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Effects of noise on the phase dynamics of nonlinear oscillators
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Various properties of human rhythmic movements have been successfully modeled using nonlinear oscilla-
tors. However, despite some extensions towards stochastical differential equations, these models do not com-
prise different statistical features that can be explained by nondynamical statistics. For instance, one observes
certain lag one serial correlation functions for consecutive periods during periodic motion. This work aims at
an extension of dynamical descriptions in terms of stochastically forced nonlinear oscillators such as
j̈1v0

2j5n(j,j̇)1q(j,j̇)C(t), where the nonlinear functionn(j,j̇) generates a limit cycle andC(t) denotes
colored noise that is multiplied viaq(j,j̇). Nonlinear self-excited systems have been frequently investigated,
particularly emphasizing stability properties and amplitude evolution. Thus, one can focus on the effects of
noise on the frequency or phase dynamics that can be analyzed by use of time-dependent Fokker-Planck
equations. It can be shown that noise multiplied via polynoms of arbitrary finite order cannot generate the
desired period correlation but predominantly results in phase diffusion. The system is extended in terms of
forced oscillators in order to find a minimal model producing the required error correction.
@S1063-651X~98!09907-3#

PACS number~s!: 05.40.1j, 87.10.1e
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I. INTRODUCTION

Nonlinear oscillators have been frequently discussed
various fields, and their mathematical investigation ha
rather long tradition. Depending on the explicit context o
concentrates primarily on specific types of oscillators such
Van der Pol, Duffing, or Helmholtz oscillators. In the prese
paper we consider the case of randomly forced systems
especially in case of self-excited systems, have been suc
sively investigated since the early 1940s@1–3#. Most related
works preferentially stress stability properties of the amp
tude, or rather their changes under the impact of noise~for
recent studies see, e.g.,@4–9#!. Thus, we concentrate on th
effects of noise on frequency or phase dynamics that
analyze by using Fokker-Planck equations and Krylo
Bogoliubov approximations. In physics there exist seve
instances of nonlinear oscillators subjected to random e
tation. Typically, such systems belong to the realm of m
roscopic phenomena, since nonlinearities and statistics
involved. For example, in nonlinear optics we find extens
discussions about the influence of noise on optical multi
bility ~e.g.,@10–12#!. One may also think of the large field t
which the generalized~complex! Ginzburg-Landau equation
applies~e.g.,@13#!.

Here, however, we focus on a fairly different syste
namely, human movement. Several properties of rhythm
coordination patterns have been prosperously modele
terms of nonlinear oscillators and many studies concentr
on stability of movement and its externally induced chan
by means of phase transitions@14–17#. In the present pape
we use related models as starting point for our investiga
but emphasize that the entire discussion is by no means
stricted to this somewhat specialized application of stoch
tically forced oscillators. Strictly speaking, different statis
cal features observed in rhythmic movements motivated
following work since, despite some extensions towards s
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chastical differential equations@18#, they are not yet acom
modated by dynamical models. For instance, one finds
tain correlation functions for consecutive periods duri
rhythmic motion whenever a subject tries to voluntarily co
tinue a periodic movement that was previously paced b
metronome@19#. Even without the external stimulus, the fre
quency of motion remains rather constant, and any errors
corrected immediately within the first subsequent period.
deed, such a negative lag one correlation can be explaine
nondynamical statistics@20#, and the question arises, Wh
kind of ~lag one! correlation function can be modeled usin
dynamical systems? Hence, we aim at an extension of a
namical description of human movement by means of ad
tional random impacts. We therefore study systems with

form j̈1v0
2j5n(j,j̇)1q(j,j̇)C(t). The nonlinearity n

generates a stable limit cycle attractor andC(t) denotes col-

ored noise that is multiplied via a finite polynomq(j,j̇). As
shown below one can estimate that continuous noise a
cannot produce the sought correlation functions at a des
order of magnitude. Besides additive noise, which has b
extensively discussed in the literature~see, for instance,@21#
and references therein! these estimates include the case
noise that is multiplied by polynoms of any arbitrary fini
order. In order to find those kind of correlations we fina
extend the system in terms of forced oscillators.

Before we go into the problem of stochastically forc
nonlinear oscillators, however, we roughly summarize a s
plified statistical model that can explain the generation o
negative lag one correlation between consecutive perio
One commonly looks at a series of periods$Ti%, i 51 . . .N,
where mean period and covariances are given
T̄:5(1/N)( i 51

N Ti and sT
2(k):5TiTi 2k2T̄2. In the context

of timing and error correction the so-called lag one se
correlation functionmT(1) is of predominant interest. It is
defined as mT(1):5sT

2(1)/sT
2(0), which for largeN can be
327 © 1998 The American Physical Society
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328 PRE 58A. DAFFERTSHOFER
written as mT(1)'(( iTiTi 212@( iTi #
2)/(( iTi

22@( iTi #
2).

Following Wing and Kristofferson@20#, a negative correla-
tion can be directly modeled if the evolution is viewed as
result of a periodic processCi and a transfer delayDi . Each
period Ti can then be written asTi :5Ci1Di2Di 21. The
quantitiesCi and Di are considered to bestatistically inde-
pendent. Further, they are Gaussian processes and, excep
the mean and variance, all cumulants of higher order van
These simple assumptions already lead to the wanted p
erties because one instantly obtains for the covariance m
cessT

2(0)52sD
2 (0)1sC

2 (0) andsT
2(1)52sD

2 (0), respec-
tively. Thus, the lag one serial correlation function b
comes negative,mT(1)52sD

2 (0)/$2sD
2 (0)1sC

2 (0)% and
bounded by means of 0>mT(1)>20.5.

Certainly, this statistical approach is a strong one in t
its requirements are minimal and in that the introduction
an ‘‘internal clock’’ Ci and a ‘‘motor delay’’Di is consistent
with ~neuro!physiological aspects of the system, at least
some extent. On the other hand, it disregards dynamical
corresponding stability properties of periodic human mo
ment. These characteristics, however, have been succes
described in terms of nonlinear oscillators~cf. @22# and ref-
erences therein!. In the following sections we therefor
present approximations of period correlation functions
case the underlying dynamics is described by various ty
of nonlinear oscillators.
r-
e

for
h.
p-
ri-

-

t
f

o
nd
-

ully

es

II. PERIOD ESTIMATES
FOR NONLINEAR OSCILLATORS

Fundamental systems for the description of rhythm
movement are stable limit cycle oscillators. Besides th
harmonic parts these oscillators typically contain weak n
linearities in the form of lower order polynoms. Here, w
consider the basic equation

d

dt S x
yD5S 0 1

2v0
2 0D S x

yD1S 0
1Dn~x,y!, ~1!

which is reformulated by using the Van der Pol transform
tion; that is, we use the polar coordinatesx5r cosu, y5
2v0r sinu, and rescale time by t5v0t. With
ñ(r ,u):5n(r cosu,2v0r sinu) we rewrite~1! as

d

dt S r
u D5S 0

1D2
ñ~r ,u!

rv0
2 S r sin u

cosu D . ~2!

As mentioned previously we choose the nonlinearityn or ñ,
respectively, in such a way that the resulting evolution d
scribes a limit cycle. The corresponding periodT of such a
dynamical system~1! can be defined as
~3!
e.,

lla-

h
r
-

whereu̇ denotes the derivative with respect tot. According
to Eq. ~3! the harmonic period 2p/v0 is corrected by terms
DT

(p) that depend onn(x,y). If we assume that the nonlinea
ity n is polynomial, that is,n(x,y)}xmyn, each integral in
Eq. ~3! becomes

DT
~p!5E

0

2pF2
~21!ncosm11u sinnu

r 12m2nv0
22n G p

du. ~4!

In particular, the first order correction for Eq.~3! can be
expressed as

DT
~1!5E

0

2p~21!n11cosm11usinnu

r 12m2nv0
22n

du
}H r m1n21v0
n22 for m odd, n even

0 otherwise.
~5!

It is worthwhile to remark that in Eq.~5! the latter propor-
tionality is only correct for an entirely decoupled system, i.
for dr/du[0. Without a principle loss of generality we now
concentrate on Rayleigh, Van der Pol, and Duffing osci
tors. In detail we write the nonlinearity as

n~x,y![v0S a2
b

3v0
2

y22gx2D y2
v0

2h

3
x3, ~6!

and refer tob••• as Rayleigh,g••• as Van der Pol, andh
••• as Duffing component. It is well known that a Rayleig
oscillator such asẍ1x2 ẋ1b̄ ẋ3 also describes a Van de
Pol oscillatorÿ1y2 ẏ13b̄y2ẏ for the corresponding veloc
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ity y5 ẋ. Thus, for the period estimate~3!, symmetry prop-
erties reveal that both Rayleigh and Van der Pol terms do
change the period length in the first order approximation~5!,
whereas the Duffing term (}x3) relates frequency and am
plitude scaling atr 2.

Of course, these rough period estimates are only relia
in the case of stable oscillations. Since we want to disc
the systems’ response to external perturbations, one ha
investigate the transient regime or, in other words, rel
ations onto the limit cycle. For the sake of simplicity, how
ever, we restrict ourselves to the immediate vicinity of t
stable limit cycle. There, perturbations are assumed to
reasonably small and, as a first estimate, one might ave
system~1! over a periodT ~see, e.g.,@23,24#!. Hence, Eq.~2!
becomes

d

dt S r
u D'S n̄0~r !

c̄0~r !
D , ~7!

where we introduce the abbreviationsk:5b1g and

n̄0~r !52
dV̄0

dr
,

V̄0~r !:52
1

4H a2
k

8
r 2J r 2,

and

c̄0~r !:511
h

8
r 2. ~8!

Amplitude and frequency dynamics decouple and con
quently system~7! can be integrated explicitly. Note that th
simplified Eq.~7! is a rather rough approximation unless t
nonlinearitiers are chosen properly; that is, the amplitud
considered to be nearly constant over a ‘‘cycle’’~slowly
varying amplitude approximation!; for the nonlinearities in
Eq. ~6! we therefore assume thatuau'ub/3u'ugu and
uh/3u<uau holds ~cf. @23,25#!. Especially, in the case ofa
5b/3v0

25g[1 and h[0 one obtains the exact solutio
x5sinv0t. Coming back to the discussion of Eqs.~7! and
~8!, respectively, we get withr 0

2 :54a/k

r 2~t!5
4a

k2 e2a~t2c1!
⇒ du

dt
511

hr 0
2

8 F12
e2a~t2c1!

k G21

,

~9!

with an integration constantc1 given by exp$ac1%:5k@1
2r 0

2/r (t50)2]. As shown in Fig. 1, the frequencyu̇ simply
relaxes exponentially to a steady value}(11hr 0

2/8). The
relaxation is given by the gradient dynamics ofr (t) or r (t),
respectively. Therefore, one can only expect a positive c
relation between consecutive periods. These estimates,
ever, only hold within a rather close vicinity of the lim
cycle and, for larger perturbations, the transient regime
to be investigated numerically.

As shown in Fig. 2~c! the Rayleigh component stabilize
the oscillator at a certain velocity and in this way perturb
tions of the period length are eliminated rather quickly. Co
ot
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versely, the Van der Pol term mainly affects the stabilizat
of the amplitude and it allows for slight oscillations aroun
the basic frequency during the relaxation onto the limit cy
@see Fig. 3~c!#. This effect can even be amplified by adding
Duffing component, as shown in Fig. 4. In the case o
reasonably large Duffing coefficienth rather negative lag
one correlations can be observed. The amplitude depend
}r 2, however, might result in a loss of stability so that t
Duffing term should be handled with care@25#.

III. STOCHASTICALLY FORCED OSCILLATORS

In real systems, perturbations occur continuously in
unpredictable fashion. We account for this by extending
nonlinear oscillator by means of external noise. Of cour
we do not want to include anya priori knowledge concern-
ing the sought~time-! correlation functions and, thus, w
treat random dynamics in terms of Markov processes. In
der to keep the deterministic properties of the oscilla
(x,y, . . . )T5x, we write the system in form of a Langevi
equation j̇x5N(jx ,t) wherejx denotes a random variabl
substitutingx. The nonlinear functionN contains determin-
istic components resulting in stable oscillations as well
noise. The system is fully described by its time-depend
probability density f (x,t), commonly defined asf (x,t)
:5^d@x2jx(t)#&. We computef (x,t) by integrating the cor-
responding Fokker-Planck equation ḟ (x,t)5LFPf (x,t),
whereLFP denotes the Fokker-Planck operator@21#. In fact,
in this context we do not require a detailed intergration of
Fokker-Planck equation but rather look forstochastically
equivalentsystems; that is,~simpler! Langevin equations tha
obey an identical Fokker-Planck operator as the original
namics.

A. Additive white noise

Aiming at stochastic extensions we start with the m
simple case, namely, the addition of noise to our init
model ~1!. The additive white noise already allows for
basic understanding of various impacts of noise on perio
dynamics and, as we will see below, most phenomena
more complicated systems can be mapped onto this situa

FIG. 1. Frequency relaxation. The solutiondu/dt given by Eq.
~9! is plotted for different initial valuesr (t50); a5b/35g
5h/35v051.
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FIG. 2. Rayleigh oscillator. Equation~6! with a5b/351 andg5h50 is integrated for several initial conditionsx(t50)P]0,2] and

ẋ(t50)50. ~a! shows the phase portraitx(t) vs y(t), ~b! are the time seriesx(t) andy(t) each vst, and~c! shows the deviation of the mea

period lengthDTi :5Ti2T̄ vs the period number. The period length is implicitly defined as difference between consecutive roots,xt

50`xt1T50 whereẋt and ẋt1T must have the same sign. For sake of clarity, only the system’s response on period increases is
Note, that all quantities~including t andT) are considered to be dimensionless.
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This special type of randomly excited oscillator has be
discussed in the literature~cf., e.g.,@21# and included refer-
ences! but we recall it here because of its paradigmatic f
tures. Explicitly, the nonlinear oscillator now reads

d

dt S jx

jy
D5S 0 1

2v0
2 0D S jx

jy
D1S 0

1Dn~jx ,jy!

1v0
2A2QS 0

1DG~ t !, ~10!

where G(t) is assumed to bed-correlated Gaussian nois
with vanishing mean@^G(t)&50 and ^G(t8)G(t)&5d(t8
2t)#. We achieve the corresponding Fokker-Planck opera
as

LFP52y
]

]x
2

]

]yH n~x,y!2v0
2x2v0

4Q
]

]yJ . ~11!

The Van der Pol transformation is applied in order to dist
guish between amplitude and frequency dynamics and
~10! becomes a set of Stratonovich-Langevin equations
n

-

or

-
q.

d

dt S j r

ju
D5S 0

1D2
1

j r
H ñ~j r ,ju!

v0
2

1
A2Q

j r
G~t/v0!J S j rsin ju

cosju
D .

~12!

Recall that we have ñ(r ,u):5n(r cosu,2v0r sinu). Ac-
cordingly, the Fokker-Planck operator yields

L̃FP5
1

v0
2

]

]r H ñ~r ,u!sin u2
v0

2Q

2r
~11cos 2u!J

1
1

rv0
2

]

]uH ñ~r ,u!cosu2rv0
22

v0
2Q

r
sin 2uJ

1
Q

2 H ~12cos 2u!
]2

]r 2
1~11cos 2u!

1

r 2

]2

]u2J .

~13!

Analogous to the preceding section we insert the nonline
ties ~6!. Using abbreviations~8! we further average over a
period which leads to
secutive
FIG. 3. Van der Pol oscillator. The system~6! with a5g51 andb5h50 is integrated for several initial conditionsx(t50)P]0,2] and

ẋ(t50)50 ~cf. Fig. 2!. In contrast to the Rayleigh system, the Van der Pol oscillator shows a negative correlation between con
periods, since the relative periodDT can become negative.
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FIG. 4. Van der Pol-Duffing oscillator. Equation~6! with a5g51, b50 andh/354 is integrated for several initial conditionsx(t

50)P]0,2] and ẋ(t50)50. Negative correlations are clearly shown in plot~c!.
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L̃FP'L̄FP52
]

]r H n̄0~r !1
Q

2r J 2c̄0~r !
]

]u

1 2H ]2

]r 2
1

1

r 2

]2

]u2J . ~14!

The averaging results in a decoupling of amplitude and
quency dynamics. Recall the previous discussion of the
rameter values that guarantee the validity of the averag
and we further assume thatQ is reasonably small. Thus fo
Eq. ~12! we find a stochastically equivalent system with t
form

d

dt S j r

ju
D 5S n̄~j r !

c̄~j r !
D 1

AQ

j r
S j rG r

Gu
D . ~15!

In Eq. ~15! we use Eq.~8! and we additionally abbreviate

n̄~j r !52
dV̄

dj r
,

V̄~j r !:5V̄0~j r !2
Q

2
ln j r ,

and

c̄~j r !:5c̄0~j r !1
Q

2j r
2

. ~16!

When we compare this form with the noiseless case we
alize a diverging term} lnj r which is added to the potentia
V̄0, resulting in a negligible probability to find the system
the origin ~see Figs. 5 and 6, cf.@2,11,26,27#, and see, for
instance,@28,21,29# for details in the numerics of stochast
differential equations!.

The termsG r and Gu in Eq. ~15! are two independen
~Gaussian! noise sources. With regard to the introduction
this paper one might be tempted to relate these two n
sources in some way to the two statistically independent
uesCi andDi in the Wing-Kristofferson model. Aside from
a possible relation, however, the latter model posits that
resulting period is a sum of two random components. S
-
a-
g

e-

t

f
se
l-

e
h

an additive form is not that obvious in case of our dynami
system, and we thus have to discuss Eq.~15! and its resulting
period and frequency in more detail.

Let us first consider the case of a fixed amplitudej r'r 0

and let us define a phasef via ju5c̄(r 0)t1jf(t). Note
that d/dt[v0 d/dt holds so that we obtain

j̇f5
v0AQ

r 0
Gu~ t !

⇒ f̂ ~f,t!}E
2`

`

f̂ ~f8,0!expH 2
r 0

2~f2f8!2

2v0
2Qt

J df8.

~17!

Hence, a certain choice of initial conditions such asf̂ (f,t
50)5d(f2f0) yields directly

f̂ ~f,t !5
r 0

A2pv0
2Qt

expH 2
r 0

2~f2f0!2

2v0
2Qt

J
⇒^f&50 ` ^f2&5

v0
2Qt

r 0
2

. ~18!

Consequently, the variance of the phase increases linear
time, that is^f2&}t, which expresses a ‘‘simple’’diffusion
process off. Like the case of steady amplitudes, one c

FIG. 5. Mean potentialV̄(r ) of the amplitude for different fluc-
tuation strengthsQ5$0,0.01,0.05,0.1,0.5%; the remaining param-
eters area5b/35g5v051.
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further estimate the impact of the amplitude dynamics
frequency and phase. With respect to the potential give
Eq. ~16! for weak noise, we can approximate

dju

dt
5c̄~r 01jdr !1

AQ

~r 01jdr !
Gu

'c̄~r 0!1
AQ

r 0
Gu1H h

4
r 02

Q

r 0
3

2
AQ

r 0
2

GuJ jdr . ~19!

If the nonlinearities describingn̄(j r) are also small the de
viation jdr of the stationary amplituder 0 can be computed
from the linearized form of Eq.~15! given by

djdr

dt
52l jdr1AQG r

with

l5a1
Qk

a1Aa21Qk
. ~20!

Neglecting transient parts, the formal solution of Eq.~20!
reads

jdr~t!5AQE
2`

t

e2l~t2t8!G r~t8! dt85:AQG̃ r~t!

~21!

that, inserted into Eq.~19!, leads to

FIG. 6. Stationary probability distributionf (r ), r 2:5jx
21jy

2 ,
for the original Langevin equation~10!. The system is integrated
104 times over 104 periods. For every run the first 50 periods ha
been eliminated as transient regime, that is, the probability distr
tion is based on approximately 53108 iterations per time series
given a time step ofDt51023; a5b/35g5v051 and Q
5$0.01, . . .,0.05,0.1, . . .,0.5%. Obviously f (r ) reflects the potentia
V(r ) in Fig. 5 by means off (r )} exp$2V/Q%.
n
in

dju

dt
'c̄~r 0!1

AQ

r 0
Gu~t!1

hr 0
424Q

4r 0
3

AQG̃ r~t!

511
h

8
r 0

21
AQ

r 0
Gu~t!1

Q

2r 0
2

1
hr 0

424Q

4r 0
3

AQG̃ r~t! .

~22!

In Eq. ~22! all the terms of the form (G rGu) have been ne-
glected because they vanish when calculating mean val
The three leading expressions on the right-hand side of
~22! are of the same~first! order of magnitude, whereas th
last two terms are of second or higher order. Therefore,
random amplitudejdr does not really influence the frequenc
dynamics and we should preferably write

dju

dt
'c̄0~r 0!1

AQ

r 0
Gu~t!. ~23!

This frequency evolution results in a similar estimate as
the case of a constant amplituder 0 and we obtain phase
diffusion. Only when the Duffing coefficienth is sufficiently
large we may keep the form

dju

dt
'c̄0~r 0!1

AQ

r 0
Gu~t!1

hAQ

4
r 0G̃ r~t!. ~24!

Accordingly, we can compute the period as

T5T01
hr 0

224

4r 0v0
AQE

0

2p

Gudu2
hAQ

4v0
r 0E

0

2p

G̃ r du,

with

T0 :5
2p

v0
S 12

hr 0
2

8
1Fhr 0

2

8 G2D . ~25!

For nonergodic systems, the integrals over the noise rem
random quantities, and the period can be written as

T5T01jTu
1jTr

. ~26!

Indeed, this form is equivalent to the Wing-Kristofferso
model sincejTu

andjTr
are two independent noise source

It is worthwhile to remark that the existence of a ‘‘relevan
jTr

requires a fairly large Duffing component}h @see the
last integral in Eq.~25!#. The influence of a random ampli
tude on the period length, however, is, as a second o
correction, still very weak. The random forceGu is much
more important for the frequency dynamics and will pr
dominantly lead to a plainphase diffusion, at least in the case
of weak noise and weak nonlinearities. In that respect
system behaves like a harmonic oscillator and correlati
between consecutive periods can be neglected and
themselves become random values, as shown in Fig. 7.

B. Multiplicative white noise

Instead of adding noise one can consider multiplicat
random forces that might be viewed as locally depend
noise. For example, the strength of noise can become a f

u-
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tion of the absolute elongationuxu. To analyze this case w
introduce multiplicative white noise by means of

d

dt S jx

jy
D5S 0 1

2v0
2 0D S jx

jy
D1S 0

1Dn~jx ,jy!

1v0
2A2Q~jx ,jy!S 0

1DG~ t !. ~27!

For sake of simplicity, the functionQ(jx ,jy) shall be given
by Q(jx ,jy):5Q(jx)5(kQkjx

k ; that is, a polynom of arbi-
trary order. In the literature one typically finds linear fun
tions Q(x)}x or low-order polynoms likeQ(x)}x2 ~see,
e.g., @30# and references therein!. As mentioned above fo
Q}x2n the noise strength increases with increasing elon
tion. Generally, the corresponding Fokker-Planck opera
can be written as

LFP52y
]

]x
2

]

]yH n~x,y!2v0
2x2v0

4Q~x!
]

]yJ . ~28!

Analogous to the case of additive noise we discuss the a
aged oscillator~6! after the Van der Pol transformatio
whose Fokker-Planck operator yields

L̃FP'L̄FP52
]

]r
n̄0~r !2c̄0~r !

]

]u

1(
k

QkH 1

2pE0

2p

du8LFP
~k!J . ~29!

The multiplication ofG leads to correctionsL FP
(k) that are

defined by

FIG. 7. Simulation of randomly forced oscillators. We cho
v05a5b/35g51. On the left-hand side we tookh/350.2 and
on the right-hand sideh/355. The random force was given byQ
50.2. The upper row shows a typical sequence of the time se
x(t), whereas the lower row represents the correspondingsT

2(1).
Here the period lengthT is determined as in Figs. 2–4 after smoot
ing the simulated time series with a Savitzky-Golay filter.sT

2(1)
remains rather random and the corresponding lag one correla

almost vanishes: for the left simulation we getT̄55.932,mT(1)

50.176 and rightT̄53.839,mT(1)520.073; 105 periods have
been considered to compute the mean values.
a-
r

r-

LFP
~k! :5

~r cosu!k

2r 2 H 122k12k21~122k22k2!cos 2u

2@~122k!1~112k!cos 2u#r
]

]r

2~11k!sin 2u
]

]u
1~12cos 2u!r 2

]2

]2r

1~11cos 2u!
]2

]2u
J . ~30!

In order to average the last term in Eq.~30!, we integrate
over the angular variableu. Thus forkÞ0 we have to cal-
culate integrals such as

E
0

2p

du8cosku8,

E
0

2p

du8cosku8cos 2u8,

and

E
0

2p

du8cosku8sin 2u8. ~31!

Since cosk is even, the last integral will always vanish and
instantaneous effect on theu-‘‘dependent’’ part (}]/]u) of
the Fokker-Planck operator does not occur. The remain
terms read with cos 2u52 cos2u21

E
0

2p

du8cosku85H 0 for k odd

2p )
j 50

k/221
k22 j 21

k22 j
for k even .

~32!

For even powersk these integrals do not vanish but fork
.0 the products)••• are always smaller than unity; tha
is, they are of lower magnitude compared to the case
additive white noise (k[0). The dependency on the ampl
tude, however, changes essentially because for arbitrary
k one obtains

L̄FP
~k!5QkPkH 2

]

]r
r k211

1

k11

]2

]r 2
r k1r k22

]

]u2J .

~33!

Here Pk is defined asPk :5) j 50
k/2 (k22 j 11/k22 j 12).

We again find a stochastically equivalent system

dj r

dt
5n̂~j r !1F2( 8

k
Qk

Pk

k11
j r

kG 1/2

G r

`
dju

dt
5ĉ~j r !1

1

j r
F2( 8

k
QkPkj r

kG 1
2

Gu , ~34!

with the additional abbreviations

es
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n̂~j r !52
dV̂

dj r

, V̂~j r !:5V̄0~j r !2
1

2
( 8

k

Qk

k

k12

k11
Pkj r

k .

~35!

Note that(8 denotes a summation over even indices on
The deterministic part of the amplitude dynamics in Eq.~34!
remains a gradient dynamics with the potential~35! that is
quite similar to V̄ @cf. definition ~16!#. For the frequency
dynamicsdju /dt in ~34! we used

ĉ~j r !:5c̄0~j r !2
1

2j r
2
F( 8

k
Qk~k22!Pkj r

kG

3F( 8
k

Qk

Pk

k11
kj r

k

( 8
k

QkPkj r
k

G 1/2

. ~36!

Concentrating on the discussion of the frequency dynam
in Eq. ~34! we investigate the case of finite polynoms. E
plicitly, we take polynoms up to the fourth order and defi

ĉ4~j r !5c̄0~j r !1
1

j r
2F Q2j r

21Q4j r
4

8Q016Q2j r
215Q4j r

4G 1/2

3S Q02
5

8
Q4j r

4D . ~37!

For sake of simplicity, the term@•••#1/2 will be dropped
because it does not really influence the dependency onj r and
we approximate

ĉ4~j r !'c̄0~j r !1
Q0

2j r
2

2
5Q4

8
j r

25:11
ĥ

8
j r

21
Q0

2j r
2

.

~38!

A fourth order multiplicative noise obviously corrects th
Duffing coefficient h→ĥ. Since the quadratic term}Q2
does not affect the deterministic part of the frequency
namics, we neglect it in the stochastic part as well~there it
mainly acts as additive noise!. Accordingly, the dynamics o
the frequency can be approximated as

dju

dt
'ĉ4~j r !1

1

j r
FQ01

5

8
Q4j r

4G1/2

Gu . ~39!

Following the discussion of Eq.~19! we expand the ampli-
tudej r5(r 01jdr) and if we again focus on the vicinity of
stable limit cycle; that is, we assume the noise to be reas
ably weak, the amplitude can be estimated by
.

s

-

n-

j r~t!5 r̃ 01jdr' r̃ 01AQ0G5 r~t!. ~40!

G5 is similarily defined asG̃ in ~21! and since the explicit

calculation ofr̃ 0 andG5 exceeds the aims of the present pap
and their explicit form does not change the forthcoming
gument, we skip it here. The expression~40! can be inserted
into Eq.~39! and an expansion of the factor@•••#1/2 results
in a comparable form like Eqs.~22! or ~23!, respectively.
Besides the correction of the Duffing component that is d
to an additional drift coefficient, the multiplication of nois
can be directly reduced to additive noise. Apparently, pol
oms of higher than fourth order can be treated equivale
since they only lead to corrections of even higher order co
pared to the considered case. As the dominant process
always observe phase diffusion and correlations betw
consecutive periods that are more or less random.

C. Forcing via colored noise

So far we have shown that uncorrelated noise sour
mainly result in phase diffusion and thus cannot be used
generate a certain period correlation. We now introduce
ther correlations within the noise itself in terms of color
noise sources. An immediate approach can be given b
time-dependent stiffness,v0→v01«jÃ(t), where« is used
as a smallness parameter. The stiffness of the oscillator
have stochastical properties such as

v5v0@11«C~ t !# ` ^C~ t !&50,

^C~ t !C~ t8!&5Q e2ut2t8u/tc, ~41!

which is well-known to be equivalent to the Ornstei
Uhlenbeck process@21#

v5v0~11«jÃ! ` j̇Ã52
1

tc
jÃ1A2Q

tc
G~ t !. ~42!

In other words, colored noise can be expressed via an au
iary dynamics that is forced by white noise. The harmo
oscillator including the stiffness dynamics~42! is known as
the Kubo oscillator and is characterized by a vanishing a
plitude@31,21#. Here, however, we consider the case of fin
amplitudes generated by nonlinear oscillators with sta
limit cycles such as

ẍ1v0
2~11«jÃ!2x5n~x,ẋ! ~43!

that lead to a Fokker-Planck operator of the following for
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LFP52y
] f

]x
2

]

]y
$n~x,y!2v0

2~11«Ã!2x%

1
]

]ÃH Ã

tc
1

Q

tc

]

]ÃJ . ~44!

Following our standard procedure, we apply the Van der
transformation and average over a period where we auxil
definejÃ(t):5jÃ(t). Note that the averaging requires th
correlation length of the noise to be small, i.e.,tc!1/v0 ~cf.
@2#!. For n(x,y) given in Eq.~6! we achieve

L̄FP52
]

]r
n̄0~r !2H c̄0~r !1«Ã1

«2

2
Ã2J ]

]u

1
1

v0tc

]

]ÃH Ã1
Q

v0

]

]ÃJ , ~45!

and thus we find again a stochastically equivalent system

d

dtS j r

ju

jÃ

D 5 F n̄~r !, c̄~r !1«jÃ1
«2

2
jÃ, 2

jÃ

v0tc
GT

1
A2Q

v0Atc
S 0

0

G
D . ~46!

If we consider the casej r'r 0 and ju5c̄(r 0)t1jf , this
system can be reduced to

d
dt S jf

jÃ
D '

v0«!1S «
21/tc

DjÃ1A2Q
tc

S 0
1DG

⇒ j̈f1
1
tc

j̇f5v0«A2Q
tc

G. ~47!
ol
ry

In contrast to the white noise case the phase dynamics is
a second order differential equation due to the exponen
correlation inC. Hence, we can distinguish different corr
lation timestc . The extreme limits lead to

tc→0 ⇒ j̇f'v0«A2Qtc G~ t !,
~48!

tc→` ⇒ j̈f'v0«A2Q/tc G~ t !.

Both situations describe pure diffusion processes forjf ~see,
e.g., @32# for a more general discussion!. Summarizing we
recognize that a stochastic forcing of the stiffness only
sults in phase diffusion so that correlations between peri
are again negligible.

At last, we further extend the discussion to more gene
multiplicative colored noise sources. The basic equat
reads

d

dtS jx

jy

jz

D 5S 0 1 0

2v0
2 0 q~jx ,jy!

0 0 21/tc

D S jx

jy

jz

D 1S 0

1

0
D n~jx ,jy!

1A2Q

tc
S 0

0

1
D G~ t ! ~49!

with a Fokker-Planck operator given by

LFP52y
] f

]x
2

]

]y
$n~x,y!2v0

2x1zq~x,y!%

1
]

]zH z

tc
1

Q

tc

]

]zJ . ~50!

Transforming the operator by means of the Van der
transformation and defining jz :5jz(t) as well as q̃:
5q(rcosu,2v0r sinu) we obtain for the averaged syste
~6!
~51!
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Similar to the case of multiplicative white noise we discu
polynomial forms of multiplier q and take q(jx ,jy):
5v0

2(klqkljx
kjy

l . Then we achieve the corrections of E
~51! as

L̄FP
~q!5(

kl

~2v0! lqkl

2p
zr k1 l 21E

0

2p

du8F l cosku8sinl 21u8

2cosku8sinl 11u81r cosku8sinl 11u8
]

]r

1cosk11u8sinlu8
]

]u8
G . ~52!

The last term in Eq.~52! corrects the drift coefficient of the
frequency and is therefore the most important compon
Obviously, this term remains finite only in case of odd e
ponentsk and concurrently even exponentsl . For the sake of
simplicity we reduce ourselves to the case ofl 50 and write
q(jx ,jy)5q(jx). Actually, we discuss the special ca
q(jx):5v0

2(q1jx1q3jx
3), higher order polynoms will resul

in higher order corrections that can be neglected as sh
below. Inserting that form into Eq.~52! leads to

L̄FP
~q!5

z

2H 3q3

4
r 21q1J ]

]u
. ~53!

Note that for the Kubo system discussed above we hav
replaceC→C2. Given the operator~53! the frequency dy-
namics can be further reduced to

dju

dt
5c̄~j r !1

1

2S 3q3

4
j r

21q1DC~t!. ~54!

Even if j r itself is given by a Langevin equation, it will only
affect the dynamics ofju via the Duffing component
(;c̄0) or via j r

2C. Analogous to the discussion of multipl
cative white noise, this effect is of higher order and can th
be neglected.

In conclusion, we see that neither Gaussian nor colo
noise sources can generate the desired correlation fun
for consecutive periods. Fluctuations always produce so
dominating phase diffusion that destroys any further corre
tion within frequency and period, respectively. It is wort
while to remark that these claims are not restricted to
thusfar applied approximations. Of course, we achieve a
coupling of frequency and amplitude basically by use o
first order Krylov-Bogoliubov approximation by means
averaging. Higher order expansions, however, yield hig
order corrections only and thus diffusion remains the do
nant process. Moreover, the period of the oscillator is defi
as integral over the frequency variableu @cf. Def. ~3!# and
through that integration we already perform some kind
averaging along the intervaluP@0,2p#.

IV. FORCED OSCILLATIONS WITH NOISE

We have seen that diffusion is the prevailing effect res
ing from various, essentially different, noise sources. Inde
this fact expresses the absense of any ‘‘force’’ acting on
s

t.
-

n

to

s

d
on
e
-

e
e-
a

r
i-
d

f

t-
d,
e

phase of a self-sustained or autonomous limit cycle osc
tor. Thus, we finally extend the nonlinear oscillator by mea
of an external deterministic force. The force is assumed to
periodic in time and it can therefore bias the phase dynam
by means of phase locking. Without loss of generality
treat the case of a sinusoidal force oscillating with frequen
V. The dynamical system becomes

d

dt S jx

jy
D5S 0 1

2v0
2 0D S jx

jy
D1S 0

1Dn~jx ,jy!

22F0V2S 0
1D sin Vt1v0

2A2QS 0
1DG~ t !. ~55!

In contrast to our standard Van der Pol transformation,
project to polar coordinates regarding the forcing frequen
V; that is, jx5j rcos(t1jf), jy52Vjrsin(t1jf), and
t5Vt. Equivalent to Eq.~14! the averaged Fokker-Planc
operator~we average over 2p/V) becomes

L̄FP'2
]

]r
$n̄~r !2F0cosf%2

]

]fH v0
22V2

2V2
1

h

8
r 2

2
F0

r
sin fJ 1

Q

2 H ]2

]r 2
1

1

r 2

]2

]f2J . ~56!

As a stochastically equivalent system we find

d

dt S j r

jf
D 5S n̄~j r !

x̄~j r !
D 1

F0

j r
S j rcosjf

2sin jf
D 1

AQ

j r
S j rG r

Gf
D ,

~57!

wheren̄ is given in Eq.~16! and x̄ is defined as

x̄~j r !:5
v0

22V2

2V2
1

h

8
j r

21
Q

2j r
2

. ~58!

Let us again concentrate on the phase dynamics. We
sume that the oscillator is forced in resonance, i.e.,v0'V.
Further we neglect the Duffing component (h[0) as well as
the termQ/2j r

2 since they mainly result in a detuning th
can be covered by theu definition. In case of a weak forcing
(F0!n̄) we can approximate the amplitudej r by j r'r 0.
Thus, we reduce the problem to that of Brownian motion
a periodic potential VF52(F0 /r 0) cosjf since we have

djf

dt
52

F0

j r
sin jf1

AQ

j r
Gf'2

F0

r 0
sin jf1

AQ

r 0
Gf .

~59!

For weak noise we can assume that the mean phase
always relax to a steady value with a fixed variance in c
trast to Eq.~18!, where the variance increases linearly
time. This follows directly if we linearize the potential an
write the dynamics~59! as

djf

dt
'2

F0

r 0
jf1

AQ

r 0
Gf5:2

1

tF
f1A2QF

tF
Gf . ~60!



te
nc
ke

th
di

a
m
se
st
ri-
th

er

lax-
via

ill
cy
an

on
t a

ring
c-
as
rms
re-
nlin-
ro-

en-
part.
d
al-
se,

in
ity
for
ill
nd

on.

i-
rced
ian
or-

ties
be-

of

-

PRE 58 337EFFECTS OF NOISE ON THE PHASE DYNAMICS OF . . .
For this Ornstein-Uhlenbeck process one can immedia
compute the time dependent solution of the Fokker-Pla
equation. Assuming that we have initial conditions li
f̂ (f,t50)5d(f2f0), we achieve

f ~f,t !5A 1
2pQFtF

@12e22t/tF#1/2

3expH 2
1

2QF

~f2f0 e2t/tF!2

12 e22t/tF
J

⇒^f&5f0e2t/tF ` ^f2&5^f&21QF~12 e22t/tF!

⇒
f050

^f&50 ` ^f2&5QF~12 e22t/tF!. ~61!

The system’s response on a decrease~or increase! of phase
(^f&) is an increase~or decrease! of frequency (̂ḟ&;^u&).
Note that in both cases, with and without external forcing
mean phase vanishes whereas the variances essentially
@see Eq.~18!#. Depending on the mean relaxation timetF ,
the resulting correlation function of consecutive periods c
become negative. Even for strong noise such random
tions in periodic potentials have been extensively discus
in the literature. Recent studies mainly focus on stocha
resonance@33,34,29#, so that we restrict ourselves to nume
cal experiments presented in Fig. 8. In that simulation,

FIG. 8. Simulation of a driven oscillator under the impact
white noise. We chosev05a5b/35g51, and h/350.2. The
noise strength is identical to Fig. 7 (Q50.2). The forcing is deter-
mined by F051 and V51, i.e., a strong external force in reso

nance with the harmonic part resulting inT̄'2p. Obviously, we
achieve a rather negative covariancesT

2(1) and, accordingly, the
lag one correlation becomesmT(1)520.487~cf. Fig. 7!.
s
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mean lag one correlation function is rather close to the low
bound in the Wing-Kristofferson model@mT(1)'20.5#. As
already noted, correlations become dependent on the re
ation time that itself depends on the forcing strength and
r 0 depends on both, the eigenfrequencyv0 of the oscillator,
and on the forcing frequencyV. For the sake of legibility of
the present paper we refer to forthcoming works that w
show explicit dependencies in order to fit certain frequen
and amplitude dependencies in the case of rhythmic hum
movement.

V. CONCLUSION

Aiming at a modeling of certain lag one serial correlati
functions during a periodic dynamics we have shown tha
negative correlation between consecutive periods du
evolution along a limit cycle cannot be realized by introdu
ing unspecific random forces. Additional white, as well
colored noise sources that both have been multiplied in te
of arbitrary finite polynoms, do not achieve the desired
sponse because fluctuations acting on self-sustained no
ear oscillators predominantly result in phase diffusion p
cesses that are always superimposed on eventual~lower
order! correlations.

Consequently, we extended the system to higher dim
sions, here by means of a nonautonomous deterministic
Alternatively one may also think of two or more couple
oscillators. In particular, periodically forced systems can
low for negative lag one correlation functions. In that ca
the dynamics of the phase is reduced to Brownian motion
a periodic potential. Thus, significant properties like stabil
or relaxation times are well known and be approximated
actual values of serial correlations. Forthcoming works w
show that such estimates will cover special amplitude a
frequency dependencies of that type of correlation functi

In contrast to more traditional approaches~traditional in
the field of human movement! that are based on nondynam
cal statistics of at least two independent noise sources, fo
or coupled oscillators require only one additive Gauss
noise source generating the wanted correlation function. C
relations are therefore not a result of statistical proper
only but a consequence of the deterministic interaction
tween two systems, the oscillator and the force.
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