EPIDEMIC-BASED SELF-ORGANIZATION IN
PEER-TO-PEERSYSTEMS

SPYROSVOULGARIS

COPYRIGHT(©) 2006BY SPYROSVOULGARIS

VRIJE UNIVERSITEIT

EPIDEMIC-BASED SELF-ORGANIZATION IN
PEER-TO-PEER SYSTEMS

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus
prof.dr. L.M. Bouter,
in het openbaar te verdedigen
ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen
op dinsdag 3 oktober 2006 om 10.45 uur
in het auditorium van de universiteit,
De Boelelaan 1105

door

SPYRIDON VOULGARIS

geboren te Athene, Griekenland

promotoren: prof.dr.ir. M.R. van Steen
prof.dr. A.S. Tanenbaum

CONTENTS

ACKNOWLEDGEMENTS XiX
| PROTOCOLS 1
1 INTRODUCTION 3
1.1 Desired Solution 5
1.2 WhynotDHTS? 6
1.3 The Gossiping Model of Communication 7
1.3.1 Traditional Gossiping 7

1.3.2 Gossip-based Topology Construction 7

1.4 WhyGossiping? oo 8
1.5 Research Methodology 9
1.6 Outline and Contributions 10

2 BUILDING RANDOM OVERLAYS: CYCLON 13
21 TheProtocol. 15
211 BasicSwapping. 15

2.1.2 Enhanced Swapping 16

2.2 BasicProperties 18
221 Connectivity 0. 20

222 ConvergenCe i e 20

2.2.3 DegreeDistribution 23

2.2.4 Dependency on GossipLength 25

2.3 AddingNodes 27
24 RemovingNodes, 28
2.5 Robustness - Self Healing Behavior 29
2.6 Bandwidth Considerations 30
2.7 Applications 32
2.8 The NewscasTProtocol 33
2.8.1 Principal Operation 34

VI

CONTENTS

2.8.2 Propertiesof BwscAST.
2.9 An Application: Aggregation

2.10 Related Work e

2.11 Conclusions and Future Work

RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE

3.1 Introductiono

3.2 The EERSAMPLING SERVICE v v v v v v i i
321 APl ...

3.2.2 Generic Protocol Description.
3.23 DesignSpace

3.2.4 Implementation
3.3 LocalRandomness,

3.3.1 Experimental Settings
332 TestResults
3.33 Conclusions

3.4 Global Randomness

3.4.1 Properties of Degree Distribution

3.4.2 Clustering and Path Lengths

3.5 FaultTolerance
3.5.1 Catastrophic Failure

3.5.2 Churn

3.5.3 Trace-driven Churn Simulations
3.6 Wide-Area-Network Emulation
3.7 DisCcussion
3.7.1 Randomness

3.8 RelatedWork
3.8.1 Membership Management Protocols
3.8.2 ComplexNetworks

3.8.3 Unstructured Overlays
3.8.4 Structured Overlays
3.9 ConcludingRemarks

FROM RANDOMNESS TO STRUCTURE: VICINITY

4.1 DesignPreamble

4.2 The Topology Construction Framework
42.1 ModelOutline

4.2.2 The Selection Function
42.3 DesignRationale
4.3 TheMcINITY Protocol

4.4 Discussion on the Design Choices

41

45
46
47
48
48
51
52
53
94
54
57
57
58
64
67

87

CONTENTS Wl

4.5 Outline of Evaluation 93
45.1 Selectionof TestCases 93
4.5.2 Generic Experimental Settings 94

4.6 TestCase A: Forminga2-D SpatialGrid 95
4.6.1 Demonstration of TestCaseA 95
4.6.2 Analysisof TestCaseA 97

4.7 Test Case B: Clustering Nodes in Groups 100
4.7.1 Demonstrationof TestCaseB 100
47.2 Analysisof TestCaseB 102

4.8 DiscussionandRelatedWork 106

APPLICATIONS 109

ROUTING TABLE MANAGEMENT: BUILDING PASTRY 111

5.1 Pastry-like P2ZPRouting 112
5.1.1 BasicConcept 112
5.1.2 Internal Structure of the Routing Tables 112
513 Routing 113

5.2 Building Routing Tables 113
5.2.1 ThePrincipalldea 114
5.2.2 Multilayer Architecture 115

5.3 Experimental Setting 117

5.4 Experimental Results and Analysis 118
5.4.1 Bootstrapping 118
5.4.2 Robustness to Large-Scale Failures 119
5.4.3 Bandwidth Considerations 121

5.5 Conclusions and RelatedWork 122

INFORMATION DISSEMINATION 125

6.1 Background and Related Work 125

6.2 Evaluating a Dissemination System 127

6.3 Deterministic Dissemination 128

6.4 Probabilistic Dissemination 130
6.4.1 The RNDCAST Dissemination Algorithm 130

6.5 Hybrid Dissemination 131
6.5.1 The RNGCAST Dissemination Algorithm 132

6.6 Evaluation 135
6.6.1 Evaluation in a Static Failure-free Environment 137
6.6.2 Evaluation after Catastrophic Failure 141

6.6.3 EvaluationunderChurn 144

CONTENTS

6.7 Discussionand Future Work, 148
SEMANTIC OVERLAY NETWORKS 151
7.1 OVEeIVIEW e e 151
7.2 ModelOutline 153
7.3 Gossiping Framework oo 153
7.4 Experimental Environment and Settings 154
7.5 Performance Evaluation. 156
7.5.1 Convergence SpeedonColdStart 157
7.5.2 Adaptivity to Changes of User Interests 158
7.5.3 Effecton SemanticHitRatio 159
7.5.4 SingleNodeJoins 159
7.5.5 Behavior under Node Churn 160
7.6 Bandwidth Considerations 161
7.7 Discussionand RelatedWork 162
SUB-2-SUB: PURELY P2P PUBLISH/SUBSCRIBE 165
8.1 Qverview e 166
8.2 Issuesin Publish / Subscribe Systems 167.
8.3 SystemModel 167
8.4 SuB-2-SuBinaNutshell 168
8.5 The ¥B-2-SuB DisseminationOverlay 171
85.1 SpreadingEvents 173
8.6 Building the DisseminationOverlay 174
8.6.1 BuildingRandomlLinks 177
8.6.2 Building Overlapping-Interest Links 177
8.6.3 BuildingRingLinks 178
8.7 Evaluation 179
8.7.1 ExperimentalSetup 180
8.7.2 Jump-starting®-2-SUB 182
8.7.3 EventDissemination 183
8.7.4 PropagationSpeed 184
8.7.5 SingleNode Joins 184
8.8 Related Work and Conclusions 185
CONCLUSIONS 187
9.1 RandomizedOverlays. 187
9.1.1 High-level Observations 187
9.1.2 Detailed Observations 189
9.2 StructuredOverlays, 191
9.3 Applications 192

9.4 Future Directions
SAMENVATTING

BIBLIOGRAPHY

CONTENTS

CONTENTS

LIST OF FIGURES

2.1

2.2
2.3

2.4

2.5

2.6

2.7
2.8
2.9

2.10

2.11

2.12

An example of swapping between nodes 2 and 9. Note thah@m

other changes, the link between 2 and 9 reverses direction.. .. 17
The generic gossiping skeleton for@ on. 19
Implementation of the generic gossiping skeleton hofiksthe

CycLoNprotocol. 19

(a) Average shortest path length between two nodes fierefit

view lengths. (b) Average clustering coefficient taken alenodes. 22
Converged state of XCLON. (a) Average shortest path length
between two nodes. (b) Average clustering coefficient tadesm
allnodes. 23
Indegree distribution in converged 100,000 node oygiita basic
swapping, enhanced swapping, and an overlay where each node
has? randomly chosen outgoing links. (a) View lengdthk- 20. (b)
Viewlength¢=50. 24
Effect of gossip length on convergence spééel100,000. 25
(a) Time until dead nodes are forgotten. (b) Number ofldieks. 29
(&) Number of disjoint clusters, as a result of removinigrge
percentage of nodes. Shows that the overlay does not braak in
two or more disjoint clusters, unless a major percentagehef t
nodes are removed. (b) Number of nodes not belonging to the
largest cluster. Shows that in the first steps of clusterinly a few
nodes are separated from the main cluster, which still cctsribe

grand majority of thenodes. 31
Tolerance to node removal, as a function of the viewtteriyet-
work sizeis 100K nodes. 31

NewscAsTconverged state. (a) Average shortest path length be-
tween two nodes. (b) Average clustering coefficient takesr all
NOdes. 35
Indegree distribution in converged 100,000 node aygefbr NEws-
CAST, CycLON (enhanced swapping), and a regular random graph
ofoutdegred.. 36

X1

LIST OF FIGURES

2.13 (a) Time until dead nodes are forgotten. (b) Number afideks. 37

2.14 Aggregation in staticoverlays. 39
2.15 Aggregation in dynamic overlays. 39
2.16 Aggregation in piggy-backed version. 41

3.1 The skeleton of a gossip-based implementation of HERFSAM -
PLING SERVICE.« v v et et e e e e e e e e 49
3.2 Evolution of maximal indegree in the growing scenaraxél that
growing stops in cycle 20). The runs of the following protisco
are shown: peer selection is either rand or tail, view s&lads
blind, healer or swapper, and view propagation is push onjpuis 60
3.3 Evolution of standard deviation of indegree in all sc&saof
pushpull protocols. 61
3.4 Converged values of indegree standard deviation. 62
3.5 Converged indegree distributions on linear and lolyaniic scales. 62
3.6 Comparison of the converged indegree distribution tvermnet-
work at a fixed time point and the indegree distribution of &dix
node during an interval of 50,000 cycles. The vertical agjzre-
sents the proportion of nodes and cycles, respectively. 63
3.7 Autocorrelation of indegree of a fixed node over 50,000 e/
Confidence band corresponds to the randomness assumption: a
random series produces correlations within this band wébo9

probability. 64
3.8 Evolution of the average path length and the clusterogifficient
inallscenarios. 65

3.9 Converged values of clustering coefficient and averadfe lpngth. 66
3.10 The number of nodes that do not belong to the largestembad
cluster. The average of 100 experiments is shown. The random
graph almost completely overlaps with the swapper protocol . 68
3.11 Removing dead links following the failure of 50% of thades in
cycle300. 69
3.12 Standard deviation of node degree with churn rate 1%leNte-
gree is defined over thendirectedversion of the subgraph dif’e
nodes. Thed = 0 case is not comparable to the shown cases; due
to reduced self-healing, nodes have much fewer live neighbo
(see Figure8.13 which causes relatively low variance. 70
3.13 Average number of dead links in a view with churn rate T%e
H = 0 case is not shown; it results in more than 11 dead links per
view on average, forall settings. 71

LIST OF FIGURES X1

3.14 Size of largest connected cluster and degree stand@aidtidn
under catastrophic churn rate (30%), with the random biagist
ping method. Individual curves belong to different valuéSbut
the measures depend only lnso we do not need to differentiate
between them. Connectivity and node degree are definedlmer t
undirectedversion of the subgraph ¢ive nodes. 72

3.15 Churn in the Saroiu traces. Full time span of 3600 oneutain
cycles and zoomed in to cycles 2250t0 2750. 74

3.16 Average number of dead links per view, based on the S&wiitella
traces. All experiments use random peer selection&ad. . . . 74

3.17 Evolution of standard deviation of node degree basdde8aroiu
Gnutella traces. All experiments use random peer seleceah
S=0. . . . e 75

3.18 Evolution of in-degree standard deviation, clustggoefficient,
and average path length in all scenariosréal-world experiments. 77

4.1 The two-layered framework 89
4.2 Communication in the two-layered framework. Each layessips

to the respective layer of othernodes. 90
4.3 The generic gossiping skeleton for@.on and iciniTy. . .. 91
4.4 Implementation of the generic gossiping skeleton hofiksthe

VICINITY protocol. 92
4.5 Snapshots depicting the evolution of a 2,500 node oyedamn-

ingab50x 50 gridstructure. 96
4.6 The three protocol settings we compare. 97
4.7 Evolution of topology construction fortestcase A. 98
4.8 Snapshots depicting the evolution of a 2,500 node oyellester-

ing in 100 groups of 25 nodeseach. 101
4.9 Evolution of topology construction for testcase B. 103

4.10 Snapshot of the overlay produced beWITY -alone. Some nodes
are still not connected to their group’s cluster after 10960les,

andtheywillneverbe. 104
5.1 Communication of nod& during one communication cycle. . .116
5.2 Average number of filled routing tablerows. 119
5.3 (a) Number of routing steps taken on averaffe) Percentage of

messages reaching their destination. 119

5.4 Average number of filled routing table rows when recawgfrom
a 50% node crash that happened atcgcle. 120

X1V

LIST OF FIGURES

5.5 Message routing while recovering from a 50% node craah th
happened at cycld. Left: Average routing steps taken. Right:
Percentage of messages delivered. 121

6.1 (a) The generic dissemination algorithm. (b) Gossigeiaselec-
tion for deterministic dissemination (flooding). 129
6.2 Gossip target selection for thes\RD CAST dissemination algorithmi.31
6.3 Example of a RVGCAST overlay. Nodes are organized in a bidi-
rectional ring (by means of tha-links), and each one has a num-
ber (in this case only one) outgoing random linkdirgks). 133
6.4 Gossip target selection for theN®g CAST dissemination algorithni.33
6.5 Example of a message dissemination in a partitioned rigy
clarity, only a few of the followed r-links are shown. 134
6.6 Dissemination effectiveness as a function of the farfout failure-
free static network of 10K nodes. (a) Miss ratio averaged ove
100 experiments; (b) Percentage of 100 experiments thalteds

in complete dissemination. 138
6.7 Dissemination progress in a static failure-free nekwofr 10K

nodes. 100 experiments of each protocol are shown. 139.
6.8 Total number of messages sent, divided in messagescseat-t

yet-notified and already notified nodes. 140

6.9 Dissemination effectiveness as a function of the fafmustatic
network of 10K nodes, after catastrophic failures of 1%, 2%,
and 10% ofthenodes., 142
6.10 Dissemination progress in a static network of 10K npdéter
catastrophic failure killing 500 nodes (5%). 100 experitsenf

each protocolareshown. 143
6.11 Total number of messages sent, divided in messagesoseot-
yet-notified, already notified, and dead nodes. 143

6.12 Dissemination effectiveness as a function of the fgniouthe
presence of node churn. In each cycle, a randomly selec2éd 0.
of the nodes was removed, and replaced by an equal number of
newly joinednodes., 144
6.13 Distribution of node lifetimes, summed over 100 expents. . .146
6.14 Distribution of lifetimes of nodes that were not notifisummed
over 100 experiments. 147
6.15 Nodes organized in a ring based on domain name proximity . 149

7.1 The generic gossiping skeleton for@.oN and VicinIiTY. . . . 154
7.2 Implementation of the generic gossiping skeleton hoimkghe 3
VICINITY VErSiONS. o v i e e e 155

7.3
7.4

7.5
7.6

7.7

8.1
8.2

8.3

8.4

8.5

8.6
8.7

8.8

8.9

LIST OF FIGURES XV

The four configurations we compare. 157

(a) Convergence of sem. views’ quality. (b) Evolutiosefmantic
lists’ quality for a sudden change in all users’ interestsyate 550157

Semantic hit ratio, for gossip lengths 1, 3, and 5 in eaghrl . . 159

CDF of the speed by which the semantic list of a joiningenisd
filled with optimal neighbors. 160

(a) The average number of optimal alive neighbors indnesstic

list. (b) The average number of alive neighbors in the ™Ity

VIEW. . o o o e e e e e e e 161
A set of subscriptions andanevent. 168
Partitioning of an one-dimensional event space in h@anegus
subspacesf. 169
The conceptual 8-2-Sus dissemination overlay. For each ho-

mogeneous subspace nodes are linked in a ring structurey Onl
thering links are shown.Random overlapping-interesinks are
omitted forclarity. 172
The actual 8B-2-SuB dissemination overlay. For any possible
event all matching subscribers are linked in a ring structitow-

ever, no multiple links between the same two nodes are kepgy: O
thering links are shown.Random overlapping-interesinks are
omitted forclarity. 172
The three sets of links each subscriber should maintiraded
areas denote the areas where links of the respective typapare
propriate (for the given subscriber). 173
The $B-2-SuB Architecture. 175

Layered communication. Each layer of a node gossipsisively

to the respective layer of other nodes. Interaction betwagers

is restricted to passing around links within a single node. 176
The McINITY selection function for building ring links, in pseu-
docode. It selects ring links for nod® out of the set of node
descriptorsD. Argumentk, determining the number of nodes that
should be returned in the standard version oEMITY, iS not
takenintoaccount. 179

The HyperSpaceclass. 180

8.10 Example of rectangle removal in a two-dimensional spagrst

sweeping along thg and then along thg dimension. Generally,
in an N-dimensional space, we would carry on the same process
forall Ndimensions. 181

XVI LIST OF FIGURES

8.11 Construction of the rings in time. Light bars show thecpatage
of ring links already in place. Dark bars show the percentaige
rings that are complete. 10K nodes. 182
8.12 Distribution ofringlengths. 183
8.13 Eventdissemination. Light bars show the hit ratianmn-complete
disseminations. Dark bars show the percentage of disséinnsa
that were complete (events delivered to all their matchinl- s
scribers). 10K nodes; 3 attributes; power law interestiblistion. 183
8.14 Hops to complete event dissemination, as a functiomeafitmber
of matching subscribers (ring length). 10K nodes; 3 attabu
power law interest distribution. 184
8.15 Distribution of cycles it takes subscribers and piiglis to join. .185

LI1ST OF TABLES

3.1 Summary of the basic idea behind the classes of testsdh tthar d

3.2

test suite for random number generators. In all cases testsia
with several parameter settings. For a complete desaniptie
refertoMarsaglial199b, 56
Partitioning of the push protocols in the growing ovegaenario.

Data corresponds to cycle 300. Cluster statistics are tnvepéar-
titionedrunsonly. o 60

ACKNOWLEDGEMENTS

Accomplishing a PhD is without doubt a significant achievetria one’s life.
Although it is habitually accredited to a single person,aitghor, in most cases
there is a number of people who have contributed one way dhanto this goal.
Having completed my thesis, it is time to give credit to soméhe people that
played a role in my PhD.

Undoubtedly, my principal promotor, Maarten van Steengdess the lion’s
share of the credit. Without any sense of exaggeration, tdaatombined all
| needed in an advisor: support, motivation, and excellatgring in research.
Maarten has always been enthusiastically devoted to i@sead to his supervis-
ing role. Despite his admittedly busy schedule, he alwaigioesly respected our
weekly meeting slot. These meetings provided the grounddorerous construc-
tive discussions, fruitful brainstorming, in-depth arsdg, and direction planning.
Maarten taught me a whole lot of things, from the gory detaflauthoring, pre-
senting, and various practical issues to a high level vigioresearch. This was
further enhanced by his talent in passing on his enthusiasrariginal research
and nifty new ideas to people around him. Maarten played@cairole in shaping
my research thinking and mentality, and | am truly gratefuthitm.

My interaction with my second promotor, Andy Tanenbaumha@lgh more
sporadic, was of great value. Andy gave a critical view torfiegpeer systems,
raising interesting issues, and questioning the “deckztion objectives” that
Maarten and | were taking almost for granted. | am gratefthino for his interest-
ing feedback, and for giving me the opportunity to work irsthighly competent
research environment.

Then, | would like to thank the members of my reading comrajtt&nne-
Marie Kermarrec (also in the role ofraferen), Ken Birman, Mark Jelasity, Her-
bert Bos, and Guszti Eiben for their effort and time in reviregvthis dissertation.
| have put their comments to good use.

XX ACKNOWLEDGEMENTS

In the past | had the opportunity to collaborate closely wviitb of the mem-
bers of my reading committee, Mark Jelasity and Anne-M&iemarrec. Mark
Jelasity introduced me to the world of epidemic protocolsrdphis postdoc at the
Vrije Universiteit. | later visited him at the University &@ologna, in the context
of a joint research effort that resulted in the work preséniteChapter3. His un-
derstanding of the intrinsic details of epidemic protoauften leads to long inter-
esting discussions. Mark has recently been visiting a rerrobresearch groups
around Europe, spreading the notion of epidemics in an epaéke fashion!
Anne-Marie Kermarrec has been my supervisor during my isfeip at Microsoft
Research Cambridge, in the summer of 2003. We have contiouedollabora-
tion, and | visited her at the IRISA/INRIA research instiuh Rennes during the
summer of 2005. Anne-Marie helped me in learning to take ja lséek, and get
a high-level view of my work. She also has a very good sensendfrfy appli-
cations for the protocols we have been working on. | woulé li& thank both
Anne-Marie and Mark, and | hope to keep up our collaboratiothe future.

Then come my colleagues at the Vrije Universiteit. | woukklito thank
them all for a very pleasant and friendly working environmemd for many nice
discussions during lunch, at the recently established &fghree”, or in various
other occasions. In fear of offending somebody by not maeirigp him or her,
I will avoid referring to you by name, and will thank you all asgroup. | will
only make an exception for my two officemates, Michal and Sivdime three of
us, coming from diverse cultures, formed an interesting luioation and a very
pleasant atmosphere in P4.30. | will never forget our nunmemiscussions on
world politics, ethnic culture, history, ehhh ...and ogoaally science!

I would also like to thank some people that played a role in rgision to
pursue a PhD. One of them is Ulrika in Lund, who was the “cdblelD student
I met while doing my Master’s at the University of Michigamdshowed me
that doing research does not rule out enjoying life! The oth@ are Yannis
in Chicago and Baris in Washington DC. Many thanks to bothaf for your
valuable contribution in selecting the Vrije Universitét my doctoral studies.

At this point, | would like to thank my friends in Amsterdanriforoviding me
with moral support and a great deal of—so much needed—pieasstractions
during my PhD years. Many thanks to Anna, Madelijne, Rodrigikos (x3),
Takis (“the President”), Emilios, Dafni, Ankie, Eva, Tomg&ardo, Vicky, Vic-
toria, and many many more. | would also like to thank my “heisgten” (Liza,
Hetty, Ronny, Rosanne, Rink, Dejan, etc.) for forming arogable socializing
environment, and for putting up with my busy schedule.

ACKNOWLEDGEMENTS XXI

Last but not least, | would like to say a big THANK YOU to my fdwi
My parents who have always unconditionally supported melineapects, and
my brother Kostas for being always a very close and depeadaieind. | am
grateful to them not only for their support during the yedrsng PhD, but also for
their guidance, encouragement, and motivation throughgutvhole journey in
education and my life in general. Of course, | should thaekrilior their patience
as well! | would like to end my acknowledgements by wishinghngther success
with his own PhD.

Spyros Voulgaris
Zurich, August 2006

Part |

PROTOCOLS

CHAPTER 1

Introduction

We are arguably living in the communications revolution.e@ommunications
have never been as ubiquitous, massive, fast, and inexpeasithey are today.
Networks in general and the Internet in particular play algét role in contem-
porary societies. The days when the Internet was a mererobstsl, or a com-
munication channel exclusively for academic and militaustitutions are long left
behind. Access to the Internet has spread at an astonighéagl sappealing to an
increasingly broader public, emerging the Net from an agadeslite tool to a
global cult that shapes the way of living on the planet.

The Internet offers a wealth of functionalities by meansefldyedservices
The World Wide Wepand theElectronic Mail (e-mail) are without doubt the two
principal services that helped the Internet break its tygreecademic barriers, and
which remain among the most popular services nowadays. rCQitaelitional”
services includeTelnet the File Transfer Protocol(ftp), newsgroupsIRC and
several others. More recently, a number of more complexiceshave appeared,
including e-commerce, online auctions, file sharing systestreaming services,
etc. This tremendous growth of the Internet has naturaliysed an evolution of
the models of communication, that we will discuss below.

Early Internet services were designed and built around timzipal paradigms,
namely the client-server model and centralization. €hent-server modeim-
poses a clear distinction between nodes that provide aceepegrver$ and those
that make use of itgfientg. Clients are passive entities accessing the service pro-
vided by dedicated nodes, the servéentralization in its turn, refers to the fact
that a service is offered by a single dedicated computer.

The dramatic expansion of the Internet proved the tradifi@entralized ar-
chitecture inadequate for a number of services in the lacgdes As a result,
considerable effort has been made in the aredistfibuted systemsThe idea
was to abolish centralization by distributing a serviceoasrmultiple cooperating

4 INTRODUCTION CHAP. 1

servers. Such a distribution can offer a multitude of besgiitcluding fault toler-
ance, increased aggregate capacity, geographic dispriutc. However, clients
remain passive entities, using the service collectivelgrefl by the servers.

In the more recent years, advances in network speed andssigdeaps
in computing power and storage capacity, in combinatiorhlie vast number
of networked low-end computers, resulted in considerabteumts of resources
accumulating in the end-nodes. This has naturally creatahtives to harness the
power of such a huge pool of resources. Consequently, edesnwere promoted
from passive entities to active components in massivelyibliged environments.
This goes well beyond the—once exclusive—paradigm of eitks passively
using services, described above. In this new model, knowtheapeer-to-peer
(abbreviatedP2P) model, nodes do not only passivetpnsumeresources, but
they alsoparticipate interact andcontributeto the services they make use of.
Instead of nodes being divided in servers and clients, in $2ms nodes are
equal peers collaborating to collectively carry out a savi

The P2P model of communication poses a number of challenggogs. Most
important is the unprecedented scale of P2P systems. Téefdecentralized
systems has grown from large to massive, in certain casedving millions of
nodes spread all around the globe. And with massive scalesonassive insta-
bility, due to the highly dynamic nature of systems of thaesiTypically, nodes
in P2P systems provide no guarantees regarding their jpaticn patterns. In-
stead, they join and leave at any time at will, let alone udigtable ungraceful
failures of nodes and links. Finally, nodes in P2P systermganerally heteroge-
neous with respect to their hardware architectures anavaddtplatforms, as well
as regarding their computational, memaory, storage, angaritresources.

The aforementioned issues place a critical burden on therggtration and
management of such systems. Massive scale in combinattorhighly dynamic
environments render explicit control of such systems isitda, or at least very
hard to implement. Centralized systems impose severegliimits in keeping track
of millions of nodes coming and going. Scale issues can legiated by means
of a more sophisticated architecture, such as a hierailcbinsture. However,
this increases complexity and administration costs, aadyistem depends on the
availability of certain key nodes. Solutions introducireglundancy by means of
replication exist, however they inflict additional compgtg»wvhich is nontrivial at
such scale. On top of that, all these solutions (i.e., botitrakzed and hierarchi-
cal ones) require an educated guess of the expected syztein sirder to appro-
priately allocate adequate resources. Generally, tryangnpose explicit control
on this class of systems and tracking them by traditionag¢rd@histic methods
becomes increasingly complex.

The increasing number of connected devices, and the patida of net-

SEC. 1.2 DESIRED SOLUTION 5

works, provide no indication of a slowdown in this tenden@uite on the con-
trary, we anticipate new, unimaginable, large-scaleithisted applications to emerge.
In our research we step away from the deterministic and explbntrol of massive-
scale systems. In contrast, we explore methods that erfabutonomous man-
agement of such systems by means of self-organization.

The goal of this dissertation is to address such challengssale and admin-
istration, introduce new protocols, and explore their es&ga number of current
or future applications. It should be noted that our goal istocchange the In-
ternet communication model as a whole, as a significant nuwiba&pplications
work well the way they are. We aim at providing alternativéugons to com-
munication models where traditional approaches are eftieeexpensive, do not
scale well, require excessive administration, or simpé/rzot applicable for.

1.1. DESIRED SOLUTION

The main question we are faced withhisw decentralized systems should be
First, they should be self-configurable. That is, configoratnd administration
of such systems should be simple. It should be done by medrglofevel com-
mands, such as join this cluster or that application. Theykshbe plug-and-play,
in a decentralized sense.

Ideally, large-scale decentralized systems should beosgéfnized. They should
adapt fast and reliably to changes. In fact, they should bebfee enough to
withstand continuous changes, in very dynamic environmdntthe presence of
large-scale failures (such as network partitioning) tHeyutd be robust, and they
should demonstrate self-healing behavior.

Considering their anticipated size, decentralized systshould be highly
scalable. Even more, they should demonstedssstic capacity. By elastic we
mean that the capacity of a system should be proportionds teize. This way,
the larger a system gets (and therefore the higher the dethednore capacity it
has to serve that demand. On the other hand, when the systirksslthe capac-
ity decreases accordingly. Such networks can spontaneadalpt to unexpected
increase or decrease in demand.

Last, but not least, large-scale decentralized systemsldtee simple. In
systems scaling to million of nodes, things can easily gebtbaontrol.

6 INTRODUCTION CHAP. 1

1.2. WHY NOT DHTS?

A significant direction of recent research in P2P systemdbhbas in designing
structured overlay networks for routing. Such systems ddely known asDis-
tributed Hash Table§DHTSs). A number of DHT systems have been proposed to
date, most important representatives being PaBoystron and Druschel 200[La
Tapestry Zhao et al. 20012004, Chord [Stoica et al. 200]1 and CAN [Rat-
nasamy et al. 200]a Their common property is that they all form a structured
overlay connecting a large number of participating noddsichvis used to route
packets among them.

DHT systems assign each participating node an ID, and roessages to a
node based on that, rather than based on its IP addressrriRamnie (in terms of
routing hops) is typically inferior compared to traditioB routing, but this is not
the point. Their significance lies in the fact that they mapkdys to nodes, in a
way similar to traditional hash tables mapping numeric keysble entries. This
function is crucial as a building block for numerous otheplagations, such as dis-
tributed network storage (OceanStokaupiatowicz et al. 2000and PAST Row-
stron and Druschel 200]b distributed web caching, etc. These and other DHT
applications are based on the following observation. Anlgkable set of data can
be appropriately mapped to the nodes of a DHT overlay andadpsecordingly.
The data entry having a given ID is placed on the node with libeest ID to that.
Subsequently, given the ID of a data entry, the node hostiranibe easily located
through DHT-based ID routing.

Although DHTSs have reached a substantial level of matutigy do not form
a panacea for the P2P world. DHTSs are excellent for ID-baseting, and, con-
sequently, for exact query matching. They generally exsel B2P framework for
ID-centric operations. However, not all applications ddecentric. For instance,
despite being just right for ID-based queries, DHTs are p@r@priate queries
based on arbitrary predicates. Neither are they apprepigatouilding a semantic
overlay, that is, linking nodes that are semantically eslat

In essence, DHTSs formstructuredP2P topologies, where links are determined
by the IDs of participating nodes. Data is allocated to naatesording to their
IDs. Subsequently, this structure is exploited to effidieperform ID-based op-
erations. In contrast, the protocols we explore in thisatisgion formunstruc-
tured P2P topologies, in which links are placed: (a) uniformly atdom, or (b)
based on data laying on nodes. The main difference betweéls@Hd the type
of overlays we build in this dissertation can be synopsirdtie following phrase:

DHTs place data after the topology. Our protocols build thpdlogy after data.

SEc. 1.3 THE GOSSIPINGMODEL OF COMMUNICATION 7

1.3. THE GOSSIPING MODEL OF COMMUNICATION

In this dissertation we explomgossiping protocol$or building and managing
P2P overlays. Gossiping is a major representative of fullgeditralized, self-
organizing systems. Let us take a look at what gossipingopadé are, and how
we use them for overlay construction.

1.3.1. Traditional Gossiping

Gossiping—also known apidemie—protocols, were first introduced by Demers
et al. Demers et al. 1987n 1987. Demers et al. employed them in propagat-
ing updates in loosely replicated databases to maintaimahabnsistency among
the replicas. Ever since they have been used for informatissemination Bir-
man et al. 1999Kermarrec et al. 20Q3Eugster et al. 2074 for disseminating
group membership to the whole grou@dlding and Taylor 1992 for failure de-
tection van Renesse et al. 1998r garbage collectionGuo et al. 199, for ag-
gregation Kempe et al. 2003Jelasity et al. 20042005 Montresor et al. 2004
for bootstrapping networksvpulgaris and van Steen 2003elasity et al. 2006
and for load balancingJglasity et al. 2004c Generally, gossiping protocols have
been associated mostly with dissemination of information.

Omitting specific details, gossiping protocols operatesdasn the following
simple basic model. Each node has a complete view of the netaod period-
ically picks a random node from the whole network to exchaagt with. This
permits information known by angnenode to spread to the whole network with
very high probability.

1.3.2. Gossip-based Topology Construction

Maintaining complete membership tables on each node issiiie for large-
scale, highly dynamic networks. Such an effort would imptseenendous syn-
chronization problems, especially since some studies & §&tems measured
that a large percentage of nodes join for a few minutes or ap foour (seeBhag-
wan et al. 2003Saroiu et al. 2003Sen and Wang 2004

In our work we deviate from the traditional gossiping modetwo respects.
First, we drop the assumption of complete knowledge of the/ork. Each node
maintains only links to a very small numberméighbors constituting itspartial
viewof the network (e.g., only a couple of dozen nodes in netwiorkise order of
millions). When gossiping, a node picks a random neighlbmmfits partial view
to exchange data with.

Second, the type of data exchanged between nodes is nesghtrortheir par-
tial views. That is, nodes exchange membership informatsmif. After a gossip

8 INTRODUCTION CHAP. 1

exchange nodes update their partial views to incorporatet @f) the received
links, if needed. We are, effectively, dealing with membgrsmanagement.

By exchanging links and continuously refreshing their jphrtiews, nodes
can self-organize into topologies that better suit cerégiplications. In particu-
lar, depending on the target application our protocols argle links in two main
manners:

Randomly Exchanging links at random leads to randomized overlaysat &)
the partial view of each node consists of links to randomlgcted neigh-
bors. Note that selecting a random node from a randomizeapeaiew is
essentially equivalent to selecting a random node out ofvti@e network,
which is the assumption made by traditional gossiping it In other
words, randomized overlays can serve as a substrate thaisathe opera-
tion of traditional gossiping protocols in very large andchdynic networks,
bypassing the need for full knowledge of the network. In &ddj random-
ized overlays demonstrate remarkable robustness witlecesplarge-scale
failures, and highly dynamic conditions with nodes joinamd leaving fre-
quently. As we will see, they are ideal for keeping large sétsodes in a
single connected overlay.

Methodically By exchanging links based on certain criteria, nodes cdrosghnize
in structured overlays. A multitude of P2P applications banserved by
forming the appropriate structures. As we will see, the faork for form-
ing structured overlays is very simple and generic.

1.4. WHY GOSSIPING?

An interesting question iwhat drove us in pursuing desirable solutions in the
domain of gossiping protocol&et us motivate our decision by presenting a brief
list of the main advantages of gossiping protocols.

Scalability Gossiping protocols are inherently scalable. This schiatitems
from the fact that each node performs a fixed set of operatiaina fixed
rate, irrespectively of the network size. With respect te libad per node,
gossiping protocols are, therefore, virtually infinitelyasable.

Fault-tolerance and RobustnessAs we will see in this dissertation, appropri-
ately designed gossiping protocols turn out to be extremaust with re-
spect to large-scale failures and node churn. Fault-toterds achieved by
means of redundancy, and this proves to be very robust.

SEC. 1.5 RESEARCHMETHODOLOGY 9

Symmetry Gossiping protocols form symmetric overlays. That is, rsodee
roughly equal, with no node playing a specific, critical tolks a conse-
guence, no single node failure can have a significant effe¢he correct
operation and state of a gossiping protocol.

Graceful degradation Although individual node failures generally do not dis-
turb the operation of a gossip-based system, large numlbéadioes can
naturally affect it. However, as we shall see throughou tlissertation,
performance, functionality, and reliability of gossipsea systems do not
drop rapidly as the number of failures increases.

Adaptability Gossiping protocols appear to form overlays that are higlligpt-
able to network changes and dynamic environments. We vpidatedly see
this throughout this dissertation.

Elasticity Although it is generally feasible to support large-scalevises by
means of one or more dedicated servers, the appropriatarcesohave to
be provisioned for certain load levels in advance. When dlagl lexceeds
a certain threshold, such systems fail to fulfil their duti&#ghen the load
is lower, dedicated servers are underutilized, their resgsibeing wasted.
This issue becomes of higher concern for systems with ungedde load
or high load fluctuation. In contrast, gossip-based—andegely P2P—
systems do not face this problem, as their resources areeinthe propor-
tional to the system load. Since peers asel contribute resources at the
same time, both load and resources grow aside, proporyotwathe num-
ber of participating peers. We say that P2P systems aredntigielastic
with respect to load.

An additional, important advantage of gossiping protogsleir simplicity.
Simplicity is an essential advantage for systems of massiaée, which tend to
be inherently complex. The interesting combination betwsienplicity and the
remarkable properties of gossiping algorithms, motivateth exploring them for
building self-organizing systems.

1.5. RESEARCH METHODOLOGY

The research laid out in this dissertation is validated erpentally. Gossip-
ing protocols generally exhibit chaotic behavior that is tomplex to be formally
analyzed. Theoretical analysis of our protocols has be¢wofoine scope of this
dissertation.

10 INTRODUCTION CHAP. 1

Our experiments were carried out in the following two wayimdation and/or
emulation. For the former, we simulated up to 100K peers er&ien, an event-
driven simulator running on a single physical machiReérSinh For emulated
experiments we implemented the respective protocols olicaipns, and de-
ployed them on the DAS-2 wide-area cluster, consisting d¥ plysical ma-
chines PAS-2]. By mapping a number of peers on each physical host, we were
able to emulate up to 65K peers. Although the majority of tkgeegments were
carried out by simulation, our emulations provide stronglerce that what we
see in simulations constitutes a very accurate predictfgoratocol behavior in
realistic systems.

1.6. OUTLINE AND CONTRIBUTIONS

This dissertation is split in two parts. Parpresents the gossiping protocols
we have developed. Pdltlays out a number of applications making use of these
protocols. Let us now list the chapters that constitutettigsis, along with a short
description of the thesis contributions per chapter.

PART |

Chapter 2 — Building Random Overlays: CycLoN Chapter2introduces G-
CLON, a gossiping protocol for inexpensive membership managéenne
very large P2P overlays. YCLON constitutes a fundamental protocol serv-
ing a number of applications presented in subsequent aisaptas highly
scalable, very robust, and completely decentralized. Mwogortant is that
the resulting communication graphs share important pt@sewith random
graphs.

Chapter 3— Random Overlays: Exploring the Design SpaceChaptel3 expands
on our study of gossiping protocols that form randomizedriays by ex-
tending the gossiping framework introduced ielasity et al. 2004aand
exploring the design space.YCLON constitutes a specific instance in this
framework. This chapter aims at providing an insight inte factors that
affect certain aspects of the behavior of gossiping prdsoco

Chapter 4 — From Randomness to Structure: MCINITY In Chapted we take
a shift and investigate how gossiping and random overlag$eaarnessed
to create structure. We present thecWITY protocol, which, in conjunc-
tion with CycLON builds arbitrary topologies. MINITY is a completely
decentralized protocol, and nodes self-organize to forendisired struc-
ture.

SEC. 1.6 QUTLINE AND CONTRIBUTIONS 11

PART Il

Chapter 5 — Routing Table Management: Building Pastry Chaptel5 presents
our first attempt to devise structure from randomness. Isgmes how a
gossiping protocol that builds randomized overlays can $eduo build
the routing tables of the Pastry DHR@wstron and Druschel 200[Ld& his
work has preceded thel®@INITY protocol, which is more powerful in build-
ing and maintaining topologies. Nevertheless, this retedeserves a place
in this dissertation, as an illustration of our first step arfessing random-
ness to create structure.

Chapter 6 — Information Dissemination Chapter6 presents a protocol for in-
formation dissemination, that combines gossip-basedafitstic dissemi-
nation (through @cLoN) with deterministic dissemination (through&N-
ITY). In fail-free and static environments our protocol gudeas dissem-
ination to every single node. In the presence of failuresamtenchurn, its
performance degrades gracefully, however still managingeliver mes-
sages to a large proportion of the network.

Chapter 7 — Semantic Overlay Networks Chapter7 presents how the @-LON
and VICINITY protocols can be used to significantly enhance contentdbase
searching. This is done by establishing links among sewelhtirelated
nodes, that is, among nodes of similar content. In essehedinks estab-
lished form a semantic overlay network.

Chapter 8 — SuB-2-SuB: Purely P2P Publish/Subscribe Chapte8 presents 88B-
2-SuB, afully decentralized, collaborative, content-basedighfsubscribe
system. $B-2-SUB is a self-organizing system based on thedConN and
VICINITY protocols.

Finally, Chaptei© summarizes our most significant observations and conclu-
sions, and discusses future directions for the researctepred throughout this
dissertation.

12

INTRODUCTION

CHAP. 1

CHAPTER 2

Building Random Overlays:
CYCLON

The unprecedented growth of the Internet in size and spettiggered the con-
ception of massive scale applications involving a verydargmber of nodes in the
order of thousands or millions. The client-server modelahmunication is often
not adequate for applications of such scale. This has eagedrthe emergence
of an alternative communication model, nampger-to-peel(P2P) systems. The
main philosophy behind these systems is communal collibaramong peers:
sharing both duties and benefits. By distributing respalitiéls across all par-
ticipating peers, they can collectively carry out largedsctasks in a simple and
generally scalable way, that would otherwise depend onresipe, dedicated, and
hard to administer centralized servers.

A distinguishing feature of P2P systems is that the peertlyomaintain an
overlay network Unlike traditional layer-3 networks, the structure of$heover-
lay networks is not dictated by the (often fairly static) ploal presence and con-
nectivity of hosts, but byogical relationshipsbetween peers. In particular, P2P
overlay networks are generally required to handle a muchérigate concerning
the joining and leaving of nodes, while at the same time tilssymme that member-
ship behavior is roughly the same for all nodes. In other wptigey are designed
to handle highly dynamic, symmetric networks. Overlay nggamaent is therefore
a key issue in designing P2P systems.

There are currently two main categories of P2P systems mgt@f overlay
management. Structured P2P systems impose a specificdiskagture between
nodes. Distributed Hash Tabld8dlakrishnan et al. 20Q2re typical examples in
this category. They link peers based on their IDs in a way abnefficient ID-
based routing among them. In contrast, in unstructured P&feras peers are not
linked according to a predefined deterministic scheme e&uktlinks are created

14 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

either randomly (as is typically done in Gnutella), or arelabilistically based on
some proximity metric between nodes (i.e., semantic prayjrieading to what
are known as semantic overlay networks). Unstructured Raiemms are primarily
designed to support rapid information dissemination andertt-based searching
in highly dynamic distributed environments, but theiritfilextends beyond these
applications.

In this chapter we concentrate on gossip-based unstracR2®e overlays. In
such systems nodes self-organize in unstructured ovebgpygossiping to each
other to discover new links. Two key issues govern theseesyst First, defin-
ing the gossiping protocol specifics that result in overlayth certain desirable
properties. Second, ensuring that these properties ardgairad or are swiftly re-
coverable in the event of major disasters or enduring higlgtyamic conditions,
a property often referred to a=lf-healing Above all, these requirements should
be met without maintaining any global information or reipgrany sort of central
administration.

It has been observed that a number of overlays appearingcial secologi-
cal, neural, science collaboration, and phone call netsyaak well as the World
Wide Web itself, exhibit properties of small-world and seflee networksAlbert
and Barabasi 2002Newman 200R Certain types of small-world networks are
very appealing, notably when decentralized search is ke §kéeinberg 2000a
b, 2001, 2004. However, in many cases it is better to construct overlags are
close to random graph8pllobas 2001 More specifically, random graphs ex-
hibit higher robustness to large-scale failures than smatld networks, while
they distribute the load evenly across all nodes in the sysla this chapter we
introduce &*CLON, a gossiping protocol that organizes nodes in overlaydaimi
to random graphs.

Gossip-based unstructured overlays can be used as a huildiok in a vari-
ety of network management applications, especially whghlhidynamic envi-
ronments are anticipated. A good example is self-monitpiimlarge-scale net-
works, where each node is charged with monitoring a few ramdthers, sharing
the monitoring cost. An appropriately chosen overlay managnt algorithm can
ensure load fairness, and can guarantee that no node is\&tended, resulting
in a robust self-monitoring system. Another example is oorkanon managing
routing tables in very large P2P networké[ilgaris and van Steen 2003re-
sented in Chaptes in this dissertation. Stavrou et al. suggest management of
flash crowd crises by disseminating information over goessiped unstructured
overlays Btavrou et al. 2004 In Chapter4 we build on top of the research pre-
sented in this chapter to provide a framework that organimagtes in desirable
structured topologies. That framework is further utilizaca number of applica-
tions illustrated in Pari of this dissertation.

SEC. 2.1 THE PrROTOCOL 15

The problem we address is that of building and maintainingrlays with
properties suitable for diverse applications like the afeentioned ones. More
specifically, we are looking into inexpensively buildingdamaintaining very large,
connected overlay networks that exhibit important praperbf random graphs.
These properties should be maintained even in highly dyp@miironments. In
essence, we are interested in inexpensive membership eraead; in the sense
that any disruption of the overlay’s properties resultingni joining or leaving
nodes should be quickly and efficiently corrected. We asdhatenodes maintain
a small, partial view of the entire network. Our startingrgas the view exchange
protocol described ingtavrou et al. 2004 That protocol ensures that connectivity
of the overlay is maintained as long as membership does aoigeh

We make two contributions. First, we provide an experimieautalysis of the
basic swapping protocol for large networks, examining prips such as clus-
tering and node degree distribution. These experiments hat/been conducted
before, and, in particular, not on large networks. We dernrates that swapping
neighbors is indeed a promising exchange protocol.

Second, and most importantly, we describeaCon?, a complete framework
for inexpensive membership management.cCoN introduces an enhanced ver-
sion of swapping, which results in node-degree distrimgithat exhibit better
properties than those found in overlays resulting fromdasgiapping, or even in
random graphs. Moreover, it includes better, in terms otigfficy and quality,
management of node additions and removals, which allows establish truly
inexpensive membership management that does not diseipidomness of the
overlay network.

2.1. THE PROTOCOL

CycCLON is based on thewappingoperation, by which two nodes gossiping
with each otheswapsome randomly chosen links of theirs. The main intuition
behind this operation is to mix links, resulting in overlagsembling random
graphs. The experimental analysis following in Secdhconfirms this intuition.

2.1.1. Basic Swapping

The basic swapping algorithm, introduced Btgvrou et al. 2004 is a simple
peer-to-peer communication model. It forms an overlay a@elpk it connected
by means of an epidemic algorithm. The protocol is extrersatyple: each peer

1The name @cLoON was inspired by the protocol’s power in mixing nodes in thevoek, sort
of like a tornado. It is also inspired by the Greek origin o tvord, kyklos(=circle), due to the
uniformity it imposes on the overlay.

16 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

knows a small, continuously changing set of other peerted@kneighbors and
occasionally contacts a random one of them to exchange sbtheioneighbors.

More formally, knowledge regarding neighbors is stored ardhanged by
means ofnode descriptors A node descriptor referring to pe@ containsP’s
contact information, (i.e., network address and port).Hgaeer maintains a small,
fixed number o¥ node descriptors, which constitute viewof the network. Typ-
ical values forZ are 20, 50, or 100. When the view of péecontains a descriptor
of peerQ, we say thaQ) is a neighbor oP, or thatP has alink (or pointer) to Q.
These expressions will be used interchangeably.

Each peelP repeatedly initiates a gossip exchange (also referred toeas
exchange), known aswvapping by executing the following six steps:

1. Select a random subset@heighbors (1< g < /) from P’s own view, and
a random peelQ, within this subset, whergis a system parameter, called
gossip length

2. Replace the descriptor Qf with that of P.
3. Send the updated subset to p@er
4. Receive fronQQ a subset of no more thanof Q's descriptors.

5. Discard descriptors d? (if any), and descriptors that are alreadyRis
view.

6. UpdateP’s view to includeall remaining descriptors, bijrstly using empty
view slots (if any),secondlyreplacing the descriptor d®, andfinally re-
place descriptors among the ones ser@to

Upon reception of a gossip request, p€erandomly selects a subset of its
own neighbors, of size no more thgnsends it to the initiating node, and executes
steps 5 and 6 to update its own view accordingly.

Figure2.1 presents a schematic example of the basic swapping operatio

2.1.2. Enhanced Swapping

CycLoN employs an enhanced version of swapping, that, as we sloallistsub-
sequent sections, among other things improves the qudlihemverlay in terms
of randomness. Enhanced swapping follows the same modelsis $wapping.
The key difference is that nodes do mahdomlychoose which neighbor to swap
views with. Instead, they select the neighbor whose inféionavas the earliest
one to have been injected in the network.

SEC. 2.1 THE PrROTOCOL 17

2—9:{2,0,6}
(a) Before swapping 2-9:{0,5,7} (b) After swapping

Figure 2.1. An example of swapping between nodes 2 and 9. tdateamong
other changes, the link between 2 and 9 reverses direction.

The first motivation behind this enhancement is to limit timeta node de-
scriptor can be passed around until it is chosen by some modeview exchange.
As we shall see in Sectidh4, this results in a more up-to-date overlay at any given
moment, as it prevents links to dead nodes from lingeringradiandefinitely.

The second—and far less obvious—motivation is to imposedigiable life-
time on each descriptor, in order to control the number oéténg links to a given
node at any time. In Sectiok.2.3we will show that as a consequence of that,
pointers are distributed in a remarkably even way acrossoales.

To accommodate the aforementioned issues, node dessrijptdCy CLON
contain an extra field calledescriptor age or simplyage That is, a &CLON
node descriptor referring to nodreis a tuple containing the following two fields:

1. P’s contact information (i.e., network address and port)
2. A numericagefield

The age field denotes roughly the age of the descriptor expde®AT intervals
since the moment it was created by the node it points at. Wéhasige that it is
an indication of the lifetime of a particular descriptor.t tiee lifetime of the node
itself.

In enhanced swapping nodes initiate neighbor exchangésdpeily, yet not
synchronized, at a fixed peridiT. The enhanced swapping operation is per-
formed by letting the initiating ped? execute the following seven steps:

1. Increase by one the age of all descriptors.

18 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

2. Select neighbad® with the highest age among all neighbors, grdl other
random neighbors.

Replace the descriptor & with that of P (with age 0).
Send the updated subset to p@er

Receive fromQ a subset of no more thgtof its own neighbors.

o g~ W

Discard descriptors dP (if any), and descriptors that are alreadyRis
view.

7. UpdateP’s view to includeall remaining descriptors, biirstly using empty
view slots (if any),secondlyreplacing the descriptor d, andfinally re-
place descriptors among the ones serto

Like in basic swapping, the receiving noQaeplies by sending back a random
subset of at mog of its neighbors, and updates its own view to accommodate all
received ones. It does not increase, though, any descsiptge until its own turn
comes to initiate a gossip exchange.

Note that after nod® has initiated a gossip operation with its neighkrP
becomeg’s neighbor, whileQ is no longer a neighbor d¢?. That is, the neighbor
relation betweer? andQ reverses direction. As a consequence, the indegrée of
increases by one, while the indegreeflecreases by one.

Figure 2.2 shows the pseudocode of a generic gossiping skeleton mgdeli
CycLON. The functions appearing in boldface, namsbl ect Peer (), se-
| ect ToSend(), andsel ect ToKeep(), form the threenooksof this skele-
ton. Different protocols can be instantiated from this sekah by implementing
specific policies for these three functions, in turn, legdio different emergent
behaviors. The policies implemented by @ oN are presented in Figu3.

As a final note, given the asynchronous nature of the protalselgossiping
procedure of a node may be interrupted by a swap request liieaanmode. No
measures are taken to explicitly control concurrency iss@eactice showed that
occasional intervening swaps do not alter the macroscagiawor of the system
(see Section.6).

From now on, any references swvappingapply toboth basic and enhanced
swapping. Otherwise, the swap type will be explicitly sfied.

2.2. BASIC PROPERTIES

As it turns out, swapping has some desirable statisticgbgotaes. In order
to observe the characteristics of the overlay, we need tsidenthe connectivity

SEC. 2.2 Basic PROPERTIES 19

do forever
{
wait (T time units) ?Oforever
incr. all descriptors’ age by 1
Q «— sel ectPeer ()
renove Q fromview
buf _send « sel ect ToSend()
send buf_send to Q)
receive buf _recv fromQ
view — sel ect ToKeep()

receive buf _recv fromQ
buf _send < sel ect ToSend()
send buf_send to Q

view < sel ect ToKeep()

Active thread Passive thread

Figure 2.2: The generic gossiping skeleton fofGCON.

Hook Action taken

sel ect Peer () Select descriptor with the oldest age

sel ect ToSend()
active thread Selectg— 1 random descriptors.

Add own descriptor with own profile and age 0.

passive thread Selectg random descriptors.

sel ect ToKeep()

active thread| Keep allg received descriptors, replacing (if needed) {
descriptor selected bsel ect Peer () and then thg—
1 ones selected kyel ect ToSend() .

=0

e

0

passive thread Keep allg received descriptors, replacing (if needed) {
gones selected byel ect ToSend() .

e

In case of multiple descriptors from the same node, keep
the one with the lowest age.

Figure 2.3: Implementation of the generic gossiping skelétooks, for the €-
CLON protocol.

20 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

graph, that is, the graph having the peers as vertices, @anlihits between them
as (directed) edges. In this section we consider—unlessnetbe stated—the
undirected version of the connectivity graph, which is takg simply dropping
the direction of the edges. The motivation behind this it e are interested
rather in the “can-communicate” than the “knows-about’si@n of the graph. A
node has the same potential to communicate with anothereitia if the first is
a neighbor of the second or vice versa.

In this section we show and experimentally analyze the baiperties of
the basic and enhanced swapping protocols. All experingetented here have
been carried out with an event-driven simulator we develdpeC++.

2.2.1. Connectivity

The fundamental property of swapping is that, given a fa@éfenvironment, con-
nectivity of the overlay is guaranteed.

Considering the trivial case ohdividual nodes’ connectivity, it should be
clear that no node becomes disconnected as a result of a peegtion. It simply
moves from being the neighbor of one node to being the neigbitenother. This
provides an intuitive indication that connectivity is geally preserved.

To provide a complete proof, we now show that an overlay cahaasplit in
two disjoint subsets as a result of a swap operation. Assume two subsatd
B connected by at least one link. For instance, some nodehas a pointer to
some node iB. Swaps within subsek may pass this pointer around, but it will
always point at the same node By keeping the two subsets connected. Swaps
within subsetB do not interfere with this link. Finally, a swap between tlozle
in A currently holding the pointer, and the nodeBrbeing pointed at, will simply
reverse the direction of the pointer, thus maintaining th& between the two
subsets. Therefore, no swap operation can reséitandB (or generally any two
subsets of the overlay) becoming disconnected.

2.2.2. Convergence

In this section we study the convergence of specific stedilspiroperties of @-
CLON, namely the shortest path length, and the clustering caaiticoutlined
below.

The shortest path lengthetween nodeB andQ is the minimum number of
edges needed to traverse to re@dnom P. Theaverage path lengtls the average
of the shortest path lengths between any two nodes. Thege/eeath length is a
metric of the number of hops (and hence, communication @rgtdime) to reach
nodes from a given source. A small average path length igfibrer essential for
broadcasting or, generally, information disseminatiopliations.

SEC. 2.2 Basic PROPERTIES 21

Theclustering coefficiendf a node is defined as the ratio of the existing links

among the node’s neighbors over the total number of poskiide among them.

It basically shows to what percentage the neighbors of a aogl@lso neighbors
among themselves. Tlaverage clustering coefficiert the clustering coefficient
averaged across all nodes in the network. It is generallgsinable for an overlay
to have a high average clustering coefficient for two reasdfisst, it weakens
the connectivity of a cluster to the rest of the network, ¢fiere increasing the
chances of partitioning. Second, it is not optimal for imh@tion dissemination
applications due to the high number of redundant messagedes$ within highly
clustered node communities.

To study the emergent behavior ofrCLON, we define aycleto be the time
period during which a number of gossip exchanges equal tadh&er of nodes
have been made. Since nodes initiate gossip exchangeslipaliip at the same
rate, a cycle coincides with the gossip peridv@. Note that during a cycle, each
node has initiated a gossip exchange exactly once. We dtilée protocol’'s
emergent behavior by observing the aforementioned statigiroperties at times
0, AT, 2AT, etc.

Note that the selection of the periddl effectively regulates the speed at
which an experiment runs in real time. However, it does nécafthe proto-
col's emergent behavior or its convergence speed with otgpehe number of
cycles elapsed. Nevertheleds, should not be comparably short to twice the typ-
ical latencies in the underlying network, as network debagsild unpredictably
affect the order in which events are taking place. Typicéles ofAT = 10secor
higher are recommended for experiments running over a arda-network.

We conducted a series of experiments involving networkdaioimg up to
100,000 nodes. In fact, we initialized our experiments inotss different ways,
including random, star, lattice, and gradually growingdiogies. We observed
that the statistical properties of the emerging overlayaglswconverged to the exact
same values, irrespectively of the bootstrapping methgd@&yed each time. The
experiments presented in this section (RAg)) were intentionally bootstrapped
with the worst imaginable setting. Nodes were set to formtalic”, each node
having a single neighbor, namely its previous one. For istathe average path
length was initially the longest possible: 99,999 hops wereded to reach the
first from the last node.

Figure 2.4(a) demonstrates a significant aspect of the emergent lwehaivi
swapping. It clearly shows that the average path lengtherges to a very small
value, which coincides with the average path length of asemdraph with the
same number of edges.

Figure2.4(b) shows that swapping exhibits convergent behavior ferdins-
tering coefficient. In our experiments, the clustering Gio&nt always converged

22 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2
§: 10° F T T T 10° T T
= £ [—— =20
3 L 0 =50 _ 0 =50
c 10* & rand. graph £ =20 ------- E rand. graph £ =20 ----——
§ ¥ rand. graph ¢ =50 - < 107 rand. graph ¢ =50 - 3
= =
£ 3
: S
e g WF
2 2
2 5
g g 10°

= R
g
§ 10 I I I I I I
®© 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

cycles

(b)

cycles

(@)

Figure 2.4: (a) Average shortest path length between twesiéat different view
lengths. (b) Average clustering coefficient taken over atles.

to values practically equal to the clustering coefficientasfdom graphs. More-
over, both the average path length and the clustering ciegfticonverge almost
exponentially (linearly in the log-linear graph).

Note that these experiments ran for several thousand cyElewever, only
the initial cycles are depicted, as the values remainedestab all subsequent
cycles, indicating convergent behavior.

Figure2.5shows the converged values for the average path length aralth
erage clustering coefficient, for overlays of different rhers of nodes and view
lengths. Two initial observations can be made. First, theraye path length
increases logarithmically as a function of the number ofasid the overlay. Sec-
ond, the clustering coefficient drops exponentially (lmhean the log-log graph)
as a function of the number of nodes.

What is more interesting is that both the average path leaggtithe clustering
coefficient converge to the exact values expected in a rargfaph of the same
number of nodes and links. A random graph is a graph wheregmleetween two
random nodes exists with a probabilipy Consequentlyp is equal to the ratio of
existing links among nodes, over the total number of nodesftatal number of
possiblelinks). Also, in random graphs, the average clusteringfaxent, Ciang,
is equal top. Therefore, it follows that

B #links _ #links
~ total # of possible links NX(gfl)

Crand =p (2'1)

whereN is the number of nodes. For the sake of comparison, we camnsiddom
graphs with an equal number of links as in our graphs. In oerlay, the number

SEC. 2.2 Basic PROPERTIES 23

45 T 10°
é:lo e]

5 =20 ---0--- = 3
§ 4 (=50 -0 8 Plin
= (=100 -4 e 10
< 3.5 T B & AL
2 R S - “A
c - "
Q X 5 -2 -
< 3 JUNE TEeem % 10° E i SN
g [3 Al > R E) B
o 2.5 B “ 'g > S
e . A @ 108 X
& 2 g =
& R ° i

15 y 10

1000 2000 5000 10000 20000 50000100000 1000 2000 5000 1000020000 50000100000
number of nodes (log) number of nodes (log)
(@) (b)

Figure 2.5: Converged state o¥CLON. (a) Average shortest path length between
two nodes. (b) Average clustering coefficient taken ovenatles.

of links isN x ¢, where/ is the view length. By substituting that 211, we get:

2x/
N—1

Crand = (2-2)

One can observe that formufa2, which gives the clustering coefficient for
random graphs of the same number of nodes and edges as @arpravides
the exact values retrieved through experimentatio®.&b). This proves that the
overlays formed by swapping have the same clustering cagffias equivalent
random graphs.

2.2.3. Degree Distribution

Thedegreeof a node is the number of links it has to other nodes, in theérecigd
connection graph. The interest in the degree distributiems from three reasons.
First, the degree distribution is highly related to the mtbess of the overlay
in the presence of failures as it shows the existence of weakinected nodes
and massively connected hubs. Second, it is an indicatidheoivay epidemics
are spread. Third, it provides an indication of how fairlpks are distributed
among nodes, and, as a consequence, an indication of thbutish of resource
usage (processing, bandwidth) across nodes. For the sa&bustness, efficient
information dissemination, and load balancing, it is dedie to have a balanced,
uniform distribution of links across all nodes of the ovgrlén other words, it is
desirable to have a degree distribution with low standaxdadien.

In the directed version of the connection graph, we disiistyietween the
outdegree and theindegreeof a node, which are the number of edges leaving

24 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

40000 T T

40000 T

basic swapping, £ =20 - basic swapping, { =50 ——-----
35000 - enhanced swapping, £ =20 -------- E 35000 | enhanced swapping, £ =50 -------- -
reg.rand., £ =20 reg.rand., £ =50
, 30000 [o 4, 30000 F g .
o v 14} g
B8 25000 - s 4 B 25000 [i i
= o b o,
2 20000 |- P 4 S 20000 [i -
£ P & v
€ 15000 | Do E € 15000 | L b
2 [3 s
10000 | iy 4 10000 ‘L i
5000 |- | . 5000 |- i N
0 . L 0 1 I

0 5 10 15 20 25 30 35 40 0 20 40 60 80 100

indegree indegree
(@) (b)

Figure 2.6: Indegree distribution in converged 100,000enoderlay, for basic
swapping, enhanced swapping, and an overlay where eachhasdaandomly
chosen outgoing links. (a) View length= 20. (b) View length? = 50.

from and ending at the node respectively. In our case, thdeguee of every node
is fixed, and equal to the view length. Therefore, we conegéamion observing the
indegree distributiorof our overlays.

Figure2.6 shows the indegree distribution for both basic and enharaegh-
ping for two different view lengths. The indegree distribuat of an overlay with
¢ randomly chosen outgoing links per node is shown as well éongarison. In
both protocols, the indegree distributions demonstratesk pt the indegree equal
to the view length, while the number of nodes having largesroaller indegrees
drops symmetrically according to the shift from the viewddn

It is, however, clear that enhanced swapping does a signilychetter job
with respect to spreading out the links extremely evenlpsrll nodes. For the
experiment with view length 20, 80.31% of the nodes have degree of 26-5%.
For the experiment with view length 50, 93.95% of the nodes lzen indegree of
504+ 5%. The respective percentages for basic swapping ae2%6and 387%.

To understand €cLON’s enhancement with respect to the indegree distribu-
tion, we should take a closer look at the life cycle of poisteh pointer to node
P is bornwhenP initiates a swap with one of its neighbors, €QyIn the absence
of failures this pointer will remain in the network, possitllopping from node to
node as a result of subsequent swaps. It di¢lonly when it is selected by the
node currently holding it, saR, to perform a swap withP, in which case it will
be replaced by a fresh pointer froRto R.

In both basic and enhanced swapping exaotlgnew pointer to each node is
born in each cycle, since each node initiates exactly ong swaration. However,

SEC. 2.2 Basic PROPERTIES 25

300 800

o Icha\irl1, enhanced smllappilng, (=20 Icha\irl1, enhanced smllappilng, (=502
star, enhanced swapping, £ =20 ---%--- i 700 |5 star, enhanced swapping, £ =50 ---%--- -
: 600 | i
200 -] !

() ()

© ©

g % € 500 B -

5 i 15 K

S 150 | i 1 © aof g

p o « L& ¥

g 100 f £ 3 %0m m

& SN % 200 b 4
50 | %%Q - i :

1 1 1 0 1 1 1 1 1 1 1 1 1
8 10 12 14 16 18 20 0O 5 10 15 20 25 30 35 40 45 50
swap length swap length

=N ,’::’_
XX EEREEREReRY
6

Figure 2.7: Effect of gossip length on convergence spBled.00,000.

the two protocols differ in theleath rateof pointers.

In basic swapping, any number of existing pointers to a givete can die in
a single cycle, as they are selected for swappingndom As the death rate does
not follow the birth rate closely, the distribution of tipepulationof pointers to
individual nodes has a high standard deviation, resultintpé wide distribution
of Figure2.6.

In enhanced swapping, in each cycle a nBde contacted by one other node
on average to do swapping, thus inserting one new pointege0an its view, and
pushing out of its view the pointer of maximum age. In the sgoent cycle, that
pointer of age 0 is upgraded to age 1, and a new pointer wittDagelaces the
currently oldest pointer. As aresult, a node’s view corgain average one pointer
of each age, from 0 t6— 1. This means that replaced pointers are typically of age
around? — 1. In other words, a pointer has a lifetime of abégycles. Taking this
observation one step further, in each cyotee pointer to a given node will die,
the one injected by that nodecycles ago. So, the death rate of pointers to a given
node is very close to one per cycle, that is, very close to ttib tate, keeping
the population of pointers to that node almost static. Thigiiive result can be
clearly seen in the distributions of Figu2et.

2.2.4. Dependency on Gossip Length

We conducted a series of experiments to examine the effetieajossip length
on convergence. Interestingly, for all overlays we tridge tonverged state with
respect to the average path length, average clusterindiagieef, and indegree
distribution, proved to bandependenbf the gossip length used. The only effect
of the gossip length was in the number of cycles it took to methe converged
state.

26 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

We used the indegree distribution as a metric to identify hictv cycle an
overlay converges. As the indegree distribution does nove&ge toexactnum-
bers, but to a certain graph shape whose points keep sliffatiyuating, we had
to use an approximation algorithm to identify the convermgepoint. In particular,
we recorded the indegree distributions for the first 1000es/0f each experiment.
In all cases, by looking at the distribution series we coeltthat they were cer-
tainly converged well before the 900th cycle. We computedaerage indegree
distribution of the last hundred cycles, namely cycles 900: Subsequently, for
each cycle = 900...999 we calculated theum of squared errors;Eoetween this
cycle’s indegree distribution and the average one. The dusquared errors for
cyclei is defined as follows:

E = i (Xik — %)
o

whereX; = {Xo, X1, X2, ...} is thei-cycle distribution, an&; = {Xo, X1, %o, ...} is
the average distribution of cycles 900-999. We, then, fidunat the maximum of
these values,

Emax= maxEgoo, - - . , Eggo}

This was used as the maximum threshold of the sum of squanad &v consider a
distribution converged. Finally, starting from cycle 0, aleecked one distribution
at a time to find the first cyclewhoseE; was below that threshold. This cycle was
logged as the cycle for which this experiment converged.

To demonstrate the gossip length’s effect independentihefnitial condi-
tion, two different bootstrapping methods were used. Ti& fine,chain is the
one described in Sectidh2.2 considering nodes in a line, each node has a single
link to its previous one, forming a chain topology. In the @t bootstrapping
method,star, all nodes initially have a single neighbor, the same oneafoof
them, essentially forming a star topology.

Figure 2.7 presents the number of cycles an experiment took to comnasge
a function of the gossip length, for 100,000 nodes, and vavwgths 20 and 50.
In all cases, swapping just one neighbor at a time took gle¢had longest. Swap-
ping two, three, or more neighbors, gradually sped up thegqs® However,
no significant improvement was noticed beyond gossip lengfrabout eight or
ten. Counter intuitively, convergence speed degradedesugdvhen swapping
the whole view, or almost all of it. The reason behind slowwesgence either
when swapping todew or too manyneighbors is that in either case views are not
mixed up too much by each swap operation. Therefore, a vi@mlisminimally
(if at all) enriched with new links, even if it has moved as aokehto a new node
in the case of full view swapping.

SEC. 2.3 ADDING NODES 27

This result has more significance when bandwidth is an issnee the gossip
length linearly affects the amount of bandwidth used bycCoN. Choosing a
gossip length as low as around six or eight results in neatimal convergence
speed, while keeping bandwidth utilization to relativedyvllevels. We return to
this issue in Sectio@.6.

2.3. ADDING NODES

CycLoN introduces a new method for nodes to join the overlay effitien
without disrupting randomness. To join, a new node simplgdseto know any
single node that is already part of the overlay, callednteoducer Such a node
can be discovered in various ways, including broadcastintpe local network,
making use of a designated multicast group, or even contaetiwell-known
server, etc. Finding such an introducer is out of the scopisfchapter. Here,
we are interested in how to join once an introducer is knowthaut affecting the
basic properties of the system.

To this end, a key observation is that due to the randomne#seafonnec-
tivity graph, a random walk of length at least equal to therage path length is
guaranteed to end atrandomnode of the overlay, irrespectively of the starting
node.

Based on this observation, a new ndelean join in a fairly straightforward
manner.P’s introducer initiated (view length) random walks, setting their TTL
(time to live) to a small value close to the expected averaghk fength, such as
four or five. A nodeQ where a random walk ends, replaces one of its neighbors
with a new link toP. Q then forwards the replaced neighbomRpwho, in turn, has
to include itin its view. In effect, this operation is equmat toP initiating a swap
of gossip length 1 with nod®. The join operation ends when dlfandom walks
have ended and the corresponding neighbor exchanges hewebsomplished.

We claim that this join operation makes it impossible for atemal observer
to distinguishP as being different from the rest of the nodes, or to discovgr a
randomness disruption in the overlay. Fil8s view is filled up with? randomly
chosenneighbors, which renders the valuesRi$ average path length to reach
any other node as well as its clustering coefficient, indggtishable from the
respective values of other, older nodes. Second, since #ref random nodes in
the overlay that knowP, P's indegree is equal to the view length. Third, no other
node’s indegree has been modified.

In the presence of node failures or an unreliable netwonkesof the random
walks may fail. Note, however, that a node’s join does noedelpon the complete
execution of this join procedure. We ran experiments (nesented here) that

28 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

showed that a node can join by simply being involved in a swép @ single

participating node. In that case, though, it will take a feygles until the new
node’s properties become indistinguishable from the retspmeproperties of other
nodes. The join procedure described above is meant as a rokefficient node

joining at a cost of a constant number of messages.

2.4. REMOVING NODES

In a dynamically changing overlay, nodes may leave for werigeasons and
in various ways. We make no distinction between nodes disecting gracefully
or abruptly. What we are interested in is that, once a nodeodisects, other
nodes should detect it and remove any pointers to it in a yimenner. We
consider pointers to disconnected nodes to constitutetaoboirew pollution, as
they take up slots that could be otherwise holding validfuldimks. Particularly
in highly dynamic environments, timely elimination of deluks is crucial for
the robustness of the overlay.

In order to keep the protocol simple and inexpensive, we dadd any ex-
plicit messages (such as frequent pings) to detect discteth@odes. Instead,
CYCLON uses a transparent dead-link detection mechanism, baste olefault
swap operation. We do, however, employ an effective styafpg means of the
agefield introduced in enhanced swapping) to improve timelyedébn of dis-
connected nodes “for free”, as a natural consequence ohtleegent behavior of
enhanced swapping.

When a node tries to initiate a swap with a neighbor and geteply within
a predefined timeout, it simply assumes that neighbor to $eodnected and re-
moves the corresponding neighbor from its view. This wagddinks are gradu-
ally being removed. Note that the timeout should be at legisetthe maximum
typical latency in the underlying network. For simplicity,timeout equal to the
gossip period\T would suffice.

In the case of basic swapping, the detection of dead linkssreh chance and
takes unbounded time. INYCLON’s enhanced swapping, though, the age field
defines a key priority in which neighbors are contacted. Angpbdescriptor (i.e.,
with low age), whose node is quite probably still alive, isddikely to be chosen
for swapping. In contrast, a descriptor that has been iegect the network sev-
eral cycles ago (and has since been hopping around betweles dae to gossip
exchanges), is more likely to be the oldest one in the vieweatily hosting it, and
therefore more likely to be selected to gossip with. In gahdhe longer a node
descriptor stays in the network, the higher the chancessgliscted for gossiping.
WhenP initiates a gossip and selects a descriptor referring to Qethat descrip-

SEC. 2.5 ROBUSTNESS- SELF HEALING BEHAVIOR 29

50000

1.26+06 I 'basic swa;;ping,lé =50 -
enhanced swapping, £ =50 ---

® O]

40000 1e+06 [§

30000 800000

600000
20000

links to dead nodes

400000

10000
200000

dead nodes still remembered

; 0 iy
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

cycles since 50,000 nodes disconnected cycles since 50,000 nodes disconnected
(@) (b)

Figure 2.8: (a) Time until dead nodes are forgotten. (b) Nendf dead links.

tor is then replaced by a fresh (i.e., with age 0) descriptqreerP. This process
naturally recycles the node descriptors, maintaining auiliegum with respect
to their ages, consequently limiting the lifetime of a liffkais way, it is no longer
possible for old links to disconnected nodes to linger adoimdefinitely.

To demonstrate the advantages ofGLON’s enhanced swapping with respect
to node removal, we ran experiments where we suddenly Kil#tof the nodes
after the overlay had converged. As we shall show in the reptian, such a dras-
tic change poses no threat to the (remaining) overlay’s ectivity. We observed
how long it took for the remaining nodes to “forget” the deatks. Figure2.8
shows the respective graphs for the experiment with 100n@@@s, out of which
50,000 were Killed at once. Figut8a) shows how long dead nodes are still
referenced, while Figur@.8(b) shows the number of dead links that are main-
tained since the nodes were Killed. It is clear that enhaseepping limits the
detection of dead nodes to a number of cycles equal to (irdastthan) the view
length, while basic swapping takes almost an order of madeimore cycles to
decontaminate the surviving nodes’ views.

2.5. ROBUSTNESS - SELF HEALING BEHAVIOR

In the previous section, we dealt with node disconnectiand,we mentioned
that killing half of the nodes at once does not threaten tmmeotivity of the re-
maining ones. In this section, we explore €. oON'’s limits in terms of robustness
to node disconnections. Swapping proves to be a very stnodigadoust epidemic
protocol with respect to keeping an overlay connected. \ee it appears to ex-

30 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

hibit robustness to node disconnections similar to the ooad in random graphs.

We conducted experiments as follows. We used:(ON to create overlays
(until they converged), and subsequently examined how tmmectivity is af-
fected by node removals. Figu&9 presents the results for networks with ini-
tially 100,000 nodes, and view lengths 20, 50, and 100, rtisjedy. For the sake
of comparison, it also presents the same graphs for oveofayisw length 20 and
50, where the neighbors were randomly chosen among the wilodle set. Note
that basic swapping has the same behavior as enhanced sgayth respect to
robustness, and therefore the corresponding graphs ashoain. Figure2.9a)
shows the number of disjoint clusters as a function of theg@age of nodes
removed. Note that the number of clusters decreases as weaappl00% node
removal because the total number of surviving nodes becaotesmall. Fig-
ure 2.9b) shows the number of nodes not belonging to the largesteiuin log
scale.

These graphs show considerable robustness to node faikspscially con-
sidering the fact that in the early stages of clustering Jevwy nodes are out of
the largest cluster, which indicates that most nodes dtegtinected in a single
large cluster. Moreover, swapping appears to share the sgustness properties
with overlays where each node’s neighbors are a random saofiphe nodes in
the network.

Note that the graph for the experiment with view length 10@r&ctically a
flat line. That is, for 100,000 nodes and view length 100, trexlay created is so
robust, that no matter how many nodes are removed, the rarmgaimes remain
connected in ainglecluster.

The effect of the view length on the overlay’s robustnesshimag in Fig-
ure 2.10 We carried out 100 experiments, with view length&,1..,100, and
for each of them we determined the percentage of random nuabsted to be re-
moved in order to partition the overlay. It can be seen thaitelis a critical value
of the view length around eleven. Overlays with smaller viemgths exhibit sig-
nificantly worse behavior with respect to robustness. Orother hand, overlays
with view length over 85 or 90, are almost impossible to piarti no matter how
many nodes are removed.

It is important to point out that the results presented is #md the previous
section, suggest that¥CLON is capable of repairing an overlay after a serious
disaster, a property often referred to sedf-healingbehavior. This comes as a
consequence of the following two facts. First, the overlag proven to be highly
resilient to large-scale node failures. Second, once sunbhssive failure has oc-
curred, the surviving nodes quickly strengthen the corvigcmong themselves
by replacing links to dead nodes with valid links in a timelamner.

percentage of nodes removed

SEC. 2.6
=)
S
g
1400 . . : g
=20 ——— S
= 1200 [(=50 - nd 2
g E;lOO - i e
c | random, £ =20 - R <
£ 1000 andom, £ =50 F E
w N i =
g 800 [gy S
2] M l._ s
| A o
S 600 [g
S ;oo
> 7 v c
é 400 |- F 4. 5
2 200 | A R 2
e 1%
o]
0 1 I I 1 = [i ‘§
60 65 70 75 80 85 90 95 100 5
£
2

(@)

ROBUSTNESS- SELF HEALING BEHAVIOR

31

10

10

10

random,l/,_:ZO --
random, £ =50

£=100 -

60

70 75 80

(b)

85

90

percentage of nodes removed

95

100

Figure 2.9: (a) Number of disjoint clusters, as a result ofioging a large per-
centage of nodes. Shows that the overlay does not breakamntortmore disjoint

clusters, unless a major percentage of the nodes are rem@yédumber of nodes
not belonging to the largest cluster. Shows that in the fiegisof clustering only
a few nodes are separated from the main cluster, which siilhects the grand

majority of the nodes.

min % of node removals to cause partitioning

100
90
80
70
60
50
40
30
20
10

40 60

view length

80

100

Figure 2.10: Tolerance to node removal, as a function of kv length. Network

size is 100K nodes.

32 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

2.6. BANDWIDTH CONSIDERATIONS

Due to the periodic behavior of gossiping, the price of nairihg a robust
overlay may inhibit a high usage of network resources (bandwidth). In the
case of @CLON, the per-node network load depends on two factors: the atoun
of data transferred per cycle, and the cycle duration.

In each cycle, a node gossips on average twice: exactly anhem anitiator
and on average once as a responder. It, therefore, on ayeemgs two gossip
messages and receives another two in each cydlgs the gossip length, a gossip
message consists ghode descriptors. A node descriptor is assumed to be 8 bytes
long (IP address: 4 bytes, port: 2 bytes, age: 2 bytes), sossigmessage is §
bytes long. Therefore, in each cycle a node experiencesahttaffic of 32- g
bytes.

Choosing a gossip length in the range of 3 to 8, we achievdyngatimal con-
vergence speed with respect to the number of cycles (seeeRigl). The choice
of the periodAT depends on the underlying network’s bandwidth availghibis
well as on the network’s expected churn rate and the appitatneed for quick
convergence. For relatively fast convergence, say, wiHigw minutes, we could
setg = 8 andAT = 10sec In this case, a node would transfer 256 bytes every
10 seconds, that is, 25.6B/see400bps). This is very low bandwidth that could
be sustained even by modem connections. For less demamndimgrenents that
experience limited churn and failure rate, we could get 1 andAT = 1min,
resulting in a negligible bandwidth of less than 5bps perenod

This analysis backs our claim about €LON being inexpensive. Finally, note
that all communication is carried out in a connectionleshitan, sending UDP
packets.

2.7. APPLICATIONS

CycLON is a core technology that can be employed as a building block i
P2P applications, particularly in highly dynamic envircemts. The applications
briefly described in this section demonstrate the utilityCofcLON in a range of
different contexts.

In our work on Chapted, we use CLON as a component in a composite
gossiping protocol that establishes links between nodasdémonstrate some
relationship, building (almost) arbitrary topologies. this case, @CLON serves
as a lightweight means of learnimgndomnodes of the network.

Another potential use of @cLON is self-monitoring for very large clusters
of nodes, possibly in the wide-area, avoiding centralizedhierarchical archi-

SEC. 2.8 THE NEWSCASTPROTOCOL 33

tectures. In such a scheme, each node of a cluster is mahibyrssome other
random nodes of the cluster. The bounded indegree of nodesemnthat at any
given moment, each and every node will be pointed at (anethier monitored)
by a number of other nodes more or less equal to the view lentjtis ensures
that no node will be left unattended at all.

In [Stavrou et al. 2004the basic swapping algorithm is employed to construct
an overlay that handles flash crowds. Upon detection of a leslid condition
with respect to a document request, a client node abandengspective server,
and attempts to retrieve the document in question from pisetshave already
obtained it. In order to locate the document, the client npeldorms a series
of randomized, scoped searches over the links of the overested by basic
swapping.

In our work in Chapteb (also appearing inMoulgaris and van Steen 2003
we apply a different gossiping protocol, EM/SCAST [Jelasity et al. 2003Voul-
garis et al. 200B(described below), in managing P2P routing tables. Inigalgr,
we exploit the randomized overlay ofHWSCASTto pick nodes that satisfy cer-
tain criteria, to fill in Pastry-like Rowstron and Druschel 200[Leouting tables.
CycCLON is, in fact, a better candidate tharelNscaAsTin that application, as it
exhibits a superior randomness property and lower bantwatjuirements com-
pared to NEWSCAST.

Finally, in Newscast EMKowalczyk and Vlassis 2004Kowalczyk and Vlas-
sis use @cLON for data aggregation, and more specifically as a componeat of
distributed Expectation-Maximization (EM) algorithm farobabilistic clustering
of a set of (geographically) dispersed data. In partictireay conclude that aggre-
gation using @cLON is performedasterthan in a fully connected graph. This is
due to the bounded indegree of nodes, which results in eaid maving an equal
influence on the aggregation.

2.8. THE NEwsCAST PROTOCOL

For the sake of completeness, we now turn our attention BavSCAST, a
protocol that preexisted Y&ZLON, and which greatly contributed in developing a
mindset that led to the design of the latter.

NEWSCAST, invented and introduced by Mark Jelasity et al. Jelpsity et al.
2003, is a protocol for membership management and informatiseesmination
in large-scale, distributed systems. Much likecL oN, it employs a simple epi-
demic protocol to form an overlay network and to keep it catee.

NewscAsTand CrCLON operate along very similar gossiping paradigms. In
short, their differences lie in the following three key pisinFirst, with respect to

34 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

peer selection, in BEWSCAST nodes select eandomneighbor from their views
to gossip with, rather than the oldest one imGZON. Second, when gossiping,
nodes always send each other thehole view. Third, views are not swapped
when gossiping. Instead, they amerged and each node updates its view by
keeping the youngest pointers out of this merged set.

In addition to these three key differencess\MscAsTemploystimestampso
track a pointer’s age, in place ofY€LON’s agefield. However, this is merely
a matter of choice that does not significantly affect eithextgrol’'s behavior.
Therefore, it does not constitute a key difference betwheriwo protocols.

We subsequently provide a brief overview oEWNSCASTS operation, and
then explore some properties of its emergent behavior.

2.8.1. Principal Operation

In NEwscAsTeach node maintains a small, fixed-sized view pkers. A node
descriptor contains the network address of another peérimestamplenoting
when this descriptor was created. For simplicity we cuiyeassume globally
synchronized time, but we relax this assumption below.

The basic idea is that each node periodically picks a ranceemfpom its view
to gossip with and subsequently both nodes replace their eigries with the/
freshest descriptors of the union of their original viewsorglformally, each node
P executes the following five steps once evAfy time units QAT is referred to as
therefresh interva):

1. Randomly select a pe€rfrom P’s own view.

2. Add a fresh descriptor (i.e., timestamped with the curtane) with P's
address td’s own view.

3. SendP’s view to Q, and, in return, receiv®’s view (augmented by fresh
descriptor ofQ).

4. Discard descriptors dP (if any), and descriptors that are alreadyRis
view.

5. Keep the’ newest descriptors and discard the rest.

PeerQ executes the last four steps as well, so that after the egehbath
peers have the same merged view set, except for a pointectoather. Note,
however, that as soon as any of them executes the protodal, dgeir respective
views will most likely be different again.

SEC. 2.8 THE NEWSCASTPROTOCOL 35

45 T 0.35
é:zo O]

= =50 -G 5 L
@ - o -
§ 4r=100 & = g 030 B PR RO B
= B 54

3.5 i € 025
% H 5
5} s £
- 3 £ 020 -
g e 4 3 g
S ol 2 015 TG
o = T S VU S S Sl © sy
© ST i} TAL
[2 - B 1
3 R % 0.10 e AL -A

15 0.05

1000 2000 5000 10000 20000 50000100000 1000 2000 5000 10000 20000 50000100000
number of nodes (log) number of nodes (log)
(@) (b)

Figure 2.11: NewsCAST converged state. (a) Average shortest path length be-
tween two nodes. (b) Average clustering coefficient takesr all nodes.

This algorithm resembles the traditional push-pull epigtgpnotocol Demers
et al. 1987. A critical difference, however, is that no correspond&nbws the
complete member list, but only a small, random fraction of it

Finally, regarding the synchronized time assumption, ttegeol does not
really require that clocks be synchronized, but only that timestamps of all
descriptors in a single view be mutually consistent. We m&stinat the communi-
cation time between two peers is much shorter th@n(which is generally in the
order of tens of seconds or minutes). When a frepasses its view tQ), it also
sends along its current local tim&. WhenQ receivesP’s view, it adjusts the
timestamp of every descriptor with a valilie — To, effectively normalizing them
to its local time.

2.8.2. Properties of NNWSCAST

In this section we provide a brief presentation cfWSCASTs basic properties,
under the prism of €CLON. It is particularly interesting to see how the two
protocols’ different design choices reflect on their bebavi

Average path length First, with respect to the average path length between
nodes, the two protocols’ difference is rather insignificafigure2.11(a) shows
the average path length inBWscAsT overlays for a multitude of view lengths
and network sizes. AlthoughYZLON overlays exhibit slightly lower average
path lengths, as seen in Figuté(b), we do not consider this a noteworthy differ-
ence.

36 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

Clustering A more substantial difference is observed with respectustefing.
Figure 2.11(b) shows the average clustering coefficient f&WsCAST overlays
of various view lengths and network sizes. Clustering isi§icantly higher com-
pared to the respectiveXCLON overlays shown in Figur2.5(b).

High clustering is a direct consequence of theWwsCAST protocol opera-
tion. After a view exchange, two nodes share exactly the saeve apart from a
pointer to each other. In essence, by exchanging views tdesimaximize their
clustering with respect to each other. Exactly the oppdsigpens in €CLON.

By swappingneighbors, two nodes maintain their views’ diversity. lotfawo
views’ diversity may evelncreasein case a common neighbor is shipped over to
the other peer, and subsequently discarded while elinmigatuplicate pointers.
The effect of keeping common neighbors as opposed to distites after a view
exchange, is further studied and analyzed in Chapter

Note that the combination of high clustering with low avergmath length
suggests that the inducedEN'SCAST overlays have many properties in common
with what are known asmall-world networkgAlbert and Barabasi 2002 In
contrast, &CLON overlays have shown to resemble random graphs.

Degree distribution Figure2.12shows the indegree distribution ofEM/SCAST

and CrcLON overlays, as well as for a regular random graph. We considgit
with 100,000 nodes, and view lengths 20 and 50, respectiVély vertical axis is

in logarithmic scale. There is a clear difference betweenwo protocols. Ews-
CAST exhibits a widely skewed distribution of incoming links ¢ered around
small values, with a tail reaching out to almost an order ofynitaade higher
values, unlike @cLON, which imposes a bounded indegree in a self-regulated
manner.

Self healing Finally, it is interesting to see how the two protocols pearicat
removing dangling links to dead nodes. We repeated thetogpéic failure ex-
periment presented in Secti@, this time for NEwSCAST. In that experiment,
we abruptly killed half of the nodes of an already convergeetlay, and observed
how long it takes the remaining nodes to “forget” the deadsone

Figure2.13shows the number of dead nodes still remembered and the mumbe
of links to them as a function of the cycles elapsed since &tastrophic failure.
CycLoON graphs (enhanced swapping) shown in Fig2u&are reproduced here
for comparison. MWSCASTs priority at keeping thdreshestpointers to neigh-
bors becomes evident by the speed at which dead nodes an&téorg

The above illustrate the high dependence of protocol behar specific de-
sign choices. A comprehensive exploration of the desigrespmcluding &-

SEC. 2.8
10° T T T T T
newscast, £ =20 -------
cyclon, =20 --------
10* F reg.rand., £ =20]
1%
S L
2 10° H 1
3 x
9] o f
b 10° F]
g i —
3 .
c -
10 | L 1
.
] .
10° = : - R RE
0 10 20 30 40 50 60
indegree

THE NEWSCASTPROTOCOL

number of nodes

37

10° ; : : .
newscast, £ =50 -------
cyclon, £ =50 --------
10 £ reg.rand., ¢ =50]
10° |,]
102 | 1
: Ty
10t e 1
Ltin
T
10° & Ll Sl oo
0 100 150 200 250
indegree

Figure 2.12: Indegree distribution in converged 100,00@enaverlay, for News-
CAST, CycLON (enhanced swapping), and a regular random graph of outelegre

l.

50000
40000
30000
20000

10000

dead nodes still remembered

' e
4 1 1 1 1 1 1 Sé0

5 10 15 20 25 30 35 40
cycles since 50,000 nodes disconnected

(@)

45

links to dead nodes

bo, T T T T
1.2e+06 | cyclon, /=50 ---e--- |
x;.". newscast, £ =50 ---4---
Y
1le+06 - .o..]
%,
800000 | *e,]
A .,.
600000 |- o 4
Q..
400000 | ... i
()
e
200000 LR u
:)
0 A 1 1 1 1 1 7‘-..*
0 5 10 15 20 25 30 35 40 45

cycles since 50,000 nodes disconnected

(b)

Figure 2.13: (a) Time until dead nodes are forgotten. (b) Nenof dead links.

38 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

cLON and NewscAsTamong others, and its effect on overlay properties follows
in Chapter3.

2.9. AN APPLICATION: AGGREGATION

To illustrate the utilization of @CLON overlays, let us now take a look at an
example gossip-based applicatiohggregation that is, the collective estimation
of system-wide properties, is a key functionality to a numbfelarge-scale dis-
tributed systems. Such properties may refer to the netwiag average system
load, node with the lowest or highest load, aggregate cgpiaca distributed stor-
age system, etc. Aggregation should be carried out calkdgtby all participating
nodes in a purely distributed fashion, and the results shbetome known to all
nodes.

Aggregation is not the focus of this dissertation. For maof@rmation the
reader is directed to work such &upta et al. 200jL.[Kempe et al. 2001[Kempe
et al. 2003, [Renesse et al. 203 Jelasity et al. 2005 [Jelasity and Montresor
2004, [Montresor et al. 2004 and [Kowalczyk and Vlassis 20Q4In this section
we adopt the basic aggregation protocol followed in all efioentioned publica-
tions, and we show how it can benefit frony @ ON’s properties.

We consider a basic aggregation protocol that follows thehgaull gossip-
based paradigm, appearing ide[asity et al. 2005 Each node is assumed to
have a localestimateof the property being aggregated and a seheighbors
At random times, but exactly once evebdytime units, a node picks a random
neighbor and they exchange their estimates. Subsequeatl, node updates its
local estimate based on its previous value and the estiraagived.

Averaging constitutes a fundamental aggregation operation, in wea&th
node is equipped with a numeric value, and the goal is to estirthe average
of all nodes’ values. Jelasity et alldlasity et al. 2005how how averaging can
be used as the basis for the computation of other aggregatksling generalized
mean, variance, counting of nodes, sum, and product.

In averaging, a node updates its estimate to the averageéetits previous
local estimate and the estimate received. That is, whensnpdadq with esti-
matess, andsy gossip, their estimates are updated as follows:

S
Sp=5= "5 er %
Note that the sum of the two nodes’ estimates does not chahgeefore neither
does the global average. The variance, however, over thef sdt nodes’ esti-
mates decreases, unlegsands; were already equal, in which case it remains
unaltered. Experiments and theoretical analysislalgsity et al. 2005]elasity

SEC. 2.9 AN APPLICATION: AGGREGATION 39

=

®

] 100 T T T T T

8 C newscast - ¥~

2 cyclon --—-@---
b fully connected ---5)--

3 10° 5
N

©

£

2 100 | 8
1

L

5]

£ 15 vy
g 10" |]
ksl

jo)

= 10% Sel
3 0 5 10 15 20 25 30 35 40
>

cycles

Figure 2.14: Aggregation in static overlays.

and Montresor 2004Montresor et al. 2004Kowalczyk and Vlassis 2004how
that the variance converges to zero. Moreover, it conveatjas exponential rate,
whose exponent depends on the communication graph defimngodes’ neigh-
bors. The rule of thumb is that the higher the link randoniarain an overlay, the
faster the aggregation convergence.

Here we evaluate averaging over ©.ON and NEWSCAST overlays, in one
staticand twodynamicsettings. All presented experiments involve 100,000 nodes
and a view length of 20.

Aggregation over static overlays In our first experiment setting, we applied
averaging over converged, stativ €©_.ON and NewSCASTOverlays. Bystaticwe
mean that, after an overlay had converged, we ceased gupsipd studied ag-
gregation over its—static—Ilinks. Figug&14shows the evolution of the variance
as a function of the aggregation cycléstifne units) elapsed. To have a point of
reference, we also plot the variance evolution for aveiggier a fully connected
graph, in which a node exchanges estimates with a node pieketbmly out of
the whole network. Fully connected graphs demonstratefastest convergence
among all overlays tested idglasity et al. 2005

First, we observe that in all cases the variance convergaesrtoat an exponen-
tial rate. Second, we record a clear difference betweendhesgation efficiency
of static CrcLON and NEwscCAST overlays, the former converging significantly
faster. This is a direct consequence ofcZoN’s narrow indegree distribution and
very low clustering. Each node has roughly the same numbercoming links,
and therefore participates in roughly the same number ohatbn exchanges as
all other nodes. Moreover, the very low clustering ensunas éach node’s initial
value is uniformly spread across “all directions” of thewetk, not being con-

40 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

=

®

b= 100 T T T T T
8 newscast - ¥~
2 cyclon --—-@---
b fully connected ---5)--
3 10°

N

©

£

2 1020 |

1

Q

g

z 107 |

[

ksl

jo)

g 10% » |
©

3 0 5 10 15 20 25 30 35 40
>

cycles

Figure 2.15: Aggregation in dynamic overlays.

fined to any highly clustered subset. This leads to fastevergence of nodes’
estimates to the global average. On the other harEly$cAsTs skewed inde-
gree distribution results in an uneven distribution ofrstiion exchanges across
nodes. Also, due to high clustering, local estimates spoggakly within highly
clustered communities, but take longer to spread globally.

Aggregation over dynamic overlays Although sufficiently random static topolo-
gies are good enough for aggregation, they are not adequradgriamic environ-
ments. In real world systems, a dynamic overlay managemebbqol —such

as CrcLoN or NEWSCAST— is needed to deal with network changes. Conse-
quently, in our second experiment we evaluated averagimy @ynamicover-
lays. More specifically, each node was running an overlayagament protocol
(CycLoN or NEwscAST) andthe averaging protocol. Both overlay management
and averaging protocols were running at the same frequématyis, each one ex-
ecuted at a random time (not necessarily together) but lgxaicte everyd time
units. The node to exchange averaging estimates with, ve&ieghirandomly out

of the overlay management protocol’s current view.

Figure2.15presents the variance evolution for CLON, NEWSCAST, and a
fully connected graph of 100,000 nodes. Clearly, both i perform better
compared to their static counterparts. The gain is largeNfonvSCAST, as its dy-
namic execution significantly increases “randomness” itlesoviews. YCLON,
whose static views already resembled regular random grdgése does not gain
as much, nevertheless it still outperform&WMsCAST.

In further experiments (not shown here) we observed thatwthe overlay
management protocol rutrigsterthan the averaging one, even more randomness
is introduced in both protocols, gradually approachingftiily connected graph

SEC. 2.10 AN APPLICATION: AGGREGATION 41

behavior. In fact, when the overlay management protocas atran order of 10
times faster than averaging, both protocols effectivelgvenge like a fully con-
nected graph. The tradeoff for this—better—randomnessfastér aggregation
is the higher gossiping frequency for overlay managemesylting in more net-
work traffic.

Aggregation piggybacked on overlay management Our third set of experi-
ments is based on a scheme combining the aggregation algowiith the over-
lay management protocol. The idea ispiggybackestimation exchanges on the
view exchange messages used for overlay management. Tdenewenefit of
this combination is that aggregation comes for free: agglieg messages are
replaced by a few extra bytes in overlay management messages

In the case of @CLON a more significant—albeit less obvious—benefit ap-
plies. CrcLON has proved to trigger highly even communication among nodes
That is, in each cycle each node initiates gossiRrgctly oncewith a random
node, and is contacted for gossiping by anoth@domnodealmost exactly once
When piggybacked on¥3-LON, aggregation adopts this hightyenandrandom-
izedcommunication pattern, further improving its convergerete.

On the contrary, piggybacking aggregation oBWsCASThas a negative ef-
fect. In NEwsSCAST, two nodes that gossip end up with the same view (see Sec-
tion 2.8.1). If these two nodes also engage in aggregation exchargéehative)
effect of clustering is maximized: The two fresh estimates @nfined in two
nodes belonging to the exact same cluster, hindering tasirdiffusion to distant
nodes in the network.

The results of the piggybacked setting are shown in FiQui€& Note that
averaging piggybacked onYCLON converges as fast as on a fully connected
graph. On the other hand, we can clearly see the negativet eff@iggybacking
on NEWSCAST, as explained above.

To sum up our findings, we conclude that¥@ oN constitutes a very attrac-
tive overlay management protocol for aggregation, eitloerstatic or dynamic
environments.

Although aggregation is not one of the core applicationsgméed in this dis-
sertation, it allowed us briefly illustrate how applicattonan benefit from &
CLON's particular properties. A number of additional applicat based on G
CLON are extensively presented and evaluated in Part Il.

42 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

=

®

] 10°@y T T T T T
8 newscast - ¥~
2 cyclon ---@---
b fully connected ---5)--
3 10°

N

©

£

2 1020 |

0 y
jo)

g

z 107 |

[

G

8

= 1020 y
3 0 5 10 15 20 25 30 35 40
>

cycles

Figure 2.16: Aggregation in piggy-backed version.

2.10. RELATED WORK

There are currently several efforts in constructing urdtited overlays that
share properties with random graphs. We have already tbestchasic swapping,
introduced in Btavrou et al. 2004 forming the starting point for our own work
described in this chapter.

Another example is the Scamp protocGlgnesh et al. 2003which is explic-
itly designed to construct overlays with evenly distriltlienks, achieving view
lengths ofO(logN) without prior knowledge oN. Scamp is reactive, in the sense
that view exchanges take place only when nodes join, leava,failure is de-
tected. As it turns out, the protocol exhibits similar prdfges in comparison to
random graphs when considering its capabilities for infation dissemination
and recovering from massive node failures. However, nodihgin analysis has
been undertaken to compare the communication graph wittorargraphs as we
did, but it is known that there are important differences. rAgetive extension of
Scamp is suggested iMassoulie et al. 20g3improving the protocol’s behavior
with respect to load balancing and resilience to failuredyinamic settings.

In many unstructured overlays, such asdCoN, scalability of the network
is achieved by maintaining a partial view on the entire nekwd he construction
of the network itself, that is, membership management, usiat as we have ar-
gued in this chapter. It is interesting to see that the assomfs sometimes made
that the communication graph resulting from a specific mastbp protocol is
random. However, as we will see in Chap8there is a large family of member-
ship protocols for unstructured overlays for which thisussption is false. This
includes the work on Lightweight Probabilistic Multicaggster et al. 2003b
as well as the HwscAsT protocol Pelasity et al. 2003Voulgaris et al. 2008

SEc. 2.11 RELATED WORK 43

As it turns out, such membership protocols generally leaghtall-world graphs,
which distinguish themselves from random graphs by a higsteling coefficient.

In contrast, @CLON overlays appear to fall outside the category of small-world
networks.

Of course, random graphs may not be the best structure fomeorication
networks. Alternative schemes are describedRar[durangan et al. 200Baw
and Sui 200B In these cases, the requirements of low diameter, ras#igo
massive node failures, and inexpensive membership mareagdead to specific
graph-construction protocols. We argue that with enharsveapping these re-
quirements are all met, and that the resulting communicajiaphs allow us to
adopt the rigorous analysis of random graphs. Moreovemitrast to, for exam-
ple [Pandurangan et al. 20P3here is no need to use a central server.

In this light, it is also interesting to mention the recentrkvon Phenix for the
decentralized construction of low-diameter, scale-freemorks Wouhaybi and
Campbell 200#t In Phenix, an additional goal is to construct networks tna
resilient to massive malicious attacks. We have not yet @xaanthis feature for
CYCLON, but suspect its good randomness properties will help i mlaking it
attack resilient.

Finally, it is interesting to discuss Kelip§&[pta et al. 2003 [Linga et al],
a DHT based on gossiping. Kelips imposes a fixed structure roetvaork of N
nodes, organizing them ixYN groups ofy/N nodes each. Each node maintains
a complete view of its groupQ(v/N)links), and at least one link to each other
group O(v/N) links). Routing is, therefore, performed at constant timamely
in two steps: in the first step a message is routed to the apat®group, in the
second it reaches the target node within that group. Gessipiapplied to spread
membership information within and across groups. Old liakssdiscarded based
on their age.

The main philosophy behind Kelips is trading per-node mgmequirements
for constant time lookups. Indeed, increased memory rements pose no seri-
ous constraints on contemporary memory-abundant compyséems. However,
another facet of this design decision has been overlookée. [arger a view is,
the harder it becomes to keep it up-to-date in the face of wbden and network
changes, leading to incomplete or inaccurate views. lgegtiore unclear whether
the constant time lookup premise of Kelips is maintained mtiee scale of the
system increases and membership becomes highly dynamiveudg the con-
cept of discarding links solely based on their age, rathan tfue to a predefined,
fixed view length (as in €cLON), seems highly promising and deserves further
research. It can lead to the design of a family of gossipir@igmols (of which
Kelips is an instance), different than the protocols dedh wn this dissertation.

44 BUILDING RANDOM OVERLAYS: CYCLON CHAP. 2

2.11. CONCLUSIONS AND FUTURE WORK

In this chapter we presentedrCLON, a complete framework for inexpensive
membership management in very large P2P overlaysLON is highly scalable,
very robust, and completely decentralized. Most importarthat the resulting
communication graphs share important properties with sandraphs. Besides
the fact that desirable features such as low diameter angstiobss are supported,
this similarity justifiably opens the possibility to rigarsly analyze the networks.

We also conclude that Y LON is an improvement of the basic swapping
protocol developed by Stavrou et thvrou et al. 2004 We offer a scalable and
inexpensive membership protocol, achieve better nodesdedistributions, and
significantly lower the pollution of views concerning staéferences to previous
members.

In addition to our continued pursuit for new applicationg3fcLoN, we will
also explore potential improvements of the protocol its&l important next step
in our research will be the replacement of the periodic viewhanges with a
reactive exchange protocol, as in Scar@ahesh et al. 2003 We envisage that
this replacement will lead to a better utilization of netkeesources, and incur
only minimal costs for detecting failed nodes. Another imant subject that we
will address is taking network proximity into account. Tlattér will be largely
based on our scalable latency estimation service, desciibfSzymaniak et al.
2004.

CHAPTER 3

Random Overlays: Exploring the
Design Space

This chapter is a paper under submission (extendiniglasity et al. 2004:
Mark Jelasity, Spyros Voulgaris, Anne-Marie Kermarrec, Rlaid Guerraoui,
Maarten van Steen

“Gossip-based Peer Sampling”

Gossip-based communication protocols are appealingge{scale distributed
applications such as information dissemination, aggregaand overlay topology
management. In this chapter we factor out a fundamental amesinm at the heart
of all these protocols: theEER SAMPLING SERVICE. In short, this service pro-
vides every node with peers to gossip with. We promote thigise at the level
of a first class abstraction of a large-scale distributedesyspretty much like a
name service is a first class abstraction of a local-are@systWe present a ge-
neric framework to implement ag2R SAMPLING SERVICE in a decentralized
manner by constructing and maintainidgnamic unstructuredverlays through
gossiping membership information itself. Our frameworkerlizes existing ap-
proaches and makes it easy to discover new ones. We usedims\iiork to em-
pirically explore and compare several implementationshef BEER SAMPLING
SERVICE including existing gossiping approaches. Through extensimulation
experiments we show that—although all protocols provide@dgyuality uniform
random stream of peers to each node locally—traditionairétecal assumptions
about the randomness of the unstructured overlays as a whbatet hold in any
of the instances. We also show that different design dewsiesult in severe dif-
ferences from the point of view of two crucial aspects: loathbcing and fault

46 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

tolerance. Our simulations are validated through a reallémpntation over a
wide-area cluster.

3.1. INTRODUCTION

Gossip-based protocols, also called epidemic protoc@s@pealing in large-
scale distributed applications. The popularity of thesgqarols stems from their
ability to reliably pass information among a large set oéinbnnected nodes, even
if the nodes regularly join and leave the system (either gsefully or on account
of failures), and the underlying network suffers from brola slow links.

The common interaction pattern underlying gossip-basetbpols consists in
each node in the system periodically exchanging informatiith a subset of its
peers. The choice of this subset is crucial to the wide digsation of the gossip.
Ideally, any given node should exchange information witerpehat are selected
following a uniform random sample @il nodescurrently in the systemjemers
et al. 1987 van Renesse et al. 199Birman et al. 1999Karp et al. 2000 Sun
and Sturman 20Q0Kowalczyk and Vlassis 2094 This assumption has led to
rigorously establish many desirable features of gossgethgrotocols like scala-
bility, reliability, and efficiency (see, e.gP|ttel 1987 in the case of information
dissemination, orfempe et al. 2003Jelasity et al. 2005or aggregation).

In practice, enforcing this assumption would require toelep applications
where each node may be assumed to know of every other node siyskem Bir-
man et al. 1999Gupta et al. 2002Kermarrec et al. 20d3 However, providing
each node with a complete membership table from which a rarskmple can
be drawn, is unrealistic in a large-scale dynamic systemjfaintaining such
tables in the presence of joining and leaving nodes (redeiweaschurn) incurs
considerable synchronization costs. In particular, messant studies on various
peer-to-peer networks indicate that an individual node oftgn be connected in
the order of only a few minutes to an hour (see, eBiiggwan et al. 20Q3Baroiu
et al. 2003 Sen and Wang 2004

Clearly, decentralized schemes to maintain membershgorivdtion are cru-
cial to the deployment of gossip-based protocols. This w@hafactors out the
abstraction of a PER SAMPLING SERVICE and presents a generic, yet simple,
gossip-based framework to implement it.

The REER SAMPLING SERVICE is singled out from the application using
it and, abstractly speaking, the same service can be useiffénedt settings:
information disseminationfjemers et al. 1987Eugster et al. 2004 aggrega-
tion [Kempe et al. 2003Jelasity et al. 20052004h Montresor et al. 2004 load
balancing Jelasity et al. 2004cmembership managementdulgaris et al. 200h

SEC. 3.2 THE PEER SAMPLING SERVICE 47

and overlay bootstrappingl¢lasity et al. 2006Voulgaris and van Steen 2003
The service is promoted as a first class abstraction of a-Eogke distributed sys-
tem. In a sense, it plays the role of a naming service in atioadil LAN-oriented
distributed system as it provides each node with other ntalederact with.

The basic general principle underlying the framework wepps®e to imple-
ment the RER SAMPLING SERVICE is itself based on a gossip paradigm. In
short, every node (1) maintains a relatively small local mership table that pro-
vides apatrtial view on the complete set of hodes and (2) periodically refreshes
the table using a gossiping procedure. The framework isrgeard can be used
to instantiate knownHugster et al. 2003hJelasity et al. 2003Voulgaris et al.
20093 and novel gossip-based membership implementations. cln dar frame-
work captures many possible variants of gossip-based masimpealissemination.
These variants mainly differ in the way the membership tabigodated at a given
peer after gossiping with communicating peers. We use thiméwork to exper-
imentally evaluate various implementations and identigy kiesign parameters
in practical settings. Our experimentation covers botlemsive simulations and
emulations on a wide-area cluster.

We consider many dimensions when identifying qualitatiiiéecences be-
tween the variants we examine. These dimensions includeatidomness of
selecting a peer as perceived by a single node, the accufalog ourrent mem-
bership view, the distribution of the load incurred on eacdda as well as the
robustness in the presence of failures and churn.

As it turns out, we find that two peers should exchange elesrfenn their re-
spective tables. In other words, communication should Bedational. Adhering
to a push-only or pull-only approach can easily lead to ¢iokesrable) partition-
ing of the set of nodes. Another finding is that robustnesgagtailing nodes or
churn can be easily accomplished if old table entries anpplrd when exchanging
membership information.

However, as we shall also see, no single implementatiorediatins the oth-
ers along all dimensions. In this study we identify thesdecdfs when selecting
an implementation of theEER SAMPLING SERVICE for a given application. For
example, to achieve good load balancing, table entriesldltather beswapped
between two peers. However, this strategy is less robuststdailures and churn
than non-swapping ones.

3.2. THE PEER SAMPLING SERVICE

The REER SAMPLING SERVICE is implemented over a set of nodes that form
the domain of the gossip-based protocols that make use sktlvice. The same

48 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

sampling service can be utilized by multiple gossip pro®sanultaneously, pro-
vided they have a common target group. The task of the seivitte provide a
participating node of a gossiping application with a sulo§g@ieers from the group
to send gossip messages to.

3.2.1. API

The API of the BEER SAMPLING SERVICE simply consists of two methodsni t
andget Peer . It would be technically straightforward to provide a franurk
for a multiple-application interface and architecture.r Rdetter focus and sim-
plicity of notations we assume however that there is only apglication. The
specification of these methods is as follows.

i ni t() Initializes the service on a given node if this has not bearedmefore.
The actual initialization procedure is implementation elegent.

get Peer () Returns a peer address if the group contains more than ore nod
The returned address is a sample drawn from the group. Yléa@l sample
should be an independent unbiased random sample. The dreaacteris-
tics of this sample (e.qg., its randomness or correlatiomie and with other
peers) is affected by the implementation.

The focus of the research presented in this chapter is toagigerate information
about the behavior of thget Peer method in the case of a class of gossip-based
implementations. Applications requiring more than onerpad this method re-
peatedly.

Note that we do not define st op method. The reason is to ease the bur-
den on applications by propagating the responsibility dbanatically removing
nonactive nodes to the service layer.

3.2.2. Generic Protocol Description

We consider a set of nodes connected in a network. A node haddrass that is
needed for sending a message to that node. Each node maiataiembership
table representing its (partial) knowledge of the globahrhership. Traditionally,
if this knowledge is complete, the table is called thew. However, in our case
each node knows only a limited subset of the system, so tle iabonsequently
called apartial view. The partial view is a list of node descriptorsParametef
is called theview lengthand is the same for all nodes.

A node descriptor contains a network address (such as andifess) and an
agethat represents the freshness of the given node descriptag. partial view
is a list data structure, and accordingly, the usual listrafiens are defined on it.

SEC. 3.2

do forever
wait(T time units)
p < view.selectPeer()
if pushthen
// O'is the initial age
buffer — ((MyAddress,0))
view.permute()
move oldest H items to end of view
buffer.append(view.headl@))
send buffer top
else// empty view to trigger response
send (null) top
if pull then
receive buffeg from p
view.select(,H,S,buffep)
view.increaseAge()

(a) active thread

THE PEER SAMPLING SERVICE 49

do forever

receive buffeg from p
if pull then
// O is the initial age
buffer — ((MyAddress,0))
view.permute()
move oldest H items to end of view
buffer.append(view.head®))
send buffer tgp
view.select(,H,S,buffep)
view.increaseAge()

(b) passive thread

method view.select(,H,S,buffep)

view.append(buffey)
view.removeDuplicates()
view.removeOldltems(min(H,view.siz8-)
view.removeHead(min(S,view.sizg-)
view.removeAtRandom(view.siz8-

(c) method view.seleot(H,S,buffep)

Figure 3.1: The skeleton of a gossip-based implementatidheoPEER SAM -
PLING SERVICE.

Most importantly, this means that the order of elementsénview is not changed
unless some specific method (for examgley nut e, which randomly reorders
the list elements) explicitly changes it. The protocol assures that there is at
most one descriptor for the same address in every view.

The purpose of the gossiping algorithm, executed peridigicen each node
and resulting in two peers exchanging their membershiprimébion, is to make
sure that the partial views contain descriptors of a cowtirsly changing random
subset of the nodes and (in the presence of failure and gpeniral leaving nodes)
to make sure the partial views reflect the dynamics of theegystWe assume
that each node executes the same protocol of which the skekeshown in Fig-
ure 3.1 The protocol consists of two threads: an active (clientyad initiating
communication with other nodes, and a passive (serverathveaiting for and
answering these requests.

We now describe the behavior of the active thread. The patisiead just mir-
rors the same steps. The active thread gets activated inTetigte units exactly
once. Three globally known system-wide parameters are instils algorithm:

50 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

parameterd (the partial view length on each nodé), andS. For the sake of
clarity, we leave the details of the meaning and impadil @ndS until the end of
this section.

First, a peer node is selected to exchange membership iafammwith. This
selection is implemented by the metheel ect Peer that returns the address of
alive node. This method is a parameter of the generic protocol. Mé@iss the
implementations o$el ect Peer in Section3.2.3

Subsequently, if the information has to be pushed (booleaanpetepush
is true), then a buffer is initialized with a fresh descriptad the node running
the thread. Ther(/2 elements are appended to the buffer. The implementation
ensures that these elements are selected randomly fronetlhewthout replace-
ment, ignoring the oldedt elements (as defined by the age stored in the descrip-
tors). If there are not enough elements in the view, then lthestH elements are
also sampled to fill in any remaining slots. In addition, ti@wwill have exactly
the selected elements as first items (i.e., in the list hegd} fact will be impor-
tant later. Parameted is guaranteed to be less than or equaf tB. The buffer
created this way is sent to the selected peer.

If areply is expected (boolean paramgtel | is true) then the received buffer
is passed to methoslel ect (4, H, S, buf f er), which creates the new view
based on the listed parameters, and the current view, makirggthe size of the
new view does not decrease and is at nfost

Finally, methodsel ect (¢, H, S, buf f er) creates the new view based on
the listed parameters, and the current view as follows: rAdfgending the re-
ceived buffer to the view, it keeps only the freshest entryefach address. After
this operation, there is at most one descriptor for eachesddrAt this point, the
size of the view is guaranteed to be at least the original simee in the origi-
nal view each address was included also at most once. Swdrgggihe method
performs a number of removal steps to decrease the size ofidgheto ¢. The
parameters to the removal methods are calculated in sucly éhagthe view size
never decreases undér First, the oldest items are removed, as defined by their
age, and parametét. The naméd comes fronhealing that is, this parameter de-
fines how aggressive the protocol should be when it comesrioviag links that
potentially point to faulty nodes (dead links). Note, thathis way self-healing
is implemented without actually checking if a node is alivenot. If a node is
not alive, then its descriptors will never get refreshedd(drus become old), and
therefore sooner or later get removed. The lalgés, the sooner older items will
be removed from views.

After removing the oldest items, tt&first items are removed from the view.
Recall that it is exactly these items that were sent to the pemviously. As
a result, paramete® controls the priority that is given to the addresses reckive

SEC. 3.2 THE PEER SAMPLING SERVICE 51

from the peer. IfSis high, then the received items will have a higher probghbit
be included in the new view. Since the same algorithm is ruthemeceiver side,
this mechanism in fact controls the number of items thatsavappedbetween
the two peers, hence the naifdor the parameter. This parameter controls the
diversity of the union of the two new views (on the passive aciive side). IfS
is low then both parties will keep many of their exchangedneets, effectively
increasing the similarity between the two respective views a result, more
unique addresses will be removed from the system. In cdnifaSis high, then
the number of unique addresses that are lost from both viseuesner. The last
step removes random items to reduce the size of the vidw to

This framework captures the essential behavior of manyiegigossip mem-
bership protocols (although exact matches often requilalsthanges). As such,
the framework serves two purposes: (1) we can use it to cosgoad evaluate a
wide range of different gossip membership protocols by ghapparameter val-
ues, and (2) it can serve as a unifying implementation forgelalass of protocols.
As a next step, we will explore the design space of our franmewforming the
basis for an extensive protocol comparison.

3.2.3. Design Space

In this section we describe a set of specific instances of energc protocol by
specifying the values of the key parameters. These instangebe analyzed in
the rest of the chapter.

Peer Selection As described before, peer selection is implementesiddyect -
Peer () that returns the address oflige node as found in the caller's current
view. In this study, we consider the followingeer selectiompolicies:

rand Uniform randomly select an available node from the view
tail Select the node with theighestage

Note that the third logical possibility of selecting the Bodith thelowestage is

not included since this choice is not relevant. It is immesliaclear from simply

considering the protocol scheme that node descriptors avitbw age refer to
neighbors that have a view that is strongly correlated withriode’s own view.
More specifically, the node descriptor with the lowest ageagk refers exactly to
the last neighbor the node communicated with. As a resulttacting this node
offers little possibility to update the view with unknowntgas, so the resulting
overlay will be very static. Our preliminary experimentdlyuconfirm this simple

reasoning. Since the goal of peer sampling is to provide welted random
peers continuously, it makes no sense to consider any @eheith a bias towards
low age, and thus protocols that follow such a policy.

52 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

View propagation Once a peer has been chosen, the peers may exchange infor-
mation in various ways. We consider the following twiew propagatiorpolicies:

push The node sends descriptors to the selected peer
pushpull | The node and selected peer exchange descriptors

Like in the case of the view selection policies, one logicasgbility: thepull
strategy, is omitted. Itis easy to see that the pull strategynot possibly provide
satisfactory service. The most important flaw of the pulitglgy is that a node
cannot inject information about itself, except only whempleitly asked by an-
other node. This means that if a node loses all its incomimmections (which
might happen spontaneously even without any failures, amdhis rather com-
mon as we shall see) there is no possibility to reconnectamétwork.

View selection The parameters that determine how view selection is pegdrm
areH, the self-healing parameter, aslthe swap parameter. Let us first note
some properties of these parameters. First, assuming/ tisagéven, all values
of H for which H > ¢/2 are equivalent t¢1 = ¢/2, because the protocol never
decreases the view size underFor the same reason, all values®for which
S> ¢/2—H are equivalent t&= ¢/2—H. Furthermore, the last, random removal
step of the view selection algorithm is executed onl$ i ¢/2 — H. Keeping this

in mind, we have a “triangle” of protocols witH ranging from 0 to//2, and
with Sranging from 0 to//2—H. In our analysis we will look at this triangle at
different resolutions, depending on the scenarios in quesAs a minimum, we
will consider the three vertices of the triangle defined dioves.

blind H=0,S=0 Select blindly a random subset
healer H=1¢/2 Select the freshest entries
swapper | H=0,S=1/¢/2 Minimize loss of information

3.2.4. Implementation

We now describe a possible implementation of tlEER SAMPLING SERVICE
APl based on the framework presented in Sec8dh2 We assume that the ser-
vice forms a layer between the application and the unstredtaverlay network.

Initialization Thei ni t method will cause the service to register itself with the
gossiping protocol instance that maintains the overlawoet. From that point,
the service will be notified by this instance whenever theactiew is updated.

SEc. 3.3 LocAL RANDOMNESS 53

Sampling As an answer to thget Peer call, the service returns an element
from thecurrentview. To maximize the diversity of the returned peers, theise
makes a best effort not to return the same element twice gltine period while
the given element is in the view: this would introduce an ohsibias and would
damage randomness. To achieve this, the service maintajnswe of elements
that are currently in the view but have not been returned Metthodget Peer
returns the first element from the queue and subsequengynibves this element
from the queue. When the service receives a notification orew update, it
removes those elements from the queue that are no longee ioutient view,
and appends the new elements that were not included in thimpseview. If the
gueue becomes empty, the service falls back on returnirdprarsamples from
the current view. In this case the service can set a warniggtiiat can be read
by applications to indicate that the quality of the retursaanples is no longer
reliable.

In the following sections, we analyze the behavior of ounfesavork in order
to gradually come to various optimal settings of the paramsetAnticipating our
discussion in SectioB.7, we will show that there are some parameter values that
never lead to good results (such as selecting a peer fronsla frede descriptor).
However, we will also show that no single combination of pagger values is
always best and that, instead, tradeoffs need to be made.

3.3. LOCAL RANDOMNESS

Ideally, a FEER SAMPLING SERVICE should return a series of unbiased in-
dependent random samples from the current group of peems.agsumption of
such randomness has indeed led to rigorously establish desisable features of
gossip-based protocols like scalability, reliabilitydasfficiency Pittel 1987.

When evaluating the quality of a particular implementatiéthe service, one
faces the methodological problem of characterizing ranuess. In this section
we consider a fixed node and analyze the series of samplesatgshat that par-
ticular node.

There are essentially two ways of capturing randomnessfildt@pproach is
based on the notion of Kolmogorov complexityi pnd Vitanyi 1997. Roughly
speaking, this approach considers as random any seriestiait be compressed.
Pseudo random number generators are automatically extlgéhis definition,
since any generator, along with a random seed, is a compresseesentation of a
series of any length. Sometimes it can be proven that a seaigse compressed,
but in the general case, the approach is not practical tagdedbmness due to the
difficulty of proving that a seriesannotbe compressed.

54 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

The second, more practical approach assumes that a sersasdiam if any
statistic computed over the series matches the theoretta of the same statis-
tic under the assumption of randomness. The theoreticagvalcomputed in the
framework of probability theory. This approach is essdlytiampirical, because
it can never be mathematically proven that a given seriegndam. In fact, good
pseudo random number generators pass most of the randotestssthat belong
to this category.

Following the statistical approach, we view theeR SAMPLING SERVICE (as
seen by a fixed node) as a random number generator, and wethp@gme tra-
ditional methodology that is used for testing random nungeererators. We test
our implementations with the “diehard battery of randonsnessts” Marsaglia
1995, the de factostandard in the field.

3.3.1. Experimental Settings

We have experimented our protocols using the PeerSim siarjReerSin. All
the simulation results were obtained using this implemeria

Thedi ehar d test suite requires as input a considerable number of 32-bit
tegers: the most expensive test needs® of them. To be able to generate this
input, we assume that all nodes in the network are numbeozd @rtoN. Node
N executes the BER SAMPLING SERVICE, obtaining one number between 0 and
N — 1 each time it calls the service, thereby generating a seguehintegers. If
N is of the formN = 2"+ 1, then the bits of the generated numbers form an unbi-
ased random bit stream, provided theeR SAMPLING SERVICE returns random
samples.

Due to the enormous cost of producing a large number of sanple re-
stricted the set of implementations of the view construcpoocedure to the three
extreme pointsbl i nd, heal er andswapper . Peer selection was fixed to be
tai | andpushpul | was fixed as the communication model. Furthermore, the
network size was fixed to be!®+ 1 = 1025, and the view length was= 20.
These settings allowed us to completel@’ cycles for all the three protocol im-
plementations. In each case, nddlgenerated four samples in each cycle, thereby
generating four 10-bit numbers. Ignoring two bits out ofséen, we generated
one 32-bit integer for each cycle.

Experiments convey the following facts. No matter which tits are ignored,
it does not affect the results, so we consider this as a ritinatrdecision. Note
that we could have generated 40 bits per cycle as well. Howswvee many tests
in thedi ehar d suit do respect the 32-bit boundaries of the integers, wendid
want to artificially diminish any potential periodic behawin terms of the cycles.

SEc. 3.3 LocAL RANDOMNESS 55

3.3.2. Test Results

A detailed description of the tests in tde ehar d benchmark is out of the scope
of this dissertation. In Tabld.1we summarize the basic ideas behind each class
of tests. In general, the three random number sequencesafpdbe tests, in-
cluding the most difficult onegMarsaglia and Tsang 20Q)2vith one exception.
Before discussing the one exception in more detail, noteftimawo tests we did
not have enough 32-bit integers, yet we could still applyrth& he first case is
the permutation test, which is concerned with the frequesnoif the possible or-
derings of 5-tuples of subsequent random numbers. Thesigsires 510 32-bit
integers. However, we applied the test using the originabitintegers returned
by the sampling service, and the random sequences passedreddon is that
ordering is not sensitive to the actual range of the valug$prg as the range is
not extremely small. The second case is the so called “gotist, which is a
strong instance of the class of the monkey tebtargaglia and Tsang 20D2lIt
requires 67- 107 32-bit integers. In this case we concatenated the outputeof t
three protocols and executed the test on this sequenceapibisitive result. The
intuitive reasoning behind this approach is that if any @f pinotocols produces a
non-random pattern, then the entire sequence is suppofatith® test, especially
given that this test is claimed to be extremely difficult tepa

Consider now the test that proved to be difficult to pass. Tés$ was an
instance of the class of binary matrix rank tests. In thisanse, we take 6 con-
secutive 32-bit integers, and select the same (conser@tiviés from each of the
6 integers forming a & 8 binary matrix whose rank is determined. That rank can
be from 0 to 6. Ranks are found for 100,000 random matrices,aachi-square
test is performed on counts for ranks smaller or equal to d fanranks 5 and 6.

When the selected byte coincides with the byte contribuiedre call to the
PEER SAMPLING SERVICE (bits 0-7, 8-15, etc), protocolsl i nd andswapper
fail the test. To better see why, consider the basic funiigwof the rank test. In
most of the cases, the rank of the matrix is 5 or 6. If it is Hyjitically means that
the same 8-bit entry is copied twice into the matrix. Our iempéntation of the
PEER SAMPLING SERVICE explicitly ensures that the diversity of the returned
elements is maximized in the short run (see Sec8dh4. As a consequence,
rank 6 occurs relatively more often than in the case of a tamelom sequence.
Note that for many applications this property is actuallyagivantage. However,
heal er passes the test. The reason of this will become clearer irethaining
parts of this chapter. As we will see, in the caséhefil er the view of a node
changes faster and therefore the queue of the samples ttubeeet is frequently
flushed, so the diversity-maximizing effect is less sigaific

The picture changes if we consider only every 4th sampleérrdmdom se-
guence generated by the protocols. In that cbsé,nd andswapper pass the

56

RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

Birthday Spacings

The k-bit random numbers are interpreted as “birthdays”

in a “year” of X days. We takem birthdays and list the

spacings between the consecutive birthdays. The stasst

the number of values that occur more than once in that

c
ist.

Greatest Common

Divisor

We run Euclid’s algorithm on consecutive pairs of rand
integers. The number of steps Euclid’s algorithm need

DM
S to

find the greatest common divisor (GCD) of these consecu-

tive integers in the random series, and the GCD itself
the statistics used to test randomness.

are

Permutation

Tests the frequencies of the 51120 possible orderings qgf

consecutive integers in the random stream.

Binary Matrix Rank

Tests the rank of binary matrices built from consecutive
tegers, interpreted as bit vectors.

in-

Monkey

A set of tests for verifying the frequency of the occurren

ces

of “words” interpreting the random series as the output of a

monkey typing on a typewriter. The random number se
is interpreted as a bit stream. The “letters” that form

ries
the

words are given by consecutive groups of bits (i.e., far 2

bits there are 4 letters, etc).

Count the 1-s

A set of tests for verifying the number of 1-s in the b

stream.

it

Parking Lot

Numbers define locations for “cars.”
“park cars” and test the number of successful and un
cessful attempts to place a car at the next location def
by the random stream. An attempt is unsuccessful if
location is already occupied (the two cars would overlay

We continuous

y
sUC-

ned
the

~—

Minimum Distance

Integers are mapped to two or three dimensional coqrdi-

nates and the minimal distance among thousands of
secutive points is used as a statistic.

con-

Squeeze

After mapping the random integers to the interj@ll), we
test how many consecutive values have to be multiplie

d to

get a value smaller than a given threshold. This number is

used as a statistic.

Overlapping Sums

The sum of 100 consecutive values is used as a statisti

~
.

Runs Up and Down

The frequencies of the lengths of monotonously decrea
or increasing sequences are tested.

sing

Craps

200,000 games of craps are played and the numbg
throws and wins are counted. The random integers
mapped to the integers.1.,6 to model the dice.

Table 3.1: Summary of the basic idea behind the classestsfitethedi ehar d
test suite for random number generators. In all cases testsua with several
parameter settings. For a complete description we refdvitvgaglia 199b

r of
are

SEC. 3.4 GL.oBAL RANDOMNESS 57

test, butheal er fails. In this case, the reason of the failurehefal er is exactly
the opposite: there are relatively too many repetitions@sequence. Taking only
every 8th sample, all protocols pass the test.

Finally, note that even in the case of “failures,” the numeteviation from
random behavior is rather small. The expected occurrenfcesks of<4, 5 and
6 are 0.94%, 21.74% and 77.31%, respectively. In the first tipfailure, when
there are too many occurrences of rank 6, a typical failedgizes percentages
0.88%, 21.36% and 77.68%. When ranks are too small, a tyfadate is, for
example, 1.05%, 21.89% and 77.06%.

3.3.3. Conclusions

The results of the randomness tests suggest that the stfeamdes returned by
the REER SAMPLING SERVICE is close to random for all the protocol instances
examined. Given that some widely used pseudo random nureberators fail at
least some of these tests, this is a highly encouragingtnesgdrding the quality
of the randomness provided by this class of sampling prdgéoco

Based on these experiments, we cannot, however, conclugletoal random-
ness of the resulting graphs. Local randomness, evaluededd peer’s point of
view is important, however, in a complex large-scale disiied system, where
the stream of random nodes returned by the nodes might hawplicated corre-
lations, merely looking at local behavior does not reveahsdey characteristics
such as load balancing (existence of bottlenecks) and faldtance. In Sec-
tion 3.4we present a detailed analysis of the global properties opmtocols.

3.4. GLOBAL RANDOMNESS

In Section3.3we have seen that from a local point of view all implementagio
produce good quality random samples. However, statistast for randomness
and independence tend to hide importaimtictural properties of the systeias a
whole To capture these global correlations, in this section wigctwio a graph
theoretical framework. To translate the problem into a bréqeoretical language,
we consider theommunication topologgr overlay topologydefined by the set of
nodes and their views (recall thget Peer () returns samples from the view).
In this framework the directed edges of the communicati@aplgrare defined as
follows. If nodea stores the descriptor of nodben its view then there is a directed
edge(a,b) from ato b. In the language of graphs, the question is how similar
this overlay topology is to a random graph in which the dedors in each view
represent a uniform independent random sample of the wiunle get.

In this section we consider graph-theoretic propertieshefdverlay graphs.

58 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

An important example of such properties is thegree distribution The indegree
of nodei is defined as the number of nodes that hiawvetheir views. The outde-
gree is constant and equal to the view diz®egree distribution has many signif-
icant effects. Most importantly, degree distribution detimes whether there are
hot spots and bottlenecks from the point of view of commuidcecosts. In other
words, load balancingis determined by the degree distribution. It also has a di-
rect relationship with reliability to different patterng mode failures plbert et al.
2000, and has an effect on the exact way epidemics are sprastdr-Satorras
and Vespignani 20Q1 Apart from the degree distribution we also analyze the
clustering coefficient and average path length, as destehd motivated in Sec-
tion 3.4.2

The main goal of the work presented in this chapter is to ergloe different
design choices in the protocol space described in Se8td@ More specifically,
we want to assess the impact of the peer selection, viewtsgleand view prop-
agation parameters. Accordingly, we chose to fix the netvaizk toN = 10*
and the maximal view size tb= 30. The results presented in this section were
obtained using the PeerSim simulation environmeetgrSinh

3.4.1. Properties of Degree Distribution

The first and most fundamental question is whether, for d@qudatr protocol im-
plementation, the communication graph has some stablegieg, which it main-
tains during the execution of the protocol. In other words,ase interested in the
convergence behaviaf the protocols. We can expect several sorts of dynamics
which include chaotic behavior, oscillations, and coneege. In case of conver-
gence the resulting state may or may not depend on the iodgi#iguration of the
system. In the case of overlay networks we obviously preférave convergence
towards a state that is independent of the initial configomat This property is
calledself-organization In our case it is essential that in a wide range of scenar-
ios the protocol instances should automatically producsistent and predictable
behavior. Sectio3.4.1examines this question.

A related question is whether there is convergence and vihaidf communi-
cation graph a protocol instance converges to. In particamentioned earlier,
we are interested in what sense overlay topologies deviate €ertain random
graph models. We discuss this issue in Secighl

Finally, we are interested in looking &ical dynamicproperties along with
globally stabledegree distributions. That is, it is possible that while dverall
degree distribution and its global properties such as maxinvariance, average,
etc., do not change, the degree of the individual nodes dobi is preferable
because in this case even if there are always bottlenecks indtwork, the bot-
tleneck will not be the same node all the time which greattreases robustness

SEC. 3.4 GL.oBAL RANDOMNESS 59

and improves load balancing. Secti®4.1is concerned with these questions.

Convergence

We now present experimental results that illustrate theyexence properties of
the protocols in three different bootstrapping scenarios:

Growing In this scenario, the overlay network initially containdyoone node.
At the beginning of each cycle, 500 new nodes are added todtveork
until the maximal size is reached in cycle 20. The view of ¢heedes is
initialized with only a single node descriptor, which beajsnto the oldest,
initial node. This scenario is the most pessimistic one @mtktrapping the
overlays. It would be straightforward to improve it by usimgpre contact
nodes, which can come from a fixed list or which can be obtaimedg
inexpensive local random walks on the existing overlay. Esy, in our
discussion we intentionally avoid such optimizations towala better focus
on the core protocols and their differences.

Lattice In this scenario, the initial topology of the overlay is agitattice, a
structured topology. We build the ring lattice as followsheTnodes are
first connected into a ring in which each node has a descriptiis view
that belongs to its two neighbors in the ring. Subsequefafyeach node,
additional descriptors of the nearest nodes are added inirteuntil the
view is filled.

Random In this scenario the initial topology is defined as a randowmpbr in
which the views of the nodes were initialized by a uniformdam sample
of the peer nodes.

As we focus on the dynamic properties of the protocols, wendidwish to
average out interesting patterns, so in all cases the @sakingle run is shown in
the plots. Nevertheless, we ran all the scenarios 100 timgaih data on the sta-
bility of the protocols with respect to the connectivity bétoverlay. Connectivity
is a crucial feature, a minimal requirement for all applicas. The results of these
runs show that in all scenarios, every protocol under exatitin creates a con-
nected overlay network in 100% of the runs (as observed itec3@0). The only
exceptions were detected during the growing overlay seendiable 3.2 shows
the push protocols. With the push-pull scheme we have natreed partitioning.

The push versions of the protocols perform very poorly in gh@wing sce-
nario in general. Figur8.2illustrates the evolution of the maximal indegree. The
maximal indegree belongs to the central contact node theted to bootstrap the

60 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

protocol partitioned | average number| average largest
runs of clusters cluster

(rand,healer,push) 100% 22.28 9124.48
(rand,swapper,push) 0% n.a. n.a.

(rand,blind,push) 18% 2.06 9851.11

(tail,healer,push) 29% 2.17 9945.21

(tail,swapper,push) 97% 4.07 9808.04

(tail,blind,push) 10% 2.00 9936.20

Table 3.2: Partitioning of the push protocols in the growanegrlay scenario. Data
corresponds to cycle 300. Cluster statistics are over th@ipaed runs only.

10000
9000
8000 F push protocols —
7000
6000
5000
4000
3000
2000
1000

maximal indegree

_— pushpull protocols

0 50 100 150 200 250 300
cycles

Figure 3.2: Evolution of maximal indegree in the growing rsmeo (recall that
growing stops in cycle 20). The runs of the following protiscare shown: peer
selection is either rand or tail, view selection is blindalez or swapper, and view
propagation is push or pushpull.

network. After growing is finished in cycle 20, the push-puibtocols almost in-
stantly balance the degree distribution thereby removiegobttleneck. The push
versions, however, get stuck in this unbalanced state.

This is not surprising, because when a new node joins theankt@nd gets an
initial contact node to start with, the only way it can get @adated view is if some
other node contacts it actively. This, however, is very keili. Because all new
nodes have the same contact, the view at the contact nodemktted extremely
frequently causing all the joining nodes to be quickly fdtgn. A node has to
push its own descriptor many times until some other nodea#igtecontacts it.

indegree standard deviation

SEC. 3.4 GL.oBAL RANDOMNESS 61

growing scenario random scenario lattice scenario
40 T T T T 40 40
EH tail, blind =s+esee-
35 k- rand, blind -------- 4 35 35
BB tail, swapper ='='==
30 |-+ rand, swapper ------- - 30 30
S tail, healer
25 -3 .. rand, healer B 25 25
2 .[-- PPIRT BN D PP 20 ‘ IRPASENPN 20 | AP BRI OO A
1 ~5 7’
15 4+ 15 H 15 (f
\ :]
10 |v5% s 10 10 I
5 ““-:-’-;:'.::-. RiEiRiEEIESIEIS 5 SiEiFisiRiEsisiEimiEIsiE i miSi SIS E] 5 R EIEIE IR R R R YRR B SIS S OS]

0 0
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
cycles cycles cycles

Figure 3.3: Evolution of standard deviation of indegreelise@enarios of pushpull
protocols.

This also means that if the network topology moves towardsstiape of a star,
then the push protocols have extreme difficulty balancitg dkegree-distribution
state again towards a random one.

We conclude that this lack of adaptivity and robustnessceéffdy renders
push-only protocols useles$n the remaining of this chapter we therefore con-
sider only the pushpull model.

Figure 3.3illustrates to convergence of the push-pull protocols.a\bat the
average indegree is always the view sizé/Ne can observe that in all scenarios
the protocols quickly converge to the same value, even icdlse of the growing
scenario, in which the initial degree distribution is ratekewed. Other properties
not directly related to degree distribution also show cogeece, as discussed in
Section3.4.2

Static Properties

In this section we examine the converged degree distribsitignerated by the dif-
ferent protocols. Figur8.4shows the converged standard deviation of the degree
distribution. We observe that increasing bdthand S results in a lower—and
therefore more desirable—standard deviation. The reasdifferent for these
two cases. With a larg§, links to a node come to existence only in a very con-
trolled way. Essentially, the only way new links to a node emeated is by the
node itself injecting its own fresh node descriptor durimgnenunication. On the
other hand, with a largél, the situation is the opposite. When a node injects a
new descriptor about itself, this descriptor is (exporsdiytioften) copied to other
nodes for a few cycles. However, one or two cycles later glie® are removed

proportion of nodes (%)

62 RANDOM OVERLAYS: EXPLORING THEDESIGN SPACE CHAP. 3

rand, H=0 —3—
tail, H=0 ---H---
rand, H=1 —&—
tail, H=1 ---@---
rand, H=3 —&—
tail, H=3 ---4&---
rand, H=8 ——
tail, H=8 ---v---
rand, H=14 —&—
tail, H=14 ---&---

random graph ———

indegree standard deviation

Yand, blind ' rand, blind

10 | ot d, bli - d, bli O
tail, blind W tail, blind W
& rand, swapper O < rand, swapper O
sk tail, swapper @ | < tail, swapper @
) J rand, healer A 4 1 rand, healer A
tail, healer A 3 tail, healer A
6 random graph 4 c random graph
s AR @
c
4] 2
5] 0.1
o
o
2 b . o
0 e i H il 0.01 A& il i HI
0 20 40 60 80 100 120 140 160 0O 20 40 60 80 100 120 140 160
indegree indegree

Figure 3.5: Converged indegree distributions on linearlagdrithmic scales.

because they are pushed out by new links (i.e., descrigtgesited in the mean-
time. So the effect that reduces variance is the shorthifetof the copies of a
given link.

Figure 3.5 shows the entire degree distribution for the three vertakethe
design space triangle. We observe that the distributiosvapper is narrower
than that of the random graph, whitd i nd has a rather heavy tail and also a
large number of nodes with zero or very few nodes pointindhéort, which is not
desirable from the point of view of load balancing.

proportion (%)

SEC. 3.4 GLoBAL RANDOMNESS 63

rand, blind rand, swapper rand, healer
3 T T L T 12 T T T T T T T 5 T T T T T T T T
one node over time O [
slapshot of network ®m 45 1
25 1 10 | = 1
- - 4 B
-
1 < 3 D _ a5l # % 1
IS B = T S U om
= ¥ o T 3« 1 1
4 £ s} . 1 € st X .
o o
=% u a 2L B E i
< 8] o < o
1 & 4r o 1 = 15} = % .
" a 1 .
- 2+ u 8] -
L]]
0.5 f —
; 0 0
0 40 80 120 160 200 10 15 20 25 30 35 40 45 50 0 10 20 30 40 50 60 70 80 90
indegree indegree indegree

Figure 3.6: Comparison of the converged indegree disiohuiver the network at
a fixed time point and the indegree distribution of a fixed nddeng an interval
of 50,000 cycles. The vertical axis represents the propomif nodes and cycles,
respectively.

Dynamic Properties

Although the distribution itself does not change over timgimg the continu-

ous execution of the protocols, the behavior of a single raidieneeds to be

determined. More specifically, we are interested in whethgiven fixed node
has a variable indegree or whether the degree changes \mwy.slThe latter

case would be undesirable because an unlucky node having-average degree
would continuously receive above-average traffic whileeashwould receive less,
which results in inefficient load balancing.

Figure3.6compares the degree distribution of a node over time, andrities
network at a fixed time point. The figure shows only the distitn for one node
and only the random peer selection protocols, but the sasaétrgolds for tail
peer selection and for all the 100 other nodes we have olelem the fact
that these two distributions are very similar, we can cotelthat all nodes take
all possible values at some point in time, which indicates the degree of a node
iS not static.

However, it is still interesting to characteribew quicklythe degree changes,
and whether this change is predictable or random. To this wadpresent auto-
correlation data of the degree time-series of fixed nodesgare 3.7. The band
indicates a 99% confidence interval assuming the data iran®nly one node
is shown, but all the 100 nodes we traced show very similaatieh Let the
seriesdy, ... dx denote the indegree of a fixed node in consecutive cyclesdand
the average of this series. The autocorrelation of the sdiie..dx for a given

64 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

T T T
tail, blind =e+=s=e+
rand, blind --------
tail, swapper =+=:=:= 4
rand, swapper -------
tail, healer
rand, healer
99% confidence band

autocorrelation of node degree

0 20 40 60 80 100 120 140
time lag (cycles)

Figure 3.7: Autocorrelation of indegree of a fixed node ov&0B0 cycles. Confi-
dence band corresponds to the randomness assumption:caraedes produces
correlations within this band with 99% probability.

time lagk is defined as

Z}jtlk(dj —d)(djk—d)
e = K 2)
Yj—1(dj—d)

which expresses the correlation of pairs of degree valuesrated byk cycles.

We observe that in the caselodal er itis impossible to make any prediction
for a degree of a node 20 cycles later, knowing the currentegegHowever, for
the rest of the protocols, the degree changes much sloveeilfirgy in correlation
in the distance of 80-100 cycles, which is not optimal frora pgoint of view of
load balancing.

3.4.2. Clustering and Path Lengths

Degree distribution is an important property of random gsagHowever, there are
other equally important characteristics of networks thiatiadependent of degree
distribution. In this section we consider tagerage path lengthnd theclustering
coefficientas two such characteristics. The clustering coefficienefndd over
undirected graphs (see below). Therefore, we considerndeacted version of
the overlay after removing the orientation of the edges.

Average path length The shortest path length between nadendb is the min-
imal number of edges required to traverse in the graph inrameeachb from
a. The average path length is the average of shortest patthkeoger all pairs

average path length

clustering coefficient

SEC. 3.4 GLoBAL RANDOMNESS 65

growing scenario random scenario lattice scenario
3.25
3.2 #
3.15 FE- i ‘ :
1 !E s T K T v Tal ¥ R
31 f 31 R
) £ i
3.05 |+ 3.05 3.05 f
;
31 3 3
A3 n
ity it W e Wy e Y daley
2.95 2.95 2.95
50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
cycles cycles cycles
growing scenario random scenario lattice scenario
0.25 tail, Blind +eeeves 0.25 0.25
rand, blind --------
tail, swapper
0.2 rand, swapper 0.2 0.2
tail, healer f
[rand, healer ¢
0.15 [« 0.15 0.15 [
i\
(o 4
0.1 i 0.1 01 f¢
i H
i
v w
0.05 “; 0.05 0.05 .t
LTt LTI Do P [T P AL FOR PR T PPN PN VI PR DRT
Ty 0 ---------- - 0 K - -
50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
cycles cycles cycles

Figure 3.8: Evolution of the average path length and thetetingy coefficient in
all scenarios.

of nodes in the graph. The motivation of looking at this prbpés that, in any
information dissemination scenario, the shortest patgtiedefines a lower bound
on the time and costs of reaching a peer. For the sake of ditglasmall av-
erage path length is essential. In FigGt8 especially in the growing and lattice
scenarios, we verify that the path length converges rapigigure 3.9 shows the
converged values of path length for the design space teasgfined byH andS.
We observe that all protocols result in a very low path lengrge Svalues are
the closest to the random graph.

Clustering coefficient The clustering coefficient of a nodeis defined as the
number of edges between the neighbora divided by the number of all possible
edges between those neighbors. Intuitively, this coefftdiedicates the extent to
which the neighbors of are also neighbors of each other. The clustering coeffi-
cient of a graph is the average of the clustering coefficiefits nodes, and always

clustering coefficient

66 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

0.16 T T T T T T
rand, S=0 ——
0.14 tail, S=0 ---W---
rand, S=3 —&—
0.12 tail, S=3 ---A--- ES)
rand, S=8 —— b 2
0.1 tail, S=8 ---w--- . <
rand, S=14 —&— .-. £
0.08 |- tail, S=14 ---#--- v - g
random graph ¥ | ©
0.06 LA E g
]
0.04 E]
0.02 § 1
0 L 1 1 1 1 1 1 1 295 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
H H

Figure 3.9: Converged values of clustering coefficient aretage path length.

lies between 0 and 1. For a complete graph, it is 1, for a tree0it The motiva-

tion for analyzing this property is that a high clusteringffizient has potentially
damaging effects on both information dissemination (bydasing the number
of redundant messages) and also on the self-healing capgmciveakening the
connection of a cluster to the rest of the graph thereby asing the probability

of partitioning. Furthermore, it provides an interestingsgibility to draw paral-

lels with research on complex networks where clusteringnisygortant research
topic (i.e., in social networks)atts and Strogatz 1998

Like average path length, the clustering coefficient alsovemes (see Fig-
ure 3.8); Figure 3.9 shows the converged values. It is clear that clusteringiis co
trolled mainly byH. The largest values @f result in rather significant clustering,
where the deviation from the random graph is large. The reé@sdhat ifH is
large, then a large part of the views of any two communicatinges will over-
lap right after communication, since both keep the saménéstsentries. For the
largest values of clustering is close to random. This is not surprising eithe
becauses controls exactly the diversity of views.

3.5. FAULT TOLERANCE

In large-scale, dynamic, wide-area distributed systems éssential that a
protocol is capable of maintaining an acceptable qualitgesfice under a wide
range of severe failure scenarios. In this section we ptesprulation results on
two classes of such scenariastastrophic failure where a significant portion of
the system fails at the same time (e.g., due to network joenitig), and heavy
churn, where nodes join and leave the system continuously.

SEc. 3.5 FAULT TOLERANCE 67

T T
Lo rand, blind
00F L tail, blind
I rand, healer
tail, healer
------- rand, swapper
0 F -mmem tail, swapper
3 random graph

o
L6

0.1 |

average # of nodes outside the largest cluster

0.01 L .
65 70 75 80 85 9 95

removed nodes (%)

Figure 3.10: The number of nodes that do not belong to theesargonnected
cluster. The average of 100 experiments is shown. The rarglaph almost
completely overlaps with the swapper protocols.

3.5.1. Catastrophic Failure

Failures on network backbones typically split a networkvito tor more disjoint
partitions of different geographic locations (e.g., node&urope and nodes in
America), or administrative jurisdictions (e.g., noded$® X and nodes in ISP
Y). Note that, from the point of view of each partition, paaciiing appears as
if a large number of nodes (i.e., the ones belonging to a idisjartition) died
altogether.

In this section we test theHBER SAMPLING SERVICE against partitioning fail-
ures. In fact, we focus on a single partition, and examine hi@merges after
partitioning has occurred. This is modeled by a catastofaiiure. More specifi-
cally, since our protocols are completely symmetric witspect to node locations,
partitioning is modeled as the removal ofamdomsubset of the nodes at once.

As in the case of the degree distribution, the response optbimcols to a
massive failure has a static and a dynamic aspect. In thie s&tting we are
interested in the self-healing capacity of the convergestlays to a (potentially
massive) node failure, as a function of the number of failioges. Removing a
large number of nodes will inevitably cause some seriougtiral changes in the
overlay even if it otherwise remains connected. In the dyinaase we would like
to learn to what extent the protocols can repair the overfter a severe damage.

The effect of a massive node failure on connectivity is shawhigure 3.10
In this setting the overlay in cycle 300 of the random inigation scenario was
used as converged topology. From this topology, random shede removed

proportion of dead links (%)

68 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

35

30 A SRS g N A NN O

25

20 f

25 ; TR A TAUATEA RO

20 tail, blind -+ . B i i il
rand, blind ------- D L 2 il H=3 ---A---

15 - tail, swapper =+=+='= T 0r ratr?clf H=8 —— |

10 rand, swapper ~~ - . 55379 tail, H=8 ---y---
ail, healer . - -

| , . rand, H=14 —&—
5 rand, healer] tail H=14 ---4---
0 1 1 0 1 1 1 1 1 1

1
number of cycles to remove all dead links

1 10 100 0 2 4 6 8 10 12 14
cycles S

Figure 3.11: Removing dead links following the failure ob®f the nodes in
cycle 300.

and the connectivity of the remaining nodes was analyzedalllof the 100x

6 = 600 experiments performed we did not observe partitioningl vemoving
67% of the nodes. The figure depicts the number of the nodegeuhe largest
connected cluster. We observe consistent partitioningdeh over all protocol
instances (witlrswapper being particularly close to the random graph): even
when partitioning occurs, most of the nodes form a singlgdaonnected cluster.
Note that this phenomenon is well known for traditional ramdgraphsNewman
2003.

In the dynamic scenario we made 50% of the nodes fail in cyel & the
random initialization scenario and we then continued mgrthe protocols on the
damaged overlay. The damage is expressed by the fact thetecage, half of the
view of each node consists of descriptors that belong to sititlt are no longer
in the network. We call these descriptors dead links. Fi@utd shows how fast
the protocols repair the overlay, that is, remove dead link® the views. Based
on the static node failure experiment it was expected thatemaining 50% of
the overlay is not partitioned and indeed, we did not obs@asitioning with
any of the protocols. Self-healing performance is fully tolked by the healing
parameteH, with H = 15 resulting in fully repairing the network in as little as 5
cycles (not shown).

3.5.2. Churn

To examine the effect of churn, we define an artificial sceneriwhich a given
proportion of the nodes crash and are subsequently repllagetew nodes in
each cycle. This scenario isveorst casescenario because the new nodes are
assumed to join the system for the first time, therefore treyemo information

SEc. 3.5 FAULT TOLERANCE 69

whatsoever about the system (their view is initially emgtgyl the crashed nodes
are assumed never to join the system again, so the linksipgitd them will
never become valid again. A more realistic trace-basedasieis also examined
in Section3.5.3using the Gnutella trace described 8gjroiu et al. 2003

We focus on two aspects: the churn rate, and the bootstgopathod. Churn
rate defines the number of nodes that are replaced by new imoelash cycle. We
considermrealistic churn rates (A% and 1%) and eatastrophicchurn rate (30%).
Since churn is defined in terms of cycles, in order to valideie realistic these
settings are, we need to define the cycle length. With the as@mgervative setting
of 10 seconds, which results in a very low load at each nodgetréte described
in [Saroiu et al. 200Bcorresponds to @% churn in each cycle. In this light, we
consider 1% a comfortable upper bound of realistic chunemyalso that the cycle
length can easily be decreased as well to deal with even higbels of churn.

We examine two bootstrapping methods. Both are rather listieabut our
goal here is not to suggest an optimal bootstrapping imphtatien, but to ana-
lyze our protocols under churn. The following two methods suitable for this
purpose because they represent two opposite ends of tlgdgwice:

Central We assume that there exists a server that is known by everipgpnode,
and that is stable: it is never removed due to churn or othkrés. This
server participates in the gossip membership protocol agdinary node.
The new nodes use the server as their first contact. In othetsytheir
view is initialized to contain the server.

Random An oracle gives each new node a random live peer from the metag
its first contact.

Realistic implementations could use a combination of th@sexpproaches, where
one or more servers serve random contact peers, usingebR FAMPLING SER-
VICE itself. Any such implementation can reasonably be expetedsult in a
behavior in between the two extremes described above.

Simulation experiments were run initializing the networkhwrandom links
and subsequently running the protocols under the given atajichurn until the
observed properties reach a stable level (300 cycles). Xperienental results
reveal that for realistic churn rates.{80 and 1%) all the protocols are robust to
the bootstrapping method and the properties of the overlayery close to those
without churn. Figure3.12illustrates this by showing the standard deviation of
the node degrees in both scenarios, for the higher churnlfdte Observe the
close correspondence with FiguBel The clustering coefficient and average path
length show the same robustness to bootstrapping, and servelol values are
almost identical to the case without churn (not shown).

degree standard deviation

70 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

random bootstrapping central bootstrapping
22 T T T

ranld, H=1' —e—'

degree standard deviation

Figure 3.12: Standard deviation of node degree with chu 1. Node degree
is defined over theindirectedversion of the subgraph dive nodes. Thed =0

case is not comparable to the shown cases; due to reducdukatitig, nodes have
much fewer live neighbors (see FiguBel3 which causes relatively low variance.

Let us now consider the damage churn causes in the netwdrksofall, for
all protocols and scenarios the networks remain conneeteah forH = 0. Still,
a (low) number of dead links remain in the overlay. FigBré3shows the average
number of dead links in the views, again, only for the highwmira rate (1%). Itis
clear that the extent of the damage is fully controlled byttealing paramete.
Furthermore, it is clear that the protocols are robust taoibetstrapping scenario
also in this case. IH > 1 then themaximal(not average) number of dead links
in any view for the different protocol instances ranges ffom 13 in the case of
churn rate 1% and from-2 5 for churn rate QL%, where the lowest value belongs
to the highestH. If H = 0 then the number of dead links radically increases:
it is at least 11 on average, and the maximal number of de&d fanges from
20-25 for the different settings. That is, in the presencetuirn, it is essential
for any implementation to set at leddt= 1. We have already seen this effect in
Section3.5.1concerning self-healing performance.

Although the server participates in the overlay, the plotsagng results under
the central bootstrapping scenario were calculated iggdhe server, because its
properties sharply differ from the rest of the network. Intalar, it has a high
indegree, because all new nodes will have a fresh link todhees and that link
will stay in the view of joining nodes for a few more cycles,sgibly replicated
in the meantime. Indeed, we observe that for 1% churn, 2228% of the nodes
have a link to the server at any time, dependinddcandS. However, if we assume
that the server can handle the traffic generated by joinirdgspoa high indegree
is non-critical. The expected number of incoming messagestd indegreed

avg. number of dead links per view

SEc. 3.5 FAULT TOLERANCE 71

random bootstrapping central bootstrapping

0.5 rand, H=14 —&—
| tail, H=14 -

avg. number of dead links per view

Figure 3.13: Average number of dead links in a view with chrate 1%. The
H = 0 case is not shown; it results in more than 11 dead links @ev v average,
for all settings.

is d/¢ (where/ is the view length), with a very low variance. This means that
the generated traffic is of the same order of magnitude asdffectgenerated by
the joining nodes. We note again however, that we do not densiis simplistic
server-based solution a practical approach; we treatytamh worst-case scenario
to help us evaluate the protocols.

So far we have been discussing realistic churn rates. Hawiie of aca-
demic interest to examine the behavior undetremelydifficult scenarios, where
the network suffers a catastrophic damageach cycle The catastrophic churn
rate of 30% combines the effects of catastrophic failure Section3.5.1) and
churn.

Unlike with realistic churn rates, in this case the boofgtiag method has
a strong effect on the performance of the protocols and therebecomes the
major design decision, although the parametg¢randS still have a very strong
effect as well. Consequently, we need to analyze the irtieraof the gossip
membership protocol and the bootstrapping method. In tse chthe server-
based solution, the overlay evolves into a ring-like st with a few shortcut
links. The reason is that the view of the server is predontipdiied with entries
of the newly joined nodes, since each time a new node corttaetserver it also
places a fresh entry about itself in the view of the serveesErentries are served
to the subsequently joining nodes, thus forming a linearcttire. This ring-like
structure is rather robust: it remains connected (even eft@oving the server)
for all protocols withH >= 8. However, it has a slightly higher diameter than
that of the random graph (approximately 20-30 hops). lreal er the average
number of dead links per view is still as low as 10 and 9 for candand tail peer

size of largest connected cluster

72 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

degree standard deviation

rand peer selection —8—
) tail peer sellec'(ionI ------I-

0 2 4 6 8 10 12 14 0o 2 4 6 8 10 12 14
H H

Figure 3.14: Size of largest connected cluster and degaeelatd deviation under
catastrophic churn rate (30%), with the random bootstrappiethod. Individual
curves belong to different values 8but the measures depend onlylénso we do
not need to differentiate between them. Connectivity ardkrdegree are defined
over theundirectedversion of the subgraph dife nodes.

selection, respectively.

The random scenario is rather different. In particular, weel connectivity
for all the protocols, however, for large valueshbfthe largest connected cluster
almost reaches the size of the network (see Figuid). Besides, the structure
of the overlay is also different. As Figu14shows, tail peer selection results
in a slightly more unbalanced degree distribution (note the low deviation for
low values ofH is due to the low number of live nodes). The reason is thate-als
considering that tail peer selection picks the oldestnode—the nodes that stay
in the overlay for somewhat longer will receive more incoqimaffic because
(due to the very high number of dead links in each view) thed te be the oldest
live node in most views they are in. Fbeal er the average number of dead
links per view is 11 and 9 for random and tail peer selectiespectively.

To summarize our findings: under realistic churn rates altotocols per-
form very similarly to the case when there is no churn at alllependently of
the bootstrapping method. Besides, some of the protoctdrioss, in particu-
lar, heal er, can tolerate even catastrophic churn rates with a reatopakbfor-
mance with both bootstrapping methods.

3.5.3. Trace-driven Churn Simulations

In Section3.5.2we analyzed our protocols under artificial churn scenatitere,
we consider a realistic churn scenario using the, so cdifetime measurements
on Gnutella, carried out by Saroiu et &droiu et al. 2008 These traces contain—

SEc. 3.5 FAULT TOLERANCE 73

among other information—the connection and disconnediioes for a total of
17,125 nodes over a period of 60 hours. Throughout the tridigenumber of
connected nodes remains practically unchanged, in the ofd&* nodes.

We noticed a periodic pattern occurring every 404 secondkdrtraces. In
each 404-second interval, all connections and discororectake place during the
first 344 seconds, rendering the network static during tee@@ seconds. These
recurring gaps would represent a positive bias for our clsimulations, as they
periodically provide the overlay with some “breathing sgato process recent
changes. However, these gaps are not realistic and are mobsthby an artifact
of the logging mechanism. Therefore, we decided to elinginbém by linearly
expanding each 344 second interval to cover the whole 40dngsc Note that
this transformation leaves the node uptimes practicalbitered.

We have taken the following two decisions with respect togasmmeters in
the experiments presented. First, peer selection is fixedndom. Sectiord.5.2
showed that random is outperformed by tail peer selecti@ll icases. Therefore,
random is a suitable choice for this section as the worstpgaseselection policy.
Second, the swapping parametf@aris fixed to 0. Sectio3.5.2showed thaB=0
results in the highest (therefore worst) degree deviatidnile it does not affect
the number of dead links.

We apply two join methods: central and random, as defined atide3.5.2
The only difference is that a reconnecting node still remeratthe links it pre-
viously had, some of which may be dead at reconnection tintés fRcilitates
reconnection, but generally increases the total numbeeadl dinks.

The cycle length was chosen to be 1 minute. We anticipateritraglity the
cycle length will be shorter, resulting in lower churn pecley The choice of a
cycle length close to the upper end of realistic values nitibnal, and is aimed
at testing this specific gossip membership protocol undeeased stress.

Figure3.15shows the node connections and disconnections as a peyearita
the current network size. Connections are shown as pogitugs, whereas dis-
connections as negative. Although we ran the experimentidéovhole trace, we
focus on its most interesting part, namely cycles 2250 t@2Ribtice that at cycle
2367, around 450 nodes get disconnected at once and retaitogether 27 min-
utes later, at cycle 2394, probably due to a router failuimil&r temporary—but
shorter—group disconnections are observed later on, droyales 2450, 2550,
and 2650, respectively.

Let us now examine the way the overlay is affected by thossarktchanges.
Figure 3.16 shows that the number of dead links is always kept at fairhalbm
levels, especially whehl is at least 1. As expected, the number of dead links
peaks when there are massive node disconnections and geblarmal quickly.
However, it is not affected by the observed massive nodenresxions, because

JOINS

REMOVALS

avg. number of dead links per view

74 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

JOINS

REMOVALS

1 1 1 1 1 1 1 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500 2300 2400 2500 2600 2700
cycles cycles

Figure 3.15: Churn in the Saroiu traces. Full time span of03&Ge minute cycles
and zoomed in to cycles 2250 to 2750.

random bootstrapping central bootstrapping
8 T T T T T % 8 T T T T T
—————— H=0 (blind) S
7r from top down: H=1, H=3, H=15 (healer)] 5 1
1 o
6 : | ; — 9 6 —
[=
5 g 5
4 g 4
3 5 3
[
2 -g 2
1 2 1
0 % 0 I | | 1 |
2300 2400 2500 2600 2700 2300 2400 2500 2600 2700
cycles cycles

Figure 3.16: Average number of dead links per view, basetheisaroiu Gnutella
traces. All experiments use random peer selection&ad.

degree standard deviation

SEC. 3.6 FAULT TOLERANCE 75

random bootstrapping central bootstrapping
c
9
k&
>
[
=]
B
5]
e}
c
IS
1]
[
L
. j=2}
gF - H=0 (blind) . 3 L]
from top down: H=1, H=3, H=8, H=15
1 1 1 1 6 1 1 1 1 1
2300 2400 2500 2600 2700 2300 2400 2500 2600 2700
cycles cycles

Figure 3.17: Evolution of standard deviation of node dedraged on the Saroiu
Gnutella traces. All experiments use random peer seleatiots = 0.

these happen shortly after the respective disconnectamusthe neighbors of the
reconnected nodes are still alive.

Two observations regarding the effecttéfcan be made. First, higher values
of H result in fewer dead links per view, validating the analysi$ection3.5.2
Second, higher values #f trigger thefasterelimination of dead links. The peaks
caused by massive node disconnections are wider forHowalues, becoming
sharper a#H grows higher. In fact, these two observations are relategath
other: in a persistently dynamic network, the convergedae number of dead
links depends on the rate at which the protocol disposesenfith

Figure 3.17 shows the evolution of the node degree deviation. It can be ob
served that foH > 1 the degree deviation under churn is very close to the corre-
sponding converged values in a static network (see Figdje ForH = 0 though,
the higher number of pending dead links affects the degstglalition more. Note
that both massive node disconnecti@ml connections disturb the degree devia-
tion, but in both cases a few cycles are sufficient to recdverariginal overlay
properties.

To recap our analysis, we have shown that even with a pesgirtysle length
of 1 minute, all protocols foH > 1 perform very similarly to the case of a stable
network, independently of the join method. Anomalies cdusg massive node
connections or disconnections are repaired quickly.

76 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

3.6. WIDE-AREA-NETWORK EMULATION

Distributed protocols often exhibit unexpected behavibewdeployed in the
real world, that cannot always be captured by simulationpidlly, this is due
to unexpected message loss, network and scheduling dslasglbas events tak-
ing place in unpredictable, arbitrary order. In order toidale the correctness
of our simulation results, we implemented our gossip mestibprprotocols and
deployed them on a wide-area network.

We utilized the DAS-2 wide-area cluster as our testti2tl$-2]. The DAS-2
cluster consists of 200 dual-processor nodes spread dgrsigss in the Nether-
lands. A total of 50 nodes were used for our emulations, 1t feach site. Each
node was running a Java Virtual Machine emulating 200 pegyg)g a total of
10,000 peers. Peers were running in separate threads.

Although 200 peers were running on each physical machimapaanication
within a machine accounted for only 2% of the total commutiica Local-
area and wide-area traffic accounted for 18% and 80% of tlaé, t@spectively.
Clearly, most messages are transferred through wide aregections. Note that
the intra-cluster and inter-cluster round-trip delays lo& DAS-2 are in the orders
of 0.15 and 2.5 milliseconds, respectively. In all emulagiothe cycle length was
set to 5 seconds.

In order to validate our simulation results, we repeatedetkgeriments pre-
sented in Figure8.3 and 3.8 of Section3.4, using our real implementation. A
centralized coordinator was used to initialize the nodevsieccording to the
bootstrapping scenarios presented in Seclighl namelygrowing lattice, and
random

The first run of the emulations produced graphs practicaltistinguishable
from the corresponding simulation graphs. Acknowledgihg low round-trip
delay on the DAS-2, we ran the experiments again, this tirdadimg a 50 msec
delay in each message delivery, accounting for a rounddglpy of 100 msec on
top of the actual one. The results presented in this sect@mlabased on these
experiments.

Figure 3.18 shows the evolution of the in-degree standard deviatiarstet-
ing coefficient, and average path length for all experimeamdsg the same scales
as Figures3.3 and 3.8 to facilitate comparison. The very close match between
simulation-based and real-world experiments for all thneeles of the design
space triangle allows us to claim that our simulations regmé a valid approx-
imation of real-world behavior.

The small differences of the converged values with respetitd simulations
are due to the induced round-trip delay. In a realistic emrinent, view exchanges
are not atomic: they can be intercepted by other view exatmngor instance, a

SEC. 3.6

growing scenario

random scenario

T T L T 40
tail, blind =+=x=e
c rand, blind -- - 35
2 Wl tail, swapper -
< 30 F%: rand, swapper ------ — 30
4 tail, healer
©
s BT o healer . 1 0% A
< 1A > P TN Ty
T 20 8 20 [
i) \ s
7] 3 :
o 15 . 15 :
E . N
2 10 N 10
'g '\‘ ‘.\
= 5 Mo LTl aTa e e T AT A 5 psiidiana Emiwi R R 5%
0 0
0 50 100 150 200 250 0 50 100 150 200 250
cycles cycles
growing scenario random scenario
0.25 0.25
t
H
é 0.2 ;_ 0.2
S [
g Ll
g 015 = 0.15
o P
=] oA
£ i
o} 0.1 k& 0.1
7]
=
[&]
0.05 0.05
AN PR ERERTATET IV ANEEIE S
0 0 —
50 100 150 200 250 0 50 100 150 200 250
cycles cycles
growing scenario random scenario
3.25 r 3.25
¢
i¥
3.2 Jl' 3.2
£ e s
=3 gl | I | 2 L n
5 3.15 J; 5 3.15 [
E " " “‘ " .v E ot NIy o, ""Ji
S 31t g 31
() () Iy
g g §
s 3.05 s 305}
E E '
3 3
Aoy o \diad lalaatat \
2.95 2.95
0 50 100 150 200 250 0 50 100 150 200 250

cycles

cycles

average path length

WIDE-AREA-NETWORK EMULATION

77

lattice scenario

40
35
30
25
20 “A;"'..uu o
&
&
15 [
¢
!
10
5 B eariririn miaimiawn e 2
0
0 50 100 150 200 250
cycles
lattice scenario
0.25
0.2
0.15 14
!
s
0.1
H
0.05 [
';"..u.-f.-.-.~.- SOTPPTITITTY o
o L
0 50 100 150 200 250
cycles
lattice scenario
3.25
3.2
3.15 | -1 Il I |
A4 » ol "
1 N
3.1 K.
e
3.05 |
P
'
3
H " i
t yingy #
2.95

0 50 100 150 200 250
cycles

Figure 3.18: Evolution of in-degree standard deviationstdring coefficient, and
average path length in all scenarios feal-world experiments.

78 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

node having initiated a view exchange and waiting for theesponding reply,
may in the meantime receive a view exchange request by aribotld. However,
the view updates performed by the active and passive threadnode are not
commutative. The presented results correspond to an ingpigation where we
simply ignored this problem: all requests are served imatetii regardless of the
state of the serving node. This solution is extremely sinfle a design point of
view but may lead to corrupted views.

As an alternative, we devised and implemented three apipesao avoid cor-
rupted views. In the first approach, a node’s passive thdsags incoming re-
guestswhile its active thread is waiting for a reply. In the secomipthe node
gueues—instead of dropping—incoming requests until the awaiegalyr comes.
As a third approach, a node’s passive thread serves all imgporaquests, but its
active threadlrops a replyif an incoming request intervened.

Apart from the added complexity that these solutions impms®ur design,
their benefit turned out to be difficult or impossible to neticMoreover, unde-
sirable situations may arise in the case of the first two: pirogp or delaying a
request from a third node may cause that node to drop or delayrn, requests
it receives itself. Chains of dependencies are formed tlaig which can render
parts of the network inactive for some periods. Given thestjoeable advantage
these approaches can offer, and considering the desigheadthey impose, we
will not consider them further. Based on our experiments libst strategy is sim-
ply ignoring the problem, which further underlines the epti@nal robustness of
gossip-based design.

3.7. DISCUSSION

In this section we summarize and interpret the results ptedeso far. As
stated in the introductory section, we were interested terdaning the proper-
ties of various gossip membership protocols, in partictiiair randomness, load-
balancing and fault-tolerance. In a sense, after we discussthe last section
why certain results were observed, we discuss here whaetudts imply.

3.7.1. Randomness

We have studied randomness from two points of view: local giodal. Local
randomness is based on the analogy between a pseudo ranmabemgenerator
and the BER SAMPLING SERVICE as seen by a fixed node. We have seen that all
protocols return a random sequence of peers at all nodesavgittod approxima-
tion.

We have shown, however, that there are important correlatlmetween the

SEc. 3.7 DISCUSSION 79

samples returned at the different nodes, that is, the gvgriaphs that the imple-
mentations are based upon are not random. Adopting a gregainetic approach,
we have been able to identify important deviations from candess that are dif-
ferent for the several instances of our framework.

In short, randomness is approached best by the view salati@hods wap-
per (H =0,S= 15), irrespectively of the peer selection method. In gdnera
increasingH increases the clustering coefficient. The average pathHeaglose
to the one of a random graph for all protocols we examinedalinwith swap-
per the degree distribution has a smaller variance than thdteofandom graph.
This property can often be considered “better than randara”, from the point
of view of load balancing).

Clearly, the randomness required by a given applicatioredép on the very
nature of that application. For example, the upper bountd@fpeed of reaching
all nodes via flooding a network depends exclusively on tlaenditer of the net-
work, while other aspects such as degree distribution @tefing coefficient are
irrelevant for this specific question. Likewise, if the sdimg service is used by a
node to draw samples to calculate a local statistical egtimiasome global prop-
erty such as network size or the availability of some resesjrevhat is needed
is that the local samples are uniformly distributed. Howgiteis not required
that the samples are independent at different nodes, theéido not need global
randomness at all; the unstructured overlay can have amgeetjstribution, di-
ameter, clustering, etc.

Load Balancing

We consider the service to provide good load balancing ihtbeées evenly share
the cost of maintaining the service and the cost induced éwgplication of the
service. Both are related to the degree distribution: if ywawdes point to a certain
node, this node will receive more sampling-service relaeslsip messages and
most applications will induce more overhead on this nodsyltang in poor load
balancing. Since the unstructured overlays that implerttretsampling service
are dynamic, it is also important to note that nodes with & figlegree become
a bottleneck only if they keep having a high indegree for agltime. In other
words, a node is in fact allowed to have a high indegree tearjigrfor a short
time period.

We have seen that thiel i nd view selection is inferior to the other alter-
natives. The degree distribution has a high variance (hahéere are nodes that
have a large indegree) and on top of that, the degree distiibis relatively static,
compared to the alternatives.

Clearly, the best choice to achieve good load balancingeisWapper view
selection, which results in an even lower variance of indedhan in the uniform

80 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

random graph. In general, the parameiés strongly correlated with the variance
of indegree: increasing for a fixedH decreases the variance. The degree distri-
bution is almost as static as in the caséeégl er , if H = 0. However, this is not

a problem because the distribution has low variance.

Finally, heal er also performs reasonably. Although the variance is some-
what higher than that adwapper , it is still much lower tharbl i nd. Besides,
the degree distribution is highly dynamic, which means thatsomewhat higher
variance of the degree distribution does not result in bodtks because the inde-
gree of the nodes change quickly. In general, increakirigr a fixed value ofS
also decreases the variance.

Fault Tolerance

We have studied both catastrophic and realistic scenatioshe first category,
catastrophic failure and catastrophic churn was analyhethese scenarios, the
most important parameter turned out to e it is always best to sdil as high
as possible. One exception is the experiment with the rehafv&0% of the
nodes, wherswapper performs slightly better. Howeveswapper is slow in
removing dead links, so if failure can be expected, it is higitvisable to set
H>1.

In the case of realistic scenarios, such as the realistifi¢ed) churn rates,
and the trace-based simulations, we have seen that the ohayedigct is minimal,
and (as long aBl > 1) the performance of the protocols is very similar to theecas
when there is no failure.

3.8. RELATED WORK

3.8.1. Membership Management Protocols

Most gossip protocols for implementing peer sampling areeced by our frame-
work: we mentioned these in Secti@R2.2 One notable exception i&\[lavena
et al. 200%that we address here in a bit more detail. The protocol isbmAs. In
each cycle, all nodes pull the full partial views fradarandomly selected peers. In
addition, they record the addresses of the peers initiatingming pull requests
during the given cycle. The old view is then discarded andve view is gener-
ated from scratch. In the most practical version, the new \@egenerated by first
adding the addresses of the incoming requests and subsigdiiléng the rest of
the view with random samples from the union of the previoysijled F views
without replacement.

Note the two features that are incompatible with our framéwithe applica-

SEc. 3.8 RELATED WORK 81

tion of F > 1 (in our casd= = 1) and the asymmetry between push and pull, with
pull having a larger emphasis: only one entry—the initigieer's own entry—is
pushed. Note that it is common to allow fér> 1 also in other proposals (e.g.,
[Eugster et al. 2003p In our framework, information exchange is symmetric, or
fully asymmetric, without a finer tuning possibility.

To compare this protocol with our framework, we implementeahd ran sim-
ulations using the scenarios presented in this chapterviehesize and network
size were the same as in all simulations, &avas 1, 2 or 3. The main con-
clusions are summarized below. The protocol class predgantfillavena et al.
2003 has some difficulty dealing with the scenarios when theahitetwork is
not random (the growing and lattice initializations, seet® 3.4.7). ForF =1
we consistently observed partitioning in the lattice scen@vhich was otherwise
never observed in our framework). For the growing scendiie,protocols occa-
sionally get stuck in a local attractor where there is a stagsaph: a node with a
very high indegree, and a large number of nodes with zeragiregeand 1 as out-
degree. Apart from these issues, if we consider self-hgaload balancing and
convergence properties, the protocols roughly behave #®eyf were instances
in our framework using pushpull, with € H <1 andS= 0, with increasing~
tending towarddd = 1. Sincl e we have concluded that the “interesting” proto-
cols in our space have either a highor a highSvalue, based on the empirical
evidence accumulated so far there is no urgent need to ext@nflamework to
allow for F > 1 or asymmetric information exchange. However, studyireséh
design choices in more detall is an interesting topic foufeiresearch.

With respect to membership management, not all proposeeragsare gossip-
based. It is worth noting Mosh&gidar et al. 200R a distributed membership
management system that is based on a set of devoted senaais.ckent regis-
ters the multicast group(s) it is interested in with one oksal dedicated servers,
preferably one in the same local-area network. Each seragmtains complete
knowledge of the membership information for the whole nekwdviembership
changes are reported to servers through a third-party catiifin service monitor-
ing the system. Upon a membership change, servers talk toaher to reach
a consensus regarding the current state of membership. Dacetwork stabi-
lizes and a consensus is reached, servers propagate to lgathttee complete
membership information of the groups it is subscribed for.

Moshe is designed for systems where the full view of multicgeups is re-
quired by all group members. It focuses on lowering the badtdhwused for
reaching an agreement among the servers, and for updatemgstiviews. In that
respect, it is based on the assumption of a small, genetalyyesnetwork, where
membership changes occur occasionally. It has been sttedssted on 50
nodes distributed across different continents. Howevés,not clear whether its

82 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

design would be suitable for internet-scale applicatidos,two reasons. First,
in internet-scale applications continuous membershimgias the norm and the
network never comes to a stable state. Second, full viewaffgmembership by
all nodes is practically infeasible for groups expandindhimusands or millions
of nodes.

In the following we summarize a number of other fields thatratated to the
research presented in this chapter.

3.8.2. Complex Networks

The assumption of uniform randomness has only fairly rdgdrgcome subject
to discussion when considering large complex networks sisctine hyperlinked
structure of the WWW, or the complex topology of the Internieike social and
biological networks, the structures of the WWW and the Imé¢both follow the
quite unbalanced power-law degree distribution, whichateg strongly from that
of traditional random graphs. These new insights pose akigeresting theoret-
ical and practical problemd$Barabasi 200R Several dynamic complex networks
have also been studied and models have been suggested fangxpphenom-
ena related to what we have described in this chaerdgovtsev and Mendes
2003. This related work suggests an interesting line of futineotretical research
seeking to explain our experimental results in a rigorousmea

An interesting direction of graph theory research concexysander graphs
A graph consisting oN vertices is g3—expanderif, for any subset of vertices
S, such that§ < N/2, the number of links from nodes i&to the rest of the
nodes is at leaft x |S|. Essentially, an expander graph defines a lower limit in
the number of outgoing links frorany subset of the graph nodes, proportional to
the subset size. Expander graphs have a wide spectrum adatppis, including
error-correction codes and probabilistically checkaltofs (PCPs). What makes
them attractive for computer networks is the fact that theyrigh in short, disjoint
paths. This allows the establishment of virtual circuitsngl edge-disjoint paths,
avoiding link congestion.

The expander graphs of practical interest for computer akdsvare the ones
with bounded node degrees. These graphs have been showsstEspalesirable
properties regarding the existence of disjoint paths. A bemnof papers have
studied the relation between the expansion properties oftiadrdegree expander
graph and the number of disjoint paths it can concurrentppst [Peleg and Up-
fal 1987 1989 Broder et al. 1994Kleinberg and Tardos 199%Kleinberg and
Rubinfeld 1996 Broder et al. 19971999. These papers have also suggested
polynomial-time algorithms based on random-walks for tiecalvery of such
paths, which are out of the scope of this dissertation. Téleted work is highly
relevant to our work, as it has been shown that regular rangl@phs are excel-

SEc. 3.9 CONCLUDING REMARKS 83

lent expandersHrieze and Zhao 1999 The PEER SAMPLING SERVICE could,
therefore, form the basis for building such expander graphs

3.8.3. Unstructured Overlays

There are a number of protocols that are not gossip-basedhatiiare poten-
tially useful for implementing peer sampling. An examplghs Scamp proto-
col [Ganesh et al. 2003 While this protocol is reactive and so less dynamic, an
explicit attempt is made towards the construction of aiStaandom graph topol-
ogy. Randomness has been evaluated in the context of infiormdissemination,
and it appears that reliability properties come close totwina would see in ran-
dom graphs. Finally, some other protocols have also begpopeal to achieve
randomnesslaw and Sui 2003Pandurangan et al. 20P3<hough not having
the specific requirements of th&PrR SAMPLING SERVICE in mind.

3.8.4. Structured Overlays

A structured overlayRRowstron and Druschel 2001Ratnasamy et al. 2001&to-

ica et al. 200Lis by definition not dynamic so to utilize it for implemengrthe
PEER SAMPLING SERVICE random walks or other additional techniques have to
be applied Zhong et al. 2005King and Saia 2004 Another example of this
approach is a method assuming a tree overd&ysfic et al. 200B It is unclear
whether a competitive implementation can be given consigealso the cost of
maintaining the respective overlay structure. More gdherstructured overlays
have also been considered as a basic middleware servicglioadiopns Pabek

et al. 2003 Another issue in common with our own work is that graphetegic
approaches have been developed for further analysigyinov et al. 200B van-
renesse.tocs.200REnesse et al. 20PBeeds also be mentioned as a hierarchical
(and therefore structured) overlay which although apglies-uniform) gossip to
increase robustness and to achieve self-healing propedoes not even attempt
to implement or apply a uniform =R SAMPLING SERVICE. It was designed to
support hierarchical information aggregation and dissaton.

3.9. CONCLUDING REMARKS

Gossip protocols have recently generated a lot of interetste research com-
munity. The overlays that result from these protocols aghlyi resilient to fail-
ures and high churn rates. The underlying paradigm is ¢glegpealing to build
large-scale distributed applications.

84 RANDOM OVERLAYS: EXPLORING THE DESIGN SPACE CHAP. 3

This chapter factored out the abstraction implemented lynttembership
mechanism underlying gossip protocols: theeER SAMPLING SERVICE. The
service provides every peer with (local) knowledge of tra of system, which is
key to have the system converge as a whole towards globatgiep using only
local information.

We described a framework to implement a reliable and efftdReER SAM -
PLING SERVICE. The framework itself is based on gossiping. This framework
is generic enough to be instantiated with most current gasgmbership proto-
cols[Eugster et al. 2003kelasity et al. 2003Stavrou et al. 2004oulgaris et al.
2003. We used this framework to empirically compare the rangeratocols
through simulations based on synthetic and realistic srasewell as implemen-
tations. We point out the very fact that these protocols enfcal randomness
from each peer’s point of view. We also observed that as faheaglobal prop-
erties are concerned, the average path length is close tmthan random graphs
and that clustering properties are controlled by (and grath)whe parameteH.
With respect to fault tolerance, we observe a high resikeidigh churn rate and
particularly good self-healing properties, again mostgtcolled by the parameter
H. In addition, these properties mostly remain independéthe bootstrapping
approach chosen.

In general, when designing gossip membership protocotsilaat random-
ness, following a push-only or pull-only approach is not adjchoice. Instead,
only the combination results in desirable properties. wilke, it makes sense to
build in robustness by purposefully removing old links whexthanging views
with a peer. This situation corresponds in our framework ¢haice forH > 0.

Regarding other parameter settings, it is much more difftcucome to gen-
eral conclusions. As it turns out, tradeoffs between, famegle, load balancing
and fault tolerance will need to be made. When focusing orppimg links with a
selected peer, the price to pay is lower robustness agaddst failures and churn.
On the other hand, making a protocol extremely robust wétléo skewed inde-
gree distributions, affecting load balancing.

To conclude, we demonstrated in this extensive study thssiganember-
ship protocols can be tuned to both support high churn ratdspeovide graph-
theoretic properties (both local and global) close to thoseandom graphs so
as to support a wide range of applications. A complementesgarch direction
would be to explore this spectrum theoretically.

CHAPTER4

From Randomness to Structure:
VICINITY

In the previous chapters we explored gossiping as a meamsdateacandomness.
We are now taking a shift and investigate how gossiping carabeessed to create
structure.

A crucial issue in nearly all distributed systems is the wagles interact with
each other. In particular, it is the “network of acquaingsicthat determines the
flow of communication, and plays a significant role in the allesystem’s be-
havior. Unlike some distributed systems, such as theRFSAMPLING SERVICE,
which impose no preference evhichpairs of nodes to link, a number of systems
entail a specific organization of nodes in certain topolsgie

Distributed systems that impose a certain organizationames include two
main classes. Firsstructureddistributed systems, where nodes are linked in a
well-defined and deterministic way, according to some priypguch as their ID,
their position, etc. Distributed Hash Tables form a typiesample of this class.
The second class involves the groupumistructuredoverlays that exhibit some
loose form of organization. In these systems, the conngctdf nodes is not
strictly mandated, nevertheless certain links are favoreat others. An example
of this class are systems that cluster nodes demonstrating sort of relationship
or similarity, to enhance peer collaboration. In a file-g#hgusystem for instance,
forming links between nodes of similar interests can drésaly boost the abil-
ity to find requested files. It should be noted that, semairitistering for the
file-sharing scenario gave us the initial stimulation leagdio the conception and
development of the research presented in this chapter, dnldewurther studied
in Chapter7.

A number of customized solutions exist for individual apptions. This can
be seen, for instance, in Distributed Hash TabRsvjstron and Druschel 2001a

86 FROM RANDOMNESS TOSTRUCTURE VICINITY CHAP. 4

Zhao et al. 2001Stoica et al. 2001Ratnasamy et al. 200[LaEach of them em-
ploys its own, tailored-made mechanism to build and mainitsi specific struc-
ture.

In this chapter we presentgenerictopology construction framework, suit-
able for the construction of a large set of topologies. Throour framework,
nodes flexibly and efficiently self-organize in a completalytonomous fashion
to a largely arbitrary structure. Such structures may idelsemantic-based over-
lays, super-peer topologies, structured overlays sucings,rDHTS, etc., or var-
ious other types of topologies. Among the advantages of ppraach are its
generic applicability, its flexibility, and its simplicityNote that some other work
has been proposed along these lines, namely T-Nielagity and Babaoglu 2005
2006 2004, which is further discussed in the related work sectidr8),

4.1. DESIGN PREAMBLE

The problem we are faced with i$22P topology constructioproblem, namely
the construction of overlays representing relationshipsvben nodes. Nodes
demonstrating a strong relationship should be groupedjiniyrclustered commu-
nities. That is, they should either be directly linked toleather, or be reachable
via a small number of intermediate—also related—nodes. eNaf composite
interests may form links to multiple communities. In fagdpemunities’ bound-
aries need not be strict, and the very notion of communitiag be a bit fuzzy.
Rather than partitioning the network in well-defined, isethgroups, we aim at
forming a continuous mosaic of interconnected communitiesuch an overlay,
peers lying within a node’s close vicinity are likely to béated to that node and
among themselves. Such clustering of nodes may be requirdteicontext of
some application, such as the ones presented in Ch&ptérand8.

However, to handle dynamics requires the discovery andggaiion of changes
that may happeranywherein the network. For this reason, overlay networks
should also reflect desirable properties of random grapdscamplex networks
in general Albert and Barabasi 2002 ewman 2002 These two conflicting de-
mands generally lead to complexity when integrating sohgiinto a single pro-
tocol.

Protocols for topology construction in peer-to-peer neksshould separate
these concerns. In particular, we advocate that when it samerganizing nodes
in a relationship-based overlay, links between nodes shbeloptimal with re-
spect to their relationships only, regardless of any otlesirdble property of the
resulting overlay. Instead, a separate protocol shouldsee to handle network
dynamics, and provide up-to-date information that wilballproper adjustments

SEC. 4.2 THE TOPOLOGY CONSTRUCTIONFRAMEWORK 87

in links, and thus leading to adjustments in the overlay pétiitself.

4.2. THE TOPOLOGY CONSTRUCTION FRAMEWORK

Per our discussion above, we suggest a topology constnutdimework com-
posed of two layers. The top layer consists of a gossip-bpsedcol, VicINITY,
that strives to optimize links with respect to the targetictinre. The bottom layer
comprises the PER SAMPLING SERVICE, studied in ChapteB. It maintains the
overlay connected in the face of node churn and failures feeds the top layer
with network changes.

In this section we introduce our model, describe how targpblbgies are
expressed, and justify the two-layered approach.

4.2.1. Model Outline

We assume a connected network infrastructure, supportining between any
two nodes. Each node maintains a dynamic list of neighbatkedits VICINITY
view Vi, of fixed small length. Theiew length /4yic, is the same for all nodes.

Knowledge regarding neighbors is stored and exchanged ansnefnode
descriptors A given node’s descriptor can only be created by that noaduex
sively. A node descriptor referring to peBris a tuple containing the following
three fields:

1. P’'s contact information (i.e., network address and port)
2. A numericagefield
3. P’s application-specifigrofile

Note that a /CINITY node descriptor is essentially ar€LON node descriptor
augmented by the node’s application-specific profile. As viesge, a node’s
profile determines its neighbors in the target structure.

The goal is to organize all MINITY views so as to approximate the target
structure as closely as possible. To this end, nodes régudachange node
descriptors to gradually evolve their views towards thgear When gossiping,
nodes send each other a subset of their views, of fixed srmafiHeic, known as
thegossip lengthThe gossip length is the same for all nodes.

4.2.2. The Selection Function

We consider aelection function &, P, D), that, given the descriptor of peér
and a setD of peer descriptors, returns the setloflescriptors (or all of them,

88 FROM RANDOMNESS TOSTRUCTURE VICINITY CHAP. 4

if |D| < K) that best approximatB’s outgoing links in the target structure. The
selection is based on node profiles. We assume fun&itmnbe globally known
by all nodes in the system.

The selection function essentially defines the target strac Each peeP
aims at eventually establishing links to the “bes}i. peers, as defined by the
outcome ofS(4yic, P, Dg), whereDg is the set of descriptors of all nodes in the
network excludingP.

Often, the selection functioB is based on a globally defined peer proximity
metric. ThatisS(k, P, D) sorts all descriptors it with respect to their proximity
to peerP, and selects thkeclosest ones. Typical proximity metrics include seman-
tic similarity, ID-based sorting, domain name proximitgagraphic- or latency-
based proximity, etc. Some applications may apply comegsibximity metrics,
combining two or more of the above. In certain cases, thoseglecting appropri-
ate neighbors involves more than a mere sorting based on s@tie, typically
when a peer’s significance as a neighbor depends not onlyequettr’s proximity
to a given node, but also on whicither peers are being selected.

We assume that the selection functiBexhibits some sort dfransitivity, in

the sense that if nod® is a “good” selection for nodey (P, —i P,), andPs is a
“good” selection forP, (P, -i P3), thenP3 tendsto be a “good” selection folP;

too (P, N P3). Generally, the “better” a selection no@es for nodeP, the more
likely it is that Q's “good” selections are also “good” fd?.

This transitivity is essentially a correlation propertytlween nodes sharing
common neighbors, embodying the principle “my friend’effrd is also my friend”.
Surely, this correlation is fuzzy and generally hard to difnit is more of a de-
sired property rather than a hard requirement for our togplmonstruction frame-
work. The framework excels for networks exhibiting strorayisitivity. However,
its efficiency degrades as the transitivity becomes wedhehe extreme case that
no correlation holds between nodes with common neighbelated nodes even-
tually discover each other through random encounterspadth this may take a
long time.

4.2.3. Design Rationale

From our previous discussion, we are seeking a means toraogbr each node
and with respect to the given selection function, the optiview from all nodes
currently in the system. There are two sides to this constnuc

First, based on the assumption of transitivity in the s@edunctionS, a peer
should explore the nearby peers that its neighbors havelfdarother words, iP,
isinPy's VICINITY view, andP; is in P,’s view, it makes sense to check whether
P; would also be suitable as a neighborRf Exploiting the transitivity inS

SEC. 4.3 THE TOPOLOGY CONSTRUCTIONFRAMEWORK 89

Vicinity
(related nodes)
Peer Sampling
(random nades)

Figure 4.1: The two-layered framework

should then quickly lead to high-quality views. The way a&dides to improve

its VICINITY view resemblesill-climbing algorithms. However, instead of trying
to locate a single optimal node, here the objective is tawips the selection of a
whole set of nodes, namely the view. In that respectIMITY can be thought of
as a distributed, collaborative hill-climbing algorithm.

Second, it is important thall nodes are examined. The problem with follow-
ing transitivity alone is that a node will be eventually sgwing only in a single
cluster of related peers, possibly missing out on othetetaf also related—but
still unknown—peers, in a way similar to getting locked inogdl maximum in
hill-climbing algorithms. Analogously to the special “ighlinks in small-world
networks Watts 1999 a node needs to establish links outside its neighborlsood’
cluster. Likewise, when new nodes join the network, theyuth@asily find an
appropriate cluster to join. These issues call for a randatiun of candidates for
including in a view.

In our design we decouple these two aspects by adopting datyeoed set
of gossip protocols, as can be seen in Figle The lower layer is the BER
SAMPLING SERVICE, responsible for maintaining a connected overlay and fer pe
riodically feeding the top-layer protocol with nodes umifdy randomly selected
from the whole network. In its turn, the top-layer protoccélled VICINITY, is
in charge of discovering peers that are favored by the setedtinction. Each
layer maintains its own, separate view, and communicatéisetoespective layer
of other nodes, as shown in Figute2

90 FROM RANDOMNESS TOSTRUCTURE VICINITY CHAP. 4

Peer R Peer P Peer P’
(Random) (related to P)

Vicinity Vicinity gossip Vicinity
(related nodes) (related nodes) (relaednodes
Peer Sampling gossip Peer Sampling Peer Sampling
(random nodes) (ranrdomnades) (rancbm nodeg

Figure 4.2: Communication in the two-layered frameworkclekayer gossips to
the respective layer of other nodes.

4.3. THE ViciniTY PROTOCOL

VICINITY employs periodic gossiping in a way similar tor CLON. The key
difference lies in the selection wfichdescriptors to keep in one’s view following
a view exchange. Unlike ©@LON, in VICINITY nodes do noswapneighbors
when gossiping. They, insteadendeach other a few descriptors, and each of
them decides independently which ones to keep and whiclstau to optimize
its own view. As mentioned in Sectioh2.], the number of descriptors sent is
defined by the gossip lengthic, and is the same for all nodes. The decision on
which links to send is based upon the selection funcBon

Like in CycLON, nodes initiate view exchanges periodically, yet not syoch
nized. Each nod® initiates gossiping once eveilytime units, by executing the
following nine steps:

1. Increase the age of each neighbor by one.

2. Select neighbo® with the highest age among all neighbors, and remove it
from the VICINITY view: Wic = Wic — {Q}.

3. Merge the YCINITY and REER SAMPLING SERVICE Views in one:Vp =
VvicU Vpss-

4. Add own descriptor with own profile and age 0 to the mergesvwiVp =
Ve U{P}.

5. Strip downVp to its gyic best descriptors fo®, by applying the selection
function fromQ’s perspectiveVp = S(0yic, Q, Vp).

SEC. 4.4 THE VICINITY PROTOCOL 91

do forever
{
wait (T time units) ?Oforever
incr. all descriptors’ age by 1
Q «— sel ectPeer ()
renove Q fromview
buf _send « sel ect ToSend()
send buf_send to Q)
receive buf _recv fromQ
vi ew «— sel ect ToKeep()

receive buf _recv fromQ
buf _send < sel ect ToSend()
send buf_send to Q

view < sel ect ToKeep()

Active thread Passive thread

Figure 4.3: The generic gossiping skeleton fofdCoN and VICINITY .

6. Sendvp to peerQ.

7. Similarly, receive/g from peerQ, containing a set of (up t@ic descriptors
known byQ, optimally selected foP.

8. Merge the VCINITY, PEER SAMPLING SERVICE, and received views in

9. Rebuild the CINITY view by selecting the bedt. neighbors fromv:
Wic = S(fvim Pav)

The receiving nod€&) executes all steps fro@ion in a symmetric way. Note that
when merging views (stef@and8), in the presence of multiple descriptors of the
same node only the one with the lowest age is kept.

Each node essentially runs two threads. #ative one, which periodically
wakes up and initiates communication to another peer, ¢ixecsteps 1 through
9. Another thread, gassiveone, responds to the communication initiated by
another peer, and executes steps 3 through 9.

Note that the WVCINITY protocol can also be modeled by the generic gossiping
skeleton we introduced for YLON (see Fig.2.2). Figure 4.3 reproduces the
same skeleton here for convenience. Figlelists the description of each hook
of the skeleton, for the MINITY protocol.

92 FROM RANDOMNESS TOSTRUCTURE VICINITY CHAP. 4

Hook Action taken

sel ect Peer () Select descriptor with the oldest age

sel ect ToSend() | Merge the MCINITY and REER SAMPLING SERVICE
views.

Add own descriptor with own profile and age 0.
Select the bed,ic descriptors foQ.

sel ect ToKeep() | Merge the MCINITY, PEER SAMPLING SERVICE, and
received views.

Select the bedi,ic descriptors folP.

Figure 4.4: Implementation of the generic gossiping skelgiooks, for the
VICINITY protocol.

4.4. DISCUSSION ON THE DESIGN CHOICES

A number of interesting design choices are veiled behindMTY 's 9 simple
steps.

To start with, we use thiil peer selectiorpolicy, as defined in Sectio®2.3
That is, nodes always select their neighbor with the highgstto gossip with.
The motive behind this policy is twofold. First, in a way slamito CyCLON, it
serves garbage collection of obsolete node descriptoresargtor may become
obsolete as a result of network dynamics, either becausaoithe it points at is no
longer alive, or because new—"better"—neighbors have logssovered, pushing
that descriptor off the list with thé,;c optimal neighbors. Getting back to the
protocol, when—in ste@—nodeP picks neighboiQ with the highest age iR's
view, it alsoremoves @rom its view. If Q is alive, it generates a new descriptor
with age 0 when executing stel and sends it back tB in step7. At step9,
nodeP reestablishes a fresh link @, if the latter still qualifies as one of the best
Lyic neighbors. If not, or ifQ has not responded at all, it simply remains out of
P’s VICINITY view, essentially having been garbage collected. Selgpetiways
the neighbor with highest age to gossip with, ensures thaihsolete neighbor
lingers indefinitely in a node’s view.

The second reason for adopting tail peer selection, is thapioses a round-
robin-like screening of a node’s neighbors. After a nodéddest neighbor has
been contacted for gossiping, its new descriptor—if it revaa neighbor at all—
has age 0, that is, it has the lowest priority among all neghin being contacted
for a future gossip exchange. Consequently, a node rotatesgh its view, con-
tacting its neighbors in a roughly circular order. This iroyes a hode’s chances
to optimize its view faster, by increasing the numbedifferentpotentially good

SEC. 4.5 QUTLINE OF EVALUATION 93

neighbors the node encounters. It is not hard to envisageptbaing a single
neighbor multiple times in a short time frame has little vglas the neighbor is
unlikely to have new useful information to trade every tima.contrast, maxi-
mizing the intervals at which a given neighbor is probed, inézes the potential
utility of each gossip exchange. Given the rather statianeadf a node’s VCIN-
ITY view (contrary to a BER SAMPLING SERVICE view), this is achieved by
visiting neighbors in a round-robin fashion. Our experitseduring the initial
development of WCINITY have shown this effect.

Another point deserving attention is the role of treeER SAMPLING SERVICE
layer, and the way it interacts withIZINITY . Its contribution comes about in two
places: In step8 and8, descriptors from the BER SAMPLING SERVICE view are
incorporated as candidates for being sent to the other aedror being selected
for the node’s updated MINITY view, respectively.

In essence, theEER SAMPLING SERVICE offers an alternative source of links
to randomly chosen nodes all over the network. These randdm are crucial
for target topologies splitting the network in separatesjaint clusters. In the
converged state of such an overlay, every nodasiMTY links point at nodes
within the same cluster. A new node that happens to be cosuhéata wrong
cluster (e.g., a newly joined node) would be “trapped” intttlaster unless ran-
dom links existed to nodes outside that cluster. Even faetaropologies that
consist of a single, connected cluster, random links playrgortant role. When
such a network is converged, each nodeigsMITY links point at peers close to
its nearby neighborhood. A newly joined node that joins aradom node away
from its neighborhood, will take a large number of steps twv} “crawl” to its
target position. However, if random links are availableisivery likely to find
some suitable long-range links to “fly” him quickly close ts neighborhood.

In the following section we will demonstrate the importarafethe random
links provided by the PER SAMPLING SERVICE, both for connected and clus-
tered target topologies.

4.5. OUTLINE OF EVALUATION

In this section we will explain how we evaluate the topologynstruction
framework, and present the experimental setting.

4.5.1. Selection of Test Cases

Our topology construction framework constitutes a gensultastrate for topology-
oriented self-organization. As already mentioned, a rtud# of topologies can be
constructed by setting the appropriate selection functdmumber of examples

94 FROM RANDOMNESS TOSTRUCTURE VICINITY CHAP. 4

are given in the chapters of Part Il of this dissertation. Stnecturing efficiency of

our framework is related to the profiles of a given node pajparteand the specifics
of the respective selection function and target topologys aAconsequence, it
is infeasible to provide an exhaustive evaluation of thenrvork. Instead, the
evaluation of the framework for each specific applicatiotefsfor the respective

chapters.

Nonetheless, in this chapter we will attempt to demonswateframework’s
operation by focusing on two test cases underlining its tesflkinctions: first, to
gradually improve views of nodes by consulting their neamejghbors; second,
to keep an eye all over the network, in search of related nodes

Along these lines, we focus on the following two test cases:

Forming a 2-D Spatial Grid Nodes are assigned two-dimensional coordinates,
and their goal is to establish links to their closest neighbd@uilding the
target topology in this test case is primarily based on theliei@an prox-
imity heuristic. Quite informally, the general idea is theddes gradually
improve their views with closer neighbors, which they theohe to find
new, even closer neighbors, eventually reaching theiresiosnes. This
emphasizes the utility of the top layer)&NITY .

Clustering Nodes in Groups In this test case, nodes are split up in uncorrelated
groups. Each node’s goal is to cluster with other nodes osémee group.
The key difference with the previous test case is that nodesat gradually
connect to groups “closer” to their own, as there is no notbproximity
between groups. Finding a node of the same group can be alisbetp
only by means of random encounters, which highlights the obthe lower
layer, the BEER SAMPLING SERVICE.

Both test cases are definitely artificial scenarios, sefettiedemonstrate the
individual contribution of each layer. In most real apptioas, though, such as
semantic-based clustering (Chapteand the $B-2-SuB publish/subscribe sys-
tem (ChapteB), both proximity and random heuristics are equally impatrtar
efficient self-organization, rendering the combinatiorire two layers critical.

4.5.2. Generic Experimental Settings

Although VICINITY is not a synchronous protocol, it is convenient to study the
evolution of its behavior in time by means ofcles Just like in &’CLON, as well

as the generic model of theeBR SAMPLING SERVICE, a cycle is defined as the
time period during which every node initiates gossipingotiyaonce, and, there-
fore, coincides with the gossiping peridd . To further simplify our analysis, in
our experiments we set the same gossiping period for botRP#E®R SAMPLING

SEC. 4.6 TeEST CASE A: FORMING A 2-D SPATIAL GRID 95

SERVICE and VICINITY protocols. Therefore, a cycle is the time period during
which eachnode initiates exactlpnegossip exchangper protocol

Given that establishing random links among nodes is a ttiagk for the EER
SAMPLING SERVICE irrespectively of the bootstrapping method (see Chapjter
we bypass this step and start our experiments with nodeadgiieaving random
links. More specifically, in all experiments presented iis tthapter, both views
of each node were initially filled up with descriptors of rand other nodes, all
with age 0. Such an initialization provides uniformity iretieonditions for our
experiments, and shields the experiments from behavieleirant to MCINITY .

Regarding the PER SAMPLING SERVICE in the lower layer, we chose to
use CrcLON. CycLoN forms an excellent choice for the topology construction
framework, as it results in low correlation between the hbiys of a given node
(low clustering), which, in turn, maximizes the randomnesthe new neighbors
received in each gossip exchange.

Finally, all experiments presented in this chapter werei@arout with the
PeerSim open source simulator for peer-to-peer proto&#e(Sinh

4.6. TEST CASE A: FORMING A 2-D SPATIAL GRID

We consider a two-dimensional space. We assign each(moglecoordinates,
such that they are (virtually) aligned in a regular squarie grganization. A
node’s coordinates constitute its profile. Each node’s gotd establish links to
its four closest neighbors, to the north, south, east, arsd.we

The natural choice of a selection function for such a targpology is one
that gives preference to neighbors spatially closer to dierence node. More
formally, we define the distance between two noBesnd Q, with coordinates
(xp,yp) and(Xq,Yq) respectively, to be their two-dimensional Euclidean disea

dist(P.Q) = \/ (6 —X)2 + (¥p — Yo)?

The selection functiors(k, P, D) sorts node descriptors i by their Euclidean
distance to the reference noBeand returns th& closest ones.

4.6.1. Demonstration of Test Case A

To demonstrate test case A, we simulated a network of 2,50@sydorming a
50 x 50 grid. Figure4.5 graphically illustrates the evolution of this overlay by
depicting its snapshots at different stages. We have ariyjtchosen small view
lengths of 10 descriptors per protocdli§ = ¢cyc = 10). We have also set the
gossip lengths to be equal to the view lengths: (= deyc = 10). This decision

96 FROM RANDOMNESS TOSTRUCTURE VICINITY CHAP. 4

]
«y,gguﬁ

After 2 cycles After 5 cycles

After 10 cycles After 17 cycles

Figure 4.5: Snapshots depicting the evolution of a 2,50@rmetrlay, forming a
50x 50 grid structure.

SEC. 4.6 TeEST CASE A: FORMING A 2-D SPATIAL GRID 97

fvicinity fcyclon

VICINITY/CYCLON 10 10
VICINITY -alone 20 —
CycLoN-alone - 20

Figure 4.6: The three protocol settings we compare.

was arbitrary, but we opted for small view lengths to underlthe framework’s
power in forming a topology efficiently, even when each node h very small
number of links.

For clarity of the snapshots, only the best four outgoingdiof each node’s
VICINITY view are shown in Figuré.5, except for edge nodes (three links shown)
and corner nodes (two links shown). Note the existence béeiine or two lines
between two connected nodes. This is because links ardetired single line
means a single link from one node to the other (directiopaiibt shown). A
double line means that both nodes have established a linadio ether. In the
completed target topology (last snapshot) all links arebtimu

As stated in Sectiod.5.2 node views were initialized with random links.
This clearly shows in the first snapshot of Figdr&, taken only two cycles after
the experiment started. In the subsequent snapshots, heafearly seen that
random, long-range links are gradually being replaced lmyteh links to closer
neighbors. Already after 10 cycles, most nodes have acdsheal their goal,
by having established links to their four closest neighb&wgen nodes that have
not yet discovered all four best neighbors, have estatdisinés to nodes just a
couple of hops away. After 17 cycles, all nodes are connectedeir four best
neighbors. We say that the overlay has converged to thet timgalogy.

4.6.2. Analysis of Test Case A

Having taken a glimpse at the way our framework swiftly bsittie target grid
topology, let us now observe the experiment’s evolutionerdosely. Addition-
ally, in order to demonstrate each layer’s role in buildihg target topology, it
is interesting to also observe the structuring behaviorréigher one of the two
layers operates individually.

Along these lines, we consider two additional protocolisg, with only one
of the two layers being active at a time. We compare all thme¢opol settings
over the same overlays. To provide for a fair comparison éartitial experiment,
where each layer has a view size and gossip length of 10,ngledayer settings
are allotted a view size and gossip length of 20. This waygradaintain and ex-
change the same number of total links in all three settinggirE4.6 summarizes

98 FROM RANDOMNESS TOSTRUCTURE VICINITY CHAP. 4

the three protocol settings we compare.

To study an experiment’s progress, we record the numbenrgétdinks that
have been established at the end of each cycle. Recall tradessrtarget links
are the four links to its direct north, south, east, and wegihbors. Figuré.7(a)
shows the number of target links that hanat been placed yet, as a function of the
number of cycles elapsed. This initially accounts for 10,00ks (2,500 nodex
4 target links), and gradually drops to zero. Similarly, iigs4.7(b) and4.7(c)
show the evolution of the same experiments for networks &f 46d 40K nodes,
respectively.

A number of observations can be made from these graphs. khpstrtantly,
we easily identify MCINITY as the primary component responsible for efficient
self-organization. More specifically, we see thatd@ oN-alone performs several
orders of magnitude worse than the other two protocol sgdtinvhose perfor-
mances are comparable to each other. This indicates thathdogiven target
topology, the crucial element accelerating self-orgaivpais VICINITY .

Let us now take a look at each protocol setting separately:

CycLoN-alone It is not hard to see why @cLON-alone is so inefficient. A
node’s only hope to find a target link is if that link shows upté xCyCLON
view. The CrcLON view is periodically refreshed with random nodes from
the whole network. In other words, a node is fishing for taldiygts at
blind. As expected, its time to converge increases sigmifigaas the size
of the network grows, since the chance of finding a target éihkandom
diminishes.

VICINITY -alone Consider now the WINITY -alone setting. Like before, a node
discovers a target link once it shows up in its view, whichhis VICINITY
view now. The crucial difference, though, is that a nodeisMITY view
continuouslyimproves as opposed to being random. In each cycle some
of a node’s CINITY neighbors are replaced by neighbors at least as close
as the previous ones. This way, nodes gradually optimize views, and
promptly reach their target neighbors.

A seemingly minor, yetimportant observation, is that thegpess of \/CIN-

ITY -alone slows down after some point, for any network size.sTan be
explained as follows. In these experiments nodes areliné@with a few
random links all over the network. These links generally largg-range
links. Also, nodes start optimizing their views (by gossii simultane-
ously. Some of these nodes happen to have, or acquire thtbagmeigh-
bors, long-range links that bring them quickly close to thaiget vicinity,

that is, help them find nodes with very close coordinates.ak@ptly this is
the case for the vast majority of nodes, as more than 90% déthet links

SEC. 4.6 TeEST CASE A: FORMING A 2-D SPATIAL GRID 99

100000 F " Cyclon(20) seeeeres
L Vicinity(20) ==1='=
| Cyclon(10) + Vicinity(10) =——

10000 e mesvssssis v i iy oL L
., [\ e ot
2 i SE T,
é’ 1000 i 8 .§
2 I slg)
£ k=)
S 10f \
[S
10 N
i \ i
i
+ 1
1 A
0 20 40 60 80 100 1000
cycles
(a) Grid of 2,500 nodes (5@ 50).
100000 F
10000 -\ Tl
1) I K\)
= r 3 E
= E\ =
o 1000 i) g %
g | \\'\ _% g
-
\'hy
10 Sz
\ ~\
\
\
1 \
0 20 40 60 80 100 1000
cycles
(b) Grid of 10K nodes (106 100).
100000 T e T e T o D
L
L \
10000 } N

o I NG)

= I S, ~E

§’ 1000: Sl 5 €

g | ‘~~~' é 83

é '''''''' =

S 100 i \ o

\ b
[.
10 £ Y
L \ i
L 1
1
1
0 20 40 60 80 100 1000

cycles

(c) Grid of 40K nodes (20& 200).

Figure 4.7: Evolution of topology construction for testeas

100 FROM RANDOMNESS TOSTRUCTURE VICINITY CHAP. 4

are in place within the first 10 cycles (99% for the 2,500 nodewvork).
As a side-effect, the number of long-range links drops dtarally. This
hinders the remaining few nodes that have not discoveredd pheximal
neighbors yet, from getting quickly in their respectiveirities. Instead,
they have to reach their target vicinities in many, smalbstécrawling” in
the almost converged overlay. The number of steps is retatéoe network
diameter, as can be seen in the graphs for different sizeoniesw

VICINITY /CyCLON Quite visibly, the combination of MINITY and CrCLON
outperforms any of the two constituent protocols alone.alst,fits perfor-
mance comes very close to the performance afIMITY -alone, except it
does not exhibit the sudden progress slowdown we discusgee aThe ex-
planation comes straightforward from the relevant disicuss/What causes
the slowdown in \ICINITY -alone is the lack of long-range links. Here we
do not face this issue, as therCLON layer ensures the continuous exis-
tence of random, long-range links.

4.7. TEST CASE B: CLUSTERING NODES IN GROUPS

In this test case, we provide each node witlyeup ID, which constitutes its
profile. The goal is to form clusters of nodes that share theesgroup IDs. From
a node’s perspective, the goal is to establish links to otlogies with the same
group ID.

Note the clear distinction between the terms group andeltstthe context
of this test case. Aroupis defined as the set of all nodes sharing a common group
ID. A clusteris a set of nodes forming a weakly connected (sub-)graphjsha
connected (sub-)graph considering the undirected verdibnks between nodes.
Nodes should self-organize into clusters, in such a way chaters eventually
coincide with groups.

The only comparison operator defined on node profiles is éguzt group
IDs. By comparing their profiles, nodes can tell whether thelpng to the same
group or not. However, no other type of comparison or progimaetrics apply,
for example, we do not define any ordering of groups.

The selection functiors(k, P, D) is simple and straightforward. It starts by
selecting in a random sequence descriptors fl@mhose group ID is the same
asP's. If these are fewer thak it continues by selecting randomly from the rest
of the descriptors.

SEC. 4.7 TEST CASE B: CLUSTERING NODES IN GROUPS 101

After 18 cycles After 22 cycles

Figure 4.8: Snapshots depicting the evolution of a 2,50@rmerlay clustering
in 100 groups of 25 nodes each.

102 FROM RANDOMNESS TOSTRUCTURE VICINITY CHAP. 4

4.7.1. Demonstration of Test Case B

Like in the demonstration of test case A, we demonstratectest B by consider-
ing a network of 2,500 nodes. Each node runsMITY and CrCLON, both with
view lengths and gossip lengths 1Qi{ = {cyc = 10 andgyic = geyc = 10). Nodes
are assigned group IDs such that a total of 100 groups ezislh, lgaving 25 nodes.

Figure4.8 presents a series of snapshots of the network, illustrakiagevo-
lution of clustering. For presentation clarity, nodes asplhyed in a 56« 50 grid
organization, and all 25 nodes of any given group have beacedlin contigu-
ous locations, forming a % 5 sub-grid. We emphasize that the sole purpose of
this layout is to facilitate visual comprehension of cluistg, while nodes are not
aware of their position in this layout, but only of their glD.

To avoid cluttering the graph, only 2 random outgoingcWiITY links of
each node are shown. However, links to nodes of differentfgg@re drawn with
a strictly higher priority than those to the same group. @guently, when a node
in Figure4.8appears to have no links to groups other than its own, it isaguieed
thatall its VICINITY links point at nodes within its group.

As mentioned in Sectiod.5 nodes are initialized with random neighbors.
Indeed, after cycle 7 the network still seems to be dominaedandom links
between different groups. Soon after that, though, theckefié clustering starts
becoming evident. Quite visibly, nodes of the same groug &ieming clusters.
Intergroup links are gradually being replaced by intragraumes, leading (after
cycle 22) to a fully clustered overlay, where clusters petifematch the respective
groups. At that point the construction of the target topglggcompleted.

4.7.2. Analysis of Test Case B

Similarly to the analysis of test case A in Sect$.2 we investigate and com-
pare the performance of our two-layered framework to thagaxth component
acting individually. We run experiments for the same thresqrol settings, as
listed in Figure4.6.

As stated already, a node’s goal is to get clustered withratbees of its
group. This task is divided in two steps: first, discover tightr cluster; second,
get well connected in it. MCINITY excels in the second. Through a single link to
the target cluster, a node rapidly learns and becomes knowadditional nodes
in that cluster. It turns out that the crucial step in thid tsse is the first one:
discovering the target cluster. Along these lines, we qbatiie progress of our
experiments by counting the number of nodes that have estadl at least one
link to a node of their group.

Figure4.9 plots the complementary metric, that is, the number of nadas
donothave any links to other nodes of their group yet, as a funafdhe number

SEC. 4.7 TeST CASE B: CLUSTERING NODES IN GROUPS 103

100000 f

g " Cyclon(20) «eessees
% Vicinity(20) =:=='=

- Cyclon(10) + Vicinity(10) =——
3 10000 | Jclon(L0) v(20)
= [
= _
£ _ 2
= 1000 F £
: A\ $Ig
[} \X &g
c + \ £ %
S 100 -\
o i N
IS] -
< .
8 I \
S 10 s
Il + .
5 \‘-..
* B -

1 L
0 20 40 60 80 100 1000
cycles

(a) Network of 2,500 nodes: 100 groups of 25 nodes.

100000 [

10000
e,
"“v,. <c
L % g
1000 f N =TS
....... = e

100 | ™~

10 ﬁ
1

0 20 40 60 80 100 1000
cycles

(b) Network of 10K nodes: 400 groups of 25 nodes.

nodes not connected in right cluster

100000
" [
g Nk‘
B 10000 I T Sl ottt I-‘-‘I--I—
é - T
c i K o
S 1000 | i <
@ [=] \
3 £5
o i
S 100 N\
5 I
C kK
g ! \ |
& 1ot |
: | b
C :,
< I
1 :
0 20 40 60 80 100 -
cycles

(c) Network of 40K nodes: 1600 groups of 25 nodes.

Figure 4.9: Evolution of topology construction for testeds

104 FROM RANDOMNESS TOSTRUCTURE VICINITY CHAP. 4

After 1000 cycles

Figure 4.10: Snapshot of the overlay produced bgMiTy -alone. Some nodes
are still not connected to their group’s cluster after 1096les, and they will
never be.

of cycles elapsed. The three graphs correspond to netwbsiseo2500, 10K, and
40K nodes. In each graph, the progress of all three protattihgs is plotted. In
all cases, groups consist of 25 nodes each, so we have 10GadDQ600 groups
in the networks of 2500, 10K, and 40K nodes, respectively.

The most significant observation is that, unlike test castaéworst behavior
is now exhibited by YCINITY operating on its own. MINITY -alone stops con-
verging after some point, failing to fully build the targétigture. On the contrary,
the other two settings, namely,®NITY/CycLON and CrcLON-alone, perform
comparably to each other. This indicates that in this test ¢he key component
is CYCLON, or more generally, the EER SAMPLING SERVICE.

Let us now elaborate on each protocol setting separately:

VICINITY -alone Apparently, no matter how long IZINITY runs on its own,
some nodes never manage to discover their groups. Thisdsdelsicted
in Figure4.1Q0 which shows a snapshot of the network with 2500 nodes,
after 1000 cycles of WCINITY -alone execution.

It is not hard to see why this happens. As nodes start clagtavith other
nodes of the same group, the pool of intergroup links in the/okk shrinks

SEC. 4.7 TeST CASE B: CLUSTERING NODES IN GROUPS 105

significantly. In fact, this is accelerated by the absoltaeditivity property
this selection function exhibits. Once a node forms a linl gossips to
another node of its group, chances are it will acquire lirksnore nodes
of the same group, rapidly trading its intergroup for int@gp links. In not
so many cycles, most nodes end up having neighbors fromdieirgroup
exclusively. Also, clusters start becoming self-contdirtbat is, their nodes
link among themselves, but not to nodes of other groups. Mwethis
behavior matches the intentions of&/NITY .

The problem comes with nodes that have not come across obhes rof
their group early enough. If a node’s neighbors are all fraheo groups,
and these groups have already clustered into closed, @ef&ioed clusters,
the node has no chances whatsoever to be handed a link to afitglewn

group, ever. A neighbor from such a self-contained foreigyug can only
provide alternative neighbors of that same, foreign grolipe node, thus,
finds itself in a dead end. Obviously, in our experiments almemof nodes
end up trapped outside their groups (see Eif).

This demonstrates the need of a source of random, long-tarige to pre-
vent such dead end scenarios. This role is undertaken byahbe BaM -
PLING SERVICE.

CvycLoN-alone When CrcLON operates alone, descriptors float around in a ran-
dom fashion. Coming across a node of the same group is puraebtter of
luck. As naive as it may seem, it is the only way to discoverasodf the
same group, since nothing but the equality operator is dgforecomparing
the profiles of nodes.

Note that &*cLON-alone and VCINITY -alone perform comparably in the
beginning of each experiment. However, later on, the lagerindered
by nodes being already clustered, and thus, not useful fmriging fresh
information. CrcLoN-alone does not suffer from this problem.

VICINITY /CycLON When we apply our framework in its normal form, that is,
VICINITY and CrcLON combined, we get the best results.

The VICINITY/CYCLON protocol setting converges at a rate very similar to
CycLoN-alone, except for a number of cycles in the beginning of each
periment, during which it converges faster. The explamatibthis behavior
lies in the details of gossip exchanges in each setting, @ad interesting
topic to elaborate on.

In CycLON-alone, when a node initiates a gossip exchange it contacts a
neighbor, and retrieves 20 new, random neighbors. Its étnfind a node

106 FROM RANDOMNESS TOSTRUCTURE VICINITY CHAP. 4

of its own group in these new neighbors, is roughly 20 overnégvork
size.

In VICcINITY/CyCLON, when a nodeP initiates gossiping it contactsvo
neighbors, Q. on account of @cLoN, andQ, on account of VCINITY. It
retrieves 10 new neighbors from each of them, giving a tdt&2i0p exactly
as many as in the Yx-LoN-alone case. Fromy, it retrieves 10 random
neighbors. FromQ,, however, it retrieves the 10ptimal descriptors out
of both its views. Thus, if a descriptor frof¥'s group layeitherin Q,’s
VICINITY or Q,'s CYCLON view, it is guaranteed to be one of the 10 de-
scriptors sent fron@Q; back toP. As a consequenc®,will acquire a neigh-
bor of its own group with a chance of roughly 30 over the nekwsize,
which explains the faster convergence ovetdCoN-alone. Later on, when
nodes start clustering per groupJAINITY views increasingly consist of
links to nodes of a single group. Their utility in providinighks to a variety
of groups diminishes, and's chance of finding a neighbor from its group
drops to roughly 20 over the network size (10 random nodes f@, and
10 more from itQ,’s CYCLON links).

In this test case, we saw that theeR SAMPLING SERVICE is essential to the
successful construction of target topologies that aretetad in disjoint groups.

In a more general sense, theER SAMPLING SERVICE is necessary to all target
topologies for which YCINITY alone could result in nodes becoming permanently
trapped in a non-optimal neighborhood.

The necessity of theEER SAMPLING SERVICE layer becomes more evident
when new nodes join an already clustered network. Thengssariteey happen to
join by chance to the right neighborhood directly, they wiver manage to reach
it.

4.8. DISCUSSION AND RELATED WORK

In this chapter we presented a framework, by means of whitiarks can
self-organize into a given target topology. The target togy is expressed by
means of a selection function that selects which neighb@ptimal for each
node. The framework consists of two layers. The top layegIViTY, strives for
optimizing a node’s neighbors with respect to the selectiorction. The lower
layer, an instance of theERR SAMPLING SERVICE, ensures that each node also
maintains some random neighbors.

The most significant advantages of the framework are that #irnple and
generic. Simple, because each node acts autonomouslgymperfy a sequence
of simple steps and taking local decisions, without requirihe deployment of

SEC. 4.8 DiscuUsSION ANDRELATED WORK 107

any dedicated infrastructure. Generic, because it is eqipl to a wide variety
of target topologies, given the appropriate selection tionc The applicability
of the framework will be demonstrated by some applicatian®art Il of this
dissertation, without, though, this being an exhaustivefggotential applications.

On the theoretic side, Kleinberg’s results on navigatiorsrimall-world net-
works are highly relevant to our worlKJeinberg 2000ba, 2001, 2004. Klein-
berg studied the qualitative properties of networks thainage the effectiveness
of decentralized routing algorithms in discovering shaths between two nodes,
based exclusively on local routing decisions. He proved thiaeach overlay
there is a critical distribution of long-range links, th#lbe decentralized routing
algorithms construct routing paths of leng@ilogn). For all other long-range
link distributions, decentralized algorithms can only fiasiymptotically longer
routing paths. More specifically, inkadimensional lattice network, optimal navi-
gability is achieved when long-range links between noddatti€e distance are
established with probability proportional tg/rk.

In principle, Kleinberg’s results are key to distributeghddogy construction,
as the joining of a new node is essentially a problem of naivigdo its optimal
neighbors. Let alone that decentralized routing is oftenghrpose of the target
topology itself. In practice, however, these results areapplicable to our work
for two reasons. First, unlike our demonstration test cas&&ctions4.6 and4.7,
in most applications nodes are not laid out in a lattice stmec(e.g., see applica-
tions in Partll). Second, in a number of applications distance is not megéulin
betweerall pairs of nodes (e.g., see test case B, Sedidnand Chapter). Nev-
ertheless, the combination of a number of random long-rdinge (provided by
the FEER SAMPLING SERVICE) with short-range links (provided by IZINITY)
appears to provide sufficient topology navigation for aplagations presented in
Partll. A demanding application can improve its overlay’s naviga! efficiency
by increasing the number of short- and long-range links ta&ied per node, even
if the efficiency achieved is not optimal for that number oks.

Other work aiming at self-organizing a network to a certajpalogy has con-
centrated on solutions tailored for very specific problerBsstributed Hash Ta-
bles Rowstron and Druschel 2001Zhao et al. 2001 Stoica et al. 2001Rat-
nasamy et al. 200]are such an example, as each of them includes its own, cus-
tomized technique for building the respective overlay.

The only other research our work comes close to, is the T-Matopol [Je-
lasity and Babaoglu 2002006, which has been developed independently. Al-
though there were significant differences with the origifidlan protocol Jela-
sity and Babaoglu 20Q4the most recent version shows a strong similarity with
our work. A difference remains that T-Man employs tlamdom peer selection
policy, as opposed to the tail policy used in our work. Thedfigs of tail peer

108 FROM RANDOMNESS TOSTRUCTURE VICINITY CHAP. 4

selection in finding good neighbors faster are discussecati@® 4.4. An addi-
tional difference stemming from the peer selection poli@s in the way the two
protocols do garbage collection. In T-Man, a predefined remoblinks of highest
age are discarded in each cycle, with the motive that goaghbers that are still
alive will soon become known again. This is the same garbafection tech-
nique used in the BER SAMPLING SERVICE (see parameted in Section3.2.2).
Although this is efficient for garbage collection, it resuilh good neighbors being
temporarily forgotten. In our framework we do not expligitemove neighbors of
high age. Instead, we select to contact the neighbor witesbldge (tail peer se-
lection), and remove it from the IZINITY view. If it is still alive, it is reinserted
in the view right away. If not, it simply remains removed. $hvay, a node’s
alive good neighbors remain continuously its neighbors. On alemabte, our
framework provides higher flexibility with respect to themioer of descriptors ex-
changed when gossiping. This has a direct impact on the Gdtidused, notably
when node profiles carry bulky information.

Concluding, the framework presented in this chapter ctuiss a fundamen-
tal, generic protocol. We have already applied it in différareas Youlgaris and
van Steen 20Q5/oulgaris et al. 200K and it is employed in multiple applications
throughout this dissertation, where it is also analyzedenspecifically.

Part |l

APPLICATIONS

CHAPTER S

Routing Table Management:
Building Pastry

One of the fundamental subjects of this dissertation, theRFSAMPLING SER-
VICE studied in Chapte3, introduces a model of communication based on random
contacts. The aim is to exploit randomness to dissemin&teniation across a
large set of nodes in a simple, robust, and timely mannesddignating member-
ship information itself results in highly connected and azkably robust overlays
that are adaptive to network changes, and appear to deratmnseglf-healing be-
havior in the face of major network disasters. And all thaines with a very
simple framework, free of any type of centralized structuce administration,
operating in a fully autonomous, self-organizing fashion.

A different significant direction of recent research in P3B8tems, has been
in designing overlay networks for routing. Such systemswaigely known as
Distributed Hash Table§DHTS). The respective protocols operate in the appli-
cation layer, on top of an existing network physically ict@mnecting all nodes
(such as the Internet). They assign each participating aod®, and route mes-
sages to a node based on that, rather than based on its IBadéezformance (in
terms of routing hops) is usually inferior compared to ttiadhial IP routing, but
this is not the point. Their significance lies in the fact ttraty map ID keys to
nodes, in a way similar to traditional hash tables mappingenc keys to table
entries. This function is crucial as a building block for nenous other applica-
tions, such as distributed network storage (OceanStbubiatowicz et al. 200D
and PAST Rowstron and Druschel 200[bbdistributed web caching, etc. A num-
ber of DHT systems have been proposed to date, most impogprasentatives
being Pastry Rowstron and Druschel 200[L&apestry Zhao et al. 20012004,
Chord [Stoica et al. 200[1 and CAN [Ratnasamy et al. 200[LaTheir common
property is that they all try to form and maintain some sorswéicture across a

112 ROUTING TABLE MANAGEMENT: BUILDING PASTRY CHAP. 5

large number of participating nodes, that is then used ttenpackets among them.
However, their behavior is uncertain in the presence ofliiglynamic environ-
ments, or serious disasters (i.e. half of the nodes disaimgesimultaneously),
or when bootstrapping a system from scratch.

In this chapter we present an alternative approach to Imgjlédind manag-
ing DHT routing tables, based on th&®ER SAMPLING SERVICE. Our approach
combines the advantages of DHTs with those of highly faldrémnt, self-healing
gossiping networks. More specifically, we focus on the Ra3tdT [Rowstron
and Druschel 200]aand we employ the BwscAsTinstance of the PER SAM -
PLING SERVICE to bootstrap and maintain Pastry-like routing tables. W su
stantiate our claims by presenting experimental resuttsrfemulation in a real,
wide-area network.

Note that the research presented in this chapter constitwieinitial efforts
towards merging the structured with the unstructured wsorfss a historical note,
it has preceded the IZINITY protocol, which is more powerful in building and
maintaining topologies. Nevertheless, this researchrdese place in this dis-
sertation, as an illustration of our first step in harnessigdomness to create
structure.

5.1. PASTRY-LIKE P2P ROUTING

Two of the most popular DHTS, Pastry and Tapestry, perforaiing based
on the same concept: incrementally matching the destmatl®, digit by digit.
In this section we present the organization and functiomefdrincipal structures
used for routing in these systems, toating tables

5.1.1. Basic Concept

Each node is assigned a unique numeric identifiendtie 1D, or simplylD. When
presented with a message and a numleig a node routes the message towards
the node whose ID is equal to the given key. Node IDs and keybl it integers,
forming a node ID space that spans from 0 tb-21. N has a typical value of at
least 64 to provide a sufficiently large ID space to accomregassibly billions

of nodes. Nodes pick their IDs randomly with uniform probpifrom the set of
N-bit strings. Itis, therefore, assumed that IDs are unilgrdistributed across all
geographic regions, multiple jurisdictions, and varioesworks.

SEC. 5.2 RSTRY-LIKE P2P ROUTING 113

5.1.2. Internal Structure of the Routing Tables

For the purpose of routing, node IDs and keys can be thoughs @ sequence
of digits in base 2 (b-bit long digits), whereb is a configuration parameter with
typical value 4 (which impliefiexadecimatligits). Routing a message to its des-
tination is achieved gradually, by matching one additiattiglt of the message’s
key at a time, say, from left to right. That is, in each steprtiessage is normally
forwarded to a node whose ID shares with the key a prefix at @@ digit
bits) longer than the prefix the key shares with the presedesdD, if such a
node is known. If such a node is not known, routing of that ragedailst

To implement the logic described above in message routext)) aode main-
tains itsrouting table The routing table of a node consists Mfb rows of 2
entries each. An entry contains the ID of a node, and its spaeding IP address.
A given row of the routing table contain8 2ntries, and represents a matching pre-
fix in the node ID up to a digit position. Entries in theh row (r € {1,...,N/b})
contain nodes whose IDs share the same1l)-digit prefix with the present node.
Thec-th entry of ther-th row contains such a node, with the additional constraint
that its ID’s r-th digit is equal toc. For instance, assuming b=4 (hexadecimal
digits for the node ID), the 2nd entry of the 3rd row of the ingttable for node
437BF52. .. /4 hex digits in total) is some node whose ID starts witR,4ghile
the 8th entry of its 5th row has a node whose ID starts with 837B

5.1.3. Routing

Upon receiving a message, a node compares the messages ikenpade ID. If
they share a common prefix ofigits, it should forward it to a node whose ID
shares a prefix of+ 1 digits with the key. To accomplish that, the present node
looks up the(i + 1)-th row of its routing table, which contains nodes sharinthwi
the key the samefirst digits. Out of that row, it picks th&-th entry, wherek is

the value of the key's$i + 1)-th digit, and forwards the message to that node. That
node not only shares with the key the same firdigits, but also thei + 1)-th
one. This process continues either until the node whose I2hmea all digits of
the message’s key is reached, or, else, until the messagetdamforwarded any
further.

n fact, current systems consult auxiliary structures thay maintain (such as tHeaf setin
Pastry), which will not be considered in this chapter.

114 ROUTING TABLE MANAGEMENT: BUILDING PASTRY CHAP. 5

5.2. BUILDING ROUTING TABLES

An important issue in DHT-based peer-to-peer systems isagiag the rout-
ing tables. These tables are kept up-to-date by having rtbdéein or leave the
system contact other nodes explicitly. To handle failunesirtbeat algorithms are
used to probe nodes and to take measures when a failure @atete

We propose a different approach, namely to separate roftrongtable man-
agement, similar to the separation deployed in Interneiimgyprotocols such as
OSPF Moy 1994 or RIP [Hendrick 1988 We believe such a separation often
leads to a cleaner and simpler design, although sometimide aiost of perfor-
mance.

In Chapter3 we showed that by means of thefER SAMPLING SERVICE an
overlay can handle dynamics and stay up-to-date in a lazydias For DHT-
based peer-to-peer systems, we propose to deployeBr BAMPLING SERVICE
for maintaining routing tables. Our method is completelgeatdralized, highly ro-
bust, and quickly adjusts itself to major changes in the netwT hese advantages
come at the price of continuous bandwidth consumption.

5.2.1. The Principal Idea

The FEER SAMPLING SERVICE has a number of important properties, as de-
scribed in section 2. It maintains a strongly connectedlaygesustains disasters,
adapts fast to (possibly major) network changes, and id\hggalable. The goal
is to combine its adaptivity strength with the efficiency loé routing scheme pre-
sented in SectioB.1, to create a robust, highly fault resilient, peer-to-peeriay
network for efficient routing.

The principal idea is to harness the knowledge of randomhheics to popu-
late routing table entries. Every node’s view is periodicagfreshed with a num-
ber of new neighbors, chosen at random amalhghe participating nodes. All
a node has to do, iseepthose—randomly acquired—neighbors that are suitable
for filling up its routing table entries.

A node’s routing table consists df/b rows. Let us first concentrate on build-
ing the first row. Considering a division of nodes in classaseldl on their ID’s
first digit, we have 2 classes (since a digit Isbits long). The first row requires
one arbitrary representative from each class (excludiegotiesent node’s class).
Since node IDs are evenly spread across the ID space, eashadaounts for
roughly2—1b of the nodes. Therefore, with reasonably high probabititpode will
have come across at least one representative from eachwdtessa few more
than 2 random nodes become known to it. Assumifig=216 (forb = 4) and a
view sizelpss= 20, this could even happen in one cycle, or, otherwise, irugleo
more. So, each node’s first row can be filled up in a matter ofupleoof cycles

SEC. 5.2 BUILDING ROUTING TABLES 115

by pulling suitable neighbors from the dynamically refredHPFEER SAMPLING
SERVICE view.

For the second routing table row of a noBgwe consider the set of nodes
whose IDs start with the same first digit Bs ID, and we split them in classes
based on their ID’seconddigit. Again, we have 2classes. However, each of
these classes corresponds(gé)2 of the whole network, one order of magnitude
smaller fraction than the respective classes based on thelififit. Generally, the
respective classes for rokcorrespond to(z—J;,)k of the nodes, which becomes a
very small fragment of the network for higher valueskofinstead of relying on
random nodes from th@holenetwork to hit upon representatives of these classes,
we pick random nodes from a pool containiogly nodes having IDs with a given
first digit. Such a pool is realized by a separate instance®PEER SAMPLING
SERVICE, involving only nodes whose IDs start with the same first tdag P's
ID. In that pool, each class correspondg%tcof its nodes, so representatives of all
classes are discovered rapidly, like representativeshiofitst row. Similarly, ad-
ditional instances of theFER SAMPLING SERVICE are employed for the efficient
discovery of neighbors suitable for the rest routing tabt®ss. This leads us to
the multilayer EER SAMPLING SERVICE architecture explained in the following
section.

5.2.2. Multilayer Architecture

To efficiently build and maintain routing tables, we run rnipl# instances of the
PEER SAMPLING SERVICE. A single physical node can participate in several of
them, by running a separadgent(i.e., software acting as a virtual peer) for each
one, maintaining its own, separate view of neighbors, asgigong independently
from the other agents. In fact, each node runs exa¢flly agents, participating in
an equal number of BER SAMPLING SERVICE instances. Each agent is respon-
sible for maintaining one of thil /b rows in the node’s routing table. The agent
responsible for row € {1,...,N/b} of nodeP will be referred to asgent #r of
node P

Each agent of a node sets its own criteria on which neighlocasdept. Agent
#i of nodeP maintainsonly neighbors whose IDs start with the samel digits
asP's ID. Moreover, a node’s agent #ossipsexclusivelywith agent # of other
nodes, as shown in Figugl In other words, when agents #f two nodes
gossip with each other, it implies the respective IDs ofrtiheides start with (at
least) the sameé— 1 digits. Otherwise, neither would have been a neighbor of
the other, which is necessary to initiate gossiping. Addaily, the rest of their
neighbors have IDs starting with the saine 1 digits too. What we see is that,
agents #of nodes that share the same firstl ID digits, essentially run their own

116 ROUTING TABLE MANAGEMENT: BUILDING PASTRY CHAP. 5

instance of the PER SAMPLING SERVICE, forming a cluster among themselves.
Consequently, the view of a node’s agentigtperiodically refreshed with new
neighbors of its group, that is, new neighbors whose 1D4 aitih the sameé — 1
digits. That is, a node’s agent provides a source of random nodes from the pool
of nodes whose IDs start with a givén— 1)-long prefix. Note that agents #1 of
all nodes participate in the same®ER SAMPLING SERVICE overlay, includingall
nodes (as they all—trivially—start with the same 0 first tiyji thus, maintaining
the whole network in a single, connected cluster.

Peer X Peer Y
\\
| ;
i Node A /
\ .-
lJ
1
,
Peer Z Peer W
=
/ \
) AN
: :
II 1
1
r
gt

Figure 5.1: Communication of nodeduring one communication cycle.

To facilitate and speed up the clustering af nodes of a given ID prefix
in the appropriate PER SAMPLING SERVICE cluster, we devise the following
interaction between a node’s agents. Neighbors acquireabbnt # of a node,
therefore sharing a comman— 1)-long ID prefix, could be of interest to agents
#(i+1), #(i + 2), and so on, of that node, if they additionally share the same
th, (i + 1)-th, etc., ID digits, respectively. In these lines, neigfsbthat become
known to a node’s agent 7are also reported to the same node’s agefit#1),
#(i+2), and so on. These agents filter the neighbors received fremtaband
keep the ones matching their prefix requirement in their vibywreplacing the
oldest view items).

An important observation is that once ageni#tall nodes that share the
same firsi — 1 ID digits have formed a single cluster, agen{s#1) of the nodes
among them that also share an arbitrary sastiedigit form a single connected
cluster very fast. Each agent kearns aboutpss random peers with the same

SEC. 5.3 EXPERIMENTAL SETTING 117

firsti — 1 digits everyAT time units. Assuming evenly distributed node IDs, we
expect that on averaggss/ 2° of the peers that become known evAfy time units
share the-th ID digit too with the present node in addition to the first1 digits.
Given typical parameter values 6fss= 20 andb = 2, one or more peers sharing
i digits become known eve®T time units on average. This partly explains why
all agents of every node form clusters quickly, as we shalllater.

Notice that, initially, every node’s agenti#- 1) forms its own (trivial) clus-
ter, disjoint from all the rest. Such a cluster generallyangis on each cycle of
agent # since a random peer satisfying the prefix requirement ohtage + 1)
is introduced. Moreover, two clusters windm nodes unite if any of tha nodes
of one of them happens to learn about the existence of anyeahtiodes of the
other. Therefore, the larger disjoint clusters get, theeniikely it becomes they
will unite. What we are seeing, is an increasingly acceiegabehavior in the
process of merging disjoint clusters. It is therefore reafde to state that agents
#(i+ 1) of a set of nodes sharing the same firstligits form a cluster in just a
few cycles, provided agents &f nodes sharing the same firgi # 1) digits form
a cluster too.

As mentioned earlier, all nodes’ agents #1 participate & ghme instance
of the FEER SAMPLING SERVICE, and guaranteeing a (quickly formed) single
connected cluster dll existing nodes. This helps clusters of agents #2 to form
fast too. By induction, and based on the claims of the previsaragraph, we
expect all instances of theEBR SAMPLING SERVICE executed by all agents of
all nodes, to quickly form the clusters they are designed for

Our claims are further strengthened by the presentatiomofi@ion analysis
in Section5.4.

5.3. EXPERIMENTAL SETTING

We implemented the architecture described in seciigh2in Java and de-
ployed it on the DAS-2, a 400-processor cluster geografiidastributed over a
wide-area network across the NetherlanB&$5-2]. We carried out experiments
with a set of 65,536 nodes, a number of them running on each-Da®cessor
simultaneously.

We considered node IDs of length= 16 bits, and digits of length = 4 bits
(hexadecimal digits). This setting resultedNiib = 4 rows and 2 = 16 columns
per routing table.

The instance of the BER SAMPLING SERVICE we chose to employ in this
chapter’s experiments is theeM/SCAST protocol, described in Sectich8. Each
node was running 4 BWscAsTagents, one for each of its 4 routing table rows. A

118 ROUTING TABLE MANAGEMENT: BUILDING PASTRY CHAP. 5

view size of¢ = 20 was used for eachBWscAsTagent. We ran our experiments
with the same refresh interval &fT = 10secfor all agents. That is, every 10 sec-
ondseachof the 4 agents of each node initiated a gossip exchange. &edex!
and analyzed the behavior of our architecture at intervh®0oseconds, that is,
we logged the whole network’s state every 6 communicatiaresy

Another facet of our experiments that is worth noting is buststrapping
mechanism. By bootstrapping we refer to the procedure ofiginy hodes with
the information required to jump-start the overlay netveflormation. In princi-
ple, a new node joins by contactiagyexisting node and gossiping with it. When
the whole network starts from scratch, a systematic way béae tpresent to pro-
vide one or more initial communication points to each nodeour experiments,
all nodes’ agents #1 were provided with the address of orgiesimode’s agent #1,
forming a star topology. Providing agents with a choice obsgibly random—
agents to initially connect to, enhances the randomnedseofé¢twork from the
early cycles. However, a bootstrapping mechanism as siamplecentralized as
the one we chose further endorses our claims of our archigsstfast convergent
behavior, as discussed in the following section.

Finally, we imposed a fake large-scale failure while theegipent was run-
ning, in order to observe and analyze the behavior of oursysh such cases.
In particular, we killed 50% of the nodes in the middle of th@&iment. Our
observations of the experiments and their analysis arepted in the following
section.

5.4. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the output of our experiments witb3dnodes. We
recorded and analyzed two aspects of the system’s behaljipamic forming of
the routing tables when bootstrapping, and following adasgale failure.

5.4.1. Bootstrapping

This experiment aims at observing the system’s behaviotewtbotstrapping.
Figure5.2 presents the system'’s fast convergence to a fully operaiiving sub-
strate. It shows the average number of routing table rowtsailgecompletely filled
per node, as a function of the number of cycles elapsed freraxperiment’s start.
A node’si-th routing table row being completely filled means that tloelencan
routeanymessage whose key sharesl digits with the node’s ID to a peer node
whose ID additionally matches theh digit of the message’s key. Note that the
system manages to félll routing table entries iall nodes in less than 30 cycles.
Figure5.3illustrates the effectiveness of routing messages. Frarh aade

SEC. 5.4 EXPERIMENTAL RESULTS AND ANALYSIS 119

of filled pows ——

Number of filled routing table rows
N

0 5 10 15 20 25 30
Cycles

Figure 5.2: Average number of filled routing table rows.

we routed a number of messages to random nodes. Fig8(@ shows the num-
ber of routing steps (hops) messages took en route to th&indéon, on average.
Initially, routing tables are empty, so messages cannetaaly steps towards their
destinations. However, as routing tables start being ,boitssages follow in-
creasingly more routing steps towards their destinatiofkis graph is akin to
Figure5.2, as the number of routing steps a message takes is diregigndent
on the number of routing table rows that have been filled.

Figure 5.3(b) shows the percentage of messages that manage to reach the
destinations, as a function of the number of cycles. For tts¢ T0 cycles few
or none of the messages reach their targets. As routingstaée filled, more
messages are routed all the way through to their destirgatids it turns out, after
the first 24 cycles, 99.74% of the messages are deliveregitodstinations, and
after 30 cycles, this fraction increased to 99.998%.

5.4.2. Robustness to Large-Scale Failures

To test the system’s behavior in the face of large-scalerksl, we intentionally
killed half of the nodes in the network, at some point when all routingetaivere
guaranteed to be completely filled. That point correspontedpproximately
10 minutes after the start of the experiment. We refer to gmecwhen this
catastrophic failure occurred as cydeMore specifically, we killed all nodes with
an odd ID. As expected, BwSCAST maintains the surviving nodes connected in
a single cluster. As we will see, the overlay adapts very lduito reflect the
modified network.

Figures5.4 and 5.5 are analogous to the previous figurés2 and 5.3, re-
spectively. Figureb.4 shows the average number of routing table rows that are

Average routing steps taken

120 ROUTING TABLE MANAGEMENT: BUILDING PASTRY CHAP. 5

100
90 -
80
70 -
60 -
50 -
40
30
20
10

A\‘/g. # of routi >tep§ — % of msgs‘delive d ——

Percentage of messages delivered to destination

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Cycles Cycles

(@) (b)

Figure 5.3:(a) Number of routing steps taken on avera(®; Percentage of mes-
sages reaching their destination.

completely filled (with valid entries), per node. Note thattadated entries of
crashed nodes (the ones with odd IDs) are not considered, \aiid therefore
are not counted. Immediately after the crash none of thenguable rows are
fully filled, which implies that all routing rows of all nodesso contained some
entries with odd node IDs. However, as can be seen in thealiggouting tables
are filled very quickly. Within 30 cycles from the point of dister, the first three
routing table rows of all nodes have been filled. Note that thithe maximum
number of rows that can be filled per node. The 4th rows of alting tables
cannot be filled, as they would require nodes that match akipte cases for the
last digit of their IDs. Since nodes with odd IDs do not exisy anore, it is not
possible to fill up these rows. This, however, does not affegting, as routing
paths to all existing nodes (i.e. nodes with an even ID) dstexid are complete.

The system'’s capability to route messages can be seen imeFsgh Fig-
ure 5.5a) shows the average number of hops a message traverdesly)rdince
half of the nodes have been removed, messages are routeci@mgya\nalf-way
through to their destination. As routing tables are adjigsto the modified net-
work, messages follow more hops towards their destinatibitgire5.5b) shows
the percentage of messages that reach their destinatiostdiké in the bootstrap-
ping case, routing tables are formed very quickly. It taless ithan 20 cycles from
the moment of the crash to form routing tables that can ronyenaessage from
anysource taanydestination.

SEC. 5.4 EXPERIMENTAL RESULTS AND ANALYSIS 121

of filled rows ——

Number of filled routing table rows
N

d d+5 d+10 d+15 d+20 d+25 d+30
Cycles

Figure 5.4: Average number of filled routing table rows wheoavering from a
50% node crash that happened at cytle

5.4.3. Bandwidth Considerations

In this section we provide an estimation of the individuar(pode) and aggregate
bandwidth used in our experiments. Despite the 16-bit n@dewe used in our
experiments, we make the estimation assuming node IDs oit§Axhich would
be the ID size in real operation.

A node descriptor consists of 16 bytes: 8 bytes for the no@é-bit ID, 4
bytes for its IP address, 2 bytes for the port, and 2 byteshiidiescriptor’s time-
stamp. The view maintained by each agent of a node/ha20 descriptors,
which account for 320 bytes. A view exchange involves sandire view to a
peerand receiving the peer’s view, causing traffic of 640 bytes irakotEvery
AT, each agent of every node initiates exactly one view exaheengd also partic-
ipates on average in one view exchange initiated elsewHérerefore, two view
exchanges per agent cause traffic of 1280 bytes. For all fyemta, a single node
exchanges 4 1280= 5120 bytes everAT = 10sec That is, 512 bytes per sec-
ond, or 4096bps (4Kbps). This is the price to pay for achig\finly operative
routing tables in less than 3010 = 300 seconds, which is 5 minutes.

For the aggregate bandwidth we multiply the individual nbdedwidth by the
number of nodes and divide by two, since the traffic causedbly giew exchange
has been counted twice, once for the gossip initiator an@ éoricthe gossip re-
cipient. Therefore, we have a total bandwidth of %6 x 4/2 = 131 072Kbps,
which is 128Mbps. Note that even though this bandwidth seemgigh, it is in
fact distributed across the whole (possibly world-widejwark.

In a real system, with 64-bit node IDs, and a digit length oft4,kwe would
need 16 agents running per node. This would require the egehaf 16x 1280=

Average routing steps taken

122 ROUTING TABLE MANAGEMENT: BUILDING PASTRY CHAP. 5

100

Avg. # of roﬂlting step§ — & of msgs‘delivered‘ —

Percentage of messages delivered to destination

d d+5 d+10 d+15 d+20 d+25 d+30 d d+5 d+10 d+15 d+20 d+25 d+30
Cycles Cycles

Figure 5.5: Message routing while recovering from a 50% no@esh that hap-
pened at cyclal. Left: Average routing steps taken. Right: Percentage of-me
sages delivered.

20,480 bytes everAT per node. Note that the refresh intervAll, is a config-
uration parameter. By setting a longer refresh interval,car lower the band-
width used by each node, at the expense of slower complefitmreagouting ta-
bles. For instance, a refresh interval &7 = 60secwould require a bandwidth
of 20,480/60 ~ 341 bytes per second, or roughly 2.7Kbps. However, in the ca
routing tables would take longer to be filled, around 30 nesut

5.5. CONCLUSIONS AND RELATED WORK

In this chapter we demonstrated the potential of tEE®PSAMPLING SER-
VICE in forming a structured overlay. In particular, we focused managing
routing tables for DHT-based peer-to-peer networks. Waéhtced a multi-layer
architecture consisting of multiple instances of tHEER SAMPLING SERVICE,
and investigated the system’s behavior through experiatient \We showed that
the proposed system forms routing tables fast, in a totadlgedtralized, self-
organized manner. We also showed that it demonstrateaeling behavior in
the face of large-scale network disasters.

A more recent version of Pastrgastro et al. 2003has adopted gossiping
for lightweight selection of neighbors of closer proximitiNodes periodically
gossip with neighbors of every row. It resembles our protacdhe sense that
neighbors of rowr are contacted in search of better neighbors of the resjgectiv
row. However, nodes gossip a node’s neighbors with respect

It resembles our protocol in the sense that nodes gossipthéihneighbors

SEC. 5.5 CONCLUSIONS ANDRELATED WORK 123

of a

In [Jelasity and Babaoglu 20)9elasity and Babaoglu suggest an alternative
method to build a Pastry-like DHT based omWscAsTand T-MaN, a protocol
very similar to MCINITY. They assign each node an ID, and define the distance
between two nodes as the number of different bits in the pingpresentations
of the two IDs. The T-M\N ranking function(similar to the selection function
in VICINITY) gives higher preference to nodes of shorter distance. thaéy
nodes get to establish links to all other nodes whose IDsrdiffily in one bit to
their own ID. This topology is quite similar to the one defingdPastry’s routing
tables. Their solution appears to be more efficient than tireepsoposed in this
chapter.

Montresor et al. apply T-MN and NEwWSCAST in [Montresor et al. 2005
to bootstrap and maintain the Chord DHT. In Chord, nodes ssegaed IDs in
a cyclic ID space, and each node maintains links to nodesanfesgive IDs, at
steps 2 i =0,1,2,... Montresor et al. define a T-MN ranking function that
sorts nodes in a ring structure (based on numeric ID disjarenodes discover
neighbors of increasingly closer ID distance, they remantite ones at numeric
distance closer to'2forming an overlay that resembles Chord. Although their
method is efficient, the whole process needs to be regulesharted at all nodes,
to refresh nodes’ routing tables and accommodate for clsimg®e network.

A more sophisticated solution would include a number ofraj#tations, such
as giving higher preference to neighbors of high bandwidibw latency, dynam-
ically adjusting the gossiping frequency at each layer,reggting gossip mes-
sages to save bandwidth, etc. However, such optimizatieef as future work.
We emphasize that the goal of the research presented inhfjser was to prove
the concept of using an unstructured overlay to bootstrapyaaintain a structured
one, in a simple, self-organizing manner, exhibiting $el&ling properties.

The results of the experiments suggest that our system caidprhighly ro-
bust, non-centralized routing table management. HowegWegn the exploratory
nature of this research, no special concern has been gilsntbyidth consump-
tion. Our architecture could possibly use significantlysleandwidth if adaptive
refresh intervals were applied. Also, each agent of a nodéddwave an individ-
ually optimized set of configuration parameters, such as gige and gossiping
period. However, future research in this field should exNoCINITY s power in
building structured overlays.

124 ROUTING TABLE MANAGEMENT: BUILDING PASTRY CHAP. 5

CHAPTER 6

Information Dissemination

Reliable group communication forms an important class daragpons in dis-
tributed systems. It is crucial to a number of applicationsjuding event no-
tification systemsHEugster et al. 2003adistributed database replicatioDg¢mers
et al. 1987, and distributed failure detectiorvgn Renesse et al. 1998In this
chapter we are particularly interested imformation disseminatignthat is, the
broadcasting of messages to a set of nodes.

6.1. BACKGROUND AND RELATED WORK

One class of solutions for information dissemination isc#peally designed
to take advantage of the physical properties of certainsypfenetworks. For
example, a number of solutions are built to disseminate agessover Ethernet
networks Babaoglu 1987 Clegg and Marzullo 1997Cristian 1990 Abdelza-
her et al. 1995 Such protocols provide high efficiency and strong religbi
However, their use is limited to the types of networks they designed for, and,
therefore, they are not suitable for large-scale, widexaetworks.

Another class of solutions, suitable for wide-area netwpronsists of IP
Multicast protocols. These protocols are not reliable. yTiedy on functionality
embedded in routers, that enables the dynamic construofiendissemination
tree (or generally graph) reaching all participating nod&sumber of solutions
have been proposed on top of IP Multicast, such as SRIb{ et al. 1997 and
RMTP [Lin and Paul 1995 to improve its reliability. Nevertheless, IP Multicast
is not widely deployed in the Internet.

Application-layer multicasforms a third class of solutions that has emerged
in the recent years. The main advantage of these solutiotmstighey are very
generic, and, therefore, they can be directly deployed mday’s network infras-

126 INFORMATION DISSEMINATION CHAP. 6

tructure. There exist application-layer multicast pratiscthat provide reliability
guaranteesHadzilacos and Toueg 19p3However, many of them do not scale
well to a large number of nodeRjfantoni and Stancescu 1997

A class of application-layer multicast has recently emeéig-Ansary et al.
2003 Castro et al. 2002Zhuang et al. 2041 based on the structure of DHTs
such as ChordStoica et al. 2003 Pastry Rowstron and Druschel 200j.aand
Tapestry Zhao et al. 2004200]. What is common in these DHTs is that, in their
respective overlays, each node is the root of a tree sparthengrhole network.
These spanning trees are used for message disseminatitrouglh systems of
this class are nearly optimal with respect to message oadrhee single failure
along a spanning tree can result in a whole branch missingsaage. Failures are
disregarded as a whole iBFAnsary et al. 200B where the assumption of reliable
communication is made. Scrib€gstro et al. 200zrovides by default best-effort
delivery. Reliability is improved to some extent by impagiMCP connections
among nodes, a rather heavy assumption for dynamic, la@e-&2P networks.
Finally, Bayeux Zhuang et al. 2001 a system mainly targeted at data streaming,
improves on reliability by redundantly disseminating naggss across different
paths of a spanning tree. However, its design is exposedatalslity problems,
as each request to join a group is routed to a single node rimgntwat group.

Another class of protocols targeted at large-scale dissation of data has
recently gained enormous popularity. BitTorre@ohen 200Bis the most pop-
ular example, but numerous other protocols have been sieghjesuch as Tri-
bler [J.Pouwelse et al. 20Q6Slurpie [Sherwood et al. 20Q4ChunkCast Chun
et al. 200§, ChunkySpread\{fenkataraman et al. 20Q@&nd CoopNetPadmanab-
han and Sripanidkulchai 20D2These systems are designed for the dissemination
of large files to a set of nodes. More specifically, they ainedticing the down-
load time for large files, and at the same time off-loadingshievers serving these
files. The principal idea behind these protocols is sptitiinlarge file in many
small parts, distributing different parts to various peersd then letting those
peers talk to each other to retrieve the parts they are ngissiuch mechanisms
can be significantly effective in enhancing the downloacdkdps large files, while
reducing the load of the server offering a file, notably whdarge set of down-
loading peers is involved. However, they are not suitabtdtfe dissemination of
small messages, which we deal with in this chapter.

Gossip-based protocols, such as Bimodal Multicasicgs) [Birman et al.
1999 and Directional Gossipl]in and Marzullo 1999 form an alternative to
strongly reliable broadcasting approaches. Each nodeafolsva message to a
small random subset of the network, and so on. These pratgevierally provide
only probabilistic guarantees for message delivery. However, they are aveact
because they are easy to deploy and resilient to node anéhliokes, due to re-

SEC. 6.2 BVALUATING A DISSEMINATION SYSTEM 127

dundant message deliveries. On the other hand, scalatalitysuffer if nodes are
required to maintain full knowledge of the network, notakbliien node churn is
at stake. Optimizations have been suggeste@imian et al. 199pto overcome
such scalability issues.

Other gossiping protocols, suchlpbcast[Eugster et al. 2002003 and [Ker-
marrec et al. 2003Gupta et al. 200Bprovision for membership management too.
In particular, Gupta et al. 2006describes a hybrid dissemination system, that
multicasts messages using a tree-based hierarchicalsuand locally switches
to gossiping when a large number of failures is detectedsé peotocols drop the
assumption of full knowledge of the network. Each node naamsta small view of
the network, consisting of a few links to neighbors, whicté ased for dissemina-
tion. This makes them highly scalable. However, due to gibabilistic nature,

a message may fail to reach the whole network even in a feé-@énvironment. To
alleviate this, highly redundant message forwarding isleggal.

In this chapter we present a gossip-based protocol thateésrdmistic in fail-
free networks. When failures occur, its reliability degeadyracefully with the
number of failures. Our protocol is based on theeMiiTy /CycLON framework,
presented in Chapter

6.2. EVALUATING A DISSEMINATION SYSTEM

A number of issues are of concern when evaluating or comganiiormation
dissemination systems. It is essential for the rest of thépter to list the metrics
used to evaluate the effectiveness and usefulness of ardisg@®n system.

Hit ratio This is defined as the ratio of nodes that receive a messagetwe
total number of nodes for which that message is intended.dtmetric of a
dissemination system'’s reliability. Ideally, a reliablsskmination system
should always achieve a hit ratio 100%. In our evaluatiorciiSe 6.6), we
present graphs of the complementamiss ratiometric, defined as follows:

MissRatio= 1— HitRatio

Resilience to failures and churn For a dissemination system to be meaningful
in a real-world dynamic network, it should operate reasbnakell in the
presence of node or link failures, and node churn. The ojperander such
conditions is evaluated by means of the hit ratio, descrédzml/e.

Dissemination speedThe time required for the dissemination of a particular mes-
sage to complete. Obviously, the faster a message is disatgdithe bet-
ter. Dissemination speed depends on two main factors. , Firstdelay

128 INFORMATION DISSEMINATION CHAP. 6

in forwarding messages (processing delay on nodes plusonietatency).
Second, the number of hops a message takes to reach thedastinaur
evaluation we focus on the latter factor.

Message overheadThe overall number of times a message is forwarded during
its dissemination. For a message to re&thecipients, it has to be for-
warded a minimum ofN times. In practice, however, message overhead
is often multiple times higher. Message overhead is a mefra dissem-
ination system’s behavior with respect to preserving ortimgsnetwork
resources.

Load distribution The distribution of load over nodes, in terms of messages re-
ceived and messages forwarded. Ideally, load should bdyegiestributed
among participating nodes.

In this chapter we are interested in reliable disseminatibmessages origi-
nating atany node toall participating nodes. We do not focus on optimizing the
dissemination of messages with respect to any proximityimet by building a
spanning tree. Also, we do not consider positive or negattlaowledgements,
or requests for retransmission of lost messages. Insteadntnoduce redun-
dancy in message dissemination and examine its relatidretevel of reliability
achieved. We investigate the power of epidemics at dissgingnmessages to all
nodes, with a high probability.

6.3. DETERMINISTIC DISSEMINATION

Consider a system consisting Nfnodes, and a set of directed links among
them. A messagecan originate at any of the participating nodes, and aims at
reaching the whole network. A node that generates a new gessareceives
a message for the first time, forwards it acradisits outgoing links. If a node
receives a message for the second time, it simply ignorésian optimization, a
message is never forwarded back to the node it was just est&iom. This basic
algorithm is often referred to dkoding Figure6.1(a) shows the pseudocode for
the dissemination algorithm.

The distinguishing characteristic of flooding is that ona daterministically
control dissemination by imposing the appropriate ovedaythe nodes. The
underlying requirement to guarantee complete dissenoinattarting from any
participating node, is to form strongly connected directed grapmcluding all
nodes. A multitude of overlays have been proposed for infdion dissemination

1a directed graph in which there is a directed path betweervaigred pair of nodes

SEC. 6.3 DETERMINISTIC DISSEMINATION 129

when nodeP generates message
or receivean from nodeQ do
if mnot already seethen
targets« selectGossipTarget3]
foreach T € targetsdo send{’, m)
endif
end

function selectGossipTarget3)
targets«— view-{Q}
return targets

end

(@) (b)

Figure 6.1: (a) The generic dissemination algorithm. (by&o target selection
for deterministic dissemination (flooding).

by means of flooding, each one demonstrating a differentiehaith respect to
the metrics listed in the previous section.

Spanning tree®r simply treeswere among the first types of overlays pro-
posed for flooding. Their strong point is that they are optimigh respect to the
number of links maintained and, consequently, to the messagrhead associ-
ated with dissemination. Indeed, in a network consistinyy abdes, the complete
dissemination of a message over a tree involves exakthi point-to-point com-
munications. Their main disadvantage, though, is thatgleifailure of any link
or any non-leaf node disconnects the tree, prohibiting agssfrom reaching all
nodes. Also, maintaining a valid tree structure, ensurivggraph is connected
and yet acyclic, is not a trivial task in the presence of faidu For these reasons,
trees are not suitable for dynamic environments wherer&slgan happen.

A special type of tree-based overlays for flooding is feever-basedlass
(star graph$, where all nodes are connected by bidirectional links tangle
node acting as a relay server. In these overlays all but theisaode are leaf
nodes, therefore their failure has no effect on the remginiodes, but the server
becomes a single point of failure. In addition, such overldgmonstrate the worst
possible load distribution, the server node being linekr&ded by the number of
nodes and number of messages being disseminated, rendtesimpn-scalable
solution.

On the other end of the spectrum kiques (complete graphs In such a
setting, every node has a complete view of the network. A rmdadcasts a
message by sending it to every other node in the network. grbigdes maximum
reliability, at the cost of high maintenance costs. Althongessages always reach
all nodes irrespectively of how many nodes have failed, ta@ing this type
of overlay is impractical. Maintaining a fully connectedagh is expensive in
networks larger than a few dozen nodes, notably when the reeship changes
continuously.

A class of flooding overlays deserving more attention is the based on

130 INFORMATION DISSEMINATION CHAP. 6

Harary graphs introduced by Harary inHarary 1962, further studied by Jenk-
ins and DemersJenkins and Demers 20p&nd applied by Lin et al.Ljin et al.
2000 in flooding. A Harary graph of connectivityis a minimal link graph that is
guaranteed to remain connected when up-td nodes or links fail. Its minimum
cut, therefore, consists oflinks. Moreover, in a Harary graph links are evenly
distributed across nodes, each node having eitbet + 1 bidirectional links. An
example Harary graph of connectivity 2 is a bidirectionalgti that we will use
later in Sectior6.5.1 Such overlays are very appealing for information dissemi-
nation in the presence of failures, as they are guarantegatstain up to a certain
number of failures while imposing the minimum message ce@&dh(for the cor-
responding reliability guarantees), and this overheadeéslky balanced across alll
nodes. The maintenance of such graphs, notably of higherecbiity t, can be a
complicated and expensive task for large-scale, dynaipicenging networks.

6.4. PROBABILISTIC DISSEMINATION

Acquiring reliability by imposing systematic structure omerlays is infea-
sible in dynamic networks of massive scale. In this sectientake a look at
an appealing alternativggrobabilistic disseminatioralgorithms, which trade-in
deterministic reliability guarantees in return of overlegnstruction and mainte-
nance simplicity.

In these algorithms, dissemination is not guaranteed bynmeaa strategic
topology, but by increased redundancy in message forwgurdiine basic idea is
that a node receiving a message forwards it to a numbemafomother nodes. It
turns out that if that number is sufficiently high, messagesh all nodes with a
high probability Kermarrec et al. 2043 The choice of random nodes to forward
messages to can be easily handled by a peer sampling prasa@scribed in
Chapter3. The main advantage of probabilistic dissemination athos is that
they are very simple to implement and inherently tolerantiyoamic environ-
ments, at the cost of an increased message overhead.

6.4.1. The RRNDCAST Dissemination Algorithm

We consider a system consisting Mfnodes. Each node runs thefR SAM -
PLING SERVICE, providing it with a small, random, partial view of the netko

A messagean originate at any of the participating nodes, and aimgathing

the whole network. A node that generates a new message avegs@message
for the first time, forwards it to (up tdf nodes, called the nodefossip targets
chosen randomly from its membership protocol’s vidw.is a system-wide pa-
rameter, called théanout A message is never forwarded back to the node it was

SEC. 6.5 PROBABILISTIC DISSEMINATION 131

function selectGossipTarget}
targets— F random nodes fromiew-{Q}
return targets

end

Figure 6.2: Gossip target selection for thaN® CAST dissemination algorithm.

just received from. Figuré.2 shows the pseudocode for the selection of gossip
targets in the RNDCAST dissemination algorithm.

Note that this algorithm is quite efficient at spreading a sage to a consid-
erable percentage of the nodes in the network very fastjfg@dly at exponential
speed with baskE. Indeed, a new message progressively reaERds1, the mes-
sage generatorf;1, F2, ... other nodes. Consequently, a message spreads very
fast even for small values &f > 2. Of course, dissemination slows down when
the message is forwarded to nodes that have already redeivddwever, in an
overlay with highly randomized links (low clustering), $uas the one formed by
CYCLON, this slowdown turns out to be negligible until the messaggrhes a
substantial percentage of the network.

Despite its strength at spreading messages fastORCAST is not as efficient
at achievingcomplete disseminatiotthat is, to reach every single node in the net-
work. It is by nature a probabilistic algorithm. Even in thesance of failures,
it provides no hard guarantees that a message will raliaiodes. It is not hard
to see why. By forwarding messages at random, a node has nangees that at
least one of its incoming links will be chosen to forward theséminated mes-
sage. To alleviate this, abundant redundance should welinted by means of a
large fanout. However, this is not desirable, because rgesseerhead increases
proportionally to the fanout, as we will see in the evaluaiio Sectiont.6.

The RAND CAST dissemination algorithm has been analyzed and evaluated by
Kermarrec et al inkermarrec et al. 2043 In that paper, a node’s view is chosen
uniformly at random among the whole network. In the versibrRaNDCAST
studied in this dissertation, nodes’ views are managedYoyLON.

In the following section we introduce a novel, hybrid disseation algorithm,
combining deterministic and probabilistic disseminatit¥e defer the evaluation
of both protocols until Sectiof.6, where they are compared side by side.

132 INFORMATION DISSEMINATION CHAP. 6

6.5. HYBRID DISSEMINATION

As we discussed above, although probabilistic protocasgaiod at spread-
ing messages fast even for small values-ofa large value of is mandated to
reach every single node in the network. This inefficiency loatiackled by intro-
ducing somealeterminisnin the selection of gossip targets, ensuring any possible
dissemination graph is connected and includes all nodes.

Hybrid dissemination protocols aim at combining probatiti and determin-
istic behavior. To that end, they establish two types ofdiaknong nodes. Random
links (r-links) contribute to their probabilistic behavior, and deteristiic links (d-
links) bring in determinism. R-links are simply links randomlyiesged, just like
in purely probabilistic dissemination protocols. Whengeneted with a message,
a node forwards it across a few r-links. Consequently, nggssiitially spread to
a large portion of the network at close to exponential speed.

However, a disseminated message should reach every siogdgeim the net-
work. That is, it should have been forwarded across at leasirecoming link of
each node. The basic idea is to establish a set of d-linkshawel nodes deter-
ministically forward messages acros their outgoing d-links, in addition to a
few of their outgoing r-links. If the set of d-links forms awneylay compliant to
the deterministic dissemination protocols’ requiremémayf is, it forms a strongly
connected directed graph including all nodes, completedignation of messages
is guaranteed. In such a graph, each node’s indegree issatllesloreover, if we
ensure that each node has at l¢@stoming d-links, then complete dissemination
is guaranteed even in the presence of up-td faulty nodes.

Hybrid protocols effectively decouple the two fundamemgadls in informa-
tion dissemination. On one hand, spreading a message tgeaparcentage of
the nodes fast, and on the other, reaching every single ndte. probabilistic
component carries out the bulk of the dissemination taskievthe deterministic
one takes care of the fine-grained details.

What makes hybrid dissemination protocols attractivehas the set of d-links
does not need to form a particularly sophisticated and tardaintain structure.
The sole requirement is that the set of d-links forms a stgoagnnected directed
graph over all nodes. A simple structure satisfying thisuresnent is a ring. In
the following section we explore how it can be used as a basis fpractical
hybrid dissemination system.

6.5.1. The RNG CAST Dissemination Algorithm

We introduce RNGCAST, a novelhybrid dissemination algorithm that—even
with a very low fanout—guarantees complete disseminatioa failure-free en-
vironment. In the presence of failures, its performancealdgs gracefully, nev-

SEC. 6.5 HYBRID DISSEMINATION 133

D-links R-links

Figure 6.3: Example of a RGCAST overlay. Nodes are organized in a bidirec-

tional ring (by means of thd-links), and each one has a number (in this case only

one) outgoing random links-{inks).

ertheless still outperforming A&DCAST. Finally, when confronted with contin-
uous churn, RNGCAST proves again more reliable thamARD CAST, excluding
nodes that joined the system very recently (for which it perfs worse).

Operation

As discussed above, hybrid dissemination algorithms ragirnto types of links
between nodes, namely r-links and d-links. R-links are oamdinks, in the case
of RINGCAST formed by CrCLON, just like in RANDCAST. With respect to d-
links, RINGCAST organizes nodes inglobal bidirectional ringstructure. A bidi-
rectional ring constitutes a strongly connected graphegsired by deterministic
dissemination protocols. Figui@3 illustrates an example IRGCAST overlay,
where nodes form a bidirectional ring, and each one has &smggoing r-link.

A unidirectional ring would be appropriate as well, as itfra strongly con-
nected graph too, though less reliable than a bidirectionalin the face of fail-
ures. However, the crucial reason for deciding on a bidimeet ring lies in the
ring construction, and will be discussed in the followingtsan.

Just like in the dissemination protocols discussed eadigrode that gener-
ates a new message or receives a message for the first timwaydisrit to (up to)

F nodes, wheré- is the system-wide fanout parameter. However, in the case of

RINGCAST, a node always forwards a message to its two ring neighbersliisg
it across its two outgoing d-links), and acrdss- 2 randomly selected r-links.

134 INFORMATION DISSEMINATION CHAP. 6

function selectGossipTarget}
targets— {}
if ringNeighborl# Q then targets— targets+ {ringNeighbor3}
if ringNeighbor2+# Q then targets— targets+ {ringNeighbor2
targets— targets+ (F —targets.sizgrandom nodes fromview—{Q})
return targets

end

Figure 6.4: Gossip target selection for theNR CAST dissemination algorithm.

If the message was received through one of the node’s rirghhers, the node
forwards it to the other ring neighbor, and acréss 1 random r-links. Figuré.4
shows the pseudocode for the selection of gossip targetseiRNGCAST dis-
semination algorithm.

Note that the minimal cut in a bidirectional ring is two. Tha} although
no single node failure can break the ring in two disjoinedtipans, prohibiting
complete dissemination to the remaining nodes, such aisituaill occur if two
non-adjacent nodes fail. In most cases, however, this ia atcial problem for
dissemination, as d-links are only one facet of the procBsknks can carry the
message to arbitrary nodes, most often bridging the gapesettwo or more dis-
joined ring partitions. Effectively, it suffices if angne node of an isolated ring
partition receives the message, as the message will priepsgéehe whole parti-
tion over the d-links. Figur®é.5 presents a complete dissemination scenario over
a ring split in several partitions. As we will see in the ewalan in Sectior6.6,
RINGCAST achieves a high hit ratio (higher comparatively taN®d CAST) even
in the presence of many failed nodes.

Topology Construction

We employ the VCINITY/CYCLON topology construction framework for building
and maintaining RNGCAST overlays. By applying the appropriatelMNITY
selection function, we organize nodes in a bidirectionad) structure. The links
of this ring constitute the d-links. R-links are providededitly by CyCLON.

Letting nodes self-organize in a ring structure involvedaogl agreement on
a consistent ordering of nodes. Along these lines, each seléets an arbitrary
sequence I@simply ID), out of a large ID space (e.g., 128 bits). Each node forms
links to the two nodes with closest IDs, one in each directibe node with just
higher, and the node with just lower sequence 1D, using neddthmetic. These
links define the bidirectional ring.

The ViCcINITY selection functionS(k,P, D), used to form this topology is

SEC. 6.5 HYBRID DISSEMINATION 135

Message ./
source ~

Figure 6.5: Example of a message dissemination in a pawitiging. For clarity,
only a few of the followed r-links are shown.

simple and straightforward. First, it sorts peer@irbased on their sequence IDs.
Then, it selects th& ones with IDs closest to the ID &, k/2 in each direction.
That is, it selectk/2 peers with just higher, ark/2 with just lower ID than the
ID of P, using modulo arithmetic. The two peers with closest IDs-e-oneach
direction—are used as ring neighbors.

The choice of a bidirectional—as opposed to unidirectief@hg, was not
made only to improve dissemination reliability, but wasoabs crucial design
choice for topology construction. Recall from Sectiér2.2 that VICINITY is
more efficient if its selection function exhibits transitiv That is, if peerP; is

a “good” selection for peeP; (P, S, P;), andP3 is a “good” selection foiP,
(P N Ps), then,P; should have a good chance of being a “good” selectiofor

too (P1 3, P3), preferably a “better” selection thah. This way,P; can gradually
improve its links.

Obviously, this does not hold for selection functions thedést nodes of close
IDs in asingle given direction (e.g., only with just higher IDs). In thissea a
node’s neighbor with higher ID would only have neighborshnéten higher IDs,
which would not help the original node improve its links. lontrast, if nodes
were maintaining neighbors of close IDs lioth directions, a node’s neighbor
with higher ID would also have some neighbors with lower fthés) ID, which

136 INFORMATION DISSEMINATION CHAP. 6

would be potentially “good” candidates for the original eod

6.6. EVALUATION

We evaluate the two protocols side-by-side in three scesaFirst, in a static
and failure-free network. Second, in a static network rigfier a catastrophic
failure, that is, after the sudden failure of a large numtfemarles. Finally, in a
dynamic network under continuous node churn. Evaluatios dege with respect
to the following criteria, as discussed in Sect@a

1. Hitratio
2. Dissemination speed
3. Message overhead

We do not explicitly address load balancing, because battopols are by nature
distributing the load across all nodes evenly. A node récgia message forwards
it to F others, just like any other node.

Experiments were carried out using the PeerSim simul®eefSinh. We
tested all scenarios by instantiating a network of 10,000es0 Each node was
running CrCcLON and, in the case of RGCAST, VICINITY too, as described
above, with view length 20 for each protocol. Nodes weredjt supplied with a
certain single contact in theirY&LON views, forming a star topology. MINITY
views were initially empty. After letting the network saifganize for 100 cycles,
we started disseminating messages from various nodesdpatkendom.

We assume a very simple dissemination model, that allow® wsudy the
evolution of disseminations in terms of discrete roundsf the callhops The
generation of a message is marked hop 0. At hop 1, the messag/eed- neigh-
bors of the origin node. At hop 2, it further reaches the nleayk’ neighbors, and
so on. This way, we can evaluate the progress of a dissemrinayi counting the
number of messages sent and the number of new nodes notifiedpe

An implicit assumption underlying our dissemination moagethat the pro-
cessing delay and network latency between all pairs of nadeshe same. Al-
though latencies vary in a real wide-area network, our agsiomdoes not have an
effect on the macroscopic behavior of dissemination wipeet to the hit ratio.
Dissemination relies on nodes forwarding the messagesdoeyve. A node that
receives a message for the first time, forwards it to the sameer of neighbors
picked with the same logic, irrespectively of the time thagpens. Consider for
instance two scenarios ofARD CAST, executing over the same static overlay (as-
sume gossiping is currently stalled), starting from the samgin and each node

SEC. 6.6 BVALUATION 137

picking the same gossip targets in both cases. If pair-veienties are different
in the two scenarios, the order in which nodes are notified atenge, but the
exact same set of nodes will have been eventually notifiethdrcase of RVG-
CAsT, the set of nodes notified may change, but the same macrosoelpavior
is maintained.

6.6.1. Evaluation in a Static Failure-free Environment

We first evaluate and compare the two protocols side-by-Bideonsidering a
failure-free static environment.

We instantiated a network of 10,000 nodes in PeerSim. Eagdwas running
CYcCLON and, in the case of RGCAST, VICINITY too as described above, with
view length 20 for each protocol. Nodes were initially supglwith a given single
contact in their CLON views, forming a star topology. MINITY views were
initially empty. After letting the network self-organizerf100 cycles, we started
posting messages and observing their dissemination.

We ran a number of experiments—not presented here—to igatstthe ef-
fect of gossiping speed on dissemination. More precisetyexplored the rela-
tion between the gossiping period and message forwarding, tihat is, the time
is takes a node to process a message and forward it to a neighbovaried the
message forwarding time from zero to several times the giosgiperiod. We
recorded no effect whatsoever on the macroscopic behavidiseeminations.
That s, although changing the message forwarding timdtssisLdifferent exper-
iments, with different nodes being reached each time anddifferent order, all
macroscopic properties, such as the hit ratio, dissenoinatpeed, and message
overhead, are preserved. It is not hard to see why. With otSpeVICINITY -
managed d-links, they are not even altered by gossip exelsamgce the optimal
sets have been obtained. With respect \aCoN-managed r-links, these are ran-
dom links anyway, irrespective of whether they are updaget dr are currently
fixed. Consequently, forwarding a message along a few of thesran equivalent
effect regardless of whether gossiping runs at a high rate @rrently stalled.

Having verified this, we chose to disseminate messagesfeetoverlays
in all experiments presented in this section. This choice pramarily made to
limit simulation execution to a reasonable time, consitgthe large number of
experiments we carried out. So, in each experiment, afteosganizing for 100
cycles the overlay was frozen and only then did disseminatgtart.

For each value of ranging from 1 to 20 (the €cLON view length), we
posted 100 messages from various nodes picked at randauttjrrgsn a total of
2000 experiments for each protocol. Since the hit ratio @agines 100% even
for small values of-, it is more meaningful to present the miss ratio instead, in
logarithmic scale. Figur®é.6(@) presents the dissemination miss ratio averaged

% nodes not reached

138 INFORMATION DISSEMINATION CHAP. 6

Miss ratio (% nodes not reached) Complete disseminations
loo:llllllllllllllllllll wloo T
@ i
10 f]] 2
g &r T
1] 5
A 1
0.1 E E
%J_ 40 H B
0.01 E g
3} 20 H u
0.001 H H . 5
X
1e-04) S N N N I | 0 1
1234567 8 91011121314151617181920 1234567 8 91011121314151617181920
fanout fanout
RandCast —— RingCast s RandCast ——= RingCast s
(a) (b)

Figure 6.6: Dissemination effectiveness as a function effimout, for a failure-
free static network of 10K nodes. (a) Miss ratio averaged @@® experiments;
(b) Percentage of 100 experiments that resulted in comglssemination.

over 100 experiments for each valueFafRAND CAST and RNGCAST are repre-
sented by light and dark bars, respectively. The miss rati®RAND CAST appears
to be dropping exponentially as a function of the fanButNote that no dark bars
appear in this graph, as the miss ratio faNRCAST is zero for any choice of
F. This comes as no surprise, asNRCAST's operation guarantees complete
dissemination in failure-free static networks.

Figure6.6(b) shows the percentage of experiments that resulted implete
dissemination, for each value &f. With respect to RNDCAST, it is interest-
ing to see that the transit from 0% to 100% follows a ratheesteurve. For
instance, even with a fanout of 6, although the overall Hibravas above 99.9%
(Fig. 6.6(a)), none of the 100 experiments resulted in a completentisgtion.
With a fanout of 8, more than half of the disseminations wemmglete, while
by further increasing the fanout to 11 or higher we get onlynptete dissemi-
nations. As far as RIGCAST is concerned, this graph validates once again that
disseminations are always complete, irrespectively ottiwsen fanout.

Having seen to what extent messages eventually spread,wtake a closer
look at the evolution of dissemination hop by hop. Fig@réshows the progress
of all 100 dissemination for each protocols, for four diffiet fanouts. More
specifically, it shows the number of nodes that have not yehbwtified, as a
function of the hops taken.

Four main observations can be made by examining these grdgtst, for
a given fanout, all experiments of a protocol demonstraty genall variations

% nodes not reached yet

% nodes not reached yet

SEC. 6.6

Fanout 2

EVALUATION

100 P S T T T
"oeq,
ee
10 b v
1 .
01F i
RandCast O
001 b ng(ljast' v .
0 5 10 30
100 g—e—8— w""ﬁ.,. T
10 | E
1 - -
01F E
RandCast O
001 k R|ng(ljast' v i
0 2 4 12

% nodes not reached yet

% nodes not reached yet

100§

10

0.1

o v oo oreg 1 T T T T

| RandCast @

0.01 |

Ringa;st' s

139

Fanout 3

0o 2 4 6

8 10 12 14 16 18
hops

Fanout 10
100 & A4 ¥ AW T T
I "9
10 ':_ E
0.1F B
| RandCast O .
0.01 | ng;(:ast'I v o
0 1 2 3 4 5 6 7

Figure 6.7: Dissemination progress in a static failurefiretwork of 10K nodes.
100 experiments of each protocol are shown.

number of messages

140 INFORMATION DISSEMINATION CHAP. 6

2 T T Lok to hotfied nodes. =0 | 200000 [T T gk fo hotfied nodes =iy T

180000 |- Mgsgs to virgin nodes /—]] 180000 |- Mgsgs to virgin nodes =]]
160000 - » 160000 -
140000 Ny . S 140000 4 .
120000 AENEE - @ 120000 ARVENRN -
100000 A RSN . £ 100000 en R\ EVAENEN] .
80000 - 5 80000 -
60000 R RNANANENENENENENEN — £ 60000 e ARNRNS NS NANENE RN —
40000 e S 40000 e
20000 |- - 20000 |- -
0000 .HH’“””“”*“”’ ooog HHH,MU,,L,,,,M,,,
12345678 9101112131415161 718190 12345678 91011121314151617181920

fanout fanout

RANDCAST RINGCAST

Figure 6.8: Total number of messages sent, divided in messsent to not-yet-
notified and already notified nodes.

in their progress with respect to the hit ratio and dissetionalatency. This is
important as it shows that by selecting the appropriatefamalue, we can tune
a system’s dissemination behavior to a good level of acguidecond, we notice
a clear—expected—influence of the fanout on disseminatitenty. The higher
the fanout, the shorter a dissemination’s duration. Thive, observe that the
progress of disseminations for the two protocols is alikeddew initial hops,
when the message has not yet reached a significant portidre afetwork. The
protocols differentiate only after a substantial percgetaf the nodes (i.e., at
least 80%-90%) have been notified. This is a direct effecheftivo protocols’
operation. By forwarding messages at randomNBCAST hardly reaches any
more non-notified nodes, in an already saturated network.th@rcontrary, by
also forwarding messages along the ringy®CAST exhaustively reaches out to
every single node. Finally, we see that the higher the fatimimore similarly the
two protocols disseminate messages. However, in all cagesGAST reaches
the last node in fewer hops, demonstrating a lower dissamim&atency.

The third metric we are interested in is message overheadwe\already
mentioned in Sectior.4.1, message overhead increases proportionally to the
fanout. Indeed, if a node forwards a newly received messagdre dther nodes
andNhi; hodes are reached in a dissemination, the total number cfages sent
is F x Npjt. Figure6.8 confirms this assessment. The shaded segments represent
the number of messages reaching nodes for the first timedq(astévirgin” nodes).

The striped segments represent the numbeedfindant messagethat is, mes-
sages reaching already notified nodes, and therefore tdaasdiwaste of network
resources. As the network consists oKlBodes, for a given fanoulit a complete

SEC. 6.6 BVALUATION 141

dissemination involve§ x 10K total messages, out of which KGare messages
to “virgin” nodes, and the resf — 1) x 10K are redundant. The two graphs are
practically identical except for low fanouts, for whiclRRD CAST disseminations
do not reach all nodes. These graphs are illustrative wiheet to the reason the
fanout should be kept as low as possible.

6.6.2. Evaluation after Catastrophic Failure

For a system to be usable in a realistic environment, it haspe with failures. In
this section we explore the behavior of the two protocolsi@face of catastrophic
failures, that is, when a number of nodes suddenly break down

We set up the experiments like the ones in the previous sedbiat before
starting the disseminations we kill a randomly chosen portf the nodes. That
is to say, for each experiment we simulate a network of 10y@fifes, let it self-
organize for 100 cycles, and stall gossiping. We subsefyuesrhove a randomly
chosen set of the nodes and examine dissemination oventizniag ones.

Unlike failure-free static networks where ongoing gossiphas no influence
on dissemination after some point (see Secldhl), in the face of failures gos-
sipingdoeshave an effect, namely a positive one. Following a cataktodilure,
gossiping allows the network reorganize itself, removiings to dead nodes and
reestablishing valid ring links. In our experiments gosgipvasnot allowed fol-
lowing the catastrophic failure, exploring the ability opartially damaged over-
lay to disseminate messages without giving it the chanceltdeal. This was our
deliberate choice, aiming at testing a catastrophic fauworst-case influence on
dissemination.

Figure 6.9 presents the dissemination effectiveness for both prégoafber
catastrophic failures killing 1%, 2%, 5%, and 10% of the rod&imilarly to Fig-
ure 6.6 in the previous section, the graphs on the left show the naiss, rand
the ones on the right the percentage of disseminations ¢aahed all nodes, as
a function of the fanouE. One can clearly see thatiftsCAST is more effec-
tive at disseminating messages in all experiments. A cliosdr at these graphs
shows that as the volume of the catastrophic failure growgetathe difference
between the two protocols’ effectiveness decreases. Haweven when 10%
of the nodes are killed at once INRGCAST demonstrates an order of magnitude
lower miss ratio than RND CAST. The lower miss ratio of RIGCAST reflects on
the significantly higher percentage of complete disserunatfor small fanouts.

Figure6.10shows the evolution of disseminations after a catastrofatiliere
of 5% of the nodes, in accordance to Fig@& in the previous section. Once
again, the relation between the chosen fanout and dissgaminatency is verified.
We also see that the evolution of disseminations exhibitsllsvariations for a
given configuration, like in the case of a failure-free staietwork.

142

INFORMATION DISSEMINATION

Miss ratio (% nodes not reached)

CHAP. 6

Complete disseminations

% nodes not reached

failed nodes: 2% failed nodes: 1%
% nodes not reached % nodes not reached

failed nodes: 5%

% nodes not reached

failed nodes: 10%

LU U o o s e s B s B B e e » 100
10] . 2
] E 80
1 N £
] 8 60
] S
0.1] Q
] ° 40
0.01 E g
1 © 20
0.001 H e 5
°
1e-04 T T N A B B B B R B >
12345678 91011121314151617181920
fanout
RandCast ——= RingCast m===m
100 T T T T T T T T T T T T T T T T T T 1] » 100
10 HI1] . 2
] E 80
1] 5
] 8 60
] S
0.1] Q
] ° 40
0.01 E g
1 © 20
0.001 H 7 5
°
1e-04 I T B B A B B > 0
1234567 891011121314151617181920
fanout
RandCast ——= RingCast m===m
VIO o oo o o o N I N N N S L N » 100
:] g
10 g k=
-] .E 80
1] 5
3 60
] S
0.1 P
%_ 40
0.01 E g
1 o 20
0.001 H . Pt
1e-04 [B N B B R R = 0
1234567 891011121314151617181920
fanout
RandCast ——1 RingCast
VIO o oo o o o N I N N N S N » 100
: - g
10 H g k=1
] .E 80
1 5
3 60
] S
0.1 P
0.01 3 s ¥
'] §
1 o 20
0.001 ’L H 7 5
1e-04 O v v v a0 a1l =

1234567 8 91011121314151617181920
fanout
RandCast —— RingCast

1234567 8 91011121314151617181920
fanout
RandCast ——= RingCast m===m

1234567 8 91011121314151617181920
fanout
RandCast ——= RingCast m===m

1L 1

1234567 891011121314151617181920
fanout
RandCast ——3 RingCast

1234567 891011121314151617181920
fanout
RandCast —— RingCast

Figure 6.9: Dissemination effectiveness as a function efftmout for static net-
work of 10K nodes, after catastrophic failures of 1%, 2%, ¥d 10% of the

nodes.

% nodes not reached yet

% nodes not reached yet

number of messages

SEC. 6.6

Fanout 2

EVALUATION

RandCast O
001 k R|ng(ljast' v))) i
0 5 10 15 20 25
hops
Fanout 5
100§=—9—@—6-0m’ T T T
I////
10 |
1 -
01 f
RandCast O
001 k R|ng(ljast' v
0 2 4

% nodes not reached yet

% nodes not reached yet

143

Fanout 3

lOO‘?—@—@—Wl
[5ol
10
1F
0.1F
| RandCast O
0.01 | Rlngalst' Vo
0 2 4 6 8 10 12 14 16 18
hops
Fanout 10
100 P A4 P """'lu,l T T T
10 E
1F E
0.1F B
| RandCast -
0.01 | legCastl— v P |
0 1 2 3 4 5 6 7 8

Figure 6.10: Dissemination progress in a static networkOif hodes, after catas-

200000 T
180000 (-
160000

T T 1T T 1717171
Msgs to notified nodes

T 11T TT
[NANAWAY]

Msgs to virgin nodes ——

140000 N
120000 NE\s
100000
80000
60000 O NNNNY

40000
N ¥777777>7 'g" N

20000

N A

o1 il

1234567 891011121314151617181920

fanout

RANDCAST

number of messages

200000
180000
160000
140000
120000
100000
80000
60000
40000
20000

[

trophic failure killing 500 nodes (5%). 100 experiments @icle protocol are
shown.

T T T T T T T T T T T T
Msgs to notified nodes ExxX
Msgs to virgin nodes ——

N

EE¥ V,"'AV 7;77 ,;;—
12345678 91011121314151617181920

fanout

RINGCAST

Figure 6.11: Total number of messages sent, divided in rgesssent to not-yet-
notified, already notified, and dead nodes.

144 INFORMATION DISSEMINATION CHAP. 6

Finally, Figure6.11lillustrates the message overhead for dissemination in the

presence of a catastrophic failure of 10% of the nodes. Adhatotal number

of messages is proportional to the chosen fanout. The Vigithded segments
show the number of messages reaching nodes for the first Tilme striped ones
represent messages reaching already notified nodes. ittel darkly shaded
segments show the number of messages sent to dead nodebdrafdre lost).

We see that the number of messages sent to dead nodes isdieeady for both
protocols.

6.6.3. Evaluation under Churn

Apart from catastrophic failures, a system should also e &bdeal with node
churn, that is, continuous node arrivals and departurethigrsection, we examine
the behavior of the two protocols under churn.

We evaluate the two protocols against the artificial churrdehantroduced
in Section3.5.2 In that model, in each cycle a given percentage (known as the
churn rate) of randomly selected nodes are removed, andithe sumber of new
ones join the network. Recall that this constitutes a waastcchurn scenario,
as removed nodes never come back, so dead links never beetichagain, and
new nodes have to join from scratch. We tested both protogittsa churn rate
of 0.2%, which, given a gossiping period of 10 seconds, spoads to the churn
rate observed in the Gnutella traces by Saroiu eBat¢iu et al. 20013

Unlike experiments on static networks where a small numib@yoles suf-
ficed to warm up the respective overlays (Secti6r&s1and6.6.2, experiments
on dynamic networks required significantly more warm-upleyc A network of
10,000 nodes was let gossip in the presence of continuafisialtchurn, until
every node had been removed and reinserted at least oncell Eaperiments
this took several thousand cycles. Then the respectiveanktwas frozen, and
the resulted overlay was tested with respect to dissemimatifectiveness.

Figure 6.12 shows the miss ratio and the percentage of complete disaemin
tions as a function of the fanout. AlthoughNRsCAST results in a lower miss
ratio than RNDCAST for low fanouts (2 to 5), it performs slightly worse for
fanouts 6 or higher. Also, none of the protocols achievescamyplete dissemina-
tions, except when maximizing the fanout, in which cagedRCAST appears to
be performing better again.

By looking at these quantitative graphs alone, one couldectanthe con-
clusion that RNGCAST is not any better—if not worse—thanARD CAST when
node churn is at stake. A closer, qualitative examinatiowluthgroups of nodes
contribute to each protocol’s miss ratio will prove othesai As we will see,
RINGCAST's miss ratio is almost entirely due to its poor performantcesaching
newly joined nodes, while it provides good disseminatioargatees to all older

% nodes not reached

SEC. 6.6 BVALUATION 145

Miss ratio (% nodes not reached) Complete disseminations
100IIIIIIIIIIIIIIIIIIII wlOOIIIIIIIIIIIIIIIIIII
S
10] g 8r 1
£
Q

g eof 1
! 3 °
@ 40 i
g
HHHWW R 1
[s)
001 "I’_I_III C\o OIIIIIIIIIIIIIIIr—lﬂ 1
12345678 91011121314151617181920 12345678 91011121314151617181920
fanout fanout
RandCast —— RingCast s RandCast ——= RingCast s

Figure 6.12: Dissemination effectiveness as a functioeffanout, in the pres-
ence of node churn. In each cycle, a randomly selected 0.28teofiodes was
removed, and replaced by an equal number of newly joinedsiode

nodes.

Along these lines, we now investigate the relation betweeadz'slifetime?,
that is, the number of cycles since it joined the network, igsichance of receiving
a disseminated message. Fig6ré3 presents the distribution of node lifetimes
after the execution of several thousand cycles, when ety has been removed
and reinserted at least once. In fact, Fig6r&3 plots the exact count of nodes
having a given lifetime, aggregated over 100 experimentkgd-log scale. Given
that the network consists of 10,000 nodes and the churng&@%, at each cycle
20 random nodes are evicted and 20 new are added. Therdier@aumber of
nodes having a given lifetime cannot exceed 20. For all 1@@eéments together,
the number of nodes of a given lifetime ranges from 0 to 20@0¢k the range of
the vertical axis.

The distribution of lifetimes of nodes thatere not notifiedluring dissemina-
tion, is presented in Figure.14 The distributions for two fanouts are shown, 3
(top) and 6 (bottom). It is clear that in all cases newly joim®des (i.e., ones that
joined up to 20 or 30 cycles ago) experience significanthh@igniss ratio than
other, older nodes. IRGCAST, in particular, results in quite more misses (notice
the log scale) than RNDCAST for these nodes. Nevertheless, for nodes that have
been in the network for at least 20 or 30 cycles, it demoresrat substantially
lower miss ratio, almost negligible compared to that e\N® CAST. For instance,
let us take a look at dissemination with fanout 6. AlthougR&CAST appears to
have a higher overall miss ratio thamRD CAST (Fig. 6.12), it hardly suffers any

2not to be confused with a nodesgiefield, as defined and used inv€CLON

146 INFORMATION DISSEMINATION CHAP. 6

1000

100 [

number of nodes

10 |

1 : . ' S
1 10 100 1000 10000

lifetime (in cycles)

Figure 6.13: Distribution of node lifetimes, summed ove® EXperiments.

misses for nodes that joined at least 20-30 cycles earbetrary to RAND CAST.
Its miss ratio is entirely attributed to misses in newly gnodes.

The implication behind this observation is worth notingtNRCAST proves
to be a better dissemination tool, except for the first femeyafter a node’s
join. Once a warm-up period of a few cycles has elapsed, a neckves all
disseminated messages with very high probability. For @igosy period of 10
seconds and a view lengty,c = 20, the warm-up phase amounts to a bit over 3
minutes. In applications where faster node joins is vitelvmodes can gossip
at an arbitrarily higher rate for the first few cycles, to cdetp their warm-up
phase correspondingly fast. However, this is a mere opétiaa and will not be
considered further in this dissertation.

At this point, it is interesting to understand why new nodegegience more
misses, and why this phenomenon is more intenseiINGRAST. Nodes are no-
tified through their incoming links. Their probability of ing notified is tightly
related to how well they are known by other nodes. A new noife jthe network
with zero indegree, and gradually increases it. Until a reodelegree reaches
the average indegree of the network, it has less chance eéoveca message than
older, better connected nodes. This shows clearly in theeafentioned graphs

(Fig. 6.14).

SEC. 6.6 BVALUATION 147

Fanout 3
T T
T X v, RandCast O
1000 F o) oV RingCast v 4
F 0667]
%]
4 L]
°
o
=
3 100F .
3 []
c + 4
& L]
o
c + 4
G |]
@
£
2 10 2 1
Yvv
1 > hd
1 10 100 1000 10000
lifetime (in cycles)
Fanout 6
' ' RandCast O
1000 Es v RingCast v i
[oY]
[oV]
L oY]
3 L Ovv 1
3 oy,
c [OA 4
9 100 | B
2 g Cv]
© [)]
= - 4
< [A]
g [v .
S | ®]
[
o v
£
2 10 ¢ % E
L O]
[Og]
- ‘ 4
1 R
1 10 100 1000 10000

lifetime (in cycles)

Figure 6.14: Distribution of lifetimes of nodes that were motified, summed
over 100 experiments.

148 INFORMATION DISSEMINATION CHAP. 6

More specifically, a new node’s r-link indegree increasesty in each of its
first few cycles, and takes approximately,. (here/cyc = 20) cycles to stabilize
to the average indegree of the network (whiclfdg too). This is a property of
CycLON, which manages r-links. So, forARID CAST, which depends solely on
CYCLON, we observe a steep decrease in misses for nodes of lifefirttesugh
20, followed by an immediate stabilization thereafter.

On the other hand, RGCAST also depends on ZINITY to form the d-links
(i.e., the edges of the ring). However, a node does not belfnefit incoming
VICINITY links until the appropriate incoming d-links are formedattls, until
it eventually becomes known by its two direct ring neighboGenerally this
does not happen instantly, but may require an undefined—nyali-s-number of
cycles. Until then, a newly joined node relies only on itsaming r-links to
receive messages. During that phase, it is clear that nevied nodes have
better chances to receive messagesANBRCAST, where messages are forwarded
to F r-links, as opposed to onlly — 2 r-links in RINGCAST. This explains why
RINGCAST exhibits more misses thanARDCAST for nodes that joined roughly
in the last 20 cycles (Fig.14).

Note that the further curve in misses for lifetimes greatent 100 simply
follows the lifetime distribution of the general node pagtion (Fig.6.13).

6.7. DISCUSSION AND FUTURE WORK

In this chapter we explored how gossiping can be appliedro faverlays for
information dissemination. Our goal was to introduce anchalestrate the ben-
efits of hybrid dissemination systems, in comparison to gbdtstic ones. How-
ever, our work can be extended in many directions.

Some applications may require higher reliability in dynarenvironments.
Recall from Sectior.3that a bidirectional ring is a Harary graph of minimal cut
two. One way to increase reliability, would be to design guag protocols that
form Harary graphs of higher connectivity. Another, sintphay, is to organize
nodes in multiple rings, assigning them a different rand@pér ring. In both
cases, reliability would be improved at the cost of increlagessip traffic.

Another potential optimization is proximity-based disseation. Proximity
can have many faces, e.g., geographic distance, domain, matmerk hops, etc.
In the protocols examined in this chapter, proximity is retken into consider-
ation. For instance, a message originating in the Nethdslaoould follow a
path such as Netherlands Australia— Switzerland— Canada— Greece—
Uruguay— New Zealand. Obviously, such a path is far from optimal.

A straightforward way to partially deal with domain namexiroity in RING-

SEC. 6.7 DiscussION ANDFUTURE WORK 149

nl.vu.cs_1234

nl.surfnet_3166 nl.vu.cs_7831

gr.upatras.ceid_8230

gr.upatras.ceid_1050 edu.umich.eecs_1011

edu.umich.eecs_6223

Figure 6.15: Nodes organized in a ring based on domain naoxnpity.

CAST, is to incorporate domain names in thecWITY similarity function. In
this version of RNGCAST, a node forms its ID by reversing its domain name
(country domain first) and appending a randomly chosen nunhiee, the ID of a
node at the cs. vu. nl domain of the Vrije Universiteit in Amsterdam could be
nl . vu. cs. 1234. Without any additional modifications, nodes naturallyasrg
nize themselves in a ring sorted by domain name, and domaitesisby country.
An example can be seen in FiglBelh

Finally, it should be noted that the protocols discussedthimdhapter are per-
fectly suitable forapplication-layer multicastingoo. In multicasting, a number
of multicast groupsare defined, and each message is associated with one of them.
All messages associated with a multicast group should beededl to all nodes
subscribed to that multicast group. The usage of disseramatotocols such as
RANDCAST and RNGCAST for multicasting is straightforward. Each multicast
group forms its own, separate dissemination overlay. Nedéscribe by simply
joining the overlay(s) of the multicast group(s) of theioate. Finally, messages
are multicast by disseminating them in the appropriateedigsation overlay.

In this research we have not considepdl-baseddissemination. We expect
it to significantly improve the efficiency of the protocol iarins of reliability.
However, additional issues have to be taken into accouwt; as the pull fre-
guency, the duration for which nodes maintain old messabessize of buffers
on nodes, etc. Pull-based dissemination is left as futund,vas it constitutes a
natural extension of our current research.

150 INFORMATION DISSEMINATION CHAP. 6

CHAPTER/

Semantic Overlay Networks

A lot of recent research on content-based P2P searchingldestfaring has fo-
cused on exploiting semantic relations between peers tlitdée searching. To
the best of our knowledge, all methods proposed to date stigggetiveways to
seize peers’ semantic relations. That is, they rely on tlgei®f the underlying
search mechanism, and infer semantic relations based aju#rees placed and
the corresponding replies received.

In this chapter we introduce proactive method to build semantic overlays,
by means of the WINITY/CYCLON topology construction framework presented
in Chapter4. By applying the appropriate selection function, peerswsimilar
content are clustered together. It is worth noting that gieisr clustering is done
in a completely implicit way, that is, without requiring theser to specify his
preferences or to characterize the content of files he shares

As a historical note, the MINITY/CYCLON topology construction framework
presented in Chaptel, was first conceived and materialized in the context of the
research presented in this chapter.

7.1. OVERVIEW

File sharing peer-to-peer (P2P) systems have gained engrpmpularity in
recent years. This has stimulated significant researchitydti the area of content-
based searching. Sparkled by the legal adventures of Napsté challenged to
defeat the inherent limitations concerning the scalabéitd failure resilience of
centralized systems, research has focusedementralizedsolutions for content-
based searching, which by now has resulted in a wealth ofogailp for peer-to-
peer networks.

In this chapter, we are interested in those groups of netsviorkvhich search-

152 SEMANTIC OVERLAY NETWORKS CHAP. 7

ing is based on grouping semantically related nodes. Irethesworks, a node
first queries its semantically close peers before resottingearch methods that
span the entire network. In particular, we are interestesbintions where seman-
tic relationships between nodes are captured implicithis Eapturing is generally
achieved through analysis of query results, leading to @mstruction of a local
semantic listat each peer, consisting of references to other, semdmpticalke
peers.

Only very recently has an extensive study been publishe@artlks methods in
peer-to-peer networks, be they structured, unstructwedf a hybrid form Ris-
son and Moors 2006 This study reveals that virtually all peer-to-peer séarc
methods in semantic overlay networks follow an integragpir@ach towards the
construction of the semantic lists, while at the same tine@ating for changes
occurring in the whole set of nodes. These changes invo/@thing and leaving
of nodes, as well as changes in a node’s preferences.

The construction of semantic lists should result in highlystered overlay
networks, reflecting users’ interests. These networksldrcasearching content
when nothing changes. However, in realistic, dynamicailgrging networks, the
discovery and propagation of changes that may hagpswherein the network
is of vital importance. For this reason, overlay networkewtl also reflect de-
sirable properties of random graphs and complex networlgeireral Albert and
Barabasi 2002Newman 200R These two conflicting demands generally lead to
complexity when integrating solutions into a single pratoc

Protocols for content-based searching in peer-to-peavarks should sepa-
rate these concerns. In particular, we advocate that whamies to constructing
and using semantic lists, these lists should be optimizeddarch only, regard-
less of any other desirable property of the resulting oyerlastead, a separate
protocol should be used to handle network dynamics, andigeayp-to-date in-
formation that will allow proper adjustments in the semaiisits (and thus leading
to adjustments in the semantic overlay network itself).

Along these lines, we employ thel&®NITY/CycLON framework, which is
designed to separate the two aforementioned issues. Tt IVY layer opti-
mizes the semantic lists for searching only. ThecCoN layer, offers a fully
decentralized service for delivering, in an unbiased fashinformation on new
events. We demonstrate the efficiency of our framework tiinaextensive simula-
tions using traces collected from the eDonkey file-sharieigvork [Fessant et al.
2004.

SEcC. 7.3 MoDEL OUTLINE 153

7.2. MODEL OUTLINE

In our model each node maintains a dynamic list of semantghbers, called
its semantic listof small fixed siz€sem A node searches for a file in two phases.
First, by querying its semantic neighbors. Second, and dntp results were
returned from the first phase, the node resorts to the defaalich mechanism.

Our aim is to organize the semantic lists so as to maximizéitiratio of the
first phase of the search. We will call this teemantic hit ratio We anticipate
that the probability of a neighbor satisfying a peer’s quisrproportional to the
semantic proximity between the peer and its neighbor. We thienefore, at filling
a peer's semantic list with itésem Semantically closest peers out of the whole
network.

We define the semantic proximity between two nodes as the euofltom-
mon files they have. More formally, given two nodesandQ, with file lists Fp
andFq, respectively, their semantic proximity is defined as:

SemProfP,Q) = |Fp[| Fol

The more common files two nodes have—therefore, the seradintadoser they
are—the higher the value &emProxEssentially, for each nodewe are seeking
peersQ1,Qy, ..., Qs for its semantic list, that maximize the sum:

ésem

.ZlSemPrO)gP, Q)

The VicINITY selection function &, P, D) (see Sectiod.2.2) is consequently,
defined based on the proximity functi@@mProx It simply sorts the nodes it
based on their semantic proximity to nodlgand selects thk closest ones.

7.3. GOSSIPING FRAMEWORK

In the context of the WCINITY/CycLON framework, each node runs two pro-
tocols, VICINITY and CrcLON. Each protocol maintains a separate view of size
lvic and leye, respectively, and exchanges a different number of descsipper
gossip exchange (i.e., has a different gossip lengjiy,and geyc, respectively.
The semantic list defined earlier, consists of thg,neighbors of closest seman-
tic proximity among the ones in thel®INITY view.

For the sake of demonstrating the importance of certaintp@nVICINITY’s
design, we consider the following three versions oEMITY :

154 SEMANTIC OVERLAY NETWORKS CHAP. 7

RANDOM VICINITY This is the most naive of the three versions. When gossip-
ing, a node selectsrandomsubset of descriptors from itSI¥INITY view
to send to the other peer.

SELECTIVE VICINITY In this—better—version, a node selects and sends the
subset of descriptors from itsI¥INITY view that isoptimalfor the recipi-
ent.

COMPLETE VICINITY This is essentially the fully-fledged ®INITY protocol,
as defined in Chaptdr The sender selects and sends the descriptors that are
optimalfor the recipient, considering also descriptors from itadCoON—in
addition to its MCINITY —view.

In terms of the generic gossiping skeleton thatMITY follows (reproduced in
Fig. 7.1for convenience), Figuré.2presents the formal description of the actions
taken by the thre@ooks The only hook in which the aforementioned versions
differissel ect ToSend() .

In addition to these three IZINITY versions, we also examine a fourth con-
figuration, namely RNDOM VICINITY withoutCycCLON. This is the only single-
layer configuration that we consider.

do forever {
wai t (T tine units)
incr. all descriptors’ age by 1
Q < sel ect Peer ()
remove Q fromview
buf _send < sel ect ToSend()
send buf_send to Q }
receive buf _recv fromaQ
view — sel ect ToKeep()

do forever {
receive buf_recv fromQ
buf _send <« sel ect ToSend()
send buf_send to Q
view «— sel ect ToKeep()

Active thread Passive thread

Figure 7.1: The generic gossiping skeleton fordaoN and VICINITY .

7.4. EXPERIMENTAL ENVIRONMENT AND SETTINGS

All experiments presented here have been carried out wign3da, an open
source simulator for P2P protocols, developed in Java aftineersity of BolognaPeer-

SEC. 7.4 EXPERIMENTAL ENVIRONMENT AND SETTINGS 155

Hook Action taken

sel ect Peer () Select descriptor with the oldest age

sel ect ToSend()
RANDOM | Make a copy of the YCINITY view.

Add own descriptor with own profile and age 0.

Randomly seleadic descriptors.

SELECTIVE | Make a copy of the WCINITY view.
Add own descriptor with own profile and age 0.
Select the beglyic descriptors foQ.

COMPLETE | Merge the MCINITY and CrCLON views.
Add own descriptor with own profile and age 0.
Select the begyyic descriptors foQ.

sel ect ToKeep() | Merge the MCINITY, CYCLON, and received views.
Select the bedi,ic descriptors folP.

Figure 7.2: Implementation of the generic gossiping skeldtooks, for the 3
VICINITY versions.

Sim).

To evaluate the construction of semantic overlays, we usabworld traces
from the eDonkey file sharing systeraljonkey, collected by Le Fessant et al.
in November 2003Fessant et al. 2004A set of 11,872 world-wide distributed
peers along with the files each one shares is logged in thesestrA total number
of 923,000 unique files is being collectively shared by thesers.

In order to simplify the analysis of our system’s emergertawor, we de-
termined equal gossiping periods for both layers. More i§igaly, once ev-
ery T time units each node initiates first a gossip exchange wihee to its
bottom (CrcLoON) layer, immediately followed by a gossip exchange at its top
(ViciNnITY) layer. Note that even though nodes initiate gossiping ateusally
fixed intervals, they are not synchronized with each othémil&rly to previous
chapters, we study the evolutionary behavior in terms ofesjavhere one cycle
is a period ofT time units.

A number of parameters had to be set for these experimesitsd lhere.

Semantic list size {sem) In all experiments the semantic list consisted of the 10
semantically closest peers in thedNITY view. As shown in Handuru-
kande et al. 2004a semantic list size dfsem= 10 provides a good tradeoff
between the number of nodes contacted in the semantic sphase and
the expected semantic hit ratio.

156 SEMANTIC OVERLAY NETWORKS CHAP. 7

View size (\ic, {cyc) For the view size selection, we are faced with the following
tradeoff for both protocols. A large view size provides heéglthances of
making better neighbor selections, and therefore acdeléna construction
of (near-)optimal semantic lists. On the other hand, thgdiathe view size,
the longer it takes to contact all peers in it, resulting i@ &dccumulation of
older—and therefore more likely to be invalid—links. Of ¢se, a larger
view also takes up more memory, although this is generalharsignificant
constraint nowadays.

Considering this tradeoff, and based on experiments ntttduidescribed
here, we fixed the view size to 100 as a basis to compare diffemnfigu-
rations. When both \INITY and CrCLON are used, they are allocated 50
view entries each.

Gossip length @uic, 9cyc) The gossip length, that is, the number of descriptors
gossiped per gossip exchange per protocol, is a cruciarfémtthe amount
of bandwidth used. This becomes of greater consequenceésimaplica-
tion, considering that a descriptor carries the file listtefrespective node.
So, even though exchanging more descriptors per gossipaegehallows
information to disseminate faster, we are inclined to kéwepgossip lengths
as low as possible, as long as the system’s performancesignable.

Again, for the sake of comparison, we fixed the total gossigtie to 6 de-
scriptors. When both MINITY and CrCcLON are used, each one is assigned
a gossip length of 3.

Gossip period (T) The gossip period is a parameter that does not affect the pro-
tocol's behavior. The protocol evolves as a function of thenber of mes-
sages exchanged, or, consequently, of the number of cylelpsesl. The
gossip period only affects how fast the protocol's evolutwill take place
in time. The single constraint is that the gossip perfiodhould be ade-
quately longer than the worse latency throughout the nd¢wsar that gos-
sip exchanges are not favored or hindered due to latencydgeteeity. A
typical gossip period would be 1 minute, even though thissdoa affect
the following analysis.

Figure 7.3 summarizes the settings the four configurations we expetime
with.

avg. semantic list quality

SEC. 7.5 FERFORMANCEEVALUATION 157
fvic Ovic gcyc gcyc
RANDOM VICINITY 100| 6 - -
RANDOM VICINITY + CYCLON 50 | 3 50| 3
SELECTIVE VICINITY + CYCLON 50 | 3 50| 3
COMPLETEVICINITY + CYCLON 50 | 3 50| 3
Figure 7.3: The four configurations we compare.
100 T T
4 2 _‘_..uun'.'.'.‘::‘-"“""""'-' =I:_:
s e
. g_ - .
i B - i
i 2 i
@
i g i
i i @ i
. =3 Random Vicinity ======:
'.' Random Vicinity + Cyclon =«=s=ex @ Random Vicinity + Cyclon «s«=ses+ 7
10 k& Selective Vicinity + Cyclon e i Selective Vicinity + Cyclon e i
e Compllete V|C|n||ty + Cycllon ———— . Clomplete I\/|cm|ty +I Cyclon .

0
0 100 200 300 1000 1100

cycles cycles

(@) (b)
Figure 7.4: (a) Convergence of sem. views’ quality. (b) Etioh of semantic
lists’ quality for a sudden change in all users’ interestsyate 550.

400 700 800 900

7.5. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our framkwofive different
settings.

7.5.1. Convergence Speed on Cold Start

To evaluate the convergence speed of our algorithm, we &sdtttow quickly
it groups semantically related peers, when starting witermantically-unaware
network.

The objective, as imposed by the proximity function, is facke node to dis-
cover thelsempeers that have the most common files with it. We define a node’s
semantic list qualityo be the ratio of the number of common files shared with its
currentlsemSsemantic neighbors, over the number of common files it wolides
with its ¢semoptimal semantic neighbors.

Figure7.4(a) shows the average semantic list quality as a functioheo€ycle
for four distinct configurations. In favor of comparisonrfass, the view size and

158 SEMANTIC OVERLAY NETWORKS CHAP. 7

gossip length are 50 and 3, respectively, in each layer,lfaoafigurations. The
only exception is the first configuration, which has a singieel. In this case, the
view size and gossip length are 100 and 6, respectively. xkements start with
each node knowing 5 random other ones, simply to ensuraligibnnectivity in
a single connected cluster.

In the first configuration, RNDOM VICINITY is running stand-alone. The
progress of the semantic lists’ quality is rather steep afttst 100 cycles, but
as nodes gradually concentrate on their very own neighloahhgetting to know
new, possibly better peers becomes rare, and progress dtaws

In the second configuration, a two-layered approach cangistf RANDOM
VICINITY and CrCLON is running. The slow start compared to stand-alone
VICINITY is a reflection of the smaller INITY view (3 as opposed to 6). How-
ever, the two-layered approach’s advantage becomes aypgdater, when G-
CLON keeps feeding the RIDOM VICINITY layer with new, uniformly randomly
selected nodes, maintaining a higher progress rate, apedoitming stand-alone
VICINITY in the long run.

In the third configuration, SLECTIVE VICINITY demonstrates its contribu-
tion, as progress is significantly faster in the initial pha$ the experiment. This
is to be expected, since the descriptors sent over in eacEEIVE VICINITY
communication, are the ones that have been selected asthetseally closest to
the recipient.

Finally, in the fourth configuration, GMPLETE VICINITY keeps the progress
rate high even when the semantic lists are very close to tpgimal state. This
is due to the broad random sampling achieved by this verdioevery commu-
nication, a node is exposed to the best peers out chB@omones, in addition to
50 peers from its neighbor. In this way, semantically relgteers that belong to
separate semantic clusters quickly discover each othdrsalbsequently the two
clans merge into a single cluster in practically no time.

7.5.2. Adaptivity to Changes of User Interests

In order to test our protocol’s adaptivity to dynamic usetemests, we ran ex-
periments where the interests of some users changed. Wéatgthihe interest
change by picking a random pair of nodes and swapping theitifits in the
middle of the experiment. At that point, these two nodes tbthemselves with
semantic lists unrelated to their (new) file lists, and tfemee had to gradually
climb their way up to their new semantic vicinity, and re@abeir useless links
by new, useful ones.

Once again, we present the worst case—practically untiealiscenario, of
all nodes changing interests at once, at cycle 550 of the expetiof figure
7.4(a). The evolution of the average semantic list quality fithi moment when

SEC. 7.5 RERFORMANCEEVALUATION 159

40

FXXKRXFXXXXXXX
B Tt g ;x*xxx****l |
% xR B x XX X XK KX X KX XXX KKK
xxxxxxxxxxxxx

W
30 | T
.

47

251 x
2t

15F <"

semantic hit ratio (%)

R

10 >

*

5 |x gossip length 5

* gossip length 3

‘ ‘ ‘ gossip length 1

0 5 10 15 20 25 30 35 40 45 50
cycles

Figure 7.5: Semantic hit ratio, for gossip lengths 1, 3, aidéach layer.

all nodes change interests, is presented in figudb). The faster convergence
compared to figur@.4(a) is due to the fact that views are already fully filled up at
cycle 550, so nodes have more choices to start looking fod gaodidate neigh-
bors.

Even though this scenario is very unrealistic, it demorstréhe power of our
protocol in adapting to even massive scale changes. Thjgtiselaess is due to
the priority given to newer descriptors el ect ToKeep(), which allows a
node’s descriptors with updated semantic information jpdaree older descriptors
of that node fast.

7.5.3. Effect on Semantic Hit Ratio

In order to further substantiate our claim that semantietasustering endorses
P2P searching, we conducted the following experiments. mioenly selected
file was removed froneachnode, and the system was run considering proximity
based on the remaining files. Then, each node did a searchedfilght was

missing. We measured the semantic hit ratio to be over 36% $amantic list of
size 10.

Figure 7.5 presents the semantic hit ratio as a function of the cyclere@h
experiments are shown, with gossip lengthstothlayers set to 1, 3, and 5. Note
that computation of the hit ratio for each cycle was maderaflivithout affecting
the mainstream experiment’s state.

160 SEMANTIC OVERLAY NETWORKS CHAP. 7

100
90
80
70

J
;
60 &
R
50ty i
e
40 rd -

percentage of nodes

30 fif g
20
10

0 1 1 1 1
50 100 150 200 250 300 350 400 450 500

cycles

50% of target links found
90% of target links found ======: -
/§II targlet Iinkls founld e

R LT T

o

Figure 7.6: CDF of the speed by which the semantic list of @ifigj node is filled
with optimal neighbors.

7.5.4. Single Node Joins

To examine how fast new nodes join an already semanticalisteled network,
we conducted a series of experiments witMPLETE VICINITY . Each exper-
iment started with a network from which one randomly seléatede had been
removed. After the network converged, we added the missouerand mea-
sured the number of cycles it took to fill, respectively 509%%9 and 100% of
its semantic list withoptimal neighbors. The respective cumulative distribution
function graphs are shown in Figuret.

These experiments clearly show that the semantic list igllsafilled with
optimal neighbors for the vast majority of the nodes, alttosome may take
considerably more time. It can also be seen that, althoustoderingall best
neighbors may take arguably long for some nodes, it takesfisigntly fewer
cycles to discovemostbest neighbors (CDFs for finding 50% and 90% of best
neighbors shown).

7.5.5. Behavior under Node Churn

To investigate the behavior of our algorithm as nodes refyujain and leave
the network, we evaluatedd®PLETE VICINITY under different levels of node
churn.

For these experiments, we considered an initial convergddark of 10,000
nodes. During each cycle we removecdhodes and replaced them withother
ones. Every node in the system corresponded to one node eDibiekey traces
(i.e., stores the same files), which contained a total of 2 f&des. Therefore, at

optimal alive neighbors in the sem. list

SEC. 7.6 BANDWIDTH CONSIDERATIONS 161

=
o

50 T T T T T T

=
9 A 2 g5
S " /Sy I o o,
[COIONp 2 40 F AR
=
7F - S 35 i TWNSRIPISY ndorlcte P N~
S Pttt myonbhy bt
6 - © 30 | E
A <
5, B c 25| —
1k gt o o P NN It b P RS AN N it AN "
4 E S 20| E
o
3+ E g 15 E
2F 0.2% churn b e 1 0.2% churn b
1k 1.0% churn s _ e L 1.0% churn s _
5.0% churn --------] 5.0% churn --------
0 1 1 1 1 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
cycles cycles
(@) (b)

Figure 7.7: (a) The average number of optimal alive neighlothe semantic list.
(b) The average number of alive neighbors in the™ITy view.

any moment in time a random subset of 10,000 out of 11,87290@s active,
and the remaining 1872 nodes were down. The analysis of cates from real-
world Gnutella traces3aroiu et al. 2002003 shows that the set of active nodes
changes by approximately 0.2% every 10 seconds. In othatsydiwe assume a
cycle length of 10 seconds, a realistic valuerfig 20. We have also experimented
with larger churn rates, namely 1% and 5%, which corresporaidycle duration
of 50 and 250 seconds, respectively.

The results of these experiments are shown in Figuré&) in which the av-
erage number of optimal alive neighbors in semantic lisdeunrdifferent churn
rates is plotted. We see that as the churn rate increasesethantic lists gen-
erally remain polluted with links to non-optimal neighbor$his can be easily
explained by considering thel¥INITY view (from which the neighbors for the
semantic lists are extracted). In Figufer/(b), we see that under high churn the
view contains a relatively large fraction of links to deadlas. As these inactive
links may refer to nodes with a large number of common filesy frevent estab-
lishing optimal links with nodes that are alive but share aken number of files.
Moreover, when a node is reborn, it can take some time forratbdes, which
now may have non-optimal semantic lists, to establish lioks (see Fig.7.6).

7.6. BANDWIDTH CONSIDERATIONS

Due to the periodic behavior of gossiping, the price of hgwapidly con-
verging and accurate protocols may inhibit a high usage ofork resources

162 SEMANTIC OVERLAY NETWORKS CHAP. 7

(i.e., bandwidth).

In each cycle, a node gossips on average twice (exactly aea aitiator,
and on average once as a responder). In each gos$@i+ gcyc) descriptors
are transferred to and from the node, resulting in a totdficraf 4 - (gyic + Jeyc)
descriptors for a node per cycle. An descriptor's size is ibated by the file
list it carries. A single file is identified by its 128-bit (18#te) MD4 hash value.
Analysis of the eDonkey traceE¢ssant et al. 20Q4evealed an average number
of 100 files per node (more accurately, 99.35). Thereforeydeis file list takes
on average 1,600 bytes. So, in each cycle, the total numbmites$ transferretb
andfromthe node is 6400 (Qvic + Jeyc)-

For gvic = deyc = 3, the average amount of data transferred to and from a node
inone cycle is 38,400 bytes, while fgfic = geyc = 1, itis just 12,800. Maintaining
almost optimal semantic lists requires frequent gossitoregccount for the churn.
Based on the traces, to achieve 90% optimality of the sembstii the churn rate
must be limited to approximately 0.2%. Consequently, thesgoperiodT must
be equal to 10 seconds, which translates to an average kidthdefi3840 bytes
per second foQyic = geyc = 3, and 1280 bytes per second i = ey = 1.
However, if 80% optimality is acceptable, the gossip pedad be reduced to 50
seconds, which yields 768 and 256 bytes per second, resggcth factor of 5
improvement traded for only 10% quality degradation.

We consider such a bandwidth consumption to be rather sihadlit negligi-
ble compared to the bandwidth used for the actual file dovdso# is, in fact, a
small price to pay for relieving the default search mechani®om about 35% of
the search load, which is often significantly higher (e.09dling or random-walk
search). Moreover, the bandwidth can be further reducedrpjaying techniques
such as Bloom filtersBloom 197(Q and on-demand fetching of file lists, instead
of associating a full file list with each node descriptor.

7.7. DISCUSSION AND RELATED WORK

To the best of our knowledge, all earlier work on implicit lolimg of semantic
overlays relies on using heuristics to decigleich of the peers that served a node
recently are likely to be useful again in future querigsipanidkulchai et al. 2003
Voulgaris et al. 2001Handurukande et al. 20D4

However, all these techniques inhibit a weakness thatexgdls their applica-
bility to the real world. They all assumestatic network, free of node departures,
which is a rather strong assumption considering the higiihadic nature of file-
sharing communities. Also, it is not clear how they perfomthie presence of
dynamic user preferences.

SEc. 7.7 DiscuUsSION ANDRELATED WORK 163

Moreover, as opposed to the existing solutions, our algaritan, to some ex-
tent, help against so-called free-riders in the P2P fileisparetworks Adar and
Huberman 200D Free-riders provide no files to be downloaded by othersjser
but still use the network to obtain files that are interestimgthemselves. Be-
cause of a lack of shared files|jMNITY does not create any meaningful semantic
lists for such misbehaving nodes. This, combined with Isties forbidding fre-
guent usage of the backup search algorithms, minimizesuimdar of successful
searches for free-riders, and consequently discouragesetb-riding practice.

Regarding proximity-based P2P clustering, our work comesecto the T-
Man protocol Jelasity and Babaoglu 20p%hich has been developed indepen-
dently. Although there were significant differences witk tiriginal T-Man proto-
col, the most recent version shows a strong similarity withwork. An important
difference remains that thel®@INITY/CycLON framework offers higher flexibil-
ity in controlling bandwidth, by arbitrarily deciding onemumber of descriptors
that need to be exchanged. This becomes important in thigcagppn, where
a node descriptor contains the node’s file list. More imparthowever, is that
we show that the YINITY/CyCLON topology construction framework can be
successfully applied to forming semantic overlays for seiag in peer-to-peer
file-sharing systems. Such an evaluation has not yet beenlukfore.

Note that we chose a rather simple, yet intuitive proximitgidtion to test our
protocol with. Our goal was to demonstrate the power of theiMTy /CyYCLON
framework in forming a semantic overlay network basedgmoximity function.
Even though much richer proximity functions could have bapplied, it was out
of the scope of this research.

Concluding, in this work we introduced the idea of applyingdemics to
proactively build and dynamically maintain semantic lisisa large-scale file-
sharing system. Specifically, we showed that theMITY/CyCcLON two-layered
approach is the appropriate way to build such a service.

ACKNOWLEDGEMENTS

We would like to thank Fabrice Le Fessant for providing uswlite eDonkey2000
traces Fessant et al. 20Q04e gathered in November 2003.

164 SEMANTIC OVERLAY NETWORKS CHAP. 7

CHAPTER 8

SuB-2-SuB: Purely P2P
Publish/Subscribe

Publish/Subscribesystems are designed to disseminate messayesitf, from
nodes issuing eventpuiblisher$, to nodes interested in receiving everssit{-
scriberg. Subscribers typically register with the system the typewents they
are interested in. Publishers simply post events. Subsdgui is the system’s
responsibility to deliver the right events to the right acThat is, an event should
be delivered tall its subscribers ando one else

Consider, for instance, a house rental service. Prosgertinterssubscribe
to the service by setting their search criteria. Such gateray include their pre-
ferred neighborhood(s), the price range they are willingdg, the suitable num-
ber of bedrooms, sufficient area, etc. Some subscribers weayset onlysomeof
the aforementioned criteria, should the rest be irreletaniheir decision. Home
owners, on the other hangublish announcementseyentsin publish/subscribe
terminology) advertising their property for rent. The gystis responsible for de-
livering eachrental announcement &l prospective renters whose criteria classify
it as a potentially suitable choice.

In this work we address the problem of constructing scalabletent-based
publish/subscribe systems. Subscriptions can range freimgle specification of
merely the type of an event to a specification of the valueearigat an event’s
attributes can have. Notably the latter poses potentiddisitidy problems.

Structured peer-to-peer systems can provide scalablé@miio publish/subscribe
systems with simple subscription patterns. For complexsattion types their
applicability is less obvious. In this chapter, we presea82-Sug, a collab-
orative self-organizing publish/subscribe system deppyan unstructured over-
lay network. $B-2-SUB relies on an epidemic-based algorithm in which peers
continuously exchange subscription information to gesigted to similar peers.

166 SuB-2-SUB: PURELY P2P RJBLISH/SUBSCRIBE CHAP. 8

In contrast to many existing approaches}eS2-SuB supports both value-based
and interval-based subscriptions. Simulations 0BS2-SuB on synthetic and
reusable workloads convey its good properties in terms atimg efficiency, fair-
ness, accuracy and efficiency.

A shorter version of this chapter appears¥ollgaris et al. 200p

8.1. OVERVIEW

Peer-to-peer (P2P) systems have been identified as the keplbility and
their self-organizing properties make them natural caaisl for large-scale pub-
lish/subscribe systems design. Several efficient impleatiems of P2P topic-
based publish/subscribe systems have been propGsetip et al. 2002Banerjee
et al. 2002 Unfortunately, it is not obvious how to devise a scalal@&Rolution
for content-based publish/subscribe systems.

Structured P2P overlaysRpwstron and Druschel 2001&atnasamy et al.
2001a Stoica et al. 200Lhave often been favored over unstructured ones to
implement content-based publish/subscribe systems. ddeeis to map the at-
tribute space of the latter to the identifier space of the tarmAt one extreme,
each attribute is associated with one specific peer. Althabig provides efficient
routing to interested subscribers, peers hosting poptidates are quickly over-
loaded. At the other end of the spectrum, in an attempt taetige the ranges of
attributes, a peer is made responsible for a spefaticibute, value)pair. In this
case, attaining a scalable implementation for range siisers becomes prob-
lematic.

In this work, we step away from structured overlays and psepa fully de-
centralized and self-organizing approach based on urstac overlays to deal
efficiently with both exact and range subscriptions. Key w0 approach, which
is called B-2-SuUB, is that subscribers to the same events are automatically
clustered. BB-2-SuB leverages the overlapping intervals of range subscription
and creates an unstructured overlay reflecting the streicitithe attribute space
and that of the set of subscriptions. Once subscriptions arstefed, events are
directly posted to the proper cluster where they are efftiatisseminated.

A key issue is that 88-2-SuB is highly reactive to changes in the set of sub-
scriptions. To this end, it deploys an enhanced epidemitopob based on the
VICINITY and FEER SAMPLING SERVICE topology construction framework, to
continuously cluster subscribers based on their subgmnigt Clustering is based
on a proximity metric in the attribute space, which resultsnbdes of similar
subscriptions clustering with each other. A similar pracesfollowed to navi-
gate publishers to clusters of matching subscriptionslighdrs progress greedily

SEc. 8.3 ISSUES INPUBLISH / SUBSCRIBE SYSTEMS 167

across the network according to the same algorithm and miigximetric, even-
tually reaching the cluster that contaiagactlythe subscribers which the event
should be delivered to. Moreover, within such a cluster,sstibers are loosely
organized into a distributed data structure that enabléserft event dissemina-
tion.

8.2. ISSUES IN PUBLISH / SUBSCRIBE SYSTEMS

A number of issues are of interest when designing a publiblstgibe system.
It is important for the remaining of the chapter to list the ghsignificant issues
that characterize the quality of a publish/subscribe syste

Hit ratio The hit ratio is defined as the percentage of subscribergdbatve an
event, over the total number of subscribers interested il i$ a metric of
the penetration of events. Ideally, an event should be eeld/toall nodes
interested in it (hit ratio 100%), or at least to as many ofttes possible.

Spam ratio The spam ratio is defined as the percentage of subscribdrsetha
ceive an event although it wast matching their subscriptions, over the
total number of subscribers interested in the event. Defigean event to
subscribers not interested in it wastes network and prougsssources.
Therefore, the spam ratio should be kept as low as possilgelly 0%.

Dissemination speedThe speed at which an event dissemination completes. The
two main factors governing dissemination speed are (a) \theage delay
in forwarding messages (processing delay on nodes plusonetatency),
and (b) the number of hops messages take to reach the mastitdisides.
In our evaluation we focus on the latter factor.

8.3. SYSTEM MODEL

In brief, we consider a conjunctive attribute-based piidisbscribe system
with N floating-point attributes that supports subscriptions otilexactattribute
values andanges

More formally, we assume a fixed numbidrof attributes,Aq, ..., An, With
values inR (the set of real numbers). Attributes can alternatively $sgned val-
ues of any type that can be directly mappedticuch as integers, enumerations,
boolean values, or strings.

Subscriptions are conjunctions of predicates on one or ratirdbbutes. A
predicate can denote either an exact value (&g= V), or a continuous range

168 SuB-2-SUB: PURELY P2P RJBLISH/SUBSCRIBE CHAP. 8

N |
I
I
I
I
[P
A 4
?
a I S
I
3 B
o
c |
C # R
I
D4
?
| Va
I
| N
| . 7
Event e attribute vale
(a=10)

Figure 8.1: A set of subscriptions and an event.

of values (e.g.A € [Vimin,Vmax)- A subscription can have at most one predicate
per attribute. Multiple exact values or multiple honcontins subranges on a
single attribute can be modeled as multiple separate dphbeas. Attributes not
referred to in a subscription (wildcards) are assumed t@cthe whole attribute
space, that is, their value is indifferent to the subscriBerexample subscription
for a 5-attribute system iS: (A1, Ay, Az, Ay, As) = (x, 30, *, %, [2.2,2.7])

Events areN-sized vectors specifying exact values & attributes. An ex-
ample of an event for a 5-attribute systemBs (A1, Ay, Az, A, As) =
(5, 3, —2.5, 20, 1.87).

In the remainder of this chapter, we will consider range stipgons, i.e.,
subscriptions composed of a set of predicates, each speréyrange of values.
Exact-value predicates are considered as a special, aqdesiroase of a range
subscription.

Also, nodes whose subscriptions match a particular evelhbwireferred to
as the event'snatching subscribers

8.4. JB-2-SuB IN ANUTSHELL

SuB-2-SUB is an autonomous, self-organizing P2P event-notificatymtes
that supports multi-attribute subscription&utonomousmplies that the dissem-
ination of events to all interested nodes is accomplishedhbycooperation of
interested nodes themselves, eliminating any dependenmiay servers or ded-

SEC. 8.4 B-2-SUB IN A NUTSHELL 169

node ID
o

\’4

attribute vale

Figure 8.2: Partitioning of an one-dimensional event spa¢®mogeneous sub-
spacesH;.

icated elementsSelf-organizingefers to the fact that nodes organize themselves
in a structure that enables their cooperation for eventedigsation in a com-
pletely decentralized manner. The self-organizing priypef Sus-2-SuB relies

on the use of the MINITY/CyCLON topology construction framework to cluster
peers of similar subscriptions. Its efficiency relies on taet that overlapping
subscriptions are leveraged so tliatonly interested subscribers are reached by
an event andii) subscribers do not miss any event matching their subsanipti

Clustering overlapping subscriptions SuB-2-SuB forms an unstructured over-
lay network in which each peer is associated with one sytsan. Multiple
subscriptions are handled by running multiple virtual gean a single physical
node. In the context of a customized version of theiTy/CycLON frame-
work, peers periodically exchange information to discqveers with similar sub-
scriptions to form clusters with. Note that the resultingstérs do not have ex-
plicit boundaries. Figurd.1 depicts an example of a set of subscriptions for a
single attribute scheme. Each line represents a rangerfutizst. The epidemic
algorithm ensures that peers are automatically clustepetha when an event
specifying a value for attributa (e.g.,e: (a= 10) in Figure8.1) is published, all
interested subscribers\(C, andD in Figure8.1) get it.

Partitioning the event space A key observation underlying (8-2-SuB'’s de-
sign is that every pedP’s subscription specifies aN-dimensionalrectangular
subspacesp C RN, which we refer to a®’s subscription subspaceAs a conse-

170 SuB-2-SUB: PURELY P2P RJBLISH/SUBSCRIBE CHAP. 8

guence, we are interested only in those events that fall$ntol J Sp. To sim-
plify the SuB-2-SuB model, weconceptuallypartition § into disjoint subspaces
H, Ho, . .., which we naméomogeneous subspaces

U =35

and
Vi#j: HNH=0

All events belonging to a given homogeneous subsgateave the exact same
set of matching subscribers (hence the ndromogeneoufor these subspaces).
More formally:

Vi,P: [HNSp# 0 = [H C Sp|

Furthermore, we demand that the set of homogeneous sulsspaeminimal:
there is no partitioning with fewer parts that can satisfy &forementioned con-
straint.

The notion of homogeneous subspaces provides a level ahatish: it per-
mits us to think in terms of groups of events—that have theess@t of matching
subscribers—rather than for single events individualigulFe 8.2 shows how the
event space of the example presented in Fi@utds partitioned in homogeneous
subspaces.

The ultimate goal in 88-2-SuB is, for each homogeneous subspade to
cluster its nodes in such a way that an eveat?{ can be efficiently disseminated
to all of them. Essentially, we want to maintain a connecteetlay (as we will
see, a bidirectional ring) for every homogeneous subsgécéf that holds, then
any possible event in the system can be efficiently dissesrta all its matching
subscribers. To this end, we let peers periodically exchdhgir subscriptions. If
two peersP andQ note thatSpq = Sp NS # 0, they will record this fact and main-
tain references to each other (how this is done is descrie&mv). For example
in Figure8.2, peersP andQ satisfy the above condition for a given range and get
connected. When discovering a third pdgrwith Spor= Sp N SoN Sk # 0, peers
P, Q andRwill further organize into a structure associated WiHpr such that an
evente € Spor Will be efficiently disseminated to the three peers. BetandQ
will still maintain references to each other, but now for fubspace&pq — Spor,
if not empty. FigureB.2illustrates this process: whdRjoins the network it gets
connected td® andQ for the shaded range while andQ remain connected for
the hatched range.

The publisher of an everd joins the overlay identically to subscribers, and
will eventually find the sef wheree belongs to. At that poingis disseminated
to the members associated wit). Note that, provideds is indeed partitioned
along the lines we just describeewill reach only the nodes that are interested

SEC. 8.5 THE SuB-2-SUB DISSEMINATION OVERLAY 171

in it, and no others. This method of letting publishers lectite relevant sub-
scribers is primarily elegant, but not necessarily effitiddigher efficiency can
be achieved through, for example, greedy routing algorithwle do not consider
such alternatives in this dissertation.

8.5. THE SuB-2-SuB DISSEMINATION OVERLAY

In Chapter6 we explored epidemic schemes for group communication. Such
schemes provide strong probabilistic guarantees for teednination of messages
to all members of an overlay, demonstrating tolerance to churmadd failures.
Here we are looking at employing one of these techniqueseghambrid dissem-
ination and the RNGCAST algorithm (see Sectiof.5), in selectivelydisseminat-
ing events to all their matching subscribers.

What differentiates dissemination in publish/subscriggteams from the gene-
ric dissemination model, is that there is singleset of target nodes. Instead, each
event needs to be disseminated to a different set of nodesistiog of the event’s
matching subscribers. Group communication, thereforeulshbe applicable to
any possible set of matching subscribers.

This is exactly what lies in the core ofuB-2-SuB: A dissemination over-
lay that enables group communication amaxgctlythe matching subscribers of
any given event, independently. Considering that events withhomogeneous
subspace have the same set of matching subscribersp#e $SuB dissemina-
tion overlay should enable group communication among nadlibssubscriptions
intersecting#4, for every 4 independently.

Let A{ denote the set of nodes whose subscriptions intersect hameogs
subspace#. In Section6.5.1we saw that organizing a group of nodes inia&-
CAasT overlay, that is, a bidirectional ring augmented by randborteuts, enables
inexpensive and efficient dissemination of messages antamg.tThe major is-
sue that $B-2-SuB needs to solve is to organize the nodesathset 4] in
a RINGCAST overlay. Along these lines, each node is equipped with aaiand
sequence IDuniformly drawn from a large identifier space. If nodeésand Q
are both inA§, and there is no other node #§ whose sequence ID lies between
those ofP andQ (using modulo arithmetic), they will keep a link to each athe
These links, known asng links, organize nodes of any given homogeneous sub-
space in a bidirectional ring. In addition to ring links, msdalso maintain links to
random other nodes in the same 3¢t known as(random) overlapping-interest
links. Figure8.3 shows the links forming a ring for each homogeneous subspace
Random overlapping-interest links are omitted for clarity

Often, the subscriptions of two nodes may overlap in mutippmogeneous

172 SuB-2-SUB: PURELY P2P RJBLISH/SUBSCRIBE CHAP. 8

»le

)
-

node ID

»le—3le
1 R)
NG
>
NG
>
N
»

> <€

< NG
¢

»l<

> <€

-

]
«
<
«
<
<
<

3

N\

attribute vale

Figure 8.3: The conceptualuB-2-Sus dissemination overlay. For each homoge-
neous subspace nodes are linked in a ring structure. Onhynipéinks are shown.
Random overlapping-interetinks are omitted for clarity.

node ID

N\

attribute vale

Figure 8.4: The actual @&-2-Sus dissemination overlay. For any possible event
all matching subscribers are linked in a ring structure. kesy, no multiple links
between the same two nodes are kept. Onlyrihg links are shown.Random
overlapping-interestinks are omitted for clarity.

sequence ID

sequence ID
|
sequence ID

173

Attribute value
(@)
Random links
(PEER SAMPLING SERVICE)

Attribute value
(b)
Overlapping-interest links
(VICINITY)

Attribute value
(€)
Ring links
(VICINITY)

Figure 8.5: The three sets of links each subscriber shouldtaia. Shaded areas
denote the areas where links of the respective type are pipgi® (for the given
subscriber).

subspaces, leading to multiple links between them, as sliowigure 8.3, In
reality, no multiple links are allowed between two nodesisTasults in thexctual
SuB-2-SuB dissemination overlay for our example, shown in Fig8r4

These observations lead to the following three types oftink

Random links These are links to randomly selected peers from the whole net
work. They are needed to maintain the network connectedhaopiub-
lishers and new subscribers can navigate to their appttepgn@mogeneous
subspace irrespectively of the node they join the netwaibutth.

Overlapping-interest links They reflect the similarities between subscriptions
and are used to send published events to random other it @sers (and
to speed up event dissemination).

Ring links These links organize nodes of each homogeneous subgfadoea
ring, ensuring that events belonging#freach all matching subscribers by
means of the respective ring.

Figure 8.5 depicts these three types of links, for a set of subscriptiover one
attribute.

8.5.1. Spreading Events

Given the dissemination overlay described above, pubgsleivents is a simple
task. All a publisher has to do is locaé®my one matching subscriber for its po-
tential event(s), and deliver the event(s) to it. From tl@hpon, dissemination is
taken care of by the matching subscribers themselves.

174 SuB-2-SUB: PURELY P2P RJBLISH/SUBSCRIBE CHAP. 8

Subscribers disseminate events by means of thesRAST algorithm, pre-
sented in Sectiol.5.1 In particular, we assume that each subscriber is running
a daemon thread listening to incoming events and forwarthiegh accordingly.
The daemon thread is activated when a node receives an év@st.looks up the
node’s recent event history. Previously seen events amreégn New events are
delivered to the application, and subsequently forwardedo respects. First, an
event is forwarded to the node’s two adjacent neighborsnj along the event's
ring. Second, it is forwarded along a small number (typicalily one or two) of
additionalrandom shortcutsRandom shortcuts are links to matching subscribers,
picked randomly among the overlapping-interest neighbwtmatch this partic-
ular event (if any). Obviously, a node does not send an ewatk along the same
link it received it through.

Four facets of the dissemination algorithm are worth nqtiamely its behav-
ior with respect tdit ratio, propagation speedspam ratig andload balancing

Hit ratio and propagation delay are dealt with by ring linkelaandom short-
cuts, respectively. In brief, forwarding along ring linkeagantees that events are
sequentially propagated w@l corresponding matching subscribers, achieving a
hit ratio of 100%. Random shortcuts to matching subscrilaeesfollowed only
to boost propagation speed. Indeed, following the ringdialone requires linear
time to cover all interested nodes. By each node forwardmegrning events to
as few as one random matching node, dissemination compfetésse to loga-
rithmic time. A thorough evaluation of theIRGCAST algorithm’s efficiency is
presented in Sectiod.6.

Spam is entirely out of the question in this disseminatigoathm. Clearly,
no node forwards an event to another node, unless the latieterested in that
event. The only case a node may receive spam messages, g iecently
changed its subscription, and its updated subscriptiombiget spread enough.

Finally, with respect to load balancing, two points are Wwogmphasizing.
First, no dissemination load is imposed on irrelevant stibscs. Second, load is
evenly balanced across matching subscribers, as eachrofréeeives an event
once or a few more times, and upon first reception forwards thé same small
number of nodes: up to two adjacent neighbors, and a few rarafes.

8.6. BUILDING THE DISSEMINATION OVERLAY

From our previous discussion, the publish/subscribe prabhas evidently
turned into atopology constructiorand maintenanceproblem. We handle it by
means of the YeINITY /CycLON framework for topology construction, presented
in Chapter4.

SEC. 8.6 BUILDING THE DISSEMINATION OVERLAY 175

Vicinity
(ring links)

Vicinity
(overlappng-interestlinks)

Peer Sanpling Service
(random links)

Figure 8.6: The 8B-2-SuB Architecture.

The SuB-2-SuB architecture explicitly sets a dual goal. Apart from random
links to maintain connectivity, subscribers are requirediynamically maintain
two types of links: overlapping-interest links, and ringks. Although this clearly
suggests employing two instances atWiITY, it is not the sole reason for doing
So.

Discovering nodes with overlapping interests comprisedterifig over all
participating nodes, based on a single criterion: relegaricsubscriptions. As we
will see, this filtering can be directly handled byd/NITY, given the appropriate
selection function. Selecting a node’s ring neighbors issspecific: they need to
be of overlapping interest, but in addition we also need twsiier their sequence
ID. Selection of ring neighbors, thus, comprises a furthiéerfng over a node’s
overlapping-interest neighbors. Consequently, diséogest node’s overlapping-
interest neighbors is a crucial step to discovering its ringghbors too.

Given the aforementioned design considerations, we caniio instances
of VICINITY on top of a single PER SAMPLING SERVICE instance, resulting in
the architecture depicted in Figu8es. Each layer is a gossiping protocol in itself,
communicating directly with the respective layer of othedes, as shown in Fig-
ure8.7. The sole interaction between layers is by means of linkmenendations,
from lower to higher layers.

Note that ring links are indifferent to publishers. Inde@dblishers build
views for only random and overlapping-interest links, andgip greedily (as fast
as they can) to reaciiny matching subscriber, independently of its sequence ID.
As we will see in Sectior.7, this permits them to find a matching subscriber in
a very small number of steps. If more steps than a small thidstlapse, they

176 SuB-2-SUB: PURELY P2P RJBLISH/SUBSCRIBE CHAP. 8

Vicinity
(ring links

Vicinity
overlapping

Peer Sampling
(randam links)

-

Vicinity Vicinity
(ring links) (ring links)
Vlcmlty gossip V|cm|ty
overlappini overlapping
Peer Sanpling Peer Sampling
random links (randam links)
Vicinity
& (ring links)
o\%\ S
%
Vicinity
overlapping

Pee Sampling
rardom links

Figure 8.7: Layered communication. Each layer of a nodeipgs®xclusively
to the respective layer of other nodes. Interaction betwagers is restricted to
passing around links within a single node.

SEC. 8.6 BUILDING THE DISSEMINATION OVERLAY 177

can safely assume that no subscriber in the whole networktéseisted in their
event(s).

In the following three sections we will explain in detail tbperation of each
layer and the way they interact.

8.6.1. Building Random Links

Random links are handled by the bottom layer in our desigmchwonsists of the
PEER SAMPLING SERVICE, studied in ChapteB. Its purpose is twofold. First, it
keeps the whole set of subscribers connected in a singliéi@areven in the pres-
ence of churn or large scale failures. Connectivity is alto let publishers and
new subscribers find their way to their appropriate neighbod sets, irrespec-
tively of wherethey initially joined the network. Second, it constitutesaurce
of links selected uniformly at random from the whole netwoRandom links do
not play a direct role in event dissemination, but are funelatal for VICINITY
(in this case for both instances of it), as we have seen in €hép

8.6.2. Building Overlapping-Interest Links

Overlapping-interest links are discovered by the middietaconsisting of the
VICINITY protocol. The operation of MINITY has been studied in Chapter

Of particular interest is the selection function we applyehelt is based on
the notion ofsubscription distangewhich we introduce as a measure of subscrip-
tion similarity. The subscription of a node defines an N-disienal rectangle,
which we will refer to as ithyper-rectangle We define the distance between two
subscriptions to be 0 (zero) if they intersect (overlapgimngrest nodes), or the
Euclidean distance between their hyper-rectangles otherw

More formally, the distance between two subscribe@nd Q with subscrip-
tions

subscription oP: A e [p"" p"¥, i=1...N
subscription oQ: A € [q™",.q", i=1...N

is given as follows:

0 , overlapping;

distancéP,Q) =

\/Zl (min{ & gmax} — max{pm'”,qim”‘})2 , honoverlapping.
(8.1)

178 SuB-2-SUB: PURELY P2P RJBLISH/SUBSCRIBE CHAP. 8

Let us now take a look at the incentives behind this distanoetion. By
applying it in selecting neighbors, nodes concentrate guigag links to nodes
of gradually closer, and eventually overlapping interektswever, no preference
is made among different nodes of overlapping interestsjmgeakl of them equally
likely to be kept or discarded from thel®INITY view during gossiping. This way,
a subscriber gets to eventually “see” all nodes with soméapging interests.

8.6.3. Building Ring Links

The top layer in our architecture (Figud®%) is in charge of building ring links. It
consists of the YCINITY protocol too, albeit with a small modification: it adopts
a view ofvariablelength, as opposed to fixed length in the standard versiadmeof t
protocol. This reflects the variable number of ring links esanaintain.

It is worth noting that the top layer receives input from bdawer layers,
as can be seen in Figu&6. Indeed, when two nodes gossip in the context of
the top layer, each of them merges all its views (i.e., inclgdhe ones for the
random and overlapping-interest links) into a single ciomtia It subsequently
applies the VcINITY selection function (described below) on this container to
select the nodes that are eligible as ring neighbors for thersmode, and sends
them accordingly. Similarly, when receiving links from tbgher node, it merges
them with its current views from all three layers, and apptiee selection function
again, this time to select ring links for itself.

An essential element for building ring links is the assaa¥ICINITY selec-
tion function. The selection functio&k, P, D), goes through the node descriptors
in setD, and selects the ones that qualify as ring links for nBdélore specif-
ically, it goes through the nodes if? in increasing sequence ID order (starting
from the ID of P and cycling when reaching the maximal sequence ID) and se-
lects a node only if its subscription interse@'s subscription subspace at some
region not yet covered by already selected subscriberss fiicess is then re-
peated, but now iterating in decreasing sequence ID ord#e that the argument
k, which normally determines the number of nodes returne& kig completely
ignored by this selection function. The pseudocode of tihecten function is
shown in FigureB8.8.

Another point deserving illumination is the representatid the not-yet-covered
subscription subspace & and the way we subtract hyper-rectangles from it. It
is represented by means of a new type, caligderspace A hyperspace is, in
turn, represented by a collection of hyper-rectanglesstituting itscomponents
Subtracting a hyper-rectangle from a hyperspace consissguentially subtract-
ing it from each—interesecting—component hyper-rectarafl the hyperspace.
A hyper-rectangle intersects a hyperspace, if it intessany of the hyperspace’s
component hyper-rectangles. The pseudocode for the pgrslass, along with

SEC. 8.7 BEVALUATION 179

function S(k,P, D) // VicINITY selection function for ring links
var uncovered HyperSpace
var selected set of Node init0
for directionin {ascending,descendihg
uncovered— P.hyperRect
foreachQ € D from P.id by direction
if Q.hyperRecintersectsuncoveredhen
uncoveredsubtractHyperRed{.hyperRect)
selected— selected+ {Q}
end if
end foreach
end for
return selected

Figure 8.8: The VCINITY selection function for building ring links, in pseu-
docode. It selects ring links for nod® out of the set of node descriptofB.
Argumentk, determining the number of nodes that should be returndukistan-
dard version of WCINITY, is not taken into account.

its method for subtracting hyper-rectangles, is preseimédgure8.9.

Let us, finally, explain how we subtract hyper-rectanglesrfreach other. To
subtract hyper-rectanglefrom v, we sweep along every dimension, one at a time,
extracting fromv chunks (smaller hyper-rectangles) that do not intersettt win
that dimension. We stop after going through all dimensioiite outcome of
the subtraction is the collection of chunks we have exticiehich essentially
constitute a hyperspace,— u. Subtracting another hyper-rectangle is done by
subtracting it from each component hyper-rectangle of rggeecev — u, as de-
scribed in the previous paragraph. The process of hypésmgte subtraction is
illustrated in a two-dimensional example in Fig@&d.0

8.7. EVALUATION

In this section, we evaluateuB-2-SuB by simulation under synthetic sub-
scription workloads. We focus on four key issues: overlaystauction, hit ratio,
propagation speed, and complexity for publisher and siliicjoins. Spam ratio
is not considered, as it is fundamentally eliminated by @sigh.

We built and evaluated8-2-SuB on PeerSim, an open source Java simula-
tion framework for P2P protocol$eerSin

180 SuB-2-SUB: PURELY P2P RJBLISH/SUBSCRIBE CHAP. 8

classHyperSpace
var componentsset of HyperRect

method subtractHyperReaty
foreachv € components
if uintersectss/ then
components— components-v
components— components v.subtract()
end if
end foreach

Figure 8.9: The HyperSpace class.

8.7.1. Experimental Setup

In lack of real-world subscription datasets, we generayathetic ones as follows.
N-attribute subscriptions were represented\asanges in[0...1], one for each
attribute. A range’s center was chosen following the repeattribute’sinterest
distribution A range’s width was determined by the attributeith distribution

In each experiment we applied the same interest distributi@ll N attributes:
eitheruniformor power law The former represents a natural unbiased workload.
The latter, known agipf, is admitted to be a good approximation of interest popu-
larity and results in subscription sets closer to expeatethsbehavior, exhibiting
popular and rare values. It also results in more interestixgeriments, as there
is higher overlap around the “center” of the interest spaoel, lower towards its
edges, resulting in rings of various lengths. The widthritistion was fixed to
power lawcentered at O, witlt = 4, to account for both wide range and (nearly)
exact subscriptions.

In evaluating $B-2-SuB we considered schemes of up to five attributes. The
number of subscribers was fixed to 10,000 for all experiments

We tested each experiment’s effectiveness by observingiisemination of
10,000 test events. Test events were picked at random,iegsach one had at
least two matching subscribers, to make dissemination mgamh

Finally, with respect to the RGCAST dissemination algorithm, nodes for-
warded events to theiwo ring neighbors, and tonematching subscriber (if any)
chosen from their overlapping-interest neighbors. Thaevents were dissemi-
nated with a fanout of three.

SEC. 8.7

BEVALUATION 181

(a) We want to subtract rectangle (small, with
dashed outline) from rectanglglarge, shaded).

(b) We first sweep along thedimension, detaching
parts ofv not intersecting withu. Rectangleris split
in rectanglesvy, v», andvs. Note that the overlap
with uis isolated in a single new rectangie, which
matcheai in thex dimension.

(c) We, then, concentrate on, the only rectangle
that still intersectas. We sweep along thg dimen-
sion, splittingv, in rectanglessq, Vop, andv,s. The
overlap withu has now been isolated to rectangle
Vo2. Note that at this point we have looped through
all dimensions. Consequently, the rectangle still in-
tersectingu (v22) constitutes an exact overlap of
We, therefore, remove it altogether.

(d) The set of rectangles we are left with, constitute
the outcome of the subtractian- u.

Figure 8.10: Example of rectangle removal in a two-dimemsispace. First
sweeping along the and then along thg dimension. Generally, in aiN-
dimensional space, we would carry on the same process firdithensions.

3 attributes

5 attributes

182 SuB-2-SUB: PURELY P2P RJBLISH/SUBSCRIBE CHAP. 8

Uniform distr. Power law distr.
100 100
80 80 -
60 - 60 -
40 - 40 -
20 “ 20 H
0 HH ““““““““““““““ 0 ”H “““““““““““““““““““
1 11 21 31 1 11 21 31
cycles cycles
100 100
80 - 80 -
60 - 60 -
40 - 40
20 A ’\ 20 A "
0+ (JL “““““““““““““““““““ 0 4+ ‘FL‘H ““““““““““““““““““
1 11 21 31 1 11 21 31
cycles cycles (5 attributes, power law distribution)

Figure 8.11: Construction of the rings in time. Light bare®whthe percentage
of ring links already in place. Dark bars show the percentaigengs that are
complete. 10K nodes.

8.7.2. Jump-starting SJB-2-SuB

We first test the efficiency of our algorithm in jump-startia@us-2-SuB overlay
from scratch. Nodes started gossiping at the same timengdween initiated
with a single random link in their €CLON views, ensuring the overlay formed a
connected graph. We recorded the topology evolution byikegegtatistics over
the ring links associated with each of the 10,000 test events

Figure8.11shows the evolution of ring construction per cycle, for fexper-
iments. We can see that after 40 cycles, all rings are fullyipe

Having confirmed that rings are constructed in a small nunaofbexycles in
all cases, the remaining evaluation focuses on a singleriexpet, namely the
one with three attributes and power law interest distridouti This experiment is
the most interesting one for testing event disseminatiah @opagation speed,
as the rings it involves range from very small (2 subscrip&ygjuite large (246
subscribers). In five-attribute schemes, rings are ttiviglhort (2-3 subscribers)
due to the very large subscription space. The distributibring lengths for all
experiments is depicted in Figugel2

SEC. 8.7 BEVALUATION 183

10000

1000 5 attr, power law

J

H
o
&

3 attr, uniform
100 ¢

#rings

3 attr, power law
e

10

5 attr, uniform

T

0 50 100 150 200 250
ring length

Figure 8.12: Distribution of ring lengths.

100

80

60 1

40 4

20 +

cycles

Figure 8.13: Event dissemination. Light bars show the Hioror non-complete
disseminations. Dark bars show the percentage of disséornisahat were com-
plete (events delivered to all their matching subscribet8K nodes; 3 attributes;
power law interest distribution.

8.7.3. Event Dissemination

As mentioned earlier, events are disseminated by meansedRthc CAST dis-
semination algorithm (Sectiof.5.]). Nodes forward events to theiwo ring
neighbors, and t@mne matching subscriber picked randomly from the view of
overlapping-interest neighbors.

Figure 8.13 presents the performance ob&-2-SuB with respect to event
dissemination. It is worth noting that, by comparison touf@&B.11(upper-right),
complete dissemination is achieved ewrforeall rings are in place. This comes
as a result of (also) forwarding across random overlappitgrest links.

184 SuB-2-SUB: PURELY P2P RJBLISH/SUBSCRIBE CHAP. 8

hops to complete dissemination

3 attr, power law ‘
0 50 100 150 200 250
ring length

Figure 8.14: Hops to complete event dissemination, as aitumof the number
of matching subscribers (ring length). 10K nodes; 3 attebupower law interest
distribution.

8.7.4. Propagation Speed

We now examine the speed, in terms of the number of hops atvelrients spread.
We are specifically interested in the number of hopsclamplete dissemination
that is, the number of hops elapsed from the moment a publisieers an event
to some matching subscriber, until the event reaches themasof them.

Figure 8.14b) shows the number of dissemination hops as a functioneof th
number of subscribers matching the respective events. rigléhe number of
hops increases with the number of matching subscribers. eMeryvas a result
of short-cutting the rings in disseminating events, thiatien is of logarithmic
fashion.

8.7.5. Single Node Joins

Jump-starting 88-2-SuB comprises a worst-case scenario, as the whole overlay
starts from a completely non-clustered state. We now takelaat the other end
of the spectrum, measuring the number of cycles it takesglesimode to join an
already converged overlay.

Starting from the converged state of our experiments, eablscsiber was
individually wiped out of the network. That is, it was removigom the network
along with all links to it. Then it was let to rejoin, and thember of cycles to
fully rejoin was recorded. Joining the network involves lajlding appropriate
ring and overlapping-interest links to other nodes, andb@)oming known by
other nodes. A node was considered to have fully rejoinedtieday wherall its
ring links (i.e., outgoing and incoming ones) were in platkee number of cycles
it took to rejoin the overlay gives the distribution showrFigure8.15

SEC. 8.8 RELATED WORK AND CONCLUSIONS 185

1000 —m———————— 10000

o 100 @ 1000 |

Q (]

° ©

o (]

c c

L * 100 |
1 (WM D 1 0 bbb
0 10 20 30 40 50 60 0123458678

cycles for SUBSCRIBER joins # cycles for PUBLISHER joins

Figure 8.15: Distribution of cycles it takes subscriberd pnblishers to join.

For publishers, on the other hand, joining is a simpler taskthey are in-
terested only in reachingny matching subscriber, independently of its sequence
IDs. Figure8.15also shows the distribution of cycles it takes publishermiio,
starting from a random node. It is worth noting that all 1@ @@iblishers we tested
joined in five or less cycles. This is important, as a publiste:n safely assume
there is no subscriber matching its event(s) after a lowstiwl of cycles (i.e., in
the order of 10 or 20).

8.8. RELATED WORK AND CONCLUSIONS

Scalability of peer-to-peer systems makes them naturalidates to imple-
ment large-scale publish/subscribe systems. In this ehape presented the de-
sign and evaluation of @-2-SuB, a scalable, self-organizing peer-to-peer ap-
proach for content-based publish/subscribe in collabeanvironments. 8B-
2-SuB deploys an unstructured overlay where subscribers artechbin efficient
dissemination structures, based on shared interests. eTbdbt of our knowl-
edge, ®B-2-SUB is the first attempt to build publish/subscribe overlaysgsi
epidemic-based algorithms, thus exploiting their abitdyhandle dynamic envi-
ronments.

Unlike SUB-2-SUB, previous peer-to-peer approaches for content-based pub-
lish/subscribe have mainly focused on structured overl&mong them, Megh-
doot [Gupta et al. 2004uses an extension of the CAN DHRatnasamy et al.
20011. It maps subscriptions to a2k-Euclidean space, whekeis the number
of attributes. Each attribute is represented by two dinmrssicorresponding to its
minimum and maximum allowed values respectively, allowimgange subscrip-
tions. Unlike $yB-2-SuUB’s autonomous and self-contained operation, Meghdoot

186 SuB-2-SUB: PURELY P2P RJBLISH/SUBSCRIBE CHAP. 8

employs a separate set of dedicated nodes for storing $pti@es and dissem-
inating events. Meghdoot deals with sparse interest bigtdn with CAN zone
replication, which may be computationally expensive tonten in highly popu-
lated parts of the space. Terpstra et @erpstra et al. 20Q3roposed to leverage
the properties of the Chord DHBfoica et al. 20010 implement an event filter-
ing system. Distributed nodes are dynamic brokers orgdriiza graph. They use
subscription merging and covering to provide scalabibiigting similarly to tradi-
tional content-based filtering systems based on a dedisatedf brokers. How-
ever, such a set of brokers may be hard to maintain efficienthighly dynamic
environments. Finally, Costa et al. proposed to use epickased algorithms to
enhance reliability of existing publish/subscribe systd@osta et al. 2003

We conclude that $8-2-SuB is an appealing alternative to existing solutions
for content-based publish/subscribe. It offers a scaladuldonomous, and self-
organizing system, combining the resilience of epidengisda overlays with the
expressiveness of the content-based model.

CHAPTER9

Conclusions

In this dissertation we explored gossiping protocols fdf-sgyanization, and
demonstrated their power in a number of different settifigs final chapter pre-
sents our observations from the research conducted, gildopéree categories.
First, we discuss conclusions regarding randomized oygriecond, conclusions
regarding structured overlays, and, third, conclusiomsnfiour gossip-based ap-
plications. Finally, in Sectio®.4 we discuss future directions for our research.

9.1. RANDOMIZED OVERLAYS

We present our high-level observations first, followed btaded conclusions
afterwards.

9.1.1. High-level Observations

In Chapters2 and 3 we explored a class of gossiping protocols in which peers
gossip membership information in a more or less random wal.n@ain conclu-
sion from these chapters is that such protocols constitutexaellent choice for
the decentralized construction of unstructured overlaywaoeks that share a lot of
properties with random graphs.

This class of gossiping protocols is particularly appealio massive-scale
distributed applications. The reasons can be found in aiir-rével observations
from Chapter and3:

Decentralization Gossiping protocols are by nature fully decentralized. yThe
operate in a completely distributed way, by each node maintonly a
very small, partial view of the network, and acting basedawmal decisions
exclusively.

188 CONCLUSIONS CHAP. 9

Self-organization and Adaptivity The gossiping protocols we explored in Chap-
ters2 and 3 are self-organizing. The behavior of nodes relies enticaly
local decisions, and the communication graph (i.e., thelaygis defined
exclusively by local knowledge of the nodes, yet the systenverges as
a whole towards certain global properties. In the case afoidt changes,
gossiping protocols have shown to be very adaptive. It ighvooting that
in our experiments, overlays converge to the same globgiepties irre-
spectively of the bootstrap method used. Self-organinatemders these
protocols attractive for internet-scale systems, for \wteégplicit control is
either infeasible or, at least, very expensive.

No need for administration As a result of their self-organizing nature, these gos-
siping protocols are also administration-free. Globalpemties are not im-
posed through any central—and possibly expensive—adtratien and
control, but come “for free” as emergent properties of godmsed over-
lays.

RobustnessWe observed that randomized overlays formed by our goggimio-
tocols demonstrate remarkable resilience to large-scalerés and high
node churn, even when each node maintains only a couple ehdouat-
going links. This property is particularly desirable for ssave-scale dis-
tributed applications, as it keeps all nodes connected ingescluster de-
spite failures and node churn, prohibiting (irrecoveralpiartitioning of the
set of nodes. Gossiping protocols are, therefore, valuabke fundamental
substrate taking care of membership management.

Self-healing behavior In addition to sustaining large-scale failures and highrchu
the gossiping protocols we explored also demonstrate gtseff-healing
behavior. That is, after a—possibly severe—network chatigeirbs the
overlay, nodes swiftly reorganize themselves and convesyef new to
global properties. In the case of continuous churn, thelayerngages in
a continuous self-healing process, maintaining its glgivaperties close
(depending on the churn rate) to the ones in a stable network.

Scalability The gossiping protocols we explored in Chapt2imnd 3 are inher-
ently scalable. Irrespectively of the network size, eadtfenmaintains only
a small, fixed sized, partial view of the network, and excleangmessages
with other nodes at a fixed rate. The size of the network doebane any
effect on the memory, processing, or network load of nodessektially,
gossiping protocols are infinitely scalable with respedh®load of nodes.

Local randomness We concluded that the protocols explored in Chagteon-
stitute a source of “random link generator”, providing eadde with a

SEC. 9.1 RANDOMIZED OVERLAYS 189

stream of links to randomly chosen other nodes, in a way amil a ran-
dom number generator providing a program with random nusibEhis is
why we describe them collectively as thef#ER SAMPLING SERVICE. This
feature is important to a number of applications, some ottviaie explored
in Partll of this dissertation.

Simplicity Last but not least, gossiping protocols are very simple tnnea This
is particularly important for systems of so large scale, rghthings can
easily get out of hand.

9.1.2. Detailed Observations

Apart from these high-level observations, by conducting tbsearch presented

in Chapter2 and3 we came across a number of specific, fine-grained questions.
Delving deeper into the details, we pinpointed a number sigteissues that need

to be addressed, the most important of which are laid out here

View length Our protocols define a very small view length, consisting @
couple of dozen links out of possibly hundreds of thousanefiritely, the
reason for imposing such a short view length is not to save ongra very
cheap commodity nowadays. In fact, some applications,cipétly the
ones related to content searching, would benefit from adasigev length.
However, there is a tradeoff between the chosen view lengihitee validity
of links in dynamic environments. We observed that the lathe view
length, the higher the percentage of dead links in node viSmzall views
allow nodes to cycle through their neighbors faster, remgwead links in
a more timely manner.

Peer selectionPeer selection addresses the following question: “Whiclitsof
neighbors should a node select to initiate gossiping wii®uld it prefer a
new head peer selectignan old ail peer selectio)y or a randomrandom
peer selectionlink from its view? Head peer selection is a bad idea: a
new link points to a recently contacted neighbor, therefohas little new
useful information to offer. Especially selectittge newest link is the worst
option, as it points to the last contacted neighbor, whiclamsehat a node
keeps gossiping with that same neighbor continuously. We bancluded
that peer selection should be set either to tail or randomfadh, these
two options have very comparable effects, with tail peeec@n slightly
outperforming random in most cases.

Directionality of communication When nodeP initiates gossiping with nod®,
who should send links to the other one? It can be eithgoush-only, Q

190 CONCLUSIONS CHAP. 9

(pull-only), or bothP andQ (push-pul). Our experimental analysis showed
that the only policy that results in adaptive overlays istppasll, that is,
communication should be bidirectional. Using the pullyofpush-only)
policy, a node having very low indegree (outdegree) has loances of ad-
vertising itself to other nodes, and, therefore, highemcles to get discon-
nected. Such scenarios are common. For instance, a hode mdaysé|f
having a low indegree because it just joined, or a low outekedrecause
some of its neighbors died.

Garbage collection policy After exchanging views, a node typically finds itself
with more links than its view size, so it should discard sorfthem. Which
ones should it discard? The newest links, the oldest onestasmxdom sam-
ple? And how many? In our generic gossiping framework of @Gérap
we are modeling this with theealing parameter HWe conclude that dis-
carding theH oldest links after each gossip exchange helps the netwark ge
rid of invalid links (links pointing at disconnected nodesjon. The higher
the value ofH, the faster dead links are removed, therefore, the betéer th
self-healing behavior of the network. However, there isad¢off here. The
higher the value oH the more skewed the indegree distribution becomes,
which, in turn, is a disadvantage with respect to balancad thstribution.

Copy links or swap links? This question addresses the way nodes exchange views.
When gossiping, what should a node do with the links it seadts gossip-
ing counterpart? Should it still keep thewppylinks), discard themgwap
links), or something in-between? Swapping links resultiowmer cluster-
ing, resembling random graphs. This, in turn, has threergtdges. First, it
provides nodes with highly uncorrelated neighbors, legdinbetter local
and global randomness. Second, it increases the resil@rite network
to catastrophic failures. Third, it results in more concatad indegree dis-
tributions, having a positive effect on load distributic@n the other hand,
copying—as opposed to swapping—Ilinks results in highestehing, form-
ing overlays that resemble small worlds. The load is lesslgwdistributed
across nodes. However, there is an abundance of links aiftérgossip ex-
change, which permits us to increase the healing pararhigtaraking the
network more resilient to high churn.

Apparently there is no single best solution for all desiggués. Our research
depicts the tradeoffs imposed by different policies. Delieg on the priorities in
a particular network, the designer can handle the resgettdeoffs accordingly.

SEC. 9.2 STRUCTURED OVERLAYS 191

9.2. STRUCTURED OVERLAYS

In Chapter4 we presented the framework consisting ofc\WITY and the
PEER SAMPLING SERVICE, that allows networks to self-organize into a given
target topology. The target topology is expressed by mebaselection function
that determines which neighbors are optimal for every node.

The overall conclusion from this part of our research is thattopology con-
struction framework is flexible enough to build a wide vayief topologies. In
particular, the framework excels for topologies demortstgahigh correlation of
nodes that share common neighbors, embodying the printipefriend of my
friend is also my friend”. That is, topologies where two nedaring a common
neighbor have a high chance of being direct neighbors as #etlnetworks with
lower correlation between nodes, our framework still massatyp construct the tar-
get topology, although not as efficiently, as the discovéigppropriate neighbors
relies on random encounters.

The major conclusion regarding topology construction &t ihis crucial to
combine two layers. One layer, namely thec\WWITY protocol, strives at locating
neighbors of close proximity in the target topology. The artgance of this layer is
straightforward: it establishes the target topology linksontinuously improves
these links by probing neighbors for links to new, even “eldseighbors, better
approximating the ideal neighbors in the target topology.

The other layer, in our case implemented by tlEER SAMPLING SERVICE,
keeps nodes connected in a randomized overlay. This isatriacitwo reasons.
First, it prohibits partitioning of the set of nodes, whiclowid occur in no time
if nodes concentrated only on their “close” neighbors. Inagtiponed overlay,
nodes that happen to join in the “wrong” partition have no wayraverse the
network to discover their appropriate neighbors. Secanpravides nodes with
random links all over the network. This is vital for newlyn@d nodes to reach fast
their topological vicinity in an already converged overlagther than traversing
the network in numerous small steps. Random links serve iray similar to
long-range links in small-world networks.

Concluding, the principal advantage of our topology cargton framework
is that it is simple and generic. Its simplicity stems from $elf-organizing na-
ture. Each node autonomously carried out a sequence ofesstgps and operates
based on local decisions exclusively, eliminating the refeahy deployed infras-
tructure. Its generic character is derived from its flexipito form a wide variety
of target topologies, given the appropriate selection tionc It constitutes, there-
fore, a very convenient—yet efficient—way to form arbitrémpologies, either for
prototyping or for the working version of massive-scaleetgcalized systems. It
is particularly suitable for systems where the exact finpbtogy is not known be-

192 CONCLUSIONS CHAP. 9

fore deployment, as it permits fine tuning, or even radicaingfes of the topology
at run-time.

9.3. APPLICATIONS

The second part of this dissertation dealt with applicatibased on the pro-
tocols presented in the first part. The applications inaludeiting table manage-
ment (Chapteb), information dissemination (Chapté}, semantic overlay net-
work construction (Chapter), and a publish/subscribe system (Cha@er All
four applications employed gossiping protocols to orgartze nodes in certain
topologies in a fully decentralized and autonomous manivéh the exception of
the first application, routing table management, which ttres our first efforts
towards gossip-based structuring, all other applicatamesbased on the combina-
tion of VICINITY with the FEER SAMPLING SERVICE.

Chapter5 demonstrated the potential of the&elER SAMPLING SERVICE in
forming a structured overlay. As mentioned already, this war first system to
derive structure from randomness. The main conclusion drfa@m this chapter
is that randomized gossiping protocols can be harnessedatecstructure, in ato-
tally decentralized, self-organizing fashion. We alsoested that the robustness
and self-healing properties common in gossip protocolsetened in building a
structure. Although the research presented in this chaptesw outdated by the
VICINITY protocol, the conclusion it offered was valuable in conitiiguour work
towards that direction, that is, gossip-based topologystantion.

Chapter6 employed MCINITY and the BER SAMPLING SERVICE for infor-
mation dissemination. Gossiping protocols have beenegbplieviously foprob-
abilistic information disseminationHirman et al. 1999Kermarrec et al. 2043
Our research extends previous work by complementing piibst@ab with deter-
ministic dissemination. The chief conclusion of this chapter is thatcombi-
nation of probabilistic with deterministic—together @ahybrid—dissemination
constitutes a very attractive framework for broadcastiressages efficiently and
inexpensively, in a completely decentralized way. Proisin dissemination
(i.e., forwarding a message at random) is achieved throagtam links estab-
lished by the BRER SAMPLING SERVICE, and results in fast diffusion of mes-
sages all over the network. Deterministic disseminatios ,(forwarding a mes-
sage across well defined links) is carried out over a stradtoverlay formed by
VICINITY, and ensures that every message reaches all nodes.

In Chapter7 we employ gossiping to enhance distributed content-basadis-
ing. We employ the topology construction framework atWiTY and the BER
SAMPLING SERVICE to build a semantic overlay network linking nodes of related

SEC. 9.4 FUTURE DIRECTIONS 193

interests. When node issues a query, it first asks a few oéitsgatically closest
peers, and if the query is not satisfied it resorts to the uyider search mech-
anism (such as flooding, random-walks, super-peer indextay). Our simula-
tions, based on real-world traces, show that about 30% aftleeies are satisfied
this way.

The idea of building a semantic overlay network to enhanageru-based
gueries is not new. However, all previous systems dependéoristics to guess
which peers out of the ones that recently served a node mahséful in serving
the same node again. As a consequence, such systems gstgrefiective only
after a node has issued a number of queries. Also, they @itip)iassume a static
network, and no changes in user interests, otherwise lioksated in the present
are likely to be useless in the near future.

Unlike these systems, our protocol is—to the best of our kedge—the first
system that handles node churn and dynamic user interésia highly adaptive,
fast converging, yet lightweight epidemic-style solutitimat builds and maintains
semantic overlay networkzroactively

Finally, Chapte8 introduces $B-2-SuB, a fully decentralized, autonomous
solution for attribute-based publish/subscribe suppgréxact and range queries.
SuB-2-SuUB is based on a self-organizing overlay, that groups nodeveriap-
ping subscriptions together, so that all nodes interesteadiven event can dis-
seminate it among themselves in a completely autonomous way

Our major conclusion from this chapter is that building alaobrative pub-
lish/subscribe system can benefit from the scalability agteptivity inherent in
P2P systems. In additionu8-2-SuB demonstrates the power of gossiping proto-
cols in building intricate structures capturing relatidretween peers. Finally, we
conclude that unstructured overlays can be very promisingp@iblish/subscribe
systems, a research area currently dominated by work oradiget, hierarchical,
and structured P2P systems.

9.4. FUTURE DIRECTIONS

This dissertation investigated gossiping protocols armiveld their power in
a number of different applications. In effect, our work hgswed some new
tracks in the area of gossip-based self-organization fassmea scale decentral-
ized systems. Undoubtedly, this is a large area that carsfitlly covered in a
single dissertation. There are a number of directions irctvlour research can be
complemented and extended.

An important next step in our research is the replacementeabgic view
exchanges with a reactive exchange mechanism. With suclbtacpt, nodes

194 CONCLUSIONS CHAP. 9

would locally determine and dynamically adjust their gpssj frequency based
on observed system dynamics, such as node churn, failw®, td information
dissemination needs. We envisage that this replacemelieadl to a better uti-

lization of network resources, and incur only minimal castisdetecting failed

nodes and keeping membership information up to date. A fiegt ®wards reac-
tive adaptation of the gossiping frequency can be found mrecent work on a
gossip-based clock synchronization protodeldnicki et al. 200§

Expanding on adaptation, it will be interesting to build aajgtive version of
the REER SAMPLING SERVICE, that dynamically adjusts trevapping parameter
(S and thehealing paramete(H), to optimize system behavior given the current
network conditions. Such a system would switch to a moréd falédrant mode of
operation in the face of high churn, and would graduallytsisifan overlay with
more balanced degree distribution and lower clusteringp@system stabilizes.

To further limit overlay maintenance costs, network proitynshould be taken
into account. Network proximity estimation can be providbdough a decen-
tralized network coordination system such as Sk&8eymaniak et al. 20Q4or
Vivaldi [Dabek et al. 2004 In a proximity-aware gossiping protocol, view ex-
changes among nearby peers should be favored—that is, efraquent—than
among distant ones. This, however, would have an impact erconnectivity
and robustness properties of the emerged overlays. Detegrihe right balance
between proximity-aware gossiping and desired overlaysbiess constitutes a
challenging research topic.

Overlay management is not the only service proximity-awgwssiping can
be useful to. Applications can benefit from proximity-awasesrlays too, lower-
ing communication costs and enhancing application effagieMore specifically,
input from network coordination systems, such as Skole andldi, can be in-
corporated in the WCINITY selection function of an overlay-based application,
resulting in proximity-aware overlays. The implicationssoich overlays, as op-
posed to a proximity-unaware ones, in efficient broadcgstihinformation are
clear.

Another research direction worth following is the class o§sgjping protocols
featuring variable view lengths. Our gossiping protoculgl{ the exception of the
top layer in B-2-SuB) impose a fixed length on node views. The underlying
motivation is to keep the number of neighbors per node lowaodrollable, so
that dead links are discarded promptly. An alternative igripose a maximum
lifetime for each link and discard it after it expires. Thiteanative is employed
by the Kelips protocolGupta et al. 2003 It is not known, however, how overlay
properties, such as the degree distribution, the percemtdead links, clustering,
etc., are affected by node churn and failures. This familgagsiping protocols
certainly deserves further research.

SEC. 9.4 FUTURE DIRECTIONS 195

All research presented in this dissertation is experimef@assiping protocols
exhibit particularly chaotic behavior that is hard to modealytically. Theoretical
analysis has not been in the focus of this work. Neverthelessinteresting to
mathematically analyze the behavior of gossiping promanid formally validate
their properties. Our recent work iBpnnet et al. 2006 analyzing a simplified
version of GrcLON without the age field, constitutes a first attempt in thatdire
tion.

With respect to information dissemination, this disséstathas focused on
push-based approaches. This is the case in both protocalisglavith informa-
tion dissemination, namely thel®RsCAST protocol (Chaptei6) and the $B-
2-SuB publish/subscribe system (Chap&r Combining push-based with pull-
based dissemination should yield a significant improvenredissemination ef-
ficiency. However, the details of such an approach have befardd to future
work.

Some applications may require higher reliability and perfance guarantees.
Gossiping protocols, and P2P systems in general, offerdffst solutions. An
interesting direction of research would be in designingridybystems, that consist
of a combination of centralized and P2P components. In sgettiag, centralized
components will provide hard guarantees on reliability,l&/fP2P components
will add scalability to the system. Napster was a very susfaésxample of such a
hybrid system INapste}. Its eventual failure was due solely to copyright violatio
issues.

Security has not been discussed in this dissertation. Wesless, security is
a crucial aspect for any communication framework todayhindase of gossiping
protocols, security comes in two different flavors. Firgcuarity at the overlay
maintenance level. Malicious peers may deliberately trgaose damage to the
overlay, e.g., by reporting fake neighbors, discardingtiiegite neighbors, achiev-
ing a very high degree by gossiping at a very fast pace, etchi&lgsms should
be in place to shield gossip-based overlays from such roakcpeers. Second,
security at the application level. Malicious peers may sefto forward messages,
respond to other peers, and generally contribute to a P2lRafpn. Security at
this level is application specific, and should be dealt wightle respective ap-
plications. We believe that security is the main factoi &iihdering the massive
deployment of peer-to-peer systems for critical applaadinowadays. Its impor-
tance, therefore, is key to the commercial success of pepeér protocols.

In a broader sense, our vision for the future is to exploitREER SAMPLING
SERVICE, CYCLON, VICINITY, and possibly new gossiping protocols for a mul-
titude of diverse peer-to-peer applications. We envistanprotocols introduced
in this dissertation as forming a basic background procgggporting, organiz-
ing, and managing overlay networks affily scale across the Internet in a fully

196 CONCLUSIONS CHAP. 9

decentralized way.

SAMENVATTING

Epidemisch Gebaseerde
Zelforganisatie in Peer-to-Peer
Systemen

ACHTERGROND

Met rede kan gesteld worden dat we in het tijdperk van de conicatie rev-
olutie leven. Communicatie is nog nooit zo aanwezig, mdssaal en goedkoop
geweest. Computernetwerken in het algemeen en het Iniarhet bijzonder spe-
len een katalyserende rol in moderne samenlevingen. Dendzagehet Internet
slechts een onderzoeksgereedschap was, of een commemicttel voor slechts
academische en militaire instellingen, liggen ver achiex. @oegang tot het Inter-
net heeft zich verbazingwekkend snel ontwikkeld voor eeads breder wordend
publiek.

Vroege Internet diensten werden ontwikkeld rondom twerqipes: het zo-
geheterclient/server modeén centralisatie. Het client/server model maakt een
expliciet onderscheid tussen computers (“knopen”) diedienst leveren (de zo-
geheterserver3 en computers die diensten afnemendlienty. Centralisatie be-
helst dat een dienst op slechts één centraal punt aangelveaatdt, veelal boven-
dien door slechts één computer.

De groei van het Internet heeft laten zien dat een gecesgratie architectuur
niet langer houdbaar is voor een groot aantal diensten zZuetraantal afnemers
(met andere woorden, clients) dramatisch toeneemt. Teolgewhiervan is veel
onderzoek ontstaan naar gedistribueerde systemen, \waai@rngedachte is om
het aanbod van een dienst te verspreiden over meerderensanende comput-
ers. Een dergelijke verspreiding heeft potentieel veerdelen, waaronder een
grotere tolerantie tegen falende computers, verhoogdgggegeerde capaciteit,

198 SAMENVATTING

geografische verspreiding (met als gevolg dat een dienitettdj clients komt),
enz. Clients blijven echter ook bij verspreiding van de sesvelatief passief: het
blijven slechts afnemers.

In de afgelopen jaren is de toegang tot het Internet sterketerd, zowel
in quantitatieve als qualitatieve zin, en is ook de rekenepgsiagkracht van PCs
indrukwekkend toegenomen. Het effect is dat de traditibredatief zwakke client
computers nu zeer krachtige en goed verbonden apparategejorden. Een
gevolg daarvan is dat in veel gevallen hun relatief passiel/éangzaam maar
zeker veranderde naar die van actieve entititeiten in eessahayedistribueerd
systeem. In dit nieuwe paradigma, ook vpeler-to-peer computingenoemd is
het verschil tussen aanbieders en afnemers van dienstdwemen. In plaats
daarvan zijn knopen gelijkwaardig en werken samen om eecifggde dienst uit
te voeren.

Hetpeer-to-pee(P2P) model brengt een aantal uitdagingen met zich mee. De
belangrijkste daarvan is de potentiele schaal waarin P&femsen dienen te op-
ereren. De schaal van deze systemen is gegroeid van graatniagaaal, waarbij
in sommige gevallen miljoenen computers verspreid ovehak Internet samen-
werken, zonder dat er sprake is van enige centralisatie.teEcimet dergelijke
groottes hebben we ook te maken met een hoge mate van iistabibordat
dergelijke systemen continu aan verandering onderheyig zZKnopen in een
P2P systeem laten geen gegarandeerd patroon van samargyvaedi. In plaats
daarvan zien we een komen en gaan van knopen en vallen eagbRsibpen
en verbindingen uit. Daarbij komt dat de knopen in een gr@&R Bysteem erg
kunnen verschillen met betrekking tot hun hardware archite, samengestelde
software, en feitelijke kracht zoals uitgedrukt in 0.a. épaciteit van processor,
werkgeheugen, permanente opslag en netwerkverbinding.

Dit geheel maakt de administratie en het beheer van P2Phsystextra kri-
tish. De massale omvang in combinatie met de hoge mate vaardgh in de
samenstelling van een P2P systeem maken expliciete emledndsturing vrijwel
onmogelijk, of op z’'n minst zeer lastig te realiseren. Geéadiseerde oplossin-
gen zijn zeer gelimiteerd als het aankomt om snel en effduifiee houden welke
computers deel uitmaken van een systeem. Deze schaaliosaroblemen kun-
nen enisgzins verminderd worden door bijvoorbeeld h@igche oplossingen toe
te passen. Echter, dergelijke oplossingen zijn dikwijlsptex, introduceren een
forse administratieve last en zijn afhankelijk van de bédzarheid van een klein
groepje cruciale computers. Deze laatste afhankelijkkait aangepakt worden
door het toepassen van replicatie, maar dergelijke opigesi verhogen complex-
iteit en feitelijke beheersbaarheid van de besturing op.zigaarbij komt dat de
omvang van de benodigde besturing sterk afhankelijk is wanrdvang van het
systeem dat bestuurd dient te worden. Een schatting gevenligaomvang is

SAMENVATTING 199

moeilijk, zoniet dikwijls onmogelijk.

De toename van het aantal apparaten dat verbonden is meitdwetet en de
verdere verspreiding van netwerktechnologie laat ziemddatend naar grote sys-
temen van samewerkende computers alleen maar zal toen@ukin ons onder-
zoek anticiperen we een sterke toename van zeer omvangrijgedistribueerde
toepassingen. Derhalve zijn we afgestapt van deternsnisi en expliciete sys-
teembesturing en zijn methoden gaan exploreren voor aatormoanagement in
de vorm van zelfbestuur en -organisatie.

EPIDEMISCHE PROTOCOLLEN

Het doel van dit proefschrift is het verkennen van de uitdggn in het besturen
van zeer grote gedistribueerde systemen, het introducgenieuwe protocollen
en het onderzoeken van hun effectiviteit in huidige en toelitige toepassingen.
Het was hierbij niet de bedoeling om de communicatiemodedlie ten grond-
slag liggen aan het Internet te veranderen daar vele tdepassreeds uitstekend
werken. In plaats daarvan hebben we gezocht naar altereaiossingen waar
huidige benaderingen te duur zijn, niet schaalbaar zijregkadministratieve last
vergen, of gewoon niet toepasbaar zijn.

In het bijzonder heeft het onderzoek zich gericht op hetdesen van zo-
gehetenepidemische protocollemoor de ontwikkeling en onderhoud van P2P
systemen. Het basisprincipe van dergelijke protocolledaiselke knoop regel-
matig een willekeurig andere knoop selecteert om gegevesss uit te wisse-
len. Op deze wijze zal data zich geleidelijk over alle knoperspreiden totdat
elke knoop dezelfde informatie heeft. Een probleem datbljieptreedt is dat
er een willekeurige selectie uit alle andere knopen moettglénden. Echter, een
dergelijke selectie is ronduit onmogelijk indien we te nrakebben met zeer grote
systemen, waar globaal bekeraturateinformatie over de huidige verzameling
van knopen schier onmogelijk is.

In ons onderzoek hebben we gekeken naar epidemische pietocke op
twee manieren afweken van het oorspronkelijke basisgrncien eerste hebben
we de aanname van globale kennis omtrent de verzameling nvapek laten
vallen. In onze benadering hanteert elke knoop een kleia@y weranderende li-
jst van andere knopen, ook wel zijn buren geheten. Dezerijstengen met zich
mee dat een P2P systeem georganiseerd is alaatarerk Ten tweede behelst
de data die tussen twee knopen uitgewisseld wordt in elkl geferenties naar
de respectievelijke buren. Met andere woorden, knopenrimgeen elkaar over
hun buren. Na een uitwisseling worden de respectievelijgeeh (gedeeltelijk)
ververst met referenties naar nieuwe buren. Door exactedstigen welke refer-

200 SAMENVATTING

enties uitgewisseld worden, en welke referenties in devgs buren opgenomen
worden, blijkt het mogelijk om op volledige gedecentratisie wijze dg¢opologie
van het P2P netwerk vast te kunnen leggen.

ONZE PROTOCOLLEN

Een aantal ontwerpkriteria bepalen de eigenschappen viassditerende P2P
netwerken. Wordt de lijst van buren min of meer willekeuragrengesteld, dan
blijkt een zogeheterandom netwerket resultaat te zijn. Wordt een ordening op
de selectie van referenties gehanteerd, dan kunnen sgedifipologieén gecon-
strueerd worden. Deze keuzemogelijkheid heeft tot de vmlgdwee nieuwe pro-
tocollen geleid.

Cyclon In het Cyclon protocokuilen twee knopen referenties met buren. Dit
betekent dat de topologie van het P2P netwerk continu veranéchter,
het blijkt dat macroscopische eigenschappen convergeterhebben we
experimenteel aangetoond dat de gemiddelde afstand ttwgserknopen,
alsook de gemiddelde clusterings coéfficient convergesar de waarden
die men ziet bij random netwerken. Dat betekent dat op elk emdrde lijst
van buren feitelijk overeenkomt met ewrillekeurige selectie van knopen
uit het P2P netwerk.

In het bijzonder blijkt dat Cyclon niet alleen overeenkoemsheeft met ran-
dom netwerken, maar dat het bovendien uitstekend bestaadda snelle
veranderingen in de samenstelling van P2P systeem, of dezepzettelijk
tot stand zijn gekomen, of omdat er fouten zijn opgetredenrsé-veran-
deringen tasten doorgaans de toplogie van het netwerk aaar, @yclon
blijkt hierbij altijd zeer snel te convergeren naar een igigbsituatie. Daar-
bij komt dat elke knoop doorgaans bij evenveel andere kndyadend is,
wat vervolgens weer leidt tot een evenwichtige balanceviag het uit te
voeren werk.

Cyclon maakte onderdeel uit van een uitgebreide studiedeeaffecten van
ontwerpbeslissingen voor epidemische protocollen digaaih van alleen
lokale informatie. Hoewel de functionele gedragingen varptbtocollen
grote overeenkomsten laten zien, blijkt dat extra-furglereigenschappen,
zoals balancering van werk, robuustheid, fouttolerantiezelforganisatie
gevoelig te zijn voor de wijze waarop lijsten van buren wuitkslijk samengesteld
worden na een epidemische uitwisseling.

Vicinity In het Vicinity protocol besluit een knoop alleen die vedea refer-
enties te behouden die aan een bepaald voorkeurskriteraddoan. Een

SAMENVATTING 201

knoop zal op deze wijze geleidelijk buren vervangen dooebutie steeds
meer zijn voorkeur hebben, om uiteindelijk met de optimalesh te eindi-

gen. Op deze wijze zal het P2P systeem zichzelf organisei@reen speci-
fieke topologie die volledig bepaald wordt door de seleatiefie voor pref-

erente buren. Het grootste voordeel van Vicinity is haaegeRe karakter:

door slechts de selectiefunctie te veranderen kan op edig@wijze een

andere topologie ontstaan. Ook blijkt da@randeringvan de selectiefunctie
al snel tot convergente leidt naar de nieuw beoogde orgamisa

Vicinity kan echter niet garanderen dat het P2P netwerk saareend bli-
jft. Derhalve wordt het altijd in combinatie met Cyclon gelt. Deze
combinatie heeft tevens het voordeel dat vergelegen buteindelijk toch
ontdekt worden en derhalve geselecteerd kunnen worden.

Deze twee protocollen zijn gebruikt voor ontwerp en evaéugan vier ver-
schillende applicaties: een systeem voor het onderhoudemouteringstabellen
in zogeheten DHT netwerken; een raamwerk voor efficierfaimatieverspreid-
ing; de constructie van semantische netwerken voor gettatiseerd zoeken; en
tenslotte een collaboratigfublish-subscribesysteem. De toepassing van Cyclon
en Vicinity voor deze vier applicaties is telkens zeer viilgend en illustreert hun
versatiliteit.

GEVOLGTREKKINGEN

Het toepassen van Cyclon en Vicinity leverde een aantatltien op. Ten
eerste bleek uit onze experimenten dat de protocollen émteschaalbaar waren.
Schaalbaarheid is het gevolg van het feit dat elke knoop ashaantal operaties
uitvoert, op een tevoren bepaalde frequentie, en onaflifini<an de grootte van
het P2P systeem. Ten tweede bleek dat onze protocollen e@hgped konden
aanpassen aan gewijzigde situaties in de samenstellingetaP2P systeem. De
combinatie van schaalbaarheid met deze flexibiliteit maake epidemische pro-
tocollen uitermate geschikt voor zeer grote zelforgamisde systemen. Merk op
dat in geen geval er sprake is van welke vorm van centraaldbetaa ook. Glob-
ale eigenschappen worden dus niet centraal opgelegd, masrkals vanzelf
tevoorschijn bij de uitvoering van een protocol.

Uit onze experimenten bleek verder dat de epidemische qutdém bijzonder
goed bestand waren tegen falende knopen en verbindingsentusopen. Deze
eigenschappen komen voort uit het feit dat alle knopen eéjkwaardige rol
spelen, met als gevolg dat het effect van een falende knaobmizt of nauwelijks
verspreidt.

202 SAMENVATTING

Bij massaal optreden van fouten zien we wel degelijk eercedfe het globale
gedrag van de rest van het P2P systeem. Het bleek echter degsdaties, func-
tionaliteit en betrouwbaarheid op voorspelbare wijze afen bij het toenemen
van het aantal falende knopen. Bovendien bleek dat bij esagling optredende
gelijktijdige uitval van een groot aantal knopen, het oetlgven systeem zich
snel herstelde door naar een nieuwe topologie te convergaest de gewenste
globale eigenschappen. Tot slot bleek dat snelle wisselidg samenstelling van
participerende knopen continu gecompenseerd werd docgrge aanpassingen
in de toplogie.

Al deze goede eigenschappen gaan gepaard met een somsemi@agen-
voud: zowel Vicinity als Cyclon zijn protocollen waarvan details zich op feit-
elijke en op uitermate simpele wijze laten beschrijven.Véed is essentieel voor
grootschalige systemen die vanuit zichzelf de natuurlij&ging hebben complex
te zijn. De combinatie van eenvoudige principes en de opatigak inherente
eigenschappen van epidemische protocollen ligt ten gtagdsn onze motivatie

voor het exploreren van hun toepassingen in grootschaétferganiserende sys-
temen.

BIBLIOGRAPHY

Abdelzaher, T., Shaikh, A., Jahanian, F., and Shin, K. (J9R&ast: lightweight multi-
cast for real-time process groups.RTAS '96: Proceedings of the 2nd IEEE Real-Time
Technology and Applications Symposium (RTAS, 'B&ye 250, Washington, DC, USA.
IEEE Computer Society.

Adar, E. and Huberman, B. A. (2000). Free riding on gnutéfiest Monday 5(10).

Albert, R. and Barabasi, A.-L. (2002). Statistical Mectktanof Complex Networks.
Reviews of Modern Physics4:47-97.

Albert, R., Jeong, H., and Barabasi, A.-L. (2000). Errod attack tolerance of complex
networks.Nature 406:378-382.

Allavena, A., Demers, A., and Hopcroft, J. E. (2005). Cotmess of a gossip based
membership protocol. IRroceedings of the 24th annual ACM symposium on principles
of distributed computing (PODC’05).as Vegas, Nevada, USA. ACM Press.

Babaoglu, O. (1987). On the reliability of consensus-bdseitt-tolerant distributed
computing systemsACM Trans. Comput. Sysb(4):394—-416.

Balakrishnan, H., Kaashoek, M. F., Karger, D., Morris, Rg &toica, |. (2003). Look-
ing up Data in P2P System€ommun. ACM46(2):43-48.

Banerjee, S., Bhattacharjee, B., and Kommareddy, C. (2@@)lable application layer
multicast. INSIGCOMM '02 pages 205-217, Pittsburgh, PA.

Barabasi, A.-L. (2002).inked: the new science of networkRerseus, Cambridge, Mass.

Bhagwan, R., Savage, S., and Voelker, G. (2003). Understgiailability. In 2nd
International Workshop on Peer-to-Peer Systehesture Notes on Computer Science,
Berlin. Springer-Verlag.

Birman, K. P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, Mg ainsky, Y. (1999).
Bimodal multicastACM Trans. Comp. SystL7(2):41-88.

Bloom, B. H. (1970). Space/time trade-offs in hash codintdpallowable errorsCom-
munications of the ACML3(7):422—-426.

Bollobas, B. (2001).Random Graphs Cambridge University Press, Cambridge, UK,
2nd edition.

204 BIBLIOGRAPHY

Bonnet, F., Tronel, F., and Voulgaris, S. (2006). Perforogaanalysis of cyclon an
inexpensive membership protocol for unstructured p2playsr In20th International
Symposium on Distributed Computing (DISC 2006)

Broder, A. Z., Frieze, A. M., and Upfal, E. (1994). Existeraz&l construction of edge-
disjoint paths on expander grapl&AM J. Comput.23(5):976-989.

Broder, A. Z., Frieze, A. M., and Upfal, E. (1997). Existeraoa construction of edge
low congestion paths on expander graphs29th ACM Symposium on Theory of Com-
puting, pages 531-539.

Broder, A. Z., Frieze, A. M., and Upfal, E. (1999). Static afyshamic path selection on
expander graphs: a random walk approaghndom Struct. Algorithm44(1):87-109.

Castro, M., Druschel, P., Hu, Y. C., and Rowstron, A. (20@3hximity neighbor selec-
tion in tree-based structured peer-to-peer overlays. dieehReport MSR-TR-2003-52,
Microsoft Research.

Castro, M., Druschel, P., Kermarrec, A.-M., and Rowstron,(2002). SCRIBE: A
Large-scale and Decentralized Publish-Subscribe Infresstre. IEEE JSAC20(8).

Chun, B.-G., Wu, P., Weatherspoon, H., and Kubiatowicz200§). Chunkcast: An
anycast service for large content distribution. Rroceedings of the 5th International
Workshop on Peer-to-Peer Systems (IPTPSBéihta Barbara, CA.

Clegg, M. and Marzullo, K. (1997). A low-cost processor gyanembership protocol
for a hard real-time distributed system.RTSS '97: Proceedings of the 18th IEEE Real-
Time Systems Symposium (RTSS, fdye 90, Washington, DC, USA. IEEE Computer
Society.

Cohen, B. (2003). Incentives build robustness in bittarrdn First Workshop on the
Economics of Peer-to-Peer SysteBerkeley, CA.

Costa, P., Migliavacca, M., Picco, G. P., and Cugola, G. 820htroducing Reliability
in Content-based Publish-Subscribe through Epidemic dtlyms. INnDEBS '03: Pro-
ceedings of the 2nd international workshop on Distributeerg-based systemgages
1-8, New York, NY, USA. ACM Press.

Cristian, F. (1990). Synchronous atomic broadcast formeldnt broadcast for redundant
channelsReal-Time System3(3):195-212.

Dabek, F., Cox, R., Kaashoek, F., and Morris, R. (2004). NMivaA decentralized
network coordinate system. IRroceedings of the ACM SIGCOMM '04 Conference
Portland, Oregon.

Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J., andcatdi (2003). Towards a com-
mon API for structured peer-to-peer overlays. Aroceedings of the 2nd International
Workshop on Peer-to-Peer Systems (IPTPS'B8jkeley, CA, USA.

DAS-2 (no date). http://www.cs.vu.nl/das2/.

BIBLIOGRAPHY 205

Demers, A., Greene, D., Hauser, C., Irish, W., Larson, kn&ér, S., Sturgis, H., Swine-
hart, D., and Terry, D. (1987). Epidemic Algorithms for Riepted Database Mainte-
nance. InSixth Symp. on Principles of Distributed Computipgges 1-12, New York,
NY, USA. ACM Press.

Dorogovtsev, S. N. and Mendes, J. F. F. (2002). Evolutionetivorks. Advances in
Physic$51:1079-1187.

eDonkey (no date). http://www.edonkey2000.com.

El-Ansary, S., Alima, L. O., Brand, P., and Haridi, S. (200Ffficient broadcast in
structured p2p networks. IPTPS pages 304-314.

Eugster, P., Handurukande, S., Guerraoui, R., Kermarred/.Aand Kouznetsov, P.
(2001). Lightweight Probabilistic Broadcast. limt’l Conf. on Dependable Systems and
Networks IEEE Computer Society.

Eugster, P. T., Felber, P., Guerraoui, R., and Kermarred/ A2003a). The Many Faces
of Publish/SubscribeACM Comput. Sury35(2):114-131.

Eugster, P. T., Guerraoui, R., Handurukande, S. B., Kemgak.-M., and Kouznetsov,
P. (2003b). Lightweight probabilistic broadcagtCM Trans. Comp. Sys21(4):341—
374.

Eugster, P. T., Guerraoui, R., Kermarrec, A.-M., and Makgpu. (2004). Epidemic
information dissemination in distributed systemtSEE Computer37(5):60—-67.

Fessant, F. L., Handurukande, S., Kermarrec, A.-M., andsblai, L. (2004). Clus-
tering in peer-to-peer file sharing workloads. Third Int'l Workshop on Peer-to-Peer
SystemsSan Diego, USA.

Floyd, S., Jacobson, V., Liu, C.-G., McCanne, S., and Zhang1997). A reliable
multicast framework for light-weight sessions and apgi@alevel framing.|EEE/ACM
Trans. Netw.5(6):784—-803.

Frieze, A. M. and Zhao, L. (1999). Optimal construction o§edlisjoint paths in ran-
dom regular graphs. I8ODA '99: Proceedings of the tenth annual ACM-SIAM sympo-
sium on Discrete algorithmpages 346—355, Philadelphia, PA, USA. Society for Indus-
trial and Applied Mathematics.

Ganesh, A., Kermarrec, A.-M., and Massoulié, L. (2003).erRe-Peer Membership
Management for Gossip-based ProtoctBEE Trans. Comp52(2):139-149.

Golding, R. A. and Taylor, K. (1992). Group membership in épédemic style. Tech-
nical report, University of California at Santa Cruz, Sa@taiz, CA, USA.

Guo, K., Hayden, M., van Renesse, R., Vogels, W., and BirtdaR, (1997). Gsgc: An
efficient gossip-style garbage collection scheme for &taleeliable multicast. Technical
Report TR97-1656, Cornell University, Ithaca, NY, USA.

Gupta, A., Sahin, O. D., Agrawal, D., and Abbadi, A. E. (200Meghdoot: Content-
Based Publish/Subscribe over P2P NetworkdMiddleware pages 254-273.

206 BIBLIOGRAPHY

Gupta, ., Birman, K., Linga, P., Demers, A., and van ReneBsg2003). Kelips:
Building an efficient and stable P2P DHT through increasechorg and background
overhead. IrProceedings of the 2nd International Workshop on PeerderFSystems
(IPTPS'03)

Gupta, I., Birman, K. P., and van Renesse, R. (2002). Figtitie with fire: using
randomized gossip to combat stochastic scalability lintsality and Reliability Engi-
neering Internationgl18(3):165-184.

Gupta, I., Kermarrec, A.-M., and Ganesh, A. J. (2006). Efitiand adaptive epidemic-
style protocols for reliable and scalable multicadEEE Transactions on Parallel and
Distributed Systemd4.7(7):593-605.

Gupta, I., van Renesse, R., and Birman, K. P. (2001). Sesfablt-tolerant aggregation
in large process groups. MSN '01: Proceedings of the 2001 International Conference
on Dependable Systems and Networks (formerly: FTE&)es 433—-442, Washington,
DC, USA. IEEE Computer Society.

Hadzilacos, V. and Toueg, S. (1993jault-tolerant broadcasts and related problems
ACM Press/Addison-Wesley Publishing Co., New York, NY, USA

Handurukande, S., Kermarrec, A.-M., Fessant, F. L., andsblag, L. (2004). Exploit-
ing semantic clustering in the edonkey p2p network.1ith ACM SIGOPS European
Workshop (SIGOPSheuven, Belgium.

Harary, F. (1962). The maximum connectivity of a graphProceedings of the National
Academy of Scienceslume 48, pages 1142-1146.

Hendrick, C. (1988). Routing information protocol. RFC 808ETF.

Iwanicki, K., van Steen, M., and Voulgaris, S. (2006). Gpdsased clock synchroniza-
tion for large decentralized systems. Pnoceedings of the Second IEEE International
Workshop on Self-Managed Networks, Systems & ServicdMpe2006) pages 28—
42, Dublin, Ireland.

Jelasity, M. and Babaoglu, O. (2004). T-Man: Fast gossgetdaonstruction of large-
scale overlay topologies. Technical Report UBLCS-2004kvyersity of Bologna, De-
partment of Computer Science, Bologna, Italy.

Jelasity, M. and Babaoglu, O. (2005). T-Man: Gossip-baseeri@y Topology Man-
agement. IrProceedings of Engineering Self-Organising Applicati(EESOA’05)

Jelasity, M. and Babaoglu, O. (2006). T-Man: Gossip-basextlay topology man-
agement. In Brueckner, S. A., Di Marzo Serugendo, G., Hdaesand Zambonelli,
F., editors Engineering Self-Organising Systems: Third Internatidivarkshop (ESOA
2005), Revised Selected Paperslume 3910 ofLecture Notes in Computer Science
pages 1-15. Springer-Verlag.

Jelasity, M., Guerraoui, R., Kermarrec, A.-M., and van 8tdd. (2004a). The Peer
Sampling Service: Experimental Evaluation of Unstruati®®ssip-Based Implementa-
tions. InFifth ACM/IFIP/USENIX International Middleware Conferes) pages 79-98,

New York, NY, USA. Springer-Verlag New York, Inc.

BIBLIOGRAPHY 207

Jelasity, M., Kowalczyk, W., and van Steen, M. (2003). Neags€omputing. Technical
Report IR-CS-006, Vrije Universiteit Amsterdam, Departhef Computer Science,
Amsterdam, The Netherlands.

Jelasity, M., Kowalczyk, W., and van Steen, M. (2004b). Aprapch to massively dis-
tributed aggregate computing on peer-to-peer network®roceedings of the 12th Eu-
romicro Conference on Parallel, Distributed and NetworasBd Processing (PDP’04)
pages 200-207, A Coruna, Spain. IEEE Computer Society.

Jelasity, M. and Montresor, A. (2004). Epidemic-Style Rto@@ Aggregation in Large
Overlay Networks. Ir24th Int’l Conf. on Distributed Computing Systerpages 102—
109.

Jelasity, M., Montresor, A., and Babaoglu, O. (2004c). A miadparadigm for building
self-organizing peer-to-peer applications. In Di Marzougendo, G., Karageorgos, A.,
Rana, O. F., and Zambonelli, F., editoEfgineering Self-Organising Systeraslume
2977 ofLecture Notes in Artificial Intelligen¢gages 265-282. Springer. invited paper.

Jelasity, M., Montresor, A., and Babaoglu, O. (2005). Go$sised aggregation in large
dynamic networksACM Trans. Comp. Sys23(3):219-252.

Jelasity, M., Montresor, A., and Babaoglu, O. (2006). Thetbtwapping service. IRro-
ceedings of International ICDCS Workshop on Dynamic Distied Systems (ICDCS-
IWDDS'06) Lisboa, Portugal. [IEEE Computer Society. To appear.

Jenkins, K. and Demers, A. (2001). Logarithmic harary geajpddcsw 00:0043.

J.Pouwelse, P.Garbacki, J.Wang, A.Bakker, J.Yang, AdoBLEpema, M.Reinders, van
Steen, M., and H.Sips (2006). Chitraka: A social-based-peeeer system. IRroc. of
the 5th International Workshop on Peer-to-Peer SystemBRE06)

Karp, R. M., Schindelhauer, C., Shenker, S., and Vocking(2B00). Randomized
Rumor Spreading. 144th Symposium on the Foundations of Computer Scjgrages
565-574, Los Alamitos, CA. IEEE, IEEE Computer Society Bres

Keidar, I., Sussman, J., Marzullo, K., and Dolev, D. (200@pshe: A group member-
ship service for wansACM Trans. Comput. SysR0(3):191-238.

Kempe, D., Dobra, A., and Gehrke, J. (2003). Gossip-basetpuatation of aggregate
information. InProceedings of the 44th Annual IEEE Symposium on Foundatbn
Computer Science (FOCS 200Bages 482—-491. IEEE Computer Society.

Kempe, D., Kleinberg, J., and Demers, A. (2001). Spatiasigoand resource location
protocols. InSTOC '01: Proceedings of the thirty-third annual ACM symposon
Theory of computingpages 163—-172, New York, NY, USA. ACM Press.

Kermarrec, A.-M., Massoulié, L., and Ganesh, A. J. (20@3pbabilistic Reliable Dis-
semination in Large-Scale SystentEEE Trans. Par. Distr. Syst14(2):248-258.

King, V. and Saia, J. (2004). Choosing a random peerProceedings of the 23rd
annual ACM symposium on principles of distributed comguiffODC’04) pages 125—
130. ACM Press.

208 BIBLIOGRAPHY

Kleinberg, J. (2000a). The Small-World Phenomenon: An Athamic Perspective. In
Proceedings of the 32nd ACM Symposium on Theory of Computing

Kleinberg, J. (2004). The small-world phenomenon and deakzed search.Math
Awareness Month 20037(3).

Kleinberg, J. and Rubinfeld, R. (1996). Short paths in exigargraphs. InHFOCS
'96: Proceedings of the 37th Annual Symposium on FoundatidrtComputer Science
page 86, Washington, DC, USA. IEEE Computer Society.

Kleinberg, J. and Tardos, E. (1995). Disjoint paths in dgnembedded graphs. In
FOCS '95: Proceedings of the 36th Annual Symposium on Fdiordaof Computer
Science (FOCS’95page 52, Washington, DC, USA. IEEE Computer Society.

Kleinberg, J. M. (2000b). Navigation in a small worldature 406(6798).

Kleinberg, J. M. (2001). Small-world phenomena and the dyina of information. In
NIPS pages 431-438.

Kosti€, D., Rodriguez, A., Albrecht, J., Bhirud, A., andhdat, A. (2003). Using random
subsets to build scalable network services.Ploceedings of the USENIX Symposium
on Internet Technologies and Systems (USITS 2003)

Kowalczyk, W. and Vlassis, N. (2004). Newscast EM.Aldvances in Neural Informa-
tion Processing Systems (NIPS) Cambridge, MA. MIT Press.

Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Bat®., Dennis Geels, R. G.,
Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., and ZBa2000). OceanStore:
An Extremely Wide-Area Storage System. Niineth Int'l Conf. Architectural Support
for Programming Languages and Operating Systgmagies 190-201, Cambridge, MA.
ACM.

Law, C. and Sui, K.-Y. (2003). Distributed Construction aiRlom Expander Networks.
In 22nd INFOCOM Conf.Los Alamitos, CA. IEEE, IEEE Computer Society Press.

Li, M. and Vitanyi, P. (1997)An Introduction to Kolmogorov Complexity and its Appli-
cations Springer Verlag, 2nd edition.

Lin, J. C.-H. and Paul, S. (1996). Rmtp: A reliable multicaansport protocol. In
INFOCOM, pages 1414-1424.,

Lin, M.-J. and Marzullo, K. (1999). Directional Gossip: Ggsin a Wide Area Network.
In European Dependable Computing Conferempages 364—-379.

Lin, M.-J., Marzullo, K., and Masini, S. (2000). Gossip wsPDeterministic Flooding:
Low Message Overhead and High Reliability for Broadcastingsmall Networks. In
14th Int'l Symp. Distributed Computing (DIS@ages 253—-267. University of California
at San Diego.

Linga, P., Gupta, I., and Birman, K. (2004). Kache: Peegpger web caching using
kelips.

BIBLIOGRAPHY 209

Loguinov, D., Kumar, A., Rai, V., and Ganesh, S. (2003). Grépeoretic analysis of
structured peer-to-peer systems: Routing distances aticrésilience. InProceedings
of ACM SIGCOMM 2003pages 395-406. ACM Press.

Marsaglia, G. (1995). The Marsaglia Random Number CDROM includ-
ing the Diehard Battery of Tests of RandomnessFlorida State University.
http://www.stat.fsu.edu/pub/diehard.

Marsaglia, G. and Tsang, W. W. (2002). Some difficult-tosptests of randomness.
Journal of Statistical Softwar&(3):1-8.

Massoulie, L., Kermarrec, A.-M., and Ganesh, A. J. (2003gtwWdrk awareness and
failure resilience in self-organising overlay networka.Symp. on Reliable Distributed
Systemspage 47, Los Alamitos, CA, USA. IEEE Computer Society.

Montresor, A., Jelasity, M., and Babaoglu, O. (2004). Roggregation Protocols
for Large-scale Overlay Networks. Int'l Conf. on Dependable Systems and Netwprks
pages 19-28. IEEE Computer Society.

Montresor, A., Jelasity, M., and Babaoglu, O. (2005). Crardlemand. IiPeer-to-Peer
Computing pages 87-94.

Moy, J. (1994). OSPF version 2. RFC 1583, IETF.
Napster (no date). http://www.napster.com.

Newman, M. (2002). Random Graphs as Models of Networks. ImBaldt, S. and
Schuster, H. G., editor$jandbook of Graphs and Networks: From the Genome to the
Internet chapter 2. John Wiley, New York.

Padmanabhan, V. N. and Sripanidkulchai, K. (2002). The éaseooperative net-
working. In Peer-to-Peer Systems: First International Workshop, IBTR02 pages
178-190, Cambridge, MA, USA.

Pandurangan, G., Raghavan, P., and Upfal, E. (2003). Bgildw-diameter peer-to-
peer networkslEEE Journal on Selected Areas in Communications (JSATH):995—
1002.

Pastor-Satorras, R. and Vespignani, A. (2001). Epidemi@dics and endemic states
in complex networksPhysical Review F63:066117.

PeerSim (no date). http://peersim.sourceforge.net.

Peleg, D. and Upfal, E. (1987). Constructing disjoint pathexpander graphs. BTOC
'87: Proceedings of the nineteenth annual ACM conferencé&loeory of computing
pages 264-273, New York, NY, USA. ACM Press.

Peleg, D. and Upfal, E. (1989). Constructing disjoint path&xpander graph£ombi-
natorica, 9:289-313.

Piantoni, R. and Stancescu, C. (1997). Implementing thessexchange trading sys-
tem. INFTCS '97: Proceedings of the 27th International Symposiarfault-Tolerant
Computing (FTCS '97)page 309, Washington, DC, USA. IEEE Computer Society.

210 BIBLIOGRAPHY

Pittel, B. (1987). On spreading a rumoiSIAM Journal on Applied Mathematics
47(1):213-223.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., and %ehgl. (2001a). A Scalable
Content-Addressable Network. 8iIGCOMM pages 161-172, San Diego, CA. ACM.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Se8k(2001b). A Scalable
Content-Addressable Network. 8IGCOMM pages 161-172, San Diego, CA.

Renesse, R. V., Birman, K. P., and Vogels, W. (2003). Astb@la robust and scalable
technology for distributed system monitoring, managemant data mining. ACM
Transactions on Computer Systera$(2):164—206.

Risson, J. and Moors, T. (2006). Survey of research towatdsst peer-to-peer net-
works: Search method€omputer NetworksTo appear.

Rowstron, A. and Druschel, P. (2001a). Pastry: Scalablegmtealized object location
and routing for large-scale peer-to-peer systemdFIR/ACM Middleware 2001Hei-
delberg, Germany.

Rowstron, A. and Druschel, P. (2001b). Storage ManagemehCaching in PAST, a
Large-Scale, Persistent Peer-to-Peer Storage Utilityl8titn Symp. Operating System
Principles Banff, Canada. ACM.

Saroiu, S., Gummadi, P. K., and Gribble, S. D. (2002). A Measent Study of Peer-
to-Peer File Sharing Systems.Pnoceedings of Multimedia Computing and Networking
2002 (MMCN '02) San Jose, CA, USA.

Saroiu, S., Gummadi, P. K., and Gribble, S. D. (2003). Mdaguand Analyzing the
Characteristics of Napster and Gnutella Hodtkiltimedia Systems Journd(2):170—
184.

Sen, S. and Wang, J. (2004). Analyzing Peer-to-Peer Traffiogs Large Networks.
IEEE/ACM Transactions on Networkin§2(2):219-232.

Sherwood, R., Braud, R., and Bhattacharjee, B. (2004) p&uA cooperative bulk data
transfer protocol. IINFOCOM

Sripanidkulchai, K., Maggs, B., and Zhang, H. (2003). Ediiticontent location using
interest-based locality in peer-to-peer systemdNIROCOM Conference

Stavrou, A., Rubenstein, D., and Sahu, S. (2004). A LighgWweiRobust P2P System to
Handle Flash CrowddEEE Journal on Selected Areas in Communicatj@2§1):6—17.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Rekhnan, H. (2001). Chord:
A Scalable Peer-to-peer Lookup Service for Internet Agilans. InNSIGCOMM pages
149-160, San Diego, CA. ACM.

Stoica, |., Morris, R., Liben-Nowell, D., Karger, D. R., Kawek, M. F., Dabek, F., and
Balakrishnan, H. (2003). Chord: A Scalable Peer-to-pe@kiup Protocol for Internet
Applications. ACM/IEEE Trans. Netw11(1):17-32.

BIBLIOGRAPHY 211

Sun, Q. and Sturman, D. (2000). A Gossip-Based Reliableibésit for Large-Scale
High-Throughput Applications. Innternational Conference on Dependable Systems
and Networkspages 347-358, Los Alamitos, CA. IEEE, IEEE Computer Sp¢teess.

Szymaniak, M., Pierre, G., and van Steen, M. (2004). Socal@oloperative Latency
Estimation. InTenth Int'l Conf. Parallel and Distributed Systemss Alamitos, CA.
IEEE, IEEE Computer Society Press.

Terpstra, W. W., Behnel, S., Fiege, L., Zeidler, A., and Bualnn, A. P. (2003). A Peer-
to-Peer Approach to Content-Based Publish/SubscribeEIRS pages 1-8, San Diego,
CA.

van Renesse, R., Minsky, Y., and Hayden, M. (1998). A gobkaged failure detec-
tion service. InProc. of Middleware, the IFIP International Conference oisttibuted
Systems Platforms and Open Distributed Procesgiages 5570, The Lake District,
England. IFIP.

Venkataraman, V., Francisy, P., and Calandrino, J. (20@)unkyspread: Multi-tree
unstructured peer-to-peer. Rroceedings of the 5th International Workshop on Peer-to-
Peer Systems (IPTPSQ&anta Barbara, CA.

Voulgaris, S., Gavidia, D., and van Steen, M. (2005). Cyclaexpensive membership
management for unstructured p2p overlaysurnal of Network and Systems Manage-
ment 13(2):197-217.

Voulgaris, S., Jelasity, M., and van Steen, M. (2003). A Ralaind Scalable Peer-to-
Peer Gossiping Protocol. nd International Workshop on Agents and Peer-to-Peer
Computing (AP2PC 2003Melbourne, Australia.

Voulgaris, S., Kermarrec, A.-M., Massoulié, L., and vaeét, M. (2001). Exploiting
semantic proximity in peer-to-peer content searching10th International Workshop
on Future Trends in Distributed Computing Systems (FTDABR&uzhu, China.

Voulgaris, S., Riviere, E., Kermarrec, A.-M., and van 3tebl. (2006). Sub-2-sub:
Self-organizing content-based publish subscribe for dyindarge scale collaborative
networks. InProceedings of the 5th International Workshop on PeerderFSystems
(IPTPSO06)

\Voulgaris, S. and van Steen, M. (2003). An Epidemic ProtéooManaging Routing

Tables in very large Peer-to-Peer Networks1#th IFIP/IEEEWorkshop on Distributed
Systems: Operations and Management (DSOM 20@3)me 2867 of.ecture Notes on
Computer Scien¢gpages 41-54, Berlin. IFIP/IEEE, Springer-Verlag.

\Voulgaris, S. and van Steen, M. (2005). Epidemic-style Mgnaent of Semantic Over-
lays for Content-Based SearchingHaroPar, LNCS 3648, pages 1143-1152. Springer-
Verlag.

Watts, D. J. (1999)Small Worlds, The Dynamics of Networks between Order and Ran
domnessPrinceton University Press, Princeton, NJ.

Watts, D. J. and Strogatz, S. H. (1998). Collective dynami¢small-world’ networks.
Nature 393:440-442.

212 BIBLIOGRAPHY

Wouhaybi, R. and Campbell, A. T. (2004). Supporting Restlileow-Diameter Peer-to-
Peer Topologies. 123rd INFOCOM Conf.Los Alamitos, CA. IEEE, IEEE Computer
Society Press.

Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C., JosepH) Aand Kubiatowicz, J. D.
(2004). Tapestry: A resilient global-scale overlay fongee deploymentlEEE Journal
on Selected Areas in Communicatip®2(1):41-53.

Zhao, B. Y., Kubiatowicz, J., and Joseph, A. D. (2001). TagesAn Infrastructure
for Fault-tolerant Wide-area Location and Routing. TechhReport CSD-01-1141,
Computer Science Division, University of California, Bely.

Zhong, M., Shen, K., and Seiferas, J. (2005). Non-uniformdcem membership man-
agement in peer-to-peer networks.Rroc. of the IEEE INFOCOMMiami, FL.

Zhuang, S. Q., Zhao, B. Y., Joseph, A. D., Katz, R. H., and &taiicz, J. D. (2001).
Bayeux: an architecture for scalable and fault-toleranteaarea data dissemination. In
NOSSDAV '01: Proceedings of the 11th international worksbo Network and oper-
ating systems support for digital audio and vigdeages 11-20, New York, NY, USA.
ACM Press.

	ACKNOWLEDGEMENTS
	I PROTOCOLS
	Introduction
	Desired Solution
	Why not DHTs?
	The Gossiping Model of Communication
	Traditional Gossiping
	Gossip-based Topology Construction

	Why Gossiping?
	Research Methodology
	Outline and Contributions

	Building Random Overlays: Cyclon
	The Protocol
	Basic Swapping
	Enhanced Swapping

	Basic Properties
	Connectivity
	Convergence
	Degree Distribution
	Dependency on Gossip Length

	Adding Nodes
	Removing Nodes
	Robustness - Self Healing Behavior
	Bandwidth Considerations
	Applications
	The Newscast Protocol
	Principal Operation
	Properties of Newscast

	An Application: Aggregation
	Related Work
	Conclusions and Future Work

	Random Overlays: Exploring the Design Space
	Introduction
	The Peer Sampling Service
	API
	Generic Protocol Description
	Design Space
	Implementation

	Local Randomness
	Experimental Settings
	Test Results
	Conclusions

	Global Randomness
	Properties of Degree Distribution
	Clustering and Path Lengths

	Fault Tolerance
	Catastrophic Failure
	Churn
	Trace-driven Churn Simulations

	Wide-Area-Network Emulation
	Discussion
	Randomness

	Related Work
	Membership Management Protocols
	Complex Networks
	Unstructured Overlays
	Structured Overlays

	Concluding Remarks

	From Randomness to Structure: Vicinity
	Design Preamble
	The Topology Construction Framework
	Model Outline
	The Selection Function
	Design Rationale

	The Vicinity Protocol
	Discussion on the Design Choices
	Outline of Evaluation
	Selection of Test Cases
	Generic Experimental Settings

	Test Case A: Forming a 2-D Spatial Grid
	Demonstration of Test Case A
	Analysis of Test Case A

	Test Case B: Clustering Nodes in Groups
	Demonstration of Test Case B
	Analysis of Test Case B

	Discussion and Related Work

	II APPLICATIONS
	Routing Table Management: Building Pastry
	Pastry-like P2P Routing
	Basic Concept
	Internal Structure of the Routing Tables
	Routing

	Building Routing Tables
	The Principal Idea
	Multilayer Architecture

	Experimental Setting
	Experimental Results and Analysis
	Bootstrapping
	Robustness to Large-Scale Failures
	Bandwidth Considerations

	Conclusions and Related Work

	Information Dissemination
	Background and Related Work
	Evaluating a Dissemination System
	Deterministic Dissemination
	Probabilistic Dissemination
	The RandCast Dissemination Algorithm

	Hybrid Dissemination
	The RingCast Dissemination Algorithm

	Evaluation
	Evaluation in a Static Failure-free Environment
	Evaluation after Catastrophic Failure
	Evaluation under Churn

	Discussion and Future Work

	Semantic Overlay Networks
	Overview
	Model Outline
	Gossiping Framework
	Experimental Environment and Settings
	Performance Evaluation
	Convergence Speed on Cold Start
	Adaptivity to Changes of User Interests
	Effect on Semantic Hit Ratio
	Single Node Joins
	Behavior under Node Churn

	Bandwidth Considerations
	Discussion and Related Work

	Sub-2-Sub: Purely P2P Publish/Subscribe
	Overview
	Issues in Publish / Subscribe Systems
	System Model
	Sub-2-Sub in a Nutshell
	The Sub-2-Sub Dissemination Overlay
	Spreading Events

	Building the Dissemination Overlay
	Building Random Links
	Building Overlapping-Interest Links
	Building Ring Links

	Evaluation
	Experimental Setup
	Jump-starting Sub-2-Sub
	Event Dissemination
	Propagation Speed
	Single Node Joins

	Related Work and Conclusions

	Conclusions
	Randomized Overlays
	High-level Observations
	Detailed Observations

	Structured Overlays
	Applications
	Future Directions

	SAMENVATTING
	BIBLIOGRAPHY

