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Multipulse Excitability in a Semiconductor Laser with Optical Injection
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An optically injected semiconductor laser can produce excitable multipulses. Homoclinic bifurcation
curves confine experimentally accessible regions in parameter space where the laser emits a certain
number of pulses after being triggered from its steady state by a single perturbation. This phenomenon
is organized by a generic codimension-two homoclinic bifurcation and should also be observable in other
systems.
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A system is called excitable when it produces a large
nonlinear response to a small but sufficiently large pertur-
bation from its stable equilibrium. When perturbed above a
certain threshold, an excitable system makes a large excur-
sion in phase space leading to a large amplitude pulse. It
then settles back to the stable equilibrium in what is called
the refractory period. Here we use the example of an opti-
cally driven semiconductor laser to show that an excitable
response to a single stimulus may have a form of not just a
single pulse but of a certain fixed number of pulses. How
many pulses are produced depends on the laser’s operating
conditions.

The notion of excitability was first introduced in biol-
ogy to describe the spiking behavior of nerve cells [1] and
later found in reaction-diffusion systems [2]. More re-
cently different types of excitability were found in optical
systems, ranging from nonlinear cavities with temperature-
dependent absorption [3] to lasers with saturable absorber
[4], optical feedback [5], and optical injection [6]. In lasers
essentially two types of excitability are found [4]: the clas-
sic case of excitability on an invariant circle, and excitabil-
ity in the vicinity of a homoclinic bifurcation, found first in
lasers with saturable absorber [4] and then in multisection
distributed feedback lasers [7]. All these examples of ex-
citability were associated with a single-pulse response to
a single perturbation. A double-pulse excitable response
observed in a laser with optical feedback was explained as
the result of noise on a two-dimensional model [5].

Our main result is that a multipulse response to a single
perturbation is a natural and deterministic phenomenon.
It is an example of excitability near a homoclinic bifur-
cation, but in this case near an n-homoclinic bifurcation,
where the homoclinic orbit (to a saddle focus) closes up
not after the first but after the nth global loop; see Figs. 2
and 4 below. The key element is a generic bifurcation
structure of tongues formed by n-homoclinic bifurcation
curves in parameter space. These tongues are organized
by special points called Belyakov bifurcation points [8,9],
and inside each such tongue a different number of pulses
will be triggered. We show multipulse excitability here
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for the example of an optically injected semiconductor
laser, but, in fact, this phenomenon may occur in any at
least three-dimensional system with Belyakov bifurcation
points. Other examples of systems with Belyakov points
are an atmospheric circulation model [10], a tritrophic food
chain model [11], and a reduced model of a multisection
semiconductor laser [12].

We work with an optically injected single-mode semi-
conductor laser because it is a technologically important
example of a forced nonlinear oscillator [13] for which as-
tonishingly accurate experimental verification of various
types of dynamics was demonstrated, both at local and
global scale [14]. A single-mode class-B laser with opti-
cal injection is described well by the rate equations

�E � K 1 �1
2 �1 1 ia�n 2 iv�E ,

�n � 22Gn 2 �1 1 2Bn� �jEj2 2 1� ,
(1)

which are a three-dimensional dynamical system for the
complex electric field amplitude E � Ex 1 iEy and the
population inversion n; see Ref. [13] for more details.
The two experimental control parameters are the injected
field rate K and its detuning v (measured in units of the
characteristic relaxation oscillation frequency vr ) from the
free-running laser frequency. We focus here on the case of
a semiconductor laser, so that the self-modulation parame-
ter a is larger than one, and we fix the laser parameters to
the realistic values a � 2, B � 0.015, and G � 0.035.

When K and v are changed, the solutions of Eqs. (1)
generally change as well. Qualitative changes of the sys-
tem’s dynamics, the so-called bifurcations, can be detected
and continued in the two-dimensional �K, v�-plane, for ex-
ample, with the package AUTO [15]. The resulting bifur-
cation curves form a bifurcation diagram by dividing the
�K, v�-plane into regions with different dynamical behav-
ior of the laser; see Ref. [13] for details of the bifurcation
diagram of Eqs. (1).

Here we focus on the locking region inside which the
laser operates at constant power and the injected light fre-
quency. Locking is represented by a stable equilibrium in
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the three-dimensional phase space �Ex , Ey , n�. The lock-
ing region in the �K, v�-plane plotted in Fig. 1 is confined
between the Hopf bifurcation curve H and the saddle-
node bifurcation curve SN . When the locking region is
approached from above, the laser typically shows intensity
oscillations at the relaxation oscillation frequency �vR .
At H the corresponding stable periodic orbit disappears in
a Hopf bifurcation, leading to a stable equilibrium, which
is the locked state. When the locking region is approached
from below, the laser produces oscillations at a frequency
close to the detuning v. Close to SN the flow on the cor-
responding periodic orbit slows down near the point where
the saddle node will appear and then makes a quick ex-
cursion along the other part of the periodic orbit. At SN
two points, an attractor and a saddle focus, appear and the
laser locks.

It was generally believed that in Eqs. (1) the saddle-node
bifurcation always takes place on a periodic orbit. (This
is also known as Adler’s locking mechanism.) Here we
show that this does not happen along the whole of the curve
SN . As is also shown in Fig. 1 there are special points
A1 and A2 where a homoclinic bifurcation curve labeled
h1 touches SN (codimension-two saddle-node homoclinic
points), forming what we call a homoclinic tooth. As a
consequence, between A1 and A2 the saddle-node bifurca-
tion does not take place on the periodic orbit. The same
is true between A3 and A4 and at many more homoclinic
teeth (not shown Fig. 1) that become smaller and smaller
for larger K. In Eqs. (1) the size of the teeth depends cru-
cially on the parameter a: they appear only for values of
a . 1 and grow in size as a increases.

FIG. 1. The locking range of Eqs. (1) in the �K, v�-plane with
two homoclinic teeth. In this and all figures of the �K , v�-plane,
v is in units of vR while K is dimensionless. The gray curves
correspond to subcritical bifurcations, along which no attractors
bifurcate.
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Near h1 but outside a homoclinic tooth, the dynamics is
as sketched in Fig. 2(a). On h1 the one-dimensional un-
stable manifold Wu of the saddle-focus equilibrium s co-
alesces with the two-dimensional stable manifold Ws of s,
forming a one-homoclinic orbit; see Fig. 2(b). What the
dynamics looks like inside the homoclinic tooth depends
crucially on whether the stable or the unstable direction of
the saddle focus is stronger [16]. The dashed curve ns in
Fig. 1 marks where the saddle focus is as attracting as re-
pelling (neutral saddle). Along the parts of h1 below ns the
attracting direction of the saddle focus is stronger and the
homoclinic orbit bifurcates into an attracting periodic orbit
as in Fig. 2(c1). This is often called a simple Shil’nikov bi-
furcation. The two-dimensional stable manifold Ws forms
the boundary between the basin of the locked state a and
that of the attracting periodic orbit. On the other hand,
when h1 is crossed above ns, then the unstable manifold
makes two loops above s and converges to the stable equi-
librium a as in Fig. 2(c2). This is often called a chaotic
Shil’nikov bifurcation, because it implies the existence of
an infinite number of saddle periodic orbits of different pe-
riods close to h1. Furthermore, there are homoclinic bifur-
cation curves hn for any n � 1, 2, 3, . . . of n-homoclinic
orbits to the saddle focus s. They lie inside and near h1,
creating a cascade of bifurcations that is not entirely un-
derstood yet [9]. The codimension-two Belyakov points
B1 and B2 are special as they form the boundary on h1

between these types of Shil’nikov bifurcations.
We now reveal the homoclinic bifurcation structure

associated with B1 and B2 in Eqs. (1) and show how this
introduces regions in the �K, v�-plane with multipulse
excitability. In Fig. 3(a) is plotted an enlargement of
the biggest homoclinic tooth with some of the additional
curves hn (computed with the HOMCONT part of AUTO

[15]). There are two types of such curves: those that ac-
cumulate in the form of tongues at B1 above ns, and those
that cross the neutral-saddle line ns [8]. We find that many
hn tongues cross ns and extend to the region of simple
Shil’nikov bifurcation. Every intersection point of such a
homoclinic bifurcation curve with ns is a new Belyakov
point. Tongues that approach SN grow larger and are, in
fact, experimentally accessible. (The experimental reso-
lution is �100 MHz, while the detuning v is in units of
vR � 30 rad�s [14].) Some of the curves hn even con-
nect to the curve SN and create new segments where the

FIG. 2. Sketches of the phase portraits before (a), at (b), and
just after (c1),(c2) the Shil’nikov bifurcation along h1 for the
simple case (c1) and the chaotic case (c2).
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FIG. 3. Successive enlargements near the bigger homoclinic
tooth in Fig. 1 showing tongues of multipulse excitability.

saddle-node bifurcation takes place on a limit cycle with
n loops. Figure 3(b) shows a further enlargement near
SN with more n-homoclinic bifurcation curves. For pa-
rameters between tongues and below ns the laser is either
locked to the input signal or shows self-pulsations.

For values of K and v inside each tongue bounded by
hn and below ns we find multipulse excitability. Figure 4
shows this for �K, v� inside the tongues bounded by the
curves h1, h2, h3, and h4 from Fig. 3(b). Plotted are the
unstable manifolds Wu of the saddle (left column) and
the intensity response to a single small perturbation (right
column), calculated with DSTOOL [17]. The mechanism of
multipulse excitability is the following. The upper branch
of the unstable manifold Wu of the saddle makes n loops
above the stable manifold Ws and then dives under Ws to
end up at the stable equilibrium; see Fig. 4 (left column).
A single very small perturbation of the stable locked state
063901-3
FIG. 4. Multipulse excitability in �E, n�-space (left column)
and as intensity response to a single perturbation (right column)
for �K , v� from inside h1 (a), h2 (b), h3 (c), and h4 (d). From
(a) to (d) �K , v� takes the values �0.45, 20.93�, �0.472, 20.98�,
�0.48, 20.97�, and �0.455, 20.957 25�.

results in the immediate return to the locked state. How-
ever, if the perturbation is strong enough to kick the system
to the other side of Ws , then it follows the upper branch of
Ws and, hence, produces an n-pulse response; see Fig. 4
(right column). The threshold for excitability is given by
Ws. Since, near the saddle, this is roughly given by the dis-
tance between the saddle and the attractor, this threshold
becomes smaller closer to the curve SN . We finally point
out that for certain parameter values near h1 above ns the
excitable response can be chaotic and unpredictable, be-
cause the trajectory may wander between a huge number
of coexisting unstable orbits before it settles back to the
stable equilibrium.

In conclusion, we presented a deterministic mechanism
for multipulse excitability that appears to be experimen-
tally accessible in a real laser. We identified and described
codimension-two homoclinic Belyakov bifurcations and an
ensuing cascade of n-homoclinic bifurcation tongues as
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responsible for this phenomenon. Therefore, one should
also find this type of multipulse excitability in other sys-
tems from applications in parameter regions with Belyakov
points. In a real system there is always some noise so that
some pulses may be triggered while the system follows
the unstable manifold before the locked state is reached
again [5]. As a result, a single perturbation inside an hn

tongue may occasionally result in more than n pulses as
a response. Furthermore, close to SN (spontaneous emis-
sion) noise itself may be enough to trigger pulses. Finally,
we mention that the phenomenon of coherence resonance
must be expected: a minimum of the jitter of a noise-
triggered pulse train for a particular noise level [4]. How
this general phenomenon manifests itself in the presence
of multipulse excitability remains an interesting question
for future research.
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