes B on this scale. It shows that there is still a strong need for methods
that incorporate usability aspects into the current design practice. Obviously, most
companies still need to reach the awakening process before the necessary changes can
occur.

2.9 Usability and Design Methods

In (Nielsen 1993) Nielsen says“A Holy Grail for many usability scientists is the inven-
tion of analytic methods that would allow designers to predict the usability of a user
interface before it has even been tested.”. This implies two areas of interest for ana-
lytical methods; modeling humans and work, and modeling design solutions. The first
is important for the understanding of the human and the work they do. The search is
for models that capture all aspects of humans and work that are relevant for designing
for usability. The second is important for predicting the usability of the design solu-
tion (among other things like communication). Crucial for predicting usability is the
success of human and work models since they provide the context of use.

2.9.1 Modeling humans and work

Task modeling research has a strong background in cognitive psychology and the focus
is on how users perform their work and think about their work from the viewpoint of
looking at individual users. The strongest link is the fact that if you know more about
the user and his work you can build a more usable system. In practice, most modeling
methods such as HTA (Annett & Duncan 1967) do not model much more than a task
hierarchy. The task hierarchy helps to establish task conformance and does not help to
improve other means such as adaptability or error prevention. However, when the task
model is taken as a model describing the users, their work, the objects they use and the
organization they are part of, it is possible to capture information that can actually help
to improve usability. The task model should be able to answer questions about the task
world related to effective use of means. Table2.6 shows some examples of questions
for a task model in relation to a means. As can be observed from Table2.6, a task
model needs to contain more than a simple task hierarchy.

Besides these concepts, the right information about the concepts needs to be captured.
For instance, when a designer wants to know what the critical tasks are, the task model
must be able to make a distinction between critical and non-critical tasks, for instance

26 Designing for Usability

Table 2.6: Questions for Task Modelsl
Means Question for task model
Warnings What are the critical tasks?

How frequent are those tasks performed?
Always performed by the same user?

Adaptability Which types of users are there?
Which roles do they have?
Which tasks belong to which role?

Undo Which tasks should be undoable?
Which tasks have not undoable side effects?

Error prevention What errors are expected?
What are the consequences for users?
How can prevention be effective?

by means of task typing. When the questions from Table2.6need to be answered, all
of these aspects and probably even more need to be added. We use the means to check
whether our task analysis method GTA (van der Veer, Lenting & Bergevoet 1996)
contains the necessary information and will indeed add missing aspects.

2.9.2 Modeling the system

Dialog modeling and especially formal dialog modeling (Palanque & Paternò 1997)
enjoys great interest in HCI research. One problem of most formal methods such as
described in (Palanque & Paternò 1997, Payne & Green 1989) is that they are designed
to describe the behavior of the interface and not to enable usability evaluation. Some
methods can be used to do verification of systems but this is limited to properties such
as state-reachability, deadlocks and interaction path lengths. Although interaction paths
can say something about the speed of performance, it is impossible to make predictions
about other usability aspects. In the same way as for task models, the means can be used
to determine some requirements for dialog models that enable usability evaluation.
A dialog model also needs to be built using the right concepts and they should be
verifiable in some respect. Looking at Table2.7 it is clear that a dialog model needs to

Table 2.7: Questions for dialog evaluation
Means Questions
Warnings When are warnings given?
Speed of performance How many steps needed for accomplishing a task?
Undo Which functions are undoable?
Feedback When and how is feedback given?
Consistency What are similar task-action decompositions?

be more than a state-based description. A dialog model must be able to identify system
feedback as either a warning or state feedback and must also contain more detailed
information about the functionality as in how far it can be undone or not. In fact
there are techniques that partially address these aspects; UAN (Hix & Hartson 1998)
deals explicitly with feedback and TAG (Payne & Green 1989) allowed analysis of
consistency by identifying similar task-action decompositions. When such additions

Summary 27

are done, a dialog can be evaluated by looking at how well constraints are satisfied,
e.g. ”Does the user get a warning before executing a function that is undoable?” or
”Given a starting point what is the average number of steps needed to perform this
task?”

2.10 Summary

Designing for usability is important for end-users as well as for other stakeholders in
systems design. Usability is the main design quality in user interface design. A good
understanding of the concept of usability allows effective design processes and reduces
the costs of these activities. This chapter has put usability into a reference framework
using a layered model consisting of usage indicators, means, and knowledge. This
framework shows what usability is by distinguishing what can be measured and how
usability is affected by changes in the design. The usage indicators show which as-
pects can be measured to evaluate actual performance with end users. The means are
changeable aspects in a user interface that have a certain impact on the usage indicators.
In order to configure the means, the knowledge domains (task, work and interaction)
provide the basis for making the appropriate design decisions.

We have shown that for most of such changes, knowledge about the context of use
is needed. The users and their work are the primary source that guides the design
process. Together with explicit design knowledge, designers can achieve the necessary
quality in use. The fundamental problems of designing for usability are to learn the
characteristics of the actual users and their tasks, to create systems that fit those users
and their tasks, and to test the systems for any mismatches. Understanding humans,
their work and the interaction with computers is crucial. In short, usability is all about
the context of use of a system. In the next chapter, we take a detailed look at the
different aspects of the context of use, also called the task world.

Chapter 3

An Ontology for Task Models

3.1 Introduction

Task analysis is the process of gathering data about the tasks people perform and ac-
quiring a deep understanding of it. Several methods can be used to gather the data,
including interviewing, observation, talk aloud protocols and ethnographic work place
studies. While these techniques each have their own characteristics and problems,doc-
umentingthe data and being able to write down the understanding gained is another
problem. This chapter is concerned with the modeling and structuring techniques that
are required once data is available.

The process of structuring data and gaining insight into the data is called task mod-
eling. Task models are the ”product” of the entire task analysis activity. Neither task
analysis nor task modeling is a new topic. However, task analysis and task modeling
have always been relatively ill-defined activities, where no commonly accepted mod-
els or representations were used, except perhaps for the task decomposition. Recently,
task analysis has regained interest since the advent of user centered design. The users
and their work are again recognized as important for developing usable interfaces. Al-
though recognized, the problem of adequately describing the task world still remains
unsolved.

In this chapter, we first look atwhataspects of the task world need to be described for
the purpose of user interface design. Then we look at how these aspects arerelatedto
each other. We propose a set of fundamental concepts and relationships which we inte-
grate in an ontology. By ontology we mean a way of how we view the world. Using the
ontology we can explain and derive the commonly used representations for task models
and see how different representations are related to each other and to the ontology. The
ontology acts as a conceptual foundation for describing task world knowledge while
representations are used by the analyst to document real data.

For task-based user interface design, the task model serves as the primary source for
determining the functionality the system needs to offer and how the interaction could

30 An Ontology for Task Models

be structured. Additionally, the task models are used to restructure work in general
and to provide detailed information about the users and stakeholders of the system.
When designing for usability this information is required when creating or modifying
user interface designs. As discussed in the previous chapter, usability depends on the
context of use and the purpose of task modeling is to map the task world in sufficient
detail.

3.2 A Short History of Task Analysis

The first publication about task analysis was probably “Hierarchical Task Analysis”
(Annett & Duncan 1967). Task analysis has developed slowly over the next thirty or
so years, see Figure3.1. In the eighties there was a “revival” when methods such as
GOMS (Card et al. 1983) and TAKD (Johnson et al. 1984) emerged. Task models
were getting more formal and research was split in two area’s; that of the task analysis
processand that of task and knowledgemodeling. On the process side, research was
directed towards knowledge acquisition techniques such as structured interviews and
ethnographic work place studies (Nardi 1996, Jordan 1996). On the modeling side,
there was a distinction between techniques for modeling the knowledge needed to per-
form tasks and techniques for modeling the task structure itself. TAKD is an example
of a method for knowledge description while GOMS focusses on a low-level descrip-
tion of the tasks of a user working with an interface. Soon models were becoming more
formal in order to describe the low-level tasks or knowledge in sufficient detail. In this
period, confusion of terms started when the word “task” was by some used as synonym
for “goal” or “action” while others made explicit distinctions between these terms.

Later on the notion ”task model” also acquired two different interpretations; that of
a descriptivemodel and that of aprescriptivemodel. In the latter, task models were
soon used as a way to describe the dialog (e.g. GOMS) of a user interface instead of
describing the user’s task independent of the technology. In that case, the concept task
is closely related to application functions and less to the more cognitive nature of tasks.

HTA CLG GOMS MAD GTA

CTTTKS

CTA

TAKD TAG Contextual
Inquiry

67 70 75 80 85 90 0095

Figure 3.1: Task Analysis Methods in Time

Of all the methods listed in Figure3.1, HTA (Annett & Duncan 1967) and GOMS (Card
et al. 1983) have had the most impact. HTA because it was the foundation for many
other methods and GOMS because it is probably the one most used in practice. When
taking a closer look at these methods, it becomes clear that representational aspects
have been weak spots of most methods. Most methods are rather formal which made
them more powerful and at the same time less usable. It soon became clear that tools
were needed to make these modeling activities feasible for practitioners. Strangely
enough, such tools hardly appeared. Usually large textual representations need to be
constructed and it is often difficult to understand what exactly is being represented.

Methods and techniques 31

Some methods such as CTA (Barnard 1987) and TKS (Johnson et al. 1988) focus on
the psychological aspects but fail to convert their ideas in practical representation tech-
niques. They aid in understanding the cognitive aspects of humans in general but hardly
help to understand the specifications themselves. Both the cognitive techniques as well
as the other techniques focus on describing the tasks of individuals and not of groups.

3.3 Methods and techniques

Few methods and techniques that have been developed over the years are still in use. In
this section, we discuss the most influential ones. The reason for looking at the older
methods and techniques is that each of them contains aspects that are important for task
modeling. By looking at them, we can get an overview of interesting aspects in task
modeling techniques. In this section we discuss some methods and techniques that are
exemplary in that each contains one or more important aspects.

3.3.1 Hierarchical Task Analysis (HTA)

Hierarchical Task Analysis (Annett & Duncan 1967) is one of the oldest general pur-
pose task description techniques and contains many ideas found in later techniques.
HTA is a process of developing a description of tasks in terms ofoperationsandplans.
Operations are things people do to reach goals and plans are statements of conditions
that tell when each operation is to be carried out. The operations can be hierarchi-
cally decomposed and with each new sub-task, a new plan exists. Figure3.2shows an
example of a HTA diagram taken from (Kirwan & Ainsworth 1992).

In HTA, tasks are defined as activities that people do to reach a goal. A goal is then
defined as a desired state of the system under control or supervision. However, in
the notation used only a task hierarchy is modeled and the goals are not explicitly
represented. In (Kirwan & Ainsworth 1992) HTA is also explained and there they
speak of a goal hierarchyand a task hierarchy but they actually mean the same thing.
This confusion between a task and goal hierarchy is common in task analysis literature.

It is remarkable that HTA uses a clear representation that is fairly usable, something
which is lacking in most later representations. Understanding what you specify was
already considered important. Although HTA was defined as ”a process of developing
...”, the process part of HTA was hardly explicitly defined. The main idea was to
iteratively develop the HTA models by collecting data from interviews or documents.
Therefore, the merit of HTA is mainly the clear representation technique.

3.3.2 Goals Operators Methods Selectors (GOMS)

GOMS (Card et al. 1983) is undoubtedly the most influential task analysis technique
to this date. Ironically enough, it is not a real task analysis technique but rather a
task-based dialog description technique. It describes the dialog steps that are needed to

32 An Ontology for Task Models

7. Notify technician
of problems

6. Deal with
projector light

failure

5. Finish session
without projector

4. Switch of
projector

3. Show slides
according to lecture

schedule

2. Set up projector1. Ensure standby
equipment available
(bulb,fuse)

0. Operate
overhead projector

1. Ensure projector
is plugged in

2. Switch on
projector to ensure

it is working

3. Establish correct
image

1. Ensure projector
head is pointing in
correct direction

2. Adjust projector/
screen distance to

fill screen

3. Focus projector

1. Switch to
standby bulb

2. Change fuse

Plan 0: At least 1/2 hour before lecture - 1
Immediately prior to lecture - 2

As lecture commences - 3
If the projector light fails - 4 - 6 - 3

If other problems arise that the operator cannot deal with - 4 - 5
At end of lecture, if projector is still on - 4

At end of lecture, if there were problems - 7

Plan 2: 1 - 2 - 3 - EXIT

Plan 2.3: 1 - 2 - 3
If picture is properly framed and in focus - EXIT

otherwise, repeat from 2

Plan 6: Do 1 If OK EXIT
otherwise, do 2 - EXIT

Figure 3.2: HTA example

perform a task with a specific user interface. GOMS is intended to estimate user perfor-
mance based on a description of the system before the system is actually built. Over the
years many variations of GOMS have been developed (John & Kieras 1996). GOMS
does not explicitly define a process other than iteratively constructing GOMS models.
The focus in GOMS is completely on the representation technique and performance
estimation.

Goalsare states that the user wants to achieve. AMethodis a possible way to achieve
the goal. A method usually contains a number of steps. For describing when to use
which methods,Selectionrules set the criteria for using a method.Operatorsare used
to describe the nature of the steps in a method. There are three kinds of operators:
external (perceptual and motor actions), mental and primitive. External operators need
to be specified by the analyst and primitive operators are predefined. Primitive oper-
ators are often directly derived from the hardware that is being used, e.g. a mouse.
Mental operators can be predefined or analyst-defined. Predefined mental operators in-
clude RECALL, RETAIN, FORGET, RETRIEVE and DECIDE while analyst-defined
operators can be anything, e.g. FIND-MENU-ITEM ”Cut”.

TheOperatorsin GOMS are the basis for making predictions about the expected user
performance. For each operator an average duration is defined and by counting all the
steps, the total expected time to complete the task is calculated. The prediction part
of GOMS is interesting and controversial at the same time. GOMS tries to estimate
Learning Time, Execution Timeand Mental Workloadsolely by counting steps. It
is assumed that the steps modeled by GOMS statements normally take 0.1 sec and

Methods and techniques 33

primitive operators such as mouse movements take between 0.2 and 1.1 sec. Mental
operators are estimated to take 1.2 sec in case of lack of any other information. For
experienced users this time should sometimes be zero seconds. The assumed values
for operators have been heavily criticized (Nielsen 1993). Their values have proven
to be rather variable and unpredictable which makes the foundation for estimating user
performance weak, if not invalid. Other criticisms concern the fact that GOMS assumes
error-free behavior and does not distinguish novice and expert behavior. In summary,
the estimation part of GOMS remains controversial even after almost twenty years of
research. However, it can still be used to compare design alternatives against each other
to see which requires the minimal number of steps.

In GOMS, there is not an explicit task concept. In (Kieras 1994) it is stated that a task
”describes the parameter list for methods”. This suggests that a method can be seen
as a task description. GOMS models can be hierarchical and the resulting hierarchy is
necessarily a goal hierarchy. However, as Figure3.3shows, others might call the stated
goals tasks. The example is an adaptation from the example found in (Kieras 1994).

Selection rule set for goal: select text
If text-is word, then

accomplish goal: select word.
If text-is arbitrary, then

accomplish goal: select arbitrary text.
Return with goal accomplished.

Method for goal: select word
Step 1. Locate middle of word. (M)
Step 2. Move cursor to middle of word. (P)
Step 3. Verify the the correct word is located. (M)
Step 4. Double-click mouse button. (BB)
Step 5. Verify that correct text is selected. (M)
Step 6. Return with goal accomplished.

Method for goal: select arbitrary text
Step 1. Locate beginning of text. (M)
Step 2. Move cursor to beginning of text. (P)
Step 3. Verify that the correct beginning is located. (M)
Step 4. Press mouse button down. (B)
Step 5. Locate end of text. (M)
Step 6. Move cursor to end of text. (P)
Step 7. Verify that correct text is marked. (M)
Step 8. Release mouse button. (B)
Step 9. Verify that the correct text is selected. (M)
Step 10. Return with goal accomplished.

Figure 3.3: A GOMS example

Concerning representations, GOMS is usually described in ”structured” text like Figure
3.3 shows. This makes it tedious to use in practice and several attempts have been

34 An Ontology for Task Models

made to developed tools. QGOMS (Beard et al. 1996) is a tool that uses graphical
representations for GOMS models. GOMSED (Wandmacher 1997) is another tool that
automates the calculation process. GOMS is one of the methods for which tools have
been developed, albeit never commercially.

3.3.3 Méthode Analytique de Description des t̂aches (MAD)

MAD (Scapin & Pierret-Golbreich 1989) is the task modeling part of a larger method
for designing interactive systems (Sebillotte 1995). MAD is the modeling part and
the other half consists of structured interviewing techniques (Graesser et al. 1981). In
MAD, task models are similar to HTA models except that the plan construct has been
replaced by so called constructors. A constructor specifies the time dependencies of
a task’s subtasks i.e. a constructor scopes over all subtasks. The constructors such as
PROV, SEQ, PAR, ALT, SIM and ELEM are used to specify the time order in which
tasks are executed. Additionally, pre-conditions can be specified for each task in order
to ”tune” the time ordering. The task model is graphically represented in a similar way
as in HTA but without plans and with constructors.

Table 3.1: MAD Task Body Attributes
Task Body Attributes
Identification Number Alphanumeric
Name Alphanumeric
Goal Alphanumeric
Comments Alphanumeric
Degree of Freedom {Optional, Obligatory}
Interruptability {True, False}
Upper Task Identification Number
Priority Integer
Modality {Manual, Automatic, Interactive}
Type {Cognitive, sensori-motor}
Frequency {high, medium, low}
Centrality {important, not important}
Important entities {among the task’s objects}
Experience {user = novice, occasional, expert}
State {waiting for execution, inaccessible, in execution,

interrupted, finished, ignored}
Mandatory sub-tasks finished integer

The most interesting aspect of MAD is the fact thattemplatesare used to describe the
task details. Details include pre- and post-conditions, initial and final states, task types,
priorities and interruptabilities. In MAD, a task consists of two parts: aconditionspart
and abodypart, see Tables3.1and3.2taken from (Gamboa Rodriguez & Scapin 1997).
In most other methods a task is regarded as a ”black box” but MAD has shown that
there are many relevant aspects of a task to be described.

The interesting part is that in MAD tasks are modeled in great detail but no other
concepts are modeled i.e. no roles or objects. Using templates to describe an arbitrary
set of attributes for task (or other concepts), is a technique that can be used with most
other approaches as well. A disadvantage of using templates is that the amount of

Methods and techniques 35

Table 3.2: MAD Task Conditions
Task Conditions
Initial State State
Input Condition {triggering, execution, stop}
Final State State
Output Condition {end}

documentation is dramatically increased. In MAD, most of the fields are merely for
description purposes and are not used in any automated evaluation or transformation.

3.3.4 Groupware Task Analysis

Groupware Task Analysis (van der Veer, Lenting & Bergevoet 1996) is a recent method
that combines aspects from several methods. In GTA, it is recognized that the systems
that are being built nowadays are rarely used by single users in isolation. Therefore,
GTA puts an emphasis on studying a group or organization and their activities rather
than studying single users at work. Essentially, GTA consists of a conceptual frame-
work that specifies relevant aspects of the task world that need attention when designing
Groupware.

The broad conceptual framework is based on experiences with a variety of different
approaches and on an analysis of existing methods for HCI and CSCW (van der Veer
et al. 1995). When designing Groupware systems it is necessary to widen the notion of
a task model to include descriptions of many more aspects of the task world than just
the tasks. GTA makes a distinction between adescriptivetask model and aprescriptive
task model. The first is called task model 1 and the latter task model 2. The frame-
work as such is intended to structure task models 1 and 2, and, hence, as a guidance for
choosing techniques for information collection in the case of task model 1. Obviously,
for task model 2 design decisions have to be made, based on problems and conflicts
that are represented in model 1, in combination with requirement specifications as for-
mulated in interaction with the client of the design.

In GTA, task models for complex situations are composed of three different aspects:
agents, work, andsituation. Each describes the task world from a different viewpoint,
and each relates to the others. This allows designers to view and to design from dif-
ferent angles, and allows design tools to guard consistency and completeness. The
three viewpoints are a superset of the main focal points in the domain of HCI as well
as CSCW. Both design fields consider agents (’users’ vs. ’cooperating users’ or user
groups) and work (activities or tasks, the objectives or the goals of ’interaction’ and
the cooperative work). Moreover, especially CSCW stresses the situation in which
technological support has to be incorporated. In HCI this is only sometimes, and then
mostly implicitly, considered. This section discusses the three views of the conceptual
framework.

36 An Ontology for Task Models

Agents

The first aspect focuses on agents. ”Agents” often indicate people, either individuals
or groups, but may also refer to systems. Agents are considered in relation to the task
world, hence we need to make a distinction between humans, as acting individuals or
systems, and the roles they play. Moreover, we need the concept of organization of
agents. Humans have to be described with relevant characteristics (e.g. the language
they speak, the amount of typing skill or experience with MS-windows). Roles indicate
classes of agents to whom certain subsets of tasks are allocated. By definition, roles
are generic for the task world. More than one agent may perform the same role, and a
single agent may have several roles at the same time. Organization refers to the rela-
tion between agents and roles in respect to task allocation. Delegation and mandating
responsibilities from one role to another is part of the organization.

Work

In GTA, both the structural and the dynamic aspects of work are considered, so the task
is taken as the basic concept and several tasks can share the same goals. Additionally
a distinction is made between tasks and actions. Tasks can be identified at various
levels of complexity. The unit level of tasks needs special attention. A distinction is
made between (1) the lowest task level that people want to consider in referring to their
work, the ’unit task’ (Card et al. 1983); and (2) the atomic level of task delegation
that is defined by the tool that is used in performing work, like a single command
in command driven computer applications. The latter type of task is called ’Basic
task’ (Tauber 1990). Unit tasks are often role-related. Complex tasks may be split
up between agents or roles. Unit tasks and basic tasks may be decomposed further
into user actions and system actions, but these cannot really be understood without a
frame of reference created by the corresponding task, i.e., actions derive their meaning
from the task. For instance, hitting a return key has a different meaning depending on
whether it concludes a command, or confirms the specification of a numerical input
value in a spreadsheet.

The task structure is often at least partially hierarchical. On the other hand, resulting
effects of certain tasks may influence the procedures for other tasks (possibly with other
roles involved). Therefore, the task flow and data flow over time as well as the relation
between several concurrent flows need to be understood. A special concept is event,
indicating a triggering condition for a task, even if the triggering could be caused by
something outside the task domain we are considering.

Situation

Analyzing a task world from the viewpoint of the situation means detecting and de-
scribing the environment (physical, conceptual, and social) and the objects in the en-
vironment. Object description includes an analysis of the object structure. Each thing
that is relevant to the work in a certain situation is an object in the sense of task analysis,

An Ontology for Task World Models 37

even the environment is an object. In this framework, ”objects” are not defined in the
sense of ”object oriented” methods including methods, inheritance and polymorphism.
Objects may be physical things, or conceptual (non-material) things like messages, ges-
tures, passwords, stories, or signatures. Objects are described including their structure
and attributes. The task environment is the current situation for the performance of a
certain task. It includes agents with roles as well as conditions for task performance.
The history of past relevant events in the task situation is part of the actual environment
if this features in conditions for task execution.

The process and representations

GTA also defines a general process of task analysis and again a combination of tech-
niques is used. For extracting data, GTA uses techniques such as structured interviews,
interaction analysis, hermeneutics1 , document analysis and observation. Task model-
ing is then performed as a cyclic activity where models are created, evaluated, modified,
and new information is gathered. Concerning representations, GTA mainly uses hier-
archical decompositions and templates. Not only tasks and their structure are modeled
but also related roles and objects.

3.4 An Ontology for Task World Models

In the previous sections different approaches to task modeling were highlighted. The
approaches are not directly contradictory and they all seem to describe certain im-
portant aspects of the task world. In this section, a general ontology (van Welie
et al. 1998a) is proposed that captures the most important aspects of the task world.
It is an ontology in the sense that it explains the structure of the world and defines how
we look at it. In other words, it describes task models on a meta level. First we discuss
four views that structure the way we can look at task modeling. From those views the
fundamental concepts and relationships that play a role are extracted and formed into
an ontology.

3.4.1 Modeling work structure

Work structure modeling is the oldest and most common activity in task analysis. Hu-
mans do not think about their work as a collection of tasks but they think in a structured
way about their activities (Sebillotte 1988). This structure can be captured in a task de-
composition tree. The tree forms a hierarchy where the high level tasks are found
at the top of the tree and the most basic tasks are at the leaf nodes. Such a ”clas-
sical” task tree is usually enhanced withconstructorsthat indicate time relationships
between tasks. Many methods including HTA (Annett & Duncan 1967), MAD (Scapin
& Pierret-Golbreich 1989) and MUSE (Lim & Long 1994) use this kind of task trees.

1The process of gaining a methodological objective understanding of human behavior by iteratively in-
terpreting subjective observation data. (van der Veer 1989)

38 An Ontology for Task Models

Work structure is one of the most important aspects in task analysis. A design of an
interactive system usually means restructuring the work and removing or adding tasks.
A task tree can already give an indication of aspects that are considered sub-optimal
in the current situation. For example, certain subtasks could be part of many complex
tasks and could be automated. In other cases, tasks may turn out to be too complex and
simplification is needed. When designing for usability, the work structure is important
for developing the most appropriate interaction structure and functionality.

Distinguishing Tasks and Goals

A common definition of a task is”an activity performed to reach a certain goal.”A
goal is then defined as”a desired state in the system or task world”. Distinguishing
between tasks and goals can be very useful when analyzing a task model. For example,
a complex task which has goal X may have a subtask with goal Y. In that case, that
subtask ”belongs” to that task but since it does not have the same goal, one could
wonder whether it is really a needed task or if it causes problems. An example is a
copying task where the user checks if there is paper in the copier. Checking the paper
has ”maintenance” as a goal and would ideally be unnecessary.

Some methods implicitly presume a one-to-one mapping between tasks and goals; for
instance a Task Knowledge Structure (TKS (Johnson et al. 1988)) contains only a goal
substructure which would be called a task substructure by others’ methods. Other
methods, such as GTA (van der Veer, Lenting & Bergevoet 1996) and MAD (Scapin
& Pierret-Golbreich 1989), allow a goal to be reached in several ways. In this way,
each task has a goal and goals can be reached by several tasks. In fact, this is similar
to GOMS where different methods are selected to reach a goal. One step further is to
define a task hierarchyanda goal hierarchy, which occurs only in complex situations.

In practice, distinguishing between tasks and goals is not always so easy or clear. Usu-
ally this is an iterative process where the distinction gradually becomes clear. When
describingdetailedactions of a user at work goals often indicate states of thesystem
but when higher level goals are modeled they are often related to states or particular
configurations in thetask world. Additionally, in complex task trees based on real life
situations, tasks near the leaves in a tree are usually connected with individual goals,
and tasks represented by high level nodes are often closely tied with organizational
goals (van der Veer et al. 1997). When modeling complex situations where the or-
ganization is of great relevance, it is important to be aware of the difference between
individual and organizational goals and the ways they are related.

Describing Task Details

While in most cases a task hierarchy can already show a lot of interesting information,
other task details may also be important. For example, conditions describe when ex-
actly this task can be executed or when it stops. Other details may describe the exact
transformations that occur in the tasks, the priority of the tasks or whether they can be

An Ontology for Task World Models 39

interrupted. In highly event driven tasks it may be vital to know what the priorities of
the tasks are and whether or not tasks can/may be interrupted.

Besides such properties tasks can also be assigned atype. For example, tasks can be
characterized asMonitoring Tasks, Decision Making Tasks, Action Tasksor Searching
Tasks. The interesting aspect of distinguishing task types is that they have characteristic
use of cognitive resources such as perception, attention, memory and motor capacity.
This may be of importance when designing user interfaces because each task type poses
constraints on the possibilities. At present it is unclear which task typing is needed. At
least a distinction can be made in mental and non-mental tasks but even for mental
tasks there is not one fixed list of possible types.

3.4.2 Modeling the work flow

Call FriendCall Friend

Take MetroTake Metro

WalkWalk Buy TicketBuy Ticket Enter CinemaEnter Cinema

See MovieSee Movie

Go thereGo there Take MetroTake Metro

Buy TicketBuy Ticket

WalkWalk

Enter CinemaEnter Cinema

OR NEXT
NEXT

SEQ

OR

1

2
Call FriendCall Friend

See MovieSee Movie

Figure 3.4: Problems with representation of time in trees

Another common feature of most task models is Task Flow, which indicates the or-
der in which tasks are executed. Two forms of flow models can be distinguished: (1)
workflow representations, with time on one axis, and (2) task trees enhanced with the
”classic” constructors that give a kind of time structure (mixing time and task decom-
position). Theoretically they are equally powerful to express any kind of task flow.
However, the second type of flow model suffers from the fact that usually many con-
structors are needed and extra ”dummy” tasks need to be added. For example, in figure
3.4, two representations are used. The first one is a task flow representation with time
on the x-axis. The second is a task decomposition with constructors that represents the
same task flow as the first representation. Because constructors scope over all subtasks,
the second representation needs an extra task ”Go there” which may not be desired. In
Paterǹo’s ”ConcurTaskTrees” (Paternò et al. 1997) these types of tasks are called ”ab-
stract tasks”. The important point here is that for both representations the specified task
flow is basically the same but the visual representation does not always allow specifi-
cation of the task structure as desired. Since both representations can be useful there is
a need for an underlying model that allows both.

40 An Ontology for Task Models

Events

Events are used to model external dynamic aspects of the task: things that happen in
the task world, over which the agent does not always have direct control (e.g. an alarm
goes off, a film breaks, a power supply fails or new mail arrives). Sometimes there
may be no need to explicitly incorporate the event in the new design but in other cases
incorporation is important. For example, it may prove very useful to model the agent’s
reaction to an event and how it influences the sequence in which tasks are performed.
In complex situations, work can be highly event driven, e.g. in Air Traffic Control
where people start and stop doing tasks all the time.

3.4.3 Modeling work artifacts

Artifact/object modeling is an addition to task analysis that resembles data structure
modeling of the final design and implementation. The purpose is to say something
about the objects, as they are physically present in the task world or mentally present
in the user’s mind. Not every object may be directly included in the new design but
in the case of models for automated user interface (UI) generation there is usually
a very strong link between objects and UI widgets, such as buttons or menus. The
question remains how much object modeling should be in task models. Extensive data
modeling does not appear to directly help in improving the usability of the product. It
also depends on the purpose of the task model; models used as a basis for automatic UI
generation have different requirements than models used for evaluation. For example,
in GTA only the structure of the objects and the tasks they are used in are recorded.
Other models such as ConcurTaskTrees (Paternò et al. 1997) and TKS (Johnson et al.
1988) also include actions that are performed on the object.

The most important purpose of a task is that it ”changes” something, otherwise the task
has no reason for existence. By change we mean any sort of change, including adding
information (changing an unknown to a known). Some task analysis methods such as
ConcurTaskTrees (Paternò et al. 1997) describe this with task input and task output
objects.

Another way to describe changes is to specify the initial and final states in terms of
object attribute values as done in MAD. In this way the information passing is indirectly
achieved through changes in object attributes. There is no fundamental difference since
the list of input and output objects can be generated from the task attributes. However, it
is possible that the changes are not explicitly recorded, such as in the mental processes
involved in a human’s decision. In models that use object actions, changes are usually
defined in the actions instead of the task states.

3.4.4 Modeling the work environment

Not only the work itself but also the work environment is important to study. In the
past most methods focused on modeling one user and that user’s tasks. However, in

An Ontology for Task World Models 41

current applications group aspects are becoming more important. Classic task model-
ing methods lack the power to deal with these situations, modeling only the static part
of the task world by identifying roles. This neglects other parts of the organization and
dynamic aspects of the task world.

People rarely perform their work in solitude. They work together with their colleagues
and share offices, they help each other and form a social group. Certain aspects such
as work place layout are traditionally the field of Ergonomics but are certainly also
important for user interface design.

Physical Workplace Layout

One aspect of the work environment is the actual physical layout. How big is the room?
Where are objects positioned and what are their dimensions? The physical layout can
be modeled by assigning a dimension and location attribute to artifacts but in practice
it is usually done by sketching the layout. Usually this is sufficient to gain the required
understanding.

People and Organizations

Modeling the task world means modeling the people that are part of it and modeling its
structure, which is often a part of the organizational structure. While it may be useful
to see a model of the ”official” organizational structure, for task analysis the structure
of how tasks areactuallybeing done is more relevant than how they officially should
be done. Specifying roles in the organization and agents’ characteristics gives relevant
information that can be used in design. The roles then need to be attributed to agents. In
TKS (Johnson et al. 1988), a role is defined to be responsible for performing the tasks
it encompasses; for example, a movie projectionist is responsible for starting a movie.
However, in real organizations task responsibilities frequently need to be handled more
flexibly resulting in responsibilities being shifted by delegation or by mandate. The
agent playing a role may therefore not perform the task he or she is responsible for; a
movie projectionist could have someone from the snack bar push the button to start the
movie.

Roles and Actors

In classic task analysis literature, as well as in ethnography, concepts such as actors and
roles are commonly referred to for describing tasks and the task world. Although these
terms are intuitively appealing, they can cause confusion when they need to be named
during task analysis. A role is defined by the tasks the role is responsible for, e.g.
a projectionist is responsible for starting and stopping the movie projector as well as
setting up the movie projector. Mayhew (Mayhew 1992) defines an actor as a class of
humans whereas others consider a particular person an actor. Usually there is no need
to consider a particular person and provide a name for an actor (e.g. Chris, Pat) since
we are only interested in describing relevant characteristics of the actor. Confusion

42 An Ontology for Task Models

arises when an actor is to be named and the only sensible name seems to be the role
name. For instance the actor who has the projectionist role is most intuitively called the
”projectionist” which is already his/her role name. Therefore it is usually better to name
these actors arbitrarily (A,123, People having role X) and simply record characteristics
such as language, typing skill, computer experience, knows how to use Word etc. The
important part is their characteristics and their relationships with roles. In other cases,
where it does not matter who actually performed the task, it is sometimes more useful to
specify that a task was performed by a role rather than by a particular actor. Sometimes
even a computer system is the actor of a task (e.g an automated movie projector).

Work Culture

Every work environment has its own culture which defines the values, policies, expec-
tations, and the general approach to work. The culture determines how people work
together, how they view each other socially and what they expect from each other. Tak-
ing the culture into account for UID may influence decisions on restructuring of work
when rearranging roles or their responsibilities.

Roles are usually used to describe the formal work structure extended with some ”so-
cially defined” roles. In practice, roles such as ”management” or ”marketing” influence
each other and other roles. These kind of influence relationships are part of the work
culture. Describing work culture is not straightforward but at least some influence rela-
tionships and their relativestrengthscan be modeled. Other aspects of culture include
policies, values and identity (Beyer & Holtzblatt 1998).

3.4.5 Defining an ontology

From the four viewpoints that have been expressed, we can now propose a task world
ontology. The ontology defines the basic concepts and relationships that we regard
most relevant for the purpose of a task analysis. Basic, in this case, indicates that we
are able to describe other relevant concepts and relations by using this minimal set of
concepts and relations. The ontology is of importance because it is the conceptual basis
of the information that is recorded and the way it is structured and may be represented.
The ontology is constructed on the basis of literature and on our own experiences in
task modeling. It has evolved over the years and elements have been changed or added
when needed. The ontology should not be regarded complete or final and at most we
claim that this ontology will help to cover many important aspects in asystematicway.
From our experience doing design studies the ontology proved adequate but no formal
evaluation has been done. Hence, the ontology as formulated should not be taken too
strict. If during a study other relationships or attributes seem important, they should be
added ”on the spot”. The ontology as specified in this chapter is intended to serve as a
starting point which assures broad coverage of important aspects.

The concepts defined here are based on GTA and can be found in most other task
models as well (with the exception of the event concept). This section will define the
concepts and will define their relationships in detail.

An Ontology for Task World Models 43

Task
Agent

Role

Event

Object

name(string)
goal(string)
start_condition(string)
stop_condition(string)
initial_state(state)
final_state(state)
duration(value,unit)
frequency(value,unit)
type(enum)
priority(value)
interruptable(BOOL)

name(string)
skills(string)
attitude(string)
miscellaneous(string)

name(string)
goal(string)name(string)

attribute(Name,Value)*
action(Name)*
location(Pos)

name(string)
description(string)

Contains

Responsible

Performed_by

PlaysTriggers

Subtask

Uses

Triggers

Used_by

Subrole

Is

Performed_by

Goal

Has

Subgoal

description(string)
goal_state(state)

Influence

Figure 3.5: The task world ontology

• Task. A task is an activity performed by agents to reach a certain goal. A task
typically changes something in the task world and requires some period of time
to complete. Complex tasks can be decomposed into smaller subtasks. Tasks
are executed in a certain order and the completion of one task can trigger the
execution of one or more other tasks. A task could also be started because of
an event that has occurred in the task world. Important for the task concept
is the distinction between unit tasks and basic tasks, where (ideally) a unit task
should only be executed by performing one or more basic tasks. The relationship
between the unit task and basic task is interesting because it can indicate the
problems that an agent may have in reaching his goals.

• Goal. A desired state in the task world or of the system. A goal can be reached
by one or more tasks. Goals may also have sub-goals.

• Role. A role is a meaningful collection of tasks performed by one or more agents.
The role is meaningful when it has a clear goal or when it distinguishes between
groups of agents. A role is consequently responsible for the tasks that it encom-
passes and roles can be hierarchically composed.

• Object. An object refers to a physical or non-physical entity. A non-physical
entity could be anything ranging from messages, passwords or addresses to ges-
tures and stories. Objects have attributes consisting of attribute-name and value

44 An Ontology for Task Models

pairs. What can be done with an object is specified by actions, for instance move,
change, turn off etc. Furthermore, objects may be in a type hierarchy and can
also be contained in other objects.

• Agent. An agent is an entity that is considered active. Usually agents are humans
but groups of humans or software components may also be considered agents.
Agents are not specific individuals (like ”Chris”) but always indicate classes of
individuals with certain characteristics.

• Event. An event is a change in the state of the task world at a point in time.
The change may reflect changes of attribute values of internal concepts such as
Object, Task, Agent or Role or could reflect changes of external concepts such as
the weather or electricity supply. Events influence the task execution sequence
by triggering tasks. This model does not specify how the event is created or by
whom.

These concepts are related in specific ways. The following list sketches the relation-
ships that we are using. For each relationship the definition is given and explained.
Figure3.5shows all the concepts and relationships.

• Uses. The uses relationship specifies which object is used in executing the task
and how it is used. The uses relationship typically changes the state of the object.

• Triggers. The triggers relationship is the basis for specifying task flow. It speci-
fies that a task is triggered (started) by an event or a task and how it is triggered.
Several trigger types are possible such as OR, AND, NEXT to express choice,
parallelism or sequences of tasks.

• Plays. Every agent should play one or more roles. The plays relationship also
indicates how this role was obtained. For instance by delegation, mandate or a
socially determined reason.

• Performed by. The relationship performed by specifies that a task is performed
by an agent. This does not mean that agent is also the one who is responsible
for the task because this depends on his role and the way it was obtained. When
it is not relevant to specify the agent that performs the task, a role can also be
specified as the performing entity.

• Has. The has relationship connects tasks to goals. Each task has a goal that
defines the reason for performing the task. A goal could be either a personal or
business goal.

• Subtask/Subgoal. The subtask/subgoal relationship describes the task/goal de-
composition.

• Subrole. The subrole relationship brings roles into a hierarchical structure. The
subrole relationship states that a role includes other roles including the responsi-
bility for the task that encompasses the role. When a role has subroles the task
responsibilities are added up for the role.

Related Work 45

• Influence. A role can influence an other role. This is part of work culture and
has a certain strength.

• Responsible. The responsible relationship specifies a task for which the role is
responsible.

• Usedby. The used by relationship indicates who used which object and what
the agent or role can do with it. The agents’ rights regarding objects can be of
existential nature, indicate ownership, or indicate daily handling of objects.

These relationships form a basis and other relationships can be derived from it. For
example, one could be interested in who isinvolvedin a certain task. That information
can be derived using theresponsible, performs, playsandsub-rolerelationships.

3.5 Related Work

Herczeg has also developed an ontology (Herczeg 1999) for task models. He calls
his model a ”task analysis framework” but actually defines an ontology similar to our
ontology. As can be seen in Figure3.6, the ontology is almost a sub-ontology of
ours. The only notable difference is thetool concept. In our ontology we do not
make a distinction between aManaged Objectand aTool, in fact both are regarded
Objects. Herczeg uses Tools to indicate the ”support systems for execution of tasks by
operators” and they are characterized by a set of functions they support.

Agent

Role
Managed

Object

Tool

Task

represents

managesperforms

influences
uses

defines

Figure 3.6: The Herczeg’s ontology

Herczeg also defines attributes for each concept. The attributes are similar to the ones
found in our ontology and include priority, interruptability and frequency. Herczeg
defines three layers of use; first the model itself, thenclassesof the concepts that
depend on the specific design case andinstancesfor the final instantiations.

As Figure3.6 shows, Herczeg’s ontology can be seen as a simple version of the on-
tology as we defined it. This gives an indication that there is starting to become an
agreement on the main concepts and relationships that are important for task modeling.

46 An Ontology for Task Models

3.6 Summary

In this chapter, we first discussed the history of task analysis and the most influential
methods. The methods all focus on slightly different aspects and there has been a
development from a hierarchical structure describing the tasks of one user, to models
that include work flow modeling, organizational and social aspects of groups of users.
The central question of this chapter iswhataspects need to be described for the purpose
of user interface design.

In order to capture what needs to be described, an ontology for task models was pro-
posed after a discussion of important aspects of the task world. The ontology defines
the basic concepts and relationships that are relevant for the purpose of task analysis.
The main concepts areGoal, Task, Agent, Role,andEvent. Such an ontology helps
understanding and modeling of work. For the designer, the ontology functions as a pair
of ”polarized” glasses with which the designer looks at the task world and structures it.

Designers do not use the ontology as a way to write down the knowledge that is gained.
In that respect, the ontology is a theoretical model. Usually representations are used to
communicate and document the knowledge. In the next chapter, we discuss how the
ontology provides a theoretical basis for representations and analysis techniques that
can be used in practice.

Chapter 4

Task Modeling and Analysis

4.1 Introduction

Task modeling is about modeling of use-relevant task knowledge, either of anexisting
task world or anenvisionedtask world. In this chapter, we discuss how such knowledge
can be modeled, analyzed and documented. The representation techniques discussed
apply to both current task models and envisioned task models. Although the same
representation techniques can be used, the interpretations may vary slightly.

Task modeling1 is the activity of transforming raw task and user related data or en-
visioning ideas into structured pieces of task knowledge. This knowledge is usually
documented in a specification that uses several different representations. Each repre-
sentation is intended to emphasize a certain aspect of this knowledge. Considering the
complexity of the task world and the various possible views, it is clear that several
different representations are needed. Ideally, the analysts have a collection of repre-
sentations at hand that covers all aspects and views. At the same time, it is preferable
that such a collection is kept small so that the designer does not drown in a plethora
of overlapping representations. Representations must be useful and usable for design-
ers. This chapter discusses the common representations for task modeling and defines
a collection of representations that together cover most aspects of the knowledge that
need to be documented, while minimizing the overlap.

Additionally, we take a look at task modelanalysisusing the ontology described in
chapter3. Task modeling is typically an iterative process where structures are con-
stantly changed as they are created and (re)interpreted. The interpretation process is
done by analysis of what is modeled and comparing it with the data or problems to be
solved. In acurrent task model, the specification needs to be interpreted for identifi-
cation of the weaknesses and opportunities for improvements in the task world, once
the pieces of knowledge become ”stable”. This is after all the main purpose of task
analysis. In anenvisionedtask model, the specification needs to be analyzed to make

1In this chapter, task analysis refers to the activity of analyzing the task model itself.

48 Task Modeling and Analysis

sure the new situation actually optimizes the task world. We propose a set of formal
properties for automatic evaluation and heuristic evaluation that can be used to analyse
task model specifications.

4.2 Representations for Task Modeling

The task world ontology that was discussed in chapter3 is a model on the conceptual
level and does not define any representations. The ontology is not intended to do so
and merely gives structure to how we can look at the task world. In that sense it de-
fines a “pair of polarized glasses” for looking at the task world. For documenting all
that can be seen with these “glasses”, a variety of representations is needed. The task
world is usually complex and simply cannot be captured in one single representation.
It is therefore necessary to have a collection of representations that each show a par-
tial view on the task world. Each view can then focus on one or two concepts with
some relationships and together these views cover all important aspects. In this way,
each representation can be kept simple and easy to understand while all representations
together model a complex task world2.

In the following sections, we discuss common graphical representations for task mod-
eling. We discuss the strengths and weaknesses of the existing representations and we
will then propose a collection of improved representations.

4.2.1 Common representations

Many representations already exist for task modeling as well as other related modeling
activities. Not all of them are useful in practice and the question is what makes a
representation useful and usable. One aspect of a representation is that it should be
effective. In Macinlay Macinlay (1986) defines the effectiveness of a visual language
as”whether a language exploits the capabilities of the output medium and the human
visual system”. This notion can be expanded to includepurposeandaudiencei.e. what
is the representation intended for and who is going to use it, because”visualizations
are not useful without insight about their use, about their significance and limitations”
(Petre et al. 1997). Developing usable diagram techniques is difficult and requires
insight in all of these aspects. In fact, one could say that usability is just as important
for graphical representations as it is for user interfaces, both depending strongly on
the context of use. Most of the research in this area is the field ofvisualization(Card
et al. 1999) orvisual design(Tufte 1990, Tufte 1983).

If we want to compare representations, we must first distinguish several purposes for
which they can be used and by whom (Britton & Jones 1999). Within task analysis the
purposes of representations typically include:

1. To document and to communicate knowledge between designers.
2In this chapter, we focus on task modeling techniques. The relationships with other modeling techniques

such as used in OODA, Catalysis, RUP etc are beyond the scope of this thesis

Representations for Task Modeling 49

2. To analyze work and to find bottlenecks and opportunities.

3. To structure thinking for individual designers.

4. To discuss aspects of the task world within the design team.

5. To propose changes or additions within the design team.

6. To compare alternatives in the design team or with a client.

Additionally we need some aspects that help discussing and comparing representa-
tions. For this discussion we will take the position that a representation essentially isa
mapping of concepts and relationships (and possibly attributes) to the visual domain.
Some aspects may concern the concepts and relationships while others concern the ap-
propriateness of the mapping in relation to the purpose and audience. For discussing
common representations we will use the following aspects:

• Intended Purpose. For what purpose is the representation intended? Certain
representations work well for communicating with clients while others only help
structure a single designer’s thought. Similarly, certain representations focus on
time while others focus on structure. Effectiveness is reduced when the repre-
sentation does not support the purpose.

• Coverage. What concepts and relationships are involved? What information is
shown and what is not? Is the information suitable for task analysis purposes?
The information covered by a representation determines the view it supports.

• Complexity. What is the complexity of the representations in terms of the num-
ber of concepts and relationships that are shown? If the complexity is high the
understandability is usually low, which is probably not desirable.

• Understandability. How well can the representation be understood? Under-
standability concerns how successful the concepts and relationships have been
mapped to a graphical representation. Representations should be easy to under-
stand for the intended audience/users. If not, they will not be used. Stakehold-
ers may come from different disciplines which makes a common understanding
more difficult to reach. Other aspects such as visibility also play a large role i.e.
how easy parts of the representations can be distinguished or what kind of first
impression a representation gives.

• Intended Audience. Who is going to use the representation? Certain repre-
sentations are more familiar to designers from different disciplines than others.
Also clients and other stakeholders may be familiar with certain representations.
For example, UML is familiar to most Software Engineers while unfamiliar to
ethnographers.

In the following sections we will use these aspects in the discussion of the different
common representations that are used for task modeling: graphical trees, Universal
Modeling Language, and Contextual Modeling.

50 Task Modeling and Analysis

Traditional Task Trees

Traditional task models mainly use task tree structures in some flavor. The task trees
are intended to show the structure of the work in terms of tasks, goals and actions. Usu-
ally, some time information is added as well. HTA (Annett & Duncan 1967) uses trees
with plans while most others use trees with constructors for time constraints. Some of
the older methods do not even use graphical representations and use long textual de-
scriptions e.g. GOMS (Card et al. 1983). Such descriptions become highly unreadable
when the size of the task model is larger than just a few tasks. The indentation of task
is not sufficient for large scale models and therefore graphical trees are an effective
improvement. In the graphical representation, visual labels (shapes or icons etc.) add
meaning to certain parts which make it much easier to distinguish the different parts
(goal,task(type) or action) of the diagram. For example, in ConcurTaskTrees (Paternò
et al. 1997) the task trees are combined with icons for task types and LOTOS-based
(ISO 1988) operators that allow some more elaborate time semantics. In ConcurTask-
Trees, tasks are of a certain type (abstract, user, machine) which is reflected in the icon
that represents the task, see Figure4.1. The figure shows that even when the labels are
not readable, the different task types can still be distinguished.

Most graphical representations depict a task tree from top to bottom. However, drawing
the tree from left to right makes better use of the drawing area since trees are usually
much wider than they are deep, see figure4.2. This issue becomes relevant when
depicting large task models of more than∼ 25 tasks.

Figure 4.1: ConcurTaskTree example

Task trees are generally easy to understand and build, although they are usually built
without software tool support. Tool support is slowly beginning to appear although
still not commercially. Using sticky notes on a blackboard, a tree can be (re)structured
easily but for documentation purposes the trees are (re)drawn manually (i.e. using a
drawing package). Task trees are well-suited for communication purposes within the
design team and to a certain extent also for communicating with domain experts. For
the latter case the trees should not be too big.

Although task trees can be powerful, they are mainly based on thesubtaskrelationship
between tasks. Additionally, some information could be given about the ordering of

Representations for Task Modeling 51

Task 4Task 4Task 3Task 3

Task 1Task 1 Task 2Task 2 Task 1Task 1

Task 2Task 2 Task 3Task 3

Task 4Task 4

Task 5Task 5

Task 5Task 5

Figure 4.2: Depicting left-to-right versus top-to-bottom

tasks but no information about roles, actors or objects is given. Still a fundamental
problem is that the possibilities for specifying time relationships remains problematic,
see chapter3.

Templates

Templates are a common way to represent concept properties. A template is a form and
consists of fields for every property. Templates typically contain a mixture of properties
and some relationships. In MAD and GTA, the template is used frequently to describe
the task properties and relationships to mostly the parent task and roles.

A template is a simple and easily understood representation but it is only useful to
represent detailed information. A large set of templates is very difficult to understand,
even by experts. A template focusses on one concept and hence the relationships with
other concepts are largely lost. Because of the lack of overview, templates are mostly
used as a reference to detailed information of single concepts.

The Universal Modeling Language (UML)

In software engineering, UML (Rumbaugh et al. 1997) is one of the most influential
modeling languages at present. It grew out of the intent to standardize the models that
were used in Object Oriented Analysis and Design. Currently it is widely accepted
in industry. UML was not designed with task modeling in mind, nor does it have an
explicit ontology as a foundation. In UML, each diagram is defined both syntactically
and semantically. Usage of terms between diagrams has been kept as consistent as
possible.

Although UML was not designed for the purpose of task modeling, several diagrams
can certainly be used in a task analysis context. The question is whether it would be
useful to standardize on certain UML diagrams for task modeling. Since UML is a
standard and many tools exist there are clearly benefits. However, if UML is used for
task modeling the interpretation needs to be changed slightly. For example, states in
an activity model now become tasks and objects now become roles3. UML has four
representations that are directly relevant for task modeling:

3For the discussion of the different diagrams, this adaptation is assumed.

52 Task Modeling and Analysis

1. The Activity Diagram . This diagram can be used to describe the task flow in
relation to events, roles and goals. Typically an activity is triggered by an event.
As soon as a task is started, a goal consequently gets ’activated’.

Request Service

Pay

Collect Order

Take Order

Deliver OrderOrder
[Delivered

Order
[Placed]

Order
[Filled]

Fill Order

Order
[Placed]

Customer Sales Stockroom

Figure 4.3: UML’s Activity Diagram

2. The Collaboration Diagram. This diagram gives insight into the way differ-
ent objects work together. The arrows show which roles communicate or work
together in the exchange of objects or messages.

Requestor

:Order Taker :Administrator

:Supplier

1: place_order(Order

3:
 o

rd
er

(B
oo

k)

2: check_budget(Budget, OrderTotal
5: notify(NewBudget)

4: send_bill(B
ill)

Figure 4.4: UML’s Collaboration Diagram

3. The Sequence Diagram. The sequence diagram can show the sequence of tasks
as they are performed between roles. Originally they are used to model method
calls to objects but essentially there is no difference. Problems arise when calls
are conditional or optional. Parallelism can also be modeled to a certain extent.

4. The Use Case Diagram. This diagram can be used to describe what is also
known as scenarios. The exact difference is an ongoing dispute in the HCI com-

Representations for Task Modeling 53

munity but at least they are both used to describe a particular set of tasks in a
specified context. This representation is very informal.

Considering that the collaboration diagram and activity diagram are so related to each
other, usage can effectively be restricted to using the activity view with swim lanes,
i.e. no information would be lost since the collaboration diagram contains less infor-
mation. The sequence diagram is probably less interesting for task modeling because
of the problems with conditional and optional paths. Additionally, the method calls
that are interesting in the object oriented sense have no important equivalent in task
modeling. At most they could say something about “how” a task is started (by yelling
or whispering commands?).

The use case diagram is useful for task modeling although there is no clear view on the
differences between a use case and a scenario. One definition could be that a use case
describes a specific “path” through a task tree under specified conditions. A scenario
can then be defined as a more general description that also sets the context for a use
case.

Using UML diagrams has the advantage that Software Engineers are familiar with them
but other disciplines in the design team usually do not know them. The diagrams are
fairly powerful but would require a small adaptation for task modeling purposes. Addi-
tionally, many software tools exist that support the designers to create UML diagrams.

Contextual Modeling

Contextual Modeling is part of the Contextual Design (Beyer & Holtzblatt 1998) method
and consists of fivework modelsto describe the task world. The models are built to de-
scribe work from the point of view ofoneperson and they are not intended to represent
everything that a person does. The five different views are:

1. The Flow Model. Represents the communication and coordination necessary to
do the work.

2. The Sequence Model. Shows the detailed work steps necessary to achieve an
intent.

3. The Artifact Model . Shows the physical things created to support the work
along with their structure, usage, and intent.

4. The Cultural Model . Represents constraints on the work caused by policy,
culture, or values.

5. The Physical Model. Show the physical structure of the work environment as it
affects the work (objects and their locations).

These models as they are introduced are not entirely new. The authors claim that these
representations have been tuned over time and are sufficient in most design cases. This

54 Task Modeling and Analysis

U1
(Secretary)
-Keep office organized

-Ensure bills paid on time
-Do final proof, print and distribution of documents

-Manage and coordinate schedules
-Handle logistics of trips

President
-Run the business

-Keep abreast of what’s going on
-Sign checks
-Go on trips Worker

-Do the work of the business
-Meet with management

Vendor
- Invoice for services

Marketing Manager
-Run the marketing department

-Produce Proposal

Sales Manager
-Run the sales department

-Travel to sales offices

Department
Reports

Checks to Sign

Bulletin Board
-Announce events of general interest

-Hold documents that manage
shared projects

Proposal to
proof and mail

Announcement

Invoices

Checks

Signed Checks

Request to
help with family
vacation plans

Request to
schedule meeting
with president

Request for
clarification

Discussion of
travel plans

Request to
book trip

Figure 4.5: The Flow Model from Contextual Design

is questionable because none of the representations allows hierarchical building of rep-
resentations. For instance, the Sequence Model is a linear sequence of tasks without
the possibility of defining subtasks, choices, plans or strategies. Other representations
such as the Flow Model are almost exactly the same as UML’s Collaboration diagram,
although a different notation is used. The Artifact model and Physical model are basi-
cally annotated drawings and not structured models. Even though the individual repre-
sentations are not that new or special, the idea of using these ”views” to describe work
was not previously stated as such.

The contextual models use a somewhat different terminology than is commonly used.
They speak about roles, tasks, and artifacts but they also useintent to indicate goals.
Additionally, they speak about “triggers” as events that start tasks. Events are com-
monly found in work flow or process modeling but are somehow not often used in task
modeling.

Contextual Modeling has shown that it is important to look at the work from different
perspectives and work that out into practical models. Many have argued for a multiple
perspectives view on work but none have worked it out in such detail.

As the authors say in their book, the models usually occupy a whole wall. The problem
with the Flow model and the Sequence model is that they only work for small design
cases and do not scale very well to larger cases. Other problems are the undefined

Representations for Task Modeling 55

Open Netscape

Get new messages

Select urgent message

Read message

Decide on action

Make a phone call

Reply to message

Move message to handle mail

Read next message

Scan Subjects

Unable to solve problem

Intent: Handle problems
Trigger: Return to the office

Intent: Solve problems

Intent: Get back to people

Figure 4.6: The Sequence Model from Contextual Design

semantics. The Flow model is actually a renamed UML collaboration model without
distinguishing roles and actors.

Contextual Design also defines the process of gathering data and modeling steps. In
time-boxed sessions the models are created andconsolidatedin a later session. Only
in the consolidated versions are models worked out in detail. This illustrates that de-
signers do not make an exact and consistent task model from the start but rather iterate
and slowly consolidate the models.

4.2.2 A collection of ontology-based representations

In the previous sections, several common representations have been discussed. It is
clear that some are more useful/usable than others and that improvements can be made.
In this section, we define a collection of improved representations that cover the views
as defined in chapter3. This collection of coherent representations is an attempt to
provide a more useful collection of representations for practitioners. The following
views are covered:

• Work Structure

• Work Flow

• Work Artifacts

56 Task Modeling and Analysis

• Work Environment

For each of the views we will define one or more representations that form a useful
“package” for that view. Together, the representations can form a practical tool set
for the designer. The representations are based on existing representations but include
some additions or modifications to make them more usable and useful for task model-
ing.

Constructing a set of Representations

The collection of representations that is discussed in the next sections combines several
existing representations. Additionally, some modifications have been made. Compared
to Contextual Modeling (CM), the main differences are:

• The CM sequence model is replaced by a work flow model similar to the UML
Activity diagram.

• The CM sequence and CM flow model are combined into one representation.

• Decomposition trees are added.

• The CM cultural model has been redesigned.

• The number of concepts is larger than in CM.

Compared to UML, we use a modification of the Activity Model. We have added and
event and goals lane as well as changed representations for parallelism and choice.

Modeling the Work Structure

The purpose of the work structure model is to represent how people divide their work
into smaller meaningful pieces in order to achieve certain goals. Knowing the structure
of work allows the designers to understand how people think about their work, to see
where problems arise and how tasks are related to the user’s goals. The relation be-
tween tasks and goals helps the designers to choose which tasks need to be supported
by the system and why i.e. which user goals are independent of the technology used.

For modeling work structure the task decomposition tree has proven to be useful and
usable in practice. The tree is essentially based on thesubtaskrelationship between
tasks. Besides tasks, goals can also be incorporated. At the highest level a tree can
start with a goal and subgoals and then proceed with tasks and subtasks, see Figure
4.7. In that case thesubgoalandhasrelationship are also used. A task decomposition
is modeled from the viewpoint of one role or goal. If complex systems are modeled,
several task trees are needed to describe the work for all the roles. It then becomes
difficult to see how work is interleaved.

Trees normally contain a time ordering using constructors from top to bottom or left to
right, depending on the way the tree is drawn. The inclusion of time information can be

Representations for Task Modeling 57

insightful but it is often also problematic as discussed in section3.4. ConcurTaskTrees
use operators based on LOTOS (ISO 1988) which are probably the best defined time
operators. On the other hand, it is not always necessary to be very precise in everything
that is modeled. Designers will also typically model that certain tasks occursometimes
or almost never. In our opinion, including some time information is useful but this kind
of information is better represented in a work flow model if precision is required.

Prepare DocumentPrepare Document

Set Copy SettingsSet Copy Settings

Place DocumentPlace Document

Check PaperCheck Paper

Check Copy SettingsCheck Copy Settings

Copy DocumentCopy Document

Define FileDefine FileSelect OriginalSelect Original

Set Paper SizeSet Paper Size

Multiply Documents

Receive CopiesReceive Copies

Monitor ProgressMonitor Progress

Set ContrastSet Contrast

Set QualitySet Quality

Set CollationSet Collation

Set #copiesSet #copies

Check PresenceCheck Presence

Check QuantityCheck Quantity

Make a Proof printMake a Proof print

Check PreviewCheck Preview

Send JobSend Job

Start JobStart Job

succ any choice

choice

succ

any

any*

Figure 4.7: The Work Structure Model

If time is included, then a number of time operators are plausible. In our experience, it
is useful to have a set of standard operators while also allowing designers to create their
own operators when needed. For the average usage, the following time relationships
have proven sufficient:

• Concurrent. The tasks occur concurrently.

• Choice. One out of a set of tasks is done.

• AnyOrder . All tasks of a set of tasks are done in no fixed order.

• Successive. One task is followed by another.

• Any. Zero or more tasks of a set of tasks are done in no fixed order.

• * combined with other constructors. Used to express iteration.

58 Task Modeling and Analysis

In the work structure model, the root of the tree is a goal with possibly some subgoals.
Connected to goals are tasks which are represented as rounded rectangles. The tree is
drawn from left to right instead of top-to-bottom for more economical use of space,
especially when trees become large.

Other aspects of work structure include role structures and the relationships with tasks.
For role structures trees can also be used. When used to show goal or role hierarchies
the time constructors are not used.

Modeling the Work Flow

The purpose of the work flow model is to show work in relation to time and roles.
The model gives the designer insight in the order in which tasks are performed and
how different people are involved in them. Additionally, it can show how people work
together and communicate by exchanging objects or messages. Typically, a flow model
describes a small scenario involving one or more roles. This way, it shows how work
is interleaved.

Book Seller Teacher Financial Administrator

Choose a BookChoose a Book

Check BudgetCheck Budget

Receive BookReceive Book Receive BillReceive Bill

Register PurchaseRegister Purchase

Pay BillPay Bill

Process OrderProcess Order

Order BookOrder Book

New Term

Get a book

Maintain Budget

Keep Inventory

Pay Bills

order

book

request

bill

Goal Lane Event Lane

Figure 4.8: The Work Flow Model

The flow model specified here is a variation on the UML Activity graph. We included
events and goals to make it more suitable for task analysis. Additionally, the repre-
sentations of the time operators have been modified to be more appealing. This way
the collaboration diagram (or Contextual Design’s Flow Model) is not needed anymore
since the information has been combined in one representation. Each flow model de-
scribes a scenario that is triggered by an event, see Figure4.8. Work usually does not

Representations for Task Modeling 59

start by itself but instead is often highly event driven (van der Veer et al. 1997). The
event is represented by an oval which is connected to the first task. The sequence of
tasks is given using aConcurrent operator or aChoice operator and not any of the
other operators as suggested for the structure model. The concurrent operator is repre-
sented by an additional arc while the absence of the arc indicates the choice operator.
Tasks can optionally be arranged inswim lanes, one for each role. Objects can be
passed between tasks that have different roles and are drawn on the border of the adja-
cent swim lanes. When needed, goals can also be added to this representation. With a
certain task a new goal can get “activated” until it is “reached” in a later task. The goals
are written in the first column with vertical lines to show how long they are activated.

User

Insert CardInsert Card

Select AmountSelect Amount

Select ReceiptSelect Receipt

Take Card OutTake Card Out

Take Money OutTake Money Out

Enter PINEnter PIN

Money Shortage
Get money

Know balance
Get a bill

Take ReceiptTake Receipt

Take Card OutTake Card Out

Read BalanceRead Balance

Take Money OutTake Money Out

Identification

Goal Lane Event Lane

Figure 4.9: A Flow Model of a Dutch ATM

The flow model does not show hierarchical relationships between tasks and a flow
model can only use tasks that are hierarchically on the same level. For subtasks, a new
flow model needs to be specified. The addition of the goal lane can show many useful
aspects when analyzing the work flow. For example, Figure4.8 shows that once the
”teacher” has received the book his goal is achieved but the scenario is not finished
yet. Figure4.9describes the use of a typical Dutch ATM and shows why people often
forget to take their receipts out. As soon as the primary goal has been reached, users
loose interest in the remaining tasks. In this case, the task to take out the receipt is
positionedafter the users get the desired money. When the ATMs were first introduced
the situation was even worse, the machines unfortunately gave back the cardafter the
money had been dispensed. Since the user had already achieved the goal the user was
much less interested in the remaining tasks and people consequently forgot to take out
their bank card.

60 Task Modeling and Analysis

In terms of the ontology, the flow model is based on the concepts Event, Task, Object
and Role. The relationships used aretriggers, responsible, anduses. The operators are
Concurrent, Choice, andSuccessivewhich are parameters in thetriggers relation-
ship. TheAnyOrder andAny constructors are not valid in this representation and the
Successiveoperator is implicit in the direction of the arrows. For objects that are being
passed between roles it holds that each object must be associated to both tasks with the
usesrelationship. Note that the objects that are used in one task are not shown in the
representations. For example, the PIN card itself is not shown in Figure4.9.

Iteration is not specified in the flow diagram. If a task is done several times, an asterisk
can be used to indicate that the task and it subtasks are done several times. However,
usually iterations are specified in the Work structure model. Iteration is specified on
subtasks and not tasks on the same level, which are shown in the Work Flow model.

Modeling the Work Artifacts

The artifact model shows two relationships between objects: thecontainmentandtype
relationship. For both a tree diagram is used. The objects themselves can be anno-
tated with their attributes or their visual appearance. In order to express containment
and type, the UML notation can be used, see Figure4.11. However, it is important
to remember that we are only modeling objects that are relevant to the user and not
any irrelevant internal system objects. To some this may suggest that the task models
describes an object oriented system model, which isnot the case.

Desk ClerkDesk Clerk
GuestGuest

Registration
form

Passport
Computer

Suitcase

Mobile Telephone

Organizer

Figure 4.10: The Artifacts Model

The use of objects in tasks is partly covered by the Work Flow model. The Work
Artifacts focusses on the structural aspects of the object. However, objects may also be
connected to their users i.e. roles or agents, instead of the tasks where they are used.
In such a diagram, the users are represented as ovals and the objects are labeled dots
within the ovals. The ovals may overlap if more than one user uses the object, see
Figure4.10.

Representations for Task Modeling 61

OriginalOriginal FileFile

Physical OriginalPhysical Original

ScanScan

TransparentTransparent

Structured DocumentStructured Document

PaperPaper

MagazineMagazine

TransparentTransparent

BookBook

Figure 4.11: Example of a UML class diagram

Modeling the Work Environment

The environment model describes two aspects of the environment. Firstly the physical
layout of the environment and secondly the culture within the environment. Thephys-
ical model is simply described by one or more annotated ”maps” of the environment.
The purpose is to show where objects are located in relation to each other. The objects
are those that are relevant for the work and also those who are in the same space. Fig-
ure4.12shows an example of a work place layout. Such layout diagrams can easily be
drawn using commercial drawing software such as Visio (Visio Software 1999).

A

B

C

BD

PC

CABINET

TABLE

PC

CABINET

printer

MAIL
BOX

Figure 4.12: The Physical Layout Model

The other model is theCulture Model . The culture model we describe here is an
adaptation of the culture model from Contextual Design. In Contextual Design the
roles are represented in overlapping circles. However, overlapping of circles does not
have any meaning although it suggests that there is one. Hence we adapted the model.
We define the culture model as follows.

1. Roles are represented as ovals.

2. The ovals are connected by arrows if there is aforce between roles. The relative
strength of the force is depicted in the width of the arrow.

3. Forces are annotated withattitudes of the force relationship.

62 Task Modeling and Analysis

In some cases, a force applies to more than one role. By drawing an extra circle around
roles, a force can indicate one-to-many forces which can typically be used to describe
”corporate culture”.

ManagementManagement

AdministrationAdministration CustomerCustomer

Desk ClerkDesk Clerk

Follow these rules!

We’ll do anything for you!

Let’s get it over with!

What you ask is unrealistic!
We should decide on that!

Take care of it!
We don’t care how

Figure 4.13: The Culture Model

4.3 Static versus Dynamic Representations

All of the representations discussed in the previous sections are static. However, rep-
resentations can also be more dynamic. Traditionally, a representation is static i.e. it
does not change after it is drawn and is designed for use on paper. However, it is often
convenient to emphasize a certain aspect in the representation. When software is used
to draw the representations, the representations can be changed dynamically. In (Card
et al. 1999) they are calledactive diagrams. For example, one could easily switch
between a flow model with or without swim lanes. Alternatively, it could be possible
to add some extra information bymarkingtasks as “problematic” or “uses object X”,
see Figure4.14. Such annotations are often done by designers to explain certain as-
pects to others during a presentation or in documentation. In software, we are already
very much used to active diagrams and they occur in scrolling, zooming and syntax
highlighting. This asks for a more flexible view on what constitutes a representation
and when a representation can be modified. The dynamic aspects could be controlled
manually by the viewer but could also be pre-specified using a function in which case
we usually speak of animation. Now that it becomes increasingly more easy to cre-
ate dynamic representations it is important to understand when and how they could be
applied usefully in design.

In task modeling, animation is a way to create more dynamic representations. Ani-

Analyzing the Task World 63

Task 3Task 3

Task 1Task 1 Task 2Task 2

Task 4Task 4

Figure 4.14: Coloring nodes to highlight particular tasks

mation can be used in simulations of scenarios or task models (Bomsdorf & Szwillus
1999a). Using simulations an analyst can step through a scenario and get a different
feel for what goes on. Other purposes might be to “debug” a task model which is
particularly useful for envisioned task models.

4.4 Analyzing the Task World

Representations help to represent the knowledge that is gained in the process of task
modeling. During this process it is useful to analyzewhat is actually represented in
the specifications. One aspect is to see if the specification correctly represents the
knowledge and other aspects may focus on seeing the problems in the task world. For
envisioned task models, it is important to make sure the specification is correct.

One frequent criticism of task analysis has always been the fact that it remained unclear
what exactly to do with the data, “we have the data now what?” What should be
done next is an analysis of the data in order to find problem areas and opportunities
that relieve the problems in the task world. Those results then become the basis for
designing anenvisioned task model. Representations for envisioned task models can be
largely the same as for current task models, only the interpretation is slightly different.
Task analysis research has focused on data collection and modeling techniques but it
has neglected research on data analysis. Naturally, during modeling activities some of
the data is analyzed when models are being constructed and modified. However, much
more structural analysis is possible, especially when the data is structured using the
task world ontology (van Welie et al. 1998b).

When analyzing a current task model many problems can occur that differ from case
to case. However, we found that many problems fall in the same categories and have a
more general and domain independent nature.

• Problems in individual task structures. The task structure is sub-optimal be-
cause too many subtasks need to be done or certain tasks are too time-consuming
or have a high frequency.

• Differences between the formal and actual task performance. In coopera-
tive environments, usually regulations and work practices exist which are docu-
mented, for instance as part of ISO9000 compliance. In reality, tasks are mostly
not performed exactly as described on paper and that ”one way” of how the tasks

64 Task Modeling and Analysis

are done does not exist. When persons in a cooperative environment think dif-
ferently about what needs to be done, problems arise.

• Inefficient interaction in the organization. Complex tasks usually have many
people involved who need to communicate and interact for various reasons, such
as knowledge about tasks or responsibility for tasks. This can be the cause for
time-consuming tasks but also for irritation between interacting people.

• Inconsistencies in tasks. Tasks are defined but not performed by anyone or tasks
are executed in contradictory order.

• People are doing things they are not allowed to do. In complex environments
often people have a role that makes them responsible for tasks. Sometimes other
roles actually perform tasks for which they did not get an official permission or
they are using/changing objects they are not allowed to change.

Of course not all problems can ever be automatically detected. However using our
model for describing task world models many characteristics can be detected semi-
automatically by providing the analyst with a set of analysis primitives. Analyzing a
work environment can be done when the data present in the model is transformed into
qualitative information about the task world.

There are two ways of qualitative analysis. An analyst may search heuristically by
looking at properties of a specification that might point the analyst to problems. Alter-
natively the data can be analyzed on a logic level by putting some constraints on the
model, a form of verification. Constraints that do not hold may show interesting fea-
tures of the task world. In the next sections, these ways of analysis will be elaborated
and clarified with examples.

4.4.1 Heuristic model-based evaluation

In heuristic evaluation, we try to find out “what is going on” by looking at certain
properties of the specification. The goal is to gain an understanding of the task world
and to find the nature and causes of problems. Using a standard set of properties we can
increase the chance of doing a successful analysis of the specification. For instance,
looking at all tasks in which a certain role is involved may help to gain insight in the
involvement of a role in the task structures.

Heuristic evaluation is done by checking specification properties that are not objec-
tively right or wrong. It is up to the analyst’s interpretation whether they are reason for
concern or not. These properties are more interesting for finding the actualproblems
in the task world. Using the ontology we can define a number of properties that deal
with instantiations of the concepts of the ontology. Most properties concern the num-
ber of “links” between concepts, or the values of attributes. Possible properties related
to problems are:

• The number of roles involved in a task.

Analyzing the Task World 65

• The rights a role or agent has for the objects used in the task they are responsible
for or perform.

• The frequency of tasks.

• The frequency of events.

• The number of tasks a role is responsible for.

• The number of subroles a role has.

• The number of levels in subtasks of a task.

• The number of subtasks on the same level of a task.

• The objects used in a task.

• The roles involved in the task.

• The objects that are used by a certain role.

• Tasks that are delegated/mandated.

4.4.2 Model verification

Verification concerns only the model as it has been specified. Only a limited degree of
verification of a task model can be supported due to the inherent lack of formal foun-
dations for task models. There is no model to verify the task models against. However,
it is possible to see if the task model satisfies certain domain independent constraints.
The task world ontology merely defines the concepts and relationships without any
constraints. This was done deliberately to give the analyst as much freedom as possi-
ble to specify what they find during data gathering. There are however constraints that
we would like to be satisfied independent of the specific domain that is being studied.
For example we would like that for each task there is at least one responsible role and
that each task is really being performed by an agent. These constraints can be specified
as logical predicates and can be checked automatically. Within model verification con-
straints we can distinguish constraints oncardinality, type, attributesand constraints
betweenspecifications.

Cardinality Constraints

Cardinality constraints concern the cardinalities of the relationships between the con-
cepts. However, they have been defined irrespective of the specific study being done.
They should hold in any domain. A task model were all constraints are obeyed may be
considered ”better” than one which does not obey all the constraints. In other words,
the constraints allow us to denote classes of models which have an order of preference.
Examples are:

66 Task Modeling and Analysis

• Each event should trigger at least one task
∀e ∃t {e ∈ Events, t ∈ Tasks | triggers(e, t)}

• Each agent should have at least one role
∀a ∃r {a ∈ Agents, r ∈ Roles | hasrole(a, r)}

• Each role should have at least one responsible task
∀r ∃t {r ∈ Roles, t ∈ Tasks | responsible(r, t)}

• Each object should be used in at least one task
∀o ∃t {o ∈ Objects, t ∈ Tasks | uses(t, o)}

• Each task should be performed by at least one role
∀t ∃r {t ∈ Tasks, r ∈ Roles | performs(t, r)}

• Each task should have at least one role that is responsible for it.
∀t ∃r {t ∈ Tasks, r ∈ Roles | responsible(r, t)}

• Each object should have an owner (someone with theownerright)
∀o ∃r {o ∈ Objects, r ∈ Roles | uses(o, r, Rights) ∧ owner ∈ Rights}

Type Constraints

These constraints deal with relationships between entities of the same type. These
constraints are also of a general nature with the possible exceptions of the object con-
straints.

• An instance of an object cannot contain itself4

¬∃o {o ∈ Objects | contains(o, o)}

• An object can not be of its own type
¬∃o {o ∈ Objects | isa(o, o)}

• A task cannot have itself as a subtask
¬∃t {t ∈ Tasks | subtask(t, t)}

• A task cannot trigger itself
¬∃t {t ∈ Tasks | triggers(t, t)}

• A role cannot have itself as a subrole
¬∃r {r ∈ Roles | subrole(r, r)}

4For classes of objects this can be allowed

Analyzing the Task World 67

Attribute Constraints

Other properties might be related to theattributes

• Missing goal attributes for the tasks that should have a goal.

• Check on empty conditions

• Objects with a specific attribute and/or value

If some of the attributes like duration and frequency are formally described, other prop-
erties could be checked as well. The question is if these properties make it worth to
enforce a more formal specification of the attributes. In such a model, the following
properties could be checked:

• The total duration of a task is less than or equal to the sum of durations of all
subtasks. This holds only for sequential tasks that only have sequential subtasks.

• It is not desirable to have contradicting task sequence specifications. A after
B after C and A after C after B at the same time. When analyzing a current
task model this may be interesting to detect but in an envisioned task model it is
undesirable.

• Conditions and states can be checked on their syntax. References to entities
should be checked for existence.

• Taking all the formally defined conditions, will a certain task be executed? Under
which conditions can the execution of a particular task occur (e.g. event Y needs
to occur).

4.4.3 Comparing two specifications

The properties of the previous sections all concerned one specification. Another option
is to compare two specifications in which case other properties are interesting. When
comparing two specifications there are three ways to do so:

1. Comparing two current task models.

2. Comparing two envisioned task models.

3. Comparing a current task model with an envisioned task model.

In the last case, comparing specifications may say something about the design decisions
taken when redesigning a task world. For example:

• Which tasks were reassigned to different roles?

• Which roles were reassigned to agents?

68 Task Modeling and Analysis

• Which tasks are removed or added?

• Which objects were added or removed?

• Which events are new and which have been removed?

• Which object rights have changed?

• Which task have become less complex?

In the ConcurTaskTree tool CTTE (Paternò 1999), a more statistical approach is taken
and the designer can see differences in the number of abstract tasks, interaction tasks,
objects and operators etc.

4.4.4 Model validation

Validation ofcurrent task models means checking if the task model corresponds with
the task world it describes. In the process of validation one may find that certain tasks
are missing or there are more conditions that are involved in executing a task. Often one
finds that there are exceptions that had not been found in earlier knowledge elicitation.
Consequently validation needs to be done in cooperation with persons from the task
world and can not directly be automated by any tool. However, it is possible to assist in
the validation process, for instance by generating scenarios automatically that can be
used to confront the person from the task world. Such generated scenarios are in fact
simulations of pieces of the task model. Recent work on early task model simulations
(Bomsdorf & Szwillus 1999a) has shown promising examples of early simulations
based on task models.

During a design process it is difficult to say when to stop doing task analysis. At
a certain moment it may be considered adequate but later on in the design process
new questions may arise that cause task models to be extended or revised e.g. more
information is needed about object attributes or missing tasks are being discovered.

Validation ofenvisionedtask models means checking whether the specified taks models
actually improve the task world. In this case, the model needs to be strict on aspects
such as consistency. Techniques such as simulation can be very useful in the validation
of envisioned task models.

4.5 Summary

This chapter discusses the ”practical” side of task analysis. It discusses representations
that designers can use as well as ways to analyze task models and represent the final
results. Both topics are defined in relation to the task world ontology. The ontology
defines the theoretical background for representations but representations are needed
in practice. We propose a set of representations that together cover all the important
aspects of the task world.

Summary 69

Besides task modeling, task analysis is also discussed from the ontological point of
view. Analysis can focus on finding holes in incomplete specification but also for de-
tecting problems. By focussing on specific aspects of a task model the designer can get
a better understanding of the task model and the underlying problems or oppurtunities.

All together, it forms a complete ”package” for task analysis and task modeling. For
the practical designer there are many representations to choose from and the analysis
primitives provide a practical start for analyzing task models. In the next chapter, we
discuss the phase in task based user interface design where the actual technology is
designed:Detailed Design. In the detailed design phase, an envisioned task model of
the future situation is used to create an initial solution.

Chapter 5

Detailed Design

5.1 Introduction

In the previous chapters, task modeling and analysis are discussed. The main purpose
of those activities is to gather as much relevant knowledge as possible about the users
and their tasks. In the detailed design phase, this knowledge is used to design the user
interface itself. This phase deals with the actual technology that is to be designed as
far as relevant to the user.

As in many other methods, the user interface is created on the basis of an analysis.
From the task and user data, an initial design is created which is then subjected to
many incremental development cycles. Effective use of contextual data about the users
and their tasks is crucial for the design of usable and useful systems. It gives designers
the necessary knowledge to understand how users can be supported in their work. Both
in the creation and evaluation activities, this knowledge plays an important role. In
addition, the designers expertise and explicit design knowledge such as guidelines and
patterns are used to create the user interface. This knowledge about what works and
what does not is important, especially when resources such as time are limited but
quality is still desired.

Designing the user interface means that many aspects such as functionality, dialog
structure and presentational aspects need to be considered. The user interface is more
that just some windows. This chapter discusses these aspects and explains how they
are related to usability. Then user interface specification techniques are discussed along
with their important role in the design process, both for communication and evaluation.
Throughout the entire design process some form of usability evaluation is done. We
discuss early evaluation techniques since those can already effectively aid in detecting
usability problems. The possibilities and limitations of several techniques for early
evaluation are discussed. All together, these methods and techniques aid in the system-
atic development of usable and useful interfaces based on contextual data.

72 Detailed Design

5.2 The Gap between Analysis and Design

One of the difficult steps in the user interface design process is the transition from the
analysis phase to the design phase. The results of the analysis phase are a detailed de-
scription of the problem domain and the identified areas for improvement that set the
design goals (requirements) for the system. The purpose of the detailed design phase
is to design a system that meets those design goals. The transition from analysis to an
initial design is characterized by a combination of engineering and creativity in order
to incorporate analysis results in a concrete design. This transition can not entirely be
done by following a simple set of predefined steps and requires a certain amount of
creativity. In UID literature, this transition is called thegapbetween analysis and de-
sign. The gap is concerned with questions like; what are the main displays? which data
elements need to be represented and which are merely attributes? which interaction
styles are appropriate? how should the user navigate through the interface structure?
how will functionality be accessible? Besides the analysis results technological con-
straints and wishes of the client may complicate detailed design even further. However,
in some occasions it may even be possible to create new technology that is needed for
an optimal design solution.

In (Wood 1997) a number of methods and techniques are described that can be used
to make this transition. In practice, bridging the gap means coming up with an initial
design based on the analysis which then starts off an iterative development process.
Naturally, the goal is to reduce the number of iterations in design by basing the initial
design solution directly on the analysis.

5.3 Guidelines for Bridging the Gap

To overcome the difficulties of bridging the gap Dayton has developed a very concrete
method calledThe Bridge(Dayton et al. 1998). It uses PANDA (Participation Analysis
Design and Assessment) techniques in small teams of approximately 5 team members
with at least one end user. The method consists of a number of steps in which an OO
GUI prototype is constructed using a simple task model. The resulting GUI should be
seen as an initial prototype which will need to be developed further in the following
iterations. The basic steps are as follows:

1. Expressing User Requirements in Task Flows.

2. Mapping Task Flows to Task Objects

(a) Identify which task objects need to be included in the system.

(b) Identify the total set of relevant attributes of these task objects

(c) Identify relevant actions on the task objects. The actions can be ordered in
menus.

(d) Identify groups of attributes so that only the task relevant task attributes are
shown while performing a task. The resulting groups are called views.

Guidelines for Bridging the Gap 73

(e) Identify object containment relationships. These relationships need to be
represented in dialog screens

3. Mapping Task Objects to GUI objects using a specific platform style.

The steps given by Dayton may not be appropriate for all types of systems. However,
they may help in producing an initial solution which can then be elaborated in detail.
Having an initial solution can be very important in the development process because it
facilitates discussion and hence leads to new ideas. After all, the detailed design pro-
cess needs to benefit from the designers’ creativity. Dayton has developed his method
for developing OO GUI systems as opposed to procedural systems.

Another set of guidelines is given by Mayhew (Mayhew 1999). She distinguishes two
types of applications;productandprocessoriented applications. Product oriented ap-
plications (OO GUI systems according to Dayton) are applications where users individ-
ually create, change and store identifiable work products. Examples include word pro-
cessors, spreadsheets and drawing applications but also ATMs and mobile telephones.
On the other hand, process oriented applications (called procedural systems by Day-
ton) have no clearly identifiable work product and the main purpose is to support some
work process. Examples are inventory tracking applications, financial management,
and PDAs etc. Mayhew gives guidelines for both types of applications. In short her
steps are;

1. Define the Conceptual Model as either product or process oriented.

2. Clearly identify products or processes.

3. Design presentation rules for products or processes.

4. Design rules for windows.

5. Identify major displays.

6. Define and design major navigational pathways.

7. Document alternative Conceptual Model Designs in sketches and explanatory
notes.

Holzblatt describes another technique calledUser Environment Designthat is part of
the Contextual Design method (Beyer & Holtzblatt 1998). With UED the system is
being structured using a mix of functional and object oriented focus. Using that tech-
nique the major displays are identified on the basis of the contextual analysis. From
there on the system is again developed by iterative prototypes.

All of the guidelines above are based on identification of the major interface compo-
nents, their structure and the navigational structure. The major interface components
are directly derived from the task/object models built during analysis. The way the
functionality is distributed over the UI components depends on the type of system that

74 Detailed Design

is being built. The two main types mentioned (product vs. process) give a broad catego-
rization but it may not always be easy to classify an application, for example interactive
training applications have a bit of both. Although different types of applications can be
distinguished, the high level process can be summarized as follows:

1. Develop an essential conceptual model of the task world. This model describes
the task world without any reference to tools and systems being used.

2. Identify the major tasks and objects that need to be part of the system. These
will become the high-level interface structure.

3. Depending on the type of application structure the application based on a process
or product metaphor.

4. Create navigational paths in the interface structure depending on the task struc-
ture.

5. Design the presentation using a platform style.

After this short transition process, the iterative design activities are started to mature
the system. The actual techniques used in these transition activities are reportedly very
low-tech i.e. paper and pencil, sticky notes and flip charts for making all kinds of
sketches. At this point in the design process the design solutions have the character of
sketches and are hence informal. Nonetheless, using these sketches and paper proto-
types already a lot of usability evaluation can be done, both internally and with future
end users. Constant evaluation drives the design towards a more and more complete
specification of a usable system.

5.4 Designing the User’s Virtual Machine

User interface design consists of more than just designing some screens. Interfaces can
become very complex and once an initial sketch of the interface exists many aspects
need to be worked out in detail, including the interaction, the navigation structure and
the system’s behavior. We now take a closer look at the important aspects of the user
interface. For the sake of the discussion, we use a different term that covers a broader
range of aspects than is usually thought of when discussing the user interface. The
termUser’s Virtual Machine(UVM) was introduced by Tauber (1988) and is used to
indicate those aspects of a system that are relevant to the user. The user’s attitude
typically is “Who cares what’s inside?”. To the user, the interfaceis the system. The
UVM is a useful concept to show which aspects of the user interface are important
and hence need to be covered in the detailed design phase. These facets can be broken
down following the Seeheim (Pfaff & ten Hagen 1985) model into:

• Functionality Design. The functionality as far as relevant to the users. Func-
tionality includes the functional actions and objects that will be available to the
user.

Designing the User’s Virtual Machine 75

• Dialog Design. Structure of the interface without any reference to presentational
aspects, the navigational structure and dynamic behavior of the interface.

• Presentation Design. The actual representation of the user interface including
details such as layout, colors, sizes and typefaces.

All three activities are dependent on each other and they need to be kept consistent in
order to form a coherent whole. Moreover, from a usability perspective there is also
a forward dependency from functionality to presentation. If the functionality is not
designed well enough the system will not beusefulto users and therefore dialog and
presentational aspects are irrelevant. In the same way, the dialog needs to be good
enough before presentational aspects matter. However, for each system there will also
be an emphasis on one of the three aspects because of the nature of the system. It makes
a big difference whether a safety critical system or a mass-market consumer application
is designed. This forward dependency may also offer an explanation for the fact that in
practice, usability aspects are often not discussed until after the software design.

The UVM is user specific, or more precisely, a UVM belongs toonerole, i.e. a role
with the associate tasks/goals. Since systems are usually designed for multiple roles,
several UVMs need to be designed. For the final design, these UVMs need to be inte-
grated in order to design one system for all roles. This means that a design is always a
compromise. Besides the different roles, certain user groups have specific needs con-
cerning the dialog and presentation aspects, rather than concerning functionality. For
example, elderly users may need larger font sizes or disabled users might need speech
output. This also leads to a need for adaptable or adaptive interfaces. Adaptation should
however never be used as an excuse for not making certain design decisions;”let’s just
make it configurable”.

5.4.1 Designing the functionality

In task-based design, designing the functionality does not mean designing the appli-
cation architecture including data models etc. It concerns the functionality as far it is
relevant to theuserand which is being presented to the user through the user interface.
In performing tasks users execute functions and manipulate objects. How the objects
and functions are internally represented in the system is a separate issue although often
closely related to the way the user thinks about them. To perform tasks users usually
perform certain actions on objects so when designing the functionality the designers
have to choose which objects are part of the system, how they are structured or related,
and what actions can be done on them. The tasks that are performed will provide the
basis for high-level navigational paths expressed later in the interface structures. The
functionality of the system needs to be well chosen in order to support the tasks from
the task model in the most optimal way. For task-based design, this is where a large
part of the contextual information about the task world needs to be used effectively.

Naturally, the functionality as relevant to the user needs to be supported by the system
software architecture and certain aspects of the actual implementation are very relevant
for the design of the user interface. For instance, functions may have side effects that

76 Detailed Design

cannot be controlled by the user. Such functions can cause undesired or even dangerous
situations in the real world that make them subject to extra care. In such cases, warn-
ings or additional security measures may be appropriate. Vice versa, the functionality
also influences the software architecture in the sense that specific functionality may
pose certain constraints on the implementation. For instance, if multilevel Undo/Redo
functionality is planned the software needs to maintain a command queue and each
command has to be written in such a way that allows them to be undone and later
redone. If this kind of functionality is not foreseen before the software architecture
is defined, it may be very expensive to add it later. Other kinds of functionality that
heavily influence the architecture include database functionality and real time behavior.

From a usability perspective the functionality needs to be well designed because oth-
erwise the system cannot beusefulfor the user. Without the appropriate functionality
the users cannot perform their tasks and will consequently not reach their goals. Ill-
designed functionality can also confuse users and cause errors or lower performance.
Even though presentation and dialog are also very important they can become com-
pletely irrelevant when the functionality is not designed well enough. In that sense,
dialog and presentation depend on the functionality.

5.4.2 Designing the dialog

The dialog is concerned with the structure and dynamic behavior of the user interface
without considering the exact presentation. It is not relevant on the dialog level what an
interface component looks like but it is important to know if it is modal or not, what the
content is and how the content is structured. Besides defining the major components of
the user interface as a structure, the dynamics of the user interface need to be specified
as well. For example, opening of one display may close another, actions of the user
need specified feedback visually or auditory. It is mainly in the functionality and the
dialog that provisions need to be made to make the user interface usable for all specified
users. This can be achieved by providing shortcuts for advanced users, extra hints for
novice users or separate sections for certain roles.1

The term ”dialog” already indicates the interplay between the user and the system. The
user performs actions and the system responds. Interaction is not always of a simple
stimulus-response type where the user always initiates interaction. The system can also
take initiative and prompt the user for actions, for instance when new mail arrives or
some kind of alarm goes of. Therefore the dialog is truly a two-way communication,
both the system’s behavior and the user’s behavior need to be covered. However, it
remains important that the users still feel to be in control.

The user’s behavior includes the physical actions that are performed but also the men-
tal actions that influence the user’s performance. Mental actions take a considerable
amount of time to perform and can make up a substantial portion of the total per-
formance time of tasks. Shortening the time for mental actions can be facilitated by
making the relevant information visible in the interface. The actual duration of the

1Concerning accessibility, the provisions are usually made in the presentation.

Designing the User’s Virtual Machine 77

mental or physical action depends on variables that are controlled by the designer. By
providing appropriate navigational structure and presenting the relevant information
according to the task, the duration can be considerably reduced.

From a usability perspective the dialog aspects influence a wide variety of usage indi-
cators. Careful application of the usability means such as task conformance, flexibility,
consistency etc, will greatly affect the dialog level and hence usability. All of these
aspects must be tuned to get the desired level of usability. The functionality has to
be right to make sure the systems isusefulwhile the dialog contributes in making the
systemusable.

5.4.3 Designing the presentation

Presentation design is concerned with the way the user interface is presented to the
users. The presentation are usually the most visible aspects of a user interface but
auditory and tactile feedback are also communication techniques. Good presentation
design helps to communicate where the user can find functionality, if it behaves as
expected and how to control it. Colors, typefaces, layout, sound and tactile feedback,
are import factors for the usability of a user interface. Well-chosen colors can prevent
the users from making mistakes and make it easier to remember the semantics of in-
terface objects. Typefaces have an impact on the readability of text both on screen and
on paper (Kahn & Krysztof 1998). For example, on a screen sans serif typefaces are
easier to read (because of the display resolution) than serif typefaces but for paper the
opposite holds. Other typographic aspects such as size, rotation etc can create different
effects on users. In the area of web-design, presentational aspects are an important
part of the creating a ”corporate image” and other branding aspects. Although this
may not directly affect performance issues, it will influence the ”experience” aspects
of interaction which in turn influence user satisfaction.

Layout is another aspect that influences the users’ performance. When interface objects
are grouped meaningfully and laid out using a grid, users can find items faster because
the information is more easily accessible and can be processed quicker (Fitts 1954).
In (Mullet & Sano 1995) a large number of practical aspects of presentational design
is discussed. These aspects include scale, contrast, proportion, organization, visual
structure, grids, images, and style. Much knowledge in this area comes from indus-
trial design and graphical design but also from ergonomics and cinematography (May
& Barnard 1995). Not surprisingly, many designers have such a background while
computer scientists rarely have this knowledge and skills.

Besides graphical presentation design (the visual channel), other output channels such
as acoustics are also part of the presentation aspect. Often interaction is situated so
that the hands and eyes are not available, for example during driving or for people with
disabilities. In such cases, the other channels become very important. A newcomer
in this area is haptic feedback, also known as force-feedback, which is often used in
simulators.

From a usability perspective presentational aspects influence task performance times,
chance of making errors and search times but also satisfaction. In (Tullis 1988) several

78 Detailed Design

aspects of the presentation design are investigated with respect to their impact on user
performance.

5.5 Cognitive aspects in UVM Design

In UID literature the cognitive aspects in dialog design have been widely recognized
but this recognition has not been reflected in most common specification techniques.
Exceptions are Mental Cognition Action tables (Sharratt 1990) and GOMS (Kieras
1996). Both categorize and use a set of mental actions so that it can be specified which
mental actions the user needs to perform in order to complete his task. Specifying these
actions gives insight in cognitive complexity involved in the task. Relevant questions
for design are; which information should the user retrieve from memory? How much
information does the user need to remember? How are search times affected by the
presentational aspects?

Counting the number of mental actions and adding up their score would allow for some
comparativeanalysis. GOMS even claims to makeabsolutepredictions by calculating
the time needed to perform the tasks. GOMS has aM (ental) operator that takes about
1.2 s. Examples of such mental operators aredecideand memory related operators
such asrecall andstore. Other mental operators can be defined by users/analysts and
their duration may be different. The cognitive load of the specific operators may be
dependent on their operands such as the number of items to choose from. In general,
the mental load of an interaction largely depends on the number of objects that are
involved in the interaction in relation to the user’s working memory. During design
this number can be influenced, for example by making relevant information available
where it is needed thus reducing the need to remember objects. This issue is addressed
by techniques such as CCT (Kieras & Polson 1985) and TAG (Payne & Green 1989).
Based on (Card et al. 1983) and our own experiences we have defined the following
list of mental actions:

• find(Item, List, Ordered?, Location) where Location can beon screen, situation,
ltm, wm

• choose(Item, List, Ordered?, Location)

• compare(value1,value2, Location1, Location2)

• compute(Formula)

• transform(Input,Output)

• memorize(List, Memory, Ordered?) where Memory can be long or short term
memoryltm, wm

• forget(List) This is the inverse of memorize and indicates that objects are not
needed anymore.

Specifying the User Interface 79

• recall(List)

In comparison tophysicalactions it is important to note that mental actions take a
considerable amount of time. This means that if only physical actions are modeled the
predicted performance time may have a large error because of numerous mental actions
that are involved. If designers do not recognize this, they might try to optimize only
the physical actions which may still not solve the problem significantly.

Another cognitive issue directly related to usability is learnability. In learning all the
aspects of interaction users make all kinds of decisions while doing tasks. CCT tries to
describe the interaction in the form decision rules. The hypothesis is that the complex-
ity of the rules influences performance and that the number of different rules influences
the learnability. This is why it is usually good to strive for consistency in the user
interface especially for similar tasks.

5.6 Specifying the User Interface

For several reasons the user interface needs to be specified. The possible forms can be
anything from sketches to complete formal specifications. Reasons for specifying the
user interface may include:

• CommunicationThe design activities are done in groups and results need to be
communicated throughout the group.

• EvaluationActual prototypes or the actual system need to be evaluated against
the intended behavior or requirements.

• Creating PrototypesSpecifications can drive prototypes either manually or auto-
matically.

Each of these purposes pose constraints on the suitability of the specification technique.
For instance, when properties need to be proven it would be difficult to do so with
sketches but easier with a formal specification. In the next sections, we briefly look at
formal and informal techniques for specifying user interfaces.

5.6.1 Informal methods for detailed design

The most used techniques for detailed design are still the informal techniques. Sketch-
ing screens, windows or displays is the main method, either by manual drawing or
using an interface builder. Such methods are excellent in the early exploration phases
when the high level interaction needs to be created. Figure5.1 shows a sketch that
was made in the Seibersdorf case study, see chapter9. It shows a sketch for the main
display of a security system. Not many details are present but ideas for the main areas
in the display are already visible.

80 Detailed Design

Figure 5.1: A sketch of a new system

Sketching is quick and does not require that details are exactly known. The main
structural aspects can be drawn and they can almost be evaluated “on the spot”. Another
big advantage is that no prior knowledge is needed to understand sketches which makes
them very accessible. Besides sketching with paper and pencil, other tools also allow
“sketching”. For example, chapter7 describes story board tools which can be used
for sketching. Interface builders also allow rough screen designs to be created rapidly.
Screens can be printed out and put together as a paper prototype. Such designs are
often called ”paper mockups”.

Designing the hardware can also be done by “sketch” prototypes. Figure5.2 shows
some hardware sketches for a hand-held device. Such low-fidelity examples are very
useful to quickly show and evaluate design ideas. In this case, size, weight and texture
were explored.

Sketching techniques are good for the creative process because they allow a lot of
freedom. It allows freedom in interpretation and even creative additions by colleagues,
users or clients. They can simply take a pencil and change the design. A sketch clearly
shows its status; it is unfinished, just a conceptual proposal and is still changeable.

However, when ideas start to stabilize the need for more precision increases. Sketches
evolve in detailed and exact drawings showing all the visible details. Accompanying
text usually specifies the interaction details. Such descriptions can contain a lot of text
and easily leave some aspects unmentioned. Using natural language usually leads to

Specifying the User Interface 81

Figure 5.2: Sketching hardware

incomplete and imprecise descriptions.

5.6.2 Formal specification techniques

This section gives an overview of the most influential dialog specification techniques
currently available. The overview is not meant to be exhaustive but is meant to be rep-
resentative for what dialog specification techniques have to offer. Formal specification
techniques usually offer precision and great expressive power. A disadvantage is that
most techniques do not scale very well; they can only be used for describing portions
or simple systems. Large specifications tend to become very hard to understand.

ConcurTaskTrees

ConcurTaskTrees(Paternò et al. 1997) (CTT) is a specification technique developed by
Fabio Paterǹo and colleagues. The CTT’s are task decomposition trees combined with
a set operators, based on the LOTOS(ISO 1988) operators, to specify time constraints
between tasks. Time constraints can be defined for tasks on the same level and also
for subtasks. In addition, tasks are typed and are always one out of the possibilities;
user, computer, interaction, or abstract. Basically the task types are used to indicate
the ”type” of entity that performs the task. When the type is ”abstract” it means that it
cannot be determined uniquely which is usually for all tasks that have more than one
type of subtask. Besides tasks, roles and objects are also modeled. This was a later
addition enabling to describe systems with more than one user. Usually, when CTTs
are used they areprescriptivetask models. They model the system and user interaction

82 Detailed Design

with a task model. In terms of our philosophy this is the future task model or task
model 2.

The CTT specification technique was essentially intended for describing the system
and lately also for model-based design approaches (Paternò 1999). It is also part of a
method called Task Lotos Interactor Models (TLIM). Construction of CTT diagrams
is supported by a tool. Withing the TLIM approach other tools are also available for
certain activities. In chapter7 the different tools are described in more detail.

State Transition Diagrams

State Transition Diagrams (Dix et al. 1998) are very old but still often used for the
specification of user interfaces. The interface is described by labeled state and actions
that cause state changes. Figure5.3shows a small example from a drawing application.

Start Menu

Line1 Line2 Finish

FinishCircle2Circle1

click on first point

click on centre

double click

click on
circumference

draw line and rubber
band from new point

select ‘line’

select ‘cirle’

draw last line

click on point

draw circle

rubber band

rubber band

highlight ‘line’

highlight ‘circle’

Figure 5.3: An example of a State Transition Diagram

For small examples this technique works fine but for real applications the number of
states increases exponentially while not all states are equally important to describe.
Finding meaningful names for each state becomes increasingly difficult. Using a hi-
erarchical variant may help coping with increasing complexity but at the same time it
makes the diagrams more difficult to understand.

STDs are system oriented instead of task oriented. Internally systems work with states
but users are goal directed. When going from a task model to a detailed design specifi-
cation, a STD is not the most appropriate technique.

Extended Task Action Grammer

ETAG (Tauber 1990, de Haan 2000) is another technique to specify the user interface.
It is a task centered specification technique that describes both the interaction from a

NUAN: New User Action Notation 83

task perspective and the interface structure itself. From a different viewpoint it can also
be seen as a technique to describe the knowledge users need for interaction and how it is
presented in the dialog. Therefore, it is not a technique for modeling real users. ETAG
describes the lexical, syntactic and semantic aspects of a user interface. However,
it does not address the presentation aspects. In Payne & Green (1989) Payne states
about TAG”as far as TAG is concerned the screen could be turned offwhich is also
directly applicable to ETAG. ETAG uses a propositional representation for representing
knowledge. A specification is built up usingsentences. In addition ETAG uses feature
grammars which allowrules to be defined. Such rules directly relate to learnability
aspects. In an ETAG specification both the objects of the user interface are defined as
well as the tasks that can be performed on them by users. Although the notation is very
powerful it is usually too complex to use. It requires considerable skill to master the
technique.

User Action Notation

User Action Notation(Hix & Hartson 1998) was developed out of the need of com-
munication between implementers and designers. The technique consists of two types
of diagrams; interaction templates and composite templates. Interaction templates are
used for describing the actual interaction in detail using four columns (user action, sys-
tem feedback, interface state and connection to computation). The composite template
is used to describe a hierarchical decomposition of interaction templates.

UAN focusses on the interaction between user and the system instead of the system’s
states as STDs do. This makes UAN more suitable for task-based design. Compared
to ETAG there are a lot of similarities but the table format of UAN is much easier to
understand than the ETAG sentences. However, coping with increased complexity is
also a problem for UAN tables. One table can already describe complex interaction
but it is not uncommon that several dozens of tables are needed to describe a realistic
application. Understanding such a large number of tables becomes problematic.

5.7 NUAN: New User Action Notation

In this section, we describe the New User Action Notation (NUAN). It is a variation
of User Action Notation (Hix & Hartson 1998) and intended to overcome some of
the problems we encountered when applying UAN. The main problems concern the
specification of event-driven interfaces and mental aspects during interaction. Nowa-
days, systems are highly event-driven which cannot be well described in the original
UAN. One small change is that in NUAN the cryptic shortcuts are replaced by short
statements2. Although this notation is less compact it was easier to understand by the
students that used it, see appendixA for a complete list of the commands. Each of the
following sections describe one of the other extensions that have been made.

2Instead of∼[fileicon]Mvˆ we writePOINTERTO(fileicon), CLICK(button1)

84 Detailed Design

NUAN is a task-based technique and we have defined the relationships with a task
model. Figure5.4shows the relationship between the task world ontology and NUAN.
The NUAN ontology shows that the task modeled is continued from the point of basic
tasks. The events and object are representatives of their equals in the task model.

triggers

uses

Dialog Model

Task
Model 2

contains contains

contains
containscontains

represents represents

Basic
Task

Task
Event

Task
Object

Action

System
Object

Interaction
System
Event

Timeslot

State

Figure 5.4: Connection between the task ontology and NUAN

5.7.1 Adding an interface pre-state column

The first extension is the addition of an optional new column, the pre-state column.
It can be used to describe state conditions that need to be true before the described
interaction can take place. The interface pre-state column makes it explicit what the
state conditions are for the interaction to succeed. For example, when deleting a file
it needs to be selected first. Selecting objects is an often-used action and is hence
described as a single interaction, facilitating reuse. The deletion interaction can then be
definedwithoutreference to the selection mechanism. Such modeling helps the user to
design more consistency throughout the interface, in the example concerning selection.
The pre-state column is placed at the right-hand position in the first row of the NUAN
table. The first left-hand position in the first row is used for annotation purposes, see
Figure5.5. In the original version of UAN there was no standard field for annotations
explaining the interaction. The new comment field allows designers to explain in one
sentence what the interaction describes and makes it hence more understandable for
other designers.

NUAN: New User Action Notation 85

5.7.2 A modified interface feedback column

Interaction takes place between the system and the user. In the original version of UAN
the interface supposedly only providedfeedback. Nowadays event driven systems often
take theinitiative in interaction. Therefore the name of the column was changed to
”Interface Actions” in order to show that interaction takes place between two”equal”
parties. Typical examples of systems where the user mainly reacts on signals include
security systems, email system and workflow systems. Therefore, instead of always
modeling interaction on the initiative of the user, in NUAN the system’s action can be
the first action to occur. Such an interface action is marked by an exclamation mark to
indicate that the interface takes the initiative.

Interaction: New Email
About Interface Pre-state

This interaction describes the arrival of a new
email

emailer = running minimized

User Actions Interface Actions Interface State Connection to
Computation

! MESSAGE("New email has
arrived")

mes_wnd = visible

unread_mail = true

! ASK("Read now",
[Yes,No])

DECIDE([yes,no])

POINTERTO(<yesbutton>)
CLICK(<yesbutton>)
||
POINTERTO(<nobutton>}
CLICK(<nobutton>)

MOVEPOINTER(<yesbutton>)
SHOW_EMAIL([latest])

MOVEPOINTER(<nobutton>)

unread_mail = false

unread_mail = true

 HIDE_MESSAGE() mes_wnd = hidden

Figure 5.5: An example of a NUAN table

5.7.3 Expanding time capabilities

In order to make timing a bit more exact, in NUAN lines are needed to indicate that
interactions occur after each other. Actions on the same line occur at the same time. In
the original UAN, this was undefined and often actions on the same line were intended
to occurafter each other. This makes it impossible to specify actions that occur simul-
taneously. If actions cannot be specified in the space of the cell, it can be specified
using multiple lines inonecell. As long as it is in one cell, it occurs at one moment in
time.

5.7.4 Mental actions

In some cases it is very important to model the mental actions of the user. GOMS was
one of the first techniques to do so. A limited set of mental operators has now been
introduced, see section5.5 for an overview of the mental operators. If mental actions
are specified in the NUAN table there can be interface actions at the same time. For

86 Detailed Design

example, an animation that is evaluated by a user. When used, the mental actions can
give insight into the cognitive aspects that are needed. For example, it can be evaluated
using NUAN whether the user needs to make a decision using elements visible on
screen or from working memory. In figure5.5 the mental actiondecide([yes,no])is
used. In this case the user has to make a decision from a set of options that have
already been presented by the system.

5.7.5 Generic interaction diagrams

Some interactions occur frequently and can be reused using generic interaction dia-
grams. In fact, most standard actions also use variables to make them more generic. In
NUAN, generic interactionscan be defined to reuse generic interactions in other tables.
Reuse of generic actions is desired because it can improve the learnability aspects of
the design. With reuse, the user only needs to learn the interaction once and can apply
it in other contexts. Generic interactions can be recognized by their own label and the
fact that they have arguments. In any generic interaction at least one user action needs
to occur.

5.7.6 Parallellism

Parallellism is an issue in complex interactive systems where many users work together,
synchronous or asynchronous. In (Sage & Johnson 1998), this kind of cooperation
is modeled by ”joining” two UAN tables into one table. However, from the users’
point of view this is not relevant and all aspects can adequately be modeled using one
table. Conditional events and the corresponding actions can be described using the
interaction pre-state column together with the system events. Therefore, parallelism is
not explicitly modeled in NUAN.

5.8 Evaluating Design Alternatives

The main goal in the detailed design phase is to create a design that maximizes the
level of usability. Using the analysis results to develop initial design solutions, may
give already some form of guarantee for an initial step in the good direction. How-
ever, evaluation is always needed to determine the usability of the system in the actual
context of use. A good analysis does not automatically lead to usable designs.

Testing with users using software or paper prototypes are the traditional ways of evalu-
ating usability. A disadvantage of testing with software prototypes is that it can only be
done late in the design process when a lot of design choices have already been made.
Testing with paper prototypes has the disadvantage that it still does not ”feel” like a
real system and data obtained in testing can only be used to evaluate general concepts.
Ideally, designers should be able to evaluate their design solutionsearly in the design
process when only high level and abstract specifications exist. However, if no users are
involved, evaluation should be done carefully with regards to valid interpretations.

Evaluating Design Alternatives 87

User centered design methods mainly use iterative prototyping as the main driving
force. In itself, this is a verypoor method and is characterized by the ”trial and error”
principle. No systematic reuse of design knowledge is done and the same mistakes
could be made repeatedly. In real-life design projects, there are many factors that
influence the design process and ”threaten” attention for usability. Time and money
are often constraints that prevent iteration in the design process, making the evaluation
of usability during theearly design stages even more important. When a project is
running out of time, the last activities in the design process such as user testing are
likely to be skipped. Moreover, maximizing usability may not always be the main
design goal. Marketing strategies may dominate the constraints which may lead to
less attention to the usability aspects. In each design project there will be conflicting
requirements. Therefore, it is important that the design which is produced and that can
not be evaluated as much as desired, is still as good as possible.

Detailed DesignDetailed Design PrototypingPrototyping ImplementationImplementation

Formal Methods
Scenarios
Heuristics Walkthrough
Guidelines

Interface Analyzers
Scenarios
Heuristics Walkthrough
Guidelines

Interface Analyzers
Usage Loggers
Formal Methods
Scenarios
Heuristics Walkthrough

Phase

Evaluation
Tools

Figure 5.6: Evaluation tools in different design phases

Evaluating design alternatives can be done in several ways, depending on how detailed
the design is. Figure5.6 shows the possible evaluation tools for the basic phases in
detailed design. Forearly evaluation only a few techniques can be used. In the next
sections, we discuss these techniques for early evaluation of design alternatives.

5.8.1 Scenarios, guidelines, and patterns

Scenarios are often used for high level evaluation (Carroll 1995). A scenario is a de-
scription of an interaction sequence in a particular context. By interpreting them in a
cognitive walkthrough (Polson et al. 1992), a heuristic evaluation (Nielsen 1993) ses-
sion, or by acting them out, certainclaims about the design can be tested. Hence,
scenarios help designers to focus on specific aspects of the design. During such an
evaluation design knowledge in the form of guidelines, heuristics, ergonomic crite-
ria or design patterns, is used to determine potential usability problems. Walkthrough
methods are typically applied by a group of designers and other stakeholders. This
evaluation process is still subjective and the designer’s expertise is needed to deter-
mine the correct application of guidelines, patterns and heuristics.

An advantage of these informal techniques is that ”contextual” knowledge about the
users and their tasks is usually incorporated. In (Carroll 1995) it is stated that scenarios
shouldalwaysinclude contextual information. Scenarios can be developed on the basis
of a task model and the user interface specification is then evaluated in that context.

88 Detailed Design

During the evaluation session the results can be explicitly compared to the task model.
This also makes it easier to determine whether guidelines have been applied correctly.
A well-chosen combination of these techniques can be effective in detecting usability
problems, especially concerning the main task and goals of the users.

Guidelines or patterns can also be used apart from use in a walkthrough technique.
They can already be used during the design activities as a source of design knowledge.
Some attempts have been made to formalize design knowledge and to build tools that
support designers in the use of guidelines, see EXPOSE (Gorny 1995) and DIADES-II
(Dilli & Hoffmann 1994). The knowledge is usually a mix of dialog and presentation
aspects with a strong focus on presentation aspects. Such tools can be very useful
in assisting designers very early in the design process, during design and evaluation
activities.

5.8.2 Prototype evaluation tools

Several tools and techniques exist for the (semi-)automatic evaluation of software pro-
totypes. Most of them use a rule-based knowledge base that contains ergonomic rules,
guidelines, or some other form of design knowledge. Such tools can theoretically
lead to objective evaluations. For example, a technique such as ERGOVAL (Farenc
et al. 1995) allows a semi-automatic evaluation of a prototype using ergonomic rules.

Tools like AIDE (Sears 1995) can evaluate a user interface based on an interface de-
scription file. AIDE uses metrics to make a quantitative analysis of the interface. The
values of the metrics still need to be interpreted by the designer. An other approach is to
extract the actual interface description out of an executable application. For instance by
analyzing the Windows Resources of an application (which describe all the application
widgets), constraints on layout or consistent usage of fonts, widget sizes, and colors
can be checked (Mahajan & Shneiderman 1995). Suchs tools are a step in the right
direction but many usability aspects simply cannot be evaluated automatically. For in-
stance, aspects such as choosing good colors depends on culture and other aspects of
the context. Determining the appropriateness of icons and labels is also difficult to do
automatically. Although such tools require a minimal amount of time to apply, it can
be argued that the gains of these tools are relatively small. Without considering the
context of the application only a limited set of guidelines is still more or less valid.
Since the focus is mainly on presentational aspects, many other usability aspects also
remain unchecked.

Other tools such as EMA (Balbo 1994) and USINE (Lecerof & Paternò 1998) use a
combination of a task model or interface model and actual usage logs. The actual
usage logs are analyzed against a task model. The outcome of the analysis is an an-
notated user log that still needs to be interpreted by an expert. The properties that are
found are mainly related to deviations of user actions compared to the prescriptive task
model. Although such an evaluation is better because it includes more context, it is still
highly subjective and the method may not provide direct clues on causes of usability
problems nor on possible improvements. That has to be done by an expert designer.
Additionally, a requirement for these approaches is a prototype where logging code has

Evaluating Design Alternatives 89

been added, which may not always be feasible. An advantage of such an approach is
that the models used are models that contain both dialog and presentational aspects as
well as contextual information. However, such an increase in model richness may also
complicate finding the causes of sub-optimal usability metric values.

5.8.3 Formal usability evaluation of the user interface

An other technique for early evaluation of user interfaces is by formal analysis of mod-
els that describe aspects of the user interface. Evaluating the user interface using formal
specifications has some potential benefits. Claims can be defined very precise and they
can be determined objectively and automatically. Theoretically a standardized set of
claims could be evaluated for every user interface in order to find usability problems.
If formal models are used for usabilityevaluationpurposes, the challenge is to deter-
mine meaningful propertiesof the model that arevalid indicators of usability. With
the availability of such properties, tools could be constructed to develop design alter-
natives based on task models, hence the interest in model-based user interface design.
The tools discussed in the previous section increasingly rely on such usability proper-
ties as well.

Formal specifications of the user interface usually only describe the user interface on
the functional or dialog level. Contextual information is not used and claims regarding
usefulness and appropriateness can therefore not be evaluated. In (de Haan et al. 1991)
a number of formal techniques is evaluated including GOMS, (E)TAG, CCT, ETIT,
and CLG. Other formal techniques such as Petri-nets, STD’s and Z specifications can
also be used and focus more on the functionality aspects. Other less formal techniques
such as UAN and MCA tables also take functionality into account as well as the users’
physical and mental actions. While these formal techniques may not be suitable for
analysis of entire user interfaces they can be useful for analyzing certain small aspects.

Formal models are notoriously hard to build and their value has often been criticized,
mainly because of their limited usefulness compared to the required effort (de Haan
et al. 1991). For usability evaluation, there is a lack of well defined properties that
relate to usability (van Welie et al. 1999b) and they are usually limited to dialog aspects
and they ignore presentational aspects. For both general usability related metrics for
user interface descriptions and usability properties in dialog models, it holds that their
values are tentative and can only be used tocomparedesign alternatives, which may
still be useful.

Usability Properties in Formal Models

Formal evaluation of user interface models can only address usability on the level of
means, as described in chapter2. Several properties can be given for each means. The
properties should be measurable, either relatively or absolutely. Usability properties
are not generally agreed on and some have tried to develop such properties, also called
metrics by some (Rauterberg 1995). Evaluation is then done by determining the values

90 Detailed Design

of the properties using the user interface specification. However, as long as it is not
known how the value of the property influences usability, no valid claims can be made.

Many techniques are based on counting the number of steps needed to perform a task
or the number of rules the user needs to know. However, conclusions about such a
number are tentative with respect to usability. In some cases, less steps is better but in
other cases, when it comes to error-prevention, more steps is better. It depends on the
kind of task at hand and type of function. The properties defined by Abowd (Abowd
et al. 1995) are derivable from a state based dialog model and concern aspects such as
state reachability. In our opinion, this is not directly related to usability but more to the
correctness of the specification.

consistency

task conformance

error tolerance

workload

... Usability means

Level
maximum

minimum

...

Figure 5.7: An example of optimal levels of usability means vs. their limits

Although the usability properties typically only have a meaning in thecontextof that
design, it is possible to define properties that are only marginally dependant on the con-
text and hence are valid for usability evaluation. Some properties may have a general
meaning, e.g. the property,”Percentage of Undoable functions”should in any design
be closer to 100% than to 50%. Unfortunately, such properties only help to define a
minimumlevel of usability and help to detect just the most trivial usability problems.
However, for finding theoptimallevel of usability the contextual information about the
context of use needs to be incorporated. For each property, a minimum or maximum
level may be defined on a value range but the optimal value lies somewhere in between.
Consider an interface where a function is always accessible by pressing a function key
or keyword only. This could result in a high level of flexibility but it is a highly unde-
sirable situation if the user does not know this function exists at all or how to access
it. This is the typical case for command line interfaces. Similar problems can arise if

Evaluating Design Alternatives 91

interaction paths are short but because of the layout hard to notice by the user. These
problems are mainly caused by the fact that such usability properties arenot orthogo-
nal. Optimal usability leads to a compromise over all properties. Figure5.7 illustrates
this phenomenon.

Using Contextual Models in Formal Evaluation

Formally verifying a dialog model alone takes a design out of its context. The design
is verified without looking at the tasks users need to do, conventions and styles that are
posing constraints, or specific aspects of the intended user group. If contextual models
are included, properties could theoretically give a more valid indication of usability.
The two most probable contextual models to use are ausermodel and ataskmodel.

Checking a dialog against a user model comes down to looking at the dialog aspects
where cognitive and motor skills and limitations are involved. Some aspects of user
modeling are easier to deal with than other aspects. Considerable research into user
modeling has been done to capture relevant aspects of user behavior when interacting
with systems. PUMs (Young et al. 1989) is a technique that uses both a user model and
a system model to evaluate usability. The user model is only a contextual model in the
weakest sense since it does not include individual differences as found in the context
of use. PUMs does not clearly define any general usability properties and the actual
formal proof of properties remains difficult (Butterworth et al. 1998).

Verifying a dialog model against a task model is not straightforward neither. First of
all, because of the diversity of task models it is not guaranteed that they model the same
thing. An important issue in discussions about task models is the question what exactly
they describe. Task models for model based systems and other methods like GOMS
(Kieras 1996) and ConcurTaskTrees (Paternò et al. 1997) are usuallyprescriptive3 task
models. Other task models such as TKS (Johnson et al. 1988) and GTA (van der
Veer, Lenting & Bergevoet 1996) are mainlydescriptiveand focus on modeling the
user’s task knowledge. A consequence of this distinction is that the meaning of task
and object is different. In a prescriptive task model the objects are mostly part of the
system which is not necessarily true for a descriptive task model. Also, a prescriptive
task model usually focuses on one user interacting with the system instead of taking
into account other users and stakeholders, other roles and the environment in which a
user may interact with a system. If a task model is included as a contextual model only
the descriptivemodel should be used since it is then a valid reference to the current
situation. If aprescriptivemodel is used, usability evaluation becomes an evaluation
of a correct “implementation” of an “envisioned” situation.

It is clear that a task model’s most obvious contribution is in checking task confor-
mance, although this may not be easy to do. Currently the situation is such that neither
task modeling nor dialog modeling is mature enough. Moreover, even if they were ma-
ture, finding valid usability properties that use the available contextual information is
not trivial at all. It would require a thorough understanding of how usability ”means”

3Although a notation in itself may not force the resulting task model to be prescriptive or descriptive,
specific notations are often used in only one sense.

92 Detailed Design

need to be based on the contextual informationand how the different means together
lead to optimal usability. Neither of those two relationships is well understood and
forms one of the big challenges in HCI research.

5.9 Summary

This chapter discusses the detailed design phase. In this phase, analysis results are used
to develop the actual user interface design. Making the transition can be done using the
given guidelines. Once an initial design has been created, the incremental process of
iterations starts.

The user interface consists of more than some buttons or menus on a window. We
discuss which aspects need to be designed and which techniques can be used for that.
The term User Virtual Machine is used to discuss the importance of thefunctionality,
dialog and thepresentation. Each of these is in some way important for the usability
when the system is used in practice.

The user interface also needs to be specified. We discuss several informal and formal
techniques. The informal techniques are easy to use, popular and usable but lack preci-
sion. The formal techniques are difficult to use but allow preciseness. These techniques
should not be used in isolation and can complement each other when used together. In
particular, we discussed NUAN. It is an extension we developed to improve UAN.

When the specifications are available, some form of evaluation can start. In order to
use the specification techniques for early evaluation, they must allow valid usability
indicators to be determined. For formal techniques we argued that such indicators can
hardly be produced since no valid indicators dependonly on the model of the user
interface. Only if contextual models of the users and tasks are incorporated, more
indicators can be determined.

Chapter 6

Interaction Patterns in User
Interface Design

6.1 Introduction

Bridging the gap between analysis and detailed design is one of the difficult steps in
design. Additionally, detailed design is also difficult when it comes to designing for us-
ability. Besides the analysis results, design knowledge also plays an important role.This
chapter discusses interaction patterns. Patterns are reusable and proven solutions that
can be applied for design and evaluation activities. Patterns are focused on document-
ing and reusing proven design knowledge.

Guidelines have since long been used to capture design knowledge and to help design-
ers in using that knowledge when designing user interfaces. Such design knowledge
should help the designer to make the right design decisions and prevents the designer
from making the same mistakes over and over again. However, applying guidelines
is not without problems. Usually guidelines are numerous and it is difficult to select
the guidelines that apply to a particular design problem. Guidelines are usually very
compact but their validity or appropriateness always depends on acontext. Software
tools for working with guidelines (Vanderdonckt 1999) can help but do not address the
core problems of guidelines.

As an alternative to guidelines, we propose patterns as a solution to some of the prob-
lems of using guidelines. Patterns explicitly focus on context and tell the designer
when, howandwhythe solution can be applied. The solutions are concrete so that they
can be applied directly. Because of such a different focus, patterns can potentially be
more powerful than guidelines as tools for designers. Inspired by the work of Alexan-
der (Alexander et al. 1977), patterns have become popular in software construction
(Gamma et al. 1995). Interest in patterns for user interface design (UID) goes back
to 1994 (Bayle et al. 1998, Rijken 1994) but a proper set of such patterns still has not
emerged. Some attempts have been made to create patterns but there appears to be a

94 Interaction Patterns in User Interface Design

lack of consensus about how patterns for UID should be written down, which focus
they should have and how they should be structured. Consequently, a potentially even
more interesting pattern language for UID has not been established since it is necessar-
ily preceded by the development of a sufficiently large body of patterns. First, we take
a closer look at why patterns can be more effective than guidelines. Then we look at
the definition of patterns and how that translates to patterns for UID. We propose a tem-
plate for UID patterns focused on usability and will discuss and illustrate the template
with some examples.

6.2 Guidelines or Patterns?

Since HCI already has a long tradition developing design guidelines, it needs to be clear
what the differences between patterns and guidelines are. The purpose of guidelines is
to capture design knowledge into small rules, which can then be used when construct-
ing new user interfaces. A pattern is supposed to captureprovendesign knowledge
and is described in terms of a problem, context and solution. Since they have more
or less the same purpose, the format may seem the only difference. On the one hand
it is true that the design knowledge of a guideline could also be written down using a
pattern template. On the other hand, the fact that a template is used to write down the
guideline does not necessarily make it a pattern.

For patterns it is important that the solution is aprovensolution to the stated problem
and that designers agree upon the fact that it is a proven solution. Designers share
values and ideas so the pattern must relate to their experience. In a sense, patterns
represent pieces of good design that arediscovered/uncovered empiricallythrough a
collective formulation and validation process, whereas guidelines usually are defined
normativelyby a closed group. Each pattern has a name and a collection of patterns
forms a vocabulary for designers. Guidelines are mostly presented without explana-
tions or rationale. In the Smith and Mosier guidelines (Smith & Mosier 1986) some
guidelines have a short rationale in the comment field but they are often simply de-
fined without any argumentation whereas some are just style definitions and not generic
guidelines.

It has often been reported that guidelines have a number of problems when used in
practice (Dix et al. 1998, Mahemoff & Johnston 1998a), e.g. guidelines are often
too simplistic or too abstract, they can be difficult to interpret and select, they can
be conflicting and often have authority issues concerning their validity. One of the
reasons for these problems is that most guidelines suggest a general absolute validity
but in fact, their applicability depends on a specificcontext. This context is crucial
for knowing which guidelines to use, why and how they should be ”translated” for the
specific context. For many design decisions, it is simply required to know the whole
context of use(ISO 1991c) including the tasks, the users, the environment etc. Without
that knowledge, the design problem cannot be solved adequately. Guidelines have
no intrinsic way of stating the context for which they apply and at most, it is briefly
mentioned.

An Example 95

Another problem of guidelines is that it is often difficult to see what theproblemis
and why the guideline is like it is. For example, consider a very simple guideline
saying,”Left align labels in dialog window”(Mullet & Sano 1995). What is the real
problem being addressed by this guideline? It is not ”how to layout labels” because
that would be a problem of the UI designer. But what is the benefit for the user? In
our opinion, the real problem should be concerned with understanding information
on a display with aspects such as scanning time and readability which goes back to
Fitts’ law (Fitts 1954)1. A pattern makes both thecontextandproblemexplicit and the
solutionis provided along with arationale.

Compared to guidelines, patterns contain more complex design knowledge and often
several guidelines are integrated in one pattern. Guidelines usually exist in a positive
and a negative form; do or don’t do this. Patterns however focus on ”do this” only and
are hence constructive. Furthermore, solutions need to be very concrete and should not
raise new questions surrounding the core of the solution. Although they can point to
other ”problems” that often occur in the same context or in the context generated by
this solution.

The last difference between patterns and guidelines is that patterns can be grouped and
connected to form a pattern language. Each pattern can reference other patterns that
solve sub-problems related to the same problem or to the solution. This way, design
knowledge becomes semantically connected and designers can more easily access the
knowledge concerning a particular problem. With guidelines this is not possible.

6.3 An Example

Table6.1 shows a very simple pattern that illustrates what an interaction pattern can
look like. Just as patterns in software engineering, the pattern has a specific structure
that is adapted to interaction design. It is focused on the use of warning messages
to protect the user against unintended actions. It is based on the idea to require two
consecutive mistakes instead of one. Note that the pattern does not addresshow the
protection layer should be implemented. The example merely shows a screenshot of
an existing application where this pattern was applied. The pattern references another
pattern, THE WARNING, that deals with how to design warning messages. Together
these two patterns can solve the whole design problem but they each describe separate
issues.

This example still resembles a guideline. However, other patterns may describe solu-
tions that are less similar to guidelines. For example, the HELPING HANDS patterns
describes the use of two handed input in entry tasks and the WIZARD pattern describes
how users can be guided through a complex task. See appendixB for more patterns.

1Fitts’ law says, among other things, that the time to point at an object is proportional to the logarithm of
the distance to the object.

96 Interaction Patterns in User Interface Design

Table 6.1: An Example of an Interaction Pattern
Name The Shield
Problem The user may accidentally select a function that has irreversible

(side) effects.
Usability Principle Error Management
Context The user needs to be protected against unintended or accidental ac-

tions that have irreversible (side) effects. The (side) effects may lead
to unsafe or highly undesired situations. For example the unintended
deletion or overwriting of files. Do not use for actions that are reversible.

Forces – The user needs to be protected but normal operation should not be
changed.
– The user is striving for speed while trying to avoid mistakes.
– The severity of the (side) effects i.e. how undesirable is the effect if it
was unintended?

Solution Protect the user by inserting a shield.

Add an extra protection layer to the function to protect the user
from making mistakes. The user is asked to confirm her intent with the
default answer being the safe option.

Usability Impact Increased safety, less errors and higher satisfaction. However, it re-
quires extra user action which leads to slower performance.

Rationale The extra layer causes the user to require two repetitive mistakes in
stead of one. This way the user is also made aware of the safety as-
pects of her actions. The safe default decreases the chances for a
second mistake.

Example
A copy of the file already exists at the specified location. Overwriting
it will result in loss of the copy. The default is ”No” so that the speedy
user has to take the effort of saying ”Yes”.

Known Uses Microsoft Explorer, Apple Finder, Sony Vaio’s Smart Capture
Related Patterns THE WARNING

6.4 Patterns as Design Tools

Patterns are potentially better tools than guidelines because they are explicitly related
to a context and are user problem centered. Although this may conceptually be true, in
practice creating patterns for UID is not that easy. A pattern for UID is not necessarily
structured in the same way as an architecture pattern and it is important to find a format
and focus that has been designed for UID and has the right view on the important issues
in UID. Suitability for describing usability related problems is an important issue for
UID patterns. In this section, we will look at some definitions of patterns and we will
propose a format for UID patterns.

Patterns as Design Tools 97

6.4.1 Defining a pattern

As the name already suggests, a pattern is concerned with repeating elements, prob-
lems and solutions that emerge. Alexander (Alexander et al. 1977) defines a pattern
as follows;”Each pattern is a three-part rule, which expresses a relation between a
certain context, a problem, and a solution”. He goes on explaining the nature of a
pattern;”Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such a way
that you can use this solution a million times over”. From these explanations it shows
that patterns are very practical, they describe instances of ”good” design and not vague
principles or strategies. Furthermore, they have been proven and are hence not theo-
ries or speculation. It is therefore necessary that a pattern contains a rationale why the
solution works and proof by referring to examples where the pattern was successfully
applied. Patterns are bothdescriptiveandprescriptiveand they help designers construct
new instances. Alexander said a pattern should describe thecoreof a solution. Other
related issues concerning the context are therefore dealt with by other related patterns
that are being referenced. Patterns for different purposes usually do not have exactly
the same template and for each purpose an adaptation is needed. The main fields are
alwaysproblem, context, solution, andforces. The solution describes how the forces
are balanced in the specific context. The remaining fields are extensions which should
help make the knowledge even more clear.

6.4.2 Anti-patterns

Within the Software Engineering community, the success of patterns led to the devel-
opment of anti-patterns (Brown et al. 1998). Anti-patterns focus on why things are not
going right and then a solution is given. It can be seen as a pattern that is preceded by
an example of bad design. It shows how not to do it and then how to solve it. Therefore,
anti-patterns aredescriptiveand reflect on a particular design choice. In user interface
design, many examples of bad design have been documented. Seeing bad designs may
be very inspiring but it does not directly help to solve problems. Patterns and anti-
patterns can also be combined by extending the normal pattern with an example of
what is likely to happen if the pattern is not used. What is the danger of not solving the
problem right? In particular for UID this may be very illustrative because the ”danger”
can often be shown with a single screen shot. For example, Figure6.1shows a screen
shot that clearly asks for a pattern that addresses layout of dialog elements.

6.4.3 Types of patterns

Many types of patterns exist besides architectural patterns and software engineering
patterns. Even within the field of HCI there are many possible uses for patterns. For
example, organizational patterns describe reoccurring solutions in organizations and
ethnographic patterns describe how humans act.

98 Interaction Patterns in User Interface Design

Figure 6.1: Chaotic layout of dialog elements

When doing a task analysis, task patterns (Paternò 1999) can be used to describe re-
curring task structures. Later on when doing detailed design, interaction patterns can
be used to describe detailed design aspects of a user interface. Patterns help bridge
the gap between an envisioned task model and the UVM specification in at least two
important ways. First, task patterns such as described in (Paternò 1999) can be used to
recognize common task structures. Using those patterns is can become easier to recog-
nize tasks and even to see problems in the current task situation. When (re)designing,
successful task patterns can be applied directly. The second important use of patterns,
is to do detailed design. Task patterns will have a corresponding detailed design that
describes the actual elements of the user interface. This solution will have a high level
of usability for that task. In this chapter we focus on interaction patterns instead of
task patterns. The interaction design patterns are also task related and form the most
directly usable patterns in practice.

6.5 Interaction Design Patterns

Interaction patterns are different from the Gang of Four (GoF) patterns (Gamma et al.
1995) in that they describe proven solutions that solve problemsend-usershave, not
technical construction problems. In this sense, a ”design” is used to indicate the user
interface from the viewpoint of the user. Therefore, patterns in user interface design
are more related to Alexander’s patterns (Alexander et al. 1977) and share the same
intentions i.e. striving for quality for the users of the ”things” we build. For interaction
patterns, quality can be defined asquality in useor usability (Hartson 1998, Nielsen

Interaction Design Patterns 99

1993, ISO 1991c). These patterns concern the static structure, the appearance and dy-
namic behavior of the user interface but not the implementation in terms of coding.
They include the ”look and feel” of the interface as far as it goes beyond mere style.
The solutions described help users in the tasks they perform in day-to-day usage. In
contrast, the GoF patterns describe solutions that solve construction problems of de-
signers which are typically ”invisible” to end-users.

The patterns presented in this chapter are part of an ongoing effort to describe success-
ful solutions that benefit the users of the system . Consequently, they are solutions most
of us are acquainted with. Other collections such as Common Ground (Tidwell 1998)
or the Web patterns collection (Perzel & Kane 1999) do not make the explicit dis-
tinction between the user perspective and the designer perspective. In fact, they are
primarily aimed at designers and make the user’s problems secondary. Although some
of those patterns indeed benefit users, they lack the proper focus and rationale. For ex-
ample, the problem statement in Tidwell’s patterns is typically of the form”How can
the artifact best show ”which does not explicitly relate to a usage problem. Generally
speaking, each pattern that focuses on the user perspective isalsousable for designers
but not vice versa. Therefore, our patterns should benefit both designers and end users.

Interest in patterns for user interface design (UID) goes back to as early as 1994 (Rijken
1994) but although several pattern collections exist, an accepted set of such patterns
i.e. a pattern language, has not yet emerged. There appears to be a lack of consensus
about the format and focus of patterns for UID. Consequently, a pattern language for
UID has not been established since it is necessarily preceded by the development of
a sufficiently large body of patterns written with the same focus or ”view”. It is our
opinion that patterns in UID require a special format which is focused onusability. Just
as patterns in Software Engineering (SE) needed an adaptation of Alexander’s format,
patterns in UID will need their own format and view. Only with a clear view can we
write and discuss patterns in UID which will ultimately lead to a pattern language.

6.5.1 Taking the user perspective

When taking the user perspective it becomes important to put emphasis on the argu-
mentation for how and why the usability is improved. Without such a rationale it is
impossible to see whether or why the solution is actually a good and accepted solution.
Certain solutions in UID solve problems designers or marketing people have but not
necessarily problems users have. E.g. banners and splash screens are accepted designs,
but hardly for usability reasons. Others have focussed on HCI patterns that empha-
size the problems that information providers face when designing web sites (Perzel &
Kane 1999). In such patterns, marketing goals are the frame of reference that determine
what is consideredquality in proven solutions.

It is not difficult to identify patterns in user interfaces but it is hard to identify those
patterns that really benefit the user, and explain the usability aspects. There are simply
many examples of bad user interface designs, making it hard to identify good solu-
tions. On the other hand, bad examples can be very useful to motivate designers to

100 Interaction Patterns in User Interface Design

use patterns, similar to the idea of anti-patterns. The Interface Hall of Shame2 is a
nicely commented collection of such bad examples. In other cases it is tempting to
describe solutions that are minimizing usability related problems of users. For exam-
ple, validating data after a user has entered it is not always the best solution, although
frequently used; the user should not be allowed to enter syntactically incorrect data in
the first place! The UNAMBIGUOUS FORMAT (see the appendix) pattern can be used
to achieve this goal.

User problems are concerned with what the user wants to do with the system and how
the interaction takes place. In the field of Human Computer Interaction (HCI) we speak
of usability problems to indicate user/usage problems. It is recognized in HCI that us-
ability is not an attribute of a system itself but it is only relevant in relationship to
specific users who need to perform specified tasks in a specified environment. This
stresses the importance of the context description of a pattern and allows for a natu-
ral mapping to patterns as originally intended by Alexander. The context section of
a pattern should describe all characteristics of the users, tasks, and environment for
which the pattern applies and serves as a selection criterion. The problem section then
describes what fundamental usage problem the user is having for which the solution is
intended. In other words, patterns in UID are typically task oriented.

6.5.2 Categorizing user problems

For patterns in user interface design several organizing principles/categories have been
proposed (Mahemoff & Johnston 1998b). Mahemoff proposes the following cate-
gories: task related patterns, user related patterns, user interface element patterns and
system based patterns. Our patterns are task/user related and in our collection we cat-
egorize patterns according to the kind of usage problems they address. In (Norman
1988) several user interface principles are suggested. The principles give an indication
of the kind of problems and questions (McKay 1999) users may have when interacting
with a system. Norman’s principles are:

• Visibility . Gives the user the ability to figure out how to use something just by
looking at it.Hmm, I think this feature might do it

• Affordance. Involves the perceived and actual properties of an object that sug-
gest how the object is to be used.Now how does this object work? Oh, I get
it

• Natural mapping. Creates a clear relationship between what the user wants to
do and the mechanism for doing it.To perform my task, I need to select this
option, enter that information, and then press this button

• Constraints. Reduces the number of ways to perform a task and the amount of
knowledge necessary to perform a task, making it easier to figure out.Oh no,
what do I have to enter here? Ok, I just have these choices

2http://www.iarchitect.com/shame

Interaction Design Patterns 101

• Conceptual models. A good conceptual model is one in which the user’s under-
standing of how something works corresponds to the way it actually works. This
way the user can confidently predict the effects of his actions.To perform the
task, I provide the necessary information and give this command and it seems to
work as I expected it to...

• Feedback. Indicates to the user that a task is being done and that the task is
being done correctly.Great it worked!

These principles above assume that users always exhibit fully rational behavior. In
practice, users make mistakes and do things they do not really wanted to do. Therefore,
additional principles are:

• Safety. The user needs to be protected against unintended actions or mistakes.
Oops! I made a mistake and here is how I correct it. Now I understand and I’ll
try again.

• Flexibility . Users may change their mind and each user may do thing differently.
Now that I think about it, that parameter should have been ... Cancel it, I want
to change the order.

These categories of user problems and the questions they lead to, are quite general and
the context description is important to distinguish the situations in which to use the
pattern. Additionally, these problems can often be solved by several solutions which
makes it even more important to be precise and concrete.

6.5.3 A focus on usability

If we focus on usability problems of users, we need to work out what the implications
are for the way we write patterns. A pattern for UID should focus on solutions that
improve the usability of the system in use, which must be measurable in usage indi-
cators. Usability can be measured with the following usage indicators; learnability,
memorability, speed of performance, error rate, satisfaction, and task completion, see
Chapter2. Each pattern should therefore state the impact on these usage indicators. In
short, if a ”UID pattern” does not improve at least one usage indicator, it is not a UID
pattern. We believe that UID patterns always use a certain ergonomic principle and the
rationale section should explain how the ergonomic principle as used in the solution
leads to an improvement of the usage indicators. Most elements of the GoF patterns
can be used directly for UID patterns as well. However, it is important to write them
down from the right point of ”view”.

• Problem. Problems are related to usage of the system and are relevant to the user
or any other stakeholder that is interested in usability. In contrast to SE patterns,
problems in UID patterns should not be focused on construction problems de-
signers are facing. Hence, problem descriptions should be user task oriented and
fall into one of the categories as defined by Norman (Norman 1988).

102 Interaction Patterns in User Interface Design

• Context. The context is also focused on the user. What are the characteristics of
the context of use (ISO 1991c), in terms of the tasks, users and environment for
which the pattern can be applied?

• Solution. A solution must be described very concretely and must not impose new
problems. However, only the core of the solution is described and other patterns
might be needed to solve sub-problems. Other patterns relevant to the solution
should be referenced.

• Examples. The example should show how the pattern has been used successfully
in a system. An example can often be given using a screen shot and some addi-
tional text to explain the context of the particular solution. It is preferable to use
examples from real-life systems so that the validity of the pattern is enforced. If
a writer cannot find any real-life example, the pattern is not a pattern.

The fields and ”view” needed to write UID patterns are important. For example if the
view is taken wrongly, one might write patterns on ”how to use tab controls”. This
is very tempting to do especially when guidelines are rewritten into pattern format.
However, such views take on the perspective of the designer and not the user. Moreover,
the design knowledge about ”how to use tab controls” depends on the context of when
it is applied, the users and their task. In other words, it is looking at the problem
from the point of the solution without knowing the problem. Another addition we
use in several patterns is a ”Counterexample” section. This is an example of a real
application when the pattern should have been applied but was not applied. It creates a
kind of anti-pattern effect that serves as an extra motivation for use of the pattern.

6.5.4 A template for interaction patterns

As argued before, patterns in UID need their own format. We have chosen to use a
template format in a table-style. It is also possible to combine all these elements in
a more ”story-like” format as Alexander did but since no studies have been done on
which format is best suited for UI designers, we follow our own preference. For our
current collection we have used the following structure and definitions:

Pattern Name

Each pattern should have a meaningful or catchy name that relates to the problem or
the solution. The name allows one to use a single word or short phrase to refer to
the pattern, the knowledge and structure it encompasses. Good pattern names form a
vocabulary for discussing design problems and solutions.

Problem Description

Users can have all sorts of problems while using a system. The description states the
user problem the pattern is trying to solve and objectives it wants to achieve within the

Interaction Design Patterns 103

given context and constraints of the problem. User problems are typically task related
and concern things users want to do, need to know, have to give or must control.

Usability Principle

Interaction patterns usually use a ’principle’ on which the solutions are based. A com-
plete set of principles is not known yet but an initial set can be given. The following list
of usability principles is used grouped according to Norman’s (Norman 1988) problem
categories:

• Visibility: User guidance, Grouping, Incremental Revealing

• Affordance: Metaphors

• Feedback: Immediate Feedback, Legibility

• Constraints: Minimizing actions, Self-explanation

• Conceptual Model: Significance of codes, Compatibility, Adaptability

• Safety: Error Prevention, Error Correction, Forgiveness

• Flexibility: Explicit control

Context

A pattern solves a problem in a certain context. The context is the set of conditions
under which the problem and its solution seem to recur, and for which the solution
is desirable. Besides the problem description, the context also provides criteria for
determining when this pattern should be applied.

Forces

This description represents relevant forces and constraints of the problem and how they
interact/conflict with one another. Forces make clear the intricacies of a problem and
define the kinds of tradeoffs that must be considered. A good pattern balances the
forces in an optimal way.

Solution

The solution section describes the core of the solution. It may consist of diagrams,
sketches and prose that identify the pattern’s structure, dynamic behavior and their
visualization, and shows how the problem is solved. A solution is formulated in an
abstract way and does not specify specific instantiation details. The formulation of the
solution starts with a one-liner that summarizes the solution.

104 Interaction Patterns in User Interface Design

Rationale

This section describes how the pattern actually achieves its goal, why it works, and why
it is good. The solutions section describes the visible structure and behavior of the sys-
tem, while the rationale provides insight into the deep structure and key mechanisms
that lie under the surface of the system. The rationale should provide a reasonable
argumentation for the specified impact on usability when the pattern is applied. The ar-
gumentation can be based on psychological, sociological, ergonomic, or organizational
findings etc. that have been accepted in the disciplines involved.

Additionally, the impact the pattern has on usability when it is applied must be de-
scribed. It describes what usability aspects have been improved, and which ones have
become worse. Usability literature has identified the following measurable aspects of
usability, see also Chapter2:

• Performance Speed. How fast users can work with the system.

• Learnability. How easy the system is to learn.

• Memorability. How well users remember how to use the system.

• Satisfaction. The satisfaction users get when using the system.

• Task Completion. How much of the task could be completed.

• Errors. The number of errors users make.

It is usual that a pattern optimizes one or two aspects while other aspects have to suffer.
Each solution tries to provide the right balance in the specified context.

Example

This section gives one or more examples of interfaces where the pattern has been used.
Examples help readers to understand the pattern and enforce the fact that the pattern
describes a proven solution. Examples should be taken from real applications and
typically include screen shots or animations.

Counterexample

This optional section gives an example of a system where the pattern should have been
used but was not applied. The counterexample serves as an extra argument in favor of
the pattern.

Known uses

This section just mentions other applications where the pattern was used. If this pattern
is really a re-occurring solution it should be possible to give some examples.

Towards a Pattern Language 105

Related Patterns

This section references other patterns that address related problems.

6.6 Towards a Pattern Language

At the time of writing, our collection contains thirty patterns that have been formulated
using the template given in the previous section. The reason for starting a new collec-
tion is that we wanted a collection of patterns that is strictly focused on problems of
the end-user and not problems of designers. The patterns must be considered candi-
dates since the process of reaching consensus is still in progress. Anyone can submit
new patterns and the patterns are being discussed by a small group of researchers and
practitioners. The site is built using XML in order to create a consistent and standard
format for publishing patterns. Additionally, the use of XML facilitates several ways of
automatic indexing or categorizing patterns. Pattern writers can submit a pattern using
the pattern DTD3 while a style sheet causes all patterns to be rendered in a consistent
way.

A representative set of patterns can be found in appendixB and the complete collection
can be found online athttp://www.cs.vu.nl/ ∼martijn/patterns/index.html . The
following list gives an indication of the what kind of patterns are in the collection. Only
the name, problem and solution are given.

• Wizard
Problem: The user wants to achieve a single goal but several decisions need to be made
before the goal can be achieved completely, which may not be known to the user.
Solution: Take the user through the entire task one step at the time. Let the user step
through the tasks and show which steps exist and which have been completed.

• Progress
Problem: The user wants to know whether or not the operation is still being performed
and has not stopped as well as how much more the user will need to wait.
Solution: Show that the application is working and give an indication of the progress.

• Grid Layout
Problem: The user needs to quickly understand information and take action depending on
that information.
Solution: Arrange all objects in a grid using the minimal number of rows and columns.

• Hinting
Problem: The user needs to know how to select functions.
Solution: Give the user hints for other ways to access the same function.

• Unambiguous Format
Problem: The user needs to supply the application with data but may be unfamiliar with
which data is required or what syntax to use.
Solution: Only allow the user to enter data in the correct syntax.

3Document Type Definition, a definition of the structure of the document

file:www.cs.vu.nl/~martijn/patterns/index.html

106 Interaction Patterns in User Interface Design

• Preview
Problem: The user is looking for an item in a small set and tries to find the item by
browsing the set.
Solution: Allow the user to preview the item.

• Automatic Mode Switching
Problem: Users change their minds and may switch to new goals.
Solution: Detect the user’s switch of goals and automatically set the new mode.

• Helping Hands
Problem: Users need to enter many different types of objects.
Solution: Use one hand to enter the data while the other hand is used to switch entry
modes.

When a collection of patterns is agreed upon by a community, it is possible to speak of a
pattern language. Patterns are usually related to each other and consequently a network
of patterns constitutes a pattern language. The development of a pattern language is the
highest goal in pattern research. However, before we can speak of a pattern language
for user interface design it is necessary to develop good patterns. We have outlined a
format for UID patterns and illustrated the format with an example. The next step is to
develop a substantial amount of patterns and to start evaluation of the patterns to create
the very important agreement. Validity and agreement are requirements for a pattern
language. Not anything written down in a pattern form is a pattern and we should not
accept them as such. Up till now, our work has focused on the development of patterns
but in the near future the pattern approach needs to be validated to see whether they
are indeed more effective than guidelines in their usage and in their effect on the end
product.

6.6.1 Structuring a pattern collection

Our pattern collection presented in the appendix is a starting point for a pattern lan-
guage. The patterns in the collection are linked and hence form a network of patterns,
often visualized using a graph. Besides the fact that patterns reference other patterns,
patterns can also be categorized. The GoF (Gamma et al. 1995) give a categorization
in Creational, StructuralandBehavioralpatterns. However, for interaction patterns
such a categorization is not appropriate and alternatives are needed. A categorization
gives structure to a pattern collection and facilitates bothselectionandunderstanding
of patterns.

Patterns are intended to be used as reference material when there is a need for them.
The reason why a designer wants to search for a pattern determines the optimal struc-
ture of the pattern collection. For our collection, several possibilities exist. For exam-
ple, the designer might want to address a particular problem or she might be looking
for a pattern that closely matches a specified context. Other indices are the usability
principle, the usage indicators that are involved, or patterns that only address presen-
tational aspects. Table6.2shows an example of a structuring based on the type of end
user problem.

Towards a Pattern Language 107

However, not many interaction design patterns exist and it seem premature to make
assumptions about how they will be used in practice. It seems likely that some catego-
rizations will be used more often than others but in general there is no need to choose
one fixed categorization. When XML is used it is possible to see a pattern collection
as a database that can be queried in many ways. Therefore, we will not present a fixed
structure for our pattern collection.

Table 6.2: Patterns and User Problems
User Problem Category Patterns
Visibility Command Area, Wizard, Contextual Menu
Affordance Mode Cursor, Like in the real world, Setting

Attributes
Natural Mapping Like in the real world, Preview, List Browser,

Continuous Filter, Navigating between
spaces, Container Navigation

Constraints Unambiguous Format, Focus!
Conceptual Models Grid layout, Like in the real world
Feedback Progress, Hinting, Contextual Menu
Safety Warning, Shield
Flexibility Preferences, Favourites

6.6.2 Developing a pattern language

The patterns in this collection have mainly been developed by examining often-used
applications and by going through guidelines. Most of our efforts have concentrated on
writing down the patterns with a consistent focus as described in the previous sections.
The patterns presented here are a collaborative effort; patterns were distributed by email
and discussed by a small group of researchers and practitioners.

In this process, we came across several problems which are perhaps specific for inter-
action patterns. First of all the formulation of the problem proved difficult because it is
often hard to pinpoint what problem the user has and if the solution actually solves it.
The problem field served as the first criterion to see if the spotted solution was solving
usability problems. Additionally, the formulation of the solution was the part that was
iterated most often. At first the solution tends to be formulated closely to the instance
of the example found but it can usually be formulated more abstract.

After we had written around fifteen patterns we started to link the patterns in order
to move on towards a pattern language. By doing this, we discovered some ”holes”
which led to the discovery of new patterns. For example, when a pattern is written
only the essence is described which means that certain aspects are abstracted from or
unaddressed. Such aspects can then be a topic for another pattern if it concerns a user
problem. Although most of the patterns in the collection have been revised several
times. the next development is to validate the patterns further in the community of user
interface designers and end-users.

108 Interaction Patterns in User Interface Design

6.7 Summary

This chapter discusses patterns as an important tool in user interface design. Most di-
rectly, patterns can be seen as a better kind of guidelines. Patterns represent proven
design knowledge in a much richer context than guidelines. Patterns are problem and
context oriented which makes them potentially more usable for designers than guide-
lines.

The concept of a pattern is not new and has been popularized in architecture and soft-
ware engineering. As in each domain where patterns are applied, patterns for user
interface design require their own format and we defined a ”mapping” specifically for
user interface design. The format is based on the other formats as used in architecture
and Software Engineering but applied with a focus on designing for usability.

Developing a collection of patterns is difficult. In order to validate the concept of
interaction patterns, we developed a collection of two dozens of patterns. The patterns
have been validated by a small group consisting of researchers and practitioners. Only
when a body of patterns has been accepted by practitioners, we can work towards a
real pattern language for UI designers. The defined format and focus for UID patterns
should contribute to the development of such a body of patterns. However, much more
effort is needed to develop and validate patterns in practice.

Chapter 7

Tools for Task-based Design

7.1 Introduction

Nearly all software development nowadays involves a graphical user interface (Myers
1995). Designing, implementing and improving the user interface is a complex and
difficult process that greatly benefits from tools. Virtually all user interfaces are created
using tools that significantly reduce the implementation effort. However, the early
phases in software design that deal with analyzing the current situation and determining
the functionality of the new product, are not so well supported as the implementation
phase. In particular for task analysis only a few tools exist and those are not commonly
used in practice.

Task analysis is often criticized as being time consuming and difficult to do. It is
therefore an activity that could greatly benefit from tools that reduce the effort needed
to do a task analysis. Currently, mainly tools such as sticky notes and blackboards are
used but those are not usable for all task analysis activities. Tools could also improve
the effectiveness of a task analysis if the quality of the models and produced documents
is structurally guided by the use of a tool. A tool can help designers in modeling more
accurately or performing a detailed analysis of the models. For the industry, it is simply
a requirement that a modeling technique is supported by tools. If not, the technique will
not be used at all.

This chapter describes the status of the current tools and set out requirements for future
tools for task-based user interface design (TB-UID). Since tools have not had a big
impact on task analysis yet, it is necessary to determine the requirements for successful
TB-UID tools. One crucial aspect is that tools are used in aprocessand the role they
have in the process is important to understand. Another important aspect is that TB-
UID is a group activity which has implications on the way tools are being used.

110 Tools for Task-based Design

7.2 User Interface Design Tools

Myers gives a survey (Myers 1995) of user interface tools and he defines categories
such as tool kits, Interface builders, User Interface Management Systems, Integrated
Development Environments, Design Exploration Tools, and Model-based Generation
tools. Such tools are all intended for the implementation phase when a lot of design
already has taken place. The tools allow prototypes to be built quickly and they facili-
tate evolutionary prototype improvements. Some tools are more high level such as the
model-based development environments which start already earlier in the design pro-
cess. Model-based interface development environments (MBIDE) often even use task
and flow models and can be used earlier in the design process than other UID tools.
However, MBIDEs are still focussed on reducing the implementation effort.

In this chapter we will focus on tools that support TB-UID activities such asknowledge
elicitation, creating story boards/scenarios, task modeling, andtask model analysis.

7.3 Supporting Task-based Design

Supporting task based design can mean many things. Some activities will benefit more
from tool support than others. At the CHI ’99 workshop onTool Support for Task-
Based User Interface Designboth the current use of tools and the possible opportunities
for tools were discussed (Bomsdorf & Szwillus 1999b). The group approached the
issue by looking at the process of task analysis. The group organized the task analysis
into five phases and for each phase the activities, the current tools and possible future
tools were discussed, see Table7.1.

Table 7.1: Tools and the Task Analysis Process
Phase Getting started Data Collection Data Analysis Evaluation Envisioning

Activities - Identify stake
holders
- Define goal
statement
- Define constraints

- Collect data from
stake holders
- Additional
research
- Preliminary
interpretations
- Encoding (during
collection)

- Summarize raw data
- Identify entities (tasks,
roles, objects, events,
agents)
- Structure data
- Scenarios
- Elaborate entities
- Clean up
- Validate Accuracy

- Evaluate
effectiveness
- Identify
problem areas
- Simulations

- Optimize in
response to goals
- Improve
- Establish design
goals
- Create and
evaluate design
alternatives
- Innovations

Current
Tools

- Flip charts
- Word processor
- E-mail

- Audio/video
recording
- Post-it notes
- Pen/paper forms
- Bibliographies
Annotation tools
- P.D.A.

- Flip charts
- Paper + post-it
- Word processor

 - Paper/pencil
- Flip charts
- Word
processors/outliner
- Prototyping

Future
Tools

 - Multi-user modelling
editor
- Database support
- Problem database
- Consistency analysis

- Scenario
Simulator
- Problem
database

- Story boarding
tools

One of the first remarkable aspects was the fact that there was a considerable amount
of agreement on the general activities that needed to be done during a task analysis. In
some activities tool support was considered unnecessary and in other activities the ”old

Supporting Task-based Design 111

fashioned” tools such as white boards seemed very adequate. Especially during the
modelingandanalysisphases tool support was found to be lacking but much needed.
Modeling tools were wanted and especially tools that supportcooperativework since
modeling is usually an activity done by several persons. Looking a bit more into the
future, the group envisionedsimulatorsthat would allow designers to validate their
models or in the future test their future task models.

7.3.1 Support throughout the process

In the ideal case, TB-UID should be supported throughout the whole process. Tool
support could cover most activities from knowledge elicitation, task analysis, scenario
development, sketching, interface modeling to prototype development. However, in
practice this is not possible yet. In model based user interface design, the hope is
that indeed the whole design process is covered, up to the generation of initial proto-
types. By transforming one model into another, the process progresses from task model
to implementation model. Such tools are called Model Based Interface Development
Environments (MBIDE). MBIDEs exist for almost ten years now but they have not ma-
tured as much as one would hope. Most well known projects such as MASTERMIND
(Neches et al. 1993), ADEPT (Johnson et al. 1983) have been stopped and MBIDEs
never got beyond the level of research prototype. One of the fundamental problems
is that the transformation of models is not trivial and can only be partially automated.
Another problem is that the generated prototypes often do not have the desired level of
usability. For certain kinds of application, such an approach has proven feasible but the
approach cannot be generalized to all kinds of applications.

One of the latest MBIDE projects, called MOBI-D (Puerta 1997), is showing a more
general approach that involves far more designer involvement. Instead of a high level
of automation, the tool environment takes on the role of intelligent adviser and allows
the designer to make the choices. The models are then used to create useful advice and
design options instead of generating other models and finally prototypes. This kind of
research is still very much in development and the availability of these tools remains
problematic, which makes them hard to compare and test.

For the moment, it seems that tools are more effectively used for assisting designers in
the design process as opposed to automating activities. When focussing on assisting
designers, supporting all sorts of modeling and analysis activities are the main goals.

7.3.2 Integrated modeling and modeling Purposes

In TB-UID, several models are being developed throughout the process. Task models,
user models, flow models, object models and scenarios play a prominent role. Most
of these models serve a specific purpose and usually models are not explicitly related
to each other. For example, scenarios and a task model are usually used as input for
developing the detailed interface model but the link between them is not defined ex-
plicitly. Without such a link, models tend to be used in isolation which complicates the

112 Tools for Task-based Design

development of tool support. This may be one of the causes why MBIDE’s have not
been successful yet.

Modeling in TB-UID is usually for one specific purpose and the integration with other
models is not the mainintent. Presently, the link between a task model and dialog
model is a very problematic one but the link between a scenario and a user model is
also undefined. Even if these would be defined, another issue is concerned with the
contentof each model. If a task model is used as the basis for a simulation, the models
need to meet certain execution constraints. Such constraints may not always be desired
for a more informal task model. In a similar way, it remains unclear what exactly a
model should contain if it is used for the purpose of evaluation on a specific aspect, for
example safety or performance.

It seems that the models that are used now for different purposes, are difficult to inte-
grate. see Figure7.1. Consequently, tool support is also fragmented and coupled to the
model purposes. If integrated modeling is to be supported by tools, the models need
to be integrated first while their ”content” is specified in relation to a purpose, such as
simulation. An ontological approach may help to reach that goal. By defining on a
metalevel how the models are related, the models can be linked.

Task Model Dialog Model Implementation Model

has a has a has a

?? ??

Unifying Purpose

Model

Purpose
•study mental model
•system development
•process redesign

•safety evaluation
•usability evaluation
•implementation generation

•program correctness
•component reuse
•program interpretation

serves serves serves

Figure 7.1: Model purposes

Although the ideal tool support for task-based design is not yet feasible, there are al-
ready interesting tools that can be used now. The next sections discuss the current state
of the art of such tools.

7.4 An Overview of Current Task Analysis Tools

This section presents a brief survey of task analysis tools that have been described
in task analysis literature or that are commercially available. Each tool will be briefly

An Overview of Current Task Analysis Tools 113

outlined in order to get an idea what it can do. The purpose of this section is to illustrate
the current state of the art in tools for TB-UID. Many tools have never been developed
beyond the prototype stage but still they emphasize interesting aspects. We will use
those ideas in the next section to outline requirements for future tools for TB-UID.

7.4.1 Commercially available tools

A limited number of commercially available tools exist that can be useful for the early
phases in TB-UID.

• Elicitation : The Observer

• Modeling: WinCrew, ErgoWeb, Visio

• Analysis and Simulation: The Observer, WinCrew

• Envisioning: Storyboard Quick

WinCrew

WinCrew is a tool for constructing system performance models for existing or concep-
tual systems when a central issue is whether the humans and machine will be able to
handle the workload. WinCrew can be used to predict operator workload for a crew
given a design concept. What separates WinCrew from other workload models is this
direct link between task-induced workload and the effect on system performance. Win-
Crew can predict how the human will dynamically alter his behavior when he or she
encounters high workload situations. WinCrew can simulate the following as a func-
tion of high workload: dynamic allocation of tasks between humans and machines,
dropping tasks based on task priority, task time and accuracy degradation. This tool
originates from the US DoD and was intended for analyzing tank crew behavior. Since
this tool is intended for a very specific purpose, it may not be generally useful in TB-
UID.

The Observer

The Observer (Noldus Software 1999), see Figure7.2, is a professional system for
the collection, analysis, presentation and management of observational data. It can
be used to record activities, postures, movements, positions, facial expressions, social
interactions or any other aspect of human or animal behavior. Data can be entered
directly into a PC or hand held computer, or code events from videotape. During an
observation session, key-presses are used to log events and the time at which they occur.
During observations, notes and comments can be added, which are stored together
with the data. A complete system consists of several tightly integrated software and
hardware components. It reads time codes directly from video tape or media file, which
allows accurate event timing at the playback speed of your choice. Once data collection

114 Tools for Task-based Design

has been completed, analysis options allow exploration of the data in time-event tables
and plots, or generate reports with statistics on frequencies and duration, the sequential
structure of the process or the co-occurrence of events. For additional calculations
and inferential analysis (hypothesis testing), you can export the summary tables to
spreadsheets, databases or statistics packages.

Figure 7.2: The Observer

ErgoWeb

ERGOWEB is a prototype software tool that offers support to the human factors spe-
cialist using hierarchical task analysis (Annett & Duncan 1967) . The tool provides a
direct manipulation diagram editor for HTA and provides high-quality output of analy-
ses, in both graphic and automatically generated tabular form. The tool is implemented
in Smalltalk-80 and currently runs on Macintosh computers. Apparently, this tool has

An Overview of Current Task Analysis Tools 115

led to other tools because ERGOWEB is now a company that offers specialized soft-
ware for ergonomics.

Storyboard Tools

In the film industry story boards are since long being used. Many tools exist for creat-
ing story boards such as ScriptWerx (Parnassus Software 1999) or StoryBoard Quick
(PowerProductions Software 1999). They allow a designer to quickly create story
boards using a multitude of standard elements and drawing tools. The story boards
can then be animated to see the ”basic” movie. Figure7.3 shows an example of a
storyboard tool.

Figure 7.3: Storyboard Quick screen shot

In TB-UID, such tools can be used to develop scenarios and initial sketches of proto-
types. In the latter case, interface sketches are the main figures of the storyboard.

Structured Drawing packages

Most of the tools that are discussed in this chapter are special purpose tools. However,
more general tools such as structured drawing packages can also be useful. Tools such
as Visio contain an extendable set of building blocks with which the designer can create
drawings. Typically, such tools already contain building blocks for business modeling
and sometimes also for creating an office layout, see Figure7.4. Such drawings can be
used to model the physical environment in the task world but if new building blocks
would be defined, object models or task models could also be made using such tools.

116 Tools for Task-based Design

Figure 7.4: Visio

7.4.2 Research tools

In this section we discuss tools that originate from research institutes, typically univer-
sities. The tools are often the result of Ms.C. or Ph.D. projects but sometimes tools are
also the product of more long term projects. The tools cover several phases:

• Elicitation : EL-TaskModels and U-TEL

• Modeling: CTTE, QGOMS, GOMSED, ALACIE

• Analysis and Simulation: CTTE, QGOMS, GOMSED, VTMB and TAMOSA

• Envisioning: Scenario Browser

CTTE tool and EL-TaskModels

Task Lotos Interactors Modeling (TLIM) (Paternò 1999) is a modeling method which
includes ConcurTaskTrees (Paternò et al. 1997) for building task models. ConcurTask-
Trees are hierarchical task models enhanced with LOTOS-based operators for specify-
ing time constraints between tasks. The CTTE tool is a graphical editor for drawing
ConcurTaskTrees written in Java and is available on the web, see Figure7.5. Tasks
have a certain type, which is visualized using different icons, and the LOTOS syntax is

An Overview of Current Task Analysis Tools 117

used for specifying the time constraints. The tasks and the objects used in the tasks can
be described further using templates. Besides editing functionality, the tool also offers
consistency checking and the possibility to apply a transformation algorithm. At the
time of writing, the tool was still under development.

Figure 7.5: The ConcurTaskTree Environment

EL-TaskModels, see Figure7.6 is a tool for elicitation of task models. A scenario is
loaded into the tool and the analyst can use the tool to identify roles, objects and tasks.
Identification of these entities is usually the first step towards a complete task model.
The entities can be linked to each other and the scenario itself. The output of the tool
is a ConcurTaskTrees description which can be elaborated with the CTTE tool.

U-TEL

U-TEL(Tam et al. 1998) is a tool that assists in elicitation of user task models from
domain experts by natural language processing. It is part of the model-based user in-
terface development environment MOBI-D (Puerta 1997) where it is the first tool in
the design process. A piece of text, for instance a transcription of an interview can be
analyzed in order to identify the tasks and objects that are being mentioned. The result-
ing task model will be refined by other tools later on in the process. However, the task
models that can be specified are very simple and do not allow roles and responsibilities
to be specified since they are designed for generating the user interface automatically.

118 Tools for Task-based Design

Figure 7.6: The EL TM tool

The Scenario Browser

The Scenario Browser (Rosson & Carroll 1995) is a tool to develop scenarios, see Fig-
ure7.7It is part of a larger environment intended to fill the gap between scenarios and
the implementation objects, in this particular case in Smalltalk. A scenario is displayed
in natural language and while other windows can be used to structure the information
in the scenario. One window shows several ”points of view” for a specific task, usually
for different roles. Other windows can be used to specify the object structure relevant
for the scenario and theclaimsthat are used for analyzing the scenario.

ALACIE

ALACIE (Gamboa Rodriguez & Scapin 1997) – Atelier Logiciel d’Aide la Conception
d’Interface Ergonomiques – is a workbench that includes two tools supporting IMAD*
and ISSI as well the interaction between these models. IMAD is tool following the
(Scapin & Pierret-Golbreich 1989) methodology developed at INRIA Rocquencourt
France. It allows you to make MAD models and includes task templates and construc-
tors. It is a graphical tree editor with support for verification of the descriptions. The
tool checks every change in the description and automatically updates all logical and
visual structures. Models created by the IMAD tool can be translated to interface ele-

An Overview of Current Task Analysis Tools 119

Figure 7.7: The Scenario Browser

ments by the ISSI as the next step towards a prototype. Except editing facilities, also
some verification and validation of the structures can be done. The tool is however
completely in French and is not freely available.

IDEAL

IDEAL (Hix & Hartson 1994) – Interface Development Environment and Analysis Lat-
tice – is a tool environment that supports task analysis, qualitative and quantitative data
collection, cost/importance and impact analysis. IDEAL consists of a number of sepa-
rate tools and the output of each tool is made accessible to other tools via hyperlinks,
the development lattice. IDEAL claims to incorporate hardware such as a videotape
deck connected to a workstation. This is meant for videotape analysis during task anal-
ysis. One of the tools of IDEAL is QUANTUM – Quick User Action Notation Tool
for User interface Management – which supports automated writing of UAN (Hix &
Hartson 1998) task descriptions. Another tool is a Usability Specifications tool which
allows the designer to specify usability attributes along with a Measuring instrument,
Value to be measured, Current Level, Worst Acceptable level, Planned Target Level,
Best Possible Level and Observed Results. For Data Collection and Data Analysis
there are two tools as well. The data collection tool is based on the video setup and
allows the designer to record data observable in the video along with comments. The

120 Tools for Task-based Design

data analysis tool allows the designer to record problems along with their effect on
user performance, importance, solution, cost, and resolution. Unfortunately work on
the IDEAL project has stopped and the tools are not available to the public.

QGOMS editor

QGOMS (Beard et al. 1996) is a direct-manipulation tool for simple GOMS models
developed at Idaho State University. QGOMS is a variation on GOMS and is referred
to as ”quick and dirty” GOMS. It reduces the number of modeling constructs and uses
modified selection rule mechanisms. The tool visualizes tree models and allows direct
manipulation of it, see Figure7.8. During model construction, the task-completion
times are automatically adjusted. Unlike GOMS the tool does not do simulations, only
static task time calculations. The tool is a Visual Basic application and is available on
the web. The tool was developed in 1996 and has not been developed further since.

Figure 7.8: The QGOMS tool

GOMSED

GOMSED (Wandmacher 1997) is a tool to build GOMS models and automate the
calculations. The tool has been developed at the Technical University of Darmstadt.
The tool gives a tree representation of the GOMS models and allows the timing details
for each method to be specified, see Figure7.9. The tool can calculate the total time
needed for the task. Similar to QGOMS, a simplified GOMS model is used. It allows
only one operator and selection rules are not incorporated. The main focus of this tool
is to decrease the time needed to make GOMS models.

An Overview of Current Task Analysis Tools 121

Figure 7.9: The GOMSED tool

TADEUS

TADEUS (Stary 1999) is a methodology and an environment for task-based design
and prototyping of interactive software. The TADEUS approach provides a model-
based framework for representation, a methodology, and a corresponding environment
for user interface development. The inputs for this approach have been provided by
techniques from work flow modeling as well as by user interface description languages,
aiming at task-based and user-oriented development of interactive software.

VTMB and TAMOSA

VTMB (Biere et al. 1999) – Visual Task Model Builder – is a tool for creating task
models and simulating task models. The task models contain temporal relations be-
tween tasks as well as conditions for task execution. Objects can be used in the task
and can be created, used, modified, or deleted during the tasks. VTMB provides a
graphical tree builder and allows the task model to be simulated for validation pur-
poses, see Figure7.10. The user can step through each task and gets feedback about
which tasks are possible to execute. TAMOSA – TAsk MOdel Simulator and Analyser
– is a second tool that explores simulation, see Figure7.11. Both tools use the ODSN
(Szwillus 1997) simulator for the simulation. Both are Ms.C projects and are not being
developed further.

Discussion

From the short descriptions of the discussed tools, several things can be observed.
First of all that commercial tools are very specific and that research tools are often
quite general. The commercial tools are focussed on doing one specific thing, which

122 Tools for Task-based Design

Figure 7.10: The VTMB tool

makes it possible to develop a product with well-defined functionality. Research tools
often originate from Ms.C. projects or Ph.D. work and are usually part of theoretical
work done. Consequently the research tools have the status of prototype and are not
maintained after the project ends nor are they always available to the public. Table7.2
shows all the discussed tools and the activities as listed in the workshop onTools for
Task-based User Interface Design.

Table 7.2: Tools in the TB-UID Processes
Data Collection Model

Specification

Analysis Envisioning Specifying
Envisioned
Model

Analyzing
Envisioned
Model

Early
Prototyping

The Observer
U-TEL
EL-TaskModels

WinCrew
CTTE
ERGOWEB
Visio

The Observer
WinCrew
CTTE

ScriptWerx
StoryBoard
Scenario
Browser

GOMSED
QGOMS
ALACIE
CTTE
Visio

GOMSED
QGOMS
ALACIE
CTTE

VTMB
CTTE

A research tool is either developed to support a modeling method or technique, or it is
intended to support a specific activity. The TLIM editor, QGOMS editor and ALACIE
are good examples of tools that support a modeling method. The U-TEL and IDEAL
tools clearly support one or more specific activities. Also apparent is the lack of an
integrated approach. IDEAL tried to provide such an approach but never succeeded.

Requirements for Task Analysis Tools 123

Figure 7.11: The TAMOSA tool

However, the early design process contains several activities that can benefit from tool
support. Since tool availability is a serious problem, it is also difficult to combine
several tools into an integrated set.

Practically speaking, the commercial tools can only be used for very specific activities
and the research tools are hardly available and remain in prototype stage. In practice,
paper and pencil or Post-It notes still seem to be the most useful tools now.

7.5 Requirements for Task Analysis Tools

Having seen that task analysis tools are still in their infancy, it is important to see how
this situation can be improved. In this section a number of requirements are defined
that may contribute to the development of better tools. Some requirements can be
traced back to the discussion of the current tools in the previous section. Other require-
ments are related to requirements of CASE tools in general and apply to task analysis
tools just as well. The requirements discussed here are not concerned with the main
functionalities tools should have. These usually include creating, editing, and checking
specifications. Tools that meet the requirements are hopefully more useful in real life
projects and could improve the quality of the task analysis done.

124 Tools for Task-based Design

7.5.1 Base the tool directly on a conceptual framework

Task analysis is more than just making task trees. Although a tree editor can already
save you a considerable amount of time, a task analysis tool can be much more than
that. Many more representations exist that focus on other important aspects. When a
tool needs to offer multiple representations and provide analysis support, a conceptual
framework needs to provide the basic concepts and relationships that are being stud-
ied, especially when the representations need to be consistent which each other. The
conceptual framework will be the glue that should keep everything together and will
be the basis for formal analysis. Before you can start building a tool, you need to have
a clear conceptual framework. Adding such a conceptual structure to an existing tool
is bound to fail.

7.5.2 Offer consistent and coherent representations

In task analysis there are already many representations that are being used and no
doubt more are to come. A tool should be prepared for changes or new representations.
When a tool offers more than one representation it becomes very important that the
representations are all consistent with each other and coherent. Changes to a certain
task specification should be automatically visible in all representations that include the
task and definitions should be stored only once. In other words all the representations
should be based on a repository of information from which the information needed for
every representation is extracted. Basing a tool on a repository is also very commonly
done in other CASE tools. Models could be used in more than one tool in the process
and it is therefore important that the specifications can be interchanged.

7.5.3 Support cooperative task analysis

Task analysis is usually done by more than on person. One person may be scanning
through documents while others are on location doing interviews while others are do-
ing an ethnographic study. All the data that is obtained from different activities needs
to be combined into one analysis. A tool is thus a groupware product and needs to be
able to handle common issues in groupware applications such as version and change
management, working online or offline, merging specifications etc. When a reposi-
tory is being shared over a network, the repository needs to be accessible to all group
members with the appropriate authorizations etc.

7.5.4 Support documentation including multimedia

After completing a task analysis the results have to be communicated to other members
of the design team or to perhaps the client. If the knowledge the analysts have gained
about the task world is not properly communicated, this knowledge easily gets lost and
the task analysis looses its value. Task analysis result can be representations such as
task trees, detailed templates or process diagrams but multimedia fragments such as

Discussion 125

images of objects, audio fragments of interviews or short video clips are also part of
the results. Not every representation is always suitable for communicating results to
others but a tool should be able to handle all these kinds of results and it should offer a
coherent way of producing the documentation a one product. Especially in cooperative
design teams more care needs to be taken that the documentation is easily available to
all team members.

Integration with other documentation tools is also important. Most designers use word
processing packages to write their documentation and they often need to put several
of the representations in the documents. Therefore, tools need to be able to produce
output in formats that can be used in the typical office suite applications.

7.5.5 Support design tracking

In large projects were the design group consists of several persons it becomes important
to be able the track how the design is evolving. Decisions that have been taken between
different versions of the specification, and important comments and remarks should be
recorded so that a design rationale is being built up during the design. Some of the
decisions can be documented by annotating the representations but more structural
techniques such as QOC (Questions Options Criteria, (MacLean et al. 1991)) are also
available.

7.5.6 Offer stability, robustness and product support

In the past many tools had the problem that they were a research prototype and therefore
often implemented with a quick prototyping tool, such as Smalltalk. Some of those
have become obsolete now and those tools cannot be used anymore. Because the tools
were implemented with such a prototyping tool, they could not be easily distributed
and used by others. In our opinion a tool for task analysis should be publicly available
in an easy distributable way so that others are stimulated to use the tool or to design
their own tool if they do not like it. In industrial settings the stability and robustness
of a tool are important factors for choosing a tool. It has to be clear whether it is an
unsupported tool that is not maintained or a tool that will be developed further and is
well supported. For research prototypes it would be useful if the source code would be
available after the project ended.

7.6 Discussion

The requirements show that task based design is a group activity which needs to be
supported as such. Designers need to show each other their models, modify them or
consolidate them, possibly even in a distributed environment. Such activities ask for a
solid conceptual bases that integrates all the modeling aspects. Our task world ontology
is a step in that direction.

126 Tools for Task-based Design

Supporting the process also involves interfacing with other existing tools such as typi-
cally found in an office suite. No tool should ignore the other tools the designer works
with and similar to other tools, tools for TB-UID should also be mature products them-
selves. This aspect is nowadays problematic at least.

Although it is perfectly understandable why the current tools are not up to par, the
main problems are still on a conceptual level. The conceptual aspects of models, their
integration, their representations and their usage are slowly beginning to become clear.
In our opinion, the tools will only succeed when their conceptual problems have been
solved.

7.7 Summary

In this chapter, the current status of tools for task based design were discussed. Tools
nowadays form an essential element in user interface design. In task-based design,
tools are often closely related to methods or techniques and can substantially reduce
the effort in modeling and analysis tasks. While there has been some interest in tools
thatautomatethe design of user interfaces, there is now a tendency towards tools that
supportdesigners in specific tasks. Usable interfaces require the effective use of tech-
niques but also human creativity for making the appropriate design decisions.

As shown in this chapter, tool support for task-based design is still in its infancy and
requirements for future tools were proposed. There is clearly a need for tools that
support modeling and analysis activities in terms of a group activity. A clear conceptual
basis, usable representations and analysis techniques are the essential ingredients for
more effective tools. In the next chapter, we discuss a new tool EUTERPEthat has been
designed with these requirements in mind.

Chapter 8

EUTERPE, a design workbench

8.1 Introduction

In the previous chapter, the state of the art with respect to tools for task-based user
interface design (TB-UID) is discussed. It shows a clear need for tools that support
task-based design in the broadest sense. This chapter discusses our tool EUTERPE. It
is a research prototype intended to support task-based design. It is based on the task
world ontology as discussed in chapter3 and was designed to meet the requirements as
discussed in chapter7. In a way, the tool is an exploration into what kind of tool support
is needed, since not many other tools existed at the start of the project. Task modeling
and task analysis are in itself not clearly defined which made the development of tool
support challenging.

EUTERPE has been developed over a period of three years and has been used for at
least two years. Since the first version of EUTERPE, it has been publicly available and
has been used by many people. EUTERPE was used mainly in education at several
universities but it was also used in industry for actual projects. Feedback on the usage
of the tool and new research ideas have been the primary forces in the development of
the tool. During the project, it proved necessary to improve both the modeling concepts
in task modeling and the way a tool fits in the design process.

The main focus has been on supporting task modeling and model analysis using a
central repository of task and user data. Several representations allow the designers to
structure the data, interpret and document the gained knowledge for other designers.
Later on, support for other design activities has been added such as an editor for UAN
tables.

This chapter starts with an overview of what EUTERPEis and what it does. Experiences
of using the tool are reported together with indications for further development of the
tool. The second half of the chapter discusses implementation issues concerning the
architecture and the use of the task world ontology.

128 EUTERPE, a design workbench

8.2 The Project’s Context

The main goal of the project was to develop a workbench for task analysis. A prototype
developed by a master’s student had shown to be promising enough to develop a more
elaborate tool. The new tool was intended to support multiple representations. Initially
the focus was on editing task trees and templates but multimedia support was also a
requirement. The tool was intended to deal with modeling itself but also with assisting
the designers in detecting inconsistencies or other (un)desired properties of the created
models.

An important choice that was made at the beginning wasnot to focus on automatically
generating user interfaces based on task models. That would certainly have affected
the models we were using and considering the fact that other researchers have not
achieved convincing results (Puerta & Eisenstein 1999), we explicitly abandoned this
path. Instead, we wanted to focus on modeling aspects, assisting designers where there
was a need to model and analyze.

Audio/Video
Editing Software

Observation/
Registration

Software

Office
Applications

GUI Tools

Modeling Tools
(Euterpe)

Sketching Tools

Figure 8.1: The Context of EUTERPE

EUTERPE was intended to offer support for several activities but it would certainly
be part of a suite of tools for designers. Figure8.1 shows the context of EUTERPE.
Several tools for specific tasks are needed with which EUTERPEneeds to communicate
by being able to use the ”products” or produce information needed in other tools. The
main focus was on supporting the modeling activities and not the data gathering or
design generation.

The development of the tool was done by iteratively developing and testing prototypes.
Since we needed to define the ”task analysis tasks” ourselves we used an exploratory
design approach. Based on our experiences with doing TB-UID and after looking at
other software tools, the basic development ideas were formed. In iterative cycles
functionality has been added and modified. Although not all foreseen functionality has
been implemented, the tool has shown to be usable enough for actual usage.

The implementation has mostly been done by the author. The NUAN editor has been
done by a master student under supervision of the author. Other master students have

An Ontology-based Tool 129

explored the workflow editor and the support for design space analysis. Unfortunately,
not all explorations were mature enough to include in the public version of the tool.
In most cases, the limited resources for doing programming constrained what features
could be integrated. Nonetheless, we will discuss all our efforts in creating a work-
bench for task-based design.

8.3 An Ontology-based Tool

EUTERPE is an ontology-based tool. Internally, the task world ontology has been im-
plemented very literally using a variation of Prolog. The ontology defines the structure
of the data as it is stored in a repository. The representations are in fact views on the
data in the repository, see Figure8.2.

Ontology

Repository

Trees

Templates Work/Data
flows

Hyperlinked
Document

Audio/Video

views

views

views

views

views

defines structure for

Figure 8.2: Conceptual Structure of Euterpe

The ontology only defines a structure for the task model data and does not define any
particular representation. EUTERPEoffers several representations and all these repre-
sentations can be kept coherent because each representation is built up on the fly out
of the same pool of information specified using the ontology. For instance, a task tree
representation does not exist in the logical model but the structure is derived from the
specifiedsubtaskrelationships of tasks. By issuing queries to the Prolog engine, all
the relationships can be inspected. Of course, EUTERPEallows most representations
to be modified as well in which case the views need to assert the right facts in the Pro-
log engine. For instance when a new subtask is added by editing the task tree view, a
new factsubtask(X,Y)is asserted. This way, designers who are the users of EUTERPE

can work with the representations without having to deal with the logic representation
underneath. In fact, the user of EUTERPE is never confronted with any of the logic
underneath the system. The views that are offered are typically overlapping and hence
partially dependent on each other. Each representation uses a subset of all concepts and
relationships and consequently changes in one representation may affect others. By re-
generation of the views the user is always shown the most up to date representation. In

130 EUTERPE, a design workbench

chapter4 several representations have been defined using the task world ontology and
all of them can in principle be supported in EUTERPE.

8.4 Supporting Task-based Design

The main functionality of EUTERPE is intended to support task modeling. Represen-
tations include task trees, templates, and other hierarchical representations. Ideally,
EUTERPE would be a workbench that supports designers during task-based design.
For each activity that could benefit from tool support, a component would be present.
Support for task modeling, dialog modeling and documentation is present but many
other components could be added e.g. support for simulation, design rationale and
sketch based prototyping. In this section, we discuss the functionality that has been
implemented in the latest version of EUTERPE.

Figure 8.3: The Hierarchy Viewer, an Object Template and a Picture.

Supporting Task-based Design 131

8.4.1 Supporting task modeling

The most complete support is for task modeling. When the tool is started, the designer
can choose to create a new task model after which a newHierarchyVieweris shown.
The HierarchyVieweris a window that contains tab sheets for each of the ontology’s
concepts, except for the goal concept. Thegoalconcept was added later to the ontology
and hierarchical representations of goals have not yet been included in the tool.

The first sheet shows a task tree and the designer can build a task tree by inserting child
nodes or sibling nodes. For objects there are two hierarchies, one for the containment
hierarchy and one for the type hierarchy. Events and Agents are not hierarchically
structured and are therefore shown as lists. Besides theHierarchyViewer, some work
has also been done on the development of a workflow viewer. The version shown in
Figure8.4 is still in prototype stadium and has not yet been integrated in the public
version of EUTERPE. The prototype is intended to support work/dataflow diagrams as
outlined in chapter4.

Figure 8.4: Prototype Workflow Viewer

For each concept a template exists that appears when double-clicking the node. The
task template allows the designer to specify task details such as timing information
and task conditions. Additionally, some relationships with other concepts can be es-
tablished and viewed. The task template has become rather full of fields and after user
testing it was decided to initially show only the most used fields and present the other
fields on request. For templates of other concepts this was not necessary because of the
small number of fields. Figure8.3shows the hierarchy viewer, an object template and
an image.

Task trees tend to become quite large, a hundred or so tasks is not uncommon. There-

132 EUTERPE, a design workbench

fore, trees can be (partially) collapsed to give the designer more overview. Additionally,
it is possible to zoom in/out so that the visible part of the task model can be optimized.
This feature proved very useful during modeling but also during presentations where
low resolution displays were used.

Editing the models has been implemented conform the Windows style guidelines and
includes cut and paste functionality as well as drag and drop functionality. Using the
editing functionality the designer can move nodes, copy sub trees, delete nodes etc.
This is actually the most used functionality of the tool. All functionality is also acces-
sible through the keyboard. All user actions can be undone using the multilevel undo
function.

8.4.2 Supporting model analysis

Another activity that is supported by EUTERPE is task model evaluation. As soon as
some form of task model exists, the model can be evaluated. Evaluation can be done
for several purposes as discussed in Chapter4. An important question is how model
evaluation could be supported best. All of the evaluation properties defined can be done
using the internal Prolog system but we decided to take a designer’s perspective first
and see how evaluation could be used in practice. Instead of starting at the Prolog level
implementation, the user interface aspects of doing evaluation were considered first.

Figure 8.5: Evaluation constraints

Supporting Task-based Design 133

One of the things we noted when design students held presentations about their task
models, was that they tended to mark certain tasks. Sometimes because these were
problematic or incomplete and sometimes because these needed to be optimized in the
future. This led to the idea of coloring nodes in a tree as a way tovisualizethe results
of an analysis. If coloring was the visualization, we still needed a way to specify
whatneeds to be shown. In section4.4, we discussed some of the questions designers
might have. Some of them where questions that surfaced when observing designers in
case studies and others were added to complete the possible set of questions. These
questions were directly used in the tool to specify what needs to be shown. Figures
8.5 and8.6 shows the dialog screen for specifying the questions the designer wants
answered. The questions often need some parameters to be specified which is done
using a form filling dialog style. Internally, the question is automatically translated to
a Prolog query and the user never has to build any complex queries. The constraints
have been split intoconstraintsandheuristics. Constraints apply to every specification
and should ideally have zero results, see Figure8.5. Heuristics can be used to analyze
a specification, to find inconsistencies or problems, see Figure8.6.

Figure 8.6: Evaluation using Heuristics

EUTERPE can process several queries in parallel. Each query is evaluated using the
internal node database, and the nodes found by the query are colored, see Figure8.7. If
a node is selected in more than one query, it gets the color belonging to the last query.
While this is not a satisfactory solution, in practice this was not considered a problem
and therefore not addressed further. The ability to analyze a specification was regarded

134 EUTERPE, a design workbench

useful by the users. One possible extension that came up when it was used was to see
multiple instantiations of the same query, for example, all tasks by X and all tasks by
Y.

Figure 8.7: Coloring for evaluation

8.4.3 Supporting cooperative design

Usually design is a team effort and even a task analysis is mostly the combined job of
several persons. During a task analysis some analysts may be going through documents
while others are processing video tapes and still others are modeling. Sometimes task
analysis requires “on the spot” observation and analysis may be done at several differ-
ent locations. Such conditions demand a tool with multi-user support where users can
cooperatively work on models from different geographical locations at the same time.
Without multi-user support the analysts have to meet in order to update the specification
with their findings. Multi-user support for EUTERPEwould mean that the specification
(the logical model) is edited by several persons from different locations. Designing
such a tool needs to deal with the same problems that many groupware applications
try to solve, i.e. keeping track of changes and merging several specifications. We ex-
plored a client-server version of EUTERPE in order to create multi-user support. The
Prolog engine was decoupled from the application itself and ran as a server application.
Although the server worked, we never completed the work for the ”client”.

To support cooperative design without multi-user support, EUTERPEallows merging of
documents by copying model elements. Merging documents is often necessary when
several persons work on a model. This can be done using the clipboard. EUTERPE

can open multiple documents at the same time and by copying nodes or trees via the
clipboard, specifications can be merged and restructured. This way partial models can
at least be reused and do not need to be entered again manually.

8.4.4 Supporting documentation

EUTERPEhas two ways of producing documentation. First of all, by using the printing
functionality. Task trees and object hierarchies as well as lists of events and agents can

Supporting Task-based Design 135

be printed. If a tree does not fit on one sheet of paper printing is automatically done
tiled on multiple pages.

The second way of producing documentation is by exporting the specification to HTML.
EUTERPEcan generate a set of HTML pages including an applet containing a task tree
(or object/agent/role/event tree) that allows browsing of the task analysis results, see
Figure8.8. As a result these pages are a ”read-only” view of the model since changes
are not propagated back to the Prolog engine. All the pages together can be seen as a
hyperlinked task analysis document because for each concept that is referenced a hy-
perlink is added. For instance, a reference to an object used in a task becomes a link to
the description of that object and vice versa. Links to images and video fragments are
also generated. The applet shows the trees graphically and when a node is selected the
browser jumps to the corresponding entity. When large design teams actually used EU-
TERPE, the produced HTML documents were put on a web-server and these constituted
the main reference document for the other members of the design team.

Figure 8.8: A task model in HTML with Java applet

Another important aspect is the integration with common Office applications. Design-

136 EUTERPE, a design workbench

ers typically write reports in which they need to include some of the design representa-
tions such as task trees or parts of UVM specifications. A tool must therefore be able to
produce output in formats that can be used in typical office applications. In EUTERPE,
we use Windows Metafiles as the exchange format for representations. Such represen-
tations can be arbitrarily scaled or modified in office applications without loss of image
quality.

As mentioned in the requirements, the outcome of task analysis could be much more
than text documents with some graphical representations such as trees. In addition to
the hyperlinked documentation, EUTERPEalso offers support for multimedia elements
such as images, sounds and videos. Each concept instantiation can have a list of media
objects connected to it. Scanned documents or video fragments can be added to clarify
certain tasks, objects or any other concept. We found that especially video fragments
turned out to be very useful because they are very effective in showing other members
of the design team, who were not involved in the task analysis, what the task world
looks like.

In the projects we did, video recordings of ethnographic studies were scanned and
broken up in short video clips that show some particular ”hot spots”. Such video clips
are typically between 1 and 3 minutes long and converted to MPEG 1 format, which
makes them 10 to 30 Mb in size. Typically 10 to 20 of such video fragments were
added to a specification which made it feasible to use video in terms of size and added
value. Any computer that is sold nowadays can play MPEG 1 files without hardware
support and a CD-ROM can contain up to 1 hour of MPEG 1 video. When HTML
pages are created the media files are optionally included so that they can be viewed
online as well.

8.4.5 Supporting dialog modeling

The first step towards support for dialog modeling in EUTERPE is the NUAN editor.
NUAN is a variation on UAN that supports generic templates, mental actions and event
driven interfaces. See Chapter5 for an in depth discussion of NUAN. The task model
is intended to model until the level of basic tasks. Delegation of the basic tasks to the
system can then be described more precisely in NUAN. Therefore an action in NUAN
is linked with the task model at the level of a basic task. Figure8.9shows an example of
the NUAN viewer. In theory, the NUAN editor is also ontology based as is discussed
in (van der Veer & van Welie 2000). We also defined the connection with the task
world ontology but this link has not yet been implemented using the underlying Prolog
system of EUTERPE. Hence, it is not possible to evaluate constraints that combine task
model aspects and dialog model aspects.

The NUAN viewer allows NUAN tables to be edited and tables to be structured into
a hierarchy. The hierarchy is shown on the left side while the right side shows the
selected table. Tables can be copied and moved in the hierarchy. The NUAN table
viewer uses syntax highlighting for standard actions and mental actions. Tables can
also use variables and can hence be used as generic templates for actions. Like the
task model views, the tables can be exported as Windows Metafiles for use in other

ExtendingEUTERPE 137

office applications. For other documentation purposes, the tables can also be exported
to HTML.

Figure 8.9: NUAN Diagram

8.5 Extending EUTERPE

Euterpe was designed to support multiple views and only some have been implemented.
Extending can be done by adding new representations or adding new design task sup-
port. In the architecture of EUTERPE, the flexibility is largely related to the use of the
task world ontology. An arbitrary number of views can be added provided that they
are implemented as additional views on the ontology. One of the views that has been
added in addition to the Hierarchy Viewer is the Workflow viewer. In the same way,
other views such as a scenario viewer could be added. Other functionality extensions
could be independent of the repository and could hence be seen as a separate ”module”
within the tool. One example of such an extension would be to include a task simulator.
Such a simulator could read a specification and then execute it. Another example is to
include support for design rationale. Both of these extensions are discussed in the next
sections.

8.5.1 Adding support for design space analysis

Design Space Analysis (DSA) is used in TB-UID to systematically deal with design
options with criteria to evaluate them. When important design decisions are made a
technique such as Questions Options Criteria (QOC) (MacLean et al. 1991) can be
used to document the design rationale. In this area, some work has been done on
supporting QOC diagrams. Such diagrams aid in choosing options by systematically
confronting all possibly relevant options with all relevant criteria. Figure8.10shows a
screen shot of a study prototype. It shows an editor for questions, options and criteria

138 EUTERPE, a design workbench

as well as a table editor to relate the different options and criteria for a certain question.
Apart from a table representation of the design space, a graphical representation of
the Q-O-C relation, see (MacLean et al. 1991), has been developed in the prototype.
Unfortunately, the work has not yet been included in EUTERPE.

Figure 8.10: Diagram

8.5.2 Adding support for simulation

So far, EUTERPE mainly focuses on editing representations. The analysis features
still only use the traditional representations such as trees. A more dynamic way of
analyzing or evaluating a task model is simulation. Simulation allows designers to see
the proportional timing of tasks which is otherwise only indicated in task attributes.
Designers can use simulation to test their models but sometimes other stakeholders can
also benefit from simulations. For example, to get a dynamic representation of the
processes in the task domain. When using an appropriate visualization, domain experts
or clients can use simulations to evaluate the models.

In EUTERPE, simulation has not been added yet. Some initial investigation has been
done to see whether a task simulator such as ODSN (Szwillus 1997, Bomsdorf &
Szwillus 1999a) could be used in EUTERPE. The translation of EUTERPE’s models
to ODSN is possible although some task attributes would need a more precise defini-
tion to specify the exact timing semantics. Currently, EUTERPE allows designers to
specify additional time constructors which causes problems in the translation process
because there is not yet a way to define the semantics of them. If a restricted set of
predefined constructors was used, the translation to ODSN would be straightforward.

EUTERPEin Use 139

8.6 EUTERPE in Use

Over the years EUTERPEhas been used by quite some people. This section discusses
our experiences in using EUTERPE in practice. Our primary source for experiences is
in education at universities. In the Netherlands, the tool was used for several years at
the Vrije Universiteit, the Technische Universiteit Delft, the Technische Universiteit
Twente, and the Dutch Open University. Additionally, it was used at the University of
Cluj in Romania. In all cases, the tool was offered as a possibly useful aid and the usage
was not always mandatory. Most students quickly understood its usefulness especially
for time consuming design activities such as tree editing. In all cases, at least several
students used it. Although EUTERPE has also been used in industry it is difficult to
assess the experiences.

The tool has been evaluated using a short questionnaire. Students reported their opin-
ions and gave suggestions for improvements. However, speaking with the students and
analyzing the complaints they reported, proved more useful for the development of the
tool. The following issues came up in all evaluations and most versions of the tool:

• Usability of the tool, more is better...
When people use the program, the first complaints after bug reports concern
the usability of the tool. Users basically demand a fully developed bug free tool
including extensive editing facilities, undo and exporting mechanisms. Although
there were no fatal usability problems in the sense that users could not perform
their tasks, they always came with things that could be improved. As soon as
those were implemented, they found new issues...

• Multiple Representations
People really need multiple representations, especially when the tool is used by
people who do not have a Computer Science background. The latter type of de-
signers frequently apply other representations such as process or flow diagrams.
Hierarchical diagrams are not easily understood by everyone. Additional wishes
were to include scenarios and simulation. Concerning representations for dialog
modeling, it showed that a NUAN editor helps to describe the dialog structure
but it is not a completely satisfactory solution. For many people, sketches turned
out to be more useful to document detailed design ideas, despite the lack of pre-
cision.

• Keeping up with our latest research
Ideas for better representations have to be developed before a tool can support
them. In some cases, it was cumbersome that the tool only realized a subset of
the ideas we had. For example, goals as a separate concept did not make it into
the tool while it was important in many studies. The same holds for the addition
of workflow representations.

• Improved Modeling
Since our initial design already contained a broad range of concepts and relation-
ships, there was no lack of constructs. Only in a few cases it turned out that there

140 EUTERPE, a design workbench

was still room for improvement in terms of modeling. For example, being able to
have multiple references to the same task within a task structure. Although this
is supported by the Prolog implementation, it was not possible in the interface
itself. Another issue that came up was that some designers wanted to build a
hierarchy of events, for example, to model several kinds of alarms. This is not
(yet) part of the ontology.

• Extending Dialog Modeling
Although the dialog modeling support was considered useful, it is not completely
satisfactory in general. (N)UAN is powerful but certainly has its problems and
limitations (Coutaz et al. 1993). Moreover, visual design is not addressed which
is very important in the design process and works well for communicating design
ideas. One idea would be to integrate sketches of the visible aspects of interac-
tion with the tables. Additionally, large NUAN specifications become difficult to
understand and some form of state transition diagrams may help understanding
the complex structure of a complete interface.

These issues give a direction for future developments of EUTERPE. See Chapter10 for
a discussion on future research.

8.7 Implementation of Euterpe - a logic approach

The architecture of EUTERPEhas been heavily influenced by the development of new
ideas about task analysis. One of the things that became clear at the beginning of the
project, was that the exact representations and the fundamental structure of the stored
data (what later became the ontology) were going to change during the project. The
theoretical aspects of task modeling were not fully stable and new ideas were con-
stantly being developed. It was foreseen that the tool had to be flexible so that changes
or new ideas would not require a major rewrite of code. Considering the fact that we
wanted to use our task world ontology as the basis of the tool and the fact that con-
sistency checking was also a goal, alogic approach was considered. Logic languages
such as Prolog are very flexible when exploring different knowledge structures. When
procedural languages such as Java or C++ would be used, changes to data structures
would have a big impact on other code causing a higher risk on stability of the tool. For
example, adding a relationship would require only a couple of lines of code in Prolog
but in C++ it would require relatively much more code.

After an initial survey, it was decided to use a Prolog variant called Object Prolog, an
extension offered by SICStus Prolog. At the time the work on the ontology started, the
object oriented variant was the most obvious solution to operationalize the ontology.
The Prolog engine could then serve as a database in normal use but could also facilitate
more complex model checking. Since a logic approach was preferred there were several
options for dealing with the graphical user interface (GUI) that should be connected to
the Prolog component. The options that were considered are:

• Using Prolog with GUI additions.

Implementation of Euterpe - a logic approach 141

• Using Java for the GUI and communicate with the Prolog system through native
interfaces.

• Using C++ for the GUI and communicate through the C API of Prolog.

The first option was discarded because of the complex GUI aspects that were planned.
Prolog with GUI extensions is not suitable for complex user interfaces with multimedia
facilities. The second option was explored extensively but also discarded.1After some
prototyping it turned out that Java was not mature enough for such a project2 and that
a stable development environment was needed. Since the tool was targeted for the
MS Windows platform, the natural choice was then for a mature C++ development
environment with advanced GUI support: Microsoft Visual C++ 5. The Prolog system
that was chosen was SICStus Prolog because it was the only system that contained
Object Prolog, an object-oriented variant of Prolog that allowed for a natural mapping
of the task world ontology. The Prolog system contains a runtime system which is a
library that can be used with any other application.

The next sections discuss the architecture of the tool, the embedding of a Prolog system
in a C++ environment and the mapping of the task world ontology to Object Prolog.

8.7.1 A model-view-controller architecture

The main architecture of EUTERPE is based on the Model-View-Controller pattern
(Gamma et al. 1995). The”model” part consists of the document class which uses
the Prolog engine directly. The Prolog engine contains all the real model data and the
document class maintains temporary runtime data on the C++ side. Everything the
designer creates is stored in the Prolog engine and the Prolog engine also contains the
main IO routines. The designers see”views” of the data that can be edited as well,
the control part. Such an architecture is easily built when the Microsoft Foundation
Classes are used. Visual C++ creates all the necessary classes when a so called MDI
(Multiple Document Interface) application is created.

The main classes that are generated by Visual C++ are the document class (CGTA-
Doc) and the view/control class (CHierarchyViewer), see Figure8.11. The document
class manages all document functionality such as serialization, view management, and
adding/modifying elements. The HierarchyViewer class contains the TreeViewer class
that shows the task trees as well as other tree structures. Drawing the tree is partially
done by the treeviewer and partially by the NodePainter class. The NodePainter only
draws the nodes of the tree and the appearance of the node is determined by the values
of the NodeStyle structure. The TreeViewer class is not only used to show the task
trees but is also used the other hierarchical structures as well as for list structures, for
example the list of agents.

1The results of the Java exploration were re-used in the development of the Java tree applet.
2This was when JDK 1.0 had just been released in 1996

142 EUTERPE, a design workbench

Logical View

CGTADoc

HierarchyViewer

TreeViewer Tree

TreeElement

NodeCZoomView

CCommandCCommandProcessor

NodeDB

Engine

InsertCommand

AttributeCommand

NodePainter

NodeStyle

Figure 8.11: A Partial Class diagram of the main Euterpe components

8.7.2 Embedding a Prolog engine

Most of the Prolog systems on the market have been designed to be used as stand
alone systems. All of them have a C API that can be used to access the Prolog engine
externally. Such an API deals with both external access as well as the implementation
of new Prolog clauses. However, the C API is very low level and deals with single
terms and sub terms. An arbitrary term needs to be built up by adding each atom or
variable using function calls. To create a term with several sub terms consequently
requires numerous C function calls. Once a query has been executed, the term has to
be pealed off to access the result variables. Whereas in each Prolog system the user can
enter terms on the command line, this is not possible in the C API3. Another important
issue was support for multiple engines. If a Prolog system is embedded it would be
very convenient to have multiple engines i.e. multiple query stacks. That way each
process can use its own query engine without interfering with others. However, this is

3In 1999, SWI Prolog started to add such functionality to the engine.

Implementation of Euterpe - a logic approach 143

not possible with the current Prolog systems4.

class EngineException {
public:

EngineException (char *);
EngineException (char *, char *);
char *toString (void);

};

class Engine {
public:

Engine (void);
˜Engine (void);

// Feed the engine
int Load(const char* fileName);
int consultFile (const char *filename);
void Restart();
void Initialize(void);

// Querying function behave as printf functions
int Query (const char *query_text, ...);
int openQuery (const char *query_text, ...);
int queryCutFail(const char *query_text, ...);
int nextSolution(void);
int closeQuery();

// Getting results
int getVarIndex(const char *var);
void printVariables (void);
char* varToString(const char *var);
char* copyVarToString(const char *var);

};

Figure 8.12: The Engine class

The C API problems were addressed by wrapping the C API in a C++ engine object
that supports more high level interaction with a Prolog system. It was decided to make
a string based interface so that arbitrary terms can easily be entered. For getting results,
the values of variables can be directly accessed using the variable name in the original
query term. In total this has led to very short code for doing queries. Figure8.12
shows the latest version of theEngine class. The most used calls areQuery() to do
a query andvarToString()to get the results. TheQuery()call was implemented using
some built-in Prolog clauses that can parse arbitrary terms. This way the terms did
not have to be built up using the C API calls. ThevarToString()call gives the results
by merely specifying the variable name used in the last done query. This eliminated
complex code for unpacking terms. For iterating on solutions variants of theQuery()
call can be used. In order to make debugging easier, theEngineExceptionclass was
created. Unfortunately, the runtime system often crashed when compiled Prolog code
was buggy and the exception class could not help much. Because the Prolog system

4In 1999, SWI and AMZI Prolog also added multiple engine support.

144 EUTERPE, a design workbench

was embedded, debugging was more difficult than usual. Nonetheless, theEngine
class was very easy to use and led to short code. For example, for building a task tree
the subtask term only requires minimal code:

// find children of this node
Engine *e = new Engine();
e->openQuery ("%s::%s(X)",parent->m_elt->m_ID,rel);
while(e->nextSolution()) {

newNode = new Node(e->varToString("X"),parent->m_elt-m_etype,this);
newNode->m_parentRelationship = rel;
tree->insert(newNode,parent);

}
e->closeQuery();

// Process all children
current = parent->m_firstChild;
while(current!=NULL) {

buildTree(tree,current,rel);
current = current->m_next;

}

Using aprintf like way (using a parameterized string with several arguments), a query
can be specified with theopenQuery()call. Thewhile loop iterates as long as there are
solutions. For each solution the result of variableX is used to create nodes in a tree
data structure. Using a breadth-first search the whole tree is built up.

8.7.3 Mapping the ontology to Object Prolog

Object Prolog is an object-oriented Prolog that supports encapsulation and inheritance.
Polymorphism is not supported since Prolog is an untyped language. The ontology
has been specified in Object Prolog by creating a class object for each concept. Using
dynamic predicates the relationships between concepts have been defined. An instan-
tiation of an object can then assert a new fact using the dynamic relationship. One
advantage of Object Prolog is that there is no distinction between classes and instan-
tiations, they simply form one hierarchy. So as soon as an object is declared it can be
used (as an instance) but it can also be used as a class to create new instances. This
allows for high flexibility when building a system.

For each concept a class is defined and a base class is used to capture common at-
tributes. Thegta taskclass contains all the task clauses. The following code fragment
shows the main declaration with the attributes and dynamic predicates for the possible
relationships with a task object. Using theadd sub taskpredicate the task hierarchy
can be created, for example, using the term ”testtask45::addsub task(testtask48)”5.

% Definition for a task structure
gta_task::{

super(gta_base) &
attributes([goal([]),duration([]),frequency([]),start([]),stop([]),

5Wheretest task 45 is an internal object identifier that has been created before

Implementation of Euterpe - a logic approach 145

constr([]),initial([]),final([]),task_rel([]),motor([]),
mental([]),task_type("other")]) &

dynamic sub_task/1&
dynamic used_object/1&
dynamic performed_by/1&
dynamic triggers/2&

...
% establish subtask hierarchy
add_sub_task(X) :-

assert(sub_task(X)) &
remove_sub_task(X) :-

retract(sub_task(X)) &
get_subtasks(L) :-

:setof(X,sub_task(X),L) &

...
% IO routines
write_data :-

self(Me),
:write(gta_task::new(Me)),:write(’.’),:nl,
write_base,write_attr,!,:nl,
((:setof(X,Me::sub_task(X),L),write_subtasks(L));true),!,
((:setof(Y,Me::used_object(Y),M),write_objects(M));true),!,
((:setof(Z,Me::performed_by(Z),N),write_agent(N));true),!,
((:setof(Q/O,Me::triggers(Q,O),P),write_tasks(P));true) &

Another big advantage of Prolog is that it is untyped. When writing a specification to
a file all objects are dumped using thewrite datapredicate. When the file is read the
terms can be read in any order because the object identifiers can be used even when the
object does not exist yet. Relationships between non-existing objects can be defined
without problems in Prolog. Hence, saving a specification consists of writing all the
terms needed to create the same specification to a file. This way there is no fixed file
format and new terms can be added without any effect on the reading routines.

For implementing the analysis features the concepts and relationships could be directly
inspected using meta-predicates such asis instance. Object Prolog contains some meta
level predicates that allow for inspection of the whole inheritance hierarchy. An eval-
uation constraint in the user interface leads to a call of one term with the selected
variables. The following example is the implementation of the heuristic ”objects used
by role X”:

object_used_by_role(Session, ID, Role) :-
gta_object::is_instance(Session,ID),
gta_role::is_instance(Session, Role),
gta_agent::is_instance(Session, Agent),
Agent::plays_role(Role),
ID::user(Agent,_).

Object Prolog allows an easy mapping of the task world ontology. Relationships can
be easily added and all the reasoning features of Prolog can be used. This proved very
flexible in practice.

146 EUTERPE, a design workbench

8.7.4 Prolog and application functions

Since the tool is a mix of Prolog and C++ code, there was concern for the separation
between code that dealt with Prolog and code that did not. Ideally, only the document
class would use the Prolog engine and could form an abstraction layer. In practice this
could not be achieved. The use of the Prolog engine was limited to mainly thedocument
object, thecommandobjects and some other objects for efficiency reasons. In this
way, the GUI can be programmed in the ”normal” way and the connection is made
transparent. For example when a node is inserted in a tree the InsertCommand object
handles all the Prolog queries that are necessary while the C++ tree class performs a
normal tree insert. When the node parent pointer is changed a command object changes
the appropriate Prolog terms. The use of command objects is conform theCommand
pattern (Gamma et al. 1995). It is the usual way to implement a multilevel undo in GUI
applications. It consists of an abstract class for commands and a queue in which each
command is stored before it is executed. Undo and redo then come down to navigating
through the queue of commands. In EUTERPE, the abstract class Command and the
CommandProcessor deal with the administrative aspects. The individual command
classes implement theDo() andUndo() methods and must be prepared for multiple
undos and redos.

One of the consequences of having multiple views is that certain data structures are
often regenerated. It is therefore dangerous to store pointers. For example, command
objects cannot store object pointers because they can become invalid when objects are
regenerated. Therefore, a database of symbolic object names is maintained and used
in the command object. This way a valid object pointer can always be retrieved. The
symbolic name is the unique Prolog object identifier.

8.8 Lessons Learned

During the whole development we learned several things about testing our research
ideas in such a prototype tool. Some concern implementation but most of them are
issues that may be relevant for others that plan to develop tool support for design activ-
ities:

• Documentation is communication. During the project, printing and export
functionality turned out to be more important than expected. Designers need
to see things on paper or in other structured documents and share them with col-
leagues. On screen models are not sufficient to consolidate and communicate
design knowledge. Unfortunately, during printing only the un-collapsed tree
could be printed which was not always what designers wanted.

• Prolog is in its infancy. Choosing Prolog was the best choice but the Prolog
system itself had many problems. In general, Prolog systems are not built to
function as a subsystem in an application. The interfacing is cumbersome, mul-
tiple engines are hardly supported and debugging is difficult. Some of the latest

Summary 147

Prolog implementations are addressing these problems but there is still more de-
velopment needed.

• Interfacing with Office packages. Task modeling tools are used in isolation.
There are always other tools that a designer uses and designers expect to be able
to transfer results from one tool to another. Especially, interfacing with word
processing or drawing packages is important. Image quality is crucial and being
able to make some last minute changes is considered important.

• A multiple view approach. HCI is a multi-disciplinary field and using multiple
views/representations can bridge the gaps between the disciplines.

• Creating better models. The task world ontology is implicitly shown in the
various representations and provides users with a broad perspective. If there is
a template with standard fields, designers think about those aspects while they
would not have thought about them otherwise. For some designers, certain con-
cepts were entirely new but most of them reacted positively to them. Hence,
designers made richer models partly because the tool gave them some ”hints”.
This made designers more effective, especially novices.

• Users evaluate products, not ideas. If users are asked for their opinions about
tools they evaluate the whole product. They can not comment well on ideas on
which the tool is based. This is true even when the users are designers doing task
analysis. As soon as usability problems arise or important functionality is miss-
ing, the judgement is negative. For example, some users who could perfectly
use the tool to model gave a negative opinion just because they ”couldn’t use the
diagrams in Word”. Apparently, some task analysts consider such functionality
crucial. It becomes hard to evaluate the ideas behind the tool when this kind
of functionality is missing. Using an incomplete prototype to validate research
ideas about modeling is problematic. Users can hardly see through all the us-
ability problems of the prototype and can only comment on those aspects.”It’s
merely a prototype..”is not a valid argument to users.

In general, it can be concluded that tool support is really needed and can have a positive
effect on the design process. EUTERPE is a fairly successful attempt to provide such
support and has shown the direction for further development.

8.9 Summary

This chapter discusses our tool EUTERPE. It has been an exploration into tool support
for task-based design. EUTERPEhas been a fairly successful prototype and is now used
in industry and education. The tool is directly based on the task world ontology i.e. the
ontology is internally used in the logical subsystem and the representations are truly
views on the available data. EUTERPEoffers several representations that each focus on
a specific aspect of the task model. Besides task modeling, an editor for NUAN tables

148 EUTERPE, a design workbench

has also been implemented. This way a link between basic tasks and user actions can
be made.

Although it has already proven useful in practice, the tool should be improved on many
aspects. New representations should be added and the tool must mature more so that it
can become a serious product. EUTERPEhas shown that there is a clear need for such
tools and that it can improve the quality of the task models as well as reduce the time
needed to construct them. EUTERPE has set a direction for tool development which
needs to be explored further.

Chapter 9

Task-based Design in Practice

9.1 Introduction

This chapter is about how task-based design actually works in practice. During the
last least few years, we have applied and refined our design method in various case
studies. Some were done as part of an educational program and in other cases parts of
our method were used in industry. Evaluating an entire method is very difficult to do,
especially in a realistic setting. This chapter will therefore not discuss hard research
findings but will instead report on our experiences with our design method.

When we used the method in education we had the opportunity to supervise the correct
application of the method and to correct when necessary. Even in such situations, task-
based design is not without problems. Some activities of the method are more difficult
to perform than others. When trying to use the method in industry, such a controlled
context is not feasible.

Our method is intended to be used in practice by industry. However, companies have
their own methods and will not easily change their established and ”proven” practices.
It is therefore important that their situation is understood well, if any new method is
to be adopted. Nonetheless, we have had some experiences using parts of the method
in industry as an addition to existing methods . While this may not tell much about
whether our method works well or not, it shows the situation companies are in and how
they approach new methods. This chapter first discusses some case studies where our
method has been applied. Then several issues in applying task-based design in practice
are discussed.

9.2 Applications in Industry

In this section, we discuss two cases where task-based design was applied in an in-
dustrial context. It shows what kind of issues need to be faced when performing a

150 Task-based Design in Practice

task analysis and the kind of results that can be obtained using a task-based design ap-
proach. The first case discusses a project for the Dutch social security system and the
second discusses a redesign of a security system.

9.2.1 Dutch social security

An early case study was the case of the Dutch Social Security (van der Veer, Hoeve &
Lenting 1996). It concerned only the first phase of task analysis, from initial inventori-
sation and collection of information to the formal representation of the resulting task
model of the current situation, task model 1. The Dutch social security system pro-
vides a large number of support facilities for citizens in diverse situations of financial
and other needs. A special type of task that is frequently performed by the social secu-
rity system in Dutch municipalities is the settlement of requests for support of primary
subsistence. This task requires several levels of information collection and subsequent
decisions.

At the time, the Dutch social security system as a whole was a traditional office orga-
nization supported mainly by some database facilities. In order to work more efficient,
integrated implementation of workflow management tools and other forms of coopera-
tion technology are being considered. Some prototyping systems are being constructed
and installed in certain offices. Our involvement was concerned with performing a task
analysis with the aim to describe the current situation, as a start for a systematic design
effort.

At the start of our task analysis of the handling of requests for primary support of sub-
sistence in the social security case we profited from the fact that a group of colleagues
already had been working in the same offices. A detailed analysis was available of
the characteristics of actors and regular roles and, on the other hand, the office work-
ers were aware of the status and possible obtrusive presence of ergonomic analysts.
Our main data collection started with some interviews of the type proposed by Se-
billotte (Sebillotte 1995). During the phase of knowledge elicitation, we found out
that an enormous variety of strategies existed and that workers evidently were unable
to provide a generic account of the details of their work. Additionally, an extensive
ethnographic study (Jordan 1996) was done over a period of 2 months. The data was
then systematically analyzed using interaction analysis (Jordan 1996). Hot spots were
recorded on video and transcribed. They were then interpreted and the interpretations
were combined into more general descriptions.

Although the interpretation of the records using our conceptual framework was rela-
tively straight-forward, serious problems arose when trying to construct models from
different accounts of the same event, both when combining observations from different
actors in the same role, and from combining observations from a single actor for dif-
ferent occurrences of the event. This is in contrast with the situation that is normally
reported from task modeling approaches of the knowledge type (MAD, GTA), where
professionals are found to be consistent and in agreement between each other where it
concerns the task structure. The behavior in the case of our complex system turned out
to be strongly influenced by situational factors as well as by attributes of the partners

Applications in Industry 151

in the interaction. The first addition we had to make concerned the way to represent
the structure of a certain task. In the past, we used constructors in the sense of Scapin
(Scapin & Pierret-Golbreich 1989), where notations like LOOP, PAR, OPT, indicated
that certain subtasks are performed in a loop, in parallel, or optional, though we nor-
mally adjusted the actual set to the actors’ perception of the task domain. Constructors
are used both in the representation of task object structures, and in representations of re-
lational graphs that show task decompositions. In the present case, however, we needed
several much more elaborate constructors, especially in cases where an employee was
interacting with the applicant for support. In such cases, many constructors turned out
to be dependent onsituationalcharacteristics and therefore needed to be able describe
conditions.

Moreover, in the formal representation we still found the need to frequently add notes
to certain constructors where a single verbal label was insufficient to make the formal
representation interpretable for members of the design team. Another addition for the
task relational graphs indicated the (frequently occurring) interruption of a sequence
of related tasks by periods of events that were unrelated to the current process. A last
addition to the task graph concerns the frequent situation where a task is decomposed
into a set of subtasks, each of which is performed based on a criterion that is valid
for that subtask only. In order to provide a readable and valid representation, we had
to explicitly introduce this combined set of criteria and subtasks as part of the task
hierarchy.

Task-based design, in particular the task analysis part, showed to be valid for the highly
complex and highly situated type of process that we analyzed. The methods of data col-
lection in this case were mainly of ethnographic nature, where a long informal intro-
duction and subsequent interaction analysis turned out to be feasible. Some formalisms
needed to be adjusted to allow a representation of situated and person-dependent sub-
structures of tasks and events. The task analysis as a whole was in fact checked for
validity by the subsequent phases of design. Based on the model of the current task
situation (task model 1), an analysis of the detected conflicts and problems, a new task
structure of the process was specified. This specification was formalized with the same
extended formalism, which allowed the development of scenarios for the process and
especially for the sub processes that were proposed to be redesigned. The scenarios
were implemented by developing video fragments via role-playing (acting out the high
level task scenarios). Both the original task model 1 and the scenarios that represented
the proposed re-design were judged by the workers as realistic descriptions, resp., sen-
sible proposals to solve the conflicts and problems. The method seems to abstract the
rich task insight that the analyst acquired via ethnography in such a way that the im-
portant aspects were saved, and thus were available for systematic redesign.

9.2.2 Seibersdorf

Another case where our task-based design was applied was at the Austrian Research
Centre Seibersdorf (ARCS) mainly for the redesign of a security system produced and
marketed by Philips Industry, Austria (van Loo et al. 1999). The system is used at many

152 Task-based Design in Practice

sites such as banks, railways and electric power plants. The main problem in this case
is related to the confidentiality of the knowledge of the task domain. It is the actual
security systems in use in these companies that are the basis for our knowledge of the
task domain. Obviously, none of these companies is eager to have details of its security
management situation and security procedures being made available to outsiders, even
if they are employed by a company that designs their system.

Securing large objects like factories, museums, banks or airfields is no small feat.
Monitoring and controlling areas in these objects is done with the help of movement-
detection systems, video camera systems, access control systems, fire detector sys-
tems, elevator control systems etc. In practice, all the information from these (sub-
)systems is led to a control room where human operators have to respond appropriately
to (alarm)signals. Keeping an overview on the building status becomes almost unman-
ageable in complex combinations of sub-systems. To support the operator in monitor-
ing the state of the secured object and to integrate the different subsystems into one
system, the sCalable Security System (CSS) has been developed. The CSS integrates
the information flow from -and to- all subsystems in one central computer system with
a generic (graphical) user interface available on several workstations.

Little knowledge was available about how the current system is used and what kind of
problems the users have with the system and/or User Interface in performing their work.
To gain more insight on this topic, the first phase of task-based design was performed.
The analysis focused on the use of the system by the end-users (i.e. operators, porters
and system-managers) in their actual use-environments (factory, chemical factory and
office buildings were visited). Goal of the analysis was to gain insight in the current use
of the system and to propose directions of change/extensions to improve the (practical)
usability of the system. In this case study, the physical layout of the control rooms
was essential in detecting problems, see Figure9.1. Many systems assumed that an
operator would always be in viewing distance of the screen, which was not the case.

Participating observations and semi-directed interviews were first carried out at two
sites that seemed relevant. Getting the necessary co-operation of the managers and
employees of the visited sites took some effort. Explaining the goal of the visits by
telling some characteristic cases and ensuring that the resulting information remained
confidential proved to be helpful in this process. At the end of the visits most managers
and employees were enthusiastic about the fact that finally someone took the time
to listen to them, and took their grievances seriously. Due to the sensitive nature of
the work observed (security control rooms inside the objects to be secured) camera
recordings (as usual in observations) and tape recordings of interviews were (almost)
impossible.

Crucial to the acceptance of task-based design in the project organization were the
following factors:

1. External funding. The analysis of the CSS was carried out in the context of the
European OLOS Project (EC Human Capital Programme CHRX-CT94-0577).
This made it possible for ARCS to get to know task-based design with low fi-
nancial risks. The results were the main ground for extending the appointment

Applications in Industry 153

Figure 9.1: Layout of a control room

of the researcher at ARCS, outside European funding, to apply the method also
on other projects.

2. Complementary expertise. The results of the analysis made visible a gap in the
acquired expertise in the project organization: The direct translation of context-
of-use characteristics in design information.

3. Task-based design being a method. It offers a more solid base to work and com-
municate from. One does not start from scratch. Also, in getting support for
gathering your data it is also very handy to mention that you are using a method.
In a way, one abuses connotations of the method-concept like ’objectivity’ and
’being systematic’; notions that make a technology oriented organization more
receptive.

During analysis the conceptual framework and the ontology proved to be the greatest
help. It worked as a kind of ’check-list’ to focus attention on things that matter in
performing tasks. During analysis it was felt that methodical support was lacking,
although this was not a big problem. What is needed more is an openness on the
side of the analyst in learning to understand why people do something. One has to

154 Task-based Design in Practice

be able to ’just enter a room’ and start observing something, which might turn out
useless or useful for the analysis. One has to be able to deal with the openended-ness
associated with a more ’ethnographic’ style of performing analysis. That the method
leaves enough room for this without loosing the focus for system design as witnessed
in the framework and later stages, is regarded as a strong point, not as a weak one.

In this project, not the complete task-based design approach was used since we were not
involved from the beginning of the project. This is, however, not considered a problem:
as part of a larger design team and project culture the results of the analysis stated in
the conceptual framework (work, people, environment) and the translation of these
findings into system design are incorporated in the project. Design recommendations
were done by iteratively developing sketches of design alternatives. Especially the
’translation’ was crucial, and this turned out to be part of the core benefit of the method
in our case. The outcomes of the analysis were translated in concrete recommendations
for interface and system design. This way the results were regarded very beneficial to
the overall project. One acts as an intermediary between users and system designers
and one has to be able to speak both languages. If one stays too far away from either the
conceptual world of the users or of the designers the method won’t work. Reactions
to the method are very positive and money is spent to carry on the work within the
framework. However, what is still lacking is more ’awareness’ in the company of what
it means to perform task analysis’s at the customer and how it should be integrated in
the already present system design culture. This design case showed that task-based
design indeed delivers the kind of results that are expected from such a method.

9.3 Application Issues of Task-based Design

During the application of task-based design (or a subset thereof) in both educational
and industrial contexts, several application issues were encountered. In the next sec-
tions, we discuss these issues. These issues all reoccurred to a certain extent and to-
gether give a critical view on the practical value of task-based design.

9.3.1 Performing task analysis

Task analysis and task modeling are at the heart of task-based design. Even though
the tools and techniques we developed have improved task analysis, there are still sev-
eral issues that occur in practice. For most designers task analysis is a new technique
which needs to be learned. Some problems are related to how designers learn such a
technique. Other issues are related to difficulties with the techniques themselves. The
issues are:

• The need for a methodology for practitioners. Most of our documentation
on task analysis is in the form of research publications. They are consequently
written using a certain style required for scientific publications. However, this

Application Issues of Task-based Design 155

is often not the best way to reach practitioners. Practitioners are often not inter-
ested in the scientific argumentation that is common for such publications and
are more practice oriented. Additionally, topics such as a task world ontology
are difficult to understand and the attitude of designers is focussed towards direct
application, i.e. ”Ok, but what do I do now?”. If the way practitioners work is
really to be changed, our ”story” needs to be adjusted so that it appeals more to
practitioners. Practitioners need a lot more practical help. It is probably better to
give them diagramming techniques and methodological support that tells them
which techniques to use and how to model in the proper way. Techniques need to
be outlined with many examples and should discuss the detailed steps of creating
models.

• Task or Goal? Distinguishing between tasks and goals is crucial for a good
task analysis but it is very difficult to understand for practitioners. During the
development it is not always directly clear what the goals are. Some may initially
be modeled as tasks while it later becomes clear that they are actually goals. It
takes time to realize such aspects and it is one of the most valuable outcomes of
the modeling exercise. Practitioners may sometimes be impatient when facing
such issues and their background clutters the issue even more. For engineers that
develop the technology, tasks or goals are easily mistaken for system functions.
The internals of the system are so familiar to them that it may become difficult
to make a shift of thought and ’forget’ about the system internals for a moment.

• Role or Agent? The distinction between roles and agents is also difficult to
understand. If only one existed in the technique, most people are comfortable
with roles. However, when both are present designers are easily confused. The
most important one to model is probably a role. It is often not necessary or useful
to model agents.

• Modeling is not easy. Making and understanding hierarchical models is not al-
ways easy. In (Cooper 1995) it is reported that end-users also often have difficul-
ties dealing with hierarchical structures in user interfaces. For some designers,
it is more natural to use flow diagrams because they are more used to it. Addi-
tionally, translating data from observational studies or other sources into models
is not a trivial task. Designers need to learn to recognize the ”concepts”, the
important parts in the raw data, and model them.

• Task Analysis may not be possible. In some domains, it may turn out to be
impossible to do a task analysis simply because it is not allowed. For example,
the Dutch company Holland Signaal develops radar systems for naval ships but
because of military security strategies, is not allowed to enter the ships and see
how people work and how the work environment is. In other cases such as dis-
cussed in the previous sections, it may not be possible to record interviews or
film on location.

• Modeling Task Interruptions . Often tasks are being interrupted and continued
later. In the current formalism it is not possible to model this. Extensions are
needed to adequately describe task interruptions and their possible continuation.

156 Task-based Design in Practice

• Modeling Conditional Task Flow. In some cases the task flow is determined
by conditions. While these can be modeled using start conditions of tasks, they
are not visible enough in the task flow representations. Usually, conditional task
flow is related to decision making tasks.

• Modeling Task Strategies. Task experts often use strategies to deal with their
tasks. It allows them to be more efficient and effective. A strategy could be
modeled as a specific separate task flow/tree but this is not entirely satisfactory.
Strategies are often based on implicit knowledge that is very difficult to make
explicit.

9.3.2 Integration with current design practice

Currently, most companies are not doing task-based design. The design method we
developed would ideally be widely used in practice but making companies switch to
a new method is easier said than done. In constructing our method, we are designing
from an idealistic point of view. In practice, there are many other factors to consider.
Business goals influence the importance of designing for usability and most companies
already have a design method that may be considered satisfactory by them. There is a
legacy problem of people and current techniques. Integration issues include:

• Task-based design and other software design methodologies. Most compa-
nies already have their own design methods. It is unlikely to expect them to
easily adopt a new design method. For some industries, object-oriented software
design is still new and switching to a task oriented view for the user interface
is difficult. Some wonder whether it is realistic to focus so much on the GUI
while the software construction part in itself is already complicated enough for
practitioners! If task-based design is to be integrated in current software design
practice, the position of the TB-UID activities need to be ”positioned” in rela-
tion to software design activities. The task modeling and analysis activities can
be done previous to or as part of a requirements phase and should not be very
problematic. The later activities concerning detailed design and iterative evalu-
ation should at least be done in parallel with internal software design. However,
this requires that both parallel ”tracks” are consistent with each other which is
not a trivial activity.

• Throw-away prototyping . Many people nowadays use a Rapid Application
Development (RAD) (Martin 1991) methodology where the prototype evolves
into the final product. This makes it very difficult for designers to throw away
prototypes because they want to re-use what they have. However, in some cases
it may be very desirable to throw away a prototype because the ”main idea” was
wrong. From another point of view, prototyping in the sense of task-based design
is just developing a special representation of detailed design specifications for
early evaluation. For the sake of task-based design, it is not acceptable if the
development of this representation is influenced or constrained by issues like
code reuse.

Application Issues of Task-based Design 157

• Arrogance or ignorance? ”We know how our products are used or what the
user wants to do”is an attitude typically found in industry. However, there is
often no data to support such claims. Sales figures seem to be the most important
indicator for usability to many companies. Some reallythink that the usability
of their product is good, mainly because theyfeel they design usable systems.
Often no testing whatsoever has been done to confirm this.

9.3.3 Designing for usability

Designing for usability and doing task-based GUI design also raises issues related to
this new way of working. In contrast to what HCI researchers might hope, usability is
not a first class citizen among the design goals. Although the mentality of practition-
ers towards usability may be changing with the growing developments of interactive
media, some fundamental issues will not easily change:

• Usability may not influence sales. For many products, usability is not a selling
point. People rarely choose a product because of usability. Who ever asks for
the remote control when they buy a TV set? The user interface is important but
seems the least important aspect when deciding to buy a product or not. After all,
if the product is not functional enough, usability does not even matter. A product
seems to be ready as soon as it is functional and stable enough provided the
usability is not too bad. Only for special contexts, usability is important enough
to get the attention. Such systems are often used by highly skilled professionals
where productivity and effectiveness is utmost important. The list of potential
advantages as listed in chapter2 is perhaps motivating but in practice hard to
quantify. In (Mayhew & Mantei 1994), an attempt is made to discuss justification
of the costs of designing for usability but the calculations are tentative. We are
not far enough in proving that it is actually worth it. Doing a task analysis may
often result in just a few design changes. Humans are excellent in overcoming
usability problems, as long as the products are functional enough. Research on
measuring usability needs to be more precise. Task modeling needs to become
more common and design needs to be learned from successful design (and less
in artistic design that evolves around vision and art.) If the product sells even
though the usability is not great, for the company there is no problem.

• Reuse in HCI?If designers are to systematically build better systems it is crucial
that some form of reuse occurs in user interface design. Nowadays, there is a high
dependency on local experts, which is a risk for constant high quality in use.
Guidelines have not been very successful in ensuring design quality. Patterns
may turn out to become a better means for reuse in design. After all, UID is
mostly engineering and not art, although many seem to disagree. Many tasks are
found over and over again in applications, and they form patterns of solutions.
Any application that uses those tasks should reuse those solutions; it is simply
engineering. With the current techniques, for many designers it feels like they
need to start from scratch for each design case.

158 Task-based Design in Practice

9.3.4 Developing design alternatives

After the task modeling and analysis has been done, design alternatives need to be
developed. This is both an engineering and a creative task. In practice, this is a difficult
step where a lot of iteration is needed. We have applied techniques such as sketching,
scenarios and formal notations for this purpose. Although each of these techniques
has its pros and cons, some issues remain unsolved. The design patterns discussed in
chapter6 were developed to deal with some of the issues described here.

• Applying design knowledge. Guidelines and other techniques such as May-
hew’s design strategies (Mayhew 1992) to choose the right dialog styles, are not
easy to use, especially for novices. Expert designers rely on their own experi-
ences with user interfaces and mainly design by copying.

• Creativity versus formal methods. In the detailed design phase, the design is
worked out in such detail that a prototype can be made out of the specifications
and finally a full-blown implementation. Representations for this phase include
sketches, screen shots, interactive prototypes, hardware mock-ups and NUAN.
Especially in this phase the combination of formal and informal representations
is working out well. The creative ideas are born in the informal representations
and then become more detailed at each iteration. At the end of the process a
detailed specification is handed to the implementers and this specification needs
to be unambiguous. If not, the final product may not have the intended look and
behavior.

Formal methods allow precision and informal methods allow gradual refinement
and creative interpretation. At some point in the design process both are needed.
In our experience we found that formal and informal methods can work com-
plementary (van Welie & van der Veer 2000). At some point details need to
be worked out and by using formal methods hidden faults and unnoticed issues
may be found. Another issue is communication. When a design group needs
another group’s results as input, the work needs to be 100% clear and unambigu-
ous. Using a formal method is never a guarantee for unambiguous descriptions
but it makes it easier to understand a description and find imperfections. This is
facilitated because formal methods have explicitly defined syntax and semantics.

• Design Culture. Many focus on the product and not the use of the product. In
some disciplines there is still a tendency to let the artistic values prevail. Such
designers let their artistic vision prevail over usability. For some it is a mind
shift to think about the user, for example certain engineers may think”as long
as it works it is ok”. Additionally, within a company, the marketing department
gives an important push to the design process. Features sell even if these are not
always what the user needs in his task,”we can do this feature so let’s put it in!”

• Designing in Groups. In task-based design, team design is a requirement.
Teams need to work together in order to make the right decisions and obtain
a high quality end product. For example, in a typical project we found the fol-
lowing teams:

Limitations and Critical Success factors 159

1. Task Analysis Group

2. Detailed Design Group

3. Evaluation Group

4. Scenario and Prototyping Group

5. Management Group

We found that it is important to have one independent group that manages all
other groups. The manager or management group guards the time schedules,
deals with delays and group conflicts and the overall project documentation.
Management negotiates with the client and other stakeholders such as market-
ing and production. Management’s main purpose is to guard the dialog between
disciplines as well as between design phases. Management is monitoring the
use of representation to communicate between design sub-disciplines, as well as
between the design team and the users, stakeholders and the client.

Designing in teams can work well and potentially has several advantages. First
of all, working in groups on separate issues creates a competition effect. Each
group depends on other groups and is being judged by other groups. If one
group delivers poor work the other groups immediately remind them. On the
other hand if a group has developed really new ideas, it is very disappointing if
the other groups just discard their creativity or fail to see its merits. Not sur-
prisingly, it is not unusual that certain groups get really upset by the work of
others. However, this even leads to qualitative improvements of the final work
as it forces the management as well as the whole team to reconsider and argue
misunderstandings and rejected proposals. Another advantage is that in this way
the expertise people have is used optimally.

Teaching design requires training the students in the dynamics of design teams.
In our educational experiences, an adequate model is when the management team
forms the groups and designers have to apply for a position. This way everyone
gets to determine what he or she does, within some limits of course. In industry,
a comparable ”marketing” situation and resource management is in fact common
practice.

9.4 Limitations and Critical Success factors

Task-based design is certainly not the best or only solution for all types of interac-
tive systems. There are some limitations that make it less suitable in certain contexts.
Typical limitations are:

• It is sometimes impossible to do task analysis. There may not be a current task
or sometimes access to the current task domain is impossible. For instance, for
security reasons it may not be allowed to go to the work environment.

160 Task-based Design in Practice

• Task-based design is applicable for complex interactive systems only. Our
method was developed for complex interactive systems where many actors work
together. It is therefore not well suited for systems with high real-time demands
or systems where humans are only marginally involved.

For the successful application of task-based design, several factors have turned out to
be critical. These success factors include:

• Management Support. Task-based design is not commonly accepted. Getting
management support is crucial. The direct managers need to be convinced that
task-based design will bring the project the necessary benefits. This also depends
on the role of usability in the product being developed. For certain products the
effort can be justified more easily than for other products. Long term projects
that last for more than one year are very suitable for applying task based design
all the way. For shorter projects, the effort spent on each design activity needs to
be balanced appropriately.

• A client demand for usability. If the product that is being developed has a high
demand for usability, task-based design is more likely to be accepted and to be
successful. For example, in Air Traffic Control or other control room contexts,
usability is the key to a successful and safe system. For other products usability is
less important which makes it hard to justify the efforts. Products where sales are
largely influenced by artistic design (for example many consumer electronics),
require a short product life cycle and usability is often not important enough to
spend the effort.

• Skilled Designers. Task-based design is not common practice and designers
really need to get used to that. Only after the method has been applied several
times, the method can be used to its full potential. Novice designers make many
mistakes and need to learn new skills which naturally takes some time.

• Using a method. Even if a method is not perfect it is advisory to stick to one
method anyway. It will structure the activities and make it more manageable and
acceptable for management.

The success factors are in fact quite general and similar to those found in (Hall &
Fenton 1997). One hypothesis is that they apply to any new technology that is to be
introduced.

9.5 Summary

This chapter discusses our experiences with applying task-based design in practice.
In theory, task-based design solves some of the common problems in user interface
design. Validating such a claim in practice is extremely difficult and depends on many
uncontrollable factors. Our experiences with TB-UID are very promising, but much

Summary 161

work is needed before industry will adopt it in its current practice. Research needs to
refine the methods and techniques so that it becomes easier to apply them. On the other
hand, practitioners also need time to get used to a new technique.

Additionally, the methodology needs to be tuned for industry practice. Research needs
to validate the techniques and provide better insight into the potential gains of task
based design. Task-based design must be able to quantify the gains and show how the
activities allow designers to develop usable interfaces in a structured way. Once the
client’s demand for usability increases the relevance and importance of methods such
as task-based design will also increase.

Chapter 10

Conclusions and Future
Research

This chapter concludes this thesis. It summarizes the previous chapters that discussed
various aspects ofTask-based User Interface Design. On the one hand this thesis shows
the benefits of task-based design but on the other hand it shows that many improve-
ments can still be made. We first summarize the work and state the main contributions
of this thesis. Since the field of user interface design is still developing rapidly, we
discuss some ideas for future research on task-based design.

10.1 Summary of the Thesis

Task-based design is a method for designing complex interactive systems. Such sys-
tems are characterized by having several kinds of users and other stakeholders that are
all involved with the system. Designing such a system is a difficult task and our design
method is intended to handle such cases. In task-based design, quality is defined as a
high level of usability. Usability is a complex concept and has many often confusing
interpretations. Therefore we developed a new framework for usability. It gives struc-
ture to the various aspects of usability such as what is measurable and how usability is
related to tasks. In task-based design, it is used as a reference throughout the process
when designing for usability.

Having defined our design goal and quality concept, the design activities need to be
defined. As usual in structured methods, we start the design process by doing a thor-
ough analysis of the problem situation. In the case of user interface design this means
an analysis of the users, their work and their environment. This process is traditionally
calledtask analysis. Performing a task analysis and using the gained knowledge effec-
tively in design is not trivial. It is important to know what aspects of the task world are
relevant and hence need to be described. Those aspects are captured by the task world
ontology that we developed. Such a clear conceptualization helps designers ”see” the

164 Conclusions and Future Research

important things when they are collecting data and when they are modeling the task
world.

For the actual modeling of the task world, effective representations are needed. Repre-
sentations should allow designers to describe all the relevant aspects of the task world.
We have defined a set of representations that covers all aspects of the task world as
defined in the ontology. When the task world has been modeled, designers must look
for problems or chances for improvements. This can partially be done by looking at
particular aspects of a task model. We defined useful aspects to look at, again using the
ontology as a reference, and we operationalized them in our tool EUTERPE.

Since modeling usually takes a lot of effort we developed and tested a tool for task
analysis called EUTERPE. It allows designers to build task models and to produce
various kinds of documentation such as small web sites including multimedia data
or paper documentation. EUTERPE has been used extensively in both industry and
education over the last two years.

After the analysis phase, the detailed technology needs to be designed. This involves
many aspects such as determining the functionality to be offered, the interaction struc-
ture and the presentational aspects. Most importantly the design needs to be based on
the task model. This is crucial for building systems that support users in their tasks.
The goal is to design a system that supports the users in their tasks which is why a
task model is necessary. On the other hand, design knowledge is used as well. De-
sign knowledge is usually the expertise of the designers themselves but explicit design
knowledge such as guidelines is also frequently used. Using design knowledge pre-
vents designers from making the same mistakes repeatedly and allows them to reuse
proven solutions in a new design. Guidelines have turned out to be problematic de-
spite their popularity. We discusspatternsas a possibly better way to capture this
design knowledge. Patterns describe proven solutions to user problems in a specific
context. This incorporation of the context allows patterns to overcome some of the
shortcomings guidelines suffer from. To validate this idea we developed a collection of
30 patterns that demonstrate the essence of interaction design patterns. When the col-
lection evolves into a patternlanguage, the design process can rely on both a thorough
task analysisanddesign knowledge in the form of a catalog of proven solutions.

We also argue that detailed design needs a mix of formal and informal techniques.
Sometimes there is a need for precision while creativity often asks for informal tech-
niques. One of such precise techniques is NUAN (New User Action Notation) which
extends UAN. This technique allows bridging the gap between tasks modeling and
detailed design. The notation is suitable for task-based design and the link has been
described in, again, an ontology.

When the detailed design has evolved into some form of prototype, usability testing
usually starts. However, usability evaluation can also be done much earlier when even
only task models exist. This thesis does not discuss evaluation techniques in detail since
we currently use existing techniques such as walkthroughs, observations and question-
naires. Instead we discuss the possibilities and limitations of various evaluation tech-
niques using our usability framework. When only paper mockups are available it is
already possible to ask users to perform their tasks. This usually leads to high level

Contributions 165

comments about the interface. When a running prototype has been developed, detailed
usability testing can be done. In all of the testing activities we use the usability frame-
work from chapter2 to measure the correct aspects and to look for problems or possible
improvements.

10.2 Contributions

This thesis discussesTask-based User Interface Design. Starting with a general out-
line of the design process, each of the main activities is discussed in detail. Not only
the theoretical aspects of the method are discussed but also practical aspects such as
representation techniques and tool support. In chapter1 we discuss the main research
questions and indicate problems in two areas: improving the designprocessand im-
proving the finalproduct. A total of five main problems is stated together with ideas
on how to improve them. We discuss these problems together with our contributions:

• Improving the available techniques for both task analysis and design.Devel-
oping better techniques has been done by taking an ontological approach. This
means that we first investigate the questionwhatneeds to be modeled. The task
world ontology is a meta-level model that describes what we want to model of
the task world. The ontology is based on common concepts in task analysis tech-
niques and has been developed further over the duration of the research project.
Based on our experiences in industry and education, we are confident that it is
sufficiently complete. Using the ontology we have looked at representations for
designers to answer the questionhow the task world can be modeled. Thewhy
question is answered by our investigation into the usability concept where we
show that task knowledge is crucial for developing usable systems.

• Reducing the effort of performing a detailed task analysis.The effort required is
reduced in several ways. First of all, by offering improved techniques and mod-
els designers have a much better idea of what and how to model. It gives them
conceptual tools to start doing task analysis. Second, the manual activities such
as creating and editing the models is supported by our tool EUTERPE. It opera-
tionalizes conceptual ideas about task analysis into a practical tool for designers.
In practice both in industry and education, EUTERPEhas proven to be a useful
tool, although many improvements are still possible. Our tool is not the only tool
that can be used in task-based design. Therefore we present an overview of tools
that could be useful in task-based design.

• Improving effective use of task analysis results in the design of the actual product.
This is perhaps one of the most difficult problems we tried to address. One aspect
we looked at was what kind of questions exist in detailed design that should
ideally be answered by a task model. This gives us information about what to
model and it is one of the ways to improve the task world ontology. On the other
hand, we investigate patterns as a more direct link between user tasks and design
solutions. Considering that interaction design patterns are still a new field, this

166 Conclusions and Future Research

link has not yet been fully established. The patterns address user problems which
are task related but those tasks are still very general. The next step would be to
go from a specific task model to patterns via more generic task categories. For
describing detailed designs we have extended one of the existing methods, i.e.
User Action Notation. Our variant called NUAN allows event driven systems to
be modeled easier. It also allows relevant mental actions to be modeled. It is a
small step towards more effective techniques for detailed design specifications.

• Providing a better understanding of what usability is.Chapter2 of this thesis is
entirely devoted to this issue. We have developed a framework of usability that
gives structure to the concept. Using this framework we analyzed existing views
on usability and showed how they “fit” in the framework. We believe we have
“deepened” the understanding of usability by showing what is measurable, what
can be changed and how it is all related to understanding the users tasks. This
framework gives guidance when making design decisions and when evaluations
are done.

• Allowing re-use of successful solutions in design.Our work on interaction pat-
terns is the main contribution to address this issue. The patterns offer very con-
crete solutions that can be applied directly. Each pattern has been evaluated by
several experts and contain a rationale that provides the justification for the so-
lution. This way product quality not only depends on a good analysis but also on
the use of explicit and proven design knowledge. Designers can select patterns
based on the design context and apply them appropriately. We developed a set of
30 patterns to establish a start for a future pattern language for interaction design.

10.3 Future Research

Developing a design method almost never ends. There are still many areas that need to
be improved both on the theoretical as the practical side. Theories are important to link
together many aspects in the process of design. With the help of sound theories we can
develop practical techniques that make improvements of the process and product pos-
sible. On the other hand, many techniques are also developed ad hoc when designers
face problems. Studying them can also contribute much to theoretical understanding.

• Change-effect relationships between means and usage indicators. In chapter2,
the concept of usability is discussed and put into a structural framework. The
usage indicators of the model are measurable but the really interesting thing is
how we can use the means to influence the usage indicators. There is a complex
relationship between means and usage indicators which we hardly understand at
present. The appropriate use of means depends on contextual information that
is part of the task model and design context. Design principles give us some
rough ideas about how to use the means but a much deeper understanding is
needed if we want to make real progress. If we are able to formulate metrics

Future Research 167

that incorporate the contextual information, such metrics could allow usability
evaluation even when only detail design specifications exist.

• Bringing task analysis to the work practice. In the area of task analysis and
task modeling this thesis has made advances both on theory and on practical
techniques. Nonetheless, those techniques probably need to be refined through
many applications before they are established techniques that every designer
uses. Both the task world ontology and the representation techniques need to be
refined further through practical applications. Extensive application experiences
can show missing aspects, tune techniques and improve insights. Development
of the most important design knowledge, formulated in patterns, also needs to be
grounded in practice. In addition, the methodological side needs to be covered
as well so that practitioners understand what to do and how to do it.

• Patterns and task-based design. This thesis discusses interaction design patterns
as a promising technique to incorporate explicit design knowledge into the design
process. We feel that this is just the start of a promising research area. User
interfaces are composed of many elements that are put into a specific structure.
Patterns are a means to try to understand why some arrangements of elements
are better than others and under which circumstances. This is exactly the kind
of knowledge which gives designers a better understanding of their tools of the
trade so they will get better at using them. In order to make user interface design
more of an engineering discipline, it needs to excel in analysing the problem well
and creating solutions using valuable design knowledge.

Besides using patterns for interaction design, patterns could also be used in the
task analysis phase. Certain activities can be described more generally in pat-
terns. Such ”work” or ”ethnographic” patterns could help seeing how the work
is done. When redesigning work, patterns can be used to propose proven task
structures. Going even further, task patterns could then be linked to interac-
tion designs via an intermediate ”categorized” task model. For example, specific
tasks could be generalized as ”comparison tasks” or ”entry tasks” which then
lead to the selection of patterns related to such tasks.

• Integrated tools supporting several design activities. Our tool EUTERPEproves
that there is indeed a need for tool support in the early activities of task-based
design. The tool is not finished and more development could lead to a tool of
commercial quality. Tools are nowadays essential elements in most design pro-
cesses. Any method for design could greatly benefit from tool support both for
the process itself but also for acceptance in the industry.

The issues mentioned above are not only relevant from a task-based design perspective.
Such issues have also been raised by people that are not directly working on task-based
design. The need for better processes, a better understanding of quality and how to
reach it is central in the field of Human Computer Interaction. The most important thing
in task-based design is the central position of the users and their work. The research
described in this thesis uses that viewpoint to create better tools and techniques. We

168 Conclusions and Future Research

feel that we made a small step forwards but still a lot more progress is needed to fully
achieve our goals.

Appendix A

NUAN symbol definitions

170 NUAN symbol definitions

User Actions Functions Description
Move the cursor POINTERTO(x) Move the mouse pointer to x.

CURSORTO(x) Move the cursor to x.
Clicking CLICK(x) Press and depress x

CLICK(x,y) Press and depress x y times
Pressing PRESS(x) Press and release x

HOLD(x) Hold x
RELEASE(x) Release x (a click is just a short

function for press and release)
Enter a string ENTER(x) Enter something.
Looking LOOKAT(x) Look at x.
Talking SAY(x) Say x to the system.
Insert something INSERT(x) Insert x in the system.
Highlighting HIGHLIGHT(x) x is highlighted
Unhighlighting UNHIGHLIGHT(x) x is not highlighted
Flash FLASH(x) Highlight and immediately un-

highlight
Removing REMOVE(x) x is removed.
Moving MOVETO(x,y) x is moved to y.
Changing CHANGE(x,y) x is removed and y is shown.
Showing SHOW(x) x is shown to the users.
Waiting WAIT(x) Wait x seconds.
Output OUT(x,y) Output x using y (audio, video etc)
Force Feedback FORCEF(x,y) movement x is done by device y.
Ejecting EJECT(x) x is ejected from the system
Warning WARNING(x,y) Display a warning with options y
Recalling RECALL(x) Retrieve x from working memory
Memorizing MEMORIZE(x) Memorize x
Forgetting FORGET(x) Remove x from working memory
Finding FIND(x) Find x on the display
Choosing CHOOSE(x,y) Choose x from the set y
Comparing COMPARE(x,y,locX,locY) Compare x with y in their loca-

tions
Compute COMPUTE(Formula) Compute Formula
Transform TRANSFORM(Input,

Output)
Transform Input into Ouput

171

Constant Description
button1 (Mouse)button 1
any key Any key from a keyboard
any button Any button from some device
’a’ The key ’a’
”abc” The string abc
@(x,y) The location (x,y)
[x] Some object x, for example [textfile]
<x> The object x, for example<test.txt>
x,y A set containing the elements x and y
left, right, up, down The directions left, right, up and down
audio The audio device
video The video display terminal

Operation Operator Description
Repetition (X)* X is performed zero or more times

n(X) X is performed n times
#(X) X is performed zero or one time.

Choice X ‖ Y X or Y is performed (but not both)
Order independence X && Y X and Y are performed in no particular or-

der
Interruptability X ? Y X can be interrupted by Y
Sequence X Y X is followed by Y
Parallelism X | Y X and Y are performed simultaneously
Interleavability X \ Y Y can be started before X is completed and

vice versa
Condition X : Y If X is true, Y is performed
Start/stop � X X is started

> | X X is stopped
Inversion (X)∼ The inverse of X is performed
Addition x + y y is added to x
Substraction x - y y is substracted from x
Events !(X) The interface action X isn’t directly caused

by a user action

Appendix B

Interaction Design Patterns

174 Interaction Design Patterns

Wizard

Problem The user wants to achieve a single goal but several deci-
sions need to be made before the goal can be achieved
completely, which may not be known to the user.

Usability Principle User Guidance (Visibility)

Context A non-expert user needs to perform an infrequent complex
task consisting of several subtasks where decisions need to
be made in each one. The number of subtasks must be small
e.g. typically between 3 and 10.

Forces – The user in highly interested in reaching the overall goal but
may not be familiar or interested in the steps that need to be
performed.
– The task can be ordered but are not always independent of
each other i.e. a certain task may need to be finished before
the next task can be done.
– To reach the goal, several steps need to be taken but the
exact steps required may vary because of decisions made in
previous steps.

Solution Take the user through the entire task one step at the time.
Let the user step through the tasks and show which steps
exist and which have been completed.

When the complex task is started, the user is informed
about the goal that will be achieved and the fact that several
decisions are needed. The user can go to the next task by
using a navigation widget (for example a button). If the user
cannot start the next task before completing the current one,
feedback is provided indicating the user cannot proceed before
completion (for example by disabling a navigation widget). The
user should also be able to revise a decision by navigating
back to a previous task.

The user is given feedback about the purpose of each
task and the user can see at all times where (s)he is in the
sequence and which steps are part of the sequence. When the
complex task is completed, feedback is provided to show the
user that the tasks have been completed and optionally results
have been processed.

Users that know the default options can immediately use
a shortcut that allows all the steps to be done in one action.
At any point in the sequence it is possible to abort the task by
choosing the visible exit.

175

Rationale The navigation buttons suggest the users that they are navigat-
ing a path with steps. Each task is presented in a consistent
fashion enforcing the idea that several steps are taken. The
task sequence informs the user at once which steps will need
to be taken and where the user currently is. The learnability and
memorability of the task are improved but it may have a nega-
tive effect of the performance time of the task. When users are
forced to follow the order of tasks, users are less likely to miss
important things and will hence make fewer errors.

Example This is the ’Pack ’n Go Wizard’ from PowerPoint. The user
wants to package a presentation so that the presentation can
be given on another computer.

Several relevant decisions need to be taken and the wiz-
ard helps the user take these decisions. The green box shows
the current position in the sequence of tasks.

Known Uses Microsoft PowerPoint Pack and Go wizard; Installshield instal-
lation programs

Related Patterns Consider NAVIGATING SPACES and LIST BROWSER to provide
the navigation controls.

176 Interaction Design Patterns

Hinting

Problem The user needs to know how to select functions.

Usability Principle Incremental Revealing (Visibility)

Context Applications where the functionality is accessible in more than
one way, e.g. through menus, using keyboard shortcuts, or
through toolbars. This pattern can be used to make the user
aware of the other possibilities in a subtle and non-obtrusive
way.

Forces – The available screen space may be limited so there is no
space for extra visual hints.
– The user needs some way of discovering and learning
these alternatives and possibly more efficient ways, in a non-
obtrusive way.
– The user may or may not already know the other ways to ac-
cess the function.
– The number of ways to activate the function determines the
number of possible hints.

Solution Give the user hints for other ways to access the same
function.

When accessing a function in one way, provide hints for
other ways to access the same function. One possibility is to
use multiple labels; one label for each way the function can
be accessed. For example, if the function has a keyboard
shortcut, show the key combination. If there is an icon shortcut
for the function, show the icon. Always show the main label
and show other labels directly if possible within the constraints.

Other possibilities are to use helper agents or delayed
messages that react on user actions. For example, a tool tip is
displayed when the user holds the mouse over a widget for 2
seconds.

177

Rationale Chances are high that the user is familiar with at least one way
to access a specific function. By showing other labels such as
the key shortcut or an icon, the user will learn more associa-
tions for the function access. At some point the user may ”see”
the icon in a toolbar and use it instead of the menu. In the same
way, the user may prefer keyboard access over mouse access.
The solution increases learnability and memorability. When the
user actually starts using other ways of selecting functions the
performance speed may also increase.

Example These screenshots are taken from Word2000. They shown to
possible instances of this pattern, one using tool tips and the
other using menus with icons.

In the menu there is space to include the icon and short-
cut but the toolbar icon does not allow this. In that case
the information is displayed in a tool tip that pops up after a
short delay. That way advanced users are not bothered with
windows that pop up all the time.

Known Uses Tool tips, Office2000 menus.

Related Patterns Consider the COMMAND AREA pattern for the placement of the
functionality.

178 Interaction Design Patterns

Continuous Filter

Problem The user needs to find an item in an ordered set.

Usability Principle Immediate feedback (Feedback)

Context This pattern allows the user to dynamically narrow the search
depending on the immediate feedback given by the continuous
filter.

Forces – The user is searching for an item in a large ordered set and
may not be familiar with the exact item, nor is the user sure the
item exists.
– The user searches for an item but the search term may lead
to multiple results.

Solution Provide a filter component with which the user can in real
time filter only the items in the data that are of his interest.

The filtered set is shown concurrently with the search
term from the moment the user starts entering the search
term. If relevant, the closest matches are highlighted while
some previous and successive items might be shown as well.

Rationale Because the user gets immediate feedback on the search term,
the user searches very efficient and may even see other rele-
vant items. Because the filtered items are shown the user can
adjust the search term in real time or even bypass completing
the search term and go directly to the preferred item. The solu-
tion improves the performance time and satisfaction.

179

Example This screenshot taken from Cakewalk 9 uses the common help
functionality. In the index function the user is guided towards
the item while typing.

This screenshot shows the URL history of Internet Ex-
plorer 5. As you type in a URL it shows the list of possible
URLs that match the unfinished URL.

Known Uses Help systems (Cakewalk, MS Word 2000, Visual Studio 6), In-
ternet Explorer 5, IntelliSense.

Related Patterns Consider the FAVOURITES pattern if the users often repeat the
same query.

180 Interaction Design Patterns

Unambiguous Format

Problem The user needs to supply the application with data but may
be unfamiliar with which data is required or what syntax to
use.

Usability Principle User Guidance (Constraints)

Context Any system where structured data must be entered. Data such
as dates, room numbers, social security numbers or serial num-
bers are usually structured. The exact syntax used for such
data may vary per country or product.

Forces – When the data is entered using an unexpected syntax, the
data cannot be used by the application.
– The user may be familiar with the data but may not know the
exact required syntax.
– The user strives for entry speed but also wants it to be en-
tered correctly.
– Cultural conventions determine what the user expects the
syntax to be. For example, dd/mm/yy is usual in Europe while
mm/dd/yy is used in the United States.

Solution Only allow the user to enter data in the correct syntax.

Present the user with fields for each data element of the
structure. Label each field with the name of the data unit if
there can be doubt about the semantics of the field. The field
does not allow incorrect data to be entered. Avoid fields where
users can type free text. Additionally, explain the syntax with
an example or a description of the format. Provide sound de-
faults for required fields, fields that are not required should be
avoided or otherwise marked as optional. When optional fields
are used, the consequences for the user must be explained.

Rationale The main idea is avoid entering incorrect data by not making it
possible to enter wrong data. By showing the required format
the chances of errors are reduced because the user is given
complete knowledge. However, because the user now has to
give multiple data inputs instead of one, more time is needed to
enter the data. The solution reduces the number or errors and
increases satisfaction but the performance time may go down.

181

Example This snapshot is from the date and time control panel in MS
Windows. Entering the date is spit up in three input areas.
Each of the input fields allows only valid entries. Entering an
invalid date becomes impossible.

Known Uses MS Windows Date/Time control panel, Windows 9x serial box

Related Patterns Use the GRID LAYOUT pattern to layout the data units.

182 Interaction Design Patterns

Helping Hands

Problem Users need to enter many different types of objects.

Usability Principle Separation (Task Conformance)

Context Applications with modes and for expert users. Typical use is in
drawing and modelling applications where one hand is used to
control an input device for the actual drawing.

Forces – Although the number of modes may be high, the user may
only use a particular subset regularly.
– Most people can use two hands while they mostly use one.

Solution Use one hand to enter the data while the other hand is
used to switch modes.

The data-entry hand can use any available input devices
such as mouse, trackball, pen etc. The data-entry hand can
keep the cursor at the working area while the other hand is
used to switch modes using the keyboard or any other special
purpose device. Allow mode switching for the most often used
modes, in particular during data entry functions.

Rationale Using one hand to switch modes allows the other hand to
keep the cursor on the working area. This eliminates many
mouse movements otherwise needed for the mode switching.
It speeds up the entry of data.

183

Example This example is taken from Sibelius, a music score editor.
Just like in many drawing programs it contains many modes,
for instance for entering notes. In Sibelius the keys of the
numeric keypad are mapped to entry modes. This way, it is
not necessary to use the mouse to switch modes and it is
only used for entering notes. Using the other hand, users can
rapidly switch modes.

Known Uses Sibelius, Blender (3D modelling tool).

Related Patterns To indicate the current mode, consider the MODE CURSOR pat-
tern.

184 Interaction Design Patterns

Grid Layout

Problem The user needs to quickly understand information and take
action depending on that information.

Usability Principle Consistency, Predictability (Conceptual Models)

Context Any circumstance where several information objects are pre-
sented and arranged spatially on a limited area. Typically in the
design of dialog screens, forms and web pages.

Forces – The user needs to see many objects but wants to see them
in a clear organized way.
– The user want to minimize the time it takes to scan/read/view
objects on the screen.
– The objects are often related and can be grouped conceptu-
ally.
– The presentation needs to be compact, but still clear, pleas-
ant and readable.

Solution Arrange all objects in a grid using the minimal number of
rows and columns, making the cells as large as possible.

The objects are arranged in a matrix using the minimal
number of rows and columns. Objects that are of the same
type must be aligned and displayed in the same way. If several
objects can be grouped, the grid applies on the level of groups
as well. Short elements can be stretched, beginning and
ending on grid boundaries. Long elements can span multiple
grid cells. Certain objects may have a fixed size that increases
the number of rows and columns in which case they should
keep their fixed size. Standard response buttons may have
predefined positions and can be regarded as being outside the
grid.

Rationale Minimising the number of rows and columns improves the time
needed to scan the information and to take the appropriate ac-
tion (Fitts Law). Additionally, it causes a very consistent layout
with minimal visual clutter and is perceived to be non-obtrusive
to the user. The time needed to read the information is reduced
which can increase the task performance time. The resulting
layout is pleasant to see and increases the satisfaction.

185

Example This screenshot is taken from Word 97. Several objects are
placed in a dialog box. The elements have been arranged in a
grid and objects have been aligned and sized evenly to reduce
the number of rows and columns.

Known Uses Microsoft Word Frame Options, many other applications.

Counterexample This image is taken from IBM’s Aptiva Communication Center,
and demonstrates that the developers simply wanted to get the
settings on the screen, rather than make it easy for people to
adjust the settings. There is no flow to the screen; your eyes
just jump around from place to place as your brain tries to elicit
some sort of order.

Bibliography

Abowd, G. D., Wan, H. M. & Monk, A. F. (1995), A formal technique for automated
dialogue development,in ‘Proceedings of Designing Interactive Systems, DIS
’95’, ACM Press, Ann Arbor MI.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I. & Angel,
S. (1977),A Pattern Language, Oxford University Press,New York.

Annett, J. & Duncan, K. (1967), ‘Task analysis and training in design’,Occupational
Psychology41, 211–221.

Apple Computer Inc. (1992),Macintosh Human Interface Guidelines, Addision-
Wesley Publishing Company.

Arnold, A. (1998), Action Facilitation and Interface Evaluation, PhD thesis, Technis-
che Universiteit Delft.

Balbo, S. (1994), Ema: Automatic analysis mechanism for the ergonomic evaluation
of user interfaces, Technical Report 96/44, CSIRO.

Barnard, P. (1987), Cognitive resources and the learning of human-computer dialogues,
in ‘Interfacing thought: Cognitive aspects of human-computer interaction’, MIT
Press.

Bayle, E., Bellamy, R., Casaday, G., Erickson, T., Fincher, S., Grinter, B., Gross,
B., Lehder, D., Marmolin, H., Moore, B., Potts, C., Skousen, G. & Thomas, J.
(1998), ‘Putting it all together: Towards a pattern language for interaction de-
sign’, SIGCHI Bulletin30(1), 17–24.

Beard, D., Smith, D. & Denelsbeck, K. (1996), QGOMS: A direct-manipulation tool
for simple GOMS models,in ‘Proceedings of CHI ’96’, ACM Press, pp. 25–26.

Bevan, N. (1999), ‘Quality in use: Meeting user needs for quality’,Journal of Systems
and Software49(1), 89,96.

Beyer, H. & Holtzblatt, K. (1998),Contextual Design, Morgan Kaufmann Publishers.

Bias, R. & Mayhew, D., eds (1994),Cost-Justifying Usability, Academic Press.

188 Bibliography

Biere, M., Bomsdorf, B. & Szwillus, G. (1999), The visual task model builder,in
‘Proceedings of CADUI ’99’, Louvain-la-Neuve, Belgium.

Bomsdorf, B. & Szwillus, G. (1999a), Tool support for task-based user interface de-
sign, in ‘Proceedings of CHI 99, Extended Abstracts’, Pittsburgh PA, United
States, pp. 169–170.

Bomsdorf, B. & Szwillus, G. (1999b), ‘Tool support for task-based user interface de-
sign - a CHI99 workshop’,ACM SGCHI Bulletin31(4), 27–30.

Britton, C. & Jones, S. (1999), ‘The untrained eye: How languages for software speci-
fication support understanding in untrained users’,Human-Computer Interaction
14, 191–244.

Brown, W., Malveau, R., McCormick, H. & Mowbray, T. (1998),Anti Patterns, Refac-
toring Software, Architectures and Projects in Crisis, John Wiley, New York.

Butterworth, R., Blandford, A. & Duke, D. (1998), The role of formal proof in model-
ing interactive behavior,in ‘5th International Eurographics Workshop on Design
Specification and Verification of Interactive Systems DSV-IS98’, Abingdon, UK.

Card, S., Mackinlay, J. & Shneiderman, B. (1999),Readings in Information Visualiza-
tion:Using Vision to Think, Morgan Kaufmann Publishers.

Card, S., Moran, T. & Newell, A. (1983),The Psychology of Human-Computer Inter-
action, Lawrence Erlbaum Associates.

Carroll, J. M. (1995),Scenario-Based Design, John Wiley & Sons Inc., Toronto.

Cooper, A. (1995),About Face, the essentials of user interface design, IDG Books
Worldwide.

Cooper, A. (1999),The Inmates are Running the Asylum, SAMS publishing.

Coutaz, J., Faconti, G., Paterno, F., Nigay, L. & Salber, D. (1993), MATIS: a UAN
Description and Lessons Learned, Technical Report SM/WP14, The AMODEUS
Project.

Dayton, T., McFarland, A. & Kramer, J. (1998), Bridging user needs to object oriented
gui prototype via task object design,in L. Wood, ed., ‘User Interface Design:
Bridging the Gap from User Requirements to Design’, CRC Press.

de Haan, G. (2000), ETAG, A formal model of competence knowledge for user inter-
face design, PhD thesis, Vrije Universiteit Amsterdam.

de Haan, G., van der Veer, G. & van Vliet, J. (1991), ‘Formal modelling techniques in
human-computer interaction’,Acta Psychologica78, 27–67.

Dilli, I. & Hoffmann, H. J. (1994), DIADES-II, a multi-agent user interface design
approach with an integrated assesment component,in ‘CHI’94 HCI Bibliography,
SIG on Tools for Working with Guidelines’, ACM Press.

Bibliography 189

Dix, A., Abowd, G., Beale, R. & Finlay, J. (1998),Human-Computer Interaction, 2nd
edn, Prentice Hall Europe.

Earthy, J. (1999), Usability maturity model: Attitude scale, Technical Report D5.1.4s,
INUSE Project.

Farenc, C., Palanque, P. & Vanderdonckt, J. (1995), User interface evaluation: is it still
usable ?,in ‘Proceedings of 6th International Conference on Human-Computer
Interaction HCI International’95’, Elsevier Science Publishers, Yokohama.

Fitts, P. (1954), ‘The information capacity of the human motor system in controling the
amplitude of movement’,Journal of Motor Behavior47, 381–391.

Gamboa Rodriguez, F. & Scapin, D. (1997), Editing MAD* task description for spec-
ifying user interfaces, at both semantic and presentation levels,in ‘4th Interna-
tional Eurographics Workshop on Design Specification and Verification of Inter-
active Systems DSV-IS97’, Granada, Spain.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995),Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley,Reading, Mass.

Gorny, P. (1995), Expose, hci-counseling for user interface design,in ‘Proceedings of
INTERACT ’95’, Chapman & Hall, Lillehammer, Norway.

Graesser, A., Robertson, S. & Anderson, P. (1981), ‘Incorporating inferences in narra-
tive representations: A study of how and why’,Cognitive Psychology13, 343–
370.

Hall, T. & Fenton, N. (1997), ‘Implementing Effective Software Metrics Programs’,
IEEE Software14(2), 55–65.

Hartson, H. (1998), ‘Human-computer interaction: Interdisciplinary roots and trends’,
Journal of Systems and Software43(2), 103–118.

Hassenzahl, M., Platz, A., Burmester, M. & Lehner, K. (2000), Hedonic and ergonomic
quality aspects determine a software’s appeal,in ‘Proceedings of CHI 2000, Ex-
tended Abstracts’, Den Haag, The Netherlands, pp. 201–208.

Herczeg, M. (1999), A Task Analysis Framework for Management Systems and De-
cision Support Systems,in ‘Proceedings of the AoM/IAoM 17th International
Conference on Computer Science’, San Diego, California, pp. 29–34.

Hix, D. & Hartson, H. (1994), Ideal: An environment to support usability engineer-
ing, in ‘Proceedings of the 1994 East West International Conference on HCI’, St.
Petersburg, Russia.

Hix, D. & Hartson, H. (1998),Developing User Interfaces: Ensuring Usability
Through Product & Process, John Wiley & Sons Inc.

190 Bibliography

ISO (1988),ISO/IS 8807 Information Processing Systems - Open Systems Interconnec-
tion - LOTOS - A Formal Description Technique Based on Temporal Ordening of
Observational Behaviour.

ISO (1991a), ISO 9126 Software product evaluation - Quality characteristics and
guidelines for their use.

ISO (1991b), ISO 9214-10 Ergonomic Requirements for office Work with VDT’s - Di-
aloque Principles.

ISO (1991c), ISO 9214-11 Ergonomic Requirements for office Work with VDT’s - Guid-
ance on Usability.

John, B. E. & Kieras, D. E. (1996), ‘The GOMS family of user interface analysis
techniques: Comparison and contrast’,ACM Transactions on Computer-Human
Interaction(3), 320–351.

Johnson, P., Diaper, D. & Long, J. (1984), Tasks, skills and knowledge: Task Analysis
for Knowledge-based Descriptions,in B. Shackel, ed., ‘Proceedings of INTER-
ACT 84’, North Holland, pp. 499–503.

Johnson, P., Johnson, H., Waddington, R. & Shouls, A. (1988), ‘Task-Related Knowl-
edge Structures: Analysis, Modeling and Application’,People and Computers IV
pp. 35–62.

Johnson, P., Wilson, S., Markopoulos, P. & Pycock, J. (1983), Adept - advanced design
environment for prototyping with task models,in ‘Proceedings of INTERACT
83’, Amsterdam, The Netherlands, pp. 56–64.

Jordan, B. (1996), Ethnographic Workplace Studies and CSCW,in D. Shapiro,
M. Tauber & R. Traunm̈uller, eds, ‘The Design of Computer Supported Coopera-
tive Work and Groupware Systems’, Elsevier North Holland, Amsterdam, pp. 17–
42.

Kahn, P. & Krysztof, L. (1998), ‘Principles of Typography for User Interface Design’,
Interactions5(6), 15–29.

Karat, C. (1994), A business case approach to usability cost justification,in R. Bias &
D. Mayhew, eds, ‘Cost-Justifying Usability’, Academic Press.

Kieras, D. (1994), A Guide to GOMS Task Analysis, Technical Report Unpublished,
University of Michigan.

Kieras, D. (1996), Guide to GOMS model usability evaluation using NGOMSL,in
M. Helander & T. Landauer, eds, ‘The Handbook of Human-Computer Interac-
tion’, ?, Amsterdam.

Kieras, D. & Polson, P. (1985), ‘An approach to the formal analysis of user complexity’,
International Journal of Man-Machine Studies22(4), 365–394.

Kirwan, B. & Ainsworth, L. (1992),A Guide to Task Analysis, Taylor and Francis.

Bibliography 191

Lecerof, A. & Paterǹo, F. (1998), ‘Automatic support for usability evaluation’,IEEE
Transactions on Software Engineering24(10), 863–888.

Lim, K. & Long, J. (1994),The Muse Method for Usability Engineering, Cambridge
University Press.

Löwgren, J. (1995), Perspectives on Usability, Technical Report LiTH-IDA-R-95-23,
ISSN-0281-4250, Department of Computer and Information Science, Linköping
University, Sweden.

Macinlay, J. (1986), ‘Automating the Design of Graphical Presentations of Relational
Information’,ACM Transactions on Graphics5(2), 110–141.

MacLean, A., Young, R. & Bellotti, V. (1991), ‘Questions, options, and criteria: Ele-
ments of design space analysis’,Human-Computer Interaction6, 201–250.

Mahajan, R. & Shneiderman, B. (1995), A Family of User Interface Consistency
Checking Tools, Technical Report ISR-TR-95-52, Institute for Systems Research,
University of Maryland, USA.

Mahemoff, M. & Johnston, L. (1998a), Pattern languages for usability: An investi-
gation of alternative approaches,in ‘Proceedings of the Asia-Pacific Conference
on Human Computer Interaction APCHI’98’, IEEE Computer Society, Shonan
Village, Japan, pp. 25–31.

Mahemoff, M. & Johnston, L. (1998b), Principles for a usability-oriented pattern lan-
guage,in ‘Proceedings of the Australian Computer Human Interaction Confer-
ence OZCHI’98’, IEEE Computer Society, Adelaide, Australia, pp. 132–139.

Martin, J. (1991),Rapid Application Development, MacMillan.

May, J. & Barnard, P. (1995), Cinematography and interface design,in K. Nordby,
P. Helmersen, D. Gilmore & S. Arnesen, eds, ‘Proceedings of Interact ’95’,
pp. 26–31.

Mayhew, D. (1992),Principles and Guidelines in Software User Interface Design,
Prentice Hall PTR, New Jersey.

Mayhew, D. (1999),The Usability Engineering Lifecycle: a practitioner’s handbook
for user interface design, Morgan Kaufmann Publishers.

Mayhew, D. & Mantei, M. (1994), A basic framework for cost-justifying usability,in
R. Bias & D. Mayhew, eds, ‘Cost-Justifying Usability’, Academic Press.

McKay, E. (1999),Developing User Interfaces for Microsoft Windows, Microsoft
Press.

Microsoft (1995),The Windows Interface Guidelines for Software Design, Microsoft
Press.

192 Bibliography

Mullet, K. & Sano, D. (1995),Designing Visual Interfaces: Communication Oriented
Techniques, SunSoft Press, Prentice Hall.

Myers, B. (1995), ‘User Interface Software Tools’,ACM Transactions on Computer-
Human Interaction2(1), 64–103.

Nardi, B. (1996),Context and consciousness: activity theory and human-computer
interaction, MIT Press.

Neches, R., Foley, J., Szekely, P., Sukaviriya, P., Luo, P., Kovacevic, S. & Hudson, S.
(1993), Knowledgeable development environments using shared design models,
in ‘Proceedings of the 1993 International Workshop on Intelligent User Inter-
faces’, pp. 63–70.

Nielsen, J. (1993),Usability Engineering, Academic Press.

Noldus Software (1999),The Observer.
URL: http://www.noldus.com

Norman, D. (1988),The Design of Everyday Things, Basic Books.

Norman, D. (1999),The Invisible Computer, Basic Books.

Palanque, P. & Paternò, F. (1997),Formal Methods in Human Computer Interaction,
Springer Verlag.

Parnassus Software (1999),Scriptwerx.
URL: http://www.scriptwerx.com/online.html

Paterǹo, F. (1999),Model-Based Design and Evaluation of Interactive Applications,
Springer Verlag.

Paterǹo, F., Mancini, C. & Meniconi, S. (1997), ConcurTaskTrees: A Diagrammatic
Notation for Specifying Task Models,in S. Howard, J. Hammond & G. Linde-
gaard, eds, ‘Proceedings of INTERACT ’97’, Chapman & Hall, Sydney, pp. 362–
369.

Payne, S. & Green, T. (1989), Task-Action Grammar: The Model and its Develop-
ments,in D. Diaper, ed., ‘Task Analysis for Human-Computer Interaction’, Ellis
Horwood, Cambridge MA.

Perzel, K. & Kane, D. (1999), Usability Patterns for Applications on the World Wide
Web,in ‘Proceedings of the Pattern Languages of Programming PLoP’99’.

Petre, M., Blackwell, A. & Green, T. (1997), Cognitive Questions in Software Visual-
isation,in ‘Software Visualization: Programming as a Multi-Media Experience’,
MIT Press.

Pfaff, G. & ten Hagen, P. (1985),Seeheim Workshop on User Interface Management
Systems, Springer Verlag, Berlin.

Bibliography 193

Polson, P., Lewis, C., Rieman, J. & Wharton, C. (1992), ‘Cognitive walkthroughs: a
method for theory-based evaluation of user interfaces’,International Journal of
Man-Machine Studies36, 741–773.

PowerProductions Software (1999),StoryBoard Quick.
URL: http://www.powerproduction.com/quick.html

Preece, J., Benyon, D., Davies, G., Keller, L. & Rogers, Y. (1990),A Guide to Usability,
The Open University.

Puerta, A. (1997), ‘A Model-based Interface Development Environment’,IEEE Soft-
ware14(4).

Puerta, A. & Eisenstein, J. (1999), Towards a general computational framework for
model-based interface development systems,in ‘Proceedings of International
Conference on Intelligent User Interfaces (IUI99)’, Los Angeles, United States,
pp. 171–178.

Rauterberg, M. (1995), Four different measures to quantify three usability attributes:
Feedback, interface directness and flexibility,in ‘2th International Eurographics
Workshop on Design Specification and Verification of Interactive Systems DSV-
IS95’, Toulouse, France.

Reisner, P. (1983), Analytic tools for human factors of software,in A. Blaser &
M. Zoeppritz, eds, ‘Enduser Systems and Their Human Factors’, Lecture Notes
in Computer Science, Springer Verlag, Berlin, pp. 94–121.

Rijken, D. (1994), ‘The timeless way... the design of meaning’,SIGCHI Bulletin
6(3), 70–79.

Rosson, M. & Carroll, J. (1995), Integrating task and software development for object-
oriented applications papers,in ‘Proceedings of CHI ’95’, ACM Press, pp. 377–
384.

Rumbaugh, J., Jacobson, I. & Booch, G. (1997),Unified Modeling Language Reference
Manual, Addison Wesley.

Sage, M. & Johnson, C. (1998), Pragmatic formal design: A case study in integrating
formal methods into the hci development cycle,in ‘5th International Eurographics
Workshop on Design Specification and Verification of Interactive Systems DSV-
IS98’, Abingdon, UK, pp. 134–154.

Scapin, D. & Bastien, J. (1997), ‘Ergonomic Criteria for Evaluating the Er-
gonomic Quality of Interactive Systems’,Behaviour & Information Technology
16(4/5), 220–231.

Scapin, D. & Pierret-Golbreich, C. (1989), ‘Towards a method for Task Description:
MAD’, Work With Display Units(89), 371–380.

194 Bibliography

Sears, A. (1995), AIDE: A step toward metric-based interface development tools,in
‘Proceedings of the ACM Symposium on User Interface Software and Technol-
ogy (UIST’95)’, ACM Press, New York, pp. 101–110.

Sebillotte, S. (1988), ‘Hierarchical planning as method for task analysis: The example
of office task analysis.’,Behaviour and Information Technology7(3), 275–293.

Sebillotte, S. (1995), ‘Methodology guide to task analysis with the goal of extracting
relevant characteristics for human-computer interfaces’,International Journal of
Human-Computer Interaction7(4), 341–363.

Shackel, D. (1991), Usability - Context, Framework, Definition, Design and Evalua-
tion, in D. Shackel & S. Richardson, eds, ‘Human Factors for Informatics Usabil-
ity’, Cambridge University Press.

Sharratt, B. (1990), Mental-Cognition-Action Tables: A Pragmatic Approach to Ana-
lytical Modelling, in ‘Proceedings of INTERACT ’90’, Elsevier Science Publish-
ers, Amsterdam, The Netherlands, pp. 271–275.

Shneiderman, B. (1998),Designing the User Interface: strategies for effective Human-
Computer Interaction, 3nd edn, Addison-Wesley Publishing Company.

Smith, S. & Mosier, J. (1986), Guidelines for Designing User Interface Software, Tech-
nical Report MTR-010090, EDS-TR-86-278, The Mitre Corporation.

Stary, C. (1999),Task Analysis Design End User Systems.
URL: http://www.ce.uni-linz.ac.at/research/TADEUS/TADEUS.html

Szwillus, G. (1997), Object-oriented dialogue specification with odsn,in ‘Proceedings
of Software Ergonomie ’97’, Dresden, Germany.

Tam, R., Maulsby, D. & Puerta, A. (1998), U-tel: A tool for eliciting user task models
from domain experts,in ‘Proceedings of International Conference on Intelligent
User Interfaces, IUI ’98’, San Francisco.

Tauber, M. (1988), On Mental Models and the User Interface,in G. C. van der Veer,
T. R. G. Green, J.-M. Hoc & D. Murray, eds, ‘Working With Computers: Theory
Versus Outcome’, Academic Press, London.

Tauber, M. (1990), ETAG: Extended Task Action Grammar - A Language for the De-
scription of the User’s Task Language,in D. Diaper, D. Gilmore, G. Cockton &
B. Shackel, eds, ‘Proceedings of INTERACT ’90’, Elsevier, Amsterdam.

Tidwell, J. (1998), Interaction Design Patterns,in ‘Proceedings of the Pattern Lan-
guages of Programming PLoP’98’.

Tufte, E. (1983),The Visual Display of Quantative Information, Connecticut, Graphics
Press.

Tufte, E. (1990),Envisioning Information, Connecticut, Graphics Press.

Bibliography 195

Tullis, T. (1988), Screen Design,in M. Helander, ed., ‘The Handbook of Human-
Computer Interaction’, Elsevier Science Publishers, Amsterdam.

van der Veer, G. (1989), Users’ representations of system-variety as function of user
interface, cluture, and individual style,in ‘Man-Computer Interaction Research
(MACINTER-II)’, Human Factors in Information Technology 2, Elsevier Science
Publishers.

van der Veer, G. (1990), Human-Computer Interaction - Learning, Individual Differ-
ences, and Design Recommendations, PhD thesis, Vrije Universiteit Amsterdam.

van der Veer, G. C., van Vliet, J. C. & Lenting, B. F. (1995), Designing complex
systems - a structured activity,in ‘Proceedings of Designing Interactive Systems
’95’, ACM Press, New York, Michigan.

van der Veer, G., Hoeve, M. & Lenting, B. (1996), Modeling complex work systems -
method meets reality,in ‘Eigth European Conference on Cognitive Ergonomics’,
Granada, Spain, pp. 115–120.

van der Veer, G., Lenting, B. & Bergevoet, B. (1996), ‘GTA: Groupware Task Analysis
- Modeling Complexity’,Acta Psychologica91(3), 297–322.

van der Veer, G. & van Welie, M. (2000), Task Based Groupware Design: putting
theory into practice,in ‘Proceedings of DIS 2000’, New York, United States,
pp. 326–337.

van der Veer, G., van Welie, M. & Thorborg, D. (1997), Modeling Complex Processes
in GTA, in S. Bagnara, E. Hollnagel, M. Mariani & L. Norros, eds, ‘Sixth Euro-
pean Conference on Cognitive Science Approaches to Process Control (CSAPC)’,
CNR Rome, Italy, pp. 87–91.

van Loo, R., van der Veer, G. & van Welie, M. (1999), Groupware task analysis in
practice: a scientific approach meets security problems,in ‘Seventh European
Conference on Cognitive Science Approaches to Process Control (CSAPC)’, Vil-
leneuve d’Ascq, France, pp. 105–110.

van Welie, M. & Trætteberg, H. (2000), Interaction Patterns in User Interfaces,in
‘7th Pattern Languages of Programs Conference (PLoP 2000)’, Allerton Park,
Monticello, Illinois, USA.

van Welie, M. & van der Veer, G. (2000), Structured Methods and Creativity - a Happy
Dutch Marriage,in ‘Proceedings of Co-Designing 2000’, Coventry, England,
pp. 111–118.

van Welie, M., van der Veer, G. & Eliëns, A. (1998a), An Ontology for Task World
Models, in ‘5th International Eurographics Workshop on Design Specification
and Verification of Interactive Systems DSV-IS98’, Abingdon, UK, pp. 57–70.

van Welie, M., van der Veer, G. & Eliëns, A. (1998b), Euterpe - Tool support for an-
alyzing cooperative environments,in ‘Ninth European Conference on Cognitive
Ergonomics’, Limerick, Ireland, pp. 25–30.

196 Bibliography

van Welie, M., van der Veer, G. & Eliëns, A. (1999a), Breaking down Usability,in
M. Sasse & C. Johnson, eds, ‘Proceedings of INTERACT 99’, Edinburgh, Scot-
land, pp. 613–620.

van Welie, M., van der Veer, G. & Eliëns, A. (1999b), Usability Properties for Dialog
Models, in ‘6th International Eurographics Workshop on Design Specification
and Verification of Interactive Systems DSV-IS98’, Braga, Portugal, pp. 238–253.

van Welie, M., van der Veer, G. & Eliëns, A. (2000), Patterns as Tools for User Inter-
face Design,in ‘International Workshop on Tools for Working with Guidelines’,
Biarritz, France, pp. 313–324.

van Welie, M., van der Veer, G. & Koster, A. (2000), Integrated representations for task
modeling,in ‘Tenth European Conference on Cognitive Ergonomics’, Linköping,
Sweden, pp. 129–138.

Vanderdonckt, J. (1999), ‘Development Milestones toward a Tool for Working with
Guidelines’,Interacting with Computers12(2), 81–118.

Visio Software (1999),Visio.
URL: http://www.visio.com

Wandmacher, J. (1997), ‘Ein werkzeug für GOMS-analysen zur simulation und be-
wertung von prototypen beim entwurf’,Tagungsband PB97: Prototypen fr Be-
nutzungsschnittstellen19, 35–42.

Whiteside, J., Bennett, J. & Holtzblatt, K. (1988), Usability Engineering: Our Expe-
rience and Evolution,in M. Helander, ed., ‘The Handbook of Human-Computer
Interaction’, Elsevier Science Publishers, Amsterdam.

Wood, L., ed. (1997),User Interface Design: Bridging the Gap from User Require-
ments to Design, CRC Press.

Young, R. M., Green, T. R. G. & Simon, T. (1989), Programmable user models for
predictive evaluation of interface designs,in ‘Proceedings of CHI ’89: Human
Factors in Computings Systems’, ACM Press.

Samenvatting

Dit proefschrift getiteld “Task-based User Interface Design” ofwel “Taakgebaseerd
Ontwerpen van Gebruikersinterfaces” behandelt een ontwerpmethode voor user inter-
faces. Deze methode is taakgebaseerd wat wil zeggen dat de mensen en hun werk
centraal staan in het ontwerpproces. De assumptie is dat wanneer een systeem ontwor-
pen wordt om uitdrukkelijk de gebruikers te ondersteunen in hun taken, het systeem
bruikbaar zal zijn.

Het begrip “bruikbaarheid”, usability in het Engels, staat centraal binnen het veld van
user interface ontwerp. Bruikbaarheid is het voornaamste kwaliteitsbegrip en vormt het
voornaamste doel tijdens het ontwerpen. Alhoewel het een intuı̈tief begrip is bestaan
er verscheidene uiteenlopende definities en gerelateerde begrippen zoals heuristieken,
principes en ergonomische criteria. Om meer duidelijkheid te scheppen hebben we een
nieuwe raamwerk ontwikkeld waaraan de verscheidene begrippen en definities gere-
lateerd kunnen worden. Daarnaast laat het zien welke aspecten meetbaar zijn en hoe
ontwerpbeslissingen bruikbaarheid beı̈nvloeden. De gebruikers en hun taken vormen
een belangrijk deel van dat raamwerk.

Een complete methode beschrijft de activiteiten, de gebruikte technieken en de tools
die het werken met die technieken ondersteunen. In dit proefschrift beschrijven we al
deze aspecten in detail. De eerste activiteit is het bestuderen van de gebruikers en hun
werk, ook wel “taakanalyse” genoemd. Om de taakanalyse goed te laten verlopen is het
belangrijk dat het duidelijk is welke aspecten van het werk beschreven moeten worden.
Daartoe is een ontologie ontwikkeld die aangeeft welke aspecten we zouden moeten
“zien” als er een taakanalyse wordt gedaan. De ontologie is een soort bril waarmee
naar de gebruikers en hun taken zou moeten worden gekeken.

Wanneer een taakanalyse uitgevoerd wordt, moeten de resultaten gedocumenteerd wor-
den, zowel voor de analysten zelf als voor anderen die later de resultaten moeten ge-
bruiken. Hiervoor gebruiken we representaties. Aangezien de informatie erg complex
is en dus niet ińeén representatie beschreven kan worden, hebben we een aantal com-
plementaire representaties ontwikkeld. Tezamen dekken zij alle belangrijke aspecten
van de ontologie. Een ander gerelateerd aspect is dat de informatie ook geanalyseerd
moet worden. Op basis van de ontologie zijn daartoe een aantal primitieven ontwikkeld
die helpen om een eerste analyse te doen.

Als de gebruikers en hun taken in kaart zijn gebracht en er een analyse heeft plaats-
gevonden, wordt er doorgaans een nieuw systeem ontwikkeld. De eerste stap is het

198 Samenvatting

herontwerpen van de taken van de gebruikers gevolgd door het detail ontwerp van
het nieuwe systeem. Het doel is om de de resulaten van de taakanalyse effectief te
gebruiker zodat een bruikbaar nieuw systeem ontstaat. We beschrijven een aantal tech-
nieken en representaties die gebruikt kunnen worden om het nieuwe systeem, de user
interface, te specificeren. Een van die technieken genaamd NUAN is een door ons ont-
wikkelde extensie van een bestaande methode. Daarnaast is besproken op welke mo-
menten er evaluatie plaats kan vinden en welk soort bruikbaarheidsproblemen daarmee
gedetecteerd kunnen worden.

Een moeilijk punt in de detail-ontwerpfase is hoe ontwerpers zo snel mogelijk een
goed ontwerp kunnen maken. We hebben een nieuwe techniek voorgesteld waarmee
oplossingen waarvan men weet dat ze “werken” vastgelegd kunnen worden. Met be-
hulp van zogenaamde “patronen” beschrijven we relaties tussen gebruikersproblemen
in een specifieke context en goede oplossingen. Ontwerpers kunnen een verzamel-
ing patronen gebruiken zowel tijdens de ontwerpactiviteiten als tijdens de evaluatie-
activiteiten. Patronen worden in andere disciplines reeds veelvuldig gebruikt en we
hebben het concept ingezet voor het ontwerpen van user interfaces. Een verzame-
ling van zo’n 30 patronen vormt het resultaat. Patronen vormen een stuk expliciete
ontwerpkennis die naast een goede analyse bijdragen aan de uiteindelijke kwaliteit,
bruikbaarheid, van het systeem.

Tools zijn tegenwoordig niet meer weg te denken in de software ontikkeling. Ook
voor taakgebaseerd ontwerpen zijn er een aantal tools die gebruikt kunnen worden.
We geven in dit proefschrift een overzicht van de bestaande tools en geven op basis
daarvan enkele richtlijnen waaraan tools moeten voldoen. Vervolgens beschrijven we
EUTERPE, een tool die we ontwikkeld hebben on onze representaties en specificatie
technieken te ondersteunen. EUTERPE is gebaseerd op de ontologie en ondersteunt
ontwerpers in het maken en wijzigen van enkele representaties. Daarnaast ondersteunt
het een aantal analyse primitieven. De tool is over de jaren gebruikt in de praktijk en in
het onderwijs. Verscheidene universiteiten in Nederland en in het buitenland gebruiken
het.

Als laatste schetsen we onze ervaringen met onze methode. Een aantal malen per jaar
wordt de methode gebruikt in ontwerpprojecten. De resultaten zijn positief, alhoewel
de methode op enkele punten nog zeker verbeterd moet worden.

SIKS Dissertations

1998-1 Johan van den Akker (CWI)
DEGAS - An Active, Temporal Database of Autonomous Objects
Promotor: Prof.dr. M.L. Kersten (CWI/UvA)
Co-promotor: dr. A.P.J.M. Siebes (CWI)
Promotie: 30 maart 1998

1998-2 Floris Wiesman (UM)
Information Retrieval by Graphically Browsing Meta-Information
Promotores: Prof.dr.ir. A. Hasman (UM)

Prof.dr. H.J. van den Herik (UM/RUL)
Prof.dr.ir. J.L.G. Dietz (TUD)

Promotie: 7 mei 1998

1998-3 Ans Steuten (TUD)
A Contribution to the Linguistic Analysis of Business Conversations
within the Language/Action Perspective
Promotores: Prof.dr.ir. J.L.G. Dietz (TUD)

prof.dr. P.C. Hengeveld (UvA)
Promotie: 22 juni 1998

1998-4 Dennis Breuker (UM)
Memory versus Search in Games
Promotor: Prof.dr. H.J. van den Herik (UM/RUL)
Promotie: 16 oktober 1998

1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij Straftoemeting
Promotores: Prof.mr. H. Franken

Prof.dr. H.J. van den Herik
Promotie: 13 mei 1998

1999-1 Mark Sloof (VU)
Physiology of Quality Change Modelling; Automated modelling of
Quality Change of Agricultural Products
Promotor: prof.dr. J. Treur
Co-promotor: Dr.ir. M. Willems
Promotie: 11 mei 1999

200 SIKS Dissertations

1999-2 Rob Potharst (EUR)
Classification using decision trees and neural nets
Promotor: prof. dr. A. de Bruin
Co-promotor: Dr. J.C. Bioch
Promotie: 4 juni 1999

1999-3 Don Beal (Queen Mary and Westfield College)
The Nature of Minimax Search
Promotor: Prof.dr. H.J.van den Herik
Promotie: 11 juni 1999

1999-4 Jacques Penders (KPN Research)
The practical Art of Moving Physical Objects
Promotor: Prof.dr. H.J. van den Herik
Co-promotor: Dr. P.J. Braspenning
Promotie: 11 juni 1999

1999-5 Aldo de Moor (KUB)
Empowering Communities: A Method for the Legitimate User-Driven
Specification of Network Information Systems
Promotor: Prof.Dr. R.A. Meersman
Co-promotor: Dr. H. Weigand
Promotie: 1 oktober 1999

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems
Promotor: prof.dr. J. Treur
Copromotor: Dr. F.M.T. Brazier
Promotie: 30 september 1999

1999-7 David Spelt (UT)
Verification support for object database design
Promotor: Prof. Dr. P.M.G. Apers
Assistent promotor: Dr. H. Balsters
Promotie: 10 september 1999

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and Analysis of a Multi-Agent
Mechanism for Discrete Reallocation
Promotor: Prof. dr. H.J. van den Herik
Co-promotor: Dr. P.J. Braspenning
Promotie: 3 december 1999

2000-1 Frank Niessink (VU)
Perspectives on Improving Software Maintenance
Promotor: prof.dr. J.C. van Vliet (VU)
Promotiedatum: 28 maart 2000

SIKS Dissertations 201

2000-2 Koen Holtman (TUE)
Prototyping of CMS Storage Management
Promotores: prof. dr. P.M.E. De Bra

prof. dr. R.H. McClatchey
Copromotor: dr. P.D.V. van der Stok
Promotie: 29 mei 2000

2000-3 Carolien M.T. Metselaar (UVA)
Sociaal-organisatorische gevolgen van kennistechnologie;
een procesbenadering en actorperspectief
Promotor: Prof. dr. B.J. Wielinga
Co-promotor: Dr. P.A.A. van den Besselaar
Promotie: 20 juni 2000

2000-4 Geert de Haan (VU)
ETAG, A Formal Model of Competence Knowledge for
User Interface Design
Promotor: Prof. dr. J.C. van Vliet
Co-promotores: Dr. G.C. van der Veer

Dr. M.J. Tauber
Promotie: 10 oktober 2000

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation in Information Retrieval
Promotores: Prof.dr. H.J. van den Herik (UM/RUL)

Prof.dr.ir. J.L.G. Dietz (TUD)
Prof.dr.ir. A. Hasman (UM)

Promotie: 14 september 2000

2000-6 Rogier van Eijk (UU)
Programming Languages for Agent Communication
Promotor: prof. dr. John-Jules Ch. Meyer
Co-promotoren: Dr. Frank S. de Boer

Dr. Wiebe van der Hoek
Promotie: 18 oktober 2000

2000-7 Niels Peek (UU)
Decision-theoretic Planning of Clinical Patient Management
Promotor: prof.dr. J.-J. Ch. Meyer
Co-promotor: Dr.P.J.F.Lucas
Promotie: 30 oktober 2000

2000-8 Veerle Couṕe (EUR)
Sensitivity Analyis of Decision-Theoretic Networks
Promotores: prof.dr.J.D.F. Habbema

prof.dr.ir.L.C van der Gaag
Promotie: 27 september 2000

202 SIKS Dissertations

2000-9 Florian Waas (CWI)
Principles of Probabilistic Query Optimization
Promotor: prof. dr. M.L. Kersten (CWI/UvA)
Promotie: 03 november 2000

2000-10 Niels Nes (CWI)
Image Database Management System Design Considerations,
Algorithms and Architecture
Promotor: prof. dr. M.L. Kersten (CWI/UvA)
Promotie: 14 december 2000

2000-11 Jonas Karlsson (CWI)
Scalable Distributed Data Structures for Database Management
Promotor: prof. dr. M.L. Kersten (CWI/UvA)
Promotie: 14 december 2000

2001-1 Silja Renooij (UU)
Qualitative Approaches to Quantifying Probabilistic Networks
Promotores: prof.dr. J.-J.Ch. Meyer (UU)

prof.dr.ir. L.C. van der Gaag (UU)
Co-promotor: dr. C.L.M Witteman (UU)
Promotie: 12 maart 2001

2001-2 Koen Hindriks (UU)
Agent Programming Languages: Programming with Mental Models
Promotor: prof. dr. J.-J.Ch. Meyer (UU)
Co-Promotoren: dr. W. van der Hoek (UU)

dr. F.S. de Boer (UU)
Promotie: 5 februari 2001

2001-3 Maarten van Someren (UvA)
Learning as problem solving
Promotor: prof. dr. B.J. Wielinga (UvA)
Promotie: 1 maart 2001

2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version Spaces with
Instance-Based Boundary Sets
Promotor: Prof. dr. H.J. van den Herik (UM/RUL)
Promotie: 22 februari 2001

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A Matter of Style
Promotor: prof.dr. J.C. van Vliet (VU)
Promotie: 10 april 2001

Index

Adoptation,149, 156
Affordance,100
Agents,36

Basic task,36

CCT,78
Cinematography,77
Claims,87
Cognitive abilities,11
Cognitive walkthrough,87
Communication,158
Conceptual framework,124
Conceptual models,101
ConcurTaskTrees,50, 81
Constructors,34, 37
Context of use,13, 86
Contextual Design,53
Contextual Modeling,53, 56
Contraints,100, 133
CTA, 31
Culture,158

Data collection,113
Design knowledge,71, 93, 95
Design rationale,125
Design space analysis,137
Dutch,2

process,2

Effectiveness,14, 48
Efficiency,14
Elicitation,116, 117
Ergonomic criteria,16
ETAG, 82
Evaluation techniques,71
Events,58

Feedback,85, 101
haptic,77
tactile,77

Fitts’ law, 11, 95
Flexibility, 101

Gap,72
bridging the gap,72

Generic interactions,86
Goals,59, 131
GOMS,30, 31, 50, 78, 120
GTA, 35
Guidelines,13, 16, 87

problems,94
purpose,94
rationale,94
tools for,93

Hermeneutics,37
Heuristic evaluation,64, 87
Heuristics,16, 19, 133
Hierarchical models,155
Hierarchical representations,130
Hot spots,136, 150
HTA, 30, 31, 50, 114
HTML, 135

Incremental development,71
Inferential analysis,114
Interaction

understanding,13
Interaction design,6, 95, 98
Interface builders,79
ISO Standards

ISO 9126,20
ISO 9241-10,16
ISO 9241-11,14

204 Index

Iterations,60

Java,140

Knowledge elicitation,111

LOTOS,50, 57

MAD, 34
Management,159
Mental actions,76, 85
Mental models,12
Mental workload,32, 78
Meta predicates,145
Method acceptance,152
Methodology,154
Metrics,88
Model-based Interface Development En-

vironments,111
Models

constraints,112
integration,111
purposes,111

MPEG1,136
Multimedia,128

Natural mapping,100

Observational data,113
ODSN,121, 138
Ontology,37, 42, 84
Operators,59

PANDA, 72
Pattern language,95, 105, 107
Patterns,14, 87

Alexander,93, 97, 98
anti-patterns,97
definitions,97
format,102
Gang of Four,98, 106
rationale,99
selecting,106
task patterns,98
types,97
understanding,106
user perspective,99

Performance estimation,32
Principles,16
Prolog,129, 132, 140, 142
Prototypes

mockups,80
paper,80

Prototyping,156
PUMS,91

QOC,125, 137
Quality in use,21
Quality metrics,21
Quantitative analysis,88

Representations,124
complexity,49
purposes,48, 49
static vs. dynamic,62
understandability,49

Reuse,157, 166

Safety,101
Satisfaction,14

fun, 14
Scenarios,53, 87

tool support,118
Seeheim model,74
Simulation tools

TAMOSA, 121
VTMB, 121
WinCrew,113

Sketching,79, 111
Software quality,20

external attributes,20
internal attributes,20

State Transition Diagrams,82
Storyboard,115
Swim lanes,53, 59

TAG, 78
TAKD, 30
Task allocation,12
Task analysis

cooperative task analysis,124
history of,30
phases,110

Index 205

Task conditions,34
Task flow,39
Task model evaluation,132
Task models

constraints on,65
detecting problems,63
envisioned,47, 63
existing,47
prescriptive,82
validation,65, 68

Task-based design
limitations,159

Tasks
distinguishing,38
distinguishing goals,155
type,39, 81

Templates,34, 51, 130
TKS, 31
Tools

categories,110
requirements,123

Typography,77

UAN, 83, 119, 136
UML, 49, 51, 56, 60
Unit task,36
Usability

categorization,15
costs,10
definitions,14
evaluation,21
means,19
measuring,22
metrics,22
potential benefits,10
process maturity,24
usage indicators,18

Usability properties,89
Usage logs,88
Use case,53
Usefulness,14
User problems,100
User testing,19
Utility, 14
UVM, 74

Visibility, 100
Visual design,48
Visual language,48
Visualizations,48

WIMP, 13
Work culture,42

	Introduction
	The Task-based Design Process
	Analyzing the current task situation (Task model 1)
	Envisioning the future task situation (Task model 2)
	Detailed design
	Evaluation and usability testing

	Research Goals
	Improving the design process
	Improving the final product

	Research Approach
	Outline of this Thesis
	Publications

	Designing for Usability
	Introduction
	Potential Benefits of Usability
	Understanding Usability
	Understanding humans
	Understanding the work
	Understanding the interaction

	Definitions of Usability
	Heuristics, Guidelines and Principles
	A Layered Model of Usability
	Usability and Software Quality
	Usability Evaluation and Improvement
	Measuring usability
	Improving usability
	Usability process improvement

	Usability and Design Methods
	Modeling humans and work
	Modeling the system

	Summary

	An Ontology for Task Models
	Introduction
	A Short History of Task Analysis
	Methods and techniques
	Hierarchical Task Analysis (HTA)
	Goals Operators Methods Selectors (GOMS)
	Méthode Analytique de Description des tâches (MAD)
	Groupware Task Analysis

	An Ontology for Task World Models
	Modeling work structure
	Modeling the work flow
	Modeling work artifacts
	Modeling the work environment
	Defining an ontology

	Related Work
	Summary

	Task Modeling and Analysis
	Introduction
	Representations for Task Modeling
	Common representations
	A collection of ontology-based representations

	Static versus Dynamic Representations
	Analyzing the Task World
	Heuristic model-based evaluation
	Model verification
	Comparing two specifications
	Model validation

	Summary

	Detailed Design
	Introduction
	The Gap between Analysis and Design
	Guidelines for Bridging the Gap
	Designing the User's Virtual Machine
	Designing the functionality
	Designing the dialog
	Designing the presentation

	Cognitive aspects in UVM Design
	Specifying the User Interface
	Informal methods for detailed design
	Formal specification techniques

	NUAN: New User Action Notation
	Adding an interface pre-state column
	A modified interface feedback column
	Expanding time capabilities
	Mental actions
	Generic interaction diagrams
	Parallellism

	Evaluating Design Alternatives
	Scenarios, guidelines, and patterns
	Prototype evaluation tools
	Formal usability evaluation of the user interface

	Summary

	Interaction Patterns in User Interface Design
	Introduction
	Guidelines or Patterns?
	An Example
	Patterns as Design Tools
	Defining a pattern
	Anti-patterns
	Types of patterns

	Interaction Design Patterns
	Taking the user perspective
	Categorizing user problems
	A focus on usability
	A template for interaction patterns

	Towards a Pattern Language
	Structuring a pattern collection
	Developing a pattern language

	Summary

	Tools for Task-based Design
	Introduction
	User Interface Design Tools
	Supporting Task-based Design
	Support throughout the process
	Integrated modeling and modeling Purposes

	An Overview of Current Task Analysis Tools
	Commercially available tools
	Research tools

	Requirements for Task Analysis Tools
	Base the tool directly on a conceptual framework
	Offer consistent and coherent representations
	Support cooperative task analysis
	Support documentation including multimedia
	Support design tracking
	Offer stability, robustness and product support

	Discussion
	Summary

	Euterpe, a design workbench
	Introduction
	The Project's Context
	An Ontology-based Tool
	Supporting Task-based Design
	Supporting task modeling
	Supporting model analysis
	Supporting cooperative design
	Supporting documentation
	Supporting dialog modeling

	Extending Euterpe
	Adding support for design space analysis
	Adding support for simulation

	Euterpe in Use
	Implementation of Euterpe - a logic approach
	A model-view-controller architecture
	Embedding a Prolog engine
	Mapping the ontology to Object Prolog
	Prolog and application functions

	Lessons Learned
	Summary

	Task-based Design in Practice
	Introduction
	Applications in Industry
	Dutch social security
	Seibersdorf

	Application Issues of Task-based Design
	Performing task analysis
	Integration with current design practice
	Designing for usability
	Developing design alternatives

	Limitations and Critical Success factors
	Summary

	Conclusions and Future Research
	Summary of the Thesis
	Contributions
	Future Research

	NUAN symbol definitions
	Interaction Design Patterns

