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I

Introduction to light-front Hamiltonian dynamics

Einstein’s great achievements, the principle of relativity, imposes con-

ditions which all physical laws have to satisfy. It profoundly influences

the whole of physical science, from cosmology, which deals with the

very large, to the study of the atom, which deals with the very small.

Paul Dirac

This quote reflects the work that I have done in physics so far, which began with
an investigation of new black hole solutions to the Einstein equation [1] when I
was a student in Groningen, and which now ends with the research presented in
this Ph.D.-thesis on models to describe bound states of elementary particles [2,
3, 4, 5, 6, 7].

The above quote contains the first two lines of an important article that
Dirac [8] wrote in 1949, in the middle of a century that has produced enormous
progress in the understanding of the properties of matter. Not only the develop-
ment of relativity, but also the rise of Quantum Mechanics was instrumental for
this progress. At the end of this century, these and many other advances have
resulted in a model that ambitiously is called the Standard Model. It describes
all elementary particles that have been discovered until now; the leptons and the
quarks, and their interactions.

However, this does not imply we have to call it the end of the day for high-
energy physics. A number of problems of a fundamental nature remain in the
Standard Model. As an example we mention the question of the neutrino mass,
that may or may not point to physics not included in the Standard Model.

There are many practical problems when one wants to calculate a physical
amplitude. If the interactions are sufficiently weak, perturbation theory is usually
applied and gives in many cases extremely accurate results. However, in the case
of strong interactions, or when bound states are considered, nonperturbative
methods must be developed.

We have to ensure that in such methods covariance is maintained. We mean
by this that measured quantities, like cross sections and masses, are relativistic
invariants. When the equations are written down in covariant form it is clear
that the outcome will satisfy relativistic invariance and we refer to such methods
as manifestly covariant.

1



2 Chapter I Introduction to light-front Hamiltonian dynamics

For example, the Bethe-Salpeter equation is manifestly covariant, but suffers
from numerical intractability beyond the ladder approximation. Great progress is
made by Lattice Field Theory, which is now able to give quantitative predictions.
However, it depends on the choice of a specific frame of reference and the advances
in its application rely strongly on a continued increase of the speed of computers.

A very intuitive picture of a bound state is provided by Hamiltonian methods.
However, the “classical” method of setting up a relativistic Hamiltonian theory
by quantization on the equal-time plane, so-called instant-form (IF) quantiza-
tion, suffers from problems such as a square root in the energy operator, which
results in the existence of both positive and negative energy eigenstates, and the
complexity of the boost operators, which keeps us away from determining the
wavefunctions in an arbitrary reference frame. Weinberg [9] proposed to use the
Infinite Momentum Frame (IMF), because in this limit time-ordered diagrams
containing vacuum creation or annihilation vertices vanish, and therefore the to-
tal number of contributing diagrams is significantly reduced. It is found that
it provides a picture which connects to the one of the constituent quark model.
However, its big disadvantage is that the IMF is connected to the rest frame by
a boost for which one takes the limit of the boost parameter to infinity. It is
dubitable whether this limit commutes with others that are taken in field theory.

It was only in the seventies that one began to realize that a theory with
the same advantages as the IMF, but without the disadvantages, had already
been suggested by Dirac some decades before: light-front (LF) quantization, i.e.,
quantization on a plane tangent to the light-cone. Of the ten Poincaré genera-
tors, seven are kinematic, i.e., can be formulated in a simple way and correspond
to conserved quantities in perturbation theory. Most important is that these
seven operators include one of the boost operators, allowing us to determine the
wavefunction in a boosted frame if it is known in the rest frame. This property
is not found in IF quantization. As a drawback one finds that not all rotations
are kinematic, and therefore rotational invariance is not manifest in LF quantiza-
tion, a problem which is discussed frequently in the literature. In particular, our
interest was triggered by an article by Burkardt and Langnau [10] who claimed
that rotational invariance is broken for S-matrix elements in the Yukawa model.
Instead of a lack of manifest rotational invariance, we prefer to talk about lack
of manifest covariance, as this is a property that all Hamiltonian theories share.
Because in each form of quantization dynamical operators that involve creation or
annihilation of particles are present, in any relativistic Hamiltonian theory parti-
cle number is not conserved, implying that each eigenstate has to be represented
as a sum over Fock states of arbitrary particle number. However, light-front dy-
namics (LFD) is the only Hamiltonian dynamical theory which has the property
that the perturbative vacuum is an eigenstate of the (light-front) Hamiltonian,
provided that zero-modes are neglected (in this thesis zero-modes will not explic-
itly be discussed). Bound states are also eigenstates and are distinct from the
LF vacuum, which simplifies their analysis.



§1 Forms of relativistic dynamics 3

In this thesis we shall not solve the eigenvalue problem, an interacting Hamil-
tonian will not even be written down! The goal of this thesis will not be to
calculate a spectrum, but to illuminate two important properties of LF Hamilto-
nian dynamics. The first is:

1. Light-front dynamics provides a covariant framework for the treat-

ment of bound states.

Although the calculation of bound states requires nonperturbative methods,
these usually involve ingredients encountered in perturbation theory, e.g., the
driving term in a Lippmann-Schwinger or Bethe-Salpeter approach. We prove
that LF perturbation theory is equivalent to covariant perturbation theory. By
equivalent we mean that physical observables in LF perturbation theory are the
same as those obtained in covariant perturbation theory. This can be done by
showing that the rules for constructing LF time-ordered diagrams can be ob-
tained algebraically from covariant diagrams by integration over the LF energy
k−. Two technical difficulties, namely that the integration over k− can be ill-
defined, and that divergences in the transverse directions may remain, are solved
in Chapters III and IV respectively, for the Yukawa model, which is introduced
in Chapter II.

In Chapter V we discuss the entanglement of covariance and the Fock-space
expansion, and show another important property of LF Hamiltonian dynamics:

2. Higher Fock state contributions in LF Hamiltonian field theory are

typically small, in particular much smaller than in IF Hamiltonian

field theory, and therefore the ladder approximation gives accurate

results for the spectrum.

It has been known for a long time that on the light-front one has to take into
account fewer diagrams than in the instant-form of Hamiltonian dynamics. On
top of this, diagrams involving higher Fock states are numerically smaller, as
we will show. We look at two nucleons interacting via boson exchange, and we
compare the contributions of the diagrams with one boson in the air, to diagrams
where two bosons are simultaneously exchanged. The latter are ignored if we use
the ladder approximation. We show in numerical calculations involving scalar
particles that this approximation is viable for both scattering amplitudes and off
energy-shell states, if masses and momenta are chosen in such a way that they
are relevant for the deuteron.

§1 Forms of relativistic dynamics

An important first step on the path to a Hamiltonian description of a dynamical
system was taken by Dirac in 1949, in his famous article ’Forms of Relativistic
Dynamics’ [8]. One foot of this work is in special relativity, when Dirac writes:
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. . . physical laws shall be invariant under transformations from one

such coordinate system to another.

The other foot of his method is in Quantum Mechanics because Dirac writes:

. . . the equations of motion shall be expressible in the Hamiltonian

form.

In more technical terms, this condition tells us that any two dynamical variables
have a Poisson bracket, later to be associated with (anti-)commutation relations.
We restrict the transformations further to continuous ones, therefore excluding
space inversion and time reversal. In the forthcoming subsections we are going
to work out these two principles and construct the generators of the Poincaré
group.

§1.1 The Poincaré group

The transformations mentioned in the first quote are the four translations P µ,
the three rotations J i = 1

2
ǫijkMjk, and the three boosts Ki = M0i, where M is

an anti-symmetric tensor. These transformations should satisfy

[P µ, P ν ] = 0, (I-1)

[Mµν , P ρ] = −gµρP ν + gνρP µ, (I-2)

[Mµν ,Mρσ] = −gµρMνσ + gνρMµσ − gµσMρν + gνσMρµ. (I-3)

Setting up a dynamical system is equivalent to finding a solution to these equa-
tions. The solution of the ten generators is generally such that some of them are
simple, and correspond to conserved quantities. These are labeled as kinematical,
indicating that they do not contain any interaction. Others are more complicated
and describe the dynamical evolution of the system as the Hamiltonian does in
nonrelativistic dynamics. Therefore these are called dynamical, which means that
they do contain interaction. It seems obvious that one should want to setup the
framework in such a way that the number of dynamical operators is small. A
simple solution of the Eqs. (I-1)-(I-3) can be found if we define a point in space-
time to be given by the dynamical variable xµ and its conjugate momentum by
pν . Using

[xµ, xν ] = 0, [pµ, pν ] = 0, [xµ, pν ] = igµν , (I-4)

a solution is now given by

P µ = pµ, Mµν = xµpν − xµpν . (I-5)

As already mentioned by Dirac, this solution may not be of practical importance,
however, it can serve as a building block for future solutions.
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(a) the instant-form (b) the light-front

t
y

z

Figure I-1: Projection of two initial surfaces onto y-z-t-space. In (a) the initial surface is at
t = 0, and in (b) it is tangent to the light-cone.

Another important ingredient for the dynamical theory is that we have to
specify boundary conditions. We do this by taking a three-dimensional surface
Σ in space-time not containing time-like directions, at which we specify the ini-
tial conditions of the dynamical system. The ten generators then split into two
groups, namely those that leave Σ invariant and those that do not. The first
group is called the stability group. The larger the stability group of Σ, the
smaller the dynamical part of the problem. We can ensure a large stability group
by demanding that it acts transitively on Σ: every point on Σ may be mapped
on any other point of Σ by applying a suitable element of the stability group.
This ensures that all points on the initial surface are equivalent.

The restriction of relativistic causality reduces the number of world lines, and
therefore increases the number of surfaces that one can choose for Σ. Dirac found
three independent choices for the initial surface that fulfill these conditions. In
total there are five, as was pointed out by Leutwyler and Stern [11]. We, however,
only discuss the two most important ones. They are listed in Fig. I-1. In IF
Hamiltonian dynamics one quantizes on the equal-time plane, given by

x0 = 0. (I-6)

This is the form of dynamics closest to nonrelativistic Quantum Mechanics. An-
other important possibility for quantization is offered by a plane tangent to the
light-cone. The light-front is given by the equation

cx0 + x3 = 0. (I-7)

Notice that this plane contains light-like directions. It is common to use the
z-direction to define the light-front. The different status of the other space-like
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directions x and y leads to the fact that the symmetry of rotational invariance
becomes nonmanifest on the light-front. In explicitly covariant LFD [12], one
defines the light-front by its normal vector ~ω, which is not fixed. This method
will be encountered in Chapter V.

Note that in the nonrelativistic limit (c → ∞) the planes (I-6) and (I-7)
coincide. This degeneracy is a feature of Hamiltonian relativistic dynamics. In
this limit only one operator remains dynamical, namely the Hamiltonian, the
operator that generates time translations.

§1.2 Light-front coordinates

In the remainder of this chapter, we show some of the advantages of LF quanti-
zation. We define so-called longitudinal coordinates

A− =
cA0 − A3

√
2

, (I-8)

A+ =
cA0 + A3

√
2

, (I-9)

and transverse coordinates

A⊥ = (A1, A2), (I-10)

such that the spatial coordinates x⊥ and x− define a coordinate system on the
light-front, and x+ plays the role of time. From now on we will put the velocity
of light equal to unity: c = 1. The indices of the four-vectors can be lowered and
raised using the following LF metric gµν :

gµν =











0 1 0 0
1 0 0 0
0 0 -1 0
0 0 0 -1











, (I-11)

where the first and second row/column refer to the longitudinal components, and
the third and fourth to the transverse components. Unfortunately, a number of
conventions are frequently used for LF coordinates. We will stick to the one given
above, commonly referred to as the Kogut-Soper convention [13]. The stability
group on the light-front has seven elements, as can be verified by writing out the
commutation relations between these operators and x+:

[x+, P⊥] = [x+, P+] = [x+,M12] = [x+,M+⊥] = 0,

[x+,M+−] = −2ix+ = 0. (I-12)

The other three operators are dynamical, as can be seen by the fact that they do
not commute with x+,

[x+, P−] = −i
[x+,M−⊥] = −ix⊥. (I-13)



§1 Forms of relativistic dynamics 7

If we look at Fig. I-1b, we see that we can describe the operation of P− as a
translation perpendicular to the light-front. The operators M−⊥ correspond to
rotations of the light-front about the light-cone. Using these two words in one
sentence clearly indicates why the common expression “light-cone quantization”
is badly chosen. We prefer to use the phrase “light-front quantization”.

§1.3 The initial surface

In LF quantization, we first solve the Poincaré algebra on the surface x+ = 0.
The stability group is the group generated by transformations of this surface into
itself. We already met these operators in Eq. (I-12). As x+ is fixed, the dynamical
variable p− has lost its meaning and, according to Dirac, it should be eliminated.
We can add to the generators in Eq. (I-5) multiples of (pσp

σ −m2):

P µ = pµ + λµ(pσp
σ −m2), (I-14)

Mµν = xµpν − xµpν + βµν(pσp
σ −m2).

We then construct the λµ and βµν in such a way that on the light-front the p−-
dependence drops from these equations. For the elements of the stability group
we find:

P⊥ = p⊥, P+ = p+, (I-15)

M+⊥ = −x⊥p+, M+− = −x−p+, M12 = x1p2 − x2p1,

and for the three dynamical operators we find:

P− =
p⊥

2
+m2

2p+
, (I-16)

M−1 = x−p1 + x1 p
⊥2

+m2

2p+
, M−2 = x−p2 + x2 p

⊥2
+m2

2p+
. (I-17)

When one quantizes in the instant-form, one finds four operators to be dynamical,
which is one more than in LF quantization. However, more important is the form
of the energy operator. In the instant-form, it is

P 0 =
√

~p 2 +m2. (I-18)

The presence of the square root causes the degeneracy of positive and negative
energy solutions in IF dynamics, whereas on the light-front they are kinematically
separated, as can be seen from Eq. (I-16): positive longitudinal momentum p+

corresponds to positive LF energy P−, and vice versa. This effect leads to the
spectrum condition, which is explained in the next section.

The dynamical operators (I-16) and (I-17) reveal a little of the problems
encountered on the light-front: the infrared problem for p+ = 0, which can be
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associated with the so-called zero-modes. As the path of quantization on the
light-front is beset by problems, such as the nonuniqueness of the solution of the
Cauchy problem, attempts have been made to find another path. Inspiration may
be found in Quantum Field Theory, which leads to expressions for propagators of
particles, and finally for S-matrix elements. They may serve as a starting point
to derive rules for time-ordered diagrams.

§2 Light-front quantization

The first to set foot on the new path towards a LF perturbation theory were
Chang and Ma [14], and Kogut and Soper [13]. Their work relies on the Feynman
rules that are constructed in Quantum Field Theory. To determine the LF time-
ordered propagator we take the Feynman propagator and integrate out the energy
component.

For the types of theories that are discussed in this thesis, two are of impor-
tance: the scalar propagator and the fermion propagator.

§2.1 The scalar propagator

The Klein-Gordon propagator for a particle of mass m is well-known:

∆F(x) =
1

(2π)4

∫

Min
d4k

e−ikµxµ

k2 −m2 + iǫ
, (I-19)

where the subscript “Min” denotes that the integral is over Minkowski space.
The inner products of the Lorentz vectors can be written in LF coordinates:

k2 = kµk
µ = 2k+k− − k⊥

2
, (I-20)

kµx
µ = k−x+ + k+x− − k⊥·x⊥. (I-21)

Following Kogut and Soper [13], we separate the energy integral from the integral

over the kinematical components of k, indicated by ~k:

~k =
(

k+, k⊥
)

, (I-22)

We then find for the propagator of Eq. (I-19):

∆F(x) =
1

(2π)4

∫ d3~k

2k+
e−i~k~x

∫

dk−
e−ik−x+

k− − k−on
, (I-23)

in which we use the definition

~k~x = k+x− − k⊥·x⊥, (I-24)
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and where k−on is the on mass-shell value, or, in other words, the pole in the
complex k−-plane:

k−on =
k⊥

2
+m2 − iǫ

2k+
. (I-25)

Forward propagation in LF time requires x+ ≥ 0. Then, we can only evaluate the
integral over k− by closing the contour in the lower complex half-plane, because of
the presence of the factor e−ik−x+

in the integrand. For k+ > 0 the pole is below
the real axis. Therefore application of Cauchy’s theorem gives a nonvanishing
result only in this region:

∆F(x) =
−i

(2π)3

∫ d3~k θ(k+)

2k+
e−ikµ

onxµ , (I-26)

where the on mass-shell four-vector k is given by

kµ
on =

(

k−on, k
+, k⊥

)

. (I-27)

§2.2 The fermion propagator

The well-known propagator for a spin-1/2 particle is related to the Klein-Gordon
propagator by the following relation:

SF(x) = (i∂µγ
µ +m)∆F(x), (I-28)

where ∂µ is short for ∂/(∂xµ). We interchange differentiation and integration.
Differentiation of the integrand in Eq. (I-19) gives:

SF(x) =
1

(2π)4

∫

Min
d4k

6k +m

k2 −m2 + iǫ
e−ikµxµ

, (I-29)

where the Feynman slash for an arbitrary four-vector p is defined by

6p = pµγ
µ. (I-30)

An important difference with Eq. (I-23) is that the numerator contains the LF
energy k−. We can remove it by rewriting the numerator,

6k +m = (k− − k−on)γ
+ + (6kon +m). (I-31)

Upon substitution of this expansion into Eq. (I-29) we see that the first term of
Eq. (I-31) cancels against a similar factor in the denominator. Integration over
the LF energy gives the LF time-ordered fermion propagator:

SF(x) =
−i

(2π)3

∫ d3~k θ(k+)

2k+
( 6kon +m)e−ikµ

onxµ

+
−i

(2π)3

∫ d3~k

2k+
γ+ δ(x+). (I-32)
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time

Figure I-2: Two vertices that cannot occur in LF time-ordered diagrams with massive particles.
Light-front time goes from left to right. The left-hand side shows a vacuum creation, the
right-hand side a vacuum annihilation.

The first term is the same as the result for the scalar propagator (I-26), except
for the factor (6 kon + m). The second term on the right-hand side of (I-32)
has lost its propagating part, resulting in the appearance of a δ-function in x+.
This explains why it is called the instantaneous part. The decomposition of the
covariant propagator into the propagating and the instantaneous fermion will
occur frequently in this thesis and is an important ingredient in establishing
equivalence between LF and covariant perturbation theory.

§2.3 The spectrum condition

An important result that we infer from the previous subsections is that the time-
ordered propagators (I-26) and (I-32) contain θ-functions restricting the longitu-
dinal momentum. This will severely reduce the size of phase-space.

Moreover, the longitudinal momentum is a conserved quantity and therefore
all LF time-ordered diagrams containing either vacuum creation or annihilation
contributions will vanish, as can be explained by looking at Fig. I-2. According to
Eq. (I-16), every massive particle in Fig. I-2 should have positive p+-momentum.
As the longitudinal momentum is a kinematical quantity, it should be conserved
at each vertex. However, the vacuum has p+ = 0. Therefore diagrams containing
vacuum creation or annihilation vertices are not allowed in a series of LF time-
ordered diagrams. In IF dynamics there is no such reduction of the number of
diagrams, because there is no restriction on the IF momentum ~P .

§2.4 The energy denominator

From now on, we shall write the Feynman diagrams in the momentum repre-
sentation. In this subsection we show where the energy denominators originate
from. Let us choose as a simple example Compton-like scattering in φ3 theory:

P











p
=

1

p2 −m2 − iǫ
=

1

2p+

1

P− − p⊥2+m2+iǫ
2p+

, (I-33)
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where P is the total momentum, and p is the momentum of the intermediate
particle. Because of momentum conservation, they are the same. However, we
make this distinction, to be able to write it in the following form:

=
1

2p+

1

P− − p−on
= , (I-34)

where p−on is the on mass-shell value of p−, conform Eq. (I-25). To stress that the
diagram on the right-hand side is a time-ordered diagram, we draw a vertical thin
line, indicating an energy denominator. The first denominator in Eq. (I-34) is
the phase-space factor, constructed by taking for each intermediate particle the
plus-momentum and a factor 2 because of the Kogut-Soper convention [13, 15].
The direction of the momenta should be chosen forward in time, such that the
plus-component, satisfying the spectrum condition, is positive. The energy de-
nominator is constructed by taking the total energy P− and subtracting from
it the on mass-shell values of the minus-momentum of the particles in the cor-
responding intermediate state. Thus, it is proportional to the energy that is
“borrowed” from the vacuum. This explains why highly off energy-shell interme-
diate states are suppressed. In the next subsection we present examples where
the energy denominators are more complicated because different time-orderings
of the vertices are involved.

§2.5 Light-front time-ordering

The most trivial example of time-ordering of vertices was already discussed in
the previous subsection. In Compton-like scattering there are two time-orderings,
however, one, the so-called Z-graph, is excluded because of the spectrum condi-
tion.

The one-boson exchange

If we look at a similar amplitude as Eq. (I-33), now with the exchanged particle
in the t-channel, both time-orderings can contribute.

q

p

q′

p′
=

1

k2 −m2 − iǫ
=

1

2k+
(

p− − p′− − m2+k⊥2+iǫ
2k+

) , (I-35)

where the momentum of the intermediate particle k = p′ − p = q − q′. The sign
of k+ determines the time-ordering of the vertices:

= + , (I-36)
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with

= θ(k+)
1

2k+

1

P− − p′− − m2+k⊥2+iǫ
2k+ − q−

, (I-37)

= θ(−k+)
1

2(−k+)

1

P− − p− − m2+k⊥2+iǫ
2(−k+)

− q′−
, (I-38)

where P− = p− + q−, which, if the external states are on energy-shell, coincides
with the energy of the system. Again we see that the energy denominators are
constructed by subtracting from the total energy P− the on mass-shell values
of the minus-momentum of the particles in the intermediate state. Because of
our choice of momenta, for the diagram (I-38) the momentum flow of the in-
termediate particle is backward in time. If we substitute k′+ = −k+, then the
plus-momentum becomes positive, and the particle can be reinterpreted as going
forward in LF time. In Chapter V we will again encounter these two time-
orderings when we describe the interaction of two nucleons by the exchange of
bosons.

The scalar shower

The next example is used to illustrate that some algebraic manipulations are
needed to construct all LF time-ordered diagrams. We look at the decay of a
particle into four scalars, again in φ3 theory.

P

p4

p3

p2

p1

=
1

(p2
12 −m2 − iǫ)(p2

34 −m2 − iǫ)
=

1

p+
12p

+
34

1

(p−12 − p−12on)(p
−

34 − p−34on)
,

(I-39)
where the two intermediate scalars have momentum p12 = p1+p2 and p34 = p3+p4

respectively. We now use the algebraic identity

1

(a− b)(c− d)
=

1

a+ c− b− d

(

1

a− b
+

1

c− d

)

, (I-40)

This splitting can be used for the covariant amplitude in Eq. (I-39). We find:

= + , (I-41)
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with

=
1

4p+
12p

+
34

1

(P− − p−12 on − p−34 on)(P
− − p−12 on − p−3 − p−4 )

,(I-42)

=
1

4p+
12p

+
34

1

(P− − p−12 on − p−34 on)(P
− − p−1 − p−2 − p−34 on)

,(I-43)

which again are energy denominators as defined above. This way to split the
covariant denominator using the trick of (I-40) is the simplest example of a com-
plicated recombination scheme for denominators which can be found in the article
of Ligterink and Bakker [16].

§2.6 Loop diagrams

In the case of a loop diagram, covariant Feynman rules require an integration
over the internal four-momentum k. Time-ordered diagrams have an integration
over the three kinematical components. As was found by Kogut and Soper [13],
a relation between these types of diagrams can be established if we integrate
out the energy component k− from the covariant diagram. Upon doing this
integration one finds all LF time-ordered diagrams with the vertices time-ordered
in all possible ways, however, respecting the spectrum condition. For an arbitrary
number of particles in a loop, the proof was only recently given by Ligterink and
Bakker [16]. As an example, which also shows some of the problems encountered
in LF Hamiltonian dynamics, we discuss the electromagnetic form factor in φ3

theory, given earlier by Sawicki [17]:

Jµ(0) =
∫

Min
d4k

1

(k − q)2 −m2 + iǫ
(2kµ − qµ)

1

k2 −m2 + iǫ

1

(P − k)2 −m2 + iǫ
,

(I-44)
where the kinematics are given in Fig. I-3a. All time-orderings corresponding to
this diagram are given in Fig. I-3b.

An essential difference between the instant-form and the light-front occurs if
we write the Feynman propagator in terms of the poles in the energy plane. In
terms of IF coordinates we find:

k2 −m2 + iǫ =
(

k0 −
√

~k2 +m2 − iǫ
)(

k0 +
√

~k2 +m2 − iǫ
)

, (I-45)



14 Chapter I Introduction to light-front Hamiltonian dynamics

(a)

P-qP

k

q

k-q

P-k (b)

Figure I-3: (a) Kinematics for the current. (b) The six time-orderings contributing to the
electro-magnetic form factor in φ3 theory. The vertical lines denoting energy denominators
have been omitted.

and on the light-front we have:

k2 −m2 + iǫ = 2k+



k− − k⊥
2
+m2 − iǫ

2k+



 . (I-46)

We see that the Feynman propagator is quadratic in the IF energy k0 but
only linear in the LF energy k−. In the former case it leads to the presence of
both positive and negative energy eigenstates, whereas on the light-front only
positive energy states occur. In the instant-form, half of the poles occur above
the real axis, and the other half below. Therefore contour integration will always
give a nonvanishing result. In contrast to this, on the light-front the poles can
cross the real axis. If all poles are on the same side of the real axis, the contour
can be closed in the other half of the complex plane, and contour integration
gives a vanishing result. Because of this effect, four of the six time-ordering in
Fig. I-3 disappear. Only the first two remain. This is another manifestation of the
spectrum condition. If we then turn to the Breit-frame (q−, q+, q⊥) = (0, 0, q⊥),
also the second diagram of Fig. I-3 vanishes, as will follow from the analysis we
present below.

Most important in our analysis is the sign of the imaginary part of the poles.
Because of our choice of the Breit-frame, these are identical for the first and
the second Feynman propagator in Eq. (I-44), namely −ǫ/2k+. The imaginary
part of the third Feynman propagator is ǫ/2(P+ − k+). In Fig. I-4 we show the
location of these poles for different k+ intervals.

We see in (a) and (c) of Fig. I-4 that the contour can be closed in such a way
that no poles are inside the contour, and therefore contour integration leads to
a vanishing result. In case that we calculate the component J− of the current,
application of Cauchy’s theorem is not valid because there is a contribution to the
integral from a pole at infinity, i.e., for large absolute values of k− the integrand
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(a) k+ < 0 (b) 0 < k+ < P+ (c) P+ < k+

Figure I-4: The position of the double dot (first and second propagator in Eq. (I-44)) and the
dot (third propagator in Eq. (I-44)) indicate in which quadrant of the complex k−-plane the
corresponding poles are located.

goes as 1/k−. Therefore we restrict ourselves in this example to the components
J+ and J⊥. Only one LF time-ordered diagram contributes to the current:

Jµ(0) = = 2πi
∫

d2k⊥
∫ P+

0

dk+

8k+2(P+ − k+)
(2kµ − qµ) (I-47)

× 1

P− − k⊥2+m2

2k+ − (P⊥−k⊥)2+m2

2(P+−k+)

1

P− − (k⊥−q⊥)2+m2

2k+ − (P⊥−k⊥)2+m2

2(P+−k+)

,

where we have drawn vertical lines in the LF time-ordered diagram to indicate
the energy denominators and to avoid confusion with the covariant diagram. The
kinematics are given in Fig. I-3a. The photon line is vertical to indicate that we
are in the Breit-frame. The imaginary parts have been omitted.

For the result above to be correct three assumptions are essential:

1. Interchange of the limit q+ → 0 and k−-integration is valid,

2. There is no contribution of poles at infinity upon doing the k−-integration,

3. The amplitude is well-defined and finite.

All three assumptions can be justified in this case. De Melo et al. [18] have shown
that the interchange mentioned under assumption 1 may cause pair creation or
annihilation contributions to become nonvanishing. In §4 of Chapter II we show
that this effect may also occur in the Yukawa model. However, it is not a violation
of the spectrum condition.

The second assumption can be justified by looking at Eq. (I-44). As k2 is
linear in k−, we see that the integration over the minus component is well-defined
for each component of the current. In a theory with fermions, this integration
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can be ill-defined, leading to longitudinal divergences and the occurrence of so-
called forced instantaneous loops (FILs). Divergences for the Yukawa model
are classified in §2 of Chapter II and the longitudinal ones are dealt with in
Chapter III, where it is shown that the FILs vanish upon using an appropriate
regularization method: “minus regularization” [19].

The third assumption is also satisfied, since the superficial degree of diver-
gence for integration over the perpendicular components is smaller than zero for
all components of the current. If any transverse divergences occur, they can be
attacked with the method of extended minus regularization presented in Chap-
ter IV. The phase space factor contains endpoint singularities in k+. However,
these are canceled by identical factors in the energy denominators.



II

The Yukawa model

In particle physics several models are used to describe existing elementary par-
ticles, interactions and bound states. Many of these models are just used to
highlight certain properties, or to make exact or numerical calculation possible.
Although the latter are referred to as toy models, they are helpful because they
are stripped from those properties that are of no concern to the investigation that
is done. In this thesis we are going to “play around” with two models. One of
them we already met in the introductory chapter: φ3 theory. In this model one
can very nicely demonstrate that higher Fock states are much more suppressed
on the light-front than in instant-form Hamiltonian dynamics, as will be done
in Chapter V. This model only contains scalar particles. The simplest model
including fermions is the Yukawa model, which has the following Lagrangian:

L = ψ̄(i∂µγ
µ −m)ψ + φ(∂µ∂

µ + µ2)φ+ gψ̄ψφ. (II-1)

The field ψ describes the fermions and the field φ describes the scalar particles,
from now on referred to as bosons. The last term is the interaction between the
fermion–anti-fermion field and the boson field. Yukawa introduced this model to
describe the interaction of nucleons (fermions) via pions (bosons). The strength
of the interaction is given by g. In our calculations we limit ourselves to a scalar
coupling.

§1 Feynman rules

Using perturbation theory one can deduce from the Lagrangian the well-known
rules for Feynman diagrams. Summing over these diagrams one then finds the
S-matrix.

The first term of the Lagrangian (II-1) leads to the following propagator:

k =
i( 6k +m)

k2 −m2 + iǫ
, (II-2)

for a fermion with momentum kµ and mass m. For a (scalar) boson with mo-
mentum kµ and mass µ we have the following Feynman rule:

k =
i

k2 − µ2 + iǫ
. (II-3)

17



18 Chapter II The Yukawa model

The full set of Feynman rules to compute the scattering amplitude in the Yukawa
model can be found in many text books such as Itzykson and Zuber [20]. Our
goal is to translate these rules to rules for diagrams that one uses in LFD.

In Chapter I we introduced the k−-integration to obtain the rules for the LF
time-ordered diagrams. A complication in this procedure was already mentioned
there: the integration over k− may be ill-defined, and the resulting integral may
be divergent. Before solving these problems, we first classify the divergences.

§2 Divergences in the Yukawa model

In the previous subsection we described how to construct each covariant Feynman
diagram. Covariant diagrams may contain infrared and ultraviolet divergences.
Therefore we are not surprised that both in the process of constructing the LF
time-ordered diagrams as in the diagrams themselves divergences can be encoun-
tered. The first type can be classified as longitudinal divergences, and the second
as transverse divergences.

§2.1 Longitudinal divergences

We can deduce what (superficial) divergences we are going to encounter upon in-
tegration over k−. We denote the longitudinal degree of divergence by D−. Sup-
pose we have a truncated one-loop diagram containing b bosons and f fermions.
In the fermion propagator Eq. (II-2) the factor k− occurs both in the numerator
and in the denominator, and therefore it does not contribute to D−. Each boson
will, according to Eq. (II-3) contribute −1 to the degree of divergence, and the
measure d4k of the loop contributes 1, resulting in

D− = 1 − b. (II-4)

Longitudinally divergent diagrams, i.e., D− ≥ 0, contain one boson in the loop,
or none. Since every loop contains at least two lines, a longitudinally divergent
diagram contains at least one fermion. For the model we discuss, the Yukawa
model with a scalar coupling, the degree of divergence is reduced. For scalar
coupling g it turns out that γ+gγ+ = 0 and therefore two instantaneous parts
cannot be neighbors. The longitudinal degree of divergence for the Yukawa model
with scalar coupling is

D−

Yuk = 1 − b−
[

1+f−b
2

]

entier

= 1 −
[

1+f+b

2

]

entier

, (II-5)

where the subscript “entier” denotes that we take the largest integer not greater
than the value between square brackets.
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D−

Yuk = 0 D−

Yuk = −1 D−

Yuk = −1

b = 1

D⊥ = 1 D⊥ = 0 D⊥=−1
D−

Yuk = 0 D−

Yuk =−1 D−

Yuk =−1

b = 0

D⊥ = 2 D⊥ = 1 D⊥ = 0

Table II-1: Longitudinal (D−) and transverse (D⊥) degrees of divergence in the Yukawa model.

§2.2 Transverse divergences

The transverse degree of divergence D⊥ of a LF time-ordered diagram is the
divergence one encounters upon integrating over the perpendicular components.
In most cases this degree of divergence is the same as what is known in covariant
perturbation theory as the superficial degree of divergence D of a diagram. In
that case it is the divergence one finds if in the covariant amplitude odd terms
are removed and Wick rotation is applied. For a one-loop Feynman diagram in
four space-time dimensions with f internal fermion lines and b internal boson
lines the transverse degree of divergence is

D⊥ = 4 − f − 2b. (II-6)

In case of d space-time dimensions we have to replace the term 4 by d.
In Table II-1 all one-loop diagrams up to order g4 that are candidates to

be divergent have been listed with their longitudinal and transverse degree of
divergence.

§3 Instantaneous terms and blinks

As was already illustrated in the introduction, in the case of fermions we have
to differentiate between propagating and instantaneous parts. Therefore this dis-
tinction plays an important role in the Yukawa model. The covariant propagator
in momentum representation for an off-shell spin-1/2 particle can be written
analogously to Eq. (I-32):
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i( 6k +m)

k2 −m2 + iǫ
=

i( 6kon +m)

k2 −m2 + iǫ
+
iγ+

2k+
. (II-7)

The first term on the right-hand side is the propagating part. The second
one is the instantaneous part. The splitting of the covariant propagator cor-
responds to a similar splitting of LF time-ordered diagrams. For any fermion
line in a covariant diagram two LF time-ordered diagrams occur, one containing
the propagating part of the covariant propagator, the other containing the in-
stantaneous part. For obvious reasons we call the corresponding lines in the LF
time-ordered diagrams propagating and instantaneous respectively. For a general
covariant diagram the 1/k+-singularity in the propagating part cancels a similar
singularity in the instantaneous part. Therefore the LF time-ordered diagrams
with instantaneous lines are necessary; they are usually well-defined.

If the 1/k+-singularities are inside the area of integration we may find it
necessary to combine the propagating and the instantaneous contribution again
into the so-called blink, introduced by Ligterink and Bakker [16], such that there
is a cancellation of the singularities:

= + . (II-8)

The thick straight line between fat dots is a blink. The bar in the internal
line of the third diagram is the common way to denote an instantaneous fermion.
When a LF time-ordered diagram resembles a covariant diagram, we draw a
vertical line as in the second diagram of Eq. (II-8). If no confusion is possible,
we omit it in the remainder of this thesis. The difference between Eqs. (II-7) and
(II-8) lies in the fact that the former uses covariant propagators, and the latter has
energy denominators. In this case the difference is only formal. However, in more
complicated diagrams there is a big difference, as we will see later. Examples of
blinks are discussed in the next section, and in §2 of Chapter III where we discuss
the one-boson exchange correction to the vertex.

§4 Pair contributions in the Breit-frame

In Chapter I we found that for massive particles the spectrum condition applies:
there can be no creation from or annihilation into the vacuum. This gives a
significant reduction of the number of diagrams that one has to incorporate in
a light-front calculation. In any frame where the particles have positive plus-
momentum this is valid. In Leutwyler and Stern [11] it was already noted that
on the light-front the regions p+ < 0, p+ = 0 and p+ > 0 are kinematically
separated, another manifestation of the spectrum condition. This fact should
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already make us aware that the Breit-frame, where one takes the limit of the
plus-momentum of the incoming virtual photon going to zero, is dangerous.

Indeed one finds that pair creation or annihilation contributions play a role
in this limit. This was first found by De Melo et al. [18] and later by Choi and
Ji [21]. They discuss as an example the electro-magnetic current in φ3 theory,
and find a pair creation contribution for the component J− of the current. We
have shown in Chapter I that for the other components J+ and J⊥ pair creation
contributions vanish. Because De Melo et al. discuss a scalar theory, we infer
that this effect is not related to the presence of fermions in the theory.

In a theory with fermions, such as the Yukawa model, we now show that the
pair creation/annihilation term is also nonvanishing, and that its omission leads
to a breaking of covariance and rotational invariance.

In the presence of fermions, the individual time-ordered diagrams may contain
1/k+ singularities that cancel in the full sum. Because this cancellation has
nothing to do with the time-ordering of the diagrams, we combine the LF time-
ordered diagrams into blink diagrams. After that, we have a clear view on the
point we want to discuss.

Again, we use kinematics as in Fig. I-3a. Two blinks contribute to the current,
provided we have chosen the plus-component of the momentum of the outgoing
boson q+ ≥ 0.

= + , (II-9)

where the diagrams containing blinks are given by:

= −2πi
∫

d2k⊥
∫ P+

q+

dk+

8k+(k+ − q+)(P+ − k+)

× − ( 6P− 6k)on + 6P +m

P− − k⊥2+m2

2k+ − (P⊥−k⊥)2+m2

2(P+−k+)

− ( 6P− 6k)on + 6P− 6q +m

P− − (k⊥−q⊥)2+m2

2(k+−q+)
− (P⊥−k⊥)2+m2

2(P+−k+)
− q−

, (II-10)

= −2πi
∫

d2k⊥
∫ q+

0

dk+

8k+(q+ − k+)(P+ − k+)

× 6kon +m

P− − k⊥2+m2

2k+ − (P⊥−k⊥)2+m2

2(P+−k+)

6kon− 6q +m

q− − k⊥2+m2

2k+ − (k⊥−q⊥)2+m2

2(q+−k+)

. (II-11)

The diagram (II-10) is an example of a “double” blink. The total blink is the
thick line between the two fat dots. For both blinks we see that the energy
denominators are the same as for usual LF time-ordered diagrams. However, the
numerators are different. In the next subsection we show how the numerator of
the blink is constructed.
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§4.1 Construction of the blink

As an example, we show how we can construct the blink (II-11). For the fat line
we have to substitute the propagating and instantaneous part.

= + . (II-12)

The propagating contribution is

= −2πi
∫

d2k⊥
∫ q+

0

dk+

8k+(q+ − k+)(P+ − k+)

× 6kon +m

P− − k⊥2+m2

2k+ − (P⊥−k⊥)2+m2

2(P+−k+)

( 6k− 6q)on +m

q− − k⊥2+m2

2k+ − (k⊥−q⊥)2+m2

2(q+−k+)

, (II-13)

and the instantaneous contribution, denoted by the perpendicular tag, is

= −2πi
∫

d2k⊥
∫ q+

0

dk+

8k+(q+ − k+)(P+ − k+)

× 6kon +m

P− − k⊥2+m2

2k+ − (P⊥−k⊥)2+m2

2(P+−k+)

γ+. (II-14)

We see that both have a singularity at the upper boundary q+ of the integration
interval over k+. These cancel in the sum: the blink Eq. (II-11). It is obtained
by making the denominators common for the two diagrams. We can verify, using
the relation γ+γ+ = 0, that the lower boundary at k+ = 0 does not cause any
problems, neither for the LF time-ordered diagrams, nor for the blink.

In an analogous way the double blink is constructed. It consists out of the
following LF time-ordered diagrams:

= + + . (II-15)

We see that one diagram is missing: the diagram with two instantaneous fermions.
Because it contains two neighboring γ+ matrices, it vanishes. It is an example
of a forced instantaneous loop (FIL), which is related to longitudinal divergences
and will be discussed in the next chapter. The LF time-ordered diagrams have
the same integration interval as the double blink (II-10). The last diagram on
the right-hand side is the same as the diagram in Eq. (II-14), the only difference
being the integration range. The instantaneous fermions have been ’tilted’ a little
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in these two diagrams, to indicate that the integration interval is such that the
instantaneous fermions carry positive plus-momentum. The second diagram on
the right-hand side of Eq. (II-15) has no tilted instantaneous fermion, because the
integration range has not been split as in the previous case. We will not give the
formulas for the LF time-ordered diagrams in Eq. (II-15), but we have verified
that their end-point singularities are removed when the diagrams are combined
into the double blink.

§4.2 The Breit-frame

What happens to the current in Eq. (II-9) in the limit of q+ ↓ 0? Relying on the
spectrum condition, one may expect that diagrams like (II-11) disappear, and
that only the double blink (II-10) contributes. This is confirmed by the fact that
the integration area of the single blink (II-11) goes to zero. However, it could be
that the integrand obtains singularities in the limit q+ ↓ 0 that cause a nonzero
result. We denote this limit in the diagrams by drawing the line of the outgoing
boson vertically.

For the numerator of the blink (II-11) we use the relation

( 6kon +m) ( 6kon− 6q +m) = 2m2+ 6kon(2m− 6q). (II-16)

The integral is dominated by factors k+ and (k+ − q+). Identifying these factors
in (II-11) we find:

= −2πi
∫

d2k⊥
∫ q+

0

dk+

8k+(k+ − q+)P+

γ+(2m− 6q)
q− − k⊥2+m2

2k+ − (k⊥−q⊥)2+m2

2(q+−k+)

.

(II-17)
We write Eq. (II-17) in internal coordinates x = k+/q+, and find that the q+

dependence on the integration range drops. Moreover, the integration contains
no singularities in the internal variable x.

= −πi
∫

d2k⊥
∫ 1

0
dx

γ+

2P+

2m− 6q
(k⊥ − xq⊥)2 +m2 − x(1 − x)q2

.

(II-18)
If we disregard for a moment the transverse integration, we see that in the Breit-
frame there is a finite contribution of pair-creation/annihilation to the current.
This agrees with the result of De Melo et al. [18]. Furthermore, we see that
it is not covariant, and therefore its omission will not only lead to the wrong
amplitude, but also to breaking of Lorentz covariance and rotational invariance.



III

Longitudinal divergences in the Yukawa model

If the doors of perception were cleansed everything would appear as it

is, infinite.

William Blake, The marriage of heaven and hell [22]

For a number of reasons mentioned in the previous chapters, quantization on
the light-front is nontrivial. Subtleties arise that have no counterpart in ordinary
time-ordered theories. We will encounter some of them in this chapter and show
how to deal with them in such a way that covariance of the perturbation series
is maintained.

In LFD, or any other Hamiltonian theory, covariance is not manifest. Burkardt
and Langnau [10] claimed that, even for scattering amplitudes, rotational invari-
ance is broken in naive light-cone quantization (NLCQ). In the case they studied,
two types of infinities occur: longitudinal and transverse divergences. They reg-
ulate the longitudinal divergences by introducing noncovariant counterterms. In
doing so, they restore at the same time rotational invariance. The transverse
divergences are dealt with by dimensional regularization.

We would like to maintain the covariant structure of the Lagrangian and take
the path of Ligterink and Bakker [16]. Following Kogut and Soper [13] they
derive rules for LFD by integrating covariant Feynman diagrams over the LF
energy k−. For covariant diagrams where the k−-integration is well-defined this
procedure is straightforward and the rules constructed are, in essence, equal to
the ones of NLCQ. However, when the k−-integration diverges the integral over
k− must be regulated first. We stress that it is important to do this in such a
way that covariance is maintained.

In this chapter, we will show that the occurrence of longitudinal divergences
is related to the so-called forced instantaneous loops (FILs). If these diagrams
are included and renormalized in a proper way we can give an analytic proof of
covariance. FILs were discussed before by Mustaki et al. [23], in the context of
QED. They refer to them as seagulls. There are, however, some subtle differences
between their treatment of longitudinal divergences and ours, which are explained
in §3.

Transverse divergences have a different origin. However, they can be treated
with the same renormalization method as longitudinal divergences. We shall

24
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b2)a) b1)

Figure III-1: Examples of FILs. In (a) a boson in the loop is forced to be instantaneous. In (b1)
a fermion is obstructed in its propagation. In (b2) all fermions are instantaneous.

present an analytic proof of the equivalence of the renormalized covariant ampli-
tude and the sum of renormalized LF time-ordered amplitudes in two cases, the
fermion and the boson self-energy. In the other cases we have to use numerical
techniques. They will be dealt with in Chapter IV.

§1 Introduction

In the previous chapters we already introduced instantaneous fermions. For a
discussion on longitudinal divergences they play an important role. Without
fermions there are no longitudinal divergences! The longitudinal divergences can
be both seen from a “pictorial” and a mathematical point of view.

The pictorial view is the following. When a diagram contains a loop where
all particles but one are instantaneous, a conceptual problem occurs. Should the
remaining boson or fermion be interpreted as propagating or as instantaneous?
Loops with this property are referred to as forced instantaneous loops (FILs).
Loops where all fermions are instantaneous are also considered as FILs. However,
they do not occur in the Yukawa model with (pseudo-)scalar coupling. Examples
of these three types of FILs are given in Fig. III-1.

Mathematically this problem also shows up. The FILs correspond to the part
of the covariant amplitude where the k−-integration is ill-defined. The problem
is solved in the following way. First we do not count FILs as LF time-ordered
diagrams. Second we find that this special type of diagram disappears upon
regularization if we use the method of Ligterink and Bakker [19]: minus regular-
ization.

§1.1 Minus regularization

The minus-regularization scheme was developed for the purpose of maintaining
the symmetries of the theory such that the amplitude is covariant order by order.
It can be applied to Feynman diagrams as well as to ordinary time-ordered or
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to LF time-ordered diagrams. Owing to the fact that minus regularization is a
linear operation, it commutes with the splitting of Feynman diagrams into LF
time-ordered diagrams.

We explain very briefly how the method works. Consider a diagram defined
by a divergent integral. Then the integrand is differentiated with respect to the
external energy, say q−, until the integral is well defined. Next the integration
over the internal momenta is performed. Finally the result is integrated over
q− as many times as it was differentiated before. This operation is the same as
removing the lowest orders in the Taylor expansion in q−. For example, if the two
lowest orders of the Taylor expansion with respect to the external momentum q
of a LF time-ordered diagram

∫

d3kF(q, k) are divergent, minus regularization is
the following operation:

∫ q−

q2
⊥

2q+

dq′
∫ q′−

q2
⊥

2q+

dq′′
∫

d2k⊥dk+

(

∂

∂q′′−

)2

F(k, q′′). (III-1)

The point q2 = 0 is chosen in this example as the renormalization point. This
regularization method of subtracting the lowest order terms in the Taylor ex-
pansion is similar to what is known in covariant perturbation theory as BPHZ
(Bogoliubov-Parasiuk-Hepp-Zimmermann) [24]. Some advantages of the minus-
regularization scheme are preservation of covariance and local counterterms. An-
other advantage is that longitudinal as well as transverse divergences are treated
in the same way. A more thorough discussion on minus regularization can be
found in the next chapter.

§1.2 Proof of equivalence for the Yukawa model

The proof of equivalence will not only hold order by order in the perturbation
series, but also for every covariant diagram separately. In order to allow for a
meaningful comparison with the method of Burkardt and Langnau we apply our
method to the same model as they discuss, the Yukawa model, as introduced in
Chapter II.

In this model we have to distinguish four types of diagrams, according to their
longitudinal (D−) and transverse degrees (D⊥) of divergence. These divergences
were classified also in Table II-1 on page 19. The proof of equivalence is illustrated
in Fig. III-2.

We integrate an arbitrary covariant diagram over LF energy. For longitu-
dinally divergent diagrams this integration is ill-defined and results in FILs. A
regulator α is introduced which formally restores equivalence. Upon minus reg-
ularization the α-dependence is lost and the transverse divergences are removed.
We can distinguish

• Longitudinally and transversely convergent diagrams (D− < 0, D⊥ < 0).
No FILs will be generated. No regularization is needed. The LF time-
ordered diagrams may contain 1/k+-poles, but these can be removed using
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Figure III-2: Outline of the proof of equivalence for diagrams with longitudinal divergences.

blinks. A rigorous proof of equivalence for this class of diagrams is given
by Ligterink and Bakker [16].

• Longitudinally convergent diagrams (D− < 0) with a transverse divergence

(D⊥ ≥ 0). In the Yukawa model there are three such diagrams: the four
fermion box, the fermion triangle and the one-boson exchange correction.
Again, no FILs occur. Their transverse divergences and therefore the proof
of equivalence will be postponed until Chapter IV. However, because the
one-boson exchange correction illustrates the concept of k−-integration, the
occurrence of instantaneous fermions and the construction of blinks, it will
be discussed as an example in §2. In Chapter I we gave an example for a
longitudinally convergent diagram in φ3 theory: the electro-magnetic cur-
rent.

• Longitudinally divergent diagrams (D− = 0) with a logarithmic transverse

divergence (D⊥ = 0). In the Yukawa model with a scalar coupling there
is one such diagram: the fermion self-energy. Upon splitting the fermion
propagator two diagrams are found. The troublesome one is the diagram
containing the instantaneous part of the fermion propagator. According
to our definition it is a FIL and needs a regulator. In §3 we show how to
determine the regulator α that restores covariance formally. Since α can be
chosen such that it does not depend on the LF energy, the FIL will vanish
upon minus regularization.
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• Longitudinally divergent diagrams with a quadratic transverse divergence

(D⊥ = 2). In the Yukawa model only the boson self-energy is in this class.
We are not able to give an explicit expression for α. However, in §4 it is
shown that the renormalized boson self-energy is equal to the corresponding
series of renormalized LF time-ordered diagrams. This implies that the
contribution of FILs has again disappeared after minus regularization.

§2 Example: the one-boson exchange correction

We will give an example of the construction of the LF time-ordered diagrams, the
occurrence of instantaneous fermions and the construction of blinks. It concerns
the correction to the boson–fermion–anti-fermion vertex due to the exchange
of a boson by the two outgoing fermions. Here, and in the sequel, we drop
the dependence on the coupling constant and numerical factors related to the
symmetry of the Feynman diagrams.

A boson of mass µ with momentum p decays into a fermion anti-fermion pair
with momenta q1 and q2 respectively. The covariant amplitude for the boson
exchange correction can be written as

q
2

p k

k

k

1

2

q
1

=
∫

Min

d4k ( 6k1 +m)( 6k2 +m)

(k2
1 −m2 − iǫ)(k2

2 −m2 −iǫ)(k2 − µ2 − iǫ)
. (III-2)

The subscript Min denotes that the integration is over Minkowski space. The
momenta k1 and k2 indicated in the diagram are given by

k1 = k − q1, k2 = k + q2. (III-3)

We can rewrite Eq. (III-2) in terms of LF coordinates

=
∫

d2k⊥dk+dk−( 6k1 +m)( 6k2 +m)

8k+
1k

+
2 k

+(k−−H−

1 )(k−−H−

2 )(k−−H−)
, (III-4)

where the poles in the complex k−-plane are given by

H− =
k⊥

2
+ µ2 − iǫ

2k+
, (III-5)

H−

1 = q−1 − k⊥1
2
+m2 − iǫ

2k+
1

, (III-6)

H−

2 = −q−2 +
k⊥2

2
+m2 − iǫ

2k+
2

. (III-7)
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We now show how the LF time-ordered diagrams, including those containing
instantaneous terms, can be constructed. The LF time-ordered diagrams contain
on-shell spin projections in the numerator. They are

6ki on = k−i onγ
+ + k+

i γ
− − k⊥i γ

⊥. (III-8)

We also use the following relation:

k− −H−

i = k−i − k−i on. (III-9)

We rewrite the numerator

( 6k1 +m)( 6k2 +m) = ((k−−H−

1 )γ+ + (6k1on +m))

× ((k−−H−

2 )γ+ + (6k2on +m)). (III-10)

This separation allows us to write Eq. (III-4) as

=
∫

d2k⊥dk+dk−

8k+
1k

+
2 k

+

{

γ+γ+

(k−−H−)
+

( 6k1on +m)( 6k2on +m)

(k−−H−

1 )(k−−H−

2 )(k−−H−)

+
γ+( 6k2on +m)

(k−−H−

2 )(k−−H−)
+

( 6k1on +m)γ+

(k−−H−

1 )(k−−H−)

}

.(III-11)

The splitting corresponds to the splitting of the covariant amplitude into LF
time-ordered diagrams. The numerators are written in such a form that Cauchy’s
formula can be applied easily to the k−-integration. Only for the first term of
Eq. (III-11) can k− contour integration not be applied because the semi-circle at
infinity gives a nonvanishing contribution. Such a singularity corresponds to a
pole at infinity. However, we are saved by the fact that γ+γ+ = 0. Therefore we
obtain for the first term of Eq. (III-11)

= 0. (III-12)

Here the bars in the two internal fermion lines again denote instantaneous terms.
This forces the boson line to be instantaneous too. We see that this diagram is a
FIL according to the definition we gave in the previous section. The longitudinal
divergences which occur due to such diagrams are discussed in the next sections.
Since FILs are not LF time-ordered diagrams, the rules given by NLCQ do not
apply.

The second term of Eq. (III-11) contains only propagating parts. It has three
poles (III-5)-(III-7). We are free to close the contour either in the lower or in
the upper half plane. The poles do not always lie on the same side of the real
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−q+
2 0 q+

1

1 2 3 4

Figure III-3: Regions for the k+-integration. At the boundaries a pole crosses the real k−-axis.

k−-axis. For example, the pole given in Eq. (III-5) is in the upper half plane for
k+ < 0. At k+ = 0 it changes side. In Fig. III-3 we show the four intervals that
can be distinguished.

In region 1 all poles lie above the real k−-axis. By closing the contour in the
lower half plane we see that the integral vanishes. At k+ = −q+ the pole (III-7)
crosses the real axis. In interval 2 the integral is proportional to its residue:

= −2πi
∫

d2k⊥
∫ 0

−q+

2

dk+

8k+
1k

+
2 k

+

( 6k1on +m)( 6k2on +m)

(H−

1 −H−

2 )(H−−H−

2 )
. (III-13)

No vertical lines are drawn since this is clearly a LF time-ordered diagram. The
factor (H−

1 − H−

2 )−1 is the energy denominator corresponding to the fermion–
anti-fermion state between the moment in LF time that the boson decays and
the moment that the exchanged boson is emitted. (H−− H−

2 )−1 is the energy
denominator corresponding to the state in the period that the exchanged boson
exists.

At k+ = 0 a second pole crosses the real axis. For positive k+ we close the
contour in the upper half plane. Here only one pole (III-6) is present. The result
is

= 2πi
∫

d2k⊥
∫ q+

1

0

dk+

8k+
1k

+
2 k

+

( 6k1on +m)( 6k2on +m)

(H−

1 −H−

2 )(H−

1 −H−)
. (III-14)

Only the second energy denominator differs from the one in Eq. (III-13).

The terms of Eq. (III-11) with one instantaneous term are easier to determine.
There are two poles and a contribution only occurs if the poles are on different
sides of the real k−-axis. The third term of Eq. (III-11) is

= −2πi
∫

d2k⊥
∫ 0

−q+

2

dk+

8k+
1k

+
2 k

+

γ+( 6k2on +m)

H−−H−

2

. (III-15)
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For the fourth and last term of Eq. (III-11) we have

= 2πi
∫

d2k⊥
∫ q+

1

0

dk+

8k+
1k

+
2 k

+

( 6k1on +m)γ+

H−

1 −H−
. (III-16)

The possible 1/k+ poles inside the integration area can be removed using the
blinks.

= + . (III-17)

Using Eqs. (III-13) and (III-15) we get

= −2πi
∫

d2k⊥
∫ 0

−q+

2

dk+

8k+
1k

+
2 k

+

( 6k2on− 6p+m)( 6k2on +m)

(H−

1 −H−

2 )(H−−H−

2 )
. (III-18)

The other blink is constructed in the same way.
We have now succeeded in doing the k−-integration and have rewritten the

covariant expression for the one-boson exchange correction (III-2) in terms of LF
time-ordered diagrams. The result is

= + + + . (III-19)

Diagrams with instantaneous parts are typical for LFD. There is another dif-
ference with equal-time PT. Of the six possible time-orderings of the triangle dia-
gram two have survived, which give rise to two diagrams each, upon splitting the
fermion propagators into instantaneous and propagating parts. This reduction
of the number of LF time-ordered diagrams compared to ordinary time-ordered
ones is well known in LFD, and explained in detail in Ref. [16].

All the calculations in this section were purely algebraic. The formulas for the
LF time-ordered diagram we derived are the same as those given by NLCQ. The
integrals that remain are logarithmically divergent in the transverse direction and
must be regularized. This calculation will be done in Chapter IV in which we
discuss transverse divergences.
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§3 Equivalence of the fermion self-energy

There are two longitudinally divergent diagrams in the Yukawa model. We first
discuss the fermion self-energy. For our discussion the location of the poles is not
relevant and therefore we ignore the iǫ term. For a fermion momentum q we have
the following self-energy amplitude:

q k

q-k
=
∫

Min

d4k ( 6k +m)

(k2 −m2)((q−k)2 − µ2)
. (III-20)

§3.1 Covariant calculation

We introduce a Feynman parameter x and change the integration variable to k′

given by k = k′ + xq in order to complete the square in the denominator. This
gives

=
∫ 1

0
dx
∫

Min

d4k′ ( 6k′ + x6q +m)

(k′2 − (1−x)m2 − xµ2 + x(1−x)q2)2 . (III-21)

The integral (III-21) is ill-defined. The appearance of 6k′ in the numerator causes
the integral to be divergent in the minus-direction and obstructs the Wick ro-
tation. However, this term is odd and is removed in accordance with common
practice [24]. Wick rotation gives then

= i
∫ 1

0
dx
∫

d4k′ (x6q +m)

(k′2 + (1−x)m2 + xµ2 − x(1−x)q2)2 . (III-22)

The subscript Min is dropped denoting that the integration is over Euclidean
space. From Eq. (III-22) we can immediately infer that the fermion self-energy
has the covariant structure

= 6q F1(q
2) +m F2(q

2). (III-23)

§3.2 Residue calculation

To obtain the LF time-ordered diagram and the FIL corresponding to the fermion
self-energy we perform the k−-integration by doing the contour integration:

=
∫ d2k⊥dk+dk−

4k+(q+−k+)

k−γ+ + k+γ− − k⊥γ⊥ +m

(k− −H−

1 )(k− −H−

2 )
, (III-24)
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with the following poles:

H−

1 =
k⊥

2
+m2

2k+
, (III-25)

H−

2 = q− − (q⊥ − k⊥)2 + µ2

2(q+ − k+)
. (III-26)

We rewrite Eq. (III-24) as

=
∫ d2k⊥dk+dk−

4k+(q+−k+)

H−

1 γ
++ k+γ−− k⊥γ⊥+m

(k− −H−

1 )(k− −H−

2 )

+
∫ d2k⊥dk+dk−

4k+(q+−k+)

γ+(k− −H−

1 )

(k− −H−

1 )(k− −H−

2 )
. (III-27)

The first term of Eq. (III-27) is the part that gives a convergent k−-integration.
The second term contains the divergent part. This separation can also be written
in terms of diagrams:

= + . (III-28)

The propagating diagram is

= 2πi
∫

d2k⊥
∫ q+

0

dk+

4k+(q+ − k+)

m2+k⊥2

2k+ γ+ + k+γ− − k⊥γ⊥ +m

H−

2 −H−

1

.(III-29)

It has the usual form for a LF time-ordered diagram. It is divergent because of
the 1/k+ singularity in the numerator. To shed more light on the structure of
this formula we introduce internal variables x and k′⊥:

x =
k+

q+
, k′⊥ = k⊥ − xq⊥. (III-30)

The denominator is now a complete square and we drop as usual the terms odd
in k′⊥ in the numerator. Then we find

= πi
∫

d2k′⊥
∫ 1

0
dx

m2+k′⊥2
−x2q2

2xq+ γ+ + x6q +m

k′⊥2 + (1−x)m2 + xµ2 − x(1−x)q2
. (III-31)
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The FIL is

=
∫

d2k⊥dk+dk−

4k+(q+−k+)

γ+

k− −H−

2

. (III-32)

It contains the divergent part of the k−-integration and a 1/k+ singularity too.
The single bar in Eq. (III-32) stands for an instantaneous part. The diagram is
instantaneous because it does not depend on the external energy q−. In order
to demonstrate this we shift k− by q−. Then we see that the dependence on
q− disappears. However, this way of reasoning is dangerous since the integral is
divergent. We make the integral well-defined by inserting a function R containing
a regulator α:

R =

(

α(k+)

1 − iδq+k−
+

1 − α(k+)

1 + iδq+k−

)

. (III-33)

If we choose α = 1 for k+ < 0 and α = 0 for k+ > q+, the extra pole only
contributes for 0 < k+ < q+. In other words, then the spectrum condition is also
satisfied for all lines in the FIL. This is convenient, but not necessary. Mustaki
et al. [23] do not require the spectrum condition to be fulfilled for instantaneous
particles. They have as integration boundaries for the FIL 0 < k+ <∞.

We perform the k−-integration and take the limit δ → 0. This gives

= 2πi
∫

d2k⊥
∫ q+

0
dk+ γ+α(k+)

4k+(q+−k+)
. (III-34)

Using internal variables (III-30) we obtain

= πi
γ+

2q+

∫

d2k′⊥
∫ 1

0
dx

α(x)

x(1 − x)
. (III-35)

§3.3 Equivalence

The FIL is not a LF time-ordered diagram. We think it is a remnant of the
problems encountered in quantization on the light-front. We require it to satisfy
two conditions:

1. the FIL has to restore covariance and equivalence of the full series of LF
time-ordered diagrams;

2. the FIL has to be a polynomial in q−.



§3 Equivalence of the fermion self-energy 35

The first condition will also ensure that the FIL contains a 1/k+ singularity that
cancels a similar singularity in the propagating diagram. The second condition is
that the FIL is truly instantaneous; i.e., it does not contain q− in the denominator
like a propagating diagram. To find the form of the FIL that satisfies these
conditions we calculate

− . (III-36)

where we take for the covariant diagram Eq. (III-22). This is a strictly formal
operation. The covariant diagram is a 4-dimensional integral, whereas the prop-
agating diagram has only 2 dimensions (not counting the x-integration). We can
calculate Eq. (III-36) without evaluation of the integrals. In Appendix A useful
relations are derived between d- and (d−2)-dimensional integrals. Upon using
them we obtain

− = −πi γ
+

2q+

∫

d2k′⊥
∫ 1

0
dx

× m2 + k′⊥
2 − x2q2

x
(

k′⊥2 + (1−x)m2 + xµ2 − x(1−x)q2
) . (III-37)

This can be rewritten as

− = −πi γ
+

2q+

∫

d2k′⊥
∫ 1

0
dx

×
(

1

x
+

m2 − µ2 + (1 − 2x)q2

k′⊥2 + (1−x)m2 + xµ2 − x(1−x)q2

)

. (III-38)

The dependence on q2 is limited to the second term. The integral over x of the
latter can be done explicitly, whence one finds that the integral is independent
of q2. Therefore we can take q2 = 0 in Eq. (III-38).

− = −πi γ
+

2q+

∫

d2k′⊥
∫ 1

0
dx

×
(

1

x
+

m2 − µ2

k′⊥2 + (1−x)m2 + xµ2

)

. (III-39)

This is a good moment to see if we can satisfy the two conditions we put forward
in the beginning of this subsection.

The first condition is satisfied if the right-hand sides of Eqs. (III-39) and
(III-35) are equal. We can verify that there is an infinite number of solutions
for α to make this happen. We are free to choose α to be q−-independent. This
will make formula (III-35) also independent of q−. Then the second condition is
trivially satisfied.
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Figure III-4: Addition of the counterterms. The result is the minus-regularized fermion self-
energy.

§3.4 Conclusions

Our renormalization method is visualized in Fig. III-4.
There are two noncovariant counterterms (δi). One of them occurs in the

LF time-ordered part; the other one is associated with a self-induced inertia.
Minus regularization guarantees that they cancel provided the regulator α is
chosen appropriately. The other counterterms δm and δh are covariant. After
the (infinite) counterterms have been added the renormalized amplitude (denoted
by the superscript r) remains. An illustration of the full procedure of minus
regularization is given in the next section.

We take another look at Fig. III-4. The first line contains three ill-defined ob-
jects. The covariant amplitude (III-20) has a Minkowskian measure and contains
odd terms. Divergent odd terms are dropped as part of the regularization proce-
dure. To calculate the LF time-ordered diagram (III-29) we also dropped surface
terms. Can these assumptions be justified? Would another set of assumptions
give different physical amplitudes? We conjecture that any set of assumptions
corresponds to a certain class of choices for α. The α-dependence is only present
in the FILs. In the process of minus regularization the α-dependence is lost, as we
see for the fermion self-energy in Fig. III-4. Therefore the physical observables
do not depend on the assumptions we started out with.

Finally we give the result for the fermion self-energy.

r
= −π2i

∫ 1

0
dx (x6q +m) log

(

1 − x(1−x)q2

(1−x)m2 + xµ2

)

. (III-40)

This integral can be done analytically, but the result is a rather long formula,
which we give in Appendix B. Here we display the result in pictorial form.
Fig. III-5 shows F1 and F2 for values of the fermion momentum squared in the
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Figure III-5: The renormalized fermion self-energy. The left-hand panel (a) shows the case
µ = m/7; the right-hand panel (b) is for µ = 0.

range q2 ∈ [0, 2m2] for the case of a massless boson and the case where µ = m/7,
corresponding to the self-energy correction for a nucleon due to a scalar pion.
The case µ = 0 is included because it was calculated before by Ligterink and
Bakker [19].

The threshold behavior in the two cases is clearly seen in this figure. Above
threshold, q2 > (m+ µ)2, the self-energy becomes complex.

We have verified that our result is in agreement with the result given by
dimensional regularization and the result given by Bjorken and Drell [25], using
Pauli-Villars regularization.

For the following reasons our analysis differs essentially from the analysis of
Mustaki et al. [23]. First of all, we make an explicit distinction between LF
time-ordered diagrams and FILs. Second, we make the integration over the lon-
gitudinal coordinates well-defined by introducing a regulator α(k+). Mustaki
et al. make the k+-integration well-defined by using cutoffs. The form of the
cutoffs depends on the regularization scheme of the divergences in the transverse
directions. In our calculation the form of α(k+) is determined by requiring equiv-
alence to the covariant calculation. In our opinion, this is the most important
constraint on the FIL. We do not think that the cutoffs can always be determined
from an analysis of the transverse divergences. For example, in two dimensions
(D = 1+1) there are no transverse divergences, but longitudinal divergences are
still present and α(k+) has to ensure that covariance is maintained. Moreover,
in D = 1 + 1 the covariant calculation of the fermion self-energy gives a finite
result. Our choice of α(k+), independent of k⊥, ensures also in this case that the
LF time-ordered calculation reproduces the covariant result. The same is true for
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the calculation by Mustaki et al. if they make a particular choice for the cutoffs.

§4 Equivalence of the boson self-energy

Our analysis of the boson self-energy serves two purposes. First of all it illustrates
in detail the concept of minus regularization. Second it concludes our proof of
equivalence for one-loop diagrams with longitudinal divergences in the scalar
Yukawa model. The covariant expression for the boson self-energy at one-loop
level is

q-k

q =
∫

Min

d4k Tr [( 6k +m)( 6k−6q +m)]

(k2 −m2)((q−k)2 −m2)
. (III-41)

The momenta are chosen in the same way as for the fermion self-energy. The
location of the poles is given by Eqs. (III-25) and (III-26) with µ replaced by m.
In order to do the k−-integration we separate the numerator into three parts. We
find

= + 2 . (III-42)

The second term on the right-hand side are the two FILs, which are identical.
The first term is the LF time-ordered boson self-energy. It can be rewritten as

= 2πi
∫

d2k⊥
∫ q+

0

dk+

4k+(q+ − k+)

Tr [( 6kon +m) ((6k−6q)on +m)]

H−

2 −H−

1

.(III-43)

The FIL is given by

=
∫

d2k⊥dk+dk−

4k+(q+−k+)

Tr [γ+ (( 6k−6q)on +m)]

k− −H−

2

. (III-44)

We have seen in our discussion of the fermion self-energy that it is possible to
determine the exact form of the FIL that maintains covariance. However, we have
also seen that taking this step is not necessary, since upon minus regularization
the FILs disappear. An analysis along lines similar to those in §3.3 will show
that the FIL is also in this case independent of q−. Therefore we limit ourselves
to the calculation and renormalization of the propagating diagram.



§4 Equivalence of the boson self-energy 39

§4.1 Minus regularization

We will now apply the minus regularization scheme to the LF time-ordered boson
self-energy. For a self-energy diagram the following ten steps can be used to find
the regularized diagram. Some steps are explained in more detail for the boson
self-energy.

1. Write the denominator in LF coordinates.

2. Complete the squares in the denominator by introducing internal variables
(k′⊥ and x).

3. Write the numerator in terms of internal and external LF coordinates.

4. Remove terms odd in k′⊥ in the numerator.

These steps were also taken in our discussion of the fermion self energy. Next we
diverge.

5. Subtraction of the lowest order in the Taylor expansion is equivalent to
inserting a multiplier X. Construct the multiplier.

6. Compensate for the subtraction by adding counterterms. Verify that they
are infinite. If they are not, the corresponding divergence was only apparent
and we should not subtract it. We do not allow for finite renormalizations.

For the boson self-energy all terms have the same denominator. For them we can
write the expansion

1

k′⊥2 +m2 − x(1 − x)q2
=

1

k′⊥2 +m2

∞
∑

j=0

Xj , (III-45)

where the multiplier X has the form

X =
x(1 − x)q2

k′⊥2 +m2
. (III-46)

7. Identify, term by term, the degree of divergence and insert the correspond-
ing multiplier. To compensate for this, add a polynomial of the appropriate
degree with infinite coefficients.

Steps 1-7 lead to the following result for the boson self-energy:

= πi
∫

d2k′⊥
∫ 1

0
dxX Tr

[





Xk′⊥
2
+ x2q⊥

2
+m2

2xq+
γ+ + x(q+γ−−q⊥γ⊥)+m




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



Xk′⊥
2
+(x−1)2q⊥

2
+m2

2(x−1)q+
γ+ + (x−1)(q+γ−−q⊥γ⊥)+m





+X(k′⊥γ⊥)2
]

(

k′⊥
2
+m2 − x(1 − x)q2

)−1
+ A+Bq2. (III-47)

Longitudinal divergences appear as 1/x singularities. Transverse divergences ap-
pear as ultraviolet k′⊥ divergences. Since every term in the boson self-energy is
at least logarithmically divergent, there is an overall factor X. Some of the terms
are quadratically divergent in k′⊥ and have an extra factor X. We use the fact
that terms containing the factor γ+γ+ vanish. We are not interested in the exact
form of the counterterms A and B. We can verify that they are infinite. They
are included to allow for comparison with other regularization schemes.

8. Rewrite the numerator in terms of objects having either covariant or γ+/q+

structure.

For our integral we use the following relation

x2q⊥
2
+m2

2xq+
γ+ + x(q+γ−−q⊥γ⊥) =

x2q2+m2

2x

γ+

q+
+ x 6q. (III-48)

9. Perform the trace, if present.

10. Do the x and k′⊥ integrations.

Application of the last two steps gives

=A +Bq2 − 2π2i

(

3q2 − 8m2 + 2(4m2−q2)

√

4m2−q2

q2
arctan

√

q2

4m2−q2

)

.

(III-49)

§4.2 Equivalence

We will now compare the result of the minus regularization scheme applied to the
LF time-ordered boson self-energy with dimensional regularization applied to the
covariant diagram. Using the standard rules of dimensional regularization given
by Collins [24] we obtain

= A′ +B′q2 − 4π2i(4m2 − q2)

√

4m2 − q2

q2
arctan

√

q2

4m2 − q2
.(III-50)

The constants A′ and B′ contain 1/ε, where ε is the dimensional regulator. In
the limit of ε → 0 they diverge. Of course, A′ and B′ can not be related to the
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infinite constants generated by minus regularization. However, this is not neces-
sary. Both schemes are equivalent if the same physical amplitudes are generated.
To calculate them we have to construct the counterterms or, equivalently, fix the
amplitude and its first derivative at the renormalization point. For the unrenor-
malized amplitudes (III-49) and (III-50) the coefficients A or A′ of the constant
term are used to determine the physical mass µph of the boson. The coefficients
B or B′ determine the fermion wave function renormalization. Only the q4 and
higher order terms can be used to make predictions. These coefficients must be
the same for the two methods. We see that Eqs. (III-49) and (III-50) only differ
in the first two coefficients of the polynomial in q2. Therefore the two methods
generate the same physical amplitudes.

§5 Conclusions

We discussed in this chapter the problem of covariance, which includes the prob-
lem of nonmanifest rotational invariance, in LFD.

For diagrams which are both longitudinally and transversely convergent one
can give a rigorous demonstration of equivalence, without discussing renormal-
ization explicitly. It is given by Ligterink and Bakker [16].

For longitudinally divergent diagrams such a proof is not possible because the
integration over LF energy is ill-defined. Still, LF time-ordered diagrams can be
constructed applying the rules of NLCQ. However, FILs have to be included to
make the full series add up to the covariant diagram. These FILs contain the
ambiguity related to the ill-defined integration, as can be shown by our analysis
involving the regulator α.

We conjecture that the FILs are remnants of the difficulty of quantizing on
the light-front. Just like NLCQ, we are not able to provide general rules to
construct them. However, we can identify the conditions for their occurrence.
We show that it is not necessary to find an explicit expression for the FILs.
Upon minus regularization they vanish. Therefore the α-dependence drops too.
The remaining series of regularized LF time-ordered diagrams is again covariant.

The main difficulty we encountered was to show that the FILs are instan-
taneous indeed. This can be shown by proving that the regulator α does not
depend on the LF energy, as we did for the fermion self-energy. Another way is
to show that the regularized covariant amplitude equals the corresponding series
of minus-regularized LF time-ordered diagrams. We used this technique for the
boson self-energy.

This concludes our proof of equivalence of renormalized covariant and LF
perturbation theory for longitudinally divergent diagrams in the Yukawa model.
Three diagrams with transverse divergences remain. They require a more elabo-
rate analysis of minus regularization and numerical implementation of the method.
This subject is treated in the next chapter.
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Transverse divergences in the Yukawa model

Light-front quantization has found many applications since it was conceived. Still,
some problems of a fundamental nature remained. One that we are particularly
interested in is the question of whether full covariance can be maintained in
the Hamiltonian formulation, which is of course not manifestly covariant. A
partial answer can be obtained in perturbation theory. Then the problem can
be reformulated as follows: can one prove that LF perturbation theory produces
the same values of the S-matrix elements as covariant perturbation theory? If
the answer to this question is affirmative, then we use the word equivalent to
describe the situation.

This chapter is concerned with one aspect of this problem, viz the treatment
of transverse divergences in a simple model: the Yukawa model with spin-1/2
fermions, spin-0 bosons and a scalar coupling.

§1 Formulation of the problem

In the previous chapters, we used the method of Kogut and Soper [13] to de-
fine LF perturbation theory. This method defines LF time-ordered (x+-ordered)
amplitudes by integration of the integrand of a covariant diagram, say

F (q) =
∫

d4k I(q; k), (IV-1)

over the LF energy variable k−. In this chapter, q always denotes the external
momenta and k the loop momentum. We can also write Eq. (IV-1) using LF
coordinates:

F (q) =
∫

dk+d2k⊥
∫

dk−I(q−, q+, q⊥; k−, k+, k⊥). (IV-2)

Next, one expresses the integral over k−, using Cauchy’s formula, as a sum of
residues. One arrives in this way at an expression that can be interpreted, possibly
after recombination of the terms in this sum, as the splitting of the covariant
amplitude F (q) into a sum of noncovariant but LF time-ordered amplitudes.

This procedure, sometimes called naive light-cone quantization, has been in
principle known since the early work of Kogut and Soper [13]. For convergent
diagrams, it is nicely pictured in Fig. IV-1.

42
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Figure IV-1: The “ideal” case: Outline of our proof of equivalence of LF and covariant pertur-
bation theory (PT) for convergent diagrams. The dashed box indicates an ill-defined object.

The covariant diagram in Fig. IV-1 is an ill-defined object and needs some
prescription to give it a definite meaning. For example, the measure of the
Minkowski integration is not positive definite. The covariant prescription involves
introduction of Feynman parameters to complete the squares in the denominator,
the removal of terms odd in the loop momentum k and the Wick rotation to obtain
a Euclidian integral.

It has been the work of Ligterink and Bakker [16] to prove in detail that
the rules for constructing LF time-ordered diagrams, explained in many articles
[13, 26], are correct upon using the k−-integration prescription. They were the
first authors to give a systematic derivation of all the different time-ordered dia-
grams corresponding to a given covariant amplitude, for any number of particles
involved. If the k−-integral is convergent and the corresponding covariant dia-
gram is also superficially convergent, then what remains can be written in terms
of well-defined, convergent Euclidian integrals.

When the k−-integration is divergent, the prescription must be altered. Naive
light-front quantization fails in this case and one must first find a way to regulate
the k−-integrals. We proposed in Chapter III a regularization that maintains
covariance. There we showed that the longitudinal divergences give rise to so-
called forced instantaneous loops (FILs) and we showed how to deal with them
such that covariance is maintained. This method was also applied to the Yukawa
model containing spin-1/2 and spin-0 particles. We were able to regularize the
k−-integrals for the diagrams with one loop. However, in order to show full
equivalence to the covariant calculation one needs to compute the full integral
including the integrations over k+ and k⊥.

§1.1 Ultraviolet and transverse divergences

Even after the usual procedure has been followed, the covariant integral can still
be ultraviolet divergent. Ligterink and Bakker did not only discuss diagrams that
are superficially convergent, but also what to do in cases where the covariant
diagram is divergent. Their method of regularizing divergent diagrams, minus
regularization [19], is also used in this chapter. A scheme for the equivalence of
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Figure IV-2: Outline of our proof of equivalence for diagrams with ultraviolet divergences.
Dashed boxes indicate ambiguously defined objects.

ultraviolet divergent diagrams is given in Fig. IV-2.

Several techniques are available to remove the ultraviolet divergences, not in-
volving the k−- integration. They remain in the LF time-ordered diagrams as
divergences of the integrals over the transverse momenta. Therefore these dia-
grams are also ill-defined, as indicated by the dashed box in Fig. IV-2. A problem
is that many of the techniques which are used to regularize covariant diagrams
have limited use for LF time-ordered diagrams. For example, one cannot use di-
mensional regularization for the longitudinal divergences. Still, it is common to
apply it to the transverse divergences. The strength of the regularization scheme
we use, minus regularization, is that it does not discriminate between transverse
and longitudinal divergences. Minus regularization is based on the Bogoliubov-
Parasiuk-Hepp-Zimmerman method of regularization [27, 28, 29, 30, 31]. In their
paper, Ligterink and Bakker applied minus regularization to three self-energy
diagrams. Our contribution is to extend their method to more complicated di-
agrams and prove that there is a one-to-one relation between minus and BPHZ
regularization, such that the physical observables found using LF perturbation
theory exactly match those found in covariant perturbation theory.

In the Yukawa model there are five covariant diagrams with ultraviolet di-
vergences. The boson and the fermion self-energy were treated in Chapter III
in which longitudinal divergences were discussed. Minus regularization was ap-
plied and simultaneously removed the longitudinal and the transverse divergences.
Equivalence was established.

In two cases we were not able to either find an answer in the literature or pro-
duce ourselves full analytic results for the integrals involved; so we had to resort
to numerical integration. In this chapter we discuss these two diagrams: the one-
boson exchange correction to the boson-fermion-fermion vertex and the fermion
loop with three external boson lines. The first one was considered by Burkardt
and Langnau [10], who stated that naive light-cone quantization leads to a vio-
lation of rotational invariance of the corresponding S-matrix elements and found
that invariant results can be obtained using noncovariant counterterms. Here we
show that no violation of rotational invariance occurs if our method of regulariza-
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tion is applied. Furthermore, our results for the LF time-ordered diagrams sum
up to the covariant amplitude, calculated using conventional methods.

§1.2 Light-front structure functions

The two triangle diagrams, presented before in Table II-1, can be written in the
form of a sum of tensors in the external momenta, multiplied by scalar func-
tions, which we call (covariant) structure functions. After splitting a covariant
diagram in LF time-ordered ones, these can be written again in terms of tensors
multiplied by functions of the external momenta. The latter are called LF struc-
ture functions. They are not invariant as they are not defined by four-dimensional
invariant integrals, but rather by three-dimensional integrals. The different struc-
ture functions have different divergences and they must be treated according to
their types of divergence, which we enumerate.

Type 1: LF structure functions without transverse divergences. Neither the
covariant nor the LF formulation contains any divergences. Integration over k−

suffices to prove equivalence. Minus regularization is not allowed.

Type 2: LF structure functions with cancelling transverse divergences. The
individual LF time-ordered diagrams contain divergences not present in the co-
variant amplitude. Application of minus regularization to the time-ordered dia-
grams is not allowed. We show that the divergences cancel if all the time-ordered
diagrams are added, and that their sum equals the corresponding covariant am-
plitude.

Type 3: LF structure functions with overall transverse divergences. Di-
vergences appear in the covariant amplitude as well as in the LF time-ordered
diagrams. We apply BPHZ regularization to the covariant amplitude and minus
regularization to the time-ordered diagrams.

For the first two cases one can prove equivalence using analytic methods alone.
This proof is found in Ref. [16] and in Chapter III. For the structure functions
with overall transverse divergences we have to use numerical techniques. We show
that for the decay of a boson at rest, for both triangle diagrams, one obtains a
rotational invariant amplitude, identical to the covariant calculation using BPHZ
regularization. The fifth diagram with transverse divergences, the fermion box,
will not be discussed.

The setup for this chapter is as follows. In §2 we introduce minus regulariza-
tion. In §3 and §4 we discuss the equivalence of covariant and LF perturbation
theory for the fermion triangle and the one-boson exchange correction. In both
cases we start with the covariant calculation and do the BPHZ regularization
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if necessary. Then we calculate the LF time-ordered diagrams and apply the
method mentioned above. In both cases we conclude by giving a numerical ex-
ample of rotational invariance.

§2 Minus regularization

Minus regularization is inspired by the BPHZ method of regularization, which
gives finite and covariant results. By construction, we ensure that minus regu-
larization does the same. First we sketch the method in the case of one-loop dia-
grams with one independent external momentum (self-energies), and next when
two independent external momenta (triangle diagrams) are present. We con-
clude by generalizing this to a one-loop diagram with n external momenta. For
convenience, we shall assume in the latter case that only logarithmic and linear
divergences are present, such that only the first term of the Taylor expansion
around the renormalization point needs to be subtracted.

Wherever we use the word “amplitude” in this chapter, we refer to an invariant
function of the external momenta. It is understood that the integrals defining
the invariant functions are formally written down in terms of four-dimensional
integrals, which are split into time-ordered pieces by integration over k−.

§2.1 One external momentum

First we discuss the simple case of one external momentum, which can be applied
for self-energy diagrams.

BPHZ regularization

We start with the BPHZ regularization method, which can be applied to covariant
diagrams. The amplitude has the following form

F (q2) =
∫

d4k Icov(q
2; k) = F (0) + q2F ′(0) + . . . (IV-3)

where Icov(q
2; k) is the covariant integrand generated by applying standard Feyn-

man rules. BPHZ regularization renders the amplitude finite by subtracting the
infinite parts. We choose the point q2 = 0 as the renormalization point, around
which we expand the amplitude in a Taylor series. The higher orders in the
expansion (IV-3) are denoted by the ellipsis. The regularized amplitude is then

FR(q2) = F (q2) − F (0). (IV-4)

However, this is a purely formal operation, since we are subtracting two infinite
quantities. It is better to write:

FR(q2) =
∫

d4k
(

Icov(q
2; k) − Icov(0; k)

)

=
∫ q2

0
dq′2

∫

d4k
∂

∂q′2
Icov(q

′2; k).(IV-5)

This guarantees that the amplitude becomes finite.
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Minus regularization

Typical for minus regularization is that one writes the amplitude, as well as
the renormalization point, in LF coordinates. The covariant choice q2 = 0 cor-
responds to q− = q⊥

2
/(2q+). A time-ordered amplitude corresponding to the

covariant form (IV-3) can be written in LF coordinates as follows

F (q−, q+, q⊥) =
∫

d3k Ilfto(q
−, q+, q⊥; k) (IV-6)

= F (
q⊥

2

2q+
, q+, q⊥) + 2q+(q−− q⊥

2

2q+
)F ′(

q⊥
2

2q+
, q+, q⊥) + . . .

where Ilfto is the integrand of the LF time-ordered diagram, which was generated
by integrating the covariant integrand Icov over k− as is explained in Ref. [16].
The prime denotes differentiation with respect to q−. Similar to Eq. (IV-5) we
can write the regularized amplitude as

FMR(q−, q+, q⊥) =
∫ q−

q⊥
2

2q+

dq′−
∫

d3k
∂

∂q′−
Ilfto(q

′−, q+, q⊥; k). (IV-7)

So far we have described the minus regularization method introduced by Ligterink
and Bakker [19].

§2.2 Two external momenta

In Ref. [19] three self-energy diagrams were discussed. For the triangle diagram
the minus regularization technique needs to be extended. We suggest the name
MR+. We will tune the technique by comparing it to BHPZ regularization.

BPHZ regularization

The amplitude has the following covariant form

F (q2
1, q

2
2, q1 ·q2) =

∫

d4k Icov(q
2
1, q

2
2, q1 ·q2; k)

= F (0̃) + q2
1F

′

1(0̃) + q2
2F

′

2(0̃) + q1 ·q2F ′

3(0̃) + . . . (IV-8)

where 0̃ is the renormalization point q2
1 = q2

2 = q1·q2 = 0 and F ′
i is the derivative

of F with respect to the ith argument.

FR(q2
1 , q

2
2, q1 ·q2) = F (q2

1, q
2
2, q1 ·q2) − F (0̃). (IV-9)

Again, this is a purely formal operation, since we are subtracting two infinite
quantities. It is better to write

FR(q2
1 , q

2
2, q1 ·q2) =

∫

d4k
(

Icov(q
2
1, q

2
2, q1 ·q2; k) − Icov(0̃; k)

)

. (IV-10)
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We cannot, as in the previous section, differentiate with respect to all external
momenta. We would then subtract finite parts from the Taylor series, containing
physical information. This can be circumvented by introducing a dummy variable
λ, which parametrizes a straight line in the space of the invariants between the
actual values q2

1, q
2
2, q1 · q2 and the renormalization point:

FR(q2
1, q

2
2, q1 ·q2) =

∫ 1

0
dλ
∫

d4k
∂

∂λ
Icov(λq

2
1, λq

2
2, λq1 ·q2; k). (IV-11)

We have verified that the λ-method gives the correct result for the case where
one independent external momentum occurs.

Minus regularization

Again, we write the amplitude in the LF time-ordered case as a three-dimensional
integral:

F (q−i , q
+
i , q

⊥

i ) =
∫

d3k Ilfto(q
−

i , q
+
i , q

⊥

i ; k). (IV-12)

The regularized amplitude is

FR(q−i , q
+
i , q

⊥

i ) = F (q−i , q
+
i , q

⊥

i ) − F (r−i , r
+
i , r

⊥

i ), (IV-13)

where the four-vector r defines the renormalization surface. It is a hypersurface
determined by the following conditions:

r2
1 = 2r−1 r

+
1 − r⊥1

2
= 0,

r2
2 = 2r−2 r

+
2 − r⊥2

2
= 0, (IV-14)

r1 ·r2 = r−1 r
+
2 + r+

1 r
−

2 − r⊥1 · r⊥2 = 0.

This set of equations is equivalent to

r2
1 = 0, r2 = χr1. (IV-15)

The r+
i enter in the integration boundaries; therefore we would like them to

remain unaffected by regularization (r+
i = q+

i ). This implies that χ can be found
from

χ =
q+
2

q+
1

. (IV-16)

The only freedom that remains is the choice for r⊥1 . Two choices come easily to
mind: r⊥1 = 0 (method MR0) and r⊥1 = q⊥1 (method MR1).

(MR0) r⊥1 = 0⊥ ⇒ r⊥2 = 0⊥, (IV-17)

(MR1) r⊥1 = q⊥1 ⇒ r⊥2 = χq⊥1 . (IV-18)

The final results are given in Table IV-1. The LF coordinates of the renormal-
ization point are used in the following way to find the regularized LF amplitude:

FMR(q−i , q
+
i , q

⊥

i ) =
∫ 1

0
dλ
∫

d3k
∂

∂λ
Ilfto

(

λ(q−i − r−i )+r−i , q
+
i , λ(q⊥i − r⊥i )+r⊥i ; k

)

.(IV-19)

In this formula we recognize our choice r+
i = q+

i .
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MR0 MR1

(r−1 , r
+
1 , r

⊥
1 ) (0, q+

1 , 0
⊥) (q⊥1

2
/(2q+

1 ), q+
1 , q

⊥
1 )

(r−2 , r
+
2 , r

⊥
2 ) χ (0, q+

1 , 0
⊥) χ (q⊥1

2
/(2q+

1 ), q+
1 , q

⊥
1 )

Table IV-1: The LF parametrization of the renormalization point rµ for two equivalent choices
of minus regularization, MR0 and MR1.

§2.3 Several external momenta

The method just described can be generalized to the case of a loop with an
arbitrary number of external lines. The procedure is almost the same as for two
external momenta. The renormalization surface is given by

r2
i = 2r−i r

+
i − r⊥2

i = 0, (IV-20)

ri · rj = r−i r
+
j + r+

i r
−

j − r⊥i · r⊥j = 0 (i 6= j). (IV-21)

These equations are equivalent to

r2
1 = 0, ri = χir1. (IV-22)

Again, we make the choice to leave the plus-components of the momenta un-
affected by regularization: r+

i = q+
i . This implies that the χi are fractional

longitudinal LF momenta.

χi =
q+
i

q+
1

. (IV-23)

Two choices for r⊥1 are listed below. This then determines all other r⊥i .

(MR0) r⊥1 = 0⊥ ⇒ r⊥i = 0⊥, (IV-24)

(MR1) r⊥1 = q⊥1 ⇒ r⊥i = χiq
⊥

1 . (IV-25)

§2.4 Summary

The way we setup minus regularization does not rely on the structure of the
covariant or the time-ordered diagrams, but works on the level of the external
momenta only. If an amplitude has a covariant structure before regularization,
minus regularization guarantees that it remains covariant. In our implementation
of BPHZ regularization, the renormalization point corresponds to all invariants
connected to the external momenta being equal to zero. These conditions allow
minus regularization to take on a number of forms. Of these, we shall apply MR0
and MR1. The main difference between them is that MR0 does not choose one
of the momenta as a preferred direction, and therefore it explicitly maintains all
symmetries in the external momenta. Furthermore, MR0 gives rise to shorter
formulas for the regularized integrands.
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In the next two sections both methods are being applied to the parts of two
LF time-ordered triangle diagrams in the Yukawa model containing transverse
divergences, viz the fermion triangle and the one-boson exchange correction.

§3 Equivalence for the fermion triangle

In the Yukawa model there is an effective three-boson interaction, because to a
fermion loop with a scalar coupling Furry’s theorem does not apply. The leading
order contribution to this process is the fermion triangle. A scalar boson of mass
µ and momentum p comes in and decays into two bosons of momentum q1 and q2
respectively. The fermions in the triangle have mass m. The covariant expression
for the amplitude is

1

q

p k

k

k

1

2

q

2

=
∫

Min
d4k

Tr [( 6k1 +m)( 6k2 +m)( 6k +m)]

(k2
1 −m2)(k2

2 −m2)(k2 −m2)
. (IV-26)

The usual imaginary parts of the Feynman propagators are not written explicitly.
We have omitted numerical factors and have set the coupling constant to unity.
The momenta k1 and k2 indicated in the diagram are given by

k1 = k − q1, k2 = k + q2. (IV-27)

Of course, by momentum conservation we have

p = q1 + q2. (IV-28)

We evaluate the integral (IV-26) first in the usual covariant way, and subsequently
carry out k−-integration to produce the LF time-ordered diagrams. Note that
integral (IV-26) is an ill-defined object. In both methods mentioned we have to
define what we mean by this integral.

§3.1 Covariant calculation

The following method is usually applied to calculate the fermion triangle in a
covariant way. First, one introduces Feynman parameters x1 and x2, and then
one shifts the loop variable k to complete the squares in the denominator. The
result is

= 8
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫

Min
d4k

m3 +m (3k2 + P2) + terms odd in k

(k2 −m2 + Q2)3 ,

(IV-29)
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with

Q2 = x1(1−x1) q
2
1 + x2(1−x2) q

2
2 + 2x1x2 q1 ·q2, (IV-30)

P2 = x1(3x1−2)q2
1 + x2(3x2−2)q2

2 + (2(x1+x2) − 6x1x2 − 1) q1 ·q2.(IV-31)

As a last step, we remove the terms odd in k.

§3.2 BPHZ regularization

The regularized fermion triangle can be found by applying the BPHZ regulariza-
tion scheme (IV-11) to the covariant formula (IV-29). The integral is now finite;
so we can do the Wick rotation and perform the k integrations. The result is

R

= −4π2i
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 1

0
dλ
m (m2(5Q2 − P2) − 6λQ4)

(m2 − λQ2)2 . (IV-32)

The superscript R indicates an integral regularized according to the BPHZ method.

§3.3 Light-front calculation

Using the method given in Ref. [16] we proceed as follows. The k− dependence
of a spin projection in the numerator is removed by separating it into an on-shell
spin projection and an instantaneous part:

6ki +m = (6ki on +m) + (k− − k−i on)γ
+, (IV-33)

where the vector kµ
i on is given by

(

k−i , k
+
i , k

⊥

i

)

on
=





k⊥i
2
+m2

2k+
i

, k+
i , k

⊥

i



 . (IV-34)

Factors like (k−− k−i on) can be divided out against propagators and this cancel-
lation gives rise to instantaneous fermions. The integration over k− is performed
by contour integration. The poles of the propagators are given by

H− =
k⊥

2
+m2

2k+
, (IV-35)

H−

1 = q−1 − k⊥1
2
+m2

2k+
1

, (IV-36)

H−

2 = −q−2 +
k⊥2

2
+m2

2k+
2

. (IV-37)
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This integration gives rise to the different time-ordered diagrams, as explained in
more detail in Chapter I. The result is

= + +

+ + + . (IV-38)

The diagrams on the right-hand side are LF time-ordered diagrams. Time goes
from left to right. The pictures can be recognized as time-ordered diagrams
because of the time-ordering of the vertices and the occurrence of instantaneous
fermions, indicated by a horizontal tag. Explicitly;

= 2πi
∫

d2k⊥
∫ q+

1

0

dk+

8k+
1k

+
2 k

+

Tr [( 6k1on +m)( 6k2on +m)( 6kon +m)]

(H−

1 −H−

2 )(H−

1 −H−)
,(IV-39)

= 2πi
∫

d2k⊥
∫ q+

1

0

dk+

8k+
1k

+
2 k

+

Tr [( 6k1on +m)γ+( 6kon +m)]

H−

1 −H−
, (IV-40)

= 2πi
∫

d2k⊥
∫ q+

1

0

dk+

8k+
1k

+
2 k

+

Tr [( 6k1on +m)( 6k2on +m)γ+]

H−

1 −H−

2

, (IV-41)

= −2πi
∫

d2k⊥
∫ 0

−q+

2

dk+

8k+
1k

+
2 k

+

Tr [( 6k1on +m)( 6k2on +m)( 6kon +m)]

(H−

1 −H−

2 )(H−−H−

2 )
,(IV-42)

= −2πi
∫

d2k⊥
∫ 0

−q+

2

dk+

8k+
1k

+
2 k

+

Tr [γ+( 6k2on +m)( 6kon +m)]

H−−H−

2

, (IV-43)

= −2πi
∫

d2k⊥
∫ 0

−q+

2

dk+

8k+
1k

+
2 k

+

Tr [( 6k1on +m)( 6k2on +m)γ+]

H−

1 −H−

2

. (IV-44)

Note that the diagrams (IV-41) and (IV-44) with the instantaneous exchanged
fermions have the same integrand. However, the longitudinal momentum k+ has
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a different sign. We encountered such a similarity before in §4 of Chapter II for
the current.

Although we could have expected diagrams with two instantaneous fermions,
we see that they are not present. This is so because we use a scalar coupling
and therefore two γ+ matrices becoming neighbors give 0. No so-called forced
instantaneous loops are present. These FILs obscure the equivalence of LF and
covariant perturbation theory and have been analyzed in Chapter III.

The traces can be calculated. We obtain

Tr [( 6k1on +m)( 6k2on +m)( 6kon +m)]

= 4m(m2 + k1on ·kon + k2on ·kon + k1on ·k2on), (IV-45)

Tr
[

( 6k1on +m)( 6k2on +m)γ+
]

= 4m
(

2k+− q+
1 + q+

2

)

, (IV-46)

Tr
[

( 6k1on +m)γ+( 6kon +m)
]

= 4m
(

2k+− q+
1

)

, (IV-47)

Tr
[

γ+( 6k2on +m)( 6kon +m)
]

= 4m
(

2k++ q+
2

)

. (IV-48)

We see that the high orders in k⊥ have disappeared in the traces. However, loga-
rithmic divergences remain in all LF time-ordered diagrams (IV-39)-(IV-44). We
tackle them with minus regularization, as introduced in the previous subsection.

§3.4 Equivalence

As the fermion triangle is a scalar amplitude, there is only one structure function
present. It belongs to the third category we mentioned in §1: it is logarithmically
divergent, but has no longitudinal divergences.

Type 3: LF structure functions with overall transverse divergences

We applied minus regularization to the integrands of the six LF time-ordered
diagrams, using both the MR0 and MR1 methods. We used mathematica to
do the substitution and the differentiation with respect to λ, given by Eq. (IV-19).
However, mathematica was not able to do the integration, neither analytically
nor numerically. Therefore the integrand was implemented in fortran which
was well capable of doing the four-dimensional integration using imsl routines
based on Gaussian integration.

Because the integrations cannot be done exactly, we saw no possibility of
giving a rigorous proof of the equivalence of LF and covariant perturbation theory.
Instead we make a choice for the parameters, such as the masses and the external
momenta, and show that our method gives the same result as the covariant
calculation with BPHZ regularization.

We calculated the decay amplitude of a scalar boson at rest, as is pictured
in Fig. IV-3. From a physical point of view, there is no preferred direction, and
therefore we demand that our choice of the coordinates of the light-front have
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z

x

y

θ

Figure IV-3: A boson is at rest and decays into two particles flying off in opposite directions.
The angle θ is the angle between the momentum of one of the fermions and the z-axis.

no influence on the outcome of the calculation. The decay amplitude, which is a
scalar quantity, should give the same result for each possible direction in which
the bosons can fly off.

Of the six minus-regularized LF time-ordered fermion triangle diagrams con-
tributing to the boson decay, each one has a manifest rotational invariance in
the x-y-plane, and therefore we expect the same for the sum. However, since LF
perturbation theory discriminates between the z-direction and the other space
directions, the LF time-ordered diagrams can (and should) differ as a function
of the angle, θ, between the momentum of one of the particles flying off and the
z-axis. The absolute value of the momentum is kept fixed. It is not immedi-
ately clear that the sum should be invariant. This investigation becomes more
interesting since it is believed [10] that rotational invariance is broken in naive
light-cone quantization of the Yukawa model.

The results are shown in Figs. IV-4-IV-6. They demonstrate that rotational
invariance is not broken. Note that we have dropped the factor −i common to
all diagrams. Two LF time-ordered diagrams (IV-40) and (IV-43) contributing
to the boson decay and indicated by double-dashed lines are so small they can
hardly be identified in Fig. IV-4. In Fig. IV-5 we depict these two on a scale that
is a factor 100 larger. In the same figure we show the difference of the sum of the
six LF time-ordered diagrams (using MR1 and 128 points in every integration
variable) and the covariant result. It has a maximum of 0.03%. In Figs. IV-4
and IV-5 we see that interchanging the outgoing bosons is the same as replacing
θ by π − θ. This property is expected because of Bose-Einstein symmetry. We
verified that the individual diagrams are rotational invariant around the z-axis.
We illustrate this in Fig IV-6.

Summing up, we find that the sum of the minus-regularized LF time-ordered
diagrams is rotational invariant. The deviation from the covariant result is very
small. We checked, by varying the number of integration points, that the devia-
tions are due to numerical inaccuracies only. We conclude that, for the fermion
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-125
0

125

0 �=4 �=2 3�=4 �! �

total

Figure IV-4: The thick line at a value of 125 represents the sum of the six LF time-ordered
amplitudes. It is independent of the angle θ, defined in Fig. IV-3. The four largest contributions
come from the diagrams without instantaneous parts (solid lines) and the diagrams with an
instantaneous exchanged fermion (dashed lines), as indicated by the diagrams.

-1
-0.5

0

0 �=4 �=2 3�=4 � ! �

error

Figure IV-5: The amplitudes of the two small contributions (double-dashed lines) and the
difference between the sum of the six LF time-ordered diagrams and the covariant amplitude
(thick solid line).
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Figure IV-6: Commutative diagram of the boson decay amplitude. The boson is at rest in the
origin and decays. The outgoing bosons fly off in opposite directions. Points on the surfaces
have polar coordinates (A, θ, φ), where A the is magnitude of the amplitude and θ and φ are the
polar angles of the momentum of one of the outgoing particles, as defined in Fig. IV-3. Because
the diagrams on the second line are very small, the scale has been enlarged by a factor of 100.
For the LF time-ordered diagrams on the first three lines minus regularization (both MR0 and
MR1) is used, for the covariant diagram on the last line we used BPHZ regularization.
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triangle, the covariant calculation in combination with the BPHZ regularization
scheme gives the same result as the LF calculation in combination with minus
regularization.

§4 Equivalence for the one-boson exchange diagram

The second process under investigation was studied before by Burkardt and Lang-
nau [10], and in §2 of Chapter III as an example of how different LF time-orderings
are constructed. A scalar boson of mass µ and momentum p decays into two
fermions of mass m and momentum q1 and q2 respectively. The lowest order
correction to this process is the one-boson exchange correction. The amplitude
is given by the integral

q
2

p k

k

k

1

2

q
1

=
∫

Min
d4k

( 6k1 +m)( 6k2 +m)

(k2
1 −m2)(k2

2 −m2)(k2 − µ2)
. (IV-49)

Again, this equation is undefined as it stands. First we have to make it a well-
defined object. In §4.1 we apply the covariant method and in §4.3 we use LF
coordinates.

§4.1 Covariant calculation

Using Feynman parametrization the one-boson exchange correction can be rewrit-
ten as

= 2
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫

Min
d4k

× 6k2 + ((1−x1) 6q1+x2) 6q2+m) (−x1 6q1−(1−x2) 6q2+m) + terms odd in k

(k2 −M2 + Q2)3
,(IV-50)

with

M2 = (x1 + x2)m
2 + (1 − x1 − x2)µ

2, (IV-51)

Q2 = x1(1 − x1)q
2
1 + x2(1 − x2)q

2
2 + 2x1x2q1 ·q2, (IV-52)

and where terms odd in k in the numerator are not specified, since they will be
removed according to the covariant prescription. We also define

P2 = Q2 + (1 − x1 − x2)q1 ·q2. (IV-53)
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From Eq. (IV-50) we can infer that the Dirac structure of the diagram is

= F 1 + F 2µγµ + F 3µν 1

2
[γµ, γν] . (IV-54)

where the vector part contains a symmetric and an anti-symmetric part,

F 2µ = F 2s(qµ
1 + qµ

2 ) + F 2a(qµ
1 − qµ

2 ), (IV-55)

and the tensor part has the form

F 3µν = (qµ
1 q

ν
2 − qν

1q
µ
2 )F 3. (IV-56)

The functions F i depend on the masses and the external momenta q2
1 , q

2
2 and

q1 ·q2. If we define the integral operator

I[f ] = 2
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫

Min
d4k

(

k2 −M2+ Q2
)−3

f, (IV-57)

then we have, using 6q12 = q2
1 , et cetera.

F 1 = I
[

k2 +m2 −P2
]

, (IV-58)

F 2a = 2mI [1 − x1 − x2] , (IV-59)

F 2s = 2mI [−x1 + x2] , (IV-60)

F 3 = I [1 − x1 − x2] . (IV-61)

We see that the only function which needs to be regularized is F 1. The func-
tions F 2 and F 3 are convergent and do not require regularization in a covariant
calculation.

§4.2 BPHZ regularization

The regularized structure function F 1R can be found by applying the BPHZ
regularization scheme (IV-11) to the structure function (IV-58). The integral is
now finite; so we can do the Wick rotation and perform the k integrations.

F 1R(q2
1 , q

2
2, q1 ·q2) =−2π2i

∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 1

0
dλ

(

Q2(λP2 −m2)

2(M2−λQ2)2
+

Q2 + 1
2
P2

M2−λQ2

)

.(IV-62)

We have not been able to do all three integrations exactly. The λ integration and
one of the x integrations can be done analytically, and the remaining integration
numerically. As F 2µ and F 3 do not need to be regularized, this concludes the
covariant calculation of the one-boson exchange correction.
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§4.3 Light-front calculation

In the previous chapters it was shown how to derive the LF time-ordered diagrams
corresponding to the covariant diagram (IV-49) using k−-integration. One can
write the time-ordered diagrams individually, or one can combine propagating
and instantaneous parts into so-called blinks. Blinks have the advantage that the
1/k+-singularities cancel and the number of diagrams is reduced.

In the two triangle diagrams studied here it makes no difference whether blinks
are used or not. In the case of the fermion triangle we calculated LF time-ordered
diagrams. Here we use blinks, to demonstrate that our technique also works in
this case. The one-boson exchange correction has two blink diagrams:

= + . (IV-63)

The poles of the two fermion propagators in the triangle are given by Eqs. (IV-36)
and (IV-37). The pole of the boson propagator is given by

H− =
k⊥

2
+ µ2

2k+
. (IV-64)

The amplitudes including blinks are

= −2πi
∫

d2k⊥
∫ 0

−q+

2

dk+

8k+
1 k

+
2 k

+

( 6k2on− 6p+m)( 6k2on +m)

(H−

1 −H−

2 )(H−−H−

2 )
, (IV-65)

= 2πi
∫

d2k⊥
∫ q+

1

0

dk+

8k+
1 k

+
2 k

+

( 6k1on +m)( 6k1on+ 6p+m)

(H−

1 −H−

2 )(H−

1 −H−)
. (IV-66)

We focus on the blink in Eq. (IV-66). It simplifies because we can use

6k1on 6k1on = k1on · k1on = m2. (IV-67)

Therefore we obtain

= 2πi
∫

d2k⊥
∫ q+

1

0

dk+

8k+
1 k

+
2 k

+

2m2+ 6k1on( 6p+ 2m)

(H−

1 −H−

2 )(H−

1 −H−)
. (IV-68)

In the same way as we did for the covariant amplitude we can identify the different
Dirac structures
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= F 1
1 + F 2µ

1 γµ + F 3µν
1

1

2
[γµ, γν] . (IV-69)

Although at first sight it looks as if the diagram in Eq. (IV-68) has a covariant
structure, covariance is spoiled by the integration boundaries for k+. Therefore
these functions are not covariant objects. We have to investigate equivalence for
the structure functions separately.

The LF structure function F 1
1 can be found by taking the trace of Eq. (IV-68),

since all the other structures are traceless. Carrying out the traces one finds

F 1
1 = 2πi

∫

d2k⊥
∫ q+

1

0

dk+

8k+
1 k

+
2 k

+

2m2 + k1on ·p
(H−

1 −H−

2 )(H−

1 −H−)
. (IV-70)

The other structures of the blink diagram (IV-68) are:

F 2µ
1 = 2πi

∫

d2k⊥
∫ q+

1

0

dk+

8k+
1 k

+
2 k

+

2m (k1on)
µ

(H−

1 −H−

2 )(H−

1 −H−)
, (IV-71)

F 3µν
1 = 2πi

∫

d2k⊥
∫ q+

1

0

dk+

8k+
1 k

+
2 k

+

(k1on)
µ pν

(H−

1 −H−

2 )(H−

1 −H−)
. (IV-72)

In a similar way we can derive the structure functions corresponding to the
other blink diagram.

§4.4 Equivalence

We can identify the different types of divergences, as explained in §1:

Type 1: LF structure functions without transverse divergences

The parts of the blink diagrams without any ultraviolet divergences are F 2µ
i

and F 3µν
i , except for µ being −. No cancellations need to be found and no

regularization is necessary.

Type 2: LF structure functions with cancelling transverse divergences

In the last two structure functions we see something odd happening. Both F 2µ
i

and F 3µν
i are divergent for µ being −. However, these divergences are not present

in the covariant structure functions F 2µ and F 3µν . It would we illegal to apply mi-
nus regularization, since the covariant amplitude does not need to be regularized.
We found that the divergences corresponding to the first blink cancel exactly
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against those of the second blink. To simplify the calculation we use internal
variables x′ and k⊥ and external variables χ, q−i and q⊥i . These are introduced in
Appendix C.

We have to verify the following relation of equivalence

F 2− = F 2−
1 + F 2−

2 . (IV-73)

For the reasons mentioned above we have to demand that the divergent parts in
the right-hand side cancel. We find that only the highest order contribution in
k⊥ contributes to a divergent integral, because we can write

F 2−
i =

∫

d2k⊥
(

f 2−
i

k⊥2 + g2−
i (k⊥)

)

, (IV-74)

where g2−
i (k⊥) is the part of the integrand without ultraviolet divergences, and

the term with f 2−
i gives rise to a logarithmically divergent integral. We have to

check if
f 2−

1 + f 2−
2 = 0. (IV-75)

In Appendix C the full formulas for the functions f 2−
i are given, from which it

follows that condition (IV-75) holds. For µ being − in the structure function
F 3µν

1 one can apply the same method.

Type 3: LF structure functions with overall transverse divergences

The structure function F 1 in the covariant calculation contains an ultraviolet
divergence. In the LF structure functions F 1

i these appear as divergences in the
transverse direction. The equation under investigation is the following:

F 1MR
1 + F 1MR

2 = F 1R. (IV-76)

For the same reason as for the fermion triangle, an analytic proof of this equation
is not possible. We investigated rotational invariance of the left-hand side of this
equation, and furthermore we checked if it gives the same result as the covariant
calculation on the right-hand side.

A boson is at rest and decays into two fermions as indicated in Fig. IV-3.
The fermion mass is taken to be the same as the boson mass. Therefore there
can be no on-shell singularities of intermediate states. The contributions of the
two blink diagrams are given in the commutative diagram of Fig. IV-7. We made
the rather arbitrary choice of applying minus regularization MR1, and used 128
points in every integration variable.

The error, i.e., the difference between the covariant calculation with BPHZ
regularization and the sum of minus-regularized blink diagrams, has a maximum
of 0.02%. This deviation results from numerical inaccuracies, as was checked by
varying the number of integration points.
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We conclude that no significant deviation from a rotational invariant ampli-
tude is found. Moreover, we found that the sum of the LF time-ordered diagrams
is the same as the covariant amplitude for the one-boson exchange correction.
Again, the procedure of k−-integration and minus regularization proved to be a
valid method.

§5 Conclusions

In the Yukawa model with a scalar coupling there are five single-loop diagrams
with transverse divergences, of which two also contain longitudinal divergences.
For all other one-loop diagrams and all multiple-loop diagrams that do not contain
subdivergences, the proof of the equivalence of covariant and LF perturbation
theory was given by Ligterink [44] upon using the k−-integration prescription.
For the two single-loop diagrams with longitudinal divergences this integration is
ill-defined. This problem was dealt with in the previous chapter.

Of the three remaining diagrams two are thoroughly analyzed in this chapter.
For the parts of these diagrams without transverse divergences the k−-integration
recipe applies. For the parts with transverse divergences a proof of equivalence is
complicated by the fact that the amplitudes depend on three independent scalar
products of the external momenta. We applied an extended version of the method
of minus regularization. It is on a friendly footing with the light-front, because
it can be applied to both longitudinal and transverse divergences. Moreover, it
has strong similarities to BPHZ regularization, which is suitable for covariant
perturbation theory. We were able to tune the regularization in such a way that
minus regularization is analogous to BPHZ regularization. Therefore, we expect
an exact equality between the covariant and the LF amplitudes. We showed
that rotational invariance is maintained and we expect that other nonmanifest
symmetries on the light-front, such as boosts in the x-y-plane, are also conserved.

The final formulas obtained did not yield to analytic integration. Therefore we
had to resort to multidimensional numerical integration. As rotational invariance
was shown previously to be violated in naive light-cone quantization [10], we
investigated rotational invariance, which is one of the nonmanifest symmetries on
the light-front. Our results demonstrate, within the errors due to the numerical
methods used, that covariant and LF time-ordered perturbation theory give the
same physical matrix elements.

One diagram with transverse divergences is not discussed in this thesis, namely
the fermion box with four external boson lines. It is a scalar object, similar to the
fermion triangle. The results obtained for the latter convinced us that upon minus
regularization we shall find a covariant result. As there are more time-orderings,
and because one cannot test for rotational invariance as easily as for the triangle
diagrams, we did not investigate this much more complicated situation.

We trust that with our elaborate discussion of divergent diagrams in the
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Figure IV-7: Commutative diagram of the one-boson exchange correction. A boson decays at
rest. The outgoing fermions fly off in opposite directions. As in Fig. IV-6, the radial coordinate
gives the amplitude of the regularized diagram for the fermion flying off in this direction. For
the LF structure functions on the first two lines, minus regularization (MR1) is used; for the
covariant structure function on the last line, we used BPHZ regularization.
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Yukawa model we have illustrated the power of minus regularization and taken
away doubts about the covariance of LF perturbation theory.



V

Entanglement of Fock-space expansion and

covariance

In Chapter I we made the comparison between LF en IF quantization and we saw
that LFD has a number of advantages, one being that it has the lowest number
of dynamical operators, namely three. However, two of them involve rotations
around the x or y-axis. Therefore LF time-ordered amplitudes are not invariant
under such rotations.

The question of rotations in LFD was discussed before with the aim of con-
structing the angular momentum operators; see, e.g., Fuda [32] and the review
by Carbonell et al. [12]. While these authors emphasize the algebraic properties
of the generators of the Poincaré group, we stress the connection between expan-
sions in Fock-space and covariance. It has been remarked before by Brodsky et

al. [33] that the higher components in Fock space contribute to the difference
between the Bethe-Salpeter equation and the evolution equation in LFD. These
authors do not give numerical estimates of the corrections. The latter has been
done by Mangin-Brinet and Carbonell [34], and by Frederico [35], who studied
the same model and found the effect of higher Fock states on the binding energy
to be small. In a calculation of positronium, Trittmann and Pauli [36] used an
effective theory, where the effects of all Fock states are included in the interaction.
They found rotational symmetry to be restored in the solution.

§1 Formulation of the problem

In this chapter we consider first standard LF quantization and discuss the prob-
lem of noncovariance, which includes violation of rotational invariance, in the
framework of LF time-ordered perturbation theory. We give numerical results
for the simplified case of two heavy scalars exchanging light scalar particles. This
choice is motivated by the popular meson-exchange models in nuclear physics.
We do not include the internal spin degrees of freedom, as this is a complication
that may obscure the main point of our investigation: the connection between
the breaking of covariance and a truncation of the expansion in Fock space. In
two interesting papers, Fuda [37, 38] reported on detailed calculations of realistic
one-meson exchange models in both LF and IF dynamics. There the emphasis is
on the comparison between the two, when in both cases the ladder approxima-

65
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tion is made. It is the purpose of this chapter to show to what extent the ladder
approximation itself may violate covariance.

§1.1 Suppression of higher Fock states

A reason why LFD is often preferred is that higher Fock states are said to be more
strongly suppressed in this form of dynamics. The reason for this suppression
is believed to be the spectrum condition discussed before in §2.3 of Chapter I.
As a disadvantage, the lack of manifest rotational invariance, and therefore co-
variance, is mentioned. We call a symmetry manifest when it is connected to
a kinematical operator. Then all time-ordered diagrams exhibit this symmetry.
Equal-time ordered diagrams lack boost invariance, whereas on the light-front the
longitudinal boost P+ is a kinematical operator. Therefore, if one refers to a lack
of manifest covariance, one should include not only rotational invariance but also
other nonmanifest symmetries. One reason why scientists have rather stressed
rotational invariance comes easily to mind: in many cases it is easy to convince
oneself by inspection whether a matrix element is rotational invariant, viz when
the amplitude can be expressed in terms of scalar products of three-vectors. On
the other hand, it is not more difficult to test numerically for invariance under
boost transformations than for invariance under rotations. Indeed, the method
used in this chapter can easily be extended to check for boost invariance.

A way to test for covariance is to compare the LF time-ordered diagrams to
the covariant amplitude, since we know that the latter is invariant under any
of the Poincaré symmetry operations. For on energy-shell amplitudes (S-matrix
elements), there is an exact equality, as was proved by Ligterink and Bakker [16]
and which is confirmed in our results. Off energy-shell there is a breaking of
Poincaré symmetry, which, however, is found to be surprisingly small in the case
considered in this chapter.

So why are we using these LF time-ordered diagrams in the first place, when
there is an equivalent covariant method available? We do, because we want
to determine the properties of the bound state using the Hamiltonian form of
dynamics. In this method, covariance can never be fully maintained. However,
one may try to apply it in such a way that breaking of covariance is minimal.
In many applications in nuclear physics, a one-meson exchange approximation is
made for the interaction and the scattering amplitude is computed by formally
iterating this interaction, leading to the Lippmann-Schwinger equation in the
ladder approximation. In this approximation one retains two- and three-particle
intermediate states and neglects Fock states containing four or more particles.
These Fock sectors are needed to make the sum of LF time-ordered diagrams
equal to the covariant amplitude, exhibiting the symmetries under all Poincaré
transformations. If these contributions are large, one can expect a significant
breaking of covariance, since the LF time-ordered diagrams are only invariant
under application of the kinematical symmetries.
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For this reason we concentrate in this article on the determination of the con-
tributions of these higher Fock states. Our main concern shall be the box diagram,
defined on page V-21. Then we label the correction as R4+ . We shall calculate
R4+ explicitly for the box diagram with scalar particles of different masses. The
box diagram can be associated with the two-meson exchange between two nu-
cleons. If spin were included, several well-known complications would arise, the
most important one being the occurrence of instantaneous propagators [16, 13].
We do not want these complications to interfere with the main point of our inves-
tigation: the connection between Fock-space truncations and lack of covariance.
Therefore spin is omitted. We have not included crossed box diagrams, because
they are not relevant for a discussion on covariance, since both the crossed and
noncrossed box diagrams are covariant by themselves.

However, it is well-known [39] that the use of ladder diagrams alone in the
Bethe-Salpeter equation does not lead to the proper one-body limit when the mass
of one of the nucleons goes to infinity. Therefore, in order to use boson exchanges
in bound state calculations within the framework of LFD it is probably necessary
to include diagrams with crossed meson lines as well.

§1.2 Setup

First, we explain the Lippmann-Schwinger formalism and the special role of the
box diagram. In §3 we describe how to calculate both the covariant and the LF
time-ordered amplitudes. After this, we are ready for our numerical experiments.
In §5 the masses of the external particles are chosen in such a way that on-shell
singularities of the intermediate states are avoided, and therefore it is easy to
compare IF and LF Hamiltonian dynamics. In that section it is shown that R4+

is much smaller in LFD than in IF dynamics (IFD), confirming the claim that in
LFD higher Fock states are more strongly suppressed. Moreover, it tells us that
covariance is more vulnerable in IFD than on the light-front!

After this exercise, we concentrate on the light-front, and in §6 we calculate
the LF time-ordered diagrams for the more interesting case in which we have
particles of fixed masses m (called nucleons) and µ (called mesons). As the
process we are concerned with, scattering, is above threshold, we have to deal
with on-shell singularities. We show that the breaking of covariance is again small
in the ladder approximation.

Although in §7, where we discuss off-shell amplitudes below threshold, no on-
shell singularities are encountered, matters become more complicated because the
notion of the c.m. system (c.m.s) becomes ambiguous, since the total momentum
P z is dynamical and found to be unequal to the combined momentum of the two
particles, pz + qz. However, we are still able to relate the breaking of covariance
and Fock-space truncation.

The lack of covariance of the LF time-ordered amplitudes means that the
amplitude depends not only on the scalar products of the external momenta,
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but on the angles between the quantization axis and the external momenta as
well. Consequently, the amplitudes must have singularities as a function of these
angles in addition to the familiar singularities as functions of the invariants. The
positions of these singularities are found analytically in §8, in the framework of
explicitly covariant LFD. This gives a qualitative understanding of the numerical
results in §5 and §6. In §9 explicitly covariant LFD is applied to the off energy-
shell results of §7.

§2 The Lippmann-Schwinger formalism

The Hamiltonian method aims at the determination of stationary states, i.e.,
eigenstates of the Hamiltonian. Here we take the Yukawa-type model with scalar
coupling

Lint = gΦ2φ. (V-1)

Two types of particles are considered: “nucleons” (N, Φ) with mass m and
“mesons” (m, φ) with mass µ. The Hamiltonian H ≡ P− consists of a part
H0 which describes free particles and a part V which describes the interaction:

H = H0 + V. (V-2)

We shall denote the second term on the right-hand side as the potential. The
problem of constructing the Hamiltonian from the underlying Lagrangian has
been recently reviewed by Brodsky et al. [15]. Here we study two-nucleon states
only. Moreover, we neglect self-energy diagrams.

We consider H0, the kinematic part of the Hamiltonian in the two-nucleon
(2N) sector. In the instant-form, quantization is carried out on planes of constant
time (equal-time planes). Then we find for two particles of mass m and momenta
p and q, respectively,

H IF
0 =

√

~p 2 +m2 +
√

~q 2 +m2, (V-3)

which leads to both negative and positive energy solutions. It is well-known [40]
that in this form the overall momenta and the relative momenta are difficult to
separate.

In LF quantization the square root, and therefore the negative energy solu-
tions are absent. The interaction-free part of the two-body Hamiltonian is

HLF
0 =

p⊥
2
+m2

2p+
+
q⊥

2
+m2

2q+
, (V-4)

which demonstrates that positive energies occur for positive plus-momenta. More-
over, one can easily separate the motion of a many-particle system as a whole
from the internal motion of its constituents in the LF case [40].
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We shall focus on light-front quantization of our model in which the interaction
of the nucleons is due to meson exchange. We write the potential in the form

V = V1 + V2 + V3 + . . . (V-5)

where the subscript denotes the number of mesons simultaneously exchanged.
The potentials only contain irreducible diagrams to prevent double counting. V1

contains one-meson exchanges only:

V1 =

q

p’p

q’

= + . (V-6)

The irreducible diagrams contributing to V1 are depicted in Eq. (V-6). In these
diagrams time goes from left to right. The nucleons are denoted by solid lines, and
the mesons by dashed lines. Irreducible diagrams contributing to V2 are those dia-
grams of order g4 that cannot be separated into two pieces by cutting two nucleon
lines or two nucleon lines and one meson line only. In terms of Fock-space sectors
this means that V1 contains two-nucleon and one-meson intermediate states, and
V2 contains only two-nucleon two-meson intermediate states.

The potential V1 is a covariant object in case the external lines are on shell.
The meaning of the equality sign in Eq. (V-6) is that the full covariant amplitude
can be written as a sum of two LF time-ordered diagrams. Whereas the Feynman
diagram contains the propagator 1/((q′−q)2−µ2), the LF time-ordered diagrams
contain the energy denominator 1/(P− −H0), P

− being the parametric energy.
H0 is the sum of the kinetic energies of the particles in the intermediate state:

H0 =
∑

i

k⊥i
2
+m2

i

2k+
i

. (V-7)

The two diagrams contain θ-functions of the plus-component of the momentum
of the exchanged meson: one has the factor θ(p+ − q+), the other θ(q+ − p+).

In a Feynman diagram the external lines are on mass-shell and the initial and
final states have the same energy, which coincides with the parametric energy.
Then the minus-component of the total four-momentum of a two-particle state
satisfies the relation

P− = p− + q− = p′− + q′− =
p⊥

2
+m2

2p+
+
q⊥

2
+m2

2q+
. (V-8)

As the minus-component of the total momentum is the only dynamical momen-
tum operator, the other three components are conserved in any LF time-ordered
diagram. For instance, P+ = p+ + q+ = p′+ + q′+. This conservation law is very
important in LF quantization. It leads immediately to the spectrum condition:
in any intermediate state all massive particles have plus-momenta greater than
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zero and the sum of the plus-components of the momenta of the particles in that
state is equal to the total plus-momentum.

The expansion in Fock space does not coincide with an expansion in powers
of the coupling constant. This can easily be seen when one considers an approach
closely resembling the Lippmann-Schwinger method. The eigenstates |ψ > of the
Hamiltonian

H|ψ >= P−|ψ > (V-9)

are also solutions of the Lippmann-Schwinger equation

|ψ〉 = |φ〉 +
1

P− −H0
V |ψ〉, (V-10)

where |φ〉 specifies the boundary conditions. The formal solution of this equation
is

|ψ >=
∞
∑

i=0

(

1

P− −H0
V
)i

|φ > . (V-11)

An equation similar to Eq. (V-10) exists for the scattering amplitude:

T = V + TV . (V-12)

If one substitutes V1 for V in these equations, one obtains the ladder approxima-

tion. This approximation does not generate all diagrams; so one needs to add
corrections. At order g4 this correction is V2:

V2 = + . (V-13)

If one takes into account all the contributions to V from Eq. (V-5), then the full
scattering amplitude is

T = +

+ + + +

+ + + O(g6). (V-14)

In the ladder approximation one only takes V1 into account. Effectively, one then
describes the full interaction between two nucleons by

T = +

+ + + +

+ O(g6). (V-15)



§2 The Lippmann-Schwinger formalism 71

In this approximation intermediate states containing more than three particles
do not occur. This implies that time-ordered box diagrams with four particles in
the intermediate state are neglected, as we can see if we compare the expansions
in Eqs. (V-14) and (V-15). As the individual diagrams contributing to V2 are
not covariant, the sum of box diagrams produced by the ladder approximation is
not covariant.

Using equal-time quantization, 20 out of the 24 possible time-orderings have
intermediate states containing more than three particles. On the light-front, the
spectrum condition destroys many of the time-ordered diagrams. There are six
nonvanishing diagrams, of which four only contain two- and three-particle inter-
mediate states. One concludes that the one-meson exchange kernel neglects the
majority of the contributing time-ordered box diagrams in equal-time quantiza-
tion, whereas on the light-front most of the nonvanishing diagrams are taken into
account. This does not mean necessarily that in IF dynamics the ladder approx-
imation misses most of the amplitude, since the missing diagrams have smaller
sizes. The contribution of the missing diagrams needs to be investigated in order
to see how much the higher Fock sectors are suppressed.

There is one thing which seems to complicate matters on the light-front.
The individual LF time-ordered diagrams are not rotational invariant. When a
number of them is missing, the full amplitude will also lack rotational invariance,
as is mentioned often in the literature. This feature does not occur on the equal-
time plane, since there rotational invariance is a manifest symmetry. However, in
other types of Hamiltonian dynamics other symmetries are nonmanifest. In IF
Hamiltonian dynamics, e.g., boost invariance is not manifest. Therefore we refer
to breaking of covariance, which is a general feature of any form of Hamiltonian
dynamics, if one truncates the Fock-space expansion.

We would like to estimate the contribution of the missing diagrams, irrespec-
tive of the strength of the coupling. It is not possible to do this in a completely
general way, so we perform our numerical calculations for the box diagram only.
We assume that our results will be indicative for the higher orders too.

We define the fraction

RLF
4+ =

+
. (V-16)

The subscript 4 indicates that this variable includes all diagrams having at least
four particles in some intermediate state. For RIF

4+ one would have to add the
diagrams containing five- and six-particle intermediate states in the numerator,
as these give nonvanishing contributions in the instant-form. The diagram in the
denominator is the covariant diagram.

We shall show that the correction V2 is indeed much less important numer-
ically in LFD than in IFD. So the 2N2m-state is in LFD much less important
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Figure V-1: Kinematics for the box diagram. The arrows denote the momentum flow.

than in IFD. We conjecture that this property of LFD—that the Fock-state ex-
pansion converges much more rapidly than in IFD—persists in higher orders in
the coupling constant.

§3 The box diagram

In the previous section we saw that the lowest level at which breaking of covari-
ance is to be expected is the two-meson exchange diagram, also referred to as
the box diagram. The discussion is limited to scalar particles. Although a bound
state of scalar particles is not found in nature, we do not include spin because we
want to avoid in this investigation the complications due to instantaneous terms.

We look at the process of two nucleons with momenta p and q, respectively,
coming in and exchanging two meson of mass µ. The outgoing nucleons have
momenta p′ and q′. The kinematics is given in Fig. V-1. The internal momenta
are

k1 = k, (V-17)

k2 = k − p′, (V-18)

k3 = k − p− q, (V-19)

k4 = k − p. (V-20)

We have to keep in mind that these relations only hold for those components of
the momenta that are conserved.

§3.1 The covariant box diagram

The covariant box diagram is given by

=
∫

Min

−i d4k

(k1
2 −m2)(k2

2 − µ2)(k3
2 −m2)(k4

2 − µ2)
, (V-21)

where the imaginary parts iǫ of the masses are not written explicitly. If the
external states are on energy-shell, that is,

P− = p− + q− = p′− + q′−, (V-22)
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then the time-ordered diagrams are the same as those derived by integrating the
covariant diagram over LF energy k−. In that case we have

= + +

+ + + . (V-23)

The example of the box diagram with scalar particles of equal masses has been
worked out before by Ligterink and Bakker [16].

§3.2 The LF time-ordered diagrams

It is well-known [13, 26] how to construct the LF time-ordered diagrams. They
are expressed in terms of integrals over energy denominators and phase-space
factors. In the case of the box diagram, we need the ingredients given below.
The phase space factor is

φ = 16|k+
1 k

+
2 k

+
3 k

+
4 |. (V-24)

Without loss of generality we consider the case p+ ≥ p′+. The internal parti-
cles are on mass-shell; however, the intermediate states are off energy-shell. A
number of intermediate states occur. We label the corresponding kinetic energies
according to which of the internal particles, labeled by k1 . . . k4 in Fig. V-1, are
in this state:

H14 = q− +
k⊥1

2
+m2

2k+
1

− k⊥4
2
+ µ2

2k+
4

, (V-25)

H13 =
k⊥1

2
+m2

2k+
1

− k⊥3
2
+m2

2k+
3

, (V-26)

H12 = q′− +
k⊥1

2
+m2

2k+
1

− k⊥2
2
+ µ2

2k+
2

, (V-27)

H34 = p− − k⊥3
2
+m2

2k+
3

+
k⊥4

2
+ µ2

2k+
4

, (V-28)

H24 = q′− + p− +
k⊥2

2
+ µ2

2k+
2

− k⊥4
2
+ µ2

2k+
4

, (V-29)

H23 = p′− +
k⊥2

2
+ µ2

2k+
2

− k⊥3
2
+m2

2k+
3

. (V-30)

A minus sign occurs if the particle goes in the direction opposite to the direction
defined in Fig. V-1. All particles are on mass-shell, including the external ones:

q− =
q⊥

2
+m2

2q+
, q′− =

q′⊥
2
+m2

2q′+
,

p− =
p⊥

2
+m2

2p+
, p′− =

p′⊥
2
+m2

2p′+
. (V-31)
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Figure V-2: (a) Two particles come in along the x-axis. They scatter into the y − z plane over
an angle of π/2. The azimuthal angle is given by α. (b) Another viewpoint. The outgoing
particles go along the y-axis. The light-front vector ω makes an angle α with respect to the
z-axis.

We can now construct the LF time-ordered diagrams. Diagrams (V-32) and
(V-34) will be later referred to as trapezium diagrams, (V-33) as the diamond,
and (V-35) as the stretched box.

=
∫

d2k⊥
∫ p′+

0

−2π dk+

φ (P−−H14) (P−−H13) (P−−H12)
, (V-32)

=
∫

d2k⊥
∫ p+

p′+

−2π dk+

φ (P−−H14) (P−−H13) (P−−H23)
, (V-33)

=
∫

d2k⊥
∫ p++q+

p+

−2π dk+

φ (P−−H34) (P−−H13) (P−−H23)
, (V-34)

=
∫

d2k⊥
∫ p+

p′+

−2π dk+

φ (P−−H14) (P−−H24) (P−−H23)
, (V-35)

= = 0. (V-36)

The factor 2π matches the conventional factor i in Eq. (V-21). The last two
diagrams are zero because we consider p+ ≥ p′+ and therefore these diagrams
have an empty k+-range. If we take p+ ≤ p′+, which case will also occur in
forthcoming sections, diagrams (V-36) have nonvanishing contributions.

§4 A numerical experiment

We look at the scattering of two particles over an angle of π/2. In Fig. V-2 the
process is viewed in two different ways.

Fig. V-2a pictures the situation where the scattering plane is rotated around
the x-axis. The viewpoint in Fig. V-2b concentrates on the influence of the
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orientation of the quantization plane and is connected to explicitly covariant
LFD, as will be discussed in §8. Both viewpoints should render identical results,
since all angles between the five relevant directions (the quantization axis and
the four external particles) are the same. We choose for the momenta

pµ = (v0,+vx, 0, 0), (V-37)

qµ = (v0,−vx, 0, 0), (V-38)

p′µ = (v0, 0,−vy,−vz), (V-39)

q′µ = (v0, 0,+vy,+vz). (V-40)

indicating that we have chosen the fixed quantization plane x+ = 0 (Fig. V-2a).
The incoming and outgoing particles have the same absolute values of the mo-
menta in the c.m.s. Therefore,

|~v|2 = (vx)2 = (vy)2 + (vz)2 = |~v′|2. (V-41)

The Mandelstam variables are

s = (p+ q)2 = 4(v0)2, (V-42)

t = (p− p′)2 = −2|~v|2, (V-43)

u = (p− q′)2 = −2|~v|2. (V-44)

We are now ready to perform the numerical experiments for three cases, which
are described in §5-§7. In the experiments two parameters are focused on. We
shall vary the azimuthal angle α in the y-z-plane,

α = arctan
vz

vy
, (V-45)

and the incoming c.m.s.-momentum

v = vx. (V-46)

In the remainder we will omit the units for the masses, which are MeV/c2.

§5 Light-front versus instant-form dynamics

One of the claims of LFD is that higher Fock states are more strongly suppressed
than in IFD. We can investigate this claim for the box diagram easily in the
following case.

We take the external states on energy-shell, Eq. (V-22), such that the equality
(V-23) holds. At the same time we avoid on-shell singularities for the intermediate
states by giving the external particles a slightly smaller mass m′,

m′2 = p2 < m2, (V-47)
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Figure V-3: Time-ordered diagrams that contribute to R5. The diagrams in the first column
have five particles in the first intermediate state. The diagrams in the second column have
five particles in the last intermediate state, and the diagrams on the right have five-particle
intermediate states for both the first and third intermediate states.

such that we can still relate the amplitude to an S-matrix element.
The process we look at is described in the previous section and has two scalars

of mass m′ coming in along the x-axis, interacting, and scattered over a scattering
angle of π/2. Stretched boxes give maximal contributions (see next section) if
the quantization axis is in the scattering plane, which is the case if the azimuthal
angle α = π/2.

RLF
4+ is easily found by calculating the stretched box. RIF

4+ = RIF
4 + RIF

5 +
RIF

6 , however, has 20 nonzero contributions. As an example, we show the six
contributions to R5 in Fig. V-3.

This illustrates why RLF
5 = 0. All contributing diagrams contain vacuum

creation or annihilation vertices, which are forbidden by the spectrum condition.
There are 12 diagrams contributing to R6, and all contain vacuum creation or
annihilation vertices. Therefore, RLF

6 vanishes.
We calculated RIF

4+ by subtracting the four diagrams only containing three
particle intermediate states from the full sum. This sum can be obtained by
doing the covariant calculation, or by adding all LF time-ordered boxes. Our
results are given in Fig. V-4. We also calculated RIF

5+ .
We conclude that on the light-front contributions of higher Fock states are

significantly smaller than in IFD. In the limit v → 0, the ratio RLF
4+ goes to

zero, because the phase space becomes empty. However, in IFD there is a finite
contribution of RIF

4+ = 4.5% in this limit. Even if one includes five-particle
intermediate states, the LF is the winner by far.

Note that m′, given by Eq. (V-47), varies as a function of p2, and therefore
also as a function of v, but is independent of α. The deviation of m′ from m is
small: less than 2.3% for v < 200 and less than 9% for v < 400. As the deviation
of the mass m′ from m is only small, we are convinced that these results are
indicative for calculations above threshold. However, we do not want to do these
calculations, because then one needs to subtract the on-shell singularities of the
equal-time ordered boxes.
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sum 100 v ! 2005%10%15% R4+ R5+R4+IF IF LF

Figure V-4: LF time-ordered boxes for a scattering angle of π/2 as a function of the incoming
momentum v. We also give the ratios of boxes with at least four particles (RIF

4+ and RLF
4+ ) or

five particles (RIF
5+ , RLF

5+ = 0) in one of the intermediate states.

§6 Numerical results above threshold

As in §5, we look at the scattering of two particles over an angle of π/2. We focus
on LFD, and therefore we simply write R4 = RLF

4+ . We do not try to avoid on-shell
singularities by taking different masses for the internal and external nucleons.
Two nucleons of mass m = 940 scatter via the exchange of scalar mesons of mass
µ = 140. Again, there is a scalar coupling and no spin is included.

§6.1 Evaluation method

Contrary to the case considered in §5, now it is not straightforward to evaluate
the contributions of the LF time-ordered boxes, because the nonstretched boxes
contain on-shell singularities, thoroughly analyzed in §8. Here we briefly sketch
how we deal numerically with the singularities. Using the analysis of §8, we
identify the singularity Ising and rewrite the nonstretched boxes as

∫

d3k I =
∫

d3k(I − Ising) +
∫

d3k Ising. (V-48)

The integrand Ising has a simple algebraic form, such that the integration in
one dimension over the singularity can be done analytically, and the remaining
integral is regular. This integral is then done numerically by mathematica.
The integral over (I − Ising) was implemented in fortran. These two numbers
are added to give the results presented is §6.2 and §6.3.
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Figure V-5: Amplitudes above threshold from α = 0 to α = 2π. Here R4 is the maximal fraction
of the stretched box to the absolute value of the sum.
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§6.2 Results as a function of α

We shall now vary the direction of ~v′, given by the azimuthal angle α, however
not its length. Therefore the Mandelstam variables are independent of α, and
we expect the full amplitude to be invariant. We tested this numerically for a
number of values of v. In the region 0 ≤ α ≤ π, we used the formulas (V-32)
until (V-35). In the region π ≤ α ≤ 2π the diagrams (V-33) and (V-35) vanish.
However, then there are contributions from the diagrams in (V-36). The results
are shown in Fig. V-5. The results are normalized to the value of the covariant
amplitude. The contributions from the different diagrams vary strongly with the
angle α. Since the imaginary parts are always positive, they are necessarily in
the range [0, 1] when divided by the imaginary part of the covariant amplitude.
The real parts can behave much more eccentrically, especially for higher values
of the incoming c.m.s.-momentum v. An analysis of the α-dependence is given in
§8. Clearly, the LF time-ordered diagrams add up to the covariant amplitude; so
we see that in all cases we obtain covariant (in particular rotationally invariant)
results for both the real and imaginary parts.
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0 100 200v !

sum
100 v ! 2001%2%

3%4%
R4R<4

0 100 200 300 v ! 400

sum
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Figure V-6: Real (a) and imaginary (c) parts of the LF time-ordered boxes above threshold
for α = π/2 as a function of the momentum of the incoming particles v. The inset (b) shows
the ratio of the stretched box to the real part of the amplitude (Rℜ

4 ) and to the absolute value
(R4).

§6.3 Results as a function of v

We look at scattering in the x-z-plane (α = π/2), because in that case the
contributions from the stretched boxes are maximized. The results are shown in
Fig. V-6.

We depict the ratio of the stretched box, the diagram with two simultaneously
exchanged mesons, to both the real part and to the magnitude of the total ampli-
tude. Since the real part has a zero near v = 280, the ratio Rℜ

4 becomes infinite
at that value of the incoming momentum. Therefore R4 gives a better impression
of the contribution of the stretched box. We conclude from our numerical results
that the stretched box is relatively small at low energies, but becomes rather
important at higher energies.

§7 Numerical results off energy-shell

In the previous section, we tested covariance of the LF formalism for amplitudes
with on energy-shell external particles, by using the c.m.s., where P⊥ = p′⊥ +
q′⊥ = 0 and P z = p′z + q′z = 0. However, on the light-front the operator P z
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is dynamical, and the last equality does not hold anymore off energy-shell, as
one can easily verify in the following way. Consider the case of a bound state
with mass M < 2m, where M is related to the parametric LF energy P− by the
mass-shell relation

P− =
M2 + P⊥2

2P+
. (V-49)

The bound state is off energy-shell and its mass M is smaller than the sum of
the constituent masses. Therefore we have

p′− + q′− > P−. (V-50)

The plus and transverse momenta are kinematic; so

p′+ + q′+ = P+, (V-51)

p′⊥ + q′⊥ = P⊥. (V-52)

Adding Eqs. (V-50) and (V-51) gives

p′z + q′z > P z. (V-53)

If P z = 0, then Eq. (V-53) implies that p′z + q′z > 0. Therefore the two outgoing
particles cannot have exactly opposite momenta as in Eqs. (V-39) and (V-40).
In terms of the explicitly covariant LFD, introduced in §8, this reflects the fact
that the off energy-shell relation between p′ + q′ and P contains an extra four-
momentum like in Eq. (V-99), below. What was the reason that we chose opposite
momenta in the previous sections in the first place? Our reason was that we
wanted to have a manifest symmetry of the amplitude, because it is obvious that
the Mandelstam variables s, t, and u given by Eqs. (V-42)-(V-44) remain the
same under the rotations we investigated.

In the present case where the states are taken off energy-shell, the full am-
plitude is not covariant. We can, however, study this breaking of covariance by
comparing amplitudes that satisfy the conditions (V-50)-(V-53) and, at the same
time, choosing the scattering angle θ, the plus-momentum p′+ and the magnitude
of p′⊥ in such a way that the Mandelstam variables s, t, and u remain constant,
while the azimuthal angle α is varied. In the limiting case that P− is equal to
p′− + q′−, the amplitude becomes on energy-shell and the dependence on α in the
full amplitude drops.

The variation of the amplitude with α can be compared to the relative con-
tribution of the stretched boxes. We shall do that in what follows, but first we
describe in detail the choice of momenta for the particles.

§7.1 Determination of the momenta

As in the previous sections, we shall fix the direction of the incoming particles,
as in Eqs. (V-37) and (V-38), and vary the direction of the outgoing particles.
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For on energy-shell amplitudes, there are only two independent Mandelstam vari-
ables. Off energy-shell, more independent Lorentz invariant objects are found.
We construct the momenta in such a way that all six inner products between
them are constant. We first look at p · q′ and p ·p′, and later we verify if the
conditions found ensure the invariance of the four others:

p·q′ = p+q′− + q′+p− − p⊥ ·q′⊥ (V-54)

= xpP
+ q′⊥

2
+m2

2(1−xp′)P+
+ (1−xp′)P

+p
⊥2

+m2

2xpP+
− p⊥·q′⊥,

p·p′ = p+p′− + p′+p− − p⊥·p′⊥ (V-55)

= xpP
+ q

′⊥2
+m2

2xp′P+
+ xp′P

+p
⊥2

+m2

2xpP+
− p⊥·p′⊥.

We have introduced the fractions

xp = p+/P+, xp′ = p′+/P+. (V-56)

Since the perpendicular momenta are conserved, we have in the c.m.s. p′⊥ = −q′⊥,
so the inner products of the perpendicular momenta can be written as

p⊥·p′⊥ = |p⊥||p′⊥| cos θ, (V-57)

p⊥·q′⊥ = −|p⊥||p′⊥| cos θ, (V-58)

where θ is the scattering angle. We can now solve Eqs. (V-54)-(V-57) for xp′, |p′⊥|
and θ. There are many curves satisfying these conditions. For uniqueness, we
demand that the curve go through the point in which xp′ = xp = 1/2, |p′⊥| = |p⊥|,
and θ = π/2. We find that the curve is then parametrized by

θ = π/2, (V-59)

p′⊥
2
+m2

xp′(1−xp′)
= 4(p⊥

2
+m2). (V-60)

Writing down the other four inner products between the four-vectors of the
external momenta, we checked that they are invariant if the momenta satisfy
Eqs. (V-59) and (V-60). Because the particles come in along the x-axis, the
above relations define an ellipse in the y-z-plane. In the case of IFD these ellipses
reduce to circles with their center at the origin and radius v. Our procedure to
obtain numerical values for the momenta was the following. We take p′x = 0 and
varied p′y = |p⊥| cosα. Now Eq. (V-60) gives us xp′. All components of p′ and
q′ are then easily found. In Fig. V-7 we have indicated the y and z-components
of the momenta of the external particles for the two cases we investigate. The
z-component, not being a LF variable, does not enter the computer code. We
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Figure V-7: Momenta p′ and q′ of the outgoing particles (thick line) in the scattering plane
(horizontal p′y and q′y; vertical: p′z and q′z) for two cases: (a) v = 40 and (b) v = 200. The
momentum p′ + q′ is indicated by the dot. As a reference we have drawn the locus for on
energy-shell external particles (thin line): a circle centered at the origin.

determined it from the relation p′z = (p′+−p′−)/
√

2 with the purpose of showing
the effect of off-shellness in this numerical experiment. We see that Eqs. (V-52)
and (V-53) hold. The off energy-shell momenta form an ellipse. However, the
deviation from a circle with radius v is hardly visible.

§7.2 Calculation of the amplitude

We did numerical experiments for particles that are weakly bound: 2m −M =
2 MeV/c2. In Fig. V-8 we show the contributions of the different boxes and
their sum as we vary the angle α. The calculations are the same as in the
previous section, using the formulas (V-32)-(V-36), except that the momenta of
the outgoing particles have changed such that (V-59) and (V-60) are satisfied.
As there does not exist a covariant amplitude in the off energy-shell case, we
normalized the curves shown by dividing the amplitudes by their sum at α = π/2.

In Fig. V-8 we see the consequences of the off energy-shell initial and final
states. Condition (V-22) is violated; therefore, Eq. (V-23) does not hold and
breaking of covariance can be expected. We see that the contributions of the
higher Fock states R4 are smaller than the effect of the off-shellness Roff , defined
as the largest difference between two full amplitudes at arbitrary values of α. This
is confirmed in Fig. V-9, in which α is fixed and the incoming c.m.s-momentum
v is varied.

From Fig. V-8 we infer that the full amplitude is maximal at α = 0 and
α = π. The minimum is reached at α = π/2 and α = 3π/2. Therefore the
maximal breaking of covariance of the amplitude can be calculated by taking the
difference of the total sum at the angles α = 0 and α = π/2. We see that at
typical values for incoming momentum (v ≤ 50) Roff is small, even smaller than
R4. However, at higher momenta it dominates over the stretched box. In this
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(a) v = 40: R4 = 0:11% and Ro� = 0:08%.
0.20.40.60.81 0 �=2 � 3�=2 �! 2�

sum
(b) v = 200: R4 = 2:04% and Ro� = 5:64%.

0.20.40.60.81 0 �=2 � 3�=2 �! 2�
sum

Figure V-8: The LF time-ordered boxes as a function of α.
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0 100 200 300 v ! 400
sum

100 v ! 2002%5% Ro� R4
Figure V-9: LF time-ordered boxes as a function of v for α = π/2. The inset shows the
maximum contributions of the stretched box and the maximal breaking of covariance.

region we see that the stretched box contributions remain small.
A detailed explanation of the behavior of the off energy-shell amplitudes is

given in §9.

§8 Analysis of the on energy-shell results

The angle dependence of the LF time-ordered amplitudes found numerically can
be understood analytically. The variation of the LF amplitudes with the angle
α means that they have singularities in this variable, either at finite values of
α or at infinity. They should disappear when they are summed to give the
covariant amplitude. These singularities can be most conveniently analyzed in
the explicitly covariant version of LFD (see for a review [12]). In this version
the orientation of the light-front is given by the invariant equation ω·x = 0.
The amplitudes are calculated by the rules of the graph technique explained in
Ref. [12]. After a transformation of variables, these amplitudes coincide with
those given by ordinary LFD. However, they are parametrized in a different
way. The dependence of the amplitudes on the angle α means, in the covariant
version, that they depend on the four-vector ω determining the orientation of the
LF plane: M = M(p, q, p′, q′, ω). Hence, besides the usual Mandelstam variables
s (V-42) and t (V-43) the amplitude M depends on the scalar products of ω with
the four-momenta. Since ω determines the direction only (the theory is invariant
relative to the substitution ω → aω), an amplitude should depend on the ratios
of the scalar products of the four-momenta with ω. Hence [41]

M = M(s, t, xp, xp′), (V-61)
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0

Figure V-10: Physical region in the xp-xp′ -plane for a scattering angle θ = π/2. If the incoming
particles are in the x-y-plane the physical region reduces to the thick line at xp = 1/2.

where

xp =
ω·p

ω·(p+ q)
, xp′ =

ω·p′
ω·(p+ q)

. (V-62)

Formulas (V-62) coincide with the definitions (V-56) if we use the z-axis as the
quantization axis. The ω-dependence is reduced to two scalar variables xp and xp′ ,
since the direction of ~ω is determined by two angles. Hence, this amplitude should
have singularities in the variables xp and xp′. Their positions will be found below.
The amplitude corresponding to the sum of all time-ordered diagrams should not
depend on xp and xp′.

Let us find the physical domain of the variables xp and xp′, corresponding to
all possible directions of ~ω for fixed s, t. In the c.m.s., the variables Eqs. (V-62)
are represented as

xp =
1

2
− v√

s
ω̂ ·p̂, xp′ =

1

2
− v√

s
ω̂ ·p̂′, (V-63)

where, e.g., ω̂·p̂ is the scalar product of the unit vectors ω̂ = ~ω/|~ω| and p̂ = ~p/|~p|
in three-dimensional Euclidian space, and v =

√

s/4 −m2 is the momentum of

the particle in the c.m.s. The Eqs. (V-63) determine an ellipse in the xp-xp′-plane.
Its boundary is obtained when ~ω is in the scattering plane, that is, n̂·p̂ = cos γ or
n̂·p̂ = cos(γ−θ), where γ is the angle between ~p and ~ω in coplanar kinematics and
θ is the scattering angle in the c.m.s. The case when ~ω is out of the scattering
plane corresponds to the interior of the ellipse. For a scattering angle θ = π/2,
the ellipse turns into a circle, shown in Fig. V-10.

For the kinematics shown in Fig. V-2 and Eqs. (V-37)-(V-40), i.e., when ~ω ⊥ ~p,
it follows from Eqs. (V-63) that the value xp is fixed: xp = 1

2
, whereas for a given
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α we obtain

xp′ =
1

2
− v

2v0
sinα, (V-64)

with v0 =
√
m2 + v2. So xp′ varies along a straight line when ω̂ is rotated in the

y-z-plane. The bounds of the physical region of xp′ are

xmin =
1

2
− v

2v0

, xmax =
1

2
+

v

2v0

. (V-65)

When 0 ≤ α ≤ π/2, xp′ moves from 1/2 to xmin. When π/2 ≤ α ≤ π, xp′ moves
in the opposite direction in the same interval. This explains why all the curves in
Figs. V-5 and V-8 in the interval 0 ≤ α ≤ π are symmetric relative to α = π/2.

When π ≤ α ≤ 3π/2, xp′ moves from 1/2 to xmax and, finally, when 3π/2 ≤
α ≤ 2π, it goes back in the same interval. As in the previous paragraph, this
explains why all the curves in Figs. V-5 and V-8 in the interval π ≤ α ≤ 2π are
symmetric relative to α = 3π/2. When α = π/2 and 3π/2, the values of xp′ are
on the boundary of the physical region.

Note also that the amplitudes for the trapezium (dashed and solid curves in
Figs. V-5 and V-8) are evidently obtained by the replacement p ↔ q, p′ ↔ q′,
which, according to the definition in Eq. (V-62), corresponds to xp′ → 1 − xp′ .
This is the same as the replacement α → 2π − α in Eq. (V-64). Therefore the
curves for the other trapezium, when α goes from 2π to 0, are identical to the
curves for the trapezium, when α increases from 0 to 2π. The same is true for
the other diagrams (diamonds and stretched boxes).

§8.1 Trapezium

The method of finding the singularities of the LF diagrams was developed in [41].
Here we restrict ourselves to the example of the diagram (V-32). Its counterpart
in the explicitly covariant LFD is shown in Fig. V-11. The dotted lines in
this figure are associated with fictitious particles (spurions), with four-momenta
proportional to ω. The four-momenta of the particles (the spurions not included)
are not conserved in the vertices. Conservation is restored by taking into account
the spurion four-momentum. In the ordinary LF approach, this corresponds to
nonconservation of the minus-components of the particles. The spurions make
up for the difference.

According to the rules of the graph technique [12], one should associate with a
particle line with four-momentum p and mass m the factor θ(ω·p)δ(p2 −m2) and
associate with the spurion line with four-momentum ωτi the factor 1/(τi − iǫ).
Then one integrates, with measure d4ki/(2π)3, over all the four-momenta ki not
restricted by the conservation laws in the vertices and over all τi. The expression
for the amplitude of Fig. V-11 is

=
∫

θ(ω·k)δ(k2 −m2)θ(ω·(p′ − k)) δ((p′ − k + ωτ1)
2 − µ2)
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Figure V-11: Trapezium in explicitly covariant LFD.

×θ(ω·(p+ q − k)) δ((p+ q − k + ωτ2)
2 −m2)θ(ω·(p− k))δ((p− k + ωτ3)

2 − µ2)

× dτ1
(τ1 − iǫ)

dτ2
(τ2 − iǫ)

dτ3
(τ3 − iǫ)

d4k

(2π)3
. (V-66)

Like in Eq. (V-21), we omit the coupling constant. Performing the integrals over
τi and dk0 in Eq. (V-66) by means of the δ-functions, we get

=
∫

θ(ω·(p′ − k))

µ2 − (p′ − k)2

θ(ω·(p+ q − k))

m2 − (p+ q − k)2

θ(ω·(p− k))

µ2 − (p− k)2
θ(ω·k) d3k

2εk(2π)3
.

(V-67)

By transformation of variables (see for the details appendix B of Ref. [12]), ex-
pression (V-67) can be transformed such that it exactly coincides with Eq. (V-32).

For Feynman amplitudes the method to find their singularities was developed
by Landau [42]. A method very similar to that one can be applied to time-ordered
amplitudes. If we would omit for a moment the θ-functions in Eq. (V-67) and
would not take into account that k2 = m2, for finding the singularities we should
construct the function ϕ1 = α1(µ

2 − (p′ − k)2) +α2(m
2 − (p+ q− k)2) +α3(m

2 −
(p − k)2) formed from the denominator of Eq. (V-67). The singularities of the
trapezium are found by putting to zero the derivatives of ϕ1 with respect to α1−3

and with respect to k. However, the trapezium may have singularities corre-
sponding to a coincidence of the singularities of its integrand with the boundary
of the integration domain caused by the presence of the θ-functions. So we must
find a conditional extremum. The restrictions can be taken into account using
Lagrange multipliers [41]. Hence we should consider the function

ϕ = α1(µ
2 − (p′ − k)2) + α2(m

2 − (p+ q − k)2)

+α3(µ
2 − (p− k)2) + α4(k

2 −m2) + γ1ω·(k − p′), (V-68)

where α4 and γ1 are the Lagrange multipliers. One should also consider the
functions obtained from ϕ at α1 = 0, subsequently at α2 = 0, at α3 = 0, at
α1 = α2 = 0, et cetera. One should not consider the function obtained from
Eq. (V-68) by α4 = 0, since the integral (V-67) contains the three-dimensional
integration volume d3k, and the condition k2 = m2 cannot be removed. Therefore
there is no need to introduce the term γ2ω·k, since the k2 = m2 condition prevents
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this term from being zero and, hence, does not impose any restrictions. The case
γ1 = 0 reproduces the singularities of the Feynman graph. Therefore below we
shall consider the case γ1 6= 0 resulting in the singularities in the variables xp

and xp′ . We suppose that ω·p ≥ ω·p′. This corresponds to the condition p+ ≥ p′+

of §3. In the kinematics shown in Fig. V-2 this means that xp′ ≤ 1/2 and
0 ≤ α ≤ π. In this case, the second and third θ-functions in Eq. (V-67) do
not give any restrictions and can be omitted. Therefore we omit also the term
γ3ω·(p− k) + γ4ω·(p+ q − k).

The derivatives of ϕ with respect to k, the α’s, and γ1 give

∂ϕ/∂k = α12(p′ − k) + α22(p+ q − k) + α32(p− k) + α42k + γ1ω = 0, (V-69)

with

(p′ − k)2 = µ2, (p+ q − k)2 = m2,

(p− k)2 = µ2, k2 = m2, ω·k = ω·p′. (V-70)

We multiply Eq. (V-69) in turn by (p′ − k), (p+ q − k), et cetera, and get

(V-69) × p′ − k : α12µ
2 + α2µ

2 + α3(2µ
2 − t) − α4µ

2 = 0,

(V-69) × p+ q − k : α1µ
2 + α22m

2 + α3µ
2 + α4(s− 2m2) + γ1(1 − xp′) = 0,

(V-69) × p− k : α1(2µ
2 − t) + α2µ

2 + α32µ
2 − α4µ

2 + γ1(xp − xp′) = 0,

(V-69) × k : −α1µ
2 + α2(s− 2m2) − α3µ

2 + 2α4m
2 + γ1xp′ = 0,

(V-69) × ω : α2(1 − xp′) + α3(xp − xp′) + α4xp′ = 0.
(V-71)

These equations have a nontrivial solution if and only if
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= 0. (V-72)

Eq. (V-72) is quadratic in xp′ . Its solution is simple but lengthy. We show it for
the particular case of the kinematics of Fig. V-2 supposing that the particles in
the c.m.s. have momenta v. In this case s and t are given by Eqs. (V-42) and
(V-43). The solution of Eq. (V-72) is

x0
p′ =

1

2
± v

2v0

√
2µ4 + 8µ2v2 + 4v4

√
µ4 + 8µ2v2 + 4v4

. (V-73)
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The position of the singularity in the variable xp′ is denoted by x0
p′. According

to Landau [42] the behavior in the vicinity of x0
p′ should be either logarithmic,

proportional to |xp′ − x0
p′|β, or proportional to |xp′ − x0

p′|β log(xp′ − x0
p′), where β

is a noninteger number.
When µ≪ v we find from Eq. (V-73)

xp′ =
1

2
± v

2v0
(1 +

µ4

8v4
). (V-74)

Comparing with Eq. (V-65), we see that at small µ or at large v the singularities
come closer to the physical region of xp′ . We will see below that this will be a
property of all the singularities depending on µ and v. This explains the numerical
results, showing that with an increase of v the graphs of the amplitudes versus α
become more sharply peaked.

Now consider the case when one of the α’s is zero. Let α1 = 0. Then
Eq. (V-68) is reduced to

ϕ = α2(m
2−(p+q−k)2)+α3(µ

2−(p−k)2)+α4(k
2−m2)+γ1ω·(k−p′). (V-75)

Similarly to the previous case, we get an equation for the singularities, which can
be obtained from Eq. (V-72) by deleting the first row and column:
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Under the given kinematical conditions, its solution with respect to xp′ is

x0
p′ =

1

2
± µ

4v

√

µ2 + 4v2

m2 + v2
. (V-77)

In the limit µ → 0 or v → ∞, these singularities are again approaching the
physical region.

Let α2 = 0. The singularity condition is obtained from Eq. (V-72) by deleting
the second row and column:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2µ2 (2µ2 − t) −µ2 0

(2µ2 − t) 2µ2 −µ2 (xp − xp′)

−µ2 −µ2 2m2 xp′

0 (xp − xp′) xp′ 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (V-78)
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Its solution reads

x0
p′ =

xpµ(4m2µ− µ3 − µt± 2
√
t
√
tm2 + µ4 − 4m2µ2)

4m2µ2 − (t− µ2)2
. (V-79)

In the limit v → ∞, it is simplified:

x0
p′ = − µ2

4v2
± µm

2v2
. (V-80)

Let α3 = 0. The singularity condition is obtained from Eq. (V-72) by deleting
the third row and column:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2µ2 µ2 −µ2 0

µ2 2m2 (s− 2m2) (1 − xp′)

−µ2 (s− 2m2) 2m2 xp′

0 (1 − xp′) xp′ 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (V-81)

The determinant in Eq. (V-81) can be evaluated:

4sx2
p′ − 4sxp′ + 4m2 − µ2 = 0. (V-82)

The solutions of Eq. (V-82) are

x0
p′ =

1

2
±
√

v2 + µ2/4

2v0
. (V-83)

For µ→ 0 they also approach the boundary of the physical region of xp′ .
Now consider the cases when a number of coefficients are zero. Let α1 = α3 =

0. The singularity condition can be obtained from Eq. (V-72) by deleting the
first and third rows and columns:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2m2 (s− 2m2) (1 − xp′)

(s− 2m2) 2m2 xp′

(1 − xp′) xp′ 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (V-84)

This equation reduces to
x2

p′ − xp′s+m2 = 0. (V-85)

Its solutions are

x0
p′ =

1

2
+

v

2v0
= xmax, x0

p′ =
1

2
− v

2v0
= xmin. (V-86)

Since we consider the interval 0 ≤ α ≤ π corresponding to xmin ≤ xp′ ≤ 1/2, the
singularity at x0

p′ = xmax is beyond the physical region, whereas the singularity
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at x0
p′ = xmin is just on the boundary of the physical region. The amplitude in

this point gets an imaginary part:

Im 6= 0 at xp′ > xmin, (V-87)

Im = 0 at xp′ = xmin. (V-88)

Eq. (V-88) corresponds to α = π/2. This explains why all the dashed curves of
the imaginary parts in Fig. V-5 go through zero at the point α = π/2.

Now put α1 = α2 = 0. The corresponding singularity condition is obtained
from Eq. (V-72) by deleting the first and second rows and columns:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2µ2 −µ2 (xp − xp′)

−µ2 2m2 xp′

(xp − xp′) xp′ 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (V-89)

Eq. (V-89) reads
x2

p′m
2 − xp′xp(2m

2 − µ2) + x2
pm

2 = 0. (V-90)

Its solution is

x0
p′ =

xp

2m2

(

2m2 − µ2 ± iµ
√

4m2 − µ2

)

. (V-91)

These two singularities are fixed points in the complex plane. At xp = 1/2 and
µ ≪ m, they are approaching the point xp′ = 1/2 in the physical region, i.e.,
α = 0 and α = π.

The case α2 = α3 = 0 leads to the singularity condition obtained from
Eq. (V-72) by deleting the second and third rows and columns:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2µ2 −µ2 0

−µ2 2m2 xp′

0 xp′ 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (V-92)

It gives x0
p′ = 0. This is a fixed singularity in the nonphysical region.

Above, we have considered the region ω·p ≥ ω·p′. In the region ω·p ≤ ω·p′
the integration domain is restricted by the step function θ(ω·(p− k)) instead of
θ(ω·(p′−k)) in Eq. (V-67). The integrals defining these amplitudes define different
analytic functions depending on the region considered. In the point xp′ = 1/2,
i.e., at α = 0 and α = π, the values of the functions coincide, but their analytic
behavior is different.

This can indeed be seen in Fig. V-5. The slopes at α = 0 and α = π are
different.
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Figure V-12: Diamond in explicitly covariant LFD.

§8.2 Diamond

The diamond corresponding to Eq. (V-33) is shown in Fig. V-12. The analytical
expression is

=
∫

θ(ω·k)δ(k2 −m2)θ(ω·(k − p′))δ((k − p′ + ωτ1 − ωτ2)
2 − µ2)

×θ(ω·(p+ q − k))δ((p+ q − k + ωτ2)
2 −m2)θ(ω·(p− k))δ((p− k + ωτ3)

2 − µ2)

× dτ1dτ2dτ3
(τ1 − iǫ)(τ2 − iǫ)(τ3 − iǫ)

d4k

(2π)3
. (V-93)

Performing the integrations in Eq. (V-93) over τi, we get

=
∫

θ(ω·(k − p′))

µ2 − (k − p′)2 +
ω·(k − p′)

ω·(p+ q − k)
[m2 − (p+ q − k)2]

× θ(ω·(p+ q − k))

m2 − (p+ q − k)2

θ(ω·(p− k))

µ2 − (p− k)2
θ(ω·k) d3k

2εk(2π)3
. (V-94)

We still suppose that ω·p > ω·p′. However, now, in contrast to the trapezium,
ω·p′ ≤ ω·k ≤ ω·p, and both restrictions have to be taken into account.

In order to find the singularities, one should consider the extremum of the
function:

ϕ = α1

{

µ2 − (k − p′)2 +
ω·(k − p′)

ω·(p+ q − k)
(m2 − (p+ q − k)2)

}

+α2

{

m2 − (p+ q − k)2
}

+ α3

{

µ2 − (p− k)2
}

+ α4(k
2 −m2)

+γ1ω·(k − p′) + γ2ω·(k − p). (V-95)

At ω·p′ = ω·p, i.e., at α = 0 and α = π, the integration domain vanishes and
the diamond becomes zero, as shown in Fig. V-5. It remains zero in the interval
π ≤ α ≤ 2π.

§8.3 Stretched box

The stretched box, corresponding to Eq. (V-35), is shown in Fig. V-13. The
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Figure V-13: Stretched box in explicitly covariant LFD.

analytical expression is

=
∫

θ(ω·k)δ(k2 −m2)θ(ω·(k − p′))δ((k − p′ + ωτ2 − ωτ3))
2 − µ2)

× θ(ω·(p+ q − k))δ((p+ q − k + ωτ1 + ωτ3 − ωτ2)
2 −m2)

× θ(ω·(p− k))δ((p− k + ωτ3)
2 − µ2)

dτ1dτ2dτ3
(τ1 − iǫ)(τ2 − iǫ)(τ3 − iǫ)

d4k

(2π)3
.

(V-96)
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(b)
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p’

ωτ’

(a) (c)

Figure V-14: Off energy-shell amplitudes in explicitly covariant LFD: (a) The trapezium. (b)
The diamond. (c) The stretched box. The external momenta are the same for all diagrams.

Performing the integrations in Eq. (V-96) over τi, we get

=
∫ θ(ω·(p+ q − k))

m2 − (p + q − k)2 +
ω·(p+ q − k)
ω·(k − p′)

[µ2 − (k − p′)2]
(V-97)

× θ(ω·(k − p′))

µ2 − (k − p′)2 +
ω·(k − p′)
ω·(p− k)

[µ2 − (p− k)2]

θ(ω·(p− k))

µ2 − (p− k)2
θ(ω·k) d3k

2εk(2π)3
.

In order to find the singularities, one must consider the extremum of the function:

ϕ = α1

{

m2 − (p+ q − k)2 +
ω·(p+ q − k)

ω·(k − p′)
(µ2 − (k − p′)2)

}

+α2

{

µ2 − (k − p′)2 +
ω·(k − p′)

ω·(p− k)
(µ2 − (p− k)2)

}

(V-98)

+α3{µ2 − (p− k)2} + α4(k
2 −m2) + γ1ω·(k − p′) + γ2ω·(k − p).

Calculating the derivative of Eqs. (V-75), (V-95), and (V-98), for example,
with respect to α1−4, at γ1 = γ2 = 0, one finds identical equations determining
the singularities. These do not depend on xp and xp′ , and coincide with the ones
of the Feynman graph. Similarly, one can see that any singularity depending on
xp and xp′ cannot appear in a separate diagram only. It appears at least in two
amplitudes. These singularities cancel each other in the sum of the amplitudes.

§9 Analysis of the off energy-shell results

The off energy-shell amplitude is shown graphically in Fig. V-14. It contains
incoming and outgoing spurion lines with the momenta ωτ and ωτ ′, respectively.
The conservation law has the form

p+ q − ωτ = p′ + q′ − ωτ ′ = P. (V-99)

From Eq. (V-99) one can infer that, if ~P = 0, then ~p′ + ~q′ 6= 0, as was indicated
for the z-components in §7. To parametrize the off energy-shell amplitude, we
introduce different initial and final Mandelstam variables s

s = (p+ q)2, s′ = (p′ + q′)2, (V-100)
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and the total mass squared:

M2 = (p+ q − ωτ)2 = (p′ + q′ − ωτ ′)2. (V-101)

So, in general, the off energy-shell amplitude is parametrized as

M = M(s, s′,M2, t, xp, xp′). (V-102)

The on energy-shell amplitude Eq. (V-61) is obtained from Eq. (V-102) by the
substitution s = s′ = M2. One can also consider the half off energy-shell ampli-
tude with one incoming or outgoing spurion line. It is obtained from Eq. (V-102)
by the substitutions s = M2 6= s′ or s′ = M2 6= s.

In the case of the trapezium, Fig. V-14a, the external spurion lines enter and
exit from the diagram at the same points as the momenta p and p′. So they can
be incorporated by the replacement

p→ p− ωτ, p′ → p′ − ωτ ′. (V-103)

This corresponds to new masses of the initial and final particles for the bottom
line:

m2
i = (p− ωτ)2 = m2 − xp(s−M2),

m2
f = (p′ − ωτ ′)2 = m2 − xp′(s

′ −M2). (V-104)

With these new masses, one can repeat the calculations of §8.1 and find the
singularities of the off energy-shell amplitude for the trapezium. The masses of
the intermediate particles are not changed.

For other diagrams, both for the diamond and the stretched box, in contrast
to the trapezium, the spurion line enters in the point where the momenta q′ go
out from the graph. This means that the calculation has to be done with the
following external mass of this particle:

m′2 = m2 → (q′ − ωτ)2 = m2 − (1 − xp′)(s
′ −M2), (V-105)

whereas the mass of the particle with momentum p′ is m.
As in the case when all masses are equal, the sum of all time-ordered graphs

with masses different from the internal ones, but the same in all the time-ordered
graphs, would not depend on ω. However, now we take the sum of the graphs
with different external masses in different particular graphs. This sum cannot
be obtained by the time-ordering of a given Feynman graph. In this case the
ω-dependence is not eliminated in the sum of all the graphs, and the exact off
energy-shell amplitude in a given order still depends on ω. An example of this
dependence is shown in Fig. V-8.

The off-shell amplitude is not a directly observable quantity. It may enter as
part of a bigger diagram. Therefore, the off shell amplitude may depend on ω.
This ω-dependence is not forbidden by covariance and, hence, does not violate
it. On energy-shell, this dependence disappears.
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§10 Conclusions

If sufficient caution is exercised, invariance of S-matrix elements can be main-
tained in Hamiltonian formulations of field theory. A necessary condition to be
fulfilled is that all Fock sectors included in the Feynman diagrams that contribute
to a perturbative approximation of the S-matrix be retained. For the specific case
of scalar field theory at fourth order in the coupling constant, we have determined
the magnitude of the breaking of covariance if only the diagrams generated by
the ladder approximation to Hamiltonian dynamics are included. The remain-
ing terms, the stretched boxes, were found to contribute a small fraction, less
than 2% for small to intermediate c.m.s. momenta, of the total amplitude. This
fraction is, however, increasing with energy.

It was found, in a calculation closely approximating the first one, that the
breaking of Lorentz invariance is much larger in IFD than in LFD, confirming
quantitatively what has been claimed in the literature.

In both cases we determined quantitatively the dependence of the six LF time-
ordered diagrams on the orientation of the light-front. We verified that, although
the individual diagrams depend strongly on the orientation, their sum does not,
as it should not. This dependence of individual diagrams may be interpreted as
a breaking of rotational invariance.

Having established numerically that invariance of the S-matrix elements is
obtained only if all Fock sectors relevant to a certain order in perturbation theory
are included, we extended our investigation to amplitudes that are off energy-
shell. Such amplitudes are not S-matrix elements, calculated between asymptotic
states, from −∞ to +∞ in time. They are elements of an S-matrix calculated
for finite light-front time, i.e., defined on a light-front in the interaction region,
not moved to ±∞ [12]. Therefore they depend on the orientation of this light-
front. They either occur as parts of larger diagrams that are invariant, or in
the calculation of LF wave functions. Not being invariant, the sum of the six
LF time-ordered diagrams corresponding to the box is expected to depend on
the orientation of the light-front. We found the variation of the sum of these
six diagrams to grow more strongly with increasing relative momentum than the
fraction carried by the stretched boxes.

All these results point to the conclusion that for low and intermediate mo-
menta, e.g., those relevant for the bulk of the deuteron wave function, the higher
Fock components are very small and are expected to play a minor role in LFD.
We conjecture that this conclusion remains essentially valid for higher orders in
perturbation theory.

Two remarks are in order here. First, if bound or scattering states at high
values of the relative momentum are to be calculated, the higher Fock states
will become much more important. Second, in the present work we neglected
spin. It remains to be seen to what extent the special effects of spin, notably
instantaneous propagators, will influence our conclusions.
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A final point concerns the dependence of the individual diagrams on the ori-
entation of the light-front. By an analysis very close to the Landau method for
Feynman diagrams, we were able to explain all the peculiarities of the angular
dependence in terms of the occurrence and position of singularities of the time-
ordered diagrams as a function of the angles and their locations. In particular,
the symmetries of the angular dependence and the cusps showing up at specific
orientations could be explained fully.



VI

Summary and conclusions

I often use the analogy of a chess game: one can learn all the rules of

chess, but one doesn’t know how to play well. The present situation

in physics is as if we know chess, but we don’t know one or two rules.

But in this part of the board where things are in operation, those one

or two rules are not operating much and we can get along pretty well

without understanding those rules. That’s the way it is, I would say,

regarding the phenomena of life, consciousness and so forth.

Richard Feynman [43]

With this thesis we hope to bring the light-front formulation of Hamiltonian
dynamics closer to its final goal; the calculation of the spectrum of bound states
such as small nuclei and hadrons. In particular, we hope to contribute to this
advance by supplying a better understanding of the basics of LFD.

In Chapter I we have explained some of the pros and cons of the use of LFD.
A Hamiltonian method is intuitively appealing. However, a general feature of
Hamiltonian methods is that manifest covariance is lost. Our work deals with
two topics in LFD, both concerning covariance: equivalence of light-front and
covariant perturbation theory, and the entanglement of Fock-space expansion
and covariance.

Equivalence of light-front and covariant perturbation theory

The first part of this thesis is devoted to the proof of equivalence between co-
variant perturbation theory and LFD in the Yukawa model. The Yukawa model
is explained in Chapter II, where also its longitudinal and transverse divergences
are classified. The proof takes places at the diagrammatic level; following Kogut
and Soper [13] a covariant diagram is integrated over the LF energy component
k−. For convergent diagrams a rigorous proof of the construction of all LF time-
orderings is given by Ligterink [16, 44]. In the case of longitudinal divergences,
i.e., when the integration over k− is divergent, this proof needs to be extended.
This is done in Chapter III where also the concept of minus regularization is
introduced. In analogy to the well-known BPHZ regularization method, minus
regularization was developed by Ligterink [19, 44]. It is formulated in terms of
LF coordinates and we find that minus regularization exactly kills the part of
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the amplitude that is ill-defined, the so-called forced instantaneous loop (FIL).
The FIL is a diagram with so many instantaneous fermions that no energy de-
nominators remain. Therefore it is not considered as a proper LF time-ordered
diagram.

Other advantages of minus regularization are that it deals with longitudinal
and transverse divergences in the same way, and that it can be easily implemented
numerically. We encounter these properties in Chapter IV where we deal with
diagrams in the Yukawa model that suffer from transverse divergences. The
formulas of the one-boson exchange correction and the fermion triangle are too
complicated for us to be able to give an algebraic proof of equivalence, and
therefore we limit ourselves to a numerical check of equivalence.

We conclude that the combined use of k−-integration and minus reg-

ularization provides all the ingredients for the proof of equivalence

between covariant and LF perturbation theory in the Yukawa model.

Therefore, there is no need to add noncovariant counterterms to the La-
grangian of the Yukawa model as claimed by Burkardt and Langnau [10]. After
our proof of equivalence for the Yukawa model it it still an open question whether
our method is applicable to models such as QCD and QED. The propagator for
a spin-1 particle is more complicated than those for spin-0 and spin-1/2 parti-
cles, which makes the decomposition into propagating and instantaneous parts
more elaborate. An additional complication is that in models with a vector cou-
pling two instantaneous particles can become neighbors, leading to an effective
five-point interaction. It is also unclear how we should handle models with an
effective coupling. A similar problem concerns the use of form factors in nuclear
physics. It would be interesting to find out how they can be incorporated in a
light-front formulation.

Entanglement of Fock-space expansion and covariance

Confident about the usefulness of the LF time-ordered diagrams as tools in LFD,
in Chapter V we make another step towards the calculation of the bound state.
One has to solve the problem of diagonalizing an infinitely dimensional Hamil-
tonian. An approximate solution for this is provided by the use of an effective
interaction. This method truncates the expansion of the interaction in higher
Fock states. The splitting of the covariant box diagram into LF time-ordered
diagrams with intermediate states containing at most three or four particles (the
latter are referred to as stretched boxes) shows that in LFD these higher Fock
states are heavily suppressed, not only because the spectrum condition allows for
few diagrams, but also because the diagrams themselves are small. In addition,
we find that in LFD the relative size of the diagrams containing higher Fock
states is much smaller than in the instant-form of Hamiltonian dynamics.
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We conclude that the Fock-state expansion of LFD converges fast,

and therefore the combined use of LFD and the ladder approximation

offers good possibilities for an accurate calculation of the spectrum of

bound states.

Based on these results, we conjecture that the inclusion of stretched boxes in the
kernel will not lead to a great change of the spectrum. This explains why bound-
state calculations done in the past in LFD using the ladder approximation have
given accurate results [45]. Note that the stretched boxes are not covariant by
themselves, as they should not be. Therefore their omission leads to a breaking
of covariance. Recently, Ji et al. [46] made an attempt to solve the problem by
averaging over all directions of the orientation of the light-front. However, the
stretched boxes have the same sign for all angles, and averaging over them cannot
give a vanishing contribution. Therefore, upon angular averaging a small part of
the amplitude will still be missing.

We have to remind the reader that our calculations were done for scalar par-
ticles. To analyze the influence of spin one can apply the same method. It may
be very interesting to also investigate the contributions of crossed boxes, because
it was shown by Gross [39] that in the heavy-mass limit they are necessary to
retain the proper one-body equation. However, we would like to stress that for a
discussion on the entanglement of covariance and the Fock-space expansion one
can look at the properties of box and crossed box separately, as both are covariant
objects. For a discussion on the validity of the ladder approximation one should
both discuss stretched and crossed boxes.

We are confident that our investigations have contributed to an improved un-
derstanding of LF Hamiltonian field theory, fifty years after it was given birth
to by Dirac. Its usefulness to solve the bound state can be considered millenni-
umproof.



Appendix A

Relations between Euclidian integrals

The two basic formulas that are used in Chapter III to compare LF time-ordered
and covariant diagrams in d space-time dimensions are

∫

ddkf(k2) =
2πd/2

Γ(d/2)

∫

∞

0
dkkd−1f(k2), (A-1)

∫

∞

0
dk

kd−1

(k2 + C2)m
=

Γ(d/2)Γ(m−d/2)

2Γ(m)
(C2)d/2−m, (A-2)

with d ≥ 1 and m > 0. If we take d ≥ 2 and m > 1 the following manipulations
are valid. Formulas (A-1) and (A-2) can be combined to give

∫

ddk
1

(k2 + C2)m
= πd/2 Γ(m−d/2)

Γ(m)
(C2)d/2−m, (A-3)

∫

ddk
A+Bk2

(k2 + C2)m
= πd/2 Γ(m−1 −d/2)

Γ(m)
(C2)d/2−m

×
(

(m− 1−d/2)A+ dBC2/2
)

. (A-4)

We can formulate the same equation for d−2 dimensions and m−1 as the power
in de denominator. We find that the right-hand sides differ only slightly

∫

dd−2k
A +Bk2

(k2 + C2)m−1
=
πd/2

π

Γ(m−1−d/2)

Γ(m−1)
(C2)d/2−m

×
(

(m−1−d/2)A+ (d−2)BC2/2
)

. (A-5)

A comparison of these formulas gives

∫

ddk
A+Bk2

(k2 + C2)m
=

π

m− 1

∫

dd−2k
A+B d

d−2
k2

(k2 + C2)m−1
, (A-6)

provided we have d > 2 and m > 1.
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Appendix B

The fermion self-energy in closed form

Here we give the results for the integral (III-40) in closed form. We write for the
renormalized self-energy

r
= 6q F1(q

2) +m F2(q
2). (B-1)

Then the two functions F1,2 are found to be

F1(q
2)

π2i
= −

∫ 1

0
dx x log

(

1 − x(1 − x)q2

(1 − x)m2 + xµ2

)

, (B-2)

and
F2(q

2)

π2i
= −

∫ 1

0
dx log

(

1 − x(1 − x)q2

(1 − x)m2 + xµ2

)

. (B-3)

For µ = 0 we find the result to be in agreement with the formula given by
Ligterink and Bakker [19] and by Bjorken and Drell [25]. They use the vector
coupling appropriate for the photon and therefore overall numerical factors are
different.

F1(q
2)

π2i
=

1

4
+
m2

2q2
−
(

1

2
− m4

2q4

)

log
m2 − q2

m2
, (B-4)

F2(q
2)

π2i
= 1 −

(

1 − m2

q2

)

log
m2 − q2

m2
. (B-5)

For µ > 0 we have

F1(q
2)

π2i
=

1

4
+

(µ2 −m2)2 − µ2q2

2(m2 − µ2)q2
+

(

(m2 − µ2 + q2)2 − 2m2q2

4q4
− m4

2(m2 − µ2)2

)

log
µ2

m2

+



log
D

1

2 +m2 − µ2 − q2

D
1

2 −m2 + µ2 + q2
− log

D
1

2 +m2 − µ2 + q2

D
1

2 −m2 + µ2 − q2





D
1

2 (m2 − µ2 + q2)

4q4
,

(B-6)
and

F2(q
2)

π2i
= 1 +

(

m2

µ2 −m2
+
m2 − µ2 + q2

2q2

)

log
µ2

m2

+
D

1

2

2q2



log
D

1

2 +m2 − µ2 − q2

D
1

2 −m2 + µ2 + q2
− log

D
1

2 +m2 − µ2 + q2

D
1

2 −m2 + µ2 − q2



 , (B-7)
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where the variable D contains the threshold behavior

D =
(

q2 − (m+ µ)2
) (

q2 − (m− µ)2
)

. (B-8)

We checked that the limit µ → 0 of Eqs. (B-6) and (B-7) exists and is equal to
Eqs. (B-4) and (B-5) respectively.



Appendix C

Internal and external variables

We get more insight into the properties of the structure functions used in Chap-
ter IV if we rewrite them in terms of internal and external variables. This can
be done by defining

x′ =
k+

q+
1

= (x− 1)χ, (C-1)

x =
k+ + q+

2

q+
2

=
x′ + χ

χ
. (C-2)

Or, equivalently,

k+ = x′q+
1 = (x− 1)q+

2 , (C-3)

k+
1 = (x′ − 1)q+

1 , (C-4)

k+
2 = xq+

2 . (C-5)

In the numerator of the integrals defining LF structure functions we encounter
on-shell spin projections. They can be rewritten in terms of internal variables
using

k−1on =
k⊥1

2
+m2

2(x′ − 1)q+
1

, (C-6)

k−2on =
k⊥2

2
+m2

2xq+
2

. (C-7)

The energy denominators can also be written in terms of internal and external
variables. The poles are given by Eqs. (IV-36), (IV-37) and (IV-64):

2q+
1 (H−

1 −H−

2 ) = 2q+
1



p− +
k⊥1

2
+m2

2k+
1

− k⊥2
2
+m2

2k+
2





= (p2+ p⊥
2
)
1 + χ

χ
− k⊥1

2
+m2

1 − x′
− k⊥2

2
+m2

xχ
, (C-8)

2q+
1 (H−

1 −H−) = 2q+
1



q−1 −
k⊥

2
+ µ2

2k+
+
k⊥1

2
+m2

2k+
1




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= q2
1 + q⊥1

2 − k⊥
2
+ µ2

x′
− k⊥1

2
+m2

1 − x′
, (C-9)

2q+
2 (H−−H−

2 ) = 2q+
2



q−2 +
k⊥

2
+ µ2

2k+
− k⊥2

2
+m2

2k+
2





= q2
2 + q⊥2

2 − k⊥
2
+ µ2

1 − x
− k⊥2

2
+m2

x
. (C-10)

The integration measures can be rewritten as follows:

2πi
∫ q+

1

0

dk+4q+
1 q

+
2

8k+
1 k

+
2 k

+
, = −πi

∫ 1

0

dx′

(1 − x′)xx′
, (C-11)

−2πi
∫ 0

−q+

2

dk+4q+
1 q

+
2

8k+
1 k

+
2 k

+
= −πi

∫ 1

0

dx

(1 − x′)x(1 − x)
. (C-12)

We conclude that it is possible to write the structure functions in terms of the
external variables q−1 , q

−

2 , q
⊥
1 , q

⊥
2 and χ and integrals over the internal variables

x or x′ and k⊥. The divergent parts of the structure functions F 2
i can now be

written as

f 2−
1 = −πi

∫ 1

0

dx′

(1 − x′)xx′
m

(x′ − 1)q+
1

q+
1

q+
2

(

1

1 − x′
+

1

xχ

)−1 (
1

x′
+

1

1 − x′

)−1

,(C-13)

f 2−
2 = −πi

∫ 1

0

dx

(1 − x′)x(1 − x)

m

xq+
2

(

1

1 − x′
+

1

xχ

)−1 (
1

x
+

1

1 − x

)−1

. (C-14)

Upon cancelling common factors, and using Eq. (C-2), we can evaluate the inte-
grals and obtain

f 2−
1 = −f 2−

2 = πi
χ

1 + χ

m

q+
2

= πi
m

p+
. (C-15)

Therefore condition (IV-75) is verified.



Samenvatting

Lichtfront Hamiltoniaanse veldentheorie

Naar een relativistische beschrijving van gebonden toestanden

Ik zal eerst de plaats van mijn onderzoek binnen de natuurkunde aangeven, en
daarna op het onderzoek zelf ingaan. Het veelomvattende terrein waarop het
onderzoek zich bevindt heet hoge-energiefysica, vanwege het feit dat de bij de
botsingsexperimenten betrokken deeltjes dermate hoge energieën hebben dat ze
bijna met de lichtsnelheid voortbewegen. Het doel van dit onderzoek is om de
structuur van de materie, met name op de allerkleinste schaal, te begrijpen.

Het atoom, waar we op de middelbare school vertrouwd mee zijn geraakt,
bestaat uit een kern die is omgeven door een wolk van elektronen. De kern, op
haar beurt, bestaat uit protonen en neutronen. Al geruime tijd is bekend dat
deze hadronen uit twee of drie quarks bestaan, en deze blijven bij elkaar door de
uitwisseling van lijmdeeltjes, veelal gluonen genoemd. De massa van het hadron
is groter dan de optelsom van de massa’s van de quarks. Eén van de vragen in
de hoge-energiefysica is of wij de massa van het hadron kunnen bepalen als we
de wijze waarop quarks gluonen uitwisselen kennen.

Hadronen zijn voorbeelden van gebonden toestanden. In dit proefschrift be-
schrijven we een wiskundige formulering waarmee wordt geprobeerd een relativis-
tische beschrijving te geven van gebonden toestanden, die goed aansluit bij de
Hamiltoniaanse technieken die bekend zijn uit de quantummechanica. Zij heet
lichtfront Hamiltoniaanse veldentheorie, een formulering waarbij als het ware met
het licht wordt ’meegereisd’, en daarom kan men zich voorstellen dat het geschikt
is om hoog-energetische deeltjes en hun gebonden toestanden te beschrijven. Be-
denk wel dat reizen met de lichtsnelheid niet mogelijk is, en dat deze beschrijving
dus abstract is.

De eerste die deze aanpak voorstelde was Dirac [8] in 1949. Aangezien mijn
promotie bijna vijftig jaar na het verschijnen van dit baanbrekende werk plaatsvindt,
is dit een toepasselijke gelegenheid om hier bij stil te staan. Helaas duurde het
tot de jaren zeventig voordat wetenschappers die gëınteresseerd zijn in gebon-
den toestanden het belang van Diracs werk inzagen. Het moet dan ook wel
gezegd worden dat er aan deze lichtfrontdynamica (LFD) enige moeilijkheden
zijn verbonden. Zo is rotatiesymmetrie niet vanzelfsprekend in deze theorie, wat
ongeveer betekent dat de berekening van een meetbare grootheid, zoals de massa
van een samengesteld deeltje, niet noodzakelijkerwijze tot hetzelfde antwoord
leidt als je het van een andere kant beschouwt. Alle symmetrieën die samen-
hangen met Einsteins relativiteitstheorie, waaronder rotatiesymmetrie, worden in
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de natuurkunde wel samengevat onder de noemer Lorentz-covariantie. Natuur-
kundige theorieën die deze Lorentz-covariantie schenden worden, met recht, ern-
stig gewantrouwd.

Het doel van dit proefschrift is tweeledig. Ten eerste willen we laten zien
dat de bouwstenen van LFD, de lichtfront-tijdgeordende diagrammen in principe
tot Lorentz-covariante resultaten leiden. Vervolgens willen we laten zien dat de
LFD, meer dan andere methodes, geschikt is het voor het doen van zo nauwkeurig
mogelijke berekeningen aan gebonden toestanden. Hieronder zullen we per hoofd-
stuk op de details ingaan.

Hoofdstuk I Introductie van lichtfront Hamiltoniaanse dynamica

We beginnen met uit te leggen hoe een Hamiltoniaanse theorie moet worden
opgezet en vergelijken de twee belangrijkste mogelijkheden: quantisatie op een
vlak met gelijke tijd (de wijze die bekend is uit de niet-relativistische quantumme-
chanica) en de methode die wij adverteren: quantisatie op een vlak dat raakt aan
de lichtkegel: het lichtfront. Om een aantal problemen die bij quantisatie optre-
den te omzeilen introduceren we een methode die vanuit covariante veldentheorie
tot diagrammatische regels voor LFD leidt: de k−-integratie, dat wil zeggen de
integratie over de energiecomponent van de interne impuls. Deze methode zullen
we veelvuldig toepassen in de volgende hoofdstukken.

Hoofdstuk II Het Yukawa-model

Wij gebruiken het Yukawa-model om twee redenen. Het is het meest eenvoudige
model dat een beschrijving geeft van de interactie tussen fermionen met spin 1/2
via bosonen (in ons geval zonder spin). Bovendien werd onze aandacht getrokken
door een artikel van Burkardt en Langnau [10] die beweerden dat in het Yukawa-
model Lorentz-covariantie gebroken wordt. Wij zullen laten zien dat als de di-

vergenties op de juiste wijze behandeld worden Lorentz-covariantie niet in gevaar
komt.

Hoofdstuk III Longitudinale divergenties in het Yukawa-model

Het eerste gedeelte van het bewijs van Lorentz-covariantie van LFD is reeds
geleverd door Ligterink in zijn proefschrift [44]. Hij liet door een ingewikkeld
wiskundig hercomberingsschema zien hoe uit een covariant diagram alle bijbe-
horende lichtfront-tijdgeordende diagrammen volgen door integratie over k−. Dit
bewijs is niet geldig wanneer de integraal over k− divergent is. Dit type di-
vergenties worden longitudinale divergenties genoemd. We laten zien dat met
de minus-regularisatiemethode de divergenties kunnen worden verwijderd en dat
Lorentz-covariantie gewaarborgd is. Minusregularisatie is door Ligterink opgezet
en door ons uitgebreid. Het is een in lichtfrontcoördinaten geformuleerde reg-
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ularisatiemethode analoog aan de BPHZ-methode die bekend is in covariante
veldentheorie.

Hoofdstuk IV Transversale divergenties in het Yukawa-model

Een tweede complicatie is de aanwezigheid in diagrammen van divergenties in de
transversale componenten k⊥ van de impuls. We laten zien dat deze transversale
divergenties ook met minusregularisatie kunnen worden aangepakt. Omdat de
diagrammen waar deze divergenties optreden ingewikkelder zijn dan in hoofd-
stuk III is het niet mogelijk in alle gevallen een wiskundig bewijs te geven. Wij
laten echter in een numerieke berekening zien dat ook in deze gevallen Lorentz-
covariantie gehandhaafd is. Opnieuw is het toverwoord hierbij minusregularisatie.

Hoofdstuk V Verstrengeling van de Fock-ruimteontwikkeling en covari-

antie

De volgende stap die men neemt op weg naar de berekening van de gebonden
toestand is het oplossen van de Hamiltoniaanse eigenwaardevergelijking. Dit
exact doen is schier onmogelijk, omdat de Hamiltoniaan een oneindig grote matrix
is. Om toch het massaspectrum te kunnen uitrekenen maakt men meestal de
ladderbenadering. Deze gaat er vanuit dat bij de berekening van de gebonden
toestand van twee deeltjes, die via de uitwisseling van bosonen verbonden zijn,
nooit twee of meer bosonen op hetzelfde moment worden uitgewisseld. Dat houdt
in dat Fock-toestanden met vier of meer deeltjes worden genegeerd.

Echter, als men covariante storingsrekening tot in de vierde orde in de kop-
pelingsconstante uitvoert, dan zullen er zowel diagrammen met maximaal drie
deeltjes als diagrammen met maximaal vier deeltjes in een intermediaire Fock-
toestand voorkomen. De laatste categorie wordt echter genegeerd in de ladder-
benadering. Hierdoor gaat een gedeelte van de amplitude verloren. Bovendien
wordt Lorentz-covariantie gebroken, omdat de diagrammen die weggelaten zijn
op zich niet covariant zijn in LFD, een eigenschap die wordt gedeeld met elke
andere Hamiltoniaanse theorie.

Wij laten zien in een numerieke berekening dat de ladderbenadering toch
redelijk goed is, omdat in gevallen met waarden van massa’s en snelheden die
typisch zijn voor realistische gebonden toestanden (in ons geval het deuteron)
uitwisseling van meerdere deeltjes tegelijkertijd maximaal tot 2% bijdraagt tot
het resultaat. In andere typen Hamiltoniaanse theorieën zijn deze bijdragen veel
groter, en wordt de ladderbenadering dus veel slechter. Dit verklaart ook waarom
berekeningen die in het verleden zijn gedaan met de ladderbenadering in LFD
goede resultaten hebben gegeven.
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Hoofdstuk VI Samenvatting en conclusies

In de voetsporen tredend van Feynman (zie citaat op bladzijde 99) wil ik besluiten
met een vergelijking tussen de natuurkunde en het schaakspel. Het doel van mijn
onderzoek is niet zo zeer om de regels waarmee de schaakstukken (de deeltjes,
zoals het pion) zich bewegen te ontdekken, maar om de wijze waarop zij een
eenheid vormen beter te begrijpen [47].
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