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Chapter 1: General introduction 
 
 
 
Living systems are complex entities consisting of hundreds of thousands 
distinct molecules. It is the interaction between these molecules that 
generate the specific characteristics of living systems. In order to understand 
such complicated systems one has to integrate knowledge of the properties 
of their chemical constituents, make large-scale observations of these 
constituents and use theoretical approaches to analyze and interpret them. 
Here I introduce some concepts important for the study of complex 
biochemical systems. This will enable me to clearly state my thesis in the 
final section of this chapter.  



Chapter 1 

Section 1.1: Systems biology 
 
Molecular biology has recently reached a new stage, with completion of the sequencing of 
the full genomes of several organisms. Whereas a decade ago molecular biology was 
mainly concerned with the properties of molecules, now the attention is focused on 
understanding systems of interacting molecules and on how these systems give rise to 
properties, which we associate with life. Although systems approaches to biology systems 
have been suggested long ago [1-10], recently they have re-emerged under a common 
denominator, i.e. systems biology. The reason for the renewed interest in the systems 
approach is the new experimental technologies enabling the observation of hundreds or 
thousands of biochemical compounds such as RNAs, proteins and metabolites. Being able 
to do such large-scale parallel measurements of biochemical compounds calls for 
mathematical and information methodologies for the analysis and classification of those 
data, as well as for theory development in order to gain understanding of how those 
thousands of compounds are organized and function biologically [11]. 
 Biologists have of course always known that living systems can not be understood 
solely by investigation the properties of the parts.  Initially most biologists therefore 
restricted themselves to looking at the whole, i.e. at the physiology without necessarily 
relating that physiology to molecular constituents.   The second half of the previous 
century, the reductionism approach to investigating complex biological systems has met 
with great success. In the corresponding disciplines biochemistry and molecular biology, 
the action mechanisms and structure of many macromolecules have been determined.  
Recently this has culminated in the determination of the sequence of the entire DNA and of 
most proteins of quite a few organisms. 

That historical achievement for mankind also marked perhaps the culmination of 
the molecular biology era of Biology.  The determined sequence does not only constitute 
the sequences of all proteins, but also the sequence of the entire genome, i.e. of the 
complete genetic material of the organisms, and therewith has an essential holistic aspect.  
The tendency of looking again at the whole, increased even further with subsequent 
breakthroughs in experimental technologies for measuring entire classes of chemical 
components of living organisms at the same time, i.e. in principle all mRNA’s, all proteins 
in microorganisms and, soon, all metabolites.  For the first time really one can go beyond 
studying the parts and study biology at a systems level without leaving open the issue that 
there could be more, immeasurable yet adjacent factors at play.  One can study the 
properties of metabolic pathways rather than enzymes, study the properties of gene 
networks instead of single genes or operons, study the properties of signal transduction 
cascades instead of particular protein kinases, or in fact combine all levels of cellular 
organization in a single study, perhaps focused on a single cell function. Under the name 
systems biology, now efforts are taken to integrate the previously obtained knowledge into 
models of larger systems, accompanied with large-scale observation of the behavior of 
these parts in the in vivo context and the use of comprehensive tools such as mathematical 
modeling.  

Mathematical models will provide additional insight into living systems and 
enable one to test hypotheses at rates that are impossible to do when only using wet-lab 
experimentation. The main goal of systems biology is to discover and mathematically 
formulate biological ‘laws’, which originate from the interactions between the parts of the 
biological system and can impossibly be discovered by studying the parts in isolation of the 
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General introduction 

biological context. Systems biology is not just a change from reductionist thinking to 
holistic thinking. The focus of systems biology is to understand the properties of systems in 
terms of the underlying mechanisms of component interactions. 
 A major change that is now pervading both molecular and cell biology is the shift 
from qualitative to quantitative biology. Whereas molecular biologists used to be satisfied 
with qualitative results, such as the presence/absence of a molecule, the binding/absence of 
binding of a repressor to its cognate piece of DNA, the ‘new’ biology requires more than 
that. It aims to quantify: how much is there, or how strong is the binding? Also the scale at 
which biochemical components are measured has changed. Typically, one biochemical 
component or a small set of components used to be investigated at a time, but systems 
biology aims to study large numbers of genes/proteins in parallel. Again, the possibility for 
systems level study of cell biology systems can be credited to the improvement of 
experimental techniques, which enable large scale as well as (semi) quantitative 
measurements of biochemical variables.  
 
Section 1.2: Experimental technologies 
 
The main constituents of living systems can be classified into three distinct categories: the 
hereditary information (i.e. genes and their activities: mRNA concentrations), proteins, 
which carry out the actual biochemical processes, and metabolites, i.e. small molecular 
compounds that provide free energy and material for maintaining the living state (although 
some carbohydrates are macromolecular, they still can be considered in this category). 
Since each of these categories contains molecules that are chemically very different from 
those of the others, three fields have emerged specialized in their measurements. 
Transcriptomics is the field concerning the genome scale measurement of gene activities, 
i.e. mRNA concentrations.  

Microarrays [12-19] are becoming commonplace to measure mRNA 
concentration, although the technology is still plagued by a low signal-to-noise ratio.  
Quantitative RT-PCR [20] and related techniques may produce a much higher signal to 
noise ratio, be more accurate, but have the disadvantage that they are not genome wide. 

Proteomics concerns genome-scale protein-concentration measurements. 
Proteomic technologies currently can measure one or two thousand different proteins and 
are therefore limited to organisms with small genomes, such as the prokaryotes. Most 
methods still rely on two-dimensional gels for separation [21], although higher throughput 
and resolution methods are being developed [22, 23]. Identification of the proteins is 
usually accomplished through mass spectrometry [24, 25]. As the concentrations of 
proteins are often less relevant for cell function than their actual activities, enzyme activity 
assays should still be upgraded towards high-throughput [26]. A good measure for protein 
activity is their degree of phosphorylation. Therefore, phosphoproteomics [27, 28], a 
currently rapidly developing field concerned with the large scale measurements of 
phosphorylated proteins, should show great potential for systems biology. 

Metabolomics measures large-scale metabolite concentrations. Metabolites are 
harder to profile in a single run because they constitute many different chemical classes 
with widely different properties. The most promising technologies for this purpose are gas-
chromatography coupled to mass spectrometry [29], liquid-chromatography mass 
spectrometry [30] and capillary electrophoresis with mass spectrometry [31].   It may be 
noted that the –omics suffix is often used, implying that the objective be to measure all, or a 
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large number (known and measurable) of the mRNAs, proteins and metabolites of the 
organisms.   It should perhaps be added that the large scale aspect may not always be 
essential; networks that consist of only 15 components may already provide food for 
Systems Biology interest and may well be better served by more quantitative but less 
genome wide methodologies (e.g. [32, 33]). 
 
Section 1.3: Mathematical modeling of biochemical systems 
 
Science is an iterative process in which models are compared on the basis of how well they 
predict what is observed. Models are created to explain experimental observations that were 
made on a particular instantiation of a physical system, in much more generic terms. 
Because science is always after the understanding of the more general cases than of the 
particular unique instantiations in which the experiments were done, the results are 
discussed in terms of a virtual, more general model.  By being a generalization away from 
the particular experimental case, a model needs to be a simplified representation of a real 
physical process; the characteristics of the particular experimental system on the particular 
day of the experiment need to be left out.  

A ‘best’ or ‘complete’ model does not exist; some models may explain certain 
aspects of the physical process that is modeled, other models may explain other aspects. 
The process of modeling occurs by proposing a certain model to explain the observed 
phenomena and through a continuous process of validation of the model to new 
experimental observations. If the model can explain new experimental observations, and if 
it is internally consistent and if it is consistent with well-tested preexisting scientific theory 
such as thermodynamics, there are no reasons to reject it. If, however, the model is in 
disagreement with new experimental data, it has to be rejected or its use be restricted to its 
domain of validity, or modified until it does conform, if possible. 

Cellular biochemistry can be viewed as a set of intricate networks composed of 
many and diverse interacting elements. Several types of networks are conceptually 
distinguished. Metabolic networks deal with small molecular substances, metabolites, 
which are connected (or maybe I should say ‘wired’ to emphasize the network analogy) by 
biochemical inter-conversions (enzymatic reactions). Signal transduction networks concern 
interactions between proteins, which can be complex formation or protein modifications, 
such as phosphorylations. Gene networks are high-level descriptions of gene regulatory 
processes in which only gene expression levels are considered, and genes are wired through 
their regulatory relationships. Biochemical networks (also called hierarchical networks in 
later chapters) are networks including all three types of molecules, mRNAs, proteins and 
metabolites, and interactions between them. 

The dynamical behavior of these complicated networks is far from being clear 
intuitively and therefore we need to use mathematical models to help us understand how 
the systems behavior arises from the properties of the individual molecules. Except for a 
few metabolic pathways and just a few cases of gene expression, such mathematical models 
do not yet exist, however, primarily for lack of experimental data on the kinetics of their 
components.  Ultimately such models should enable us to predict the effects of genetic 
mutations and of the environment on the system, thereby providing insight in the inner 
workings of living cells. Once properly validated against experimental observations, such 
predictive models, should be of great value in understanding the mode of action of drugs 
[34], identify drug targets [35, 36], identify the cause of diseases, and several biological 
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processes, such as infection and symbiosis. Ultimately they can be used as a design tools to 
engineer organisms [37, 38], or to act upon their environment to achieve other desirable 
outcomes [39]. 
 
Section 1.3.1: Mathematical frameworks 
 
Different mathematical formalisms can be used for modeling. Perhaps the most common 
framework uses differential equations, either ordinary, when space is not taken into 
consideration, or partial, if spatial distribution is important. Modeling with ordinary 
differential equations (ODEs) usually occurs in the form of:  
 

( ppxvNx ),(⋅=
dt
d ) ,       (Eq. 1.1) 

 
where x = {x1, x2,…, xn} is a vector of n state variables (the metabolite, protein or mRNA 
concentrations), v = {v1, v2,…, vr}  is a vector of r kinetic rate functions (which depend on 
the state variables and a set of parameters given by vector p. These parameters include 
Michaelis constants, equilibrium constants, and maximal rates. N is an n x r matrix 
representing the chemical stoichiometries of all reactions.   

This stoichiometry matrix effectively represents the structure of the chemical 
network, while any regulatory interactions are expressed in the functions of v. The 
functions in v are often non-linear in terms of x and p, however in special cases they could 
be linear. These non-linear functions correspond to the rate laws of enzyme kinetics, such 
as the Henri-Michaelis-Menten [40, 41], the Monod-Whyman-Changeaux [42] and even 
more complicated rate laws [43]. 

An alternative to such mechanistic models is to construct phenomenological 
equations for the right hand side of Eq. 1. Examples are linear models [7], lin-log kinetics 
[44] or power laws [8] that account for interaction between variables of the system without 
specifying a particular mechanism. The advantage of these phenomenological rate laws 
over the detailed mechanistic ones is that they depend on a smaller number of parameters 
and are mathematically easier to deal with. Linear models have the advantage that they can 
be solved analytically for any state of the system.  A particular type of power law models, 
i.e. S-systems, can be solved analytically for steady states [8]. This is in general not 
possible with mechanistic rate laws, and therefore numerical analyses are required when 
dealing with models based on this type of equations. Mechanistic equations account for the 
molecular mechanisms of interactions, and are therefore more likely to be precise, though 
still approximations.  Linear and power laws will be less suitable for extrapolation. On the 
other hand, the mechanistic models suffer from the fact that they require many parameters 
values to be known. 

An approach that may combine some strength of the above approaches employs 
phenomenological equations that display the common characteristics of enzyme kinetics 
such as saturation and cooperativity. An example would be the use of the Hill equation [45, 
46]. Using such equations keeps the number of parameters small, and yet common 
properties of enzyme kinetics, such as saturation, remain explicit.  

Boolean functions have also been used, mostly in the modeling of gene networks  
(models describing genetic regulatory interaction, see Chapter 3) [4, 47], although in a few 
cases also for metabolic pathways [48, 49]. In this formalism variables can be in one of two 
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states. The state of each variable is determined by the states of the other variables that 
interact with it through Boolean functions. The Boolean approach is mathematically very 
tractable, but it is, however a very low-resolution method (cf. above). The Boolean 
approach has good educational features, since Boolean logic is easy to understand and the 
relevant concepts for biochemical modeling, such as point attractors, oscillations and 
stability, are readily demonstrated with these models. Therefore, this approach is useful to 
educate new systems biologist to gain insight into dynamical processes of large networks of 
interacting molecules. 

Stochastic methods such as the Master Equation or Monte Carlo simulations have 
also been widely used; particularly for gene expression models [50-54] and for signal 
transduction models [55]. In this case the model is phrased in terms of numbers of 
molecules of each species rather than in terms of their thermodynamic potentials or 
ensembles averaged concentrations (as in ODEs). In stochastic simulations each particle 
has a certain probability to react with other particles, usually following distributions 
derived from statistical mechanics. Stochastic simulation is closer to the physical nature of 
biochemical processes, but is computationally expensive. The stochastic approach is 
particularly important when the number of particles of a specific species is low. At high 
numbers of molecules, the ODE approach is an accurate approximation and is then 
preferred, because of its lower computational cost. Other frameworks exist, but their use 
has been restricted to a few publications. For example Petri nets [56] have been employed 
[57-59], as well as process calculus [60]. 

The purpose of biochemical modeling is to understand and predict the dynamical 
properties of the system. There are two major ways to construct such models: the 
integrative approach assembles existing knowledge on isolated parts of the system into an 
integrated model, while the so-called global approach uses observations of the whole 
system to derive the model, perhaps arriving at mechanisms that detail the properties of the 
parts. 
 
Section 1.3.2: Integrative approach 
 
The integrative or ‘bottom-up’ modeling approach integrates knowledge acquired by means 
of reductionist methods. It assumes that the parts of the system (mostly enzymes) behave in 
the cell as they do in test tubes in dilute solutions, and as such it is possible to derive the 
properties of the whole system based on the properties of the isolated parts and their 
interactions. This follows the traditional approach of molecular biology and biochemistry, 
which is based on in vitro studies of purified components. It requires, by definition, that the 
parts be amenable to work with after purification. While the later is the case for most 
metabolic enzymes, and it is a well-established technique, there is much evidence that 
many enzymes work differently in the cell than in vitro [61, 62]. The integrative approach 
does deal with the differences between in vivo and ex vivo, by identifying the physical 
chemical origin for the difference in behavior, such as macromolecular crowding [63].  The 
problem is likely to be more important for pathways that depend on direct interactions 
between macromolecules, such as signal transduction (cf. [63]), transcription and 
translation, where gigantic molecular complexes have to assemble before the process can 
even begin.  In vitro determination of parameters is laborious and the data appears scattered 
in hundreds of journal articles.  

Despite these experimental difficulties, an international program led by Snoep and 
Westerhoff and named SiC!, for Silicon Cell [64], makes computer replicas for those 
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pathways for which sufficient kinetic information is available and these models are made 
available on the world wide web [65-68], ultimately to be integrated into whole-cell replica 
[64]. The goal is to construct a cell model based on precise quantitative description of the 
individual elements of the network. This contrasts with the Mycoplasma genitalium model 
[69-71], where only the interactions between the biochemical components are taken from 
literature sources, while kinetic functions and their parameters are set arbitrarily. Another 
large-scale project favoring the piecewise modeling approach is the Alliance for Cell 
Signaling [72] in which signal transduction pathways will be investigated experimentally in 
order to enhance quantitative modeling. Any molecular biology and biochemistry 
laboratory may contribute to these efforts in a piece-by-piece approach and indeed SiC now 
contains pathway models stemming from many different authors [65-68] (website: 
http://jjj.vbi.vt.edu/). 

Validation of these models proceeds by comparing the model behavior with the 
behavior of the biochemical system in vivo under different conditions than those used for 
model calibration. In the case of glycolysis in Trypanosoma brucei the in vivo behavior of 
the pathway matched the behavior of the mathematical model, to the limited extent that this 
could be tested [33] showing the potential of this approach.  For glycolysis in yeast, the in 
vivo behavior was quite different from the model’s predictions when only the glycolytic 
enzymes were put in [32].  This led to the discovery of a role for trehalose phosphate 
synthethase in constituting a ‘brake’ on glycolysis.  This clearly demonstrated that the SiC 
approach indeed can lead to discovery of new mechanisms.  
 
Section 1.3.3: Global approach 
 
In the global, or ‘top-down modeling approach a different strategy is employed; it starts by 
collecting data from observations of the whole system (or large parts thereof) and then tries 
to infer a model consistent with those data.  In this approach one must infer the interaction 
structure (stoichiometry and regulation) of the network, the kinetic functions of each step, 
and the values of the parameters of these functions. This may involve a three-step 
approach, or may be accomplished simultaneously.  

The first step concerns the identification of the interaction structure of biochemical 
systems. There is much information about metabolic pathways, available in databases 
readily accessible through the World Wide Web, such as KEGG [73] and MPW [74] and 
similar for genetic interaction, such as GeneNet [75] and RegulonDB [76]. However, most 
of the structure of biochemical systems is unknown and yet to be discovered. Inferring the 
interaction structure of biochemical systems is currently a very popular research topic, 
which has resulted in a large body of literature. The idea here is to find out the network 
structure from measurements of the intact global system in vivo, for example using time 
series of mRNA concentrations after a change in the culture medium. Many approaches 
have now appeared for ‘reverse engineering’ gene networks from experimental data (see 
reviews by [39, 77, 78]). Most of these are based on multivariate statistical methods, such 
as Principal Component Analysis and Hierarchical Clustering Analysis. Others have used 
more challenging approaches like fitting data with genetic algorithms [79], graph theory 
methods [80], and Metabolic Control Analysis [81-84]. The main onclusion from the latter 
works is that one needs to perturb the expression of each single gene and measure the 
response of the whole system in order to be able to infer the complete structure of the 
network, which implies a huge experimental effort. 
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Once the structure of the system is known, the specific kinetic function of each 
reaction and its parameter values must be determined. A plausible approach to finding rate 
laws and their parameter values selects some fairly arbitrary rate functions, and then 
performs a least-squares fit to experimental data sets [85, 86].  If this were done for a 
number of rate laws and in different combinations, one would perhaps find a best set that 
explains the data.   This process has been carried out with some success in an automated 
fashion by Koza and co-workers [87, 88], although they based their models on electric 
analogues. Provided the interaction structure of the model is correct, this process may select 
the appropriate kinetic functions as well as optimize for the parameter values.  

In limited cases the form of the kinetic functions of enzymes is known and this 
information can be retrieved from current biochemical databases, such as BRENDA [89, 
90] and MPW [74]. In this case the remaining task is to estimate the in vivo parameter 
values (vector p in Eq. 1.1). This is usually done through the same means as in the 
integrative method [85, 86], except for the larger scale in this case: more variables are 
considered simultaneously and thus there are many more dimensions in the parameter 
space. The increase in scale is, however, not trivial and large-scale fitting problems are hard 
to solve computationally. 
 
Section 1.4: Software for biochemical calculations and simulations 
 
Although some mathematical modeling can be done with just pencil and paper, computers 
are needed to solve the systems of equations. The main reason for having to us computers is 
that biochemical networks most realistically are described by non-linear differential 
equations for which no analytical solution exists. Therefore, the solutions to these equations 
are approximated by numerical means. To save pencils, paper and time it is therefore 
necessary to use computers. 

All algorithms used in biochemical modeling can in principle be coded in C++, 
FORTRAN or any other programming language. Also general mathematical programs such 
as Mathematica, MLAB, and Matlab can be used. Most convenient are programs that have 
been developed specifically with biochemical network modeling in mind, such as GEPASI 
[85, 91, 92], SCAMP/Jarnac [93, 94], E-CELL [70], Virtual Cell [95], MIST [96], KINSIM 
[97], METAMODEL [98] and STOCHSIM [99]. Most of these use the ODE framework, 
but Virtual Cell uses partial differential equations and STOCHSIM uses a stochastic 
simulator. Recently, a large number of researchers involved in writing these software 
packages have agreed on a standard to allow each program to exchange models. This 
format is based on XML and has been named SBML, for Systems Biology Markup 
Language [100]. 
 
Section 1.5: Theoretical analyses for biochemical systems 
 
There are several theoretical analyses to deal with biochemical systems, such as 
Biochemical Systems Analysis (BST) [8], Metabolic Control Analysis (MCA) [6, 7], 
Metabolic Pathway Analysis [101] and Flux Balance Analysis [102]. The former two are 
sensitivity analyses that express how the global system properties depend on the properties 
of the molecular components of the system. The latter two are analyses of the stoichiometry 
of metabolic networks.  The types of biochemical systems that are dealt with in this thesis 
(hierarchical biochemical systems and gene networks) essentially consist of sub networks 
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that are not connected in terms of flux.  The sub networks do interact through kinetic 
interactions, thus the latter two approaches are of less use. Since the differences between 
BST and MCA are subtle and MCA is a more intuitive approach (BST deals with 
phenomenological parameters that have no clear physical interpretation), I will further 
focus only on Metabolic Control Analysis. In the next chapter I will introduce an extension 
of MCA called Hierarchical Control Analysis, as developed by Kahn & Westerhoff  [103], 
which explicitly deals with the flux disconnected models I consider here.  I will also make 
extensive use of another variant of Metabolic Control Analysis, called Co-response 
Analysis [104, 105].   I will introduce the important concepts in the next section. Since I 
will often deal with matrices, I will conclude this chapter introducing the square matrix 
formulation of MCA [106]. 
 
Section 1.5.1: Metabolic Control Analysis (MCA) and Co-response Analysis 
 
Metabolic control analysis (MCA) [6, 7] is a framework to describe biochemical networks 
and free-energy transduction systems. A central concept in MCA is the control coefficient, 
which is a measure of how sensitive a systemic variable (e.g., the steady state concentration 
of an mRNA or metabolic intermediate) is to the change in the activity of any catalytic 
process in the network (e.g., an enzymatic reaction or a transcription rate).  That activity is 
often parameterized as its limiting rate, or as the effective concentration of the enzyme 
catalyzing the step [10]. Control coefficients are expressed as scaled derivatives of the 
steady-state value of variables with respect to the activities of the catalytic processes: 
 

i
i

i

A
v vd

Ad

v
dv

A
dA

C
i ln

ln
== ,       (Eq. 1.2) 

 
Here, A refers to any system variable at steady state. Usually, intermediate concentrations, 
fluxes or free energies are considered. dvi refers to the immediate (local) change in the 
activity of step i due to a change in a parameter specifically affecting that step. All such 
parameters for the other rates in the system remain unchanged. For each variable A, there 
are as many control coefficients, as there are steps in the biochemical system.  

As is metabolic control itself, control coefficients are context dependent because, 
in general, biochemical kinetics are nonlinear and control coefficients are therefore 
derivatives of (double-logarithmically) nonlinear functions (see [107] for a higher order 
approach). Control coefficients reflect properties of the system as a whole. The concept of 
control coefficient is only meaningful in the context of an entire biochemical system; it is 
not a property of any individual reaction or its enzyme alone. 

MCA also describes the kinetic properties of biochemical reactions in isolation, 
via elasticity coefficients, which are properties of the individual reactions in the network. 
The elasticity coefficients are defined by scaled partial derivatives of reaction rates with 
respect to the reaction effectors: 
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Xj is the concentration of a certain effector and vi is the rate of a certain reaction of the 
biochemical system. Local properties are properties of individual reactions and are 
independent of other reactions. 

Co-control coefficients (Eq. 1.4) are ratios between control coefficients and 
represent how two system variables respond to a common rate perturbation [104, 105]: 
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As above, Ai and Aj are system variables and vm is a reaction activity that has been 
perturbed. According to Eq. 1.4, the magnitude of the rate perturbation is not needed for 
calculating co-control coefficients (cf. control coefficients, Eq. 1). This greatly simplifies 
their experimental determination. 
  Regulatory Strengths [108] (Eq. 1.5) quantify the fractional changes in a system 
variable as a consequence of the change in another system variable through a specific 
reaction [108]. They quantify how perturbations propagate from one variable to another. 
Regulatory Strengths are also called partial internal response coefficients (see 
http://www.sun.ac.za/biochem/mcanom.html). 
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The Regulatory Strength of the path through reaction r from variable Aj to Ai quantifies 
how variable Ai changes due to a change in vm caused by a change in Aj.   Summing up all 
the effects of Aj on Ai through all different network reactions (paths) connecting these two, 
one can obtain the connectivity theorems for concentration control [10, 108, 109] (see 
below). 

It is important to realize that elasticity coefficients are local properties, i.e. 
properties of the individual reactions of the network; they quantify the effect of an effector 
concentration on the rate of reaction while all other variables in the system are held 
constant (or by isolating the reaction from the global system). This can be done for 
example by isolation of individual enzymes and evaluating their elasticity towards their 
effectors in vitro, as is common practice in enzyme kinetics. In each such experiment one 
of the modifiers is varied, while all other modifiers are kept at their in vivo concentrations. 
In fact, elasticity coefficients are scaled partial derivatives of the enzyme kinetic rate laws, 
evaluated at the physiological state. In contrast, control coefficients are global properties of 
the system that emerge from the collective action of all its elements. These global 
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properties have to be measured in the intact system.  Several theorems of control analysis 
[6, 7, 103, 109] relate the local and global properties to each other. This will be explained 
in more detail in the next section in which the matrix formalism is used. 
 

Mv1 v2
MMMv1 v2  

 
Figure 1.1 – A simple two-step metabolic pathway. Source and product substances are 
omitted in this figure. 
 
For the two-step metabolic pathway depicted in Fig. 1.1, the control coefficient for the 
steady state concentration of the intermediate M can be written as: 
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Here we see that the effect on the steady state concentration of M, of changing the rate of 
the first reaction in Fig 1.1 (for example, by increasing the concentration of the enzyme 
catalyzing this rate) can be expressed in terms of the local effects that the metabolite M 
would have on the rates of its production and its degradation in isolation from the rest of 
the system. 
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Figure 1.2 – A simple three-step metabolic pathway. Source and product substances are 
omitted in this figure. 
 
If a linear three-step pathway is considered (Fig. 1.2) the equation becomes more 
complicated and depends not only on the sensitivities of the enzyme activities towards M1 
but also towards M2: 
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I show this to emphasize the fact that in a system of arbitrary size the control that each 
enzyme exerts is a function the properties of all other enzymes in the system. 

Since these equations become very large even for systems of moderate size we 
will need to express these relationships in terms of matrices, which will compact the 
description and therefore make things more clear. 
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Section 1.5.2: Metabolic Control Analysis Matrix formulations 
 
In Metabolic Control Analysis two different matrix formalisms are commonly used. One is 
the formalism by Reder [110], the other is the so called square matrix formalism [109]. 
Although the Reder formalism is mathematically more transparent, since it starts with 
differentiating the state equations, I prefer to use the square matrix formalism, because it 
starts directly by writing the summation and connectivity theorems of Metabolic Control 
Analysis in matrix format. Another advantage of this formalism is that it considers 
simultaneous the flux control and concentration control, so no separate proofs for each type 
of control coefficients are necessary (as needed for the Reder formalism). Furthermore, Co-
response Analysis is originally formulated in this formalism as well as the generalization of 
Hierarchical Control Analysis [111] (which will be discussed in the next chapter). 
 
1.5.2.1. The theorems of MCA; connectivity and summation 
 
Ultimately it is the integration of all local properties of the biochemical steps in a pathway 
that sets the system’s control properties, described by the control coefficients. The 
connectivity theorems for flux control [6] (Eq. 1.8) and concentration control [109] (Eq. 
1.9) constitute the link between elasticities of individual enzymes and the control 
distribution in the pathway. For linear pathways, such as the ones depicted in Figures 1.1 
and 1.2, the connectivity theorems are: 
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These theorems state that combining all regulatory effects of a metabolite through different 
paths on the flux will not modify the flux. Combining all regulatory effects of a metabolite 
through different paths will not modify any metabolite concentration, unless it is the effect 
of a metabolite on itself, in which case the effects sum up to –1, indicating that the 
metabolite will return to its steady state after a fluctuation [109]. 

Other important theorems are the summation theorems [6, 7] (Eqs. 1.10 and 1.11): 
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In words this simply means that if each enzyme in the metabolic pathway is increased by a 
factor ß, then the flux will increase a factor ß, while all metabolite concentrations will not 
change at all. 
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1.5.2.2. The square matrix expression 
 
Equations 1.08 and 1.09 are not only valid for linear pathways, but for pathways of any 
structure in terms of their independent variables. It is always possible to reduce a system to 
one that only accounts for the independent fluxes and concentrations [110]. After reducing 
the system the theorems can be combined in a single matrix expression (Eq. 1.12). 
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Here  is the scaled kernel of the stoichiometry matrix providing the relation between 
dependent and independent fluxes, L is a scaled link matrix, providing the relation between 
dependent and independent concentrations in the network, I is the identity matrix and ε  is 
the matrix of elasticity coefficients. κ  and L can be obtained directly from the 
stoichiometry matrix [110]. Both matrices in Eq. 1.12 are square and invertible (this 
assumption of invertibility is equivalent to the assumption of invertibility of the Jacobian 
matrix of a dynamical system, which is satisfied when the reference steady state is 
asymptotically stable). From Eq. 1.12 one can express the systemic properties of a 
biochemical system, i.e. the control coefficients, in terms of the kinetic properties of the 
individual enzymes, i.e. the elasticity coefficients: 
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Thus, with a complete knowledge of the stoichiometry and kinetics of all steps (in the form 
of elasticity coefficients) one can calculate the systemic properties in the form of control 
coefficients. Metabolic Control Analysis provides a means to integrate properties of single 
molecules to gain understanding of the properties of the whole system. As pointed out 
above, measuring elasticities can be done in vitro, by isolating steps from the network and 
studying them individually. For some single enzymes this can be done, but for complex 
processes like transcription, translation and other processes catalyzed by large protein 
complexes simulating the in vivo reaction in vitro is very difficult. Furthermore, it requires 
one to know all the effectors of all the rates. In addition, this approach is hampered by 
artifacts that derive from the harsh processes of isolating enzymes that may break enzyme 
complexes which work as a whole unit in the cell (see e.g. [112, 113]). Therefore, given 
these experimental difficulties, it might be interesting to consider the opposite direction: 
Eq. 1.12 can be inverted into Eq. 1.14, expressing local kinetic properties as a function of 
the global behavior of the system, which is more readily observable: 
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This is an inverse problem, named “inverse MCA” [114], as one is using observations of 
effects to deduce the causes. Using Eq. 1.14 the values of the elasticities and pathway 
structure can be calculated after determination of all control coefficients [114]. Strictly 
speaking, Eq. 1.14 leads to εL− , the product of the link matrix and the elasticity matrix, 
rather than to the elasticity matrix itself. When there are mass conservation relationships, 
i.e. , one has to factorize the result, which can be done with the help of additional 
measurements, by perturbing the conserved moieties [105, 115].  

IL ≠

 
1.5.2.3. Matrices of co-control and Regulatory Strengths 
 
Regulatory Strengths are related to co-control coefficients by the following transformation 
of Eq. 1.14 [104, 105]: 
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DC is a diagonal matrix that contains control coefficients on its diagonal. Its inverse (DC)-1 
is a diagonal matrix containing the reciprocals of these control coefficients. 
If we take 
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Eq. 12 takes the form: 
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OC is a matrix of co-control coefficients and RC is a matrix containing control coefficients 
and Regulatory Strengths. Which particular set of control coefficients and Regulatory 
Strengths RC contains depends on which set of control coefficients is selected in DC.  

It has been shown that by using co-response analysis one can work out the values 
of all the control and elasticity coefficients [104, 105]. Since no knowledge of the 
perturbation size is needed (as long as it is small) Co-response Analysis may provide an 
experimentally simplified way for the measurements of control coefficients and elasticity 
coefficients.  The disadvantage of this method is that all reactions need to be perturbed 
even if one wishes to determine a single control coefficient. 
 
Section 1.6: Problem statement and summary 
 
Currently, with modern experimental techniques, it is possible to measure the 
concentrations of a great many and ultimately all cellular constituents, such as mRNAs, 
proteins and metabolites. Given these experimental technologies, astronomical amounts of 
new data will appear.  To enable us to see the forest for the trees, we need to find ways in 
which best to analyze the data so as to obtain better understanding of biochemical systems 
and predictive power.  When those new ways of analyzing the data are found, this may 

 20



General introduction 

even lead to a preference for a certain type of data or certain experimental methodologies.  
This may then help direct experimentation towards the highest possible impact for 
understanding of the system. Ideally, the three levels of biochemical organization, i.e. 
mRNAs, proteins and metabolites, are studied all together in an integrated fashion. 
However, due to the number of components and complexity of such integrated systems it is 
reasonable to try to decompose the system and to study the subsystems or to use simplified 
descriptions of the whole system. It will be important to decompose the system into 
subsystems that behave in isolation in much the same way as they do when they are 
embedded in the whole system. This is exactly what I deal with in this dissertation; on the 
one hand I show how and when it is possible to study the systems properties of metabolism 
in vivo, ignoring the effects of gene and protein expression, and on the other hand I develop 
a quantitative concept in terms of Metabolic Control Analysis to describe the properties of 
the whole system in a simplified form, i.e. as a gene network a description of only the 
dynamics of gene expression without explicit account for metabolites and proteins. The 
latter reduces the system to one that only accounts for interactions between genes, and that 
can be used to model observations made by micro arrays. Furthermore, this concept enables 
the inference of the topology of such gene networks from experimental data. The analysis 
guides the experimenter towards the specific experiments that need to be done in order to 
be able to infer the interactions between genes on a genome scale. 
 In Chapter 2 I will introduce the concept of hierarchical biochemical systems and 
show how to express their properties in terms of properties of the individual flux-
disconnected modules it is composed of.  I will propose several methods, which allow the 
quantification of properties of the individual modules as if they were isolated from the 
global system, from experimental data. In particular, I will focus on the study of metabolic 
systems. These analyses enable us to distinguish regulation that happens at the metabolic 
level only, from regulation that involves transcription or translation, thus quantifying the 
relative importance of each of these processes to the global systems behavior. Perturbation 
of the concentration of an enzyme enables us to measure the importance of the enzyme for 
the metabolic flux and metabolite concentrations, quantified by Control Coefficients. 
However, we don’t have perfect experimental control on the concentration of the enzymes, 
as there may be metabolites that modify the expression of genes coding for the enzymes, 
thereby modifying the enzyme concentrations. When this is the case the initial intervention 
of the enzyme concentration has a primary effect on metabolism and successively a 
secondary effect due to the modification of concentration of enzymes through gene-
expression regulation by that metabolism. It is interesting to decompose the total effect of 
the intervention into these two separate effects, because this enables to asses the relative 
importance of the metabolic system and gene–expression for metabolic regulation. The 
main train of thought behind the first method outlined in Chapter 2 is that metabolic 
processes generally occur at a much higher rate than processes of gene expression and 
protein synthesis and that the secondary effects can be neglected on a short timescale.  On 
the short timescale the effects of the perturbation of the enzyme concentration are solely 
determined by the properties of the metabolic system. Two other methods rely on drastic 
experimental modifications of the system such as inhibition of transcription or translation 
or removing regulatory sequences from the enzyme coding genes thereby physically 
removing feedback loops from metabolism to gene-expression. The fourth method relies on 
experimental determinations of, in addition to the metabolic fluxes and metabolite 
concentrations, also the enzyme concentrations, which enables us to separate primary and 
secondary effects by a mathematical operation compensating for the secondary changes in 
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the enzyme concentration, thereby ‘mathematically removing’ feedback loops from 
metabolism to gene-expression. I will verify the experimental applicability of these 
methods by analyzing data obtained by simulation of a biochemical system. 
 In Chapter 3 I introduce the concept of a gene network and briefly describe 
previously proposed modeling approaches. ‘Gene networks’ are network models in which 
the nodes represent genes or their activities (mRNAs) and the edges correspond to 
regulatory interactions between them. Such models are highly phenomenological because 
they do not represent explicitly the proteins and metabolites that mediate those interactions. 
I will show the use of Regulatory Strengths to quantify gene-gene interactions and show 
how to express these coefficients in terms of the biochemical system underlying these 
interactions. This approach establishes a clear and formal link between the 
phenomenological gene network modeling and more detailed approaches considering the 
hierarchical structuring of biochemical networks as introduced in Chapter 2. 
 Unraveling the structure of gene networks is an important step in the process of 
understanding the properties of living cells and therefore also a very active research 
program. In Chapter 4 I will first review previously proposed approaches to infer gene 
networks from gene expression data. Then, I will briefly describe previously proposed 
approaches to use Metabolic Control Analysis to infer properties of the biochemical 
constituents from observations of the whole system, i.e. “ the inverse MCA”. In the 
“conventional MCA” it has been shown that when the local properties of the components 
of the system have been experimentally determined (elasticities) one can calculate the 
systemic properties of the system as a whole (control coefficients). Inverse MCA 
establishes the exact opposite; one measures the properties of the global system and 
calculates the properties of the components. I will propose a modification of one of these 
inverse MCA approaches to enable the inference of the regulatory structure of gene 
networks in terms of Regulatory Strengths from gene expression data. The proposed 
methodology relies on experiments in which the expression rates of individual genes are 
perturbed and the steady state responses in global gene expression levels are measured, 
which enables the calculation of co-control coefficients (system properties). When all genes 
in a network of interest are perturbed and the responses measured, the local properties of 
the components (mRNAs) such as the presence of direct regulatory effects (not mediated by 
any other gene) between genes can be calculated, thereby elucidating the interaction 
structure and quantifying it. The method is evaluated by applying it to data produced with 
several mathematical models of gene networks. Finally, a large set of simulated data on 
large gene networks is analyzed to thoroughly evaluate the proposed method. 
 Chapter 5 is the general discussion, in which I will describe the place of my work 
in current functional genomics and systems biology research. I will compare the gene 
network inference method described in Chapter 4 to recent variants that appeared in the 
literature and generalize the approach to deal with other types of biochemical systems. At 
the end, I will point out which improvements could be made to the method in particular in 
the light of the limited quality of currently produced data sets. 
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Chapter 2: Hierarchical biochemical systems 
 
 
 
Traditional analyses of the control and regulation of steady-state 
concentrations and fluxes assume the concentrations of the enzymes to be 
constant. In living cells, a hierarchical control structure connects metabolic 
pathways to signal-transduction and gene-expression. Consequently, 
enzyme concentrations are not generally constant. This would seem to 
compromise analyses of control and regulation at the metabolic level. In this 
chapter the concept of hierarchical biochemical systems is introduced and it 
is explained under which conditions it is possible to study parts of the 
system in isolation, i.e. to study metabolism without taking changes in gene 
and protein expression into account. The analysis makes it possible to 
quantify both the control of a metabolic step exerted in the context of 
metabolism alone, and the control exerted by that step in the global system 
comprising regulated gene-expression and signal transduction. 



Chapter 2 

Section 2.1: What are hierarchical systems? 
 

The central dogma of molecular biology states that DNA specifies mRNA, which specifies 
protein, which specifies function.  This conveys a ‘dictatorial’ view of the regulation and 
control of cell functioning, i.e. it suggests that the DNA dictates everything that happens 
inside the cell. Figure 2.1 shows such a dictatorial system in which mRNA (T, for 
transcript) is produced by transcription, and then protein P is produced by translation, and 
the protein has a function, in this case as an enzyme producing metabolite M. The 
communication between the levels runs downward only; transcription is not supposed to 
know anything about what is happening at the lower levels. Systems in where gene 
expression itself is not sensitive to anything that happens down in the cell are called 
“dictatorial hierarchical systems” [116] (in the terminology of Hierarchical Control 
Analysis, which will be introduced in a later section).  

The above representation of biochemical regulation is highly simplified: 
transcription, which is depicted here as a single step, is actually a process consisting of 
hundreds of elementary steps. Similarly, the processes of transcript degradation, 
translocation, translation, protein translocation and degradation, and the metabolic 
processes consist of many elementary reactions. For simplicity, to omit unnecessary details, 
each such series of elementary steps is here summarized by an overall process.  

T

M

P

v1 v2

v3 v4

v5 v6

TTT

MMM

PPP

v1 v2
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v5 v6  
Figure 2.1 – A scheme of a dictatorial hierarchical system. T stands for transcript (mRNA), 
P for Protein and M for metabolite. Thick arrows represent the fluxes of production and 
degradation processes. The dashed arrows stand for regulatory interactions; the transcript 
enhances protein production, the protein catalyzes the metabolite production. Input and 
output substances are omitted in the figure. 
 

In hierarchical control analysis it has been noted [103] that even in a dictatorial 
hierarchy not all control resides at the top level of the system, i.e. in transcription.  Kinetic 
properties of processes lower in the hierarchy still partly control whatever happens at the 
same level of the hierarchy, plus what happens at levels lower in the hierarchy, but not 
what happens at levels higher in the hierarchy.   If living cells would indeed consist of such 
dictatorial systems, understanding gene regulation plus the understanding of how mRNA 
levels regulate protein levels plus the understanding of how enzyme activities regulate 
function, would entail the understanding of how the biochemistry of the cell is regulated.  

In many living cells there is feedback regulation of gene expression by the 
proteins and metabolites. Therefore, the central dogma should be modified slightly to 
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account for these additional interactions. Figure 2.2 shows such a scenario where gene 
expression regulates a certain metabolic process, but in turn the expression of that gene is 
subject to regulation by a corresponding metabolite. Such a system can produce the 
homeostatic behavior often observed in biochemical systems: gene expression increases 
transcript T concentration, which increases the rate of translation, leading to higher protein 
P concentration, which increases the synthesis rate of the metabolite M, leading to higher 
concentration of the metabolite. The metabolite communicates to the level of gene 
expression that enough is being produced and slows down the rate of transcription (by for 
example, binding certain transcription factors, which in turn bind to or dissociate from the 
gene’s promoter region to shut off transcription).  As a consequence, the increase in gene 
expression caused by the initial activation thereof is not only determined by that activation 
itself but also by its effects at the functional level. 
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Figure 2.2 – A schematic drawing of a hierarchical system. T stands for transcript 
(mRNA), P for Protein and M for metabolite. Thick arrows represent the fluxes of 
production and degradation processes. The dashed arrows stand for regulatory 
interactions, the transcript enhancing protein production, the protein catalyzing the 
metabolite production and the metabolite inhibiting mRNA synthesis 
 

The system in Fig. 2.2 is called a “democratic hierarchical system” [116], since 
the arrows do not point only from transcription down to metabolism, but also from 
metabolism up to transcription (such that the ‘opinions’ of all components matter). Other 
democratic scenarios include regulation of translation (or protein degradation) by 
metabolites and/or regulation of transcription (or transcript degradation) by proteins. 
 
Section 2.2: Timescale separation 
 
Traditionally, metabolism and gene expression have been studied and modeled separately. 
The justification for such a separation usually rests on the assumption that these two 
processes operate on widely different timescales, the rates of metabolic processes being 
much faster than the rates of mRNA and protein turnover. This assumption let investigators 
to study metabolism without taking account of changes in enzyme concentrations; the 
enzyme concentrations are assumed to be at a steady-state level that is unresponsive to 
changes at the metabolic level, at the timescale at which metabolic processes occur.  The 
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enzyme concentrations thus appear as parameters rather than variables in mathematical 
models of metabolic systems. [In our formalism the term parameter is used for a property 
that is constant.  It can only be changed by an action from outside, i.e. it does not vary 
when the system itself varies dynamically.  In other formalisms, these parameters are called 
independent variables.   In our formalism the term variable is used for any dependent 
variable, which is free to fluctuate and vary in time as the system changes dynamically.  
Only when the system is at steady state, a variable is also constant in time (cf. [10]). 

The assumption of a well-defined time separation between metabolic and gene 
expression processes also underlies the formulation of gene-network models in which 
metabolism is not explicitly incorporated. These gene network models contain the hidden 
assumption that metabolism is so fast that it could be considered at steady state, such that 
all metabolic factors that could affect gene expression are included in constants regulatory 
terms. Formally, both assumptions amount to the application of the quasi-steady state 
assumption [117, 118]. Again, this assumption has rarely been tested and its validity should 
be questioned in actual cases of regulation of cell function.   

Using mathematical models the validity of the assumption of time separation 
could be tested. Presence of a time-scale separation was evaluated by the ability to observe 
a quasi-steady state equal in the complete model (with gene regulation) to the steady state 
in the isolated metabolic model (without gene regulation). However, in the best case 
examined, the time scale of gene expression processes had to be some 3 orders of 
magnitude slower (time scales being expressed as transient times) than metabolism for the 
assumption to hold true [119-121]. Other examples (Mendes and Snoep, unpublished) 
showed that three orders of magnitude separation between time scales were not enough 
(five to six were required in that case). It seems that adopting the assumption of time 
separation between gene expression and metabolic processes blindly is rather dangerous, 
because the stability of specific mRNA and protein species, which mostly determine their 
time scales, vary widely [122, 123]. In general, it seems one would be best served by 
explicitly combining metabolic and gene expression processes in biochemical models. 

 
Section 2.3: Modeling metabolism in combination with gene expression 
 
Mathematical models describing metabolic pathways but not gene expression have been 
described as far back as 1960 [for example 32, 33, for example 124, 125-136]. In parallel to 
this, models of gene expression systems that did not include metabolism have also been 
abundant [4, 47, 137-143]. 

The first time metabolism and gene expression were combined in models was 
shortly after Jacob and Monod’s presentation of their operon concept [144]. Goodwin 
proposed an abstract mathematical model that followed the characteristic of the operon and 
performed simulations with an analog computer [145]. The model consisted of three 
variables, a metabolite, a protein, and an mRNA, each being processed by two reactions, 
i.e. synthesis and degradation (see Fig. 2.2).  

Later, Griffith performed analytical mathematical work on slightly modified 
Goodwin equations [146, 147]. These works were purely theoretical, and interesting for 
biochemical regulation from the fundamental point of view. Bliss et al. proposed a model 
with more biological reality [148]; experimentally determined parameter values were 
collected from the literature to formulate a model of the Escherichia coli tryptophan 
operon. The model considered both repression of gene expression by L-tryptophan and 
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feedback inhibition of the enzyme anthranilate synthase by L-tryptophan and included time 
delays in transcription and translation matching the observations. The simulation results 
obtained were in qualitative agreement with experimental observations [148]. Using most 
of the parameter values as in Bliss’ model, Sinha refined the tryptophan operon model by 
taking into account, in a more detailed way, the interactions among the repressor 
molecules, the promoter, and tryptophan [149]. He investigated the behavior of the system 
over a wide range of parameter values. Sen further improved this model by setting the 
consumption rate of tryptophan to follow non-linear kinetics [150]. More recently, Santillan 
and Mackey [151] continued to improve this model by including metabolic feedback and 
transcriptional attenuation. Their model is in good qualitative agreement with experimental 
observations of the metabolic shift when cells are moved from growing in tryptophan-rich 
medium to minimal medium [151]. After 20 years, there finally seems to be a good model 
of the trp-operon of E. coli! 

Lee and Bailey developed a model of the lac operon [152, 153]. They derived very 
detailed equations accounting for binding of several effectors to the operator and promoter. 
The behavior of the model was studied in response to DNA mutations, and plasmid copy 
number. Also Wong et al. [154] formulated a model of the lac operon that accounts for the 
induction by lactose and includes the mechanisms of catabolite repression and inducer 
exclusion. Kremling et al. [155, 156] incorporated metabolism, genetics and regulation in a 
very detailed manner. Their model was validated against wild type and different mutants, 
matching biomass production, glucose and lactose consumption and beta-galoctasidase 
synthesis during the diauxic shift. Although their model showed good agreement with the 
experiments, the validation focused on just 4 out of 30 variables in the model.  

Van Dien and Keasling formulated a mathematical model of the E. coli pho-
regulon, with which they modeled the phosphate starvation response [157, 158]. Their 
model reproduced the experimentally observed characteristics of the starvation response 
rather well. The single operon models and the pho-regulon model referred to above are very 
small compared to the real biochemical networks consisting of hundreds or thousands of 
genes and metabolites, and potentially millions of proteins, since alternative splicing is a 
common process in higher organisms. Tomita and co-workers have been pioneers in 
constructing genome scale models [69-71]. They formulated a large model of a Mycoplasm 
genitalium cell. Although this is the smallest non-viral genome for which a full genome 
sequence is known, the model is very large compared to any previous ones. The initial 
model describes the behavior of a fraction of all Mycoplasm genes (127), which include 
large parts of central metabolism, and contains a total of 495 reactions. The major problem 
facing this effort (and any other at this scale) is that there is very little information on the 
values of the kinetic constants and, worse, on what are the kinetic functions for each 
reaction. So far this model has not been founded on experimental observations, rather 
information from similar reactions in other organisms has been used or parameters have 
been set to arbitrary values. The model has also not been validated, at least not shown in 
their publications [69-71]. Nevertheless, this effort has had the quality of highlighting the 
difficulties with the construction of genome-scale models. Another large scale modeling 
effort combining gene expression and metabolism has been started for E. coli [159]. 
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Section 2.3: Analysis of hierarchical systems; local versus global description 
 
The MCA framework was formulated originally for metabolic systems, where the enzyme 
concentrations are taken as parameters. This restriction has been relaxed to be able to deal 
with systems that are hierarchical in nature, such as gene expression [103, 111, 116, 160] 
and signal transduction [103]. Hierarchical Control Analysis (HCA) [103, 111, 116, 160, 
161] is an extension to MCA that explicitly accounts for the control exerted by subsystems 
not connected to the pathway by mass flow, only by kinetic effects. When it deals with 
networks that include gene expression, HCA considers the enzyme activities themselves as 
variables of the system since they change due to translation, proteolysis, binding to other 
proteins, and covalent modification. It is also possible to consider mRNA concentrations 
explicitly, which are also variables due to transcription and degradation. In this setting, it 
has been shown [116] that transcription and translation participate in the control of the 
metabolic flux.  

The distribution of control in the full system, referred to as integral control [111], 
can be shown to be expressed in terms of the control of the modules in isolation, termed 
intra-modular control [111], and the sensitivity of the modules to each other, inter-modular 
response [111]. Integral or global control coefficients reflect the control when the entire 
system is allowed to adjust to a new steady state upon a modulation.  They reflect total 
regulation, both within the module and within the system as a whole.   Below, intra-
modular control coefficients are indicated by lower case ‘c’ and integral control 
coefficients by capital ‘C’. 

In a similar fashion as MCA integrates properties of individual molecules 
(elasticities) into properties of the whole system (control), in HCA the local control 
properties of the individual modules are integrated into properties of the whole system. In 
Chapter 1 it was shown that the properties of a whole system (control) can be expressed in 
terms of the properties of the individual elements of the system (elasticities). I here 
reproduce some of what is explained in the Chapter 1 for reasons of clarity. Again, a small 
metabolic pathway is used as an example.  
 

Mv1 v2
MMMv1 v2  

Figure 2.3 – A simple two-step metabolic pathway. 
 
Recall that the control coefficient for the steady state concentration of the intermediate M 
can be written as: 
 

121

1
v
M

v
M

M
vc

εε −
= .       (Eq. 2.1) 

 
Again, it is seen that the effect of changing the rate of the first reaction in the model 
depicted in Fig 2.3 can be expressed by the local effects that the metabolite has on both the 
rates of its production and degradation. 
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If an additional level to the pathway in Fig. 2.3 is introduced, i.e. the synthesis of 
the enzyme catalyzing the first metabolic reaction, supposing that it is regulated by the 
concentration of the metabolite M, the system of Fig. 2.4 is obtained.  
 

M
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v3 v4

M
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MMM

PPP
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v3 v4

 
Figure 2.4 – A simple model of a democratic gene-expression hierarchy.  A protein 
regulates the metabolite production step; in turn the protein synthesis is inhibited by the 
metabolite. 
 

The hierarchical control can be expressed in terms of the intra level control (the 
control of each isolated subsystem, as Eq. 2.1 for the control in the metabolic subsystem) 
and the elasticities accounting for the interaction between the subsystems, i.e. the effect of 
the protein on the rate of metabolite production and the effect of the metabolite on the rate 
of protein synthesis: 
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Again, the capital C represents the control this step has in the whole integrated 
(hierarchical) system. Lower case c reflects the control that steps have if one were to isolate 
the subsystems from the global system. This framework is then capable of integrating the 
properties of the metabolic system with those of the gene-expression machinery and 
provides a detailed quantification of the importance of these in the whole system.  

The hierarchical control can also be expressed in terms of elasticity coefficients 
only:  
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The hierarchical control (Eqs. 2.2 and 2.3) is different from the metabolic control (Eq. 2.1) 
as a result of the interaction between gene expression and metabolism. Whether the 
hierarchical control is higher or lower than the metabolic control depends of the signs of 

 and , which quantify the activation (positive value) or inhibition (negative value) 
of reaction 3 by the metabolite and of reaction 1 by the enzyme, respectively. Although the 
precise values of elasticity coefficients vary between steady states, equations 2.1-2.3 are 

3v
Mε 1v

Pε
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valid for any kinetics and steady states of a system with this particular structure (Fig 2.4). 
Hierarchical Control Analysis is general and equations like Eq. 2.1-2.3 can be derived for 
any system of arbitrary complexity [111, 161]. Again, for even moderately large systems 
the equations of control coefficients in terms of elasticities become cumbersome.  Matrix 
equations can be used to keep things clear [103, 111, 160, 161]. 

DNA supercoiling [162, 163] in living E. coli has been analyzed with Hierarchical 
Control Analysis [163]. DNA supercoiling is a mechanism by which bacteria compact their 
chromosome. The level of DNA supercoiling in the prokaryotic cell changes in response to 
changes in various extra-cellular conditions, such as temperature, osmolarity, pH and shifts 
between carbon or free-energy sources, or oxygen availability [164]. In turn, the 
supercoiling state of DNA affects the expression of numerous genes [165]. DNA topology 
may thus convert environmental signals into changes in gene expression. DNA gyrase 
introduces negative supercoiling in the DNA by coupling the reaction to ATP hydrolysis, 
and topoisomerase I relaxes negatively super-coiled DNA. The genes encoding 
topoisomerase I and DNA gyrase are among the genes that respond to changes in the level 
of DNA supercoiling. The expression of the DNA gyrase genes is highest when the level of 
DNA supercoiling is low and the expression of the topoisomerase I gene is stimulated by 
negative supercoiling. A surprising conclusion was that both proteins have low control over 
DNA supercoiling [163]. By blocking enzyme synthesis (i.e. effectively removing the 
feedback) intra level control could be measured, which was much higher than the control in 
the integrated system. 
 
Section 2.5: Measuring local control in whole systems 
 
The issue of the diverse mechanisms through which living cells are controlled is quite 
relevant in the realm of functional genomics. Whilst there has been an initial emphasis on 
the transcriptome as representative for function, more recent work [166] has begun to 
emphasize that the metabolome is where function resides. Rather than it being an issue of 
either-or, it is reasonable to assume that both metabolic and gene expression regulation are 
important. In every specific case one should quantify each one’s contribution to regulation. 
Here, four methods are described that enable us to quantify, in addition to the control in the 
whole system, also the control in subsystems.  
 To illustrate the proposed methodology with maximum clarity, one of the simplest 
possible model systems that contains the essence of the problem is used, i.e. the simplest 
possible metabolic pathway that is subject to regulation by itself through the synthesis of a 
new enzyme (Fig. 2.5).    
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Enzyme6 
v3 v4 

Metabolite 
v5 v6 

 
Figure 2.5 – The model system. Interactions between the different levels (dotted arrows) 
run through the dependencies of (i) translation on mRNA concentration, (ii) the metabolic 
rate on enzyme concentration and (iii) the activation of transcription by the metabolite. 
Solid arrows indicate mass flow at the mRNA, protein and metabolic levels. Although both 
reactions 5 and 6 are catalyzed by mRNA-encoded proteins, this is only shown explicitly for 
reaction 6. This simplifies the model without detracting from the essence of hierarchical 
regulation. Accordingly, the model only takes into account this route for regulation through 
gene expression, effectively assuming that the gene encoding the enzyme of reaction 5 is 
expressed constitutively. 
 
In spite of its simplicity, the model of Fig. 2.5 should be sufficiently interesting because it 
mimics the basic structure of hierarchical biochemical systems including some routes along 
which the hierarchical levels communicate to each other. Rates of all 6 reactions of this 
model are given by Eqs. 2.4: 
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Here [S] is the concentration of the pathway’s substrate, [Metabolite] the concentration of 
the metabolite, [mRNA] the concentration of the messenger, [Enzyme] the concentration of 
the enzyme, [nucleotides] the concentration of nucleotide triphosphates, V1 the limiting 
transcription rate, Km1 the Michaelis constant for nucleotide triphosphates, Ka the activation 
constant of transcription by the metabolite, k2 the rate constant for mRNA degradation (and 
dilution due to cell growth), k3 the translation rate-constant, k4 the enzyme degradation rate-
constant (and dilution due to cell growth), V the limiting rate of reaction 5, Keq5 the 
equilibrium constant for reaction 5, KmS5 the Michaelis constant for the substrate, KmP5 the 
Michaelis constant of reaction 5 for the metabolite, kcat the catalytic rate constant of the 
enzyme of step 6, Keq6 the equilibrium constant of reaction 6 and KmP6 the Michaelis 
constant for the pathway’s product. It should be noted that step 5 is enzyme-catalyzed and 
its enzyme concentration is implicit in V. 

In order to determine the metabolic intra-modular control coefficients, the two 
upper modules or the feedbacks from metabolism to these, have to be ignored – thereby 
isolating the metabolic part from the global system. In this case the enzyme and mRNA 
concentrations are assumed constant (at their steady state levels). When the enzyme 
concentration becomes constant its product with kcat, in the numerator, becomes a 
parameter itself (V, known as the limiting rate).   

In this model, the units of the kinetic constants and time are arbitrary. Since it was 
not our intention to mimic any known system here, but rather to illustrate how the proposed 
methods work.  
Table 2.1 lists the values of the rate constants used in the simulations. The values of the 
intra-modular control coefficients and the integral control coefficients under these 
conditions are listed in Table 2.2. Note that with respect to the simple metabolic control 
distribution, in the hierarchical system the flux control is distributed differently and the 
concentration control has reduced due to the homeostatic effect of the feedback loop. 
 
Table 2.1 – Parameter values used in the simulations of the model systems described in 
Fig. 1 and Eqs. 5-10 
Rate Parameter Value 
v1 V1 0.01 
 [nucleotides] 1 
 Km1 10 
 Ka 100 
v2 k2 0.01 
v3 k3 0.1 
v4 k4 0.01 
v5 Vf 100 
 Vr 1 
 [S] 1 
 KmS5 1 
 KmP5 10 
v6 kcat

f 100 
 kcat

r 1 
 [P] 0.1 
 KmS6 10 
 KmP6 1 
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Table 2.2 – The values for the control coefficients according to Eq. 2.4, obtained using the 
elasticity coefficients calculated numerically at the standard parameter set in Table 2.1.  
Simulations were carried out with an Intel Pentium III 733 MHz computer with the 
biochemical simulation package Gepasi [85, 91, 92]. 
Type of control Control 

coefficient 
Value 
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The intra-modular control coefficients, to be indicated by lower case c's, can be written as 
functions of the elasticity coefficients:  
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Where X stands for the metabolite concentration, and J for metabolic flux. When 
considering the whole system, the integral control coefficients (indicated by capital C's) can 
be derived similarly: 
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N stands for mRNA and E for enzyme. Calculating the control from elasticities using these 
equations result in the same value for the control coefficents as given in Table 2.2. 

Comparison of Eq. 2.7, for the intra-modular control of enzyme 5 on the 
metabolite, to Eq. 2.12, for the integral control of enzyme 5 on the metabolite, reveals the 
difference. As compared to the intra-modular control, the integral control is attenuated by a 
rather complex factor involving inter-level elasticity coefficients. Since most actual systems 
have connections between regulatory levels, the question is if and how metabolic intra-
modular control can be measured without interference form the inter-modular integral 
control. 

There are several ways of measuring the local metabolic component of control. 
One of these relies on the metabolic response being faster than the gene-expression 
response and analyzes the system when the former has settled, while the latter has hardly 
changed. The second approach adds an inhibitor of transcription, so as to eliminate the non-
metabolic response. Less obvious methods include one in which various modulations of the 
system are performed and global control is measured, after which intra-level control can be 
calculated. Each of these methods will now be illustrated in detail using the model of Fig. 
2.5, Eqs. 2.4, and Table 2.1. 

 
Section 2.5.1: Method 1, method based on metabolite time courses 
 
This method requires one to follow the time evolution of the metabolite concentration after 
a perturbation has been introduced. The motivation comes from an anticipated wide 
difference in time scale between the metabolic reactions on the one hand, and the reactions 
of mRNA and protein levels, on the other [111, 119, 120]. After a perturbation of the 
limiting rate V, the concentration of the metabolite should first evolve to a metabolic quasi-
steady state. This apparent steady state should be close to the one that the metabolic system 
would approach if decoupled from gene expression. Only subsequently should the system 
evolve, more slowly, towards the global steady state (Fig. 2.6, at the lower rate constants 
for transcription). When transcription, translation and metabolism operate at similar time 
scales, the concentration of the metabolite and its flux both move to the global steady state 
without exhibiting a metabolic quasi-steady state (Fig. 2.6, at high rate constants for 
transcription).  
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Figure 2.6 – Time simulations of the model system of Fig. 2.5 at different magnitudes of 
transcription and mRNA-degradation rate constants. The concentrations and fluxes at time 
t=0 correspond to the initial steady state before perturbation. Parameter values are as 
indicated in Table 1, except that the rate constants at the translation level were k3=10 and 
k4=1, and the rates at the level of transcription were: squares: k1=k2=0.001, triangles 0.01, 
diamonds 0.1 and circles 1. At t=0, rate v5 was perturbed by increasing V (Eq. 2.4) by one 
percent. The asterisks show the value of the intra-modular steady state after the 
perturbation. A) Metabolite concentration. B) Metabolic flux.   
 

In order to simulate a possible experimental determination of the values of the 
metabolic intra-modular control coefficients based on assumed time-scale separation, the 
model system was simulated for several values of the rate constants of transcription, 
mRNA degradation, translation, and protein degradation. The parameters were varied so as 
to obtain ratios of about 500, 50, 5 and 0.5 between the transition times [167] of 
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metabolism and the other levels. Simulations were performed such that the steady-state 
concentrations, steady-state fluxes, and global control coefficients were equal, so as to 
allow for meaningful comparisons. The parameter values corresponding to these operations 
are given in Table 1.1 and the legend of Fig. 2.6. The metabolic intra-modular control 
coefficients were calculated using the calculated time series, taking the highest point in 
metabolite concentration as the new metabolic intra-modular steady state after the 
perturbation: 
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vv
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−

−
= .     (Eq. 2.14) 

 
Y represents any system variable, e.g. the flux through the metabolic pathway. The 
modulation of v5 was kept small, i.e. 1 %. If the value of the final (global) steady state is 
used in Eq. 2.14, then the global control coefficient is obtained.  

When the integral control exceeds the intra-modular control, as is the case for the 
flux-control of reaction 5, another method needs to be applied, because the trajectory fails 
to exhibit an extremum (the global steady state would be an extremum, but it was not 
reached in the interval of the measurements). In Fig. 2.6B for instance, the transient flux 
rapidly increased towards the intra-modular steady state and then increased further towards 
the global steady state. A transient quasi-steady state has the characteristic that the first 
derivative of the time course is zero. Therefore, in order to locate the intra-modular steady 
state, first derivatives of the time course were estimated; the point at which the derivative 
was closest to zero was taken to be the quasi-steady state. This value was used as the new 
steady-state flux in Eq. 2.14 to calculate the intra-modular flux-control coefficient. Fig. 2.7 
shows the concentration- and flux-control coefficients, calculated using this method for 
different combinations of parameter values at the levels of transcription and translation. 
Only for the smaller rate constants at the level of transcription, or for the smaller rate 
constants of translation, the control coefficients were estimated at an accuracy exceeding 
95%. 
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Figure 2.7 – The metabolic intra-modular control coefficients as a function of 
transcription/mRNA degradation rate constant and translation/protein degradation rate 
constant using method 1. Measured control coefficients were scaled relative to the 
theoretical value for the intra-modular control coefficient. A value of 1 indicates a perfect 
determination of the intra-modular control coefficient. Rates on the level of translation 
were varied. k3≡10*k4 and for squares k4=0.01, for triangles k4=0.1, for diamonds k4=1 
and for circles k4=10. The asterisks indicate the analytical value for the integral control 
coefficient. A) Concentration-control coefficients. B) Flux-control coefficients. 
 

 37



Chapter 2 

Section 2.5.2: Method 2, method based on inhibition of transcription 
 
Inhibition of transcription or translation eliminates the feedback loops from metabolism to 
gene expression: metabolism will then behave as if isolated. Only in this case can one 
measure intra-modular control coefficients. 

Global transcription can be inhibited by adding rifampicine to the medium and 
global translation by adding chloramphenicol. Here the action of a strong transcription 
inhibitor was mimicked by setting the rate of transcription to 10-25 in the simulations. 
Transcription should be inhibited at the same time as the metabolic perturbation is made. 
When transcription is abolished, this system cannot reach a finite global steady state as the 
concentrations of mRNA and protein decay to zero. As with method 1, it was studied how 
this would work at several values for the rate constants of transcript-degradation and 
translation/enzyme degradation differing over 3 orders of magnitude. Under conditions that 
lead to time separation, i.e. metabolic rates much higher than those of transcription and 
translation, the metabolite concentration first increased to the metabolic steady state and 
then slowly evolved to the global equilibrium. The flux first moved to the metabolic steady 
state and then decreased to zero, since the enzyme vanishes due to degradation. Without 
this separation in time scales no quasi steady state could be detected.  

To calculate the intra-modular concentration-control coefficient in this example, 
the same procedure as described for method 1 was used, but determining the quasi-steady 
state point from estimates of the first derivatives. The metabolic flux-control coefficients 
were then calculated in the same way as described for method 1: the maximum in the time 
series was taken to be the quasi steady-state value and was used in Eq. 2.14. Fig. 2.8 shows 
the results of simulations for various values of the rate constants of transcription and 
translation. Again, the intra-modular control coefficients were only estimated accurately 
when the mRNA and/or enzyme degradation rate constants were small. 

In our model, only one of the enzymes is variable in time. This assumes that the 
rate of degradation of the second enzyme (or its mRNA) is infinitely slower than the 
degradation rate of the first (or its mRNA). Simulations were done with a model system 
that is similar to the one described in Fig. 2.5, Eqs. 2.4 and Table 2.1, but where the 
transcription and translation of the gene coding for the enzyme producing the metabolite 
are explicit. Degradation and translation kinetics were taken identical to that of the gene for 
step 6. The transcription kinetics was assumed to be insensitive to the metabolite, and 
therefore its rate is constant, and set to 10-25 to mimic the effect of the transcription 
inhibitor. Simulations were performed with this system, the data was analyzed as described 
above, and accurate estimates of control coefficients were found. In this case both proteins 
decay to zero at the same rate so that both the production and consumption rates of the 
metabolite decrease in the same proportion, decoupling metabolism from gene expression 
(agreeing with the summation theorem for concentration control). Only when the time 
scales of metabolism and gene expression are close, were the estimates of concentration 
control coefficient poor (see Fig. 2.9A). The accuracy of the measured flux control 
coefficients was still low however (Fig. 2.9B), similar to the results of Fig. 2.8B: the 
simultaneous inhibition of the synthesis of the two enzymes will decrease all fluxes, even 
though the metabolite concentration remained almost constant. 
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Figure 2.8 – Intra-modular control coefficients as a function of mRNA-degradation rate 
and translation/protein degradation rate using method 2 for the case of only one variable 
enzyme (Fig 2.6). Measured control coefficients are scaled to the theoretical value of the 
intra-modular control coefficient (1 indicates a perfect determination). Rates on the level of 
translation differed as follows: squares: 10*k4= k3=0.01, triangles 0.1, diamonds 1 and 
circles 10. A) Concentration-control coefficients. B) Flux-control coefficients. 
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Figure 2.9 – Intra-modular control coefficients as a function of the mRNA-degradation 
rate and translation/protein degradation rates brought about by adding corresponding 
inhibitors at time zero.  This is method 2 for determining the intra-module control 
coefficients, but now with a system with both enzymes variable and with equal degradation 
rates. Measured control coefficients were scaled to the value of the theoretical value for the 
intra-modular control coefficient. Thereby a value of 1 indicates a perfect determination of 
the intra-modular control coefficient. Translation rates differed as follows: squares: 10*k4 
= k3 = 0.01, triangles 0.1, diamonds 1 and circles 10. Rate constants for the expression of 
mRNA and protein for the metabolic step 5 are taken to vary identically to mRNA and 
Enzyme for step 6. A) Concentration-control coefficients. B) Flux-control coefficients. 
 

Proteins can have degradation rates varying over several orders of magnitudes. 
Therefore the systems studied here are special cases illustrating the extremes of behavior 
that can be observed. It is reasonable to expect that the results that can be obtained using 
this method will be somewhere between the results of these two extremes.  
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Section 2.5.3: Method 3, a method based on external gene induction 
 
This method is based on replacing the gene promoter by another one whose activity does 
not depend on the metabolite concentration. A popular method is the replacement of the 
original promoter by the IPTG inducible lac-type promoter, as described in the context of 
metabolic control analysis by Jensen et al. [168]. By this substitution of promoters, the 
system is transformed to a dictatorial system, in which transcription is insensitive to the 
other levels. In our model, this substitution of promoters is represented by introducing a 
new parameter, i.e. the concentration of an external transcription activator, which is now 
the modifier v1, instead of the pathway metabolite. This implies that there is no significant 
transcription without the presence of this external transcription activator, which is used to 
adjust the transcription rate independently from metabolism (just as IPTG has been used by 
Jensen et al. [168]). The activation constant of the external transcription activator was set to 
100, and its concentration was adjusted such that the steady state would have the same 
concentrations of metabolite and enzyme as in the absence of the external activator. 
Without the feedback loop the response of metabolism to a perturbation in v5 is purely 
intra-modular (i.e. at the level of metabolism alone). In simulations, it was found that the 
response is identical to the response that the metabolic pathway would have if considered in 
isolation. The rates of transcription were varied following the same methodology as in the 
previous two methods. An estimate of the intra-modular control coefficient was obtained by 
inserting the values of the new steady state variables in Eq. 2.14. In this case the ability to 
measure the intra-modular control coefficients was independent of the separation of time 
scales between metabolism and gene expression. 
 
Section 2.5.4: Method 4, measuring and correcting for the altered enzyme 
activity 
 
This method makes use of the fact that the rate equation for a metabolic step can be 
expressed by the product of three factors, one dependent only on the enzyme concentration 
(ei), one representing the enzyme’s specific activity (ai) (i.e. that part of its activity that is 
not affected by the metabolic variables in the system, but only by the added noncompetitive 
inhibitor), and a term that fully displays the kinetic mechanism and fully contains the 
dependence of the rate on substrate, product concentrations and the concentrations of all the 
other metabolic variables that may affect the rate (ui) [166]: 
 

6666 uaev ⋅⋅=         (Eq. 2.15) 
 
 The specific activity can be perturbed independently of the concentration using 
non tight-binding inhibitors, such that total inhibitor concentration greatly exceeds total 
enzyme concentration. The concentration of the enzyme will change due to the change in 
metabolite through the regulatory feedback loop. All newly synthesized enzyme molecules 
will be inhibited to the same proportion as those originally present. Consequently a stays 
constant during the whole measurement. Due to metabolic changes u may vary between 
steady states.  To obtain the global control coefficient one measures the change in flux or 
metabolite concentration and differentiates the logarithm of that change with respect to the 
logarithm of the perturbed process activity (for derivation, see [169]: 
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6ln
ln

6 ad
XdC X

v = .        (Eq. 2.17) 

 
For the intra-modular control coefficients these expressions have to be corrected for the 
change in enzyme concentration (which could be seen as an additional perturbation to the 
metabolic level). The logarithm of the change in flux (or concentration) should then be: 
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= .    (Eq. 2.19) 

 
In order to calculate the intra-modular control coefficient using this method, one needs to 
measure the enzyme concentration additionally to the fluxes and metabolite concentrations. 
Results of this method on the model system of Fig. 2.5 are given in the top rows of Table 
2.3. It is seen that this method is reasonably accurate. 
 

Eqs. 2.18 and 2.19 are only valid when the enzyme of the step under consideration 
was the only one that changed concentration in response to the perturbation. To remove this 
restriction, the model was extended by explicitly taking account of the mRNA and enzyme 
concentrations of the metabolic step 5. Degradation and translation kinetics are identical to 
that of the gene for step 6 (note that this choice of parameters is not necessary for this 
method to work). Transcription of this gene is supposed to be affected by the metabolite 
through competitive inhibition: 
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= .    (Eq. 2.20) 

 
V7 is the limiting transcription rate for this gene, Km7 the Michaelis constant for the 
nucleotide triphosphates and KP7 the product inhibition constant of the metabolite. The 
parameter values used were V7 = 0.001, Km7 = 1 and KP7 =100, with [nucleotides] as in 
Table 1.1. In terms of the analytical equations obtained for the intra-modular flux control 
coefficient (correcting for the effect the altered expression of enzyme 5 has on the flux by 
using the flux control summation law, which remains valid also for the intra-modular 
control coefficients (cf. [103, 164]): 
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and  likewise for the intra-modular concentration control coefficient: 
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Interestingly, the quantity ji aded lnln  is the integral control of process j on the 

enzyme concentration, i.e. . One can thus calculate the intra-modular control of a 
metabolic step on a metabolite from integrated control of that step on all components that 
have influence on that metabolite. Results of applying this method are given in the bottom 
rows of Table 2.3.  Again, this proved to be an accurate method. 

iE
jC

 
Table 2.3 – Values of global and intra-modular control coefficients calculated using 
method 4. 
Type of 
control 

Control 
coefficient 

Real Value Calculated 

System with one variable enzyme 
ssJ

vC
6

 0.40 0.40 Integral 

[ ]ssX
vC

6
 -0.61 -0.62 

ssJ
vc

6
 0.72 0.73 Intra-modular 

[ ]ssX
vc

6
 -1.1 -1.12 

System with two variable enzymes 
ssJ

vC
6

 0.43 0.43 Integral 

[ ]ssX
vC

6
 -0.54  -0.54 

ssJ
vc

6
 0.68 0.69 Intra-modular 

[ ]ssX
vc

6
 -1.12 -1.14 
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A general matrix equation, of which 2.18, 2.19, 2.21 and 2.22 are special cases, can be 
derived.  I start with the control matrix expression discussed in Chapter 1, but written as: 

 
ICE =⋅         (Eq. 2.23) 

 
Matrix contains control coefficients of the independent variables only and can be 
partitioned according to flux control coefficients, and concentration control 
coefficients, : 
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Matrix contains structural and kinetic information, E
 

[ εLκE −= ]        (Eq. 2.25) 
 
where is the scaled kernel, relating dependent to independent fluxes, ε the matrix of 
elasticity coefficients,  and  the scaled link matrix relating dependent concentrations to 
independent ones. This relationship is general, as has been proven in [114].  It will pay off 
though to formulate it for the specific subset of cases that are organized in terms of three 
flux-disconnected systems.  These will then pertain to the three functional levels of 
organization of cells, i.e. the transcriptome (T), the proteome (P) and the  metabolome (M).  
Accordingly the matrices are partitioned as: 
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  (Eq. 2.26) 

 
Here, submatrices give the control of the processes at level i on the fluxes and 

concentrations at level j (i, j can be T, P, or M). Similar, submatrices contain 
elasticities of the rates in level i towards the concentrations of level j. In Chapter 3, section 
3.2.2, a biochemical explanation of each submatrix is given. Submatrices and  are 
square and invertible. The submatrices in E are partitioned as in [170] and [111]: 

j
iC

j
i
vE

i
ivC i

i
vE

 

[ ]iiii
ii LεκE vv −=       (Eq. 2.27) 
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[ ]iii
jj Lε0E vv −=       (Eq. 2.28) 

To be able to partition as in Eq. 2.26, the κ and matrices have to be block diagonal. This 
is the case when there is no mass exchange between the three levels or when the mass 
exchange is negligibly small [111], such as in most materializations of the hierarchical 
systems considered here. 

L

The inverse of the complete E matrix equals the integral (global) control matrix. 

Since  contains only elasticities quantifying the effects of the level i on the rates on 
level i, inverting this sub matrix gives the intra-modular control matrix for level i. By 

inverting  the interactions of level i with the other levels are ignored and thus yields a 
control matrix that would characterize level i in isolation. Rewriting Eq. 2.26 by 

substituting ( for  yields: 
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 (Eq. 2.29) 

 
In this chapter, the extent to which a measurement of the local control coefficients of 
metabolism may be confounded by interference by global control is examined, i.e. only the 

relationship between  and ,  and is of interest.  Therefore the third 

row of E with the third column of C is multiplied giving: 

M
vM

c M
vM

C P
vM

C T
vM

C

 

( ) ICcCECE M
v

M
v

P
v

v
P

T
v

v
T MMM

M

M

M =⋅+⋅+⋅
−1

    (Eq. 2.30) 
 

Solving for in terms of ,  and  by going through some 

rearrangements 
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CECEICc )      (Eq. 2.31) 

 
assuming that the inverse matrices exist (again, this is now related to the assumption of 
stability of the reference steady state).  The result is a general expression relating the intra-
modular control to integral control. The intra-modular control can thus calculated from 
experimental measurements of the integral control. 

In all the examples used in this dissertation, no direct effects from the 
transcriptome on the metabolome are considered, as these are unprecedented biochemically 
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(they would consist of direct effects of mRNA’s on enzyme activities; they are not 
altogether impossible as some mRNAs have been shown to bind to enzymes, for unknown 

functional reasons). Therefore, will be assumed to be a null matrix and Eq. 2.31 
reduces to: 

Mv
TE

 

( 1−
⋅−⋅= P

v
v
P

M
v

M
v M

M

MM
CEICc )       (Eq. 2.32) 

 
Using this result, equations 2.18, 2.19, 2.21 and 2.22 can be re-derived, but 

equation 2.31 is generally valid. For maximum clarity, I here write out these matrices 
explicitly for our example of Figure 2.5, with the additional modification of explicitly 
including the enzyme for the synthesis step of the metabolite, with the properties given in 
Eq. 2.20.  Since the numbering of rates in Figure 2.5 is rather confusing, here the model is 
presented more clearly 

 
 

T2
ts2 td2

P2ps2 pd2

T1
ts1 td1

P1
ps1 pd1

MR1 R2

T2
ts2 td2

T2
ts2 td2

P2ps2 pd2
P2ps2 pd2

T1
ts1 td1

T1
ts1 td1

P1
ps1 pd1

P1
ps1 pd1

MMMR1 R2

 
Figure 2.10 – A system consisting of two mRNAs, two proteins and a two-step metabolic 
pathway. There is feedback from the metabolome to the transcriptome. T, P and M stand 
for transcript (mRNA), protein and metabolite, respectively. ts and td stand for rate of 
transcript synthesis and rate of transcript degradation, respectively; ps and pd stand for 
rate of protein synthesis and rate of transcript degradation, respectively; and R1 and R2 for 
metabolic rates.   
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The corresponding elasticity matrix is: 
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 (Eq. 2.33) 
 
Transcription was assumed not to be inhibited by its mRNA product, and that the protein 
product does not inhibit translation, and that metabolites only affect transcription not 
translation directly.  The relevant integral control matrices are:  
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Writing out equation 2.32 in terms of these matrices one obtains: 
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For the intra-modular control of step R2 (corresponding to v6 in equation 2.21) on the 
metabolic flux one then obtains 
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This expression is rather different from that in Eq. 2.21. However, because the elasticities 
towards the enzymes are taken to be equal to 1 (since most enzymes linearly increase the 
rate of metabolic reactions (see Eq. 2.15) the equations simplifies to: 
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Some of the control coefficients are equal due to the hierarchical structure of the system 
and the validity of summation laws for control coefficients [cf. [103]] giving 

 and simplifying the denominator. Again using such summation 

laws, the term in the numerator can be rewritten as 
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which is the same as Eq. 2.21.  
Similarly the equation for the intra-modular control of step 2 (Eq. 2.22) on the 

metabolite can be obtained from 
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Again the elasticities towards the enzymes are taken to be equal to 1, the denominator is 

simplified as above, and since the numerator simplifies to 11
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which is the same as Eq. 2.22. 

If it is assumed that the enzyme catalyzing the synthesis of the metabolite is not 
sensitive to the metabolite (as was done for the model described by Fig. 2.5, Eq. 2.4 and 
Table 2.1) Eqs. 2.26 and 2.38 reduce to 2.42 and 2.43 respectively, 
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which are the same as Eq. 2.18 and 2.19 used above.   These equations are readily 
interpreted as the fact that the intra-level control equals global control corrected for the 
change in enzyme concentration. 

Equation 2.32 is general and can be applied to any system of arbitrary complexity. 
Similar equations to Eq. 2.32 can be derived to calculate the intra-modular control on the 
proteome and the transcriptome from measurements of integral control coefficients on all 
three levels. The equations derived here are basically an inverse version of the approach 
described in [111], where the properties of the whole are described in terms of the 
properties of the individual levels. 
 
Section 2.6: Discussion 
 
In this chapter I have introduced the concept of hierarchical biochemical systems and their 
analysis. To simplify the analysis of these hierarchical systems the approach of 
decomposing the system into subsystems was taken. Mathematical models have been 
formulated for metabolism and for gene networks, based on the assumption that there is a 
large time scale difference between the rates at which processes at the different levels of the 
hierarchical system occur. I have shown under which conditions this assumption is 
justified.   

This relates to the issue of when it is relevant to distinguish the control properties 
of metabolism as if isolated from those of the global hierarchical system, and in fact when 
it is useful to consider the hierarchical nature of the system at all.  From the operational 
point of view, relevant for predicting behavior of the system, this may no longer be so if the 
time separation is too small.  In practice, the three levels of the hierarchy will then change 
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virtually simultaneously anyway.  However, from the conceptual point of view, it may 
remain useful always to distinguish regulation that happens at the metabolic level only, 
from regulation that involves transcription or translation.  In addition, for engineering 
purposes knowing where the regulation resides should suggest strategies to enable the 
biological systems to produce at a higher efficiency or yield.   

Quantifying the intra-modular control of metabolism in addition to the integral 
control thus provides insight into how regulation is partitioned between the different levels. 
Furthermore, if there is a time scale separation, the intra-modular control quantifies the 
short-term behavior of the system, while the integrated control the long-term behavior. If 
there is insufficient timescale separation, the concept of intra-modular control is somewhat 
academic, since it only exists in the isolated sub-system. In many cases there is a 
considerable time scale separation between metabolism and the mRNA and protein levels. 
For these cases the relevance of HCA and the present method is that they are able to 
distinguish between the control exerted all within one level (e.g. between the metabolic 
reactions) from the control of one level over another. Hierarchical Control Analysis allows 
one to describe these two types of control and has exact laws to relate them [cf. [103]]. The 
methods proposed here should facilitate their experimental implementation. 

The methods to measure intra-modular control were illustrated using a kinetic 
model.  Parameters were chosen so as to obtain a high ratio between the intra-modular and 
the integral control coefficients (also called A-coefficient in [111]). In real biochemical 
systems the values of two different types of control coefficients might be either closer or 
further apart. When the values of the two coefficients are closer, it will be more difficult to 
distinguish the two. 

The first two methods for determining intra-level control coefficients were 
motivated by the time scale separation that might exist between the dynamics of 
intermediary metabolism and gene expression. Such time separation is mainly determined 
by the difference in the degradation rates of the different levels [111, 119, 120]. When this 
difference is sufficiently large, the initial behavior of the system is determined by the intra-
modular (metabolic) control, and the final behavior by the integral control. In our models a 
difference of two to three orders of magnitude proved sufficient to observe this effect. 
Smaller differences in time scales reduced the accuracy at which the intra-modular control 
coefficients could be measured. Estimating for major metabolic pathways of E. coli 
metabolite turnover times (concentration divided by flux) of a few seconds, whereas most 
enzymes last many cell cycles of longer than 30 minutes, the characteristic times may 
indeed be apart on the order of the required factor of 100-500. Similar estimates apply to 
yeast glycolysis.  

Seemingly, evolution resulted in a temporal organization of hierarchical 
regulation: the more free-energy demanding mode of inter-level regulation – protein 
synthesis – is switched on if intra-level-metabolic regulation alone proves to be incapable 
to sufficiently sustain the physiological state.  Furthermore, it appears that time scales 
reduce the complexity of the dynamics displayed by biochemical networks thereby 
preventing uncontrollable (complex) behavior that may compromise proper cell function 
[171]. 

The ability to discriminate between fast and slow control, as elaborated in the 
present manuscript, may help understand the function of signal transduction networks, 
which often have more than one characteristic time constant.  Indeed, kinases and 
phosphatases have been shown differentially to affect the slow and the faster phases and 
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this may be important for the decision between differentiation and proliferation in some cell 
types [172]. 

For our model system, it must be noted that should the feedback interaction of the 
metabolite to transcription be stronger (lower Ka in Eq. 2.4), the time scales, expressed by 
eigenvalues of the Jacobian [173] come closer. Indeed, with decreasing Ka, the fast time 
scale decreased towards the slow time scale (results not shown). One should thus be 
cautious when reasoning solely on the basis of rate constants of transcription and 
metabolism, without knowledge of the strength of interactions between these levels.  

In our demonstration of methods 1 and 2, the sampling frequency of the 
measurements was rather high because both methods require one to locate a minimum of 
the first-order derivative of the curve. In practice, it might be difficult to make 
measurements at this frequency and thus the quasi-steady state could be missed or 
misplaced, resulting in much larger error. It is advisable to fit the time course to an 
arbitrary fitting function first and then to locate the quasi-steady state from the zero or 
minimum of the derivative of this function. 

Method 2 did not prove any better than method 1. This is because the method 
requires inhibition of transcription.  Thereby the method itself perturbs the steady state, just 
when the relaxation phase sets in that separates intra-level from global control: Since the 
mRNA continues to be degraded, whereas its synthesis is being stopped, its steady-state 
balance is perturbed. An alternative method would inhibit both transcription and mRNA 
degradation, such that the level of mRNA should remain constant. This is difficult to 
achieve experimentally and was therefore not considered here.  

Methods 3 and 4 are similar to each other in that both remove the feedback loop 
from metabolism to gene expression, either physically (by replacing the promoter) or 
mathematically. The problem with method 3 is that it only works when there is a single 
feedback loop. In living cells there are certainly more feedback loops from metabolism to 
gene expression, so one still measures the global control of the system, but without that 
particular feedback loop [162]. In order to measure intra-modular control, one would have 
to replace all promoters. Method 4 is applicable to systems consisting of many variable 
enzymes, provided that one measures control coefficients for all enzymes and metabolites 
in the system, severely limiting its applicability to larger networks.  

The distinction between intra-modular metabolic and global integrated control is 
crucial for the understanding of the regulation of cell physiology. An example is catabolite 
repression by glucose, which abounds in biology. This works via metabolic effects, via 
signal transduction and via gene-expression. The implications of the three types of 
mechanism differ greatly for the dynamics and persistence of the regulation. For humans, 
gene-expression regulation of glucose uptake after a rich meal should result in a subsequent 
undershoot in glucose levels, unless compensated by additional insulin-dependent 
regulation. On the other hand, gene expression-mediated regulation is the one that permits 
the best homeostasis of intracellular metabolites, and may hence lead to the most optimal 
state.  

This approach is fundamentally different from that in the work of Acerenza et al. 
[174] and Heinrich and Reder [175], who studied the time-dependent control analysis (i.e. 
quantifying control of reactions on the relaxation processes). Although based on 
observation of time courses, our methods do not extend MCA to the time domain. Simply, 
a way was described of locating a quasi-steady state on the time course, followed by 
analysis with the traditional MCA approach, as if it were a true steady state.  This has led to 
an emphasis on small changes (perhaps smaller than may be experimentally feasible), 
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steady states, control, and regulation. Aspects of spatial heterogeneity, and experimental 
errors [cf. 176] deserve scrutiny in future work. It is important to note that the present 
results are essentially the same when perturbations of 10% rather than 1% were applied 
(data not shown). 

The work described in this chapter is dedicated to dealing with hierarchical 
systems and their simplified description in terms of individual flux-disconnected sub-
systems.  The emphasis was on the study of the subsystem of metabolism, independently 
from the subsystems of gene transcription and protein synthesis. The enhanced ability to 
distinguish between metabolic and hierarchical regulation may further our understanding of 
living organisms. This becomes acute with the greatly enhanced abilities to measure gene 
expression (transcriptome [12] and proteome [177]) and metabolome [178] in parallel and 
quantitatively. Since cell function depends on both, and in many interconnected ways (e.g. 
[166]), progress may well depend on our ability to dissect intra-modular metabolic 
regulation from the hierarchical regulation that hovers over it. 
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Chapter 3:  Gene networks 
 
 
 
In the previous chapter I have shown one way to simplify the study of 
hierarchical systems, i.e. by decomposing the global system into subsystems 
and by then studying the properties of these subsystems in order to gain 
knowledge of their importance for regulation in the whole system. In this 
chapter I describe another way to simplify the study of hierarchical systems. 
This simplification yields a ‘condensed’ description of the hierarchical 
system in terms of a gene network [83]. Gene networks only account for 
transcript (mRNA) concentrations, while proteins and metabolites are only 
implicitly present mediating interactions between the genes [82, 83]. I will 
introduce the concept of gene networks and will show how to express 
quantitatively the properties of the gene network in terms of the properties 
of the biochemical reactions underlying the communication between genes. 



Chapter 3 

Section 3.1: The gene network concept 
 
An increasingly popular model of biochemical regulation is that of ‘gene networks’ in 
which the nodes represent genes or their activities (mRNAs) and the edges correspond to 
regulatory interactions between them. Such gene networks are phenomenological models 
because they do not represent explicitly the proteins and metabolites that mediate those 
interactions. Gene networks are a logical way of attempting to describe phenomena 
observed with transcription profiling, such as is done at a large scale with the popular 
microarray technology. Being able to create gene networks from experimental data and to 
use them to reason about their dynamics and design principles will contribute to increased 
understanding of cellular function.  

The ‘genes’ in gene networks represent the gene activities (mRNA concentrations) 
of an organism in a particular physiological state.  Each mRNA can be synthesized and 
degraded. Synthesis and degradation rates are then proposed to be regulated by the activity 
of the gene itself and by other gene-activities, i.e. by all mRNA levels. 

In reality the synthesis rates of mRNAs are rarely influenced directly by the 
concentrations of mRNA molecules, but by their protein products, such as transcription 
factors and by metabolites such as transcriptional inducers and suppressors. Clearly 
regulation does not only involve the level of mRNAs but also the level of protein and the 
level of intermediary metabolism.  Figure 3.1 represents a model of a global biochemical 
network in which the three levels are shown explicitly by planes. The arrows illustrate that 
in such a global biochemical network the gene activities do not interact directly with each 
other.  Instead gene induction or repression occurs through the action of specific proteins, 
which are, in turn, products of certain genes. Gene expression can also be affected directly 
by metabolites, as they are a source of the material and free energy required for the process, 
or through regulatory protein-metabolite complexes.  

However, it could be useful to abstract from this reality of the actions of proteins 
and metabolites, and to represent the system by a simplified model in which gene-activities 
(mRNAs) are the only explicit actors, acting on other genes in a gene network (also called 
genetic regulatory, transcription or expression networks). This simplification of going from 
the global biochemical network to a gene network is akin to a projection of all interactions 
to the “gene space” [39] is illustrated in Figure 3.1. Figure 3.2 is the resulting gene network 
representation. 
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gene space

protein space

metabolic space

metabolite 1 metabolite 2

protein 1

protein 2

protein 3

protein 4
complex 3:4

gene 1

gene 2

gene 3

gene 4

 
 
Figure 3.1 – Example of a biochemical network. Molecular constituents (nodes of the 
network) are organized in three levels (spaces): mRNAs, proteins, and metabolites. Solid 
arrows indicate interactions. Three different mechanisms of regulation are shown: 
regulation of gene 2 by the product of the gene 1, protein 1; regulation of gene 2 by the 
complex 3:4 formed by the products of gene 3 and gene 4; and regulation of gene 4 by the 
metabolite 2, which in turn is produced by protein 2. A: Projections of these interactions 
into the “gene space”, indicated by dashed arrows, constitute a corresponding gene 
network with many nodes not coinciding with actual genes (some arrows corresponding to 
synthesis and degradation were omitted to avoid cluttering).  B: The approximate gene 
network used in most gene network analyses:  only nodes that correspond to actual genes 
are considered and influences that run partly in parallel because they pass through 
common factors at the metabolic level are treated as if independent of one another. 
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gene 3

gene 2

gene 4

gene 1

 

 

Figure 3.2 – Simple graph representation of the gene network corresponding to the 
biochemical network in Figure 3.1. Lines show direct effects, with arrows standing for 
activation, and blunt ends for inhibition. The edges implicitly include the effects of the 
proteome and metabolome as shown in Figure 1. Most genes in gene networks will have a 
negative effect on their own concentration, because the degradation rate of their mRNA 
tends to be affected to the mRNA concentration. 
 
Section 3.1.1: Representations of gene networks 
 
Gene networks are commonly represented by directed graphs as depicted in the example of 
Figure 3.2. The nodes of the graph are genes and the directed edges are direct causal 
relations between genes. A widely adopted norm is to use arrow tips on edges that represent 
positive interactions, where an increase in activity of the originating gene causes an 
increase in the target gene through that interaction, and blunt ends on edges that represent 
negative interactions, where an increase in activity of the originating gene causes a 
decrease in activity of the target gene through that interaction. Gene networks can also be 
represented through matrices, as illustrated in Eq. 3.1, which is the matrix representation of 
Figure 3.2 (for a specific condition). The matrix in Equation 3.1 was obtained applying the 
method of Regulatory Strengths [81-83, 179] (this will be described in more detail in the 
chapter 4) to simulated data. A row in this matrix corresponds to an effected gene, and the 
columns to the effector genes. Gene network matrices can be qualitative, in which positive 
interactions are represented by the number 1, negative interactions with the number –1 and 
0 is written for the case of no interaction between genes or quantitative, in which case its 
elements take real values representing the strength and sign of the first order approximation 
of the interaction, such as in Eq 3.1. 
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An interaction between two genes is said to be direct if it does not run through any other 
genes in the network. For example, in Fig. 3.2, gene 1 directly affects gene 2. Gene 1 also 
affects gene 4, but only in an indirect way because this effect has to run through gene 2 
first. Non-additive interactions are not captured in either of the two representations above, 
but the graph representation could be generalized to hyper-graphs, in which edges can 
connect more than two nodes: edges originating in all the cause genes and ending up in the 
effect gene (as is shown in Fig. 3.1).  

Section 3.1.2: Relevance of studying gene networks 
 

Knowledge of the structure of gene networks can be highly important for 
representing cell function with much more precision than is usually done with words [see 
(see 180]), even when these words are part of a controlled vocabulary, as they are in the 
Gene OntologyTM [181]. Gene networks will increase our knowledge of functions of genes 
in their context. For instance, from a sequence one may deduce that a certain gene codes for 
a protein kinase, but not the function of that kinase in the cellular context. If this gene is 
linked to genes involved in flagellum synthesis, it may conclude that it plays a role in the 
chemotaxis signal transduction pathway. In this sense, not only are gene networks (and 
especially their graphical representations) capable of describing a large number of 
interactions in a concise way but they may also come a long way towards representing the 
regulatory properties accompanying those interactions at a systems level. Cells exhibit 
complex interacting behavior that is usually not predictable from the properties of 
individual system components alone. Gene networks provide such a system view at the 
level of gene activities. 

The detailed molecular mechanisms of how the products of one gene affect 
expression of another gene are often unknown but the effect itself may be observed in gene 
expression experiments. It is therefore appropriate and timely to use genome-wide gene 
expression data to identify gene networks, an important step towards uncovering the 
complete biochemical networks of cells. Research focused on developing methods for this 
identification of gene networks from microarray data is now an important part of 
bioinformatics. 

Knowing the structure of gene networks and performing simulations of their 
behavior on computers will increase our fundamental understanding of living systems. 
Uncovering the structure of gene networks will then help us manipulate cells to our 
advantage, and may provide valuable clues for treating complex, devastating diseases. 
Knowledge about gene networks may help pharmaceutical research in discovering and 
prioritizing targets, eliminating toxic and ineffective compounds, tailoring drug therapy to 
the needs of a patient [182].  Indeed, single genes do not always affect genotype 
significantly, and most remaining major diseases result from a rather complex collective 
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interplay of the activities of a number of genes. It is the network between genes rather than 
the individual genes that matters. Metabolic engineering and drug targeting by 
manipulating single genes is limited [183]. Simultaneous manipulation of several genes 
may be needed in order to achieve a significant outcome. Gene networks will provide clues 
about which genes to manipulate simultaneously.  

The number of genes in the human genome [184] may only be twice that of the 
worm Caenorhabditis elegans [185] (but see also[186]). There are several hypotheses 
pertaining to explain this relative “simplicity” of the human genome. One is that the 
average number of proteins encoded by each human gene is larger than that of proteins 
encoded by genes in other genomes [187]. Another one is that the proportion of regulatory 
genes (signaling proteins, transcription factors, etc.) in the human genome is higher than in 
other genomes. Yet another is that the human gene network has a higher average number of 
connections per gene than other genomes (which implies that the encoded proteins contain 
more binding sites). Both the latter two hypotheses could be tested by determining gene 
networks of various organisms and comparing them. Such studies could of course also 
reveal that the connections in the human gene network are not more, but just different and 
perhaps even fewer.  Gene networks are then also well suited for comparative genomics. 

Some studies [188, 189] indicate that the topology of gene networks might be 
largely responsible for the robustness shown by living organisms. A particular gene 
network topology might have been selected in evolution to originate the type of system 
robustness currently observed in many species against drastic perturbations at the genetic 
level (e.g., at least 40% of the genes of Saccharomyces cerevisiae can be removed without 
causing noticeable phenotypes under laboratory conditions). Comparative genomics done at 
the level of gene networks should be well suited to pursue this hypothesis. 

 
Section 3.1.3: Connectivity of gene networks 
 
Several authors [4, 47, 79, 80, 190] argue that gene networks are sparsely connected. 
However, there are simple arguments that suggest the opposite for gene networks that 
should describe true cell function of which a few will be listed here. The first one is a 
consequence of the connectivity of metabolic networks: if a certain metabolite is an effector 
of the transcription rate of a gene (usually by binding a transcription factor), then the genes 
coding for other enzymes that have large concentration control coefficients for that 
metabolite will also appear as interacting with the genes affected by that metabolite. One of 
the findings of Metabolic Control Analysis, i.e. concentration control is distributed, has 
major impact here: most metabolically regulated genes will be targeted by many other 
genes. The second argument comes from the fact that all transcription steps are dependent 
on metabolic energy.  Consequently, genes that code for enzymes that have control on the 
energy level may interact with all genes. Third, the rates of transcription depend on the 
concentrations of nucleotides as they are the building blocks of nucleic acids; so all genes 
coding for enzymes involved in nucleotide synthesis may be inputs of all other genes. 
Fourth, if or when RNA polymerases exist at low concentrations, interactions between any 
two genes would arise by competition between the polymerase binding sites of these genes 
for the then scarce RNA polymerase molecules. In such a situation, increased expression of 
one gene would result in decreased expression of all others, generating inhibitions from any 
one gene to all others. A known corollary of this is the so-called protein-burden effect 
[191], in which it was shown that forced over-expression of one gene must compromise the 
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expression of all other genes and therewith compromise general cell functions such as 
growth rate.  Fifth, any other genes that affect transcription, in some general way, will be 
inputs to all genes. For instance, genes that code for transporters that are responsible for 
transport of metabolites or of protein effectors of gene expression into the nucleus. There 
are many other examples of interactions that would arise from the complex interplay at the 
‘unobserved’ proteome and metabolome. Except when a gene-gene interaction involves 
transcription factors, where it is clear that the protein product of one gene affects the 
expression of another, the meaning of gene-gene interactions in gene networks it is thus far 
from being obvious.   

Whether these numerous potential interactions have a significant magnitude or not 
is still an open question.  Certainly, some of these interactions may have small magnitude, 
for example in many situations there are plenty of nucleotides such that transcription rates 
are saturated with them, reducing the related interactions to values close to zero.  

Section 3.2: Regulatory Strength as a quantitative measure for gene-gene 
interactions 
 
Many mathematical frameworks have been proposed for describing gene networks, varying 
from Boolean logic to non-linear partial differential equations. Here I suggest describing 
gene networks in terms of Regulatory Strengths [108] (also called partial internal response 
coefficients, see http://www.sun.ac.za/biochem/mcanom.html) to quantify gene-gene 
interactions. It is a simple, but quantitative description, and has the benefit that there is a 
close link between the theoretical framework and the analysis of experimental data 
produced with current high scale experimental technologies.  
 
Section 3.2.1: The Regulatory Strength 
 
As explained in Chapter 1, Regulatory Strengths quantify the fractional changes in a system 
variable as a consequence of the change in another system variable through a specific path 
[108]. The meaning of the Regulatory Strength follows from the concentration connectivity 
theorem: 
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where Xi, Xj correspond to any independent concentration variable.  Lets consider the gene 
network depicted in Figure 3.3, elaborated in terms of a hierarchical system [cf. [103]] in 
order to illustrate this. 
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Figure 3.3 – A simple three-gene network to illustrate the use of Regulatory Strengths. 
Thick arrows indicate mass flux and thin arrows regulatory interactions 
 
There are three ways for transcript T2 to affect transcript T3, one directly by inhibiting the 
synthesis rate v3a, a second by affecting the synthesis rate of T1, which stimulates the 
synthesis of T3, and a final one by affecting its own degradation rate, v2b. Considering 
equation 3.2 with i = T3 and j = T2 one obtains: 
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The three effects sum up to zero. Each individual term can be non-zero. The coefficients 

 and  correspond to indirect interactions, while  correspond to a direct 

interaction, since it quantifies the effect that T
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2 has on T3 by directly affecting the rate of 
synthesis of the latter. 

In a similar way the connectivity relations can be used to express the effects of the 
other variables on each other and on themselves.  It is important to distinguish between the 
direct Regulatory Strengths and the indirect ones. The direct Regulatory Strengths are of 

the form , where vj

i

j T
T

v R j stands for the synthesis or degradation rate of transcript j, and 

can be used to describe the direct interaction structure of gene networks quantitatively. In 
chapter 4 I will describe a method that enables inference of these direct Regulatory 
Strengths from experimental data. 

 
Section 3.2.2: Regulatory Strengths in terms of component control and 
elasticities 
 
In the example in the previous section I have considered for simplicity that genes directly 
affected each other. In reality however, the interactions between genes run through proteins 
and metabolites. Here I will (i) show how the Regulatory Strengths quantifying the 
interactions between the genes depend on the properties of the underlying hierarchical 
system and  (ii) generalize the concept of the Regulatory Strength of a gene-gene 
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interaction that only involve paths through a gene network to such a Regulatory Strength of 
a gene-gene interaction that involves the proteome or metabolome. 

I start with the control matrix expression [106, 114] as introduced in Chapter 1. 
For definitions of the symbols refer to Chapter 2, Section 2.5.4. 
 

ICE =         (Eq. 3.4) 
 
As in Chapter 2, Section 2.5.4 matrix C  contains is partitioned according to control 
coefficients for all independent fluxes, and all control coefficients for all independent 
concentrations, : 
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Matrix contains both structural and kinetic information, E
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Eq. 3.4 is written explicitly in terms of the three functional levels of organization of cells: 
the transcriptome, proteome and metabolome 
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Submatrices give the control of the rates in level i on the fluxes and concentrations in 

level j. Similarly, submatrices contain elasticities of the rates in level i towards the 
concentrations of level j. In order not to interrupt the derivation here, I will give a 
biochemical interpretation of these submatrices at the end of this section. Submatrices 

and  are square and assumed invertible. The submatrices in E are partitioned as in 
[170] and [111]: 
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To be able to partition as in Eq. 3.9, the κ and matrices have to be block diagonal. This 
is the case when there is no mass exchange between the three levels or when the mass 
exchange is negligibly small [111].  

L

Control coefficients can be obtained by inverting matrix E  [106] but the inverse 
is also true; the elasticities and pathway structure can be obtained from the control matrix 
[114]. 

Using the relationship for the inverse of block matrices [192], the inverse of a 
matrix can be expressed in terms of its blocks: 
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assuming that matrices A and D are square and non-singular. 
 

Our aim here is to show that the activity of the protein and metabolite levels in the 
system do not compromise the ability to describe the steady-state behavior of the system in 
terms of the gene level alone.  Accordingly it will suffice to divide the system into two 
parts, i.e. that of the gene network (the mRNA’s) and the remainder, comprising the protein 
and the metabolite levels. Accordingly, using the relationship in Eq. 3.10, Eq. 3.7 is 
rewritten as: 
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Here r stands for the remainder of the system: in this case the proteome and metabolome 
together. 

According to Eq. 3.10, the sub matrix can be expressed as: T
vT

C
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The inverse of equals a matrix of control coefficients quantifying control on the 
proteome and metabolome if the concentrations on the transcriptome levels remain fixed. 
To distinguish between the real control and the control in subsystems, I use the symbols C, 
€ and c.  C stands for control in the whole system, € for the control in two subsystems 
united (in this case the proteome and metabolome) if the third is fixed (in this case the 
transcriptome) and c for the control within each subsystem with the other two fixed (cf. the 
intra-level control of Chapter 2). 
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In general, the control of the processes at the transcriptome level on the variables at that 
same level (i.e., mRNA concentrations and gene expression fluxes) can thus be expressed 
as: 
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Matrix  can be partitioned as: T
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 is a matrix containing ‘apparent’ 

elasticities (similar to global elasticity in [170], and overall elasticity in [193]) of rates of 
gene expression towards concentrations of mRNAs. The scaled link matrix of the 
transcriptome, , is always an identity matrix since there are no conservation relations 
between mRNA concentrations.  

TL

Eq. 3.15 contains all the flux and concentrations control coefficients of the gene 
network.  Accordingly, Eq. 3.15 shows that for steady state control, the mRNA levels can 
be described as a gene network, even if that network is not only connected internally but 
also through external loops that lead through proteins and metabolites.  This proof is 
general, as it only requires Eq. 3.7 to be valid and the both the system as a whole and its 
subsystems to be in stable steady state.  

Rewriting Eq. 3.15 in the form of Eq. 3.4 yields: 
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Considering only concentration control coefficients leaves us with: 
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Matrices [ ]T

vT
C  and  are in general not square and thus one cannot write one of 

the matrices in Eq. 3.17 as minus the inverse of the other. However, the specific 
stoichiometry of the transcriptome enables us to overcome this problem.  Gene networks 
are composed of flux-decoupled modules, each consisting of two reactions: one producing 
a specific mRNA (transcription) and the other degrading this mRNA. Due to this particular 
stoichiometry, the summation theorems for concentration control coefficients from 
Hierarchical Control Analysis [103, 111, 116, 160] enable us to reduce the matrices. 
Writing out Eq. 3.17 for a three-gene network explicitly: 
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Here, vtsi and vtdi stand for rate of synthesis and rate of degradation of transcript Ti, 
respectively. Carrying out the matrix multiplication in Eq. 3.18 explicitly, one obtains 
expressions similar to the connectivity theorems for concentration control [109]: 
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The summation theorems for concentration control in hierarchical systems [103] imply:  
 

i
v

i
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CC −= ,        (Eq. 3.20) 

 
where i is mRNA T1, T2 or T3 and j refers to rate number. Using these relationships, Eq. 
3.19 can be written in terms of half the number of control coefficients: 
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Which can be expressed in matrix format as: 
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where and . Eq. 3.22 

contains square matrices, which can be inverted.  Thus, one can be expressed as the inverse 
of the other. In the elasticity-type matrix the individual transcription and degradation rates 
are not considered explicitly anymore in terms of their dependence on the concentrations of 
mRNA’s, but only the ratio of synthesis to degradation rate Here, information is lost to 
distinguish between effectors that act on the transcription process or on the degradation of 
the mRNA. However, the number of control coefficients under consideration is reduced to 
25% of the original number of control coefficients in Eq. 3.4, which greatly simplifies the 
experimental determination of these coefficients (see below). For the gene network 
representation it is thus only of interest that there is an effect of a gene on another, not 
about details such as whether it acts on transcription or degradation. 
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 In general we thus have 
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The asterisk is used to indicate that now is dealt with reduced matrices. contains only 

a set of concentration control coefficients and contains aggregated apparent 
elasticities. 

[ ]*T
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C
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Eq. 3.23 enables one to calculate the new set of concentration control coefficients 
for the gene network.  

Because co-control coefficients are experimentally more feasible to determine 
than control coefficients, a transformation of Eq. 3.23 is used similar to the one suggested 
by Hofmeyr et al.  [104, 105]: 
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where  is the diagonal matrix having the elements of   on its diagonal.   
Defining 
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One finds: 
 

IRO =⋅ ,        (Eq. 3.26) 
 
whereO is the co-control matrix [104, 105] and R a matrix of Regulatory Strengths [108].   
 By determining all co-control coefficients of the part of the network that consists 
of the genes and the using the above equation, one can calculate the Regulatory Strengths 
quantifying the interactions between the genes of that sub- network 
 

1−= OR         (Eq. 3.27) 
 
This means that the gene network can be used as a representation of the entire network.  Eq. 
3.25 also enables us to reverse engineer gene networks from microarray experiments, 
where rates of transcription are perturbed one by one. This will be dealt with in more detail 
in Chapter 4. 

The elements of  show the effect of the transcript concentrations on the rates 
of change of transcript concentrations. These effects are mainly due to the degradation 
rates, since each transcript increases its own degradation rate, transcripts do not interfere 
with the synthesis or degradation of other transcripts and transcription is an irreversible 

process. In the simplest case  is merely a lower diagonal matrix with negative 
numbers. However, if the RNases are saturated with mRNA, or if there are regulatory 
processes of the transcriptome on itself through the mechanism of RNAi, in which the 
presence of short double-stranded RNA prevents translation of the corresponding mRNA 

and activates its degradation [194],  becomes more complicated.  

Tv
TE

Tv
TE

Tv
TE

The elements of  represent the effects of the protein concentrations on the 
rates of change of transcript concentrations. RNA-polymerases, transcription factors and 
RNases, for example, are some of the proteins involved in these effects. Also the proteins 
that make up the spliceosome and proteins that transport mRNA from the nucleus to the 
cytoplasm will appear in this sub matrix. 

Tv
PE

Tv
ME  describes the effect of the metabolites on the rate of change of transcript 

concentrations. Certain metabolites interfere with the transcription of genes by changing 
the binding affinities of regulating proteins, leading to a change in transcript formation rate. 
For example, in tryptophan synthesis in E. coli, the trp-operon is inhibited by the 
concentration of L-tryptophan. 

Pv
TE  describes the effects of the transcriptome on the proteome.  Each mRNA 

codes for a protein, thereby increasing the rate of its formation. The column belonging to 
rRNA will have positive values in almost every row, since they are part of the ribosomes 
and thus stimulate the formation rate of all proteins. 

Pv
PE  contains information of many different types of interaction between 

proteins. The columns of proteases will have many negative elements; ribosomal proteins 
will have positive entries in almost all rows. The effects of phosphatases and kinases, and 
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other components of signaling cascades, appear in this sub matrix, as well as any other 
form of protein-protein interaction. 

Pv
ME  shows the effects of metabolites on rate changes in the proteome. Some 

metabolites interfere with the synthesis or degradation of proteins. For example, protein 
synthesis and many post-translation modification reactions depend on ATP, GTP and other 
metabolite concentrations.  The intra-lysosomal pH should be considered a metabolic 
variable and will affect the proteins that end up in the lysosome. 

Mv
TE  would represent the rare cases of ribozymes catalyzing metabolic reactions, 

and most entries can be expected to be zero. 
Mv

PE  mainly contains the effects of metabolic enzymes on the rates of change of 
substrates and products of the reactions it catalyses. Also contained are the effects of 
transporters that pump metabolites in and out the cell. 

Mv
ME  describes the effects metabolites have on the rate of change of metabolite 

concentrations. These are substrates and products of metabolic reactions and modifiers of 
reaction rates. 

 
Section 3.3: Examples 
 
Here I explore the above-derived equations for a simple hierarchical system with different 
types of wiring structures. It will be shown systematically how a hierarchical system can be 
‘condensed’ into a gene network. 

Section 3.3.1: Example 1. Hierarchical system with feedback from metabolism 
to gene expression 
 
In the following example, the Regulatory Strengths between genes in a simple model 
system is derived. The system consists of just two communicating genes. This enables us to 
explain clearly how the Regulatory Strengths are determined by the properties of the whole 
system. 
 
Fig. 3.4 shows a small hierarchical biochemical system consisting of two mRNAs, two 
proteins and a short metabolic pathway of two steps and one metabolic intermediate. There 
is feedback from the metabolite to the rates of transcript synthesis. 
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Figure 3.4 – A system consisting of two mRNAs, two proteins and a short metabolic 
pathway of two steps and one metabolic intermediate. There is feedback from the 
metabolome to the transcriptome. T, P and M represent transcript (mRNA), protein and 
metabolite, respectively. ts and td stand for rate of transcript synthesis and rate of 
transcript degradation, respectively; ps and pd stand for rate of protein synthesis and rate 
of transcript degradation, respectively; and R1 and R2 for metabolic synthesis and 
degradation rates, respectively.   
 
The corresponding elasticity matrix is: 
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(Eq. 3.28) 
 
As in Eq. 3.13 is written as T

vT
C
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or explicit in the three subsystems: 
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Because of the relation in Eq. 3.10: 
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Substituting this result in Eq. 3.30, one obtains: 
 

[ ]
1−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−=

0
E

ccEc
0c

E0EC
P

MP

M

M

PTT

T

v
T

M
v

P
v

v
P

M
v

P
vv

M
v
T

T
v    (Eq. 3.32) 

 
Multiplying the sub matrices gives: 
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The Regulatory Strengths are calculated by dropping flux control (Eqs. 3.17-3.22) and 

multiplying the matrix of apparent elasticities, , by  (Eq. 3.24): 
*
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 (Eq. 3.34) 

 
The effects of the genes on themselves consist of two parts. One part runs through 
degradation directly, since the degradation rate is dependent on the concentration of mRNA 
(thus expressed as a ‘fundamental’ elasticity). An indirect effect of an mRNA on its 
transcription through the protein and metabolite is quantified by an apparent elasticity, 
which is expressed as a product of elasticities and local control on the path of interaction. 
The interaction between the genes is similarly expressed in terms of the effects along the 
interaction path. 
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Section 3.3.2: Example 2. Hierarchical system with feedback from metabolism 
and proteins to gene expression 
 
Here the system depicted in Fig. 3.5 is considered.  
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Figure 3.5 – A system consisting of two mRNAs, two proteins and a short metabolic 
pathway of two steps and one metabolic intermediate. There is feedback from the 
metabolite and protein to the transcript synthesis rates. Abbreviations are as in the legend 
of Fig. 3.4. 
 
The corresponding elasticity matrix is: 
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(Eq. 3.35) 
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As in Eq. 3.13, is written as: T
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or explicitly in terms of the three subsystems: 
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Because of the relation in Eq.3.10: 
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Substituting this result in Eq. 3.37, one obtains: 
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Multiplying the submatrices gives: 
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The Regulatory Strengths are calculated as before. 
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  (Eq. 3.39) 

 
Here, there are three effects of the genes’ activities on themselves. Again, one of these runs 
through degradation.  A second effect of an mRNA on itself involves its own transcription 
and runs through the proteome.  A third effect runs through the protein and metabolite. 
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Section 3.3.3: Example 3. Hierarchical system with feedback from metabolism 
to gene expression and protein synthesis 
 
Now the system depicted in Fig. 3.6 is considered. 
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Figure 3.6 – A system consisting of two mRNAs, two proteins and a short metabolic 
pathway of two steps and one metabolic intermediate. There is feedback from the 
metabolite to the transcription and protein synthesis rates. Abbreviations are as in the 
legend of Fig. 3.41. 
 
The corresponding elasticity matrix is: 
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Again, as in Eq. 3.12 is written as T
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or explicitly in the three subsystems: 
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Because of the relation in Eq. 3.8: 
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By using relation 3.13 again it is possible to write: 
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which is the control these steps should have if only the transcript levels were fixed.  
Substituting this result in Eq. 3.45, one obtains: 
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Multiplying the sub matrices leads to: 
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The Regulatory Strengths are calculated as before. 
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 (Eq. 3.49) 

 
Because of the feedback loops from the metabolite to the proteins, the expressions become 
more complicated. Now, control coefficients, , appear that quantify the control of the 

reactions at the protein level on the concentrations in the protein level at a fixed transcripts 
but with a variable metabolite. The synthesis rate of each protein exercises control on the 
concentration of the other.  Consequently the paths split in two and both paths affect the 
metabolite concentration, which in turn alters the transcription rates. 

Pj
v ips

€

 
Section 3.4: Discussion 
 
Gene networks will describe only the dynamics of gene activities. For a total understanding 
of living cells and even for the complete understanding of gene function in such cells, there 
is a need to study biochemical networks as a whole. The interest in gene networks was 
originally inspired by the “dictatorial” perception of the cell; it was assumed that the genes 
control everything in the cell, since they code for the proteins that actually establish 
processes in cells.  Recent findings, however, show that a biochemical function (glycolytic 
flux) was regulated just for 30% by gene expression and for 70% by processes in 
metabolism itself [166]. It becomes obvious that in many actual cases regulation may be 
distributed over all levels of the cell, and that thereby the cellular hierarchy is a 
“democratic” one. Nevertheless, in the light of widespread and almost routinely whole-
genome mRNA measurements, gene networks are an excellent first approach to describe 
cellular organization. Although only gene activity is explicitly taken into account in such an 
analysis, all other biochemical processes contribute to what is observed at the gene 
expression level.  They are present implicitly in the gene network model. 

Gene networks are thereby not only collections of gene-gene regulatory relations 
in a genome (or a subset thereof), but also a reflection of additional metabolic and other 
regulation. Gene networks are useful to rationalize phenomena in terms of how external 
perturbations propagate through the expression of genes. Starting from a high-level 
description of gene regulation in cells provided by the gene network, one could 
systematically add details of the mechanism of physical interaction and expand the network 
to include proteins and metabolites explicitly. 

I have proposed here a quantitative description of gene networks in terms of 
quantities of Metabolic Control Analysis, specifically the Regulatory Strength [108]. 
Regulatory Strengths quantify the effect of variables onto each other, and are therefore 
perfectly suited to describe complex networks of interacting genes. In addition, a general 
equation was derived to express these Regulatory Strengths in terms of the properties of the 
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whole system, i.e. ‘apparent elasticities’ quantifying the sensitivity of net gene expression 
rates towards mRNA concentrations. 

In the gene network representation, proteins and metabolites are ‘hidden’ 
variables. If certain genes are omitted in the representation (because they are unknown or 
for reasons of convenience) they will have the same roles as proteins and metabolites in the 
above treatment: they will give rise to phenomenological interactions between genes that 
are mediated by the unknown genes. The gene network representation can thus be made as 
simple as one would like, including an arbitrary number of genes. The more genes are 
included the higher the resolution and thus the realism.  

The gene network model based on Regulatory Strengths is a purely additive one, 
based on a first-order Taylor approximation [7]. However, in many cases the regulation of 
the expression of a gene depends on a combination of several other genes. For example, the 
products of gene A and gene B may bind to each other before being capable of activating 
gene C. This framework is not able to represent such higher order scenarios explicitly, but 
rather an additive equivalent of it.  

Although many mathematical frameworks have been proposed to describe gene 
networks, no such framework provided a solid base for experimental determination of the 
relevant quantities. The theory of Regulatory Strengths to quantify gene-gene interactions 
may provide a comprehensive framework accompanied by an experimental recipe of how 
to measure and calculate these measures from data that can be produced with current high 
scale experimental technologies in a straightforward way (e.g. Eq. 3.26). The next chapter 
will detail the procedure of the experimental determination of the Regulatory Strengths and 
the method will be studied using simulated data. 
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Chapter 4: Inferring gene networks with Regulatory 
Strength Analysis 
 
 
 
With modern microarray technology, one can simultaneously measure 
expression levels of thousands of genes. This gene expression information 
has long been expected to provide all the necessary means to unravel the 
interactions between genes. Several methods have already been developed 
for this purpose, but in no case was experimental design explicitly taken 
into consideration. In contrast, I here describe a method based on a well-
defined experimental setup and designed with the sole purpose of 
quantifying how much the expression of one gene affects other genes. This 
method makes use of results from Metabolic Control Analysis, i.e. Co-
Response analysis and the concept of Regulatory Strength, and is able to use 
relative expression levels as measured with microarrays directly. Examples 
of application of the method are presented using in silico experiments. 
 



Chapter 4 

Section 4.1: Existing methods for gene network inference 
 
Research on gene networks has been geared towards two major goals: (1) to understand the 
dynamics and design principles of gene regulation, and (2) to reverse engineer gene 
networks from experimental measurements. Activities in gene-network modeling started 
with the pioneering work of Kauffman [4] on random Boolean [181] networks (but see also 
[195, 196]). More recently it has been questioned if the topology of gene networks is 
random.  Arguments can be invoked in support of the alternate view that gene networks 
follow a “small-world” [197] and “scale-free” [198] topology, with a power law 
distribution for node connectivity. It has been shown that metabolic and protein interaction 
networks have such topologies. However, as pointed out in the previous chapter, gene 
networks are phenomenological models in which the actions of proteins and metabolites are 
‘projected’ onto the gene space [39, 83]. Although the ‘hard-wired’ structure of a 
biochemical network may be small world and scale free, there is no reason to believe that 
their phenomenological descriptions, i.e. gene networks, should obey the same 
characteristics. Research in the dynamics and structure of gene networks is still active and 
much more can be expected to happen there. However, in the past five years or so, the 
majority of research in gene networks focused on methodologies for reconstructing gene 
networks from experimental observations, perhaps owing to the abundance of microarray 
data. The remainder of this section is devoted exclusively to this problem. 
 Many interactions between genes have been discovered through traditional 
molecular biology approaches. Gene networks can be obtained by combining knowledge 
about these interactions.   The GeNet database [199]  
(http://www.csa.ru/Inst/gorb_dep/inbios/genet/genet.htm) is a convenient electronic 
repository for such information. Ideker et al. [200] constructed a gene network of 348 genes 
of S. cerevisiae based on information of 2709 protein-protein interactions [201] combined 
with 317 known protein-DNA interactions collected from the databases TRANSFAC [202] 
(http://transfac.gbf.de/TRANSFAC) and SCPD [203] (http://cgsigma.cshl.org/jian/). In a 
similar way, a network of 10 genes was proposed for the control of flower morphogenesis 
in Arabidopsis thaliana [142]. In a recent approach, the gene network determining sea 
urchin development was proposed [204]. The approach had been to knock out single genes 
and measure the response of the whole network. The authors considered that the 
perturbation data in itself was not sufficient to distinguish between direct and indirect 
effects. However, using prior knowledge about cis-regulatory elements in this genome 
[205], a network specified by direct effects was proposed. Genes were taken to be directly 
affected if they responded in an experiment in which a certain transcription factor was 
perturbed and they also contained the specific target sites of that transcription factor in their 
cis-regulatory elements. Similar approaches correlate gene expression data with the DNA 
sequence at the promoter sites of genes and also discover new transcription regulatory 
elements [206, 207]. 
 The process of establishing cause-effect relationships between genes on the basis 
of observations of the whole system by measuring expression levels is referred to as 
“reverse engineering” and is a traditional inverse problem akin to many others in science. A 
number of approaches (see [39, 77] for reviews) have been proposed for inferring gene 
networks from experimental data. A popular method, sometimes called “guilt by 
association”, assumes that genes with similar expression patterns are functionally related to 
each other, and is usually put to practice through clustering algorithms [208] and principal 
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component analysis [209]. There are other methods that are based on more sophisticated 
statistical analysis, like Bayesian belief networks [210, 211]. Following the classic work of 
Kauffman [4] on Boolean networks, there are several methods that include the 
simplification of considering genes to be either expressed at a fixed rate, or not at all [212-
214]. These methods also consider time to be a discrete process, and the methods are based 
on constructing rules that govern if genes at one time step are on or off based on the values 
taken by the genes that are connected to it at the previous time step. Boolean approaches 
suffer from their inability to capture intermediate levels of gene expression, and can easily 
generate spurious results owing to their discrete nature [215]. Both Boolean and Bayesian 
approaches suffer from the need for data discretization. There are many strategies for data 
discretization, but it is unknown which is the best. In addition, discretization of continuous 
data implies the loss of information, suggesting that ultimately this cannot be the best 
approach. 
 The use of continuous functions is more challenging but potentially more accurate.  
Expression levels are allowed to take any positive value. These approaches are 
mathematically implemented by difference or differential equations, either linear or non-
linear. In linear additive models the expression level [216, 217] or rate of change [218] of 
each gene transcript depends linearly on the expression level of other genes. Each 
interaction is characterized by one parameter that is positive for activation, negative for 
inhibition, or zero for no interaction. More realistic, but also more difficult, approaches use 
nonlinear kinetics to represent the rates of transcription. Wahde and Hertz used neural 
network-like sigmoidal functions [79], while Mendes [86] used empirical rate laws similar 
to those of enzyme kinetics. In both cases nonlinear optimization methods were used to fit 
the model equations to the observed data. In general these methods require much larger 
amounts of data than linear or Boolean methods, but would have the advantage of being 
predictive over a much larger domain.  
 Wagner proposed a graph theoretical approach to analyze gene expression data 
obtained with null mutants [80]. This method is promising because it uses the most 
abundant type of data currently available. Unfortunately the method is unable to distinguish 
between different gene networks of the same class.  Wagner proposes to adopt the most 
parsimonious network [80]. Evidence from molecular biology is that the underlying gene 
networks will not necessarily be parsimonious. In addition, this approach is only applicable 
to acyclic graphs, a feature the approach has in common with Bayesian belief networks 
[210, 211].  By contrast, gene networks tend to have circular dependencies that originate 
from feedback loops  (gene A affects gene B but gene B also affects gene A, directly or 
through a path of other genes) (Becskei and Serrano highlight the importance of feedback 
loops in this context [219, 220]). 
 Evaluations of the performance of some of the above methods on data produced 
by simulations [221, 222] have shown that they perform badly when asked to infer the gene 
network structure. Even though the fit to the data is acceptable, the networks obtained were 
not similar to the network that had actually produced the data [222]. This could well be a 
consequence of under-determination of the fit and suggests that more data may be needed 
to find the correct network. 
 A conclusion that arises from the descriptions in this section is that many more 
experiments are needed in order to infer gene networks with high accuracy. Furthermore, 
methods that are based on specific experimental designs [80-83, 179] are expected to 
perform better than those that disregard how the data was obtained (e.g. most applications 
of clustering). 
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Section 4.2: The Regulatory Strength Analysis 
 
As I have shown in the Introduction to this dissertation, Metabolic Control Analysis 
provides an approach to calculate specific global systems properties given specific 
properties of the individual catalytic elements. Thus, individual elements can be studied in 
isolation and the knowledge of the elements obtained can then be used to understand the 
system as a whole. Also the opposite is possible; by observing systems properties one can 
gain knowledge of the elements of the system. Within the framework of Metabolic Control 
Analysis several of these ‘inverse’ strategies have been proposed. In these approaches one 
requires some knowledge of the interaction structure (stoichiometry of reactions) of the 
system for the elasticities to be calculated from measured control coefficients or co-
response coefficients. 
 Co-response Analysis [104, 105] is such a framework in which flux and 
concentration co-response coefficients are measured and elasticities can be calculated. The 
advantage of this method is that in order to measure co-response coefficients one doesn’t 
need to know the exact magnitude of the perturbation made to the system, as is necessary 
for the calculation of control coefficients.  
 Giersch [223, 224] has shown that for a particular stoichiometry and feedback 
structure not all enzymes need to be perturbed in order to infer the values of all elasticities. 
In his extension to the double modulation method of Kacser and Burns [225], he 
systematically derived the minimum number of perturbations needed, and which enzymes 
need to be perturbed, in order to calculate all elasticities of the system. This method does 
require measurements of flux control coefficients and concentration control coefficients, 
but fewer perturbations need to be made than with the co-response analysis method. 
 Yet another approach is Metabolic Control Design, proposed by Acerenza [115], 
and extended with the help of Ortega [226]. These authors make an additional step, 
showing that after elasticities are inferred one can propose the mechanistic equations 
complying with the observed elasticity pattern. Again, this method requires measurements 
of flux control coefficients and concentration control coefficients. 
 Westerhoff et al. [114] have shown that it is possible to infer the structure of a 
metabolic pathway by measuring flux control and concentration control. The assumption 
here is that the number of branches in the pathway is known, but not where the branches 
are positioned. Using inverse Metabolic Control Analysis one can then infer the pathway 
structure. 
 Here previous work is extended to deal with a currently widespread and popular 
experimental technique, the microarray determination of mRNA abundances.  An extension 
of ‘inverse Metabolic Control Analysis’ is developed to infer the interaction structure of 
gene networks. In the previous chapter I derived a theoretical framework to quantify the 
regulatory structure of gene networks based on measurements of co responses of mRNA 
concentrations to small perturbations.  
 The formalism was stated as 
 

1−= OR         (Eq. 4.1) 
 
Thus, by determining the matrix of Co-Control Coefficients experimentally, one can 
calculate the matrix of Regulatory Strengths.  The latter shows which genes interact with 
which other genes and to what extent. 
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 Measuring O requires a set of experiments in each of which the rate of expression 
of a single gene is perturbed to a small extent. The experiments start with the collection of 
mRNA from a reference steady state. Then, the small perturbation is applied to a single 
gene and, once the system has settled to a new steady state, the gene expression levels are 
compared to against the reference levels. These measurements of gene expression are best 
carried out using microarrays to assess as many genes as possible, but quantitative reverse-
transcriptase polymerase chain reaction (qRT-PCR) would also be appropriate. Further 
perturbations are applied in a systematic way to all other genes, and their effects measured. 
When it is not possible to perturb all the genes, one should at least include all those that are 
already suspected of taking part in the phenomenon of interest, and perhaps others that have 
been associated with these (e.g. through clustering of data from other gene-expression 
experiments). 
 The perturbations could be made, for instance, through the use of anti-sense RNA, 
dsRNA/RNAi [227], by adding extra gene copies, or by engineering promoter sequences 
[228].  Another strategy would be to compare the expression profiles of wild type strains 
with heterozygous knockout strains, in which one chromosome contains an intact copy of 
the gene while the other had the gene deleted. Having 50% of the wild type gene dosage 
should lead to a 50% reduction in the rate of gene expression, if the gene expression rate 
depends linearly on the gene dosage. Obviously, this is only applicable to polyploid 
organisms. This type of experimentation differs from published microarray experiments 
where very drastic changes to transcription rates are made such as completely knocking out 
genes, or perturbing a group of many genes simultaneously [13-19]. 
 Microarray experiments usually result in ratios of mRNA concentrations in a 
perturbed state, [mRNA], to their concentrations in a reference state, [mRNA]0, or more 
precisely, a ratio of fluorescence intensities, FR, that is equivalent to this ratio of 
concentrations (FR =[mRNA]/[mRNA]0). Such relative measures, as opposed to absolute 
concentrations, are often seen as an inconvenience. But the proposed method takes 
advantage of this, because the relative change of the concentration [mRNA]/[mRNA]0, 
needed to calculate co-control coefficients, can be directly expressed by fluorescence ratios.  
Indeed, microarray experiments quantify gene expression levels essentially as a ratio of the 
abundance of mRNA in response to a stimulus to its abundance in a reference state (as 
determined from the ratio of fluorescence intensities of two fluorophores): 
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where F’ and F are respectively the fluorescence intensities of the stimulated and reference 
state, [mRNAi] is the reference concentration of the message of gene i (i = 1,…,n; n being 
the total number of genes analyzed) and [mRNAi]’ is the concentration of the same message 
in the new steady state reached after the stimulus has been applied. 
 All coefficients in MCA (including the co-control coefficients) are by definition 
the result of infinitesimal calculations, but in real experiments one can only make finite 
changes. It is thus useful to reformulate the approximation explicitly using finite changes. 
Using a central finite differences approximation, ΔC/C, to the scaled derivative C/C gives: 
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where C0 is the reference concentration and C is the concentration after perturbation. In 
microarray experiments, however, one does not determine absolute values but rather a ratio 
of fluorescence intensities that is equivalent to the ratio of concentrations (FR=C/C0, C0 
being the reference concentration). The use of central finite differences is important, as it is 
free from the bias that left or right finite differences would introduce. This is especially 
important when the perturbations are large (as will be illustrated later on).  Eq. 4.3 can then 
be expressed in terms of the fluorescence ratio FR by dividing denominator and numerator 
by the same factor C0:  
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Using this result to replace infinitesimal changes by finite changes in the definition of the 
co-control coefficient (Eq. 1.4 in Chapter 1), an approximation of the co-control 
coefficients in terms of fluorescence ratios can be written as: 
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i
j

v Om   is thus a measurable quantity obtainable directly from microarray data. 
 
From the data obtained in each perturbation experiment one column of the co-control 
matrix O can be calculated. When all experiments are completed one obtains of a full 
matrix 
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which can be inverted to get the Regulatory Strength matrix R which is a model for the 
gene network. 
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Summary of the procedure: 
 

1) Allow a system of n genes to reach a reference steady state and use it in all 
iterations of step 3 as the reference state. 

2) Perturb the rate of transcription of a single gene and allow the system to reach a 
new steady state. 

3) Measure the mRNA concentrations of this new state relative to the mRNA 
concentrations from step 1 using microarrays. 

4) Repeat steps 2—3, until all transcription rates have been perturbed. 
5) Use the fluorescence ratios, FR, determined in the experiments above, and 

calculate the co-control coefficients (Eq. 4.5), filling a column of the co-control 
matrix O (Eq. 4.6). 

6) Invert the co-control matrix to obtain the Regulatory Strength matrix R (Eq. 4.7), 
which quantitatively represents the gene network. 

 
 
Section 4.3: Application of Regulatory Strength Analysis to simulated data 
 
To illustrate the proposed method, I will apply it to data produced by artificial gene 
regulatory networks (computer models). These models were defined and run with the 
biochemical kinetics simulator Gepasi [85, 91, 92] (available at http://www.gepasi.org).  
Nonlinear kinetics was intentionally used for transcription to show that the inherent non-
linearity of the system does not invalidate this linear method. To apply perturbations the 
rate of transcription of each transcription step was modified and a resulting new steady 
state calculated. From this data the co-control matrix was calculated via the fluorescence 
ratios.  One advantage in using a computer model is the ability to judge how well the 
method performed. The models used represent several scenarios, including one in which 
there are hidden variables and another one where there are non-additive effects (complex 
formation between different gene products). 
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Section 4.3.1: Simple example 
 
A small regulatory network of three genes is considered and simulated on the computer the 
experiments described above. The following system of ordinary differential equations 
describes the model:  
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 .     (Eq. 4.8) 

 
Here [A], [B] and [C] are concentrations of the mRNA species; Va, Vb and Vc are basal rates 
of transcription; KiB and KiB’ are inhibition constants; KaC and KaA are activation constants; 
ka, kb, and kc are first-order degradation constants. First [A], [B] and [C] were calculated 
for a reference steady state setting all parameter values arbitrarily to unity, except for KiB, 
KiB’, KaA, and KaC which were set to 0.1. 
 
Perturbations of transcription rates were then made by changing the value of the basal rates 
by 10%, followed by calculation of the new steady state concentrations. The co-control 
matrix was determined solely from those data: 
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The regulatory strength matrix was then obtained by inverting this matrix:  
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−
−−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

639.0544.0236.0
311.0639.00
0757.0903.0

C
C

vC
B

vC
A

v

B
C

vB
B

vB
A

v

A
C

vA
B

vA
A

v

RRR
RRR
RRR

ccc

bbb

aaa

 .  (Eq. 4.10) 

 
The matrix in Eq. 4.10 represents the gene network corresponding to equation 4.8. A graph 
can be drawn by making the correspondence of elements of this matrix to edges in the 
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graph, which can be labeled with the numeric values quantifying the strengths of 
interactions (Figure 4.1). The regulatory strength quantifies the change in a variable caused 
by another through a specific path of interaction. For example, indicates that gene 
C’s activity would change by 0.236 times the changes in gene A due to this particular 
interaction. The total gene C response to a change in gene A is determined by all regulatory 
paths starting in gene A and ending in gene C. 

C
A

v Rc

 

-0.903

-0.757

-0.639

0.311

0.236

-0.544

-0.639
A

C
B

-0.903

-0.757

-0.639

0.311

0.236

-0.544

-0.639
A

C
B

  
 
Figure 4.1 – A model gene regulatory network of three genes. Arrows represent activation 
interactions while lines with a blunt end inhibitory interactions. The numbers next to the 
lines are the values determined for the corresponding regulatory strengths. 
 
Keeping in mind that small changes in transcription rates are difficult to achieve in practice 
and their effects are even harder to measure, the performance of the method with larger 
perturbations was explored (under-expression by 50% and over-expression by 200%). The 
values of the Regulatory Strengths obtained with these larger perturbations are compared to 
the theoretical values (calculated through the definition of the Regulatory Strength (Eq. 1.5 
Chapter 1) using elasticity and control coefficients obtained with Gepasi) in Table 4.1. 
Table 4.1 shows that the error due to the finite differences approximation in our method is 
relatively small for a small perturbation (1.1x) but grows with larger perturbations (0.5x 
and 2x). Nevertheless, even with the larger perturbations the absolute error is less than 
0.075 (17%), which may be well below the measurement noise, and is thus acceptable. 
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Table 4.1 – Effect of the size of perturbations used to estimation Regulatory Strengths. 
Theoretical values of Regulatory Strengths for the model of Eq. 4.9 were calculated using 
Eq. 4.2 and the simulation’s values of elasticity and control coefficients. “Experimental” 
values were calculated by applying different perturbations on rate of transcription (last 
three columns) and following the method described in the text. 
 

 Theoretical 
value 

1.1x 
perturbation 

0.5x 
perturbation 

2x 
perturbation 

A
A

v Ra  -0.901 -0.903 -0.879  -0.916 

A
B

v Ra  -0.752 -0.757 -0.711 -0.787 

A
C

v Ra  0 0.001   -0.005 0.004   

B
A

v Rb  0 0.001   -0.006 0.005   

B
B

v Rb  -0.638 -0.639 -0.635 -0.646 

B
C

v Rb  0.315 0.311   0.348   0.288   

C
A

v Rc  0.241 0.236   0.279   0.213   

C
B

v Rc  -0.533 -0.544 -0.444 -0.607 

C
C

v Rc  -0.638 -0.639 -0.628 -0.651 

 
 
Section 4.3.2: Hidden variables 
 
In cases where one cannot measure the expression of all the genes, when it is not easy to 
perturb the transcription rate of some genes, or when it is not convenient to analyze the full 
network, the method must be applied only to a subset of the genes. In those cases only the 
rates of transcription of “available” genes and their mRNA concentrations are measured. 
Since a larger network is responsible for the observations one can no longer be sure if the 
interactions detected by the method are really direct or are a result of the hidden variables. 
To explore such a scenario the five-gene network shown in Fig. 4.2A was constructed (the 
kinetics were similar to the previous example and are available as supplementary 
information at http://www.vbi.vt.edu/~mendes/icsb01-supp.html). 
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B D
A

C E
 

 
Figure 4.2A – A model gene regulatory network of five genes. The full mathematical model 
is supplied as supplementary material at http://www.vbi.vt.edu/~mendes/icsb01-supp.html. 
 
Then the transcription rates of genes C, D and E were perturbed by 10% over-expression 
and their corresponding relative mRNA responses were “measured”. All the direct-effect 
Regulatory Strengths for those three genes were calculated and used to reconstruct the 
network shown in Fig. 4.2B.  
 

 

D

C E
 

 
Figure 4.2B – The network reverse engineered with the method proposed when only genes 
C, D and E were perturbed and observed. 
 
Comparing the networks of Fig. 4.2 (the original and the one reconstructed by our method), 
it is clear that all the direct interactions on the original network between genes C, D and E 
were recovered from the Regulatory Strengths. In addition, there is a new arrow from C to 
D in Fig. 2B that does not exist in the original network (Fig. 4.2A). 
 In the original system, C influenced B and B influenced D, but because B was not 
included in the analysis these two interactions collapse into a single one which is, of course, 
only apparent. What this reveals is that if only a subset of genes is considered in the 
analysis, then the interactions identified with this method are not necessarily direct but can 
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also include indirect effects (through hidden variables). This is the same situation as the one 
that arises because in most cases it is not the mRNAs that interact with transcription, but 
rather their protein products and metabolic intermediates. Because proteins and metabolites 
are not represented explicitly here, they can be thought of as being hidden variables and 
their action is included in the arrows of the gene regulatory network. Chapter 3 explicitly 
dealt with hidden proteins and metabolites and showed how the Regulatory Strengths are a 
function of elasticities and inter-modular control coefficients of the underlying paths of 
genetic communication. 
 
Section 4.3.3: Non-additive effects 
 
The regulation of the expression of a gene can depend on a combination of several other 
genes. For example, the products of gene A and gene B may have to bind to each other in 
order to be capable of activating gene C. Because these interactions may be frequent, it is 
relevant to see how the method, which is linear and additive, performs with such networks. 
To that purpose the gene network depicted in Fig. 4.3A is analyzed. 
 

A 

E 

BD 

AE 

D B 

C 

   
Figure 4.3A – A gene network where some of the regulation occurs through binary 
complexes. The full mathematical model is supplied as supplementary material at 
http://www.vbi.vt.edu/~mendes/icsb01-supp.html. 
 
The main feature of this network is the formation of two complexes, AE and BD that are 
regulators of other genes. Perturbations were applied on all the transcription rates by 
increasing them by 10% and responses of the expression levels of A, B, C, D and E 
observed (the levels of AE and BD were not monitored, these variables were hidden). The 
calculated Regulatory Strengths describe the gene regulatory network presented in Fig. 
4.3B. The network shows interactions from B to A, from D to A, from A on C and from E 
on C – these correspond to the interactions that complexes AE and BD have on target genes 
in the original model, but are recovered by our approach as an additive effect of individual 
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genes. This situation is similar to the previous case of hidden variables: as the complexes 
were not considered explicitly. Their effect though was recovered as separate additive 
effects of the constituents of the complexes. This results in extra arrows leading directly 
from the complex components to the target genes. There are also additional interactions of 
A on E and E on A, and B on D and D on B which are all negative. This could be 
interpreted in the following way: in the original network, increasing A, will tend to increase 
AE and therefore decrease E. In summary, although the method does not account directly 
for complex formation, the effect of such interactions does not get lost in our treatment, but 
is reflected in the resulting networks as coming from the individual constituents of the 
complexes.  
 

A
E

DB

C

  
 
Figure 4.3B – The gene network reverse engineered with the proposed method. The non-
additive regulatory interactions that occur through the complexes in the original system 
are lost but an equivalent set of additive interactions appears in their place. 
 
Section 4.3.4: Arabidopsis flowering gene network 
 
To apply the method to a more biologically relevant gene network structure, simulations 
were performed using the gene network proposed by Mendoza et al. [142] to control flower 
morphogenesis in Arabidopsis thaliana (Fig. 4.4). It is irrelevant for our purposes whether 
this network is indeed correct or what the molecular details behind it might be. For this 
illustration, one should assume that the model network is the real system. The gene network 
was modeled with equations that follows principles of biochemical kinetics and is 
formulated in terms of ordinary differential equations describing the rate of change of the 
mRNA concentrations. Actual parameter values are not important here, provided that they 
are consistent with the relationships shown in Fig. 4.4. 
 
 

 89



Chapter 4 

 
Figure 4.4 – Graphical representation of the gene network controlling flower 
morphogenesis in Arabidopsis thaliana as proposed by Mendoza et al [142]. Circles 
represent genes; lines represent direct effects of one gene onto another, with arrows 
standing for activation, and blunt ends for inhibition. Meanings of the gene abbreviations 
and further details can be found in the original reference. 
 
Additional information about this model can be found at 
http://www.vbi.vt.edu/~mendes/tig02.html. The in silico experiments performed followed 
the method described in the previous sections by applying 10% perturbations on the rates of 
transcription of each gene. Equation 4.12 depicts the matrix of direct Regulatory Strengths 
that is the result of this exercise. By assuming that absolute values of Regulatory Strengths 
below 0.01 were below the noise level, and were probably zero, the diagram in Fig. 4.4 is 
reproduced exactly from the matrix of Eq. 4.12. This demonstrates that the method can 
recover a gene network from observations of relative mRNA concentrations.  

The finite approximation used in the method could be a source of error. To assess 
how well this approximation (e.g. Equation 4.12) compared with reality, Equation 4.13 
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depicts the solution calculated through the definition of Regulatory Strength as in Eq. 1.5 in 
Chapter 1. The estimate obtained by the in silico experiment is indeed rather good when 
compared with the more precise solution of Eq. 4.13, indicating that 10% perturbations 
give almost perfect results, suggesting that it may be possible to apply larger perturbations. 
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Section 4.4: Application of Regulatory Strength Analysis to simulated data of 
a biochemical network 
 
It is well known that genes do not interact with each other through their mRNAs. Rather, 
the mRNAs give rise to proteins, and the proteins being a transcription factor, polymerase 
or mRNase, interfere with the expression of genes. The proteins might need to form 
complexes, or need to be phosphorylated, in order to fulfill their regulating function. These 
phenomena on the proteome level complicate the interpretation of the results of our strategy 
to infer gene networks, because only the gene level is observed. Even more complicating is 
the fact that metabolites can have a regulatory function on gene expression. The 
metabolome is complicated and can give rise to less obvious interactions between genes. 
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The interplay between the proteome and the metabolome gives rise to and determine the 
strengths of many interactions between genes. Therefore it is useful to analyze the 
hierarchical system depicted in Fig. 4.5, in with the genes influence each other, through 
proteins (like the transcription factor, P4) or through metabolism (M1, M2, M3, M4). A gene 
network representation of the biochemical network in Figure 4.5(A) is depicted in Figure 
4.5(B). 
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Figure 4.5 – (A) A biochemical network consisting of 4 genes (T1, T2, T3 and T4), three 
enzymes (P1, P2 and P3), a transcription repressor (P4), and a short metabolic pathway of 
5 reactions, containing 4 internal metabolites (M1, M2, M3 and M4). Abbreviations used 
are: ms = messenger synthesis, md = messenger decay, ps = protein synthesis, pd = 
protein decay and R stands for metabolic reaction. Solid arrows depict flow of mass and 
dashed arrows indicate interactions. (B) The genetic network representation of the 
biochemical network in (A). Lines show direct regulatory effects, arrows denote activation, 
and blunt ends inhibition. 
 
 
The details about the rate equations and model parameters are given in Table 4.2. Again, 
perturbations were simulated by increasing the transcription rates by 10%. Like in 
microarray experiments, only the changes in transcript levels were considered. 
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Table 4.2 – The kinetic functions and parameter values used to simulate the network 
depicted in Figure 4.5(A). 
 
Level Reaction Parameter Value 
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The resulting co-control matrix is: 
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Inversion gives the Regulatory Strength matrix: 
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Only Regulatory Strengths with values exceeding 0.01 are considered significant, because 
smaller values are assumed erroneous due to the application of 10% perturbations rather 
than the infinitesimal perturbations that the theory requires. With this assumption the 
Regulatory Strength matrix exactly represents the network structure depicted in Figure 
4.5(B). In the diagram in Figure 4.5(B) it is seen that, for example, gene transcript T1 has a 
positive effect on transcript T4, meaning that an increase in the concentration of T1 tends to 
increase the concentration of T4. Looking at the structure of the biochemical network in 
Figure 4.5(A), it is seen that the effect of T1 on T4 runs through the proteome and the 
metabolome; an increase in mRNA T1 leads to an increase in enzyme P1 which increases 
in metabolite M4, which in turn activates the transcription of T4 and this leads to an 
increase in mRNA T4. All reactions beyond the transcriptome are thus collapsed into a 
single arrow in the gene network representation. In a similar fashion, all other connections 
in the gene network could be explained by tracing paths in the hierarchical biochemical 
network or by using formal framework described in Chapter 3. 
 
Section 4.5: Large scale simulation study 
 
Thus far the effectiveness of the method was shown on data simulated with small 
mathematical models of several types of networks. In this section the performance of the 
algorithm on a large set of simulated data of artificial gene networks [229] is evaluated. 50 
networks of 100 genes and 200 connections for each of three different architectures were 
tested. Since it is unknown which topology actual gene networks have, the data was 
generated by gene network models with three previously proposed topologies for 
biochemical networks: ‘random’ [4, 230], ‘scale free’ [198] and ‘small world’ [197]. 
Details of the networks can be found on the web at: 
http://staff.vbi.vt.edu/mendes/AGN/Century/index.html. The interactions in these models 
are defined with non-linear kinetics. In this study perturbations were applied by 10%, 25% 
and 50% reductions in gene expression.  The performance is evaluated using two measures: 
1) the False Discovery Rate (defined as the wrongly predicted edges as a percentage of the 
total number of predicted edges) and 2) Power (defined as the number of correct predicted 
edges as a percentage of the total number of edges in the network).  
 
Section 4.5.1: Qualitative evaluation 
 
Results are summarized in Figure 4.6 and Table 4.3. For comparison, for each network the 
theoretical Regulatory Strengths were calculated by means of Eq. 1.5. I considered 
Regulatory Strengths smaller than 0.05 to be zero (too small to be detected) in the 
theoretically obtained networks. For the inferred networks I used several cut off values for 
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presence/absence of an interaction: 0.05, 0.1 and 0.25. In Figure 4.6 it can be seen that at 
higher cut off values fewer wrong connections were proposed, but at a price of discovering 
less of the right connections. Still, at a cut-off of 0.25, about 80% of all connections were 
correctly inferred and almost no incorrect connections were found, even in the case for the 
large perturbation size of 0.5 (50% reduction in gene expression). 
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Figure 4.6 – The results of the large scale simulated data study. Average values are given 
for the FDR and power for different perturbation sizes, network topology (x-axis) and 
different cut off values (legend). 
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Table 4.3 – The results of the large scale simulated data study. Average values and 
standard deviations are given for the FDR and power for different perturbation sizes, 
network topology and different cut off values. 

 False Discovery Rate Predictive Power 

Perturbation size 0.5 0.75 0.9 0.5 0.75 0.9 

Cut off value RANDOM NETWORKS 

0.05 21.47%±
4.2% 

9.68% ± 
3.23% 

2.08% ± 
2.08% 

99.11% ±
4.2% 

99.50% ±
0.76% 

99.71% ± 
0.6% 

0.1 16.24% ±
3.96469 

3.40% ± 
2.29776 

0.48% ± 
1.41467 

89.20% ±
4.29198 

90.87% ±
3.61277 

91.76% ± 
3.28708 

0.25 4.01% ± 
3.23317 

0.45% ± 
1.31386 

0.42% ± 
1.33426 

80.41% ±
3.85336 

80.94% ±
3.64326 

81.16% ± 
3.53236 

 SCALE FREE NETWORKS 

0.05 
18.78% ±
13.3995 

8.66% ± 
3.94669 

2.88% ± 
2.31134 

97.56% ±
14.2399 

99.87% ±
0.412182

99.92% ± 
0.317724 

0.1 
13.98% ±
4.2325 

3.93% ± 
2.97896 

0.26% ± 
0.878423

93.37% ±
3.08506 

95.99% ±
2.79924 

96.28% ± 
2.78399 

0.25 
4.18% ± 
3.15305 

0.33% ± 
1.06124 

0.00% ± 
0 

85.96% ±
4.23295 

86.08% ±
4.30678 

86.33% ± 
4.20243 

 
SMALL WORLD NETWORKS 

0.05 25.95% ±
7.70312 

11.68% ±
4.00742 

4.57% ± 
3.29901 

96.32% ±
1.5879 

99.17% ±
0.711446

99.57% ± 
0.484208 

0.1 16.27% ±
5.54405 

6.55% ± 
3.49321 

2.71% ± 
2.28987 

88.75% ±
6.51032 

90.21% ±
5.77863 

91.72% ± 
4.84278 

0.25 8.99% ± 
5.56196 

4.22% ± 
2.81074 

1.97% ± 
2.19155 

76.46% ±
4.13616 

76.89% ±
4.45847 

77.09% ± 
4.48288 

 
In general, the qualitative predictions made were quite accurate. At the higher cut off levels 
predictive power was lost, but the edges identified in the networks were estimated with 
certainty (as expressed by a low FDR), even at the large perturbation size of 50% 
transcription reduction. 
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Section 4.5.2: Quantitative evaluation 
 
Above, the inferred Regulatory Strengths matrices were compared to the theoretically 
obtained ones (Eq. 4.2) by scoring for absence or presence of connections. Here, the 
inferred matrices are quantitatively compared with the expected matrices. As an overall 
distance measure between matrices the Root Mean Squared Error (RMS) (Eq. 4.15) is used. 

 

( )∑ −=−=
n

ji

P
ij

E
ij RR

n
RMS

,

2
2

1PE RR  .    (Eq. 4.15) 

 
Superscript P stands for ‘predicted’, indicating an element of the inferred Regulatory 
Strength matrix, and superscript E stands for ‘expected’, indicating an element for the 
expected (theoretically obtained) matrix. n2 is the number of elements in the matrix. The 
RMS can be seen as the average deviation of a predicted Regulatory Strength from the 
expected Regulatory Strengths. Table 4.4 lists the average RMS and standard deviations for 
the different network topologies. 
 
Table 4.4 – Quantitative results of the large scale simulated data study. Average values 
and standard deviations are given for the RMS and for different perturbation sizes (Pert.) 
and network topologies 
 RMS 
Pert. RANDOM 

NETWORKS 
SCALE FREE 
NETWORKS 

SMALL WORLD 
NETWORKS 

0.5 0.155 ± 0.097 0.127 ± 0.041 9.044 ± 42.66 
0.75 0.078 ± 0.103 0.052 ± 0.021 0.363 ± 0.271 
0.9 0.073 ± 0.27 0.019 ± 0.008 0.272 ± 0.483 
 
Given that the value of Regulatory Strengths usually ranges from 0.05 to 1.5 the RMS was 
in general very low, except for the small world topology. Especially at a perturbation size 
of 0.5 the RMS for the small words topology was extremely high. This was due to the fact 
that a small number of network predictions were completely wrong: two predictions had an 
RMS of around 200, while the other 48 predictions had an RMS comparable to the RMS of 
the random and scale free networks. 
 
Another way of quantitatively evaluating the inferred matrices is by counting the number of 
errors of a particular size. Eq. 4.16 shows how this was done. 
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      (Eq. 4.16) 
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Several values for δ  were selected and the errors made counted. Table 4.5 lists the 
numbers of errors made at these values for the different network topologies. 
 
Table 4.5 – Quantitative results of the large scale simulated data study. Average values 
and standard deviations are given for the number of errors of certain size made and for 
different perturbation sizes and network topologies 
Perturbation size 0.5 0.75 0.9 
Error size (δ ) RANDOM NETWORKS 
>0.01 115.9 ± 33.13 127.02 ± 20.95 49.26 ± 16.05
>0.05 64.82 ± 12.85 15.34 ± 7.9 3.4 ± 2.94 
>0.1 34.34 ± 9.86 6 ± 4.06 0.56 ± 1.54 
>0.5 0.86 ± 2.4 0.46 ± 1.34 0.56 ± 1.78 
 SCALE FREE NETWORKS 
>0.01 60.48 ± 35.11 81.1 ± 22.96 33.56 ± 16.19
>0.05 43.24 ± 12.24 10.74 ± 6.95 4.66 ± 4.05 
>0.1 28.2 ± 12.6 6.82 ± 5.75 0.44 ± 1.49 
>0.5 0.5 ± 1.52 0.02 ± 0.14 0 
 SMALL WORLD NETWORKS 
>0.01 142.14 ± 29.21 104.44 ± 25.97 53.04 ± 12.76
>0.05 49.66 ± 18.32 22.56 ± 6.84 10.86 ± 8.57 
>0.1 45.68 ± 16.24 19.58 ± 12.32 8.08 ± 6.87 
>0.5 15.74 ± 11.94 8.1 ± 4.48 4.5 ± 3.42 
 
Most of the errors made were of a size between 0.01 and 0.05. Even at the large 
perturbation size almost no errors above 0.5 were made in the random and scale free 
topology. More errors were made for the small world topology: even for small 
perturbations several large errors were made. In general the predictions were quite accurate. 
 
Section 4.6: Discussion 
 
I presented a theoretical framework and a design for microarray experiments that will 
enable investigators to infer genetic networks. Because there are as yet no published 
experiments that conform to such a design, the method was illustrated using in silico 
experiments.  
 
Presently, the signal-to-noise ratio of microarrays is too low to measure the effect of small 
responses in gene expression. However, the technology is constantly improving, and it is 
only a matter of time before this approach becomes more feasible (or perhaps a superior 
technology will appear in the meantime, such as a high-throughput implementation of the 
quantitative RT-PCR techniques [20] or the new RT-MLPA method [231]). This 
contribution may increase the incentives for further technological improvements. Our 
method requires genome-scale experimental effort, in the form of gene expression rate 
manipulations, which are currently laborious. This is comparable to the situation with 
whole-genome sequencing some 15 years ago, when the automated sequencing was not in 
place to carry out the Human Genome Project.  However that methodology was quickly 
developed thereafter. It may be expected that, considering the increasing trend of laboratory 
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robotics, and the demonstrated usefulness of this method, high-throughput means of 
carrying out gene manipulations will become feasible in the not-too-distant future. 
 The global gene network of an organism would be uncovered if perturbations were 
applied to all genes in a genome. However, if only a subset of the genes is manipulated, the 
method is still capable of identifying a gene network, even though indirect interactions 
running through the genes that were omitted will appear as direct. Networks obtained by 
examining subsets of a genome are still useful representations of the underlying gene 
regulatory structure. The fewer genes are included the more phenomenological the inferred 
networks. However, independent of the number of included genes, the network is a valid 
quantitative description of genetic regulation. This gives the advantage that experiments 
can be done on just few genes first and extended with more experiments gene by gene to 
increase the resolution of the network, but each intermediate network is a valid quantitative 
description of genetic regulation. Although for the final goal (a global gene network) all 
experiments are needed, the intermediate results already provide good insight in cellular 
regulation. 
 It was suggested to use of co-control coefficients rather than control coefficients 
for this analysis. This carries a disadvantage, which is that one cannot separate the part due 
to the elasticity from the part due to control (see Eq. 4.2). To be able to do so would result 
in uncovering the mechanisms of regulation, while the present method is limited to a 
phenomenological view. The main justification for the use of co-control coefficients and 
Regulatory Strengths, rather than control coefficients and elasticities, is that it is 
experimentally much harder to measure control coefficients, since one needs to know the 
absolute magnitude of the perturbation. The determination of co-control coefficients does 
not require knowledge of the exact size of the perturbation, though it should be small. This 
is most convenient, as one cannot accurately predict the magnitude of changes in 
transcription rates when a new gene copy is added (either to a chromosome or in a 
plasmid).  Another approach to infer gene networks using MCA is to consider flux control 
as well. By measuring all co-control coefficients, one would be able to work out all 
concentration and elasticity coefficients [104, 105]. But this requires double the number of 
experiments than the method described here, since there are as many independent fluxes as 
there are genes in the network. Furthermore, in order to measure the fluxes a time series, 
albeit short, is needed and this requires even more measurements. 
 Some representations of gene networks have been proposed [79, 86, 232-234] that 
use non-linear rate functions to represent the dynamics of mRNA concentrations, but they 
have the disadvantage of including large numbers of parameters to be fitted and thereby 
require much more data [79, 86] than the method described in this chapter. To obtain a 
representation based on Regulatory Strengths first could be very helpful to the application 
of such non-linear regression models by constraining the space of possible solutions. 
 This approach requires perturbations to be applied to each gene independently. 
Another application of MCA to functional genomics is the FANCY method (standing for 
‘functional analysis of co-responses in yeast’) [235]. That method uses the co-response of 
metabolites to gene knockouts to uncover the functions of genes, and it has recently been 
demonstrated with great success [178, 236]. Although this approach has the use of co-
responses in common with ours, the objectives of each are quite different and the similarity 
is indeed only superficial. 
 Our model of gene networks is a purely additive one, which stems from our use of 
metabolic control analysis, a formalism based on a first-order Taylor approximation [7]. 
However, in many cases the regulation of the expression of a gene depends on a 
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combination of several other genes. The method is unable to identify such interactions, but 
finds separate Regulatory Strength for all of the components of such a complex, effectively 
taking into account the interaction. With current methods, uncovering the non-additive 
character of interactions requires a much higher number of experiments [212, 213]. 
 Another consequence of the linear approximation around steady states is that a 
specific network is valid only for the steady state and other operating points in its vicinity. 
Unless the kinetics of mRNA concentrations is really linear (which is most likely not the 
case), the description of the regulatory network with Regulatory Strengths is only valid for 
that specific physiological state; in another physiological state the network might be 
quantitatively very different. Furthermore, because the gene network structure depends on 
elements of the matrix being different from zero, it is possible that the structure may even 
be different between different states. This is caused by the fact that elasticities can be zero 
(or indistinguishable from zero) in two situations: i) when there is no interaction, and ii) 
when the kinetics of the interaction is saturated with respect to a particular effector (Figure 
4.7).  
 

 
Figure 4.7 – The rate of transcription vi as a function of an interacting mRNA 
concentration, [mRNA j]. The value for the apparent elasticity ϑ  depends on the particular 
steady state of the system. In some certain steady states, the rate of expression is saturated 
for a particular effector; the corresponding elasticity will be zero (right tangent). In other 
steady states in which this rate is not saturated on that effector and the apparent elasticity 
will have a value (left two tangents). 
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If, in a certain steady state, one rate of expression is saturated for a particular effector, the 
corresponding elasticity will be zero and this interaction will not appear in the network (and 
correctly since in effect it is not operating). There may be other steady states in which this 
rate is not saturated for that effector and then the interaction will be revealed by the 
analysis, resulting in a different network. Although less likely it might even be possible that 
the sign of the interaction is not the same in different steady states. Gene networks 
determined with Regulatory Strength analysis are, thus, phenomenological representations 
and may differ from state to state. Although Regulatory Strengths are phenomenological 
representations of interaction, they can be expressed in terms of the elasticities and control 
coefficients along the path of interaction through the biochemical network and thus be 
related to the properties of the global biochemical network [83] (see section 3.2.2 in 
Chapter 3). The presence or absence of interactions in a gene network, at a certain steady 
state, is determined by the kinetic properties of each step along the path of interaction that 
passes through the proteome and metabolome. Some of these interactions will reveal 
themselves only in certain steady states. In order to draw a more complete picture of the 
system, the system should be studied in several distinct states. 
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Chapter 5: General discussion 
 
 
 
Living systems are complex entities consisting of hundreds of thousands 
distinct types of molecules organized in networks of interaction. These 
complex intra-cellular networks generate the defining characteristics of 
living systems. Understanding complex intra-cellular networks requires a 
methodology in which solid theory is combined with experimental 
observation and computation. In this dissertation, I proposed several 
methods for that purpose. One set of approaches enables experimental 
determination of the properties of metabolic systems in isolation from the 
global hierarchical network they are normally part of. Another one provides 
a theoretical framework for simplification of hierarchical networks into 
gene networks and provides an experimental protocol to infer gene networks 
from large-scale experimental observations.   I will here put these results 
into more general perspectives. 



Chapter 5 

Section 5.1: How does this work contribute to systems biology? 
 
Modern experimental technologies enable us to do large-scale parallel measurements of 
biochemical compounds such as RNAs, proteins and metabolites. The large amount of data 
produced currently needs to be interpreted with appropriate tools. The interpretation of 
observations of these high-dimensional dynamical systems is far from obvious and might 
well benefit from mathematical theory with accompanying analyses. This dissertation 
extends a theoretical framework designed to study biochemical systems explicitly such that 
it becomes able to deal with the type of experimental data that results from multiple parallel 
technologies. The main objective of this thesis is to propose and validate formal ways to 
simplify the study of intricate biochemical systems, either by showing that it should be 
possible to study certain parts in isolation or by giving a compact description of the whole. 
The reason for the proposed simplifications is two-fold: 1) it facilitates the study of such 
complicated biochemical networks and 2) it deals with limitations in the richness of the 
available datasets: although there are high throughput technologies for measuring each 
level of biochemical organization, hardly any datasets exist that describe all levels for a 
single condition or variation. Mostly, only gene expression is measured and proteomic and 
metabolomics studies are done in different experimental setups, making it impossible to 
combine them in a complete hierarchical model. The simplifications are thus also made to 
‘suit’ the state of current experimental technologies for data collection. 

The possibility of studying metabolic pathways in isolation from other cellular 
biochemical processes, such as transcription, translation and signal transduction, rests on 
the presence of a time scale separation between them: turnover times of most proteins being 
hundred times slower than the turnover of most metabolites (Chapter 2). When such a time 
scale separation is present it is possible to study the metabolic behavior independently, 
which should then characterize the short-term response of the whole system. In that case 
MCA should be fit to describe the short-term behavior.  For the long-term behavior of 
metabolism inside the living cell MCA can also be used, but fails to profit from advantages 
in description and conceptual understanding that is offered by HCA in which explicitly the 
modular structure of biochemical systems is taken into consideration. 

Even when no such time-scale separation is present, it was predicted that it should 
be possible experimentally to measure the isolated metabolic behavior by making specific 
modifications to the hierarchical system. This could also be possible by measuring integral 
control coefficients for metabolites as well as proteins and then computing the intra-
modular control of metabolism. When there is no time-scale separation the properties of 
metabolism in isolation will not describe the short-term behavior of metabolism embedded 
in the whole system. However, it is interesting to evaluate how much of the metabolic 
regulation is intrinsic to metabolism itself and how much is imposed by the hierarchical 
levels (gene expression), thereby evaluating their relative importance. 

For the purpose of microarray data analysis, I developed a method to identify gene 
networks that may underlie those data. The identification of biochemical network structure, 
in particular gene networks, is taking a prominent place in systems biology. The main 
feature that differentiates the method that I developed (see Chapters 3 & 4) from most 
others is twofold: 1) it is based on a solid and comprehensive theoretical framework, and 2) 
it provides a clear experimental design.  Additionally, this theoretical framework 
established for the first time a formal expression of the quantities describing genetic 
interactions in terms of the underlying biochemical systems (see Chapter 3). The first 
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experimental application of the perturbation strategy following network identification 
showed good results [36]. This result may constitute an incentive for large-scale application 
of the strategy. Gene networks are an intermediate step between the genotype (genome 
sequence) and the phenotype (dynamical function) of living organisms. Knowledge of the 
regulatory structure of gene networks will have an impact on biology of similar proportion 
to the impact of fully sequenced genomes. It opens the door to computational modeling and 
discovery of properties of such networks. Since gene networks provide a systemic 
description of the regulation in living cells, they also provide a means for rational 
experimental modification of organisms for biotechnological or pharmacological purposes.  
The consequences of ‘genetic manipulation’ of organisms by introducing non-native genes 
or removing genes from their genome will be much better understood having such a 
systemic description of genetic regulation. Knowledge of gene networks thus also might 
end the seemingly endless discussion about the ethics of genetic modification. 

Ironically, throughout the dissertation I claim that these methods are applicable at 
genome scale data, while the examples studied are extremely simple (with exception of the 
large scale simulation study in section 4.5, Chapter 4). These simple examples were chosen 
for reasons of clarity, in order to explain the methods clearly. The matrix equations derived 
in this dissertation are valid for models of any size and complexity; indeed for genome-
scale networks. 
 
Section 5.2: Related methods for gene network inference 
 
Recently, several variants of the Regulatory Strength Analysis (RSA) have appeared in the 
literature [36, 84]. To show the similarities between these newer methods and the original 
RSA that was developed in Chapters 3 and 4 and [81-83] it is useful to derive the relevant 
equations in a more general way than in Chapter 3, where they were developed from co-
response analysis. 

I start by assuming that gene networks (and hierarchical biochemical networks in 
general) can be modeled with a set of non-linear differential equations of the form: 

 

)),(( ppxNvx
=

dt
d

       (Eq. 5.1) 

 
where x is a vector with n elements (x1, x2,…, xn) corresponding to mRNA concentrations, 
v a vector of r non-linear rate equations (v1, v2,…, vr), depending on k parameters (p1, p2,…, 
pk). The stoichiometry matrix N, has dimensions n x r, and has as its elements the 
stoichiometric coefficients, usually integers, the ijth element indicating the molar amount of 
variable i participates in reaction j (products and substrates of the reaction having positive 
and negative coefficients, respectively). These non-linear rate equations can be described 
by non-linear functions ranging from simple mass action kinetics to complicated 
mechanistic rate equations (for example the ones used in [152, 153]). 

In steady state, by definition, 
 

0)),(( =ppxNv .       (Eq. 5.2) 
 
Differentiating towards the parameter vector yields and assuming constant stoichiometries; 
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Giving: 
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       (Eq. 5.4) 

 

x
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∂
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 is the Jacobian of the system, from now on referred to as ℑ. The Jacobian has n x n 

elements 
j

i

x
dt
dx

∂

∂
, and can be interpreted as a linear description of the kinetics around a 

steady state that is a solution of Eq. 1. Since the Jacobian has non-zero elements wherever 
there is a direct interaction between two of the components in the system, it is a useful 

quantitative model for the structure of networks. 
p
x

d
d

 is an n x k matrix of ‘sensitivities’ of 

the variables towards the parameters (the  logarithmic equivalents of these are called 
response coefficients), each column corresponds to a different parameter pi of a total 

number of k parameters 
p
vN
∂
∂

 is an n x k matrix with the sensitivities of the rates towards 

the parameters.  They are the sensitivities that pertain to the rates in isolation from the 
system, i.e. they correspond to the dependence of the rates on the parameter at constant 
magnitudes of all other parameters and state variables.  

Now n parameters p’ are selected such that each affects only rates that specifically 

affect only one of the n variables. Then 
'p

vN
∂
∂

is an n x n diagonal matrix and 
'p

x
d
d

 is an n 

x n matrix.  The parameters selected can affect several rates as long as these rates are 
specifically producing/consuming only one variable and do not directly affect the 
production or consumption rates of any other variable. Such unique rates exist for a 
variable if it has a non-zero element in a column of N while all other elements in that 
column are zero. If there are no such unique rates for a given variable, the variable cannot 
be included in the analysis, or one has to modify the system experimentally in order to 
create such rates (see below for an example).  

 Replacing the derivatives by finite differences Eq. 5.4 is written as 
( ) ( ) 11 '' −− ΔΔ−≈ΔΔℑ pvNpx . Since 'pΔ appears on both sides it can be taken away 

resulting in: 
 
VX −≈ℑ         (Eq. 5.5) 
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Now, given that n perturbations have been made,  is an n x n matrix of the changes in 
the variables and  is an n x n diagonal matrix, resulting from 

X
V vNΔ  and contains the rate 

changes on its diagonal.  We can now solve for the Jacobian:  1)( −−≈ℑ XV
It is thus not necessary to evaluate derivatives towards the parameters; it suffices to 
measure just changes in the variables and in the rates, caused by the parameter changes. 

Equation 5.5 prescribes a recipe for network inference: by measuring the changes 
in mRNA concentrations that appear as a response to specific rate perturbations, and then 
measuring the actual size of the rate perturbations one can infer the Jacobian of the system, 
i.e. infer the network structure. 

This equation was previously suggested to infer gene networks [81], by 

experimentally determining matrix ( ) 1−− VX  (the control matrix), and inverting it to get 
J, but although it gave good results, the need to measure the rate perturbations makes the 
approach experimentally unattractive. Despite the experimental difficulties, this 
relationship has been used to infer the SOS DNA-repair system gene network in E. coli 
[36]. These authors had in addition the ingenious idea that once a network J is known, it is 
also possible to infer the mode of action of unknown perturbations, i.e. to infer matrix V by 
measuring and knowledge of J [36]. X
Again, the need to measure the rate perturbations makes the approach experimentally 
unattractive, because these are difficult to measure. Therefore the following 
transformations to Equation 5.5 were considered: 

Pre-multiplying both sides of Eq. 5.5 with ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛=−

−−− 111 VXJ diagdiag  (the diag( ) 

operator returns a diagonal matrix with elements equal to the diagonal of the matrix given 
as the argument)  gives: 

( ) ( ) VVXJXJ ⎟
⎠
⎞

⎜
⎝
⎛−≈−

−−− 111 diagdiag      (Eq. 5.6) 

Since V is already a diagonal matrix ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −− 11VXdiag  can be written as , 

simplifying Eq. 5.6 to: 

( ) 1−VXdiag

 

( ) ( ) ( )XVVXJXJ diagdiagdiag −≈−≈− −− 11     (Eq. 5.7) 
 
For the limit of infinitesimal changes I define 
 

( ) ( ) JVXJJR 11 −− −≡−≡ diagdiag      (Eq. 5.8) 

( )( 1−−≡ XXO diag )        (Eq. 5.9) 
 
A simple way to write Equation 5.7 is thus [81-83, 179]: 
 

IRO =         (Eq. 5.10) 
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(see also Chapter 3), or 
 

1−= OR         (Eq. 5.11) 
 

R is known as the ‘regulatory strength matrix’, with elements 
j

i
i

i
x

v
dv

dx
∂

∂⋅ (note that I 

here use unscaled versions of all measures I have described before; the derivation would be 
equivalent for the scaled quantities, but scaling was omitted for clarity). This is a global 
measure of the effects of each gene expression level on every other, partitioned as the effect 
that one gene expression level (concentration) has on the gene expression rate of the other 
(quantified by a Jacobian element) and the effect that the gene expression rate has on the 

gene expression level (quantified by a global control (sensitivity) coefficient 
i

i
dv

dx ). O 

is known as the ‘co-control matrix’, with elements 
j

i
dx

dx , which can be calculated from 

gene expression data produced by applying systematic perturbations, but in this case 
without the need to measure the rate perturbations themselves! 

To derive the framework for the ‘interaction map’ [84] both sides of Eq. 5.5 are 

pre-multiplied with ( )( ) ( )( ) 111 −−− =− VXJ diagdiag  giving: 
 

( )( ) ( )( ) VVXJXJ
111 −−− −=− diagdiag     (Eq. 5.12) 

 

Again by simplify; this time by rewriting ( )( ) 11 −−VXdiag  as ( )( ) 111 −−− VXdiag , 
simplifying Eq. 5.12 to: 
 

( )( ) ( )( ) 111 −−− −=− XJXJ diagdiag      (Eq. 5.13) 
 
which is equation 5 in [84] (note that in their terminology X is called ): pR

( )( ) ( )( ) 1111 −−−− −=−≡ XXJJr diagdiag     (Eq. 5.14) 
 
Note that by Eq. 5.8 and 5.11: 
 

( ) ( ) 11 −− −=−≡ XXJJR diagdiag      (Eq. 5.15) 
 
This shows clearly the similarity between the Regulatory Strength Matrix and the 
Interaction Map. 
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Writing the equality: 
 

( )( ) ( ) 111 −−− =−=− XrXRX diagdiag       (Eq. 5.16) 
 
leads to an expression for the Interaction Map in terms of the Regulatory Strength Matrix 

( )( ) ( )( ) RXXr 111 −−−= diagdiag      (Eq. 5.17) 
 
which can be rewritten as 
 

( )( ) RRr 1−= diag         (Eq. 5.18) 
 

since ( )( ) ( ) ( )( ) ( )( ) ( )( ) 111111 −−−−−− =−= XXXXR diagdiagdiagdiagdiag  
 
This means that the Interaction Map is the Regulatory Strength matrix scaled to its diagonal 
elements, thereby inferring the strengths of the interactions as a fraction of the global self-
effect of the genes. 

Recently, it was stated in [237-239] that the RSA only is applicable to systems in 
which each variable has only one input and output flux. This is an incorrect statement. This 
misunderstanding probably resulted from the fact that the RSA was originally derived 
explicitly for gene networks, in which each variable has indeed one synthesis and 
degradation term. However, in the derivation above it became clear that this is not 
necessarily true. To emphasize this, I analyzed data with a model in which each of the 
variables had three input fluxes, of which two are affected by the other variable (Fig 5.1). 
In this case the Regulatory Strengths are partitioned into the two separate effects [108].  For 
example, the regulatory strength of T1 on T2 is expressed as  
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Figure 5.1 – A simple network between two variables affecting each other through multiple 
input fluxes. Rate laws used were ( ) ( )1.021125115.01 TTdtdT ++++=  and 

( ) ( )3.0111131112 TTdtdT ++++= . Perturbations were made by increasing 
the rate parameters or multiple rates parameters by 10%. 
 
The Regulatory Strengths were calculated both by the expressions Eq 5.19 and 5.20, and by 
applying RSA to perturbation data from the model. The values for the Regulatory Strengths 
obtained by RSA indeed matched the values obtained through their definition (Eq 5.19 and 
5.20) [108], independent of which of the fluxes was perturbed, and even when more than 
one of the input fluxes were affected by the perturbation. This example emphasizes that 
RSA can deal with such situations and also that flexible perturbations are possible. As long 
as the perturbations are specific to each of the variable RSA is able to infer the correct 
values for the Regulatory Strengths, just like the interaction map approach. 

The RSA and the interaction map approach require the exact same type and 
number of experiments. Perturbations have to be specific to each variable. The authors of 
the interaction map method emphasize that a smaller number of perturbations is necessary 
to find regulatory connections between 'modules' consisting of any number of genes and 
that perturbations need not to be specific to one reaction [84]. When modules are 
considered as the nodes of the network, then one needs to make perturbations that 
specifically act on each module individually. This is indeed what is shown in [84]. 
Expressing the interactions between these modules, or more explicitly, between their 
communicating intermediates (the variables of the modules that interact kinetically with the 
rates of other modules) [161], can be equivalently done in terms of Regulatory Strengths, 
given that the interaction map is a scaled regulatory strength matrix. Note that knowing 
which variables are the communicating intermediates implies having a great deal of 
knowledge of the system under study already!! To illustrate that the RSA is able to deal 
with signal transduction networks I analyzed the same data of [84]. The data is produced 
using the model of a MAP Kinase signal transduction pathway (details can be found at 
http://www.pnas.org/cgi/data/192442699/DC1/4. This signal transduction cascade can be 
conceptually decomposed into modules (sets of reactions that don’t share a common flux) 
(see figure 5.2). The goal in this exercise is to infer the interactions between the modules. 
Since there are three modules there are three perturbations needed.  Perturbations were 
done as described in [84].  The responses of the communicating variables, i.e. 
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MAPKKKPP, MAPKKPP and MKPP, were taken from Figure 4 in  [84] (case b was taken, 
in which large perturbations affecting several rates were made) and RSA was applied. 

 

MKKK-PP

MKK-PP

MK-PP

-0.4/-1

-0.2/-1

-0.2/-1-0.4/-1

-0.1/-0.6

0.3/1.8

0.33/2

MKKK-PP

MKK-PP

MK-PP

MKKK-PP

MKK-PP

MK-PP

-0.4/-1

-0.2/-1

-0.2/-1-0.4/-1

-0.1/-0.6

0.3/1.8

0.33/2

 
Figure 5.2 – A simple cascade of signal transduction modules inferred with RSA, from data 
produced with a complicated signal transduction model of which details can be found at 
http://www.pnas.org/cgi/data/192442699/DC1/4. Edges correspond to non-zero (> 0.05) 
Regulatory Strengths. The numbers on the edges correspond to the inferred values of the 
Regulatory Strength and ‘interaction map coefficients’ taken from [84], respectively. 
 
The interaction map coefficients can also be calculated from the Regulatory Strengths, by 
dividing the Regulatory Strengths into a variable by the self-effect strength of that variable 
(note that the ratios are not consistent due to rounding off to one digit).  Thus, regulatory 
strength analysis is not limited to only analysis of gene expression data, but also applicable 
to modular signal transduction. This exemplary result will soon be backed up formally 
(Bruggeman & de la Fuente et al., manuscript in preparation). 

It is in principle even possible to apply regulatory strength analysis, and thus also 
the interaction map approach, for inferring the regulatory structure of metabolic networks. 
However, it is very hard experimentally to make the necessary perturbations.  One has to 
make perturbations that specifically affect directly individual metabolites. This implies 
artificially adding a flux to each metabolite in the pathway in each experiment. Similar 
experiments are needed to infer complete signal transduction networks, and not just the 
interactions between modules. These conditions seem to be difficult to meet for those 
networks. 

One possible (though hypothetical) way to be able to make the necessary 
perturbation experiments on metabolic pathway would be to use a Continuously Stirred 
Flow Reactor, using for example yeast cells [240]. In this setup one can control the inflow 
of the metabolites into the reaction vessel. If in each experiment a different metabolite were 
included in the inflow medium, this would impose the required added fluxes directly into a 
metabolite (making the assumption each metabolite can enter the cell from the medium). 
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Doing so for all metabolites and measuring the steady state responses to each perturbation 
allows calculation of matrix O, much like for gene expression data. 

Here the application of RSA to the metabolic pathway depicted in Figure 5.3a is 
demonstrated. The reaction between M3 and M4 is described by reversible competitive 
inhibition kinetics and all other reactions by reversible Michaelis-Menten kinetics.  All 
parameters are set to unity, except the inhibition constant, which was set to 0.1 and P1 and 
P2, were set to 10-5. Metabolites M1, M2 and M5 could be specifically perturbed by 
changing the kinetic constants of the rates between M1, M2 and M5 and S, P1 and P2, 
respectively, since these rates are unique to these metabolites. M1 was perturbed by 
increasing S by 10%. M4 and M5 were perturbed by increasing their Vmax by 10%. Since 
there are no rates unique to M2 and M3, in order to perturb these metabolites specifically, 
fluxes specifically into to these metabolites were added, each having a magnitude of 10% 
of the main flux through the pathway. After applying all perturbations O was calculated R 
obtained by inversion. The inferred matrix is: 
 

⎟
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⎟
⎟
⎟
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⎠

⎞

⎜
⎜
⎜
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⎝
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−
−−

−
−

−

=

46.10031.10
4.018.114.100

24.022.093.161.10
45.0071.055.226.1
00049.042.1

R    (Eq. 5.21) 

 
The interaction map can simply be obtained by dividing each row by the negative value of 
the self-effect (diagonal element). The theoretical R matrix can be obtained from the 

Jacobian using ( )JJR 1−−≡ diag . Since relative concentrations were used, matrix R 
should be scaled accordingly by the steady state concentrations of the metabolites. 
Diagonal matrix DM has these metabolite concentrations on its diagonal. The scaled 

Regulatory Strength matrix is obtained by ( ) MM RDDR
1−

=scaled  [241]. Doing so 
yields the (scaled) theoretical RT matrix in Eq. 5.21, which is indeed very close to the 
(scaled) R matrix obtained through the perturbation analysis Eq 5.20. 
 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−−

−
−

−

=

47.10033.10
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TR    (Eq. 5.22) 

 
Figure 5.3b shows the resulting network. Obviously, the external metabolites don’t appear 
in the network. In contrast to the arrows in the metabolic pathway, the arrows in the 
inferred network don’t correspond to fluxes, but to regulatory effects. 
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Figure 5.3 – A) The metabolic pathway modeled studied with regulatory strength analysis 
and B) its inferred counterpart. Edges correspond to non-zero elements in the inferred R 
matrix. For clarity the negative self-interactions are omitted. 
 

Interestingly, the kinetic effect of M5 on the reaction between M3 and M4 shows 
up in the inferred network, but as separate regulatory effects. Since it inhibits the reaction 
the effect is negative on M4 and positive on M3. The regulatory description cannot be 
translated into the metabolic pathways structure, since different metabolic pathways could 
give rise to this regulatory network. For example, a pathway in which there is an 
irreversible reaction from M5 to M4 and in which M5 activates the degradation of M4 to 
P2 would give exactly the same regulatory network. The network inferred is a 
phenomenological description of the mechanistic pathway; this is similar to the case of 
gene networks inferred before. Again, it is important to mention that the perturbation 
experiments for metabolic pathways and signal transduction cascades are hard to realize 
experimentally given the present limited ability to perform such large scale specific 
perturbation experiments. The perturbation strategy proposed by the RSA is general and 
plausible to apply experimentally only in the case of gene networks. Regulatory strength 
analysis could be applied, however, to whole biochemical networks, consisting of genes, 
proteins and metabolites, as long as someone finds out a way to apply the required 
perturbations, which would necessarily be a complicated experiment. The presence of 
linear constraints between concentrations, due to moiety conserved cycles or equilibrium 
reactions, will complicate the application of this perturbation strategy, since such 
constraints won’t allow for making the required unique rate perturbations and also cause 
the O matrix to be singular. How to deal with such constraints is a topic worth of further 
investigation. 

Coming back to the use of the modular approach, there is no straightforward way 
for grouping genes into modules. In Hierarchical Control Analysis a module is defined as a 
series of reactions that have no flux exchange with other sets of reactions [103, 111, 116, 
160]. In this way, signal transduction can be decomposed into such modules. However, in 
gene networks, using this definition for module, there are as many modules as there are 
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genes, since each gene is synthesized and degraded by its own ‘private’ fluxes; no flux is 
shared between genes, they solely communicate through kinetic effects. Furthermore, while 
the interaction between these supposed modules could be inferred, the interaction between 
the genes inside the module remains unknown. To infer the interaction structure inside the 
modules, all necessary perturbations have to be made. 

One way to define a 'genetic module' is by applying a clustering algorithm to gene 
expression data and to assume that genes that end up in the same cluster belong to the same 
'gene expression module'. Such an approach was applied to a yeast microarray dataset 
[242]. The genes were first clustered based on correlated time series and then knock-out 
mutants were used as perturbations to find the network of interactions between ‘variables’, 
of which the concentrations were equal to the average concentration of the genes in each 
cluster [242]. It remains questionable if it is valid to make the assumption that clustering of 
gene expression data yields ‘functional genetic modules’ or even groups genes of similar 
gene regulatory functions at all! It would be worthwhile to apply their method to simulated 
data in order to evaluate the results. The results of the application of the approach to yeast 
microarray data could not be thoroughly evaluated for correctness. 
 
Section 5.3: How to deal with imperfect experimental data 
 
There are three main concerns about using Regulatory Strength Analysis, as well as the 
methods described in Chapter 2, to real experimental biological data: 
 
1) Biochemical interactions are non-linear 
2) Experimental data are noisy 
3) The problem of under-determination (insufficient number of experiments) 
 
Section 5.3.1: Biochemical interactions are non-linear; linear approximation of non-
linear kinetics 
 
All analyses described in this dissertation originated from a linear description of 
biochemical systems. Therefore, the theory is only exact with infinitesimal perturbations, 
because the kinetics of such systems is nonlinear. However, infinitesimal perturbations are 
impossible to apply experimentally. One is forced to apply finite perturbations and the 
analyses become only approximate. The question now is how good the approximation for 
different perturbation sizes is.  
Obviously, how well the linear approximation works will differ from system to system, 
depending on how non-linear their responses truly are. If the kinetics of a system is known 
one could analytically study the second order [107] or higher order terms in the Taylor 
expansion to check their relative importance to the responses. In Chapter 4 in section 4.5 
this point has been addressed to some extend by analyzing a large set of data generated by 
large gene networks formulated with non-linear kinetic functions, and showed that even at 
perturbations as large as 50% the results were quite good. These results suggest that the 
need for very small perturbations can be relaxed. In the previous chapter a reasonable 
perturbation strategy was described: it was suggested to compare the expression profiles of 
wild type strains with heterozygous strains, in which one chromosome contains an intact 
copy of the gene while on the other the gene has been deleted. For a diploid organism, such 
as yeast, having 50% of the wild type gene dosage would lead to a reduction in the rate of 
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gene expression by about 50%, that is if the gene expression rate depends linearly on the 
gene dosage. It is reasonable to expect that the dependency of the gene expression rate on 
the gene dosage is linear, or maybe even asymptotic, and not with a faster growing 
function. Several programs are concerned with the creation of genomic scale libraries of 
knockout strains of various organisms [243, 244]). Gene expression data from knockout 
mutants can unfortunately not be used in our approach, since removing a gene completely 
is too drastic a perturbation and would lead to singularities in the analysis. However, it 
would experimentally feasible to create another library consisting of all the heterozygous 
mutants, each having only a functional copy of a particular gene on one of the two 
chromosomes, by backcrossing with the isogenic wild type. Gene expression data from 
these mutants would be very appropriately used with our approach to infer the network 
structure. By comparing the gene expression of these heterozygous mutants to the wild type 
gene expression, matrix O can be calculated and therefore matrix R, giving the network of 
genetic interactions. 

Larger perturbations, although they introduce a certain amount of non-linearity to 
the data, are preferable to small perturbations in the light of the noisy nature of current 
microarray experiments. The responses towards small perturbations may easily get lost in 
the noise, while larger responses ‘peak out’ of the noise. Ideally, the size of the 
perturbations should be such that a good trade off is made between deviations from 
linearity and the measurement noise. 

 
Section 5.3.2: Experimental data are noisy 
 
A big concern is the quality of current microarray data in terms of reproducibility, and 
currently it is frequent to obtain such data that contains large variance.  Matrix inversion is 
highly sensitive to noise in the matrix elements. Therefore, obtaining the R matrix directly 
by inverting the O matrix is likely to produce poor results. The method described in Section 
2.5.4 in Chapter 2 also relies on matrix inversion. A way to solve a system of linear 
equations, which is less sensitive to noise in the data than just plain inversion, is regression 
with subset selection. This regression approach has been tested on noisy data for an 
approach equivalent to the Regulatory Strength Analysis (see section 5.2), and the results 
are very promising [36, 245]. Even at a noise level of 30% of the average responses, the 
False Discovery Rate (for definition see section 4.5.1 Chapter 4) was about 10% and 60% 
of the edges in the network were correctly identified. 

To explain how the regression approach can be applied to solve for the regulatory 
strength matrix, I first rewrite the equation in order solve for individual rows R, i.e.  iR
 

ii IR =O         (Eq. 5.23) 
 
where  is the corresponding row of the identity matrix.  iI
 
Since there are n coefficients to estimate and n equations this equation is exactly identified 
and the solution is unique. Now, the assumption is made that gene networks are sparse and 
thus that each gene has a much lower number of input connections than there are genes in 
the network. A sparse matrix (network) has more zero elements than non-zero elements.  If 
this sparseness in gene interactions assumption is correct, there is thus no need to solve for 
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all elements in row , but just for the non-zero Regulatory Strengths. But the problem 

now is that one does not know which particular elements in are non-zero and how many 

of them are non zero. Assuming that there are k non-zero elements in , all (n choose k) = 

iR

iR

iR
( ) !!! kknn −  possible subsets of k variables have to be tested and select the subset that 

gives the best fit to the data (for large networks it is impossible to compute all possible 
combinations, but smart search strategies can be used, see below). ‘Goodness of fit’ can be 
expressed, for example, with the residual sum of squares (RSS): the lower the RSS the 
better the fit. 
 Solving for a particular subset k: 
 

i
ksubsetksubset

i IR =)()( O       (Eq. 5.24) 
 

)(ksubset
iR  contains a certain subset of size k of assumed non zero Regulatory Strengths 

and  contains only the k corresponding rows. If the subset size k is smaller than 
the number of perturbations n the system is over-determined, which solution can be 
approximated using the least squares approach:  

)(ksubsetO

 

( ) i
ksubsetTksubsetksubsetsub

i IR )(
1

)()( OOO
−

=      (Eq. 5.25) 
 
The subset that gives the best fit to Eq. 5.24 is the preferred solution. 

There is yet another problem with this approach: it is not known how many inputs 
a certain gene has. A common problem in subset selection in regression is that a larger 
subset of regressors usually gives better fit than smaller ones [246]. Even if the correct 
subset k (the subset containing all true effectors of gene i) is identified, addition of another 
variable (subsets of k+1) will in general yield lower values for the RSS [246]. Therefore, 
there is need to score solutions with a function that gives penalty for including more 
variables, giving preference to simpler models (Occam’s razor). Several such measures are 
widely used in statistics, such as the Akaike Information Criterion [247] and the Bayesian 
Information Criterion [248]. Both these criteria are simple functions of the RSS (for linear 
regression) and contain a penalty term for the number of variables in the subset. 

Although this approach of regression by subset selection still needs to be 
thoroughly evaluated, these results indicate that application of Regulatory Strength 
Analysis to infer gene networks from real experimental biological data is possible. 
However, for the analysis to be quantitative, data of good quality should be used. Data with 
experimental noise and that displays non-linearity of interactions will only yield a 
qualitative description, at best. 

Section 5.3.3: The problem of under-determination 
 
The method requires a genome-scale experimental effort, in the form of gene expression 
rate manipulations, and measurements of genome-wide responses. It was shown that as 
many perturbations as there are genes in the network were needed to unambiguously infer 
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the complete interaction structure. Making all these perturbations is a huge experimental 
effort.  When only p experiments out of n experiments are done on the n-gene system under 
study, the dimensions of O are n x p and the solution to the n x n R matrix is therefore not 
unique.  

There are two distinct ways to deal with such underdetermined experimental data. 
The first is the obvious one of dimension reduction. Above I described two methods that 
reduce the number of variables in order to obtain a determined system. One proposes to 
consider ‘modules’ consistent of many genes, but provides no means of creating such 
modules [84], while the second proposes to group genes by means of hierarchical cluster 
analysis [242]. Effectively, a p x p O matrix is thus considered, and it is possible to find the 
interaction network between p modules or clusters. To infer the interactions inside each 
module or cluster and to discover which specific genes intermediate the communications 
between the modules or clusters, the additional n - p experiments must be done. 

In the previous chapter a third strategy was suggested, alternative to the two 
above, which is more ‘variable oriented’, than ‘module oriented’, which doesn’t require any 
previous knowledge of the network. As was argued in the previous chapter, a 

phenomenological network could obtained by considering , thus ignoring 

all n - p genes that have not been perturbed. The regulatory strength matrix obtained by this 
equation gives the interaction structure between the perturbed genes in which the 
connections may be direct or go through unperturbed genes. Again, although highly 
phenomenological, this R gives a valid quantitative description of the interaction between 
the perturbed genes. By including additional experiments the resolution of the network is 
increased. With this iterative process in mind, the responses of all n genes should be 
measured, not only the p perturbed genes. Although the unperturbed genes are not included 
in the present analysis, having them measured enables one to include them in the analysis 
whenever further experiments are done in which they are perturbed. It should be stressed 
that, although for the final goal (a global gene network), all experiments are needed; the 
intermediate results in this iterative process already provide good quantitative insight in 
cellular regulation. 

1−
×× = pppp OR

Another way to uniquely identify an R matrix is to make assumptions about its 
structure. Recent papers have proposed strategies to deal with under-determination of data 
by using the assumption that gene networks are sparse. Again, the network being sparse 
implies that each gene only receives few inputs from other genes. Making this assumption 
enables, for example, to use Singular Value Decomposition of the non-square co-control 
matrix and to search for the sparsest solution, using robust regression [249], rather than the 
least square solution [250]. This approach has been implemented on a linear model to infer 
gene networks from time series gene expression data and it was demonstrated with 
simulated data that only log(n) measurements were needed to infer a network of n genes 
[249]. In has to be noted that in [249] the data was simulated with models of gene networks 
that were most sparse, i.e. there were only single paths between genes. It has been argued 
that biological networks should be as simple as possible, as they are optimized by evolution 
and simplicity is favorable for energetic reasons [80]. However, there are many more 
features on which organisms have been selected during evolution of which efficient 
regulation, homeostasis, and robustness are examples. Most important features of living 
cells require redundancy, i.e. many paths leading to the same ‘goal’. Although the 
assumption that biochemical networks are sparse is reasonable, there is no reason to believe 
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that biochemical networks are the ‘sparsest possible’ networks explaining an observation. 
That said, the approach by [249] will probably not identify the correct gene network, but 
rather the simplest that conforms with the log(n) observations. This is still an interesting 
result, since the edges in the network found can be expected to be a subset of the edges in 
the real network. Their method will then identify a ‘non-redundant backbone’ of the gene 
network, a good starting point for further investigations. Another approach has been 
proposed by [251] which consists of searching, gene by gene, the space of solutions on 
subsets of inputs (similar to the approach outline in section 5.3.2) with computationally 
efficient search algorithms. They applied several distinct methods to search the enormous 
space of possible solutions, such as genetic algorithms, forward-, backward- and stepwise 
regression [246]. Yet another uses constrained least squares fitting, using the LASSO (least 
absolute shrinkage and selection operator) [252]. With the LASSO, in addition to the least 
squares constraint, a constraint is imposed that restricts the values of the regression 
coefficients by holding their absolute sum smaller than a preset value, thereby forcing most 
elements to be zero. When this preset value is small enough the solution is unique even for 
small numbers of observations. Using this approach, a unique solution to a regression 
problem of 6178 genes with only 73 observations (time points) was obtained [253].  

The more assumptions are made and constraints imposed on a problem, the easier 
it is to solve it, but also the further it gets removed from the physical reality. It would be 
certainly interesting to apply these methods to solve for a unique R matrix from a non-
square O matrix, at least before all experiments are done. Although the methods above 
have been demonstrated on linear models for time series analysis, the algorithms should 
work equivalently for our steady state perturbation approach, since they are equivalent in 
terms of matrix algebra.  
 
Section 5.4: Final conclusion 
 
In this dissertation, I have proposed several theoretical analyses accompanied by recipes to 
carry out the relevant experiments with the aim to decipher the regulatory structure of 
biochemical networks. One set of approaches enables experimental determination of the 
properties of metabolic systems in isolation from the global hierarchical network. Another 
provides a theoretical framework for simplification of hierarchical networks into gene 
networks and provides an experimental recipe to extract such networks from large-scale 
experimental observations. The methods have been thoroughly evaluated on data generated 
with mathematical models according to the proposed experimental designs. To be able to 
apply these methods with confidence to real biological experimental data, especially given 
the fact that the current experimental technologies suffer from low signal to noise ratios, 
further investigations and modifications to the methods are needed. On the other hand, this 
contribution will also increase the incentives for further technological improvements, 
improving the quality of such large-scale data. Therefore, in the light of datasets with 
higher quality and incorporation of robust computational techniques, I expect that it will be 
possible to apply these methods to large-scale genomics data in a not-too-distant a future. 
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Summary 
 
Deciphering living networks 
 
Perturbation strategies for functional genomics 
 
Living beings are very complicated. We, humans, for example, consist of about 1014 (that’s 
a 1 followed by 14 zeros!) cells. Every single cell contains between 30,000 and 100,000 
different genes (no one knows how many exactly), most certainly more than 100,000 
different proteins and thousands of different small molecules, called metabolites. Our 
genes, the hereditary information, produce proteins, the molecules that actually drive cell 
physiological processes. Metabolites are substances that we receive through food, from 
which we extract energy and make other metabolites with important functions. For 
example, certain metabolites determine our appearance; the color of our eyes and skin is 
determined by the presence or absence of a certain metabolite. The functioning of living 
cells rests on the coordinated interplay between all these distinct molecules. 

 Biology is the science concerned with understanding living creatures. Given that 
cells are so complicated it is a logical decision to take them apart and to study the 
molecules and processes individually, for instance in test tubes. This form of biological 
research has been practiced over the last 3 decennia with great success under the name 
Molecular Biology. The philosophy behind this approach is that if all components of the 
living cell are studied and understood, then the whole, the living cell, is understood. 
Probably this is not the case; the whole is more than the sum of its parts. However, this 
approach has been the most logical because, until recently, it was not possible to obtain 
experimental data simultaneously on all components of living cells. This ability does exist 
today. Recently, several experimental techniques have been developed allowing us to 
measure simultaneously all gene-activities, cellular concentrations of a large number of 
proteins and metabolites as well. The experimental data obtained through these 
technologies thus provide us, for the first time in the history of biology, with a means to 
study all components and processes simultaneously. The scientific discipline concerned 
with measurement and interpretation of such large scale biological data has been named 
‘functional genomics’. 

But how do we study a living cell? How can we gather and analyze experimental data to 
obtain insight into the functioning of living cells? One approach is to create interventions 
(perturbations) in certain components in the cell, for instance to reduce the activity of a 
certain gene, and then measure the effect of that intervention on the other processes in the 
cell. In this way one can assess the importance of the component and learn something about 
its function in the context of the other processes in the cell. This information can only be 
obtained by studying the cell as a whole and not by the study of individual components. 

 In my thesis I describe several methods that I have developed during my doctoral 
research, based on the approach of making perturbations in cellular components and 
processes, followed by measuring their effects on all other cellular components and 
processes. These methods rest on a sound theoretical basis and provide recipes for 
experimentation aimed at optimal extraction of biological knowledge. 
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 Metabolism is the total of biochemical reactions in which metabolites are inter-
converted inside living cells. These metabolic reactions are catalyzed by enzymes (proteins 
with a metabolic function). A perturbation in the concentration of an enzyme enables us to 
measure the importance of the enzyme for the metabolic flux and metabolite 
concentrations. However, we don’t have perfect experimental control on the concentration 
of the enzymes, since there are many processes inside the cell that determine the enzyme 
concentrations as well; for example, some metabolites inhibit or activate the expression of 
genes coding for enzymes, thereby modifying their concentrations. If this happens, the 
initial experimental perturbation of the enzyme concentration has a primary effect on 
metabolism and successively a secondary effect due to the modification of the enzyme 
concentration through gene-expression regulation by such metabolites. It is interesting to 
decompose the total effect of the perturbation into these two separate effects, because this 
enables to asses the relative importance of the metabolic system and gene-expression for 
metabolic regulation.  

 The first series of methods I developed in this thesis should enable one to do this 
experimentally. The main train of thought behind these methods is that metabolic processes 
generally occur at a much higher rate than processes of gene expression and protein 
synthesis and that the secondary effects can be neglected on the short timescale.  On the 
short timescale the effects of the perturbation of the enzyme concentration are solely 
determined by the properties of the metabolic system. On the long run, the effects of gene-
expression regulation become important. Another method relies on experimental 
determinations of metabolic fluxes, concentrations, and the enzyme concentrations. Having 
such data enables us to separate the primary and secondary effects by a mathematical 
operation that basically compensates for the secondary changes in the enzyme 
concentration. 

 Every cell in our body, with only few exceptions, contains the same genome (the 
complete collection of hereditary information). Still, our body consists of a large number of 
different types of cells and tissues with widely different properties and every cell seems to 
know what it is supposed to do. How the same genome can manifest itself in such a variety 
of ways is an important subject of current biological research. Certain genes produce 
proteins that inhibit or activate the activity of other genes, which, in their turn, regulate the 
activities of yet other genes. In this way, the genome can be visualized as a network of 
interacting genes, a ‘gene network’, and the activities of each individual gene depends on 
the state of the complete network, which in turn is determined by external factors, like 
hormone concentrations at the location of the cell in the body, nutrients, temperature, etc. 
The state of the gene network determines the properties of the cell. In this way the 
properties of our liver cells differ widely from the properties of our brain cells, in spite of 
them containing the exact same genome. This is due to the different states of their 
genomes; some genes are more active in liver cells than in brain cells and vice versa. For a 
small number of cases, for a small number of genes, the regulatory systems have been 
studied in detail, but the global structure of gene networks of all organisms is still 
unknown. Unraveling the structure of gene networks is an important step in the process of 
understanding the properties of living cells and therefore also a very active research 
program. 

 Recently a break-through on the experimental determination of gene activities has 
been made. A technology called ‘microarrays’ enables us to measure simultaneously the 
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activities of all genes in a genome of a specific cell. Using this technology it can thus be 
measured how differently genomes are manifested in different types of cells. In my thesis I 
develop a method to use this kind of experimental data in order to unravel the structure of 
gene networks. The method is as follows: first an experiment is carried out in which the 
activities of all genes in a specific type of cell are measured under ‘standard’ conditions. In 
the next experiment the activities of all genes are measured after having experimentally 
perturbed the activity of one particular gene. Comparing the genome wide activities of the 
genes provides knowledge on the regulatory properties of the perturbed gene; genes that 
changed activity after the perturbation are thus regulated by the perturbed gene. Such gene 
regulation can occur in two different ways.  The gene could directly affect another gene, or 
it could do so indirectly: it first affects the activity of another gene which in turn regulates 
the activity of the next etc. Deducing the structure of gene networks thus boils down to the 
ability to distinguish direct from indirect effects. If successively identical experiments are 
executed for all genes in the gene network, data is obtained for which in this thesis I 
showed that the direct and indirect effects can be distinguished using a simple mathematical 
operation. This method thus provides a recipe for the experimental setup and the theory to 
extract the information to decipher gene networks. Because all genes in the gene network 
have to be perturbed in individual experiments, it seems that an enormous amount of data is 
required for this method. This is true, but methods that have been proposed previously for 
the same purpose require even more experimental data, varying from ten times as much to 
more than thousand times as much as the method proposed in this thesis. The method 
worked out in this thesis indicates the minimal data requirement for gene network inference 
without assumptions about the specific network structure. 

 In summary, whether metabolism or genetic processes are studied, insight into 
living cells can be obtained by making specific perturbations, measuring their effects and 
by applying mathematical analysis. In this thesis I described how metabolism can be 
studied by quantification of the importance of the primary metabolic effects with respect to 
the secondary genetic effects after a perturbation of a metabolic process. I also described a 
method that in addition to a theoretical framework provides a recipe for a specific 
experimental setup that enables deciphering gene networks. All these methods will provide 
more insight in the functioning of living cells. 
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Resumen 
 
Descifrando redes vivas 
 
Estrategias de perturbación para genómica funcional 
 
Los seres vivos son muy complicados. Nosotros, los humanos, por ejemplo, estamos 
constituidos por cerca de 1014 (¡un 1 seguido por 14 ceros!) células. Cada célula contiene 
entre 30 mil y 100 mil genes diferentes (nadie sabe cuantos exactamente), ciertamente mas 
de 100 mil proteínas diferentes y miles de moléculas pequeñas llamadas metabolitos. 
Nuestros genes, la información hereditaria, producen proteínas, las moléculas que 
actualmente incitan los procesos fisiológicos celulares. Metabolitos son substancias que 
recibimos a través de la comida, de la cual extraemos energía y hacemos otros metabolitos 
con funciones importantes. Por ejemplo, ciertos metabolitos determinan nuestra apariencia; 
el color de nuestros ojos y piel esta determinado por la presencia o ausencia de un cierto 
metabolito. El funcionamiento de las células depende de la interacción coordinada entre 
todas esas moléculas distintas. 

 Biología es la ciencia que trata del entendimiento de los seres vivos. Dado que las 
células son muy complicadas, es lógica la decisión de descomponerlas y estudiar las 
moléculas y procesos individualmente, por una prueba de tubo de ensayo. Esta forma de 
investigación biológica ha sido practicada con gran éxito en los últimos 3 decenios bajo el 
nombre de Biología Molecular. La filosofía subyacente de esta investigación es que si 
todos los componentes de la célula están estudiados y entendidos, entonces el todo, la 
célula viviente, está entendido. Probablemente esto no es el caso; el todo es más que la 
suma de sus partes. No obstante, este estudio ha sido el mas lógico porque, hasta 
recientemente, no era posible obtener datos experimentales de todos los componentes de las 
células vivientes simultáneamente. 

 Esta habilidad existe en estos tiempos. Recientemente, se han desarrollado 
diversas técnicas experimentales permitiéndonos medir simultáneamente todas las 
actividades de los genes, concentraciones celulares de grandes números de proteínas, así 
como de los  metabolitos. Los datos experimentales obtenidos a través de estas técnicas nos 
proveen, por primera vez en la historia de la biología, con los medios  para estudiar todos 
los componentes y procesos simultáneamente. ‘Genómica funcional’ es la disciplina 
científica que su ocupa con obtener e interpretar largas cuantidades de datos experimentales 
biológicos. 

 ¿Pero cómo investigamos una célula viviente? ¿Cómo obtenemos y analizamos 
datos experimentales que nos ayude a entender el funcionamiento de las células vivientes? 
Uno de estos estudios es la creación de perturbaciones en ciertos componentes en la célula, 
por ejemplo reducir la actividad de un cierto gen y después medir el efecto de esa 
intervención en los otros procesos en la célula. Esta información solo puede ser obtenida 
por el estudio de la célula como un todo y no por el estudio de componentes individuales. 

 En mi tesis describo diversos métodos que he desarrollado durante mi 
investigación doctoral, basados en el estudio de hacer intervenciones en los componentes 
celulares y sus procesos, y midiendo sus efectos en todos los otros componentes celulares y 
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sus procesos.  Estos métodos se basan en una base teórica sonada  y provee instrucciones 
para experimentos con el fin de poder extraer óptimamente conocimientos biológicos. 

 El metabolismo es el total de las reacciones bioquímicas en las que metabolitos 
son convertidos dentro de las células vivientes. Estas reacciones metabólicas son 
catalizadas por enzimas (proteínas con una función metabólica). Una perturbación en la 
concentración de una enzima nos ayuda a medir la importancia de la enzima por el flujo 
metabólico y concentraciones metabólicas. Sin embargo no tenemos un perfecto control 
experimental en la concentración de las enzimas, ya que hay muchos procesos celulares que 
determinan esas concentraciones; por ejemplo hay metabolitos que inhiben o activan la 
expresión del código genético por la enzima, así modificando su concentración. En este 
caso, la perturbación inicial tiene un efecto primario en el metabolismo y sucesivamente un 
efecto secundario debido a la modificación de la expresión genética. Es interesante 
descomponer el efecto total de la perturbación en estos dos efectos separados porque esto 
nos ayuda a obtener la importancia relativa del sistema metabólico y la expresión genética a 
través de la regulación metabólica. 

 Varios métodos que he desarrollado en esta tesis deben ayudar a hacer esto 
experimentalmente. La idea principal detrás de estos métodos es que los procesos 
metabólicos generalmente ocurren en una velocidad mucha más alta que la de los procesos 
de expresión genética y la síntesis de proteínas, y que los efectos secundarios pueden ser 
ignorados en una corta escala de tiempo. En la corta escala de tiempo los efectos de la 
perturbación de la concentración de la enzima son determinados solamente por las 
propiedades del sistema metabólico. En la larga escala de tiempo los efectos de la expresión 
genética comienzan a ser importantes. Otro método necesita determinaciones 
experimentales de los flujos metabólicos, concentraciones metabólicas y de las 
concentraciones encímales. Esos datos nos permitan a separar efectos primarios y 
secundarios por medio de una operación matemática, que compensa por los cambios 
secundarios en la concentración de la enzima. 

 Cada célula en nuestro cuerpo, con algunas cuantas excepciones, contiene el 
mismo genoma (toda la información hereditaria). Aun así, nuestro cuerpo consiste en un 
gran número de diferentes tipos de células y tejidos con propiedades muy distintos y cada 
célula parece saber que es lo qué se supone que debe hacer. Como el mismo genoma puede 
manifestarse el mismo en tan variadas formas es un tema importante en la investigación 
biológica actual. Ciertos genes producen proteínas que inhiben o activan la actividad de 
otros genes, los cuales a su vez, regulan las actividades de otros genes. De esta manera, el 
genoma puede ser visualizado como una ‘red de genes’ interactuando y las actividades de 
cada gen individual dependen del estado de la red completa, la cual depende también de 
factores externos como concentraciones hormonales en donde se encuentre la célula en el 
cuerpo, nutrientes, temperatura, etc. El estado de la red de genes determina las propiedades 
de la célula. De esta manera, las propiedades de las células de nuestro hígado, difieren en 
gran proporción de las propiedades de las células de nuestro cerebro, a pesar de que 
contienen exactamente el mismo genoma. Esto es debido a los diferentes estados de sus 
genomas; algunos genes son más activos en las células del hígado que en las células del 
cerebro y viceversa. Para un pequeño número de casos, para un pequeño número de genes, 
los sistemas regulatorios han sido estudiados detalladamente, pero la estructura global de 
las redes genéticas de todos los organismos es aun desconocida. Desenredar la estructura de 
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las redes genéticas es un paso importante para el entendimiento de las propiedades de las 
células vivientes y así también un programa de investigación bastante activo. 

 Recientemente, se ha dado un paso adelante a la determinación experimental de 
las actividades genéticas. Una tecnología llamada ‘microarrays’ nos ayuda a medir 
simultáneamente las actividades de todos los genes en un genoma de una célula específica. 
Usando esta tecnología se puede medir qué tan diferentemente es manifestado el genoma en 
distintos tipos de células. En mi tesis desarrollo un método para utilizar este tipo de datos 
experimentales con el fin de determinar la estructura de las redes genéticas. El método es 
como sigue: primero un experimento es llevado a cabo en el cual las actividades de todos 
los genes en un tipo de célula específica son medidos bajo condiciones ‘estándar’. En el 
siguiente experimento, las actividades de todos los genes son medidas después de haber 
perturbado experimentalmente la actividad de un gen particular. Comparando las variadas 
actividades de los genes del genoma se obtienen conocimientos de las propiedades 
regulatorias del gen perturbado; los genes que cambiaron su actividad después de la 
perturbación son entonces regulados por el gen perturbado. Esa regulación puede ocurrir de 
dos diferentes maneras. Ya sea que el gen afecta directamente a otro gen, o lo hace 
indirectamente, por lo tanto el gen primero afecta la actividad de otro gen  el cual a su vez 
regula la actividad del siguiente etc. Desenredar las redes genéticas  equivale a distinguir 
los efectos directos de los indirectos. Si experimentos idénticos son llevados a cabo 
exitosamente para todos los genes en la red genética se obtienen datos, los cuales en esta 
tesis mostré que usando una simple operación matemática los efectos directos e indirectos 
pueden ser distinguidos. Así este método provee de una receta para experimentos 
específicos y la teoría de extraer información para poder descifrar las redes genéticas. 
Porque todos los genes en la red genética tienen que ser perturbados en experimentos 
individuales, parece que una enorme cantidad de datos es requerida para este método. Esto 
es verdad, pero los métodos que han sido propuestos previamente por la misma razón 
requieren aun más datos experimentales, variando desde diez veces más hasta miles de 
veces  más que el método propuesto en esta tesis. El método que se utilizo en esta tesis 
indica que el requerimiento de datos mínimos para deducir una red genética sin hacer 
suposiciones acerca de la estructura especifica de la red.  

 En resumen, que si estamos investigando del metabolismo o los procesos 
genéticos, comprensión de las células vivientes puede llevarse a cabo haciendo 
perturbaciones específicas, midiendo los efectos y aplicando análisis matemático. En esta 
tesis, describo como el metabolismo puede ser estudiado por la cuantificación de la 
importancia de los efectos metabólicos primarios con respecto a los efectos genéticos 
secundarios después de una perturbación a los procesos metabólicos.  También describo un 
método, que en adición a un marco teórico, provee una propuesta para hacer experimentos 
específicos, que ayuda a descifrar redes genéticas. Todos estos métodos proveerán mayor 
comprensión en el funcionamiento de las células vivientes. 
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Samenvatting 
 
Het ontcijferen van levende netwerken 
 
Verstorings-strategieën voor functionele genomica 
 

Levende wezens zijn heel erg gecompliceerd. Wij mensen, bijvoorbeeld, bestaan uit 
ongeveer 1014 (da’s een 1 met 14 nullen!) cellen. Elke cel bevat tussen de 30.000 tot 
100.000 verschillende genen (niemand weet precies hoeveel), welzeker meer dan 100.000 
verschillende eiwitten en duizenden verschillende kleine moleculen, genaamd 
metabolieten. Onze genen, het erfelijk materiaal, produceren eiwitten, de moleculen die 
daadwerkelijk celfysiologische processen besturen. Metabolieten zijn stoffen die we binnen 
krijgen door ons voedsel, waar we energie aan onttrekken en andere metabolieten van 
maken met belangrijke functies. Bijvoorbeeld, sommige metabolieten bepalen ons uiterlijk; 
de kleur van onze ogen en huid wordt bepaald door de aan- of afwezigheid van een bepaald 
metaboliet. De werking van levende cellen berust op een gecoördineerde samenwerking 
tussen al deze verschillende moleculen. 

 Biologie is de wetenschap die zich bezighoudt met het bestuderen van levende 
wezens. Aangezien cellen zo gecompliceerd zijn is het een logisch besluit om ze uit elkaar 
te halen en moleculen of processen individueel gedetailleerd te bestuderen in bijvoorbeeld 
reageerbuisjes. Deze vorm van biologisch onderzoek heeft de laatste 3 decennia zeer 
succesvol plaatsgevonden onder de naam Moleculaire Biologie. De filosofie achter deze 
werkwijze is dat als alle componenten van de levende cel zijn bestudeerd en begrepen, dan 
is het geheel, de levende cel, begrepen. Dit is waarschijnlijk niet het geval; het geheel is 
groter dan de som der delen. Toch was deze aanpak de meest logische aangezien tot voor 
kort niet de mogelijkheid bestond om experimentele gegevens te vergaren simultaan voor 
alle componenten in de levende cel. 

 Deze mogelijkheid bestaat nu wel. Recentelijk zijn experimentele technieken 
ontwikkeld die ons in staat stellen om de activiteiten van grote hoeveelheden genen, en 
concentraties van eiwitten en metabolieten te meten. De experimentele gegevens verkregen 
door middel van deze technieken stellen ons dus in staat om, voor het eerst in de 
geschiedenis van de biologie, alle componenten en processen in levende cellen simultaan te 
bestuderen. Het vakgebied ‘funcionele genomica’ houdt zich bezig met de productie en 
interpretatie van grote hoeveelheden biologische gegevens. 

 Maar hoe bestudeer men nou zo’n levende cel? Hoe kunnen we experimenten 
doen en analyseren die inzicht geven in het functioneren van levende cellen? Een manier is 
om verstoringen (perturbaties) aan te brengen in bepaalde componenten in de cel, 
bijvoorbeeld het reduceren van de activiteit van een bepaald gen, en dan de effecten die 
deze verstoring heeft op de andere processen in de cel te meten. Op deze manier kan men 
de belangrijkheid van de component evalueren en iets leren over zijn functie in samenhang 
met de rest van de processen in de cel. Deze informatie kan dus alleen verkregen worden 
door de cel als geheel te bestuderen en niet door middel van het bestuderen van individuele 
componenten. 
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 In mijn proefschrift beschrijf ik methoden die ik heb ontwikkeld tijdens mijn 
promotieonderzoek, gebaseerd op de aanpak van verstoringen van specifieke cellulaire 
componenten en processen en metingen van de effecten daarvan op alle cellulaire 
componenten en processen. Deze methoden zijn voorzien een grondige theoretische 
fundering en leveren een recept voor het uitvoeren van experimenten om maximale 
biologische kennis te kunnen onttrekken. 

 Metabolisme is het geheel van biochemische reacties waar metabolieten in elkaar 
worden omgezet binnenin levende cellen. Deze metabole reacties worden gekatalyseerd 
door enzymen (eiwitten met een metabole functie). Verstoringen in de concentratie van een 
enzym stelt ons instaat om te meten hoe belangrijk het enzym is voor de metabole flux en 
voor de concentraties van de metaboliten. Enzym concentraties staan echter niet perfect 
onder onze experimentele controle staan, aangezien veel processen in levende cellen ze 
beinvloeden;  bijvoorbeeld, sommige metabolieten kunnen genen remmen of activeren die 
coderen voor enzymen en zo de enzymconcentraties beïnvloeden. Op deze manier heeft de 
perturbatie van het enzym een direct effect op het metabolisme en dan, door middel van het 
effect van de metabolieten op de concentratie van het enzym, ook een secundair effect. Het 
is interessant om het totale effect van de enzym-perturbatie te ontleden in deze twee 
individuele effecten, want dat laat zien hoe belangrijk het metabole systeem is voor de 
regulatie van metabolisme en hoe belangrijk gen-expressie is voor de regulatie van 
metabolisme.  

De eerste reeks methoden die ik heb ontwikkeld in dit proefschrift stelt ons in staat om dit 
experimenteel te doen. De algemene gedachtegang is dat metabole processen in het 
algemeen veel sneller verlopen dan de processen als gen-expressie en eiwit synthese en 
daarom kan op de korte duur het secundaire  effect worden genegeerd. Op korte tijdschaal 
worden de effecten van de enzym perturbatie dan geheel bepaald door de eigenschappen 
van het metabole systeem. Op de lange duur beginnen de gene expressie effecten een rol te 
spelen. Een andere methode berust op het experimenteel bepalen van de metabole fluxen, 
de concentraties van metaboliten en enzymen. Deze gegevens stellen ons in staat om de 
primaire en secundaire  effecten te scheiden, door wiskundig te corrigeren voor de 
secundaire veranderingen in de enzym concentraties. 

Met slechts enkele uitzonderingen bevat elke cel in ons lichaam  hetzelfde genoom (=het 
gehele erfelijke materiaal). Toch bestaat ons lichaam uit een grote hoeveelheid 
verschillende cellen en weefsels met heel verschillende eigenschappen en elke cel blijkt te 
weten wat hij geacht wordt te doen. Hoe hetzelfde genoom zich kan uiten op zulke 
verschillende manieren is een belangrijk onderwerp van hedendaags biologisch onderzoek. 
Sommige genen produceren eiwitten die de activiteit van andere genen remmen of 
activeren, die op hun beurt weer de activiteit van andere genen reguleren. Op deze manier 
kan het genoom worden gezien als een netwerk van interagerende genen, een ‘gen-
netwerk’, en de individuele activiteit van elk gen hangt af van de toestand van het gehele 
netwerk, welke naast de interne regulatie ook wordt bepaald door omgevingsfactoren, zoals 
de concentraties van hormonen op de locatie van de cel in het lichaam, voedingsstoffen en 
temperatuur. De toestand van het genoom bepaaldt de eigenschappen van de cel. 

Op deze manier hebben onze levercellen eigenschappen die sterk verschillen van die van 
onze hersencellen. Ondanks dat hun genoom identieke informatie bevat, verschilt de 
toestand van hun genoom: sommige genen zijn meer actief in levercellen dan in 
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hersencellen en vice versa. Nu is er voor een klein aantal genen in detail onderzocht hoe ze 
worden gereguleerd, maar de totale structuur van deze gen-netwerken is onbekend voor alle 
organismen. Het ontrafelen van de structuren van gen-netwerken is een belangrijke stap in 
de richting van het begrijpen van de eigenschappen van levende cellen en is dus ook deel 
van een actief onderzoeksprogramma. 

 Vrij recentelijk heeft er een doorbraak plaatsgevonden op het gebied van de 
experimentele bepaling van genactiviteiten. De zogenaamde ‘microarray’ technologie stelt 
in staat om in één experiment alle genactiviteiten in bepaald celtype te meten. Op deze 
manier kan dus gevolgd worden hoe verschillend het genoom wordt geuit in verschillende 
types cel. In mijn proefschrift beschrijf ik een methode die ik heb ontwikkeld om dit soort 
experimentele gegevens te gebruiken om de structuur van gennetwerken te ontrafelen. Het 
principe van de methode is als volgt: in het eerste experiment worden de genactiviteiten in 
een type cel onder ‘standaard’ condities gemeten. In het volgende experiment worden de 
genactiviteiten gemeten nadat de activiteit van een bepaald gen experimenteel is verstoord. 
Vergelijking van de genoomactiviteit tussen deze twee condities geeft inzicht in de 
regulatieeigenschappen van het gen wiens activiteit experimenteel was verstoord; genen 
wiens activiteit is veranderd als gevolg van de experimentele verstoring worden 
gereguleerd door het verstoorde gen. Zulke regulatie kan op twee verschillende manieren 
verlopen: een gen kan een ander gen direct reguleren, of indirect, waar het gen eerst een 
gen  reguleert dat op zijn beurt weer een ander gen reguleert etc. Het ontrafelen van de 
structuur van een gen-netwerk komt dus neer op het onderscheiden van deze directe 
regulatie van de  indirecte regulatie. Als vervolgens identieke experimenten worden 
uitgevoerd voor elk gen in het genoom, dan worden gegevens verkregen waarvan ik in dit 
proefschrift laat zien dat ze met behulp van een eenvoudige wiskundige bewerking de 
directe van de indirecte effecten kunnen doen onderscheiden. Deze methode geeft dus aan 
wat voor soort experimenten nodig zijn en geeft de theorie om de informatie te verzamelen 
die nodig is voor het ontrafelen van gennetwerken. Aangezien elk gen in het netwerk in een 
individueel experiment moet worden verstoord, lijkt het dat deze methode een enorme 
hoeveelheid experimenten nodig heeft. Dit is juist, maar de methoden die eerder voor dit 
doel zijn voorgesteld in de wetenschappelijke literatuur hebben nog veel meer 
experimentele gegevens nodig, variërend van tientallen malen zoveel tot meer dan 
duizenden maal zoveel als de methode ontwikkeld in dit proefschrift. De methode in dit 
proefschrift geeft de theoretisch minimale hoeveelheid gegevens die nodig is om 
gennetwerken te kunnen ontrafelen zonder aannames te maken over hun specifieke 
structuur. 

 Samenvattend, of nu metabolisme of gen-expressie processen worden bestudeerd, 
inzicht in levende cellen kan verkregen worden door specifieke verstoringen aan te 
brengen, metingen van de effecten te verrichten, en vervolgens wiskundige analyse toe te 
passen. In dit proefschrift heb ik beschreven hoe metabolisme bestudeerd kan worden door 
te kwantificeren hoe belangrijk de primaire metabole effecten zijn ten opzichte van de 
secundaire gen-expressie effecten na een verstoring van een metabool proces. Ook 
beschreef ik een methode die voorziet in zowel een specifiek experimentele als een 
theoretische opzet met als doel de structuur van gennetwerken te ontrafelen. Al deze 
methodes zullen meer inzicht bieden in hoe levende cellen functioneren. 
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The six year USA adventure is over. It was quite an experience. My life has changed a lot 
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working at the National Center for Genome Resources in Santa Fé. After that I worked at 
the Virginia Bioinformatics Institute in Blacksburg, Virginia. It was a rough transition from 
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good! I have gained a lot of scientific knowledge; I have become much less naïve than I 
was 6 years ago. However, now that I know more, I realize much better how naïve I truly 
am. Here I would like to express my thanks to everybody that really made these past six 
years such an enjoyable time. 
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and pleasure to do my research under supervision of such a person of the third kind: Pedro 
Mendes. Dear Pedro, thank you very much for your sublime mentoring and friendship 
during these years. I have learned so much from you! I also would like to express thanks to 
Angela Mendes. Dear Angela, thank you very much for your friendship, care and concern 
during these years. Muitíssimo obrigado! Grote dank aan Hans Westerhoff and Jacky 
Snoep. Jullie twee hebben het mogelijk gemaakt voor mij om te kunnen promoveren via 
het ingenieuze plan om mij als jullie student uit te lenen aan Pedro! We hebben elkaar 
weinig gezien de afgelopen 6 jaar, maar toch heb ik over het algemeen veel 
wetenschappelijke input van jullie gekregen. Ook Jeannet Wijker ben ik heel dankbaar. 
Dank je wel, Jeannet, zonder jou had dit ook niet mogelijk geweest. Zonder jou had 
namelijk niemand ooit geweten dat ik daadwerkelijk een student aan de VU ben. Thanks to 
Pedro’s group members, the BNMers (Biochemical Network Modelers). Foremost, I would 
like to thank Stefan Hoops who helped me a lot with programming issues in C++. Stefan, 
whether I came to you with a worthy question or a really simple stupid little issue, you 
always took the time and patience to explain things to me. Also, I want to thank Aejaaz 
Kamal in that respect. Aejaaz, you were the first one I would bother if my code was doing 
something funny or didn’t run at all, mostly for some really trivial reason (poor Aejaaz, his 
cubicle was right next to mine). Thanks to the members of the Portuguese conquista at VBI, 
Diogo Camacho and Ana Martins. Diogo, though our collaboration didn’t go always so 
smoothly, in general I enjoyed it very much and eventually it resulted in a very nice paper 
on correlations in metabolomics data. Not to mention all the conference posters on this 
work! You should contact Guinness book of records! Ana, I want to thank you for….well, 
just for being Ana!! I thank Paul Braznik for drawing several really excellent figures of 
gene networks for our papers. There are so many people at VBI I want to thank! Thanks to 
Dustin Machi, for being such a joyful ‘smoke partner’ these years! Too bad I am too stingy 
to pay for a full color cover otherwise I would have used one of your great 3-D drawings. 
I’ll use one for my next book! I thank Ina Hoeschele for giving my first pre-graduation 
post-doc job. I very much enjoyed learning about statistical genetics the past two years! 
Also to Ina’s student and my close colleague, Bing Liu, always so friendly accompanying 
me on my smoke-breaks and answering my many questions about statistics: thanks! I really 
enjoy working with the both of you! I also thank Ina’s former students Nan Bing and 
David Henderson. David was my first collaborator ever and we did some nice work on 
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factor analysis of gene expression data. The collaboration with Nan resulted in a really nice 
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alleen Frank Bruggeman en Rogier Stuger. Frank, onze discussies over allerlei zaken 
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gebaseerd op zulk inzicht. Ik hoop dat we in de toekomst nog veel discussies hebben en ook 
onze  samenwerking voortzetten (ook al moeten we toch wel eens gaan denken om iets 
sneller onze artikelen af te krijgen!) Rogier, dankzij jou ben ik niet het zwarte schaap van 
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movie trilogy. Thanks to Valerie Robinson and Edwin Robinson. Val and Ed, thanks for 
your friendship during these years! I’ll think about you whenever I’ll hear the sound of the 
‘gaita’, whenever I am clipping the nails of a sheep, and whenever I’ll have a rich 
Thanksgiving meal! I thank my good friend Dhaval Mackhecha. Dhaval, I very much 
enjoyed the work we did together. I know that it must have been challenging for an 
aerospace-engineer to do some biology! It is really nice to see how the work we started as 
our little ‘Sunday mornings at the coffee shop hobby project’ now just got published! Also 
thanks to Ralf Steuer, for very useful conversations about a lot of interesting scientific 
topics, almost on a daily basis (thanks to e-messengers!). We have very nice ideas, the most 
brilliant plans I’d say…too bad we are both too busy (or should I say too lazy?) to work 
them out! 
 
¡Gracias, mis suegros, Donmi y Lety, para darme la mano de tu preciosa hija! Ik dank mijn 
broers, Andrés en Sergio. Ik heb jullie moeten missen al deze jaren. Slechts twee weken 
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11,5 maanden tussen had gezeten! Ok, we chatten dan ook bijna dagelijks. Andrés, ik heb 
wel al die Albariños moeten missen, maar we maken het deze zomer goed! Sergio, we 
moeten het nog effe hebben over Fuentomics!! Weinig woorden, maar uit het diepste van 
mijn hart: papa en mama, aan jullie heb ik alles te danken. Jullie liefde en aanmoediging is 
de grootste reden voor hetgeen dat ik nu bereikt heb. Ik hoop dat mijn volgende baan iets 
dichterbij is zodat we vaker samen kunnen zijn. Gaby, mi amor, gracias por todo. Los 
últimos 4 años fueron los más felices de mi vida. Gracias por tu paciencia conmigo, por 
darme tanto amor y por darme el regalo más bonito y hermoso del mundo...Albertito!! 
Alberto Xesús, mijn kleine schatje, jij bent het allermooiste wat mij ooit is overkomen in 
mijn leven. Jouw geboorte heeft mijn proefschrift enkele jaren vertraagd, want spelen en 
knuffelen met jou is natuurlijk een veel leukere bezigheid dan een proefschrift schrijven. 
Van jou heb ik iets geleerd wat niet geleerd kan worden uit boeken, experimenten, 
modellen, algorithmen of theorieën: ‘de zin van het leven’. ☺  
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