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Multivariate Ornstein-Uhlenbeck processes with mean-field dependent coefficients:
Application to postural sway
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We study the transient and stationary behavior of many-particle systems in terms of multivariate Ornstein-
Uhlenbeck processes with friction and diffusion coefficients that depend nonlinearly on process mean fields.
Mean-field approximations of this kind of system are derived in terms of Fokker-Planck equations. In such
systems, multiple stationary solutions as well as bifurcations of stationary solutions may occur. In addition,
strictly monotonically decreasing steady-state autocorrelation functions that decay faster than exponential
functions are found, which are used to describe the erratic motion of the center of pressure during quiet
standing.
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[. INTRODUCTION generated by the subsystems and, at the same time, act on the
subsystems. Irrespective of its generating structiimear or
The growing interest in the cooperative behavior of sto-nonlinear superpositionthe dependency of the evolution

chastic many-particle systems has amplified the need fdpguations of the subsystems on the mean fields is usually
suitable analytical tools for investigating their transient andcon&dereéj t(_)thbe Ilrtlear. It?] t:l(()jlogy, quever, ‘l’Ve aref Of;fr‘”
stationary properties. Analytical treatments of overdampe©c€rned With Systems that depend in a noniinear tfashion

; L on these macroscopic variables. For example, in neuro-
stochastic systems consisting of a large number of mutuall

led sub ft . tical Science we may regard the soma membrane potential of a
coupled subsystems often require analytical treatments |5 ticylar neuron of a spatially distributed population of neu-

terms of mean-field approaches. Such approaches may theghs as a mean-field variable based on the superposition of
serve as entry points for investigations of complex systemshe dendritic currents delivered by other members of the
exhibiting more general structures. Many authors have studsopulation in question. The pulse rate generated by this par-
ied mean-field approximations of multivariate Langevinticular neuron may depend in a highly nonlinear fashion on
equations. The validity of these works will be taken for the soma potential, that is, on the mean-field variable
granted in this paper. [20,31-386. In studies of hpmalj movement, mean-fig_ld vari-
Kometani and Shimizu introduced a system involving@Ples may express physiologically relevant quantities. For
mean-field coupling to describe biochemical reactions duringStance, the variance computed from the outputs of similar

muscular contractiofi]. This model was examined by Desai €Urons of a single motor control unit may be seen as an
and Zwanzig in terms of a mean-field approximat[ag] accuracy measure for output signals of that unit. Beek and
b co-workers[37,38 and Bullock et al. [39], among others,

and a corresponding nonlinear Fokker-Planck equatiogmphasized the need for comprehensive models of human
(NLFPE) was derived4]. Dawson[5] presented an alterna- motor control that incorporate such physiologically meaning-
tive derivation of this NLFPE on the basis of studies byfu| variables(informational variables and variables of per-
McKean[6]. Since then, many studies were devoted to theception. Furthermore, it was argued that neurophysiological
topic of such mean-field couplings. For instance, Shfiip  variables such as task-related neural processing times should
derived arH theorem for the NLFPE proposed by Desai andbe incorporated into models of human motor confagl,41].
Zwanzig. Several numerical techniques were proposed tdhis requirement is tantamount to taking stochastic proper-
deal with both the stochastic differential equatigs$ and  ties of afferent and efferent signals into account because pro-
the NLFPE[9-11]. Mean-field approximations of models cessing time is relaped to stochastic variables such as move-
that describe spatially distributed systems and take multiplil"€nt accuracy, variance, and entropy of motor performance
cative noise processes into account were extensively studi¢fef-[42], Chaps. 68 At issue, therefore, is how to extend

by van den Broeck and co-workers and otHgra—16. concepts de_rived for _stochastic subsystems that_ depend lin-
early on their mean fields to more general, nonlinear cases.

All the studies listed so far have in common that mean h q field model h dbv D
fields are established as linear superpositions of the states g}'o er words, mean-Tield models such as proposed by De-
ai and Zwanzig and by Kuramoto depend linearly on mean

the subsystenj:_s. In contrast, mean f|_elds generated by nonllﬁelds composed of arbitrary interactions of their subsystems.
ear superpositions of the state variables of the subsysteE?

. e egardless of the explicit form of the interactioisear or
were predominantly studied in the context of the coupled,,qjineay these models are, by definition, linear with re-
oscillator models proposed by Winfr¢&7] and Kuramoto — gact g the mean fields. Both a phenomenological and a

[18,19, who found applications in neuroscience and artificialgiryctural microscopic point of view, however, suggest that
neural networks theory20—-23, with a specific emphasis on many systems depend nonlinearly on mean fields, which re-

coupled oscillators with unequal eigenfrequendi2é—30.  quires a generalization of the theory of mean-field coupled
Both Kuramoto[19] and Desai and Zwanzigt] interpreted systems developed so far.

the respective mean fields as macroscopic variables that are The present paper seeks to contribute to such a generali-
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zation by investigating appropriately defined classes of sto- d
chastic systems. NLFPE'’s are obtained from mean-field ap- afj(t)z —y(sy L&) —m]++Q(sg j)T'j(1),
proximations of these systems, and their transient and

stationary solutions are discussed. The paradigmatic case of N 1 N @
mean fields established by the system’s cumulants is studied SyITN=1 2 &), So, =N=1 folé).
in detail. In the context of pitchfork bifurcations, the emer- T k=LA Tl

gence of multlple stationary solgtlons Is discussed. Furtherl- the following, we restrict ourselves to the case of natural
more, stochastic systems featuring a general class of stea

ndary conditions by assuming peee Xt
autocorrelations are proposed. These findings are finally ap;)g Witr?/i:(xll ! iN)y F;f%;ﬂ%ﬁ;;:g:%s inXENc{l))

lied in a physiologically motivated model of human motor : o
Eontrol thag gan re%rodgce the experimentally observed st e further requiref 7(')’ka(')’y('?’Q(') eC (R) and we
X i ut y=0 andf,(cz)=c"f,(z), with k,>0 for ce R and

chastic propert!es of th(=T random walk of the center of pres; c{7,Ql. Hence we utilize homogeneous functions of de-
sure during quiet standlng of humans. In short, the prese reek, larger than zero. As common, the Langevin forces
paper focuses on the derivation of NLFPE's for systems Of () are assumed to be statistically independent white noise
large ensembles. The constituents arbitrarily interact withygyrces with(T';(t))=0 and (T;() [(t"))= &, (S(t—t'),
each other, and generate mean fields that affect the entighere &-) is the & distribution ands, , denotes the Kro-
system in a nonlinear fashion. After investigating more gennecker symbol. The fluctuation strength is measuredQby
eral properties of such systems, we apply these forms te-0 and, in general, may depend on a mean fiRgl. Fur-
explain some key features of postural sway during quiteahermore, we interpret the stochastic evolution equations as
stance. Ito-Langevin equation$50]. Note that in the deterministic

We would like to emphasize that mean-field NLFPE'’s cancase Q—0), for y(z)=const>0, the constanin describes
be viewed as macroscopic descriptions of stochastic systentise stable fixed point of the system, and we do not allow for
derived from microscopic descriptions of their constituents self-interactions of the subsystems, cf. the definitions,gf
Similar NLFPE’s can be derived, however, on the basis ofandsg j in Egs.(1). In the following, we assume the exis-
purely macroscopic considerations invoking variables suclience of transient and stationary solutions of the system of

as the systems’ entropy or ener(gg., Refs[43-49). equations(1), and attempt to determine these solutions, at
least approximately, using mean-field approaches.

Il. SYSTEMS WITH MEAN-FIELD-DEPENDENT A. Steady-state solutions

COEFFICIENTS We first study the stationary solutions of the mean field
approximation of Eq(1). To this end, we replacs,; and

We consider a system that is composed\oindividual : _ ) _
Sq,j by the respective expectation values, which yields

subsystems. Each subsystem, indexedj by,...N, is de-
scribed by a real dimensionless stochastic varigbleFor
the entire sef¢;};-, n of random variables we can for- afj(t):_7(<Sy,j>7>)[§j(t)_m]+*/Q(<SQ,1>P)FJ‘(U'
mally define the corresponding multivariate probability den-

sity P(X4,...,Xn). However, we may also be interested in the 1

one-variable probability densities achieved by integration, N =

W) =L [P(Xq... )TN 1, ., dx . Suppose that the (Syadr N—1.§,— (g @
subsystems are coupled by means of a superposition of their

individual states¢; according tos:={3{L,f(£)}/N, with _ _LE ¢

f(z)=z. In this particular case, we can interpret the variable (Sq.i)P= N—1& (Faxi)w;

sas a mean field generated by all subcomponents, so that for

large populations N>1) the system as a whole becomeswith <fv(xr))wr=ffu(xr)l/\/r(xr 1)dx, for ve{y,Q}. All

amenable to a mean-field approximation. Tiseran be re-  the N subsystems in Eq$2) can be considered as formally
placed by its expectation valug)», where the functional equivalent random walks with similar stochastic properties.
(+)p denotes the average with respect to the probability denconsequently, we assume that for lafgéhe corresponding
sity P [2,3]. Since(s)p represents a scalar, this approxima- probability densities are almost identical, that ¥(-,t)

tion usually yields a simplified description of the problem at<yy,(. t)~---~Wy(-,t)~R(-,t), so that Egs.(2) be-
hand, which can often be solved analytically in a self-comes

consistent fashion. In a similar manner, nonlinear coupling

functions of the form’§={2JN:1f(§j)}/N can be handled d

whenf is an arbitrary infinitely differentiable function. In the dt ()= y(<f7(xj)>pst)[§i(t) —m]

present paper, we treat stochastic processes that arise from

multivariate Ornstein-Uhlbenbeck processes by replacing the + \/Q[(fQ(xj)>Rs‘]Fj(t), 3

friction coefficient and the fluctuation strength by functions
of mean field variables. In detail, the system of study readswhich is a self-consistent stochastic differential equation. In
for N>1, the stationary case, the friction coefficiepnind the fluctua-
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tion strengthQ correspond to the stationary valugg>0
and Qs>
stationary probability densitfRs(Xx) by computing the ex-
pectation value$(x—m)“>Rst(X) for all n=1, cf.,, e.g., Ref.

[50], Chap. 3, which leads to

Vst Vst
WQst) D{— —(X m) ] (4)

Rst(x) = (
and

Yol Qsi= YU F (X)) I QL F (X)) . (5)

We dropped the indekto indicate that this result holds for
any subsystenj. In order to determine the explicit form of

Rs(X), we first solve the transcendent equati®h for the
ratio ys/Qg, Which, when inserted into Eq4), yields the
stationary solution.

B. Transient solutions—linear casesy(z)=%z and Q(z)=Qz

We proceed by discussing mean-field approximations of

the transient solutions of the general system given by(Hg.

First, however, we review the linear casdso see Desai and

Zwanzig [4]). The stochastic proce$&q. (1)] can equiva-

0, respectively. From Eq3) we can derive the

PHYSICAL REVIEW E 63 011905

XN t) H

~ J
{f f h(xk)—(ng [Xj_ .. L dX|]
j#k

m]P(Xq,

~ J

E[aj,rf h(Xk)W[Xr_m]Pr,k(Xriint)ka] , (8
r j#k

where h(z)eC* denotes an arbitrary function, and
pr k(XX ,t) the joint probablllty density defined by
prkXe X ) s=J - [P(Xq, ... X)L g 0% . Accord-
ingly, integrating Eq(7) with respect to the variableg with
j #r yields the evolution equation of the one-variable prob-
ability densitiesW, (x; ,t):

~ N

w<xr,t> 2

1k#r 07Xr

1%

XX, — m]f fy(xr)Pr,k(Xr X, D dxie

= N

52
2(N—1) k=Tk=r IX}

XJ fo(Xe),pr k(Xe X, 1) dX . 9

Following Desai and Zwanzig4], we assume that foN

lently be expressed by the multivariate Fokker-Planck equaz1 the joint probability densities factorize according to

tion (cf., e.g., Ref[50])

_P(X]J' XNvt) 2 ’y(s‘y])[xj m]P(Xla'--vavt)
N
1 92
EZ 252 QS P(X,.. Xy, b),
- J
(6)
1 N N
S‘y'j:_N—lk:lE’k;&j f),(Xk), SQ’j:_N—1|:1‘|¢j fQ(X|)

For linear formsy(z) =%z and Q(z) =Qz, with 3, Q>0,
one obtains

N

233,

a
ot

~<l

—=P(X1,..- XN, 1) =

'y( Xk)

J
xﬁ[xj—m]P(xl,...,xN 1)

N

83,

fo(x)

2(N 1)

2

X—ZP(Xl,

0—,Xj 1XN 1t) . (7)

We can then exploit the identity

pr k(Xe X ) =W (X , D) Wi(X,t). Given that the one-
variable probability densities again describe identical sto-
chastic processes, that i9V(-,t)=Wy(- t)=---=Wjy

(-, )=R(-,1t) [cf. Eq. (3)], the diffusion equation(9) be-
comes

J J
ER(X,’[) :’5/' <fy(x)>R(?_X[X_ m]R(X,t)

Q 9

t5 .<fQ(x)>R(9—X§R(X,t). (10

Note that we dropped the index Obviously, the stationary
solution of the NLFPE10) agrees with the stationary solu-
tion defined by Eqs(4) and (5), and we can conclude that
the NLFPE(10) describes a mean-field approximation of the
transient and steady-state behavior of the system given by

Eq. (1) for the linear cas¢y(z) =%z, Q(z)=0Qz].

C. Transient solutions—nonlinear case and hierarchies
of mean-field couplings

In analogy to the special case of a linear dependency of
the friction coefficient and the fluctuation strength on mean
fields, we now propose an NLFPE of the form

R(Xt) A0 [X mIR(x,1)

2

1
+ EQ[“ >R] 2R(X t) (11
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for the nonlinear case. Note that fon(z)="%z and Q(z) d d

=Qz the NLFPE(11) recovers the linear case given by Eq. EWT(XF =M ] 07_)(r[xr_ MW (%, 1)

(10). Moreover, for arbitraryy(s, ;) andQ(sq,;) the station- 5

ary solution of the NLFPE11) agrees with the stationary Qo ¢

solution given by Eqs(4) and (5). Therefore, the question + 7&?1/\4(& D

arises whether transient solutions of the NLFRHE) can be (14)
viewed as mean-field approximations of the solutions of the 1

original system defined by Eqél). Unfortunately, we can- y[Mr]:J f y(mgr fy(xk)]

not answer this question in general but we can derive Eq.

(11) using two approaches. We will first obtain E(L1)

under quite restrictive conditions with regard to the stochas- XMoo et XD dxi
tic processes being studied. This first derivation, however, e

appeals to our intuitive understanding of mean-field couple% . . . L oma
o . ow we introduce new time-dependent variab t
systems. The second derivation of Efjl) is based on the —[..x™(1) x"(1), . ] that describgthe maximum ﬁf%l)((a)t
X)X (1), ;

central limit theorem, and is presented in Appendix A. Using . 1N . &N-D) gi
this second derivation we can weaken the conditions im{iMme t- Any pointx of the respective subspaé® =~ dif-
X, is thus assigned to a probability density

posed on the processes under considerations. In addition, vi@grent from .= :
can discuss the accuracy of the mean-field approximation. M:(X; ,t) that is much smaller than,[X"*{(t),t]. That is,

We confine ourselves now to an important special case ilN=>1= M, (X, ,t) < M [X"(1)t] for X #X"*. Conse-
which the time-dependent joint probability density quently, for suitably chosen functiorig, for N>1 the joint
P(X1,... XN, t) has a single global maximum. Explicitly, we probability densityM, (X, ,t) can act similarly to a distri-

require bution. Let us elucidate this point by substituting
:=x; /(N—1)", so that)[ M,] becomes
. . * * _ —
Vi [[{xX* P(xT ... X5 t) =max||=1, (12 MMr]=f j 7{ g, fy(yk)]
where||{-}|| denotes the number of elements of the{sptOf X M! N d 15
course, whether stochastic processes determined bylEq. Ve Vet )I]';[r n- (19

obey condition(12) depends on the explicit forms af(-),

Q(-), f,(-), andfg(-), as well as on the initial distribu- M/ (...) is thenormalized joint probability density

tions. Nevertheless, the processes satisfying(E2). repre-

sent a rather general class of stochastic processes. For thd; (Vi tiN):=(N=1)N" VA [(N-1) Yoy, 1], (16)

sake of simplicity, to derive Eq(11) we first put Q(z)

— Q,= constant withQ,> 0. To treat this case, we start with By definition, M, (X; ,t) has a unique maximum a&"*{t)

the evolution equation of the one-variable probability densi-and, consequently, the rescaled joint probability density

ties W,(x,,t) that can be obtained from the multivariate has a unique maximum g"®=x"*(N—1)**y. For N>1

Fokker-Planck equatiof6) according to we assume again that the individual random processes
are statistically equivalent [i.e., W;(-,t)=W,(-,1)
~-= W) ~R(-,t)]. Then, M/ (Y, (t),t;N) can be

d d expressed as
EW’(X“t)_a_xr[X’_m] "

1 M (Y, N =(N=1) NV TT R(IN= 11"y, t)
Xf f ,},{mgr fy(xr)] k=Lk#r a7

2 . s I .
X Py O] 1 dX|+%a—zWr(Xr 1. and Ehe jatlo{M,(yr,t;N)/Mr[y?’_a’ﬁ(t),t;N]} vam_shes for
T 2 ox; any y, #y;"¥(t) for N>1. In addition, the functiorv(z)
a3 =RIN- 1)*yz,t] decays rapidly from its maximum value

becausek,>0. In sum, M, converges foN>1 to aé dis-
tribution: M/ (¥, ,_t;N>1)~5()7r—37F‘aX{t}), allowing inte-

For N>1 we assume that the random variablgsbecome  gral (15) to be written as

statistically independent. In this case, we can decomfpbse

into the product of the one-variable probability density of _ f _ f ;

the random variablé, and the joint probability densityu1, AM =y I;r AV

of all other random variablesé; but &, that is,

P(Xll"'!XN!t):Wk(Xkvt)Mk("'!Xk—l!Xk+11"'!t)' Then X ’ t:N d 18
Eq. (13) can be transformed into MeCooYr1Yrens o )Llr yi| (18
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with time-dependent parameters(t) and w(t), that is,
=y g, (P w0 R(x,1)=Wx;w(t),u(t)]. For the functionsu(t) and
w (t), this leads to

=YX )k, 0] (19

Eu(t>= —AH{EP (O} p(t) —m],
Inserting into Eq.(14) results in dt Y ",

d
RO =V [ MR + j 2 Rix). o= —2y{"EPO}w(t)+ QES (1)},
(20) .
where w corresponds to the variance V. For constant
The key property that we used in the derivation of &) is  friction and diffusion coefficientsy=y, andQ=Q,, Egs.
the assumption that constraitit2) holds. By the same rea- (23) and(24) constitute the exact time-dependent stochastic
soning, we can deal with a fluctuation strengi= Q(z) description of classical Ornstein-Uhlenbeck proce$5€
depending on mean-field variables suchzassg ;. In this ~ While, in general, they portray the exact time-dependent so-
case, Eq(20) assumes the form of the NLFRE1) proposed lution of the NLFPE(22) in the case of an initial Gaussian
at the beginning of this section. probability density. It can be shown that any solution of the
Note that the preceding findings can be even generalize)LFPE (22) converges to these Gaussian solutions; see Ap-
further in terms of coupling functiont,(z,u) and fq(z,v) pendix B.
that depend on additional mean- fleld varlablessyj and
v=Sq ;. The mean fields) ; andsg ;, in turn, may involve lIl. CUMULANTS AS MEAN FIELD COUPLINGS
coupling functiond’ »(z,u) ande(z v) that depend on other
mean-field varlables s)jandv=sg ;. Let us denote, ] N
andsQJ aSS(l) ands(l), respectively: cf. Eq(1). Then, We We.examme systenfl) sp_ecmcally for y= ‘y0.>0 and.
can recurswely define a hierarchy of mean-field cou- M=0 in the case of an arbitrary but symmetric coupling

A. Pitchfork bifurcation

plings, according to fulnctlon fo(z2)=fo(—2) (here we dropped the superscript
f&)—fo). The corresponding mean-fielIF) approxima-
B N e tion [Eq (22)] reads
S n,___~— f(n S n+1
=N 1k 2, s, ; ) ) p

N

1
(ng), _ (ﬂd)
SV J N 1 k Z V ( gk) 1

1k#]

(25

which is solved by the Gaussian probability density cf.
Eq. (23). According to Eq.(24) the dynamics of meap(t)

for n=1,2,3,...,04—1) and ve{vy,Q}. Analogously with &nd variances (t) of W then reads

previous considerations, we can then derive a mean-field a
proximation of the multivariate Langevin equatidf) in d
terms of the NLFPE, a#(t) = — you(t),

(26)

—R(X,1)= y{RE?)(t)}%[x—m]R(x,t) d
am(t) =—2y0w (1) + Q[{f (X)) nix w(t),u(n]]-

RE(1)
2 Q{ Eq (t)} ZR(X v, To discuss a stability criterion for this kind of stationary

(22) solutions, letu andv be small deviations from the stationary

REM (1) :=(FM(x, RE(V"H){t}»R(x iy valuesuy=0 andw = Qg /[ 2], respectively. Then, the
' linear stability analysis on the basis of E(R6) yields
REE}nd)(t):=<fE,nd)(x)>RXt)! du/dt=—you and dv/dt=\v, where the corresponding

Lyapunov exponenk reads

for n=1,2,3,...,04—1) andve{y,Q}. Based on the struc- ,
ture of the NLFPE22), one can derive exact time-dependent A=—2vyy 1-5— — |,
solutions in terms of Gaussian probability densities. In detail, 2o dw Wy
the one-point probability densitR(x,t) is described by (27)
[ ©] Q' (w):=Q[{f (X)) wixcw(t), u(t)])
X—
M@ (1), u(t)|= —= D|’ —] 1 x]?
v2mo(t) 2w (t) =Q —f fQ(x)exp[—i]dx :
(23 V27rw(t) 2w(t)
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Because of the symmetrfy(z)=fo(—2) the expression d Qo
dQ'13ul 4=, ~0w-w,, Vanishes. In fact, the transcendent aMz(t):—Z(Vo—a){Mz(t)—z—yo}
equation wy=Q' (w¢)/[27,], In combination with Eq. 5
(27), allows one to address the issue of stability in terms of —2,8{ M (1) — &]
geometric considerations. First we plot the functignéw) 2 2]
=w andy,(w)=Q'(w)/(27yy) in one diagram. Then the

intersections of the curves yields the valueg at the sta- .
. s : : =M, (t)—Qq/(27,) [52-54. The stationary values become
tionary points. If the slope of,(w) at a particular points %, 2 0 0 A

P Pe o) ata paicular POty M=Qo/(2y0) for a>0 and ME)=Qo/(2%0)

is larger than the slope of the diagonal, then the correspon - :
ing Lyapunov exponent is positive, that is, the stationary - V(@= 7o)/ B for a=>1y,. A stability analysis based on Eq.

solution is unstable. Otherwise, the stationary solution igSLl reveals tham {*) represents a stable stationary solution

stable[51]—a similar geometric stability criterion was de- (cf. Ref. [5(%J)i;°r a< yo, and an unstable one far> y,,

rived by Shiino for the mean-field model proposed by DesalVhereasM; ¢~ describe stable stationary probability densi-
and Zwanzig7]. ties for a>y,. In fact, we obtain identical results from the
In the following we illustrate these results by a systemStability analysis based on E(7) by substitutingQ(-) de-

whose diffusion coefficien® is composed of two parts ac- fined by Eq.(29) into Eq.(27), and computing the Lyapunov

cording t0Q= Qo+ Qui(Sa,,). Qo COrresponds to a constant EXPONeNt for the stationary solutions! @) andb'vl(zl,)s'ti) . In
fluctuation strength, wherea®, couples the subsystems. detail, for M we obtaink =2(a— ;). For M%) we ob-
For Que=0 the stationary second momevit, o is given by ~ tain A =—4(a— o).

M, <= Qo/(27,). We assume thady measures the devia- To further examine the impacts of the statistically modu-
tioh of the actual empirica| second momeMZ,j,em[{t) lated diﬁusion_coeﬁicient@Eq. (28)] we flnally analyze the
’ZEK;&ng(t)/(N_l) from Qu/(27,). Note that in this sec- System numerically. To this end, we rescale Efsand(28)
tion we consider systems with vanishing mean, so that sedy means ofr=y,t, e=alvy,, andB’=pl/y, and use the
ond moments and second cumulants are identical. Specifiandom variables (1) =¢;(7/yo) for which the Langevin

(31)

which reveals a pitchfork bifurcation of the variabigt)

cally, we choose equations read
d 1
1 — & =—¢! - 2\ _
()= Qo+ 2a (mkﬂ fi]‘zQ—yZ) SE ()= g(n+|2Ce+ 26 [N_lgj ék] Co)
1 2|~ Qo)|? —2/3'( AR )3 o, @
R T=PL A B 1S e | o

with positive control parameters and 8. Comparing Eq. With Co:==Qo/(20). Given Eq.(31), the pitchfork bifurca-
(28) with Egs. (21) and (22), we find f(Ql)(Z):ZZ and ng tion occurs at the critical value=1. Note thatQ(s;)>0 is

=1 and the mean-field approximati¢Bg. (25)] with always satisfied by the stationary valuk 7 and MEs".
However, the admissible range ofs restricted in the case of
, , Qo MP: ) in terms ofe<C3B’ +1 (cf. definitions ofM%%, ),
QUX)r(x1) = Qo+ 2a| (X)r(xt)~ 2—7,0) B', andC,). Figure 1 shows the bifurcation diagram in the

stationary second momeM , i obtained by simulating Eq.
5 Qo3 (32 for Co=1 and B’=4. The simulation of the lower

= 2B (X Rt~ 270 29 pranch M%) indicates the convergence of the stationary
probability density to a5 distribution whene approaches its

More explicitly, insertingQ((x?)z .y into Eq. (25) yields maximal admissible value,,,=5. Figures 2 and 3 illustrate
the stationary one-variable probability densitldg(x) for

d d Qo ) Qo different values of corresponding to the upper brangig.
St RGO =y02 XROGD +{ 57+ | (X)rpen — 27 2) and the lower branclFig. 3) of the diagram in Fig. 1.
) Qo \%) &2 B. Stationary autocorrelations
_’8(<X IR0~ 2% ]WR(X’U' (30 In anticipation of the application of mean-field models to

human motor control that will be presented in Sec. IV, we
Since transient solutions converge to Gaussian solutions inow turn our attention to stochastic systems with nonvanish-
the limit t—o (cf. Appendix B, we restrict the following ing means, and consider the empirical varianéﬁpin place
stability analysis to a time-dependent Gaussian probabilitpf the second moment. In contrast to Sec. Il A, we examine
density W with vanishing mean defined by E@R3) with  the solutions of Eq(1) for a constant diffusion coefficient
w(t)=0. In this case, we can identifyl ,(t) ::(x2>R(X,t) with  (i.e., Q=Qy=const) but consider a statistically modulated
w (t). From EQ.(26) in combination with the definition for drift term
Q(-) [cf. Eqg.(29)], we obtain the evolution equation of the 5
second momenM ,(t) according to y=Y{s{ emd )}
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FIG. 3. Stationary stable probability densities corresponding to
the lower branch in Fig. 1. Beyond the critical valee 1 the prob-
ability density evolves toward & distribution for increasing:.

1.00 2.00 3.00 4.00 5.00 6.00 €

FIG. 1. Bifurcation diagranM, o as function ofe (stable solu-
tions only. Both curves were computed from the discrete version
(cf. Ref.[50]) of the Langevin equatiori32): N=10 000, single 2
time stepAt=0.01, and 3000 iterations for evegyA & distribution g2 r(t) - 1 &) — 1 E &(1) ]
at x=0 served as the initial distribution for the=0 trial. e was hem i

and

N—1¢ N—1{Z

increased in steps of 0.3bipper branchand 0.19(lower branch. (33

The final distribution of everyg was used as initial distribution for

the subsequent trial with increased?0 trials were performed. Due Comparing Eq.(33) with Egs. (21) and (22), we find the

to numerical constraints only one bifurcation branch was realized aidentities f(yl)(z,sﬂyzj)) =(z— 5(721.))2, fﬂyz)(z) =z, and nyg=2.

the bifurcation point. To control the bifurcation of the solutions, at\Vith respect to the upcomiﬁg application, we are interested
the bifurcation point the initial distribution was broadened by mul-ijn the steady-state autocorrelation functign of an indi-

tiplying each representatiog; by 1.05 in the upper branch or \jiqual subsystem defined as
squeezed by a factor ¢ by 0.95 in the lower branch.

nr(At;N)‘:<§r(t+At)§r(t)>T<r’,\‘s)t’ (34)

that can be computed from the stationary two-point probabil-
ity density TN yr tHAGX ) = - f PN (Yt
+AGX )4 k2 dYidXe, whenAt denotes the time inter-
val At:=t' —t=0. The key idea is to approximatg (At;N)

in terms of the steady-state autocorrelation function of the
mean-field approximatiomy; that is, we put

7 (AGN) =~ (AL :=(E(t+ A (1)) 7ur. (35)

TMP(y,t+At;x,t) is the stationary joint probability density
of the NLFPE (22). Generally, the correlation function
nue(At) can be computed as

ﬂW(AI):j jxy’]'(MF)(y,t';x,t)dy dx

=f XR(x,t) fy’]'(MF)(y,t’|x,t)dy dx.

FIG. 2. Stationary stable probability densities corresponding to N - _
the upper branch in Fig. 1. Beyond the critical valee 1, the ) g
probability density evolves toward the uniform distribution when {n=x
is increased. (36)
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Here TMP(y,t’|x,t) represents the conditional probability gz(t)g(t)zx. We can express(z) in terms of the steady-state

density solving the NLFPE22). Therefore, the inner integral autocorrelation functionpy:. For that purpose, we insert

in Eq. (36) can be viewed as the conditional meanét’) (1) = y(s?{t}) into Eq. (40),

that can be computed from the NLFF{EZ)Q{?WSF?uming the g

initial condition R(z,t)=&(z—x). Indeed, (y,t'[x,t)

coincides withWy;w(t'), u(t')] defined by Eqgs(23) and aez(U: —2B¢(1)s*(1)+ Qg (41)

(24) for u(t’'—t)=x andw(t’'—1t)=0. Thus we can inter-

pret w(t’) as the conditional varianc&®(t’)sy-, of  and solve Eq(41) for s*(t') with t'=>t ands?(t)=0. Ac-

R(x,t), and wu(t’) as the conditional mean value cording to our previously derived results, there exists a

(&(t"))gny=x . SO that the first equation of Eq®4) becomes  unique time-dependent solution of E@1) with s2(1)=0
that reads

d
W<§(t,)>§(t):><:_7[92(':’)f(t)zx]{<§(t,)>§(t):x_m} ) At
su(At)=Qex —Zfo o(t")dt’

= (&) ev)=x N
t!
=m+{x—m} Xfo exP[ZfO S(t")dt ]dt : (42

(Y Although this leads tap(z) = y(s3{z}), the functiony(2)
xe (V) gy—xJdt}. (3 ¢
xp{ ft NS D=l ] 37 remains unknown. On account of the monotony of the vari-

ance, however(2) is invertible. Let{s5]~(-) denote the
Since we are interested in the stationary case, we replace theyerse ofgfﬁ(.)_ Then we can computg(u) by means of
probability density in Eq(36) by R(x,t)—Rg(X). Inserting u:gfb(z) and Z=[§(2¢,]’1(u), which yields
into Eq. (36) yields

y(u) = B{[s5] (W)} (43
(A =M(E)_+ ()~ M(E)r) ’

At To further elaborate this form, we expreg¢$z) in terms of

Xexp[ - f y[qz("f)g(t)x]d"f]. (38  7wr(2) by means of
t
d

From the stationary solutidrEq. (4)] we can further read off ¢(2)= —ﬂMF(Z) “m?/dz 7wr(2)
that(£)z_=m holds, which yields

(44)

cf. Eq.(39). In sum, from Eqs(42)—(44) one can derive the
o2 At explicit form of the friction coefficienty(u) for any steady-
nve(At)=m*+gZex —Jt s (D g=x]dT;. state autocorrelation functiom,=. The requirement that
(39) v(u) is a strictly monotonically increasing function, how-
ever, restrictsyye. From Eq.(39) we can infer thatyye
The conditional variance evolves likef. Eq. (24)] always decays faster than an exponential function. Only in
the trivial case, that is, fop=const, does the autocorrelation
- 5, 5, function exhibit an exponential decay—as is known for con-
gt $ e =x= =21 () e =x]s" (1) ) -xT Qo ventional Ornstein-Uhlenbeck processes. Finally, we may
(40) express nue(z) by means of¢(z). Using Eq.(39), we
readily obtain
with the initial conditionqz(t)g(t)zxzo. When we require ot
that y(0)=0 holds and that/(z) is a strictly monotonicall 2.2
increyzisi%g function, the strgétare of E(qo){llready implieZ r(At)=m +gStEXp[ ft ¢(Z)dz]' 49
the existence of a stationary value of the variance, and indi-
cates that fot’ =t the argumenlz=g2(t’)§(t)=x increases
strictly monotonically froms?(t) ¢(t)=x= 0 toward this steady
state[55], s is implicitly given via y[s3]s3=Qq/2, and A. Basic experimental findings

for large t’—2t the “integral in Eq.(37) converges to A classical paradigm showing the impact of fluctuations
Qo(t'—1)/(2s5). Consequently, we find thatt’—t  on motor control strategies is erratic motion of the center of
—o=[y(-)dt—ox, leading to lim __ .(&(t"))¢-x=m. pressure(COP in upright stance. Corresponding stochastic
Then the probability densityR(x,t')=Wx;s%(t"),u(t’)]  aspects of quiet standing were frequently discussed in the
converges to a stationary solution. literature[56—59. In line with these studies, we interpret the
Apart from these stationarity features, we can further untrandom motion of the COP as a steady-state property of the
pack the explicit formy(z). For the sake of convenience, we postural control systef60—-63. Accordingly, the COP evo-
denote the conditional variance by/(t) rather than by lution (or, in general, the postural swesnay be considered

IV. AN EXPLICIT APPLICATION—POSTURAL SWAY
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fwo-point For the special case discussed in Sec. 1l B, we immediately
correlation obtain

mm? s Hyz

[ 41] Hy =02 =)

t+At
Cg(t,H—At):Z@ﬁt(1—exp[—ft qﬁ(z)dz]). (48)

1 1 10 ) t[:] Inspired by this simple structure, we could, of course, fit the

\ function ¢(z) to the experimental findings. The characteris-

tic kink in the graph of the correlation functioﬁ;np (see

Fig. 4) would then correspond to a kink in the functigitz)
which determines the stochastic mean-field process in ques-
tion. The origin of this discontinuity in the derivative of
FIG. 4. Log-log plot illustrating the empirical correlation C¢(At), however, would remain obscure. Put differently, a
function Clm;ﬂ“) of the COP displacements as a function plain data fit does not really deepen our understanding of the
of time interval At. The graph was drawn fronCl,(At) underlying postural control mechanisms. To achieve such an
=Dg(At)?Msg(1—-1t) + (Ds + D|t2H)A(At — 1)8(10—At) + (D,  understanding, we have to incorporate recent findings in the
+D,10?™") 9(At—10), whered(x) denotes the Heaviside function study of human motor control, which basically hint at the
andD¢=2.7,D,=0.45,H,=0.73, andH,=0.21 (Ref. [56], Tables  presence of, at least, two control processes, even in the case
1 and 3. Three regions can be distinguished as followss@t of very simple movementssee, e.g., Refd64—66). Such
<1s, scaling faster than linear,siAt<10s, scaling sublinear; findings also reflect an earlier suggestion of Collins and De
andAt=10s, saturation. The slopes in the different regimes repret yca to the effect that quiet standing is characterized by the
sent the respective scaling exponefits, H,, andH.; see the  presence of two different procesdés). Recently, Dijkstra
text. attempted to identify these two processes with the stabiliza-

as a stationary random walk whose statistical properties cafiPn Of @ set point and the dynamics of the set-point itself
be quantified by use of the two-point displacement function 07
C(t,t+At), defined as

H, = 0755

B. Stochastic VITE model

To specify an explicit model structure we adopt the so-
The random variablé(t) is the COP, trajectory andl) de-  called vector-integration-to-end-poif¥/ITE) model to de-
notes the ensemble average—note that we always assume #i&ibe global movements of the body during quiet standing
time average and ensemble average to be interchangeablfd, in particular, the observed erratic motion of the COP.
when discussing empirical daf&6,57. Dependent on the The VITE model was originally proposed by Bullock and
time lagAt, the fUﬂCtiOﬂC§ exhibits three qualitatively dif- Grossberg to explain the emergence of typical properties of
ferent regimes. In the short-term regime, covering time interreaching such as a speed-accuracy trade-off and a bell-
valsAt from zero to about 1 s, the correlation function scalesshaped velocity profilée.g., Refs[39,68). Its central ele-

- : 2Hg \ni - -
faster thanAt, that is, Ate(05,14:Ce(At)""s with &  ants are three-dimensional vectors denoted andV and

characteristic scaling exponetit=>0.5. In the long-term re- the scalag. The vectoD is called the difference vector, and

gime, ranging from abdul s toabout 10 s, the correlation ="t o o O e e between the limb position and
function increases sublinear, that iste(1s,104,C.<A; P

+A,(At—Ag), where A ,... A;s represent positive con- the target position, an¥ assumes time-averaged weighted
stants, andAz~1s. Alternatively, the experimental results values ofD, and is referred to as the averaged difference
regarding the long-term regime may be written@gs=A;  Vvector. The scalag represents a time-dependent gain signal
+A,(At—Az)?M with H,<0.5 for Ate (15,10§. Finally,  (comparable to Bullock and Grossberg’'s GO signahich
for time lags longer than 10 s the displacement function typicontrols the rate of change of the vectddsand V. The

cally attains its saturation value by meansXf>10SC;  gcalarg does not depend oB andV. We restrict ourselves
—const orC < At"saw, with Hyg=0. The scaling exponents g an investigation of a random walk in one dimension, and
Hs, H;, andHg,, can be read off from the logarithmic rep- consider the component andV related to either the me-
resentation of the correlation functidd; shown in Fig. 4. djolateral or the anteroposterior direction. Furthermore, we
They represent the slopes of the graph in the three regimego|iapse the neural motor control units related to agonist and
In line with the preceding sections, we now interpret theantagonist muscles into a single control unit, while being
COP random walk as a phenomenon generated by a stochagtly aware that a more sophisticated model should reflect on
tic mean-field model as described by Et). To this end, we  the prain level the reciprocal organization of the muscular
rewrite the mean squared displacemeén(t,t+ At) accord-  |eyel (cf. Ref.[68]). In line with this simplificationD andV

Ce(t,t+At):=([&(t)— &(t+A1)]?). (46)

ing to can take positive and negative values: positDevalues
Co(t,t+At)=2{( £ — (£(t) E(t+ At would, for instance, correspond to the'a}ctwny of agonist
el )= 2{E) s (£ i muscles, and negativ@ values to the activity of antagonist
=2{(£%) 4 n(t+At, 1)} (470  muscles. Following Bullock and Grossberg, we study three
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kinds of interacting neural populatiop88]. In particular, we However, a system given by Eq&9)—(51) is mute to
study the set of deterministic evolution equations fundamental properties of postural and motor control sys-
tems. Taking a neurophysiological point of view, neural con-

£V=a(v— D) (49) trol systems putatively consist of many interacting sub-
dt ' systems, which act together in generating a motor command.
Evidence for such a collective behavior was gathered in sev-
d eral studies that focused on intracranial brain activity and
ag= —b(g—m), (50 encephalographic signals related to motor performance; see,

e.g., Refs[69—73. Therefore, we study an ensemble of mu-
tually coupled neural control systems rather than a single
postural or motor control system. Here we implement this
idea by investigating mean-field coupled systems. Moreover
the VITE model given by Eqs49)—(51) discards the rel-

in which the variables, b, ¢, m, and G, are positive con- evance of informational variables. Postural control and mo-
stants(see below. At movement onset,,,, the differenceD tor performance, however, may evaluate temporal and posi-
is initialized by the distance between the limb and targetional information such as the expected execution time or
position. Furthermore, we assungtg,)=0 and V(tsan) performance accuracy. In fact, such information can be
=0 (cf. Ref.[68] for alternative scenaripsD is viewed as ~gained via statistical quantities. For example, process execu-
an index of the efferent output signal of a particular motortion time may be related to the entropy of neural motor com-
control unit, and serves two purposes: first, so-called effereriand signalgFitts law [74]) or accuracy may be measured
copies ofD are weighted and integrated, giving rise to theby means of the output variance of neural control units. Sta-
averaged difference vectdf [cf. Eq. (49)]; second,D sig- tistical quantities can be computed from ensembles of similar
nals lead to motor commands, and thus give rise to limBubsystems, and may assume the form of mean-field vari-
movements. By means of a time-varying gain sigmahd a  ables. In sum, from a neurophysiological point of view as
time-independent amplitud®, the averaged differendéis ~ Well as from a phenomenological point of view it seems
amplified, and impinges on the neuf@l population of the Plausible to incorporate mean-field variables in postural and
motor control unit according to Eq51). The gaing is de- ~ motor control systems.

termined by the autonomous differential equatiofh. Eq. In line with the preceding observation, we extend the sys-
(50]] and increases monotonically toward the stationarytem of equation$49)—(51) in terms of an interaction through
valuem. The System of equauonig_g)_(sl) has a unique and a mean field. In addition, we take stochastic forces into ac-
globally stable fixed point atVi=0, gg=m, and count. In detail, we study a stochastic system defined by

D= 0—note thatD(t)=0 reflects the case in which limb

—D=-cD-GygV, (51

and target position coincide. Three subtleties are worth men- ig = (& £p) 4T (52)
tioning. First, according to the VITE model, efferdputpud dt®V V.o SDAT RV

signals that are sufficient to execute successfully goal-

directed movements can be produced solely on a neural level d )

irrespective of any afferent information provided by the sen- Gt 60i= = Y(Sfemp (§g,i— m+1Iy;, (53

sorymotor system. This is, in fact, in agreement with various

experimental findings showing that goal-directed movements d

can be performed in the absence of afferent signals. Second, — ép=—Cép— Goégéy, (54)

for the sake of convenience, in the place of the so-called dt

present position vector of the original VITE model of Bul-

lock and Grossberg, we use the variabi@). Both variables WhereI'y and I'y; are statistically independent Langevin
agree except for a shift by the target position. Finally, theforces, and only Eq(53) is regarded as a particular sub-
model given by Eqs(49)_(51) provides a consistent SyStemj ofa pOpUlation of Subsystem§ that.are described by
integrate-to-end-point model because bbttand D can be  EGs. (2) and (33). For the sake of simplicity, we neglect
conceived of as quadratures involving exponential memorgXplicit fluctuations acting on the difference vector and con-
by means of V(t)=/'exp—a[t—7]}D(ndr and D(t) fine ourselvgs toa me.an—ﬂel'd |nteract|on'for the gain §|gnal
=Gof exp{—[t—7]ig(DV(7)d7, respectively. Regarding the because this pppulatlor_l mlg_ht be partlcularly sensitive to
latter, we note that Bullock and Grossberg studied the case derceptual and informational influended¥]. In this case we
vanishingc [68], whereas we will always considervalues ~can interpret the empirical variancg ., as an accuracy
that are large compared to the parameterhich determines measure or as a measure of temporal aspects of postural con-
the time scale ol. Recall thatD signals are conveyed to trol [75]. Alternatively, s? ., may account for interactions
muscles leading to limb movements and, heride;0 cor-  between subsystems of tggopulation which scale with the
responds to the absence of a movement. Here, however, veéguare of the subsystems’ states. Simﬁe-z,em does not
deal with postural control rather than the control of indi- depend orgy ;, a linear stability analysis of Eq§52)—(54)
vidual limb movements. Thus we interpret the evolutiobof can be carried out by conventional techniques; see e.g., Refs.
as measure for global body movement, and identify the ranf52—54. In detail, we linearize the system in the vicinity of
dom walk of D(t) with the COP trajectory. its fixed point, yielding a set of eigenvalues
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N S . 1-c)\? 172 ~ ). @5 005 G,
AN i=— TiZ with  Z:= T —Ggm| fD(t)va(t) wy '+ NG gg(t) . (6D
(59

To cast the evolution equations féy(t), &,, andép(t) [cf.

i 5(*) 3 (*)-
and the eigenvectord™™’ and dual vectors)™="; Egs. (57), (58), and (61)] into forms similar to Eqs(52)—

Wl 1 (54), we define the constanis:=(w}  w{"Q)G)/N )
J)(i>_(w(1+)) ::((1—c)/2+2>’ >0 and fh:=w$" /€. Further, we introduce a shifted gain
2 (56) signal &,/ (t) :=~§g(t)+’m=§g(t)+(’m—m), approximate Eq.
Q) 1 (ZF(1-¢)2 (57) by its linear parts, and ignore any multiplicative noise
Q<+):(Q(l+)) :=§< 1 ) sources. In sum, we obtain
$ +
- - - d. ~
where oMaM=1, sMHa)=0, s(0)=1, and giév(n= —INPE(+QiTy, (62
&0 =0. Subsequently, we transform the system of
equationg52)—(54) to q
d_ o i (D= ¥(semp)[ég:(D M+ T, (63
grév =260+ 0
Ty Ep(t) =Ty () &g (D). (64)

X > 7% -y . (87
= Goy(OL !t TEu(D) + 0y (D] Given Eq.(64) the stationary correlation functio@p of the
q random variabl&p consists of autocorrelation functions re-
—~§g(t)= - 7(.)Eg(t)+rg, (58 lated to bothZ,(t) and &g (D). In line with the arguments
dt advanced in Sec. lll, we therefore approximate the autocor-
relation function ofé,/(t) by the autocorrelation function of

d~ - R £ .
ago(t):)\(_)fo(t)+9(_) the mean-field NLFPHcf. Eq. (35)]. Thus we obtain

Co(A)~2E{(E) o &5 ) s (AL Dup.gr (AD)},

r
Y . (59 (65)

| = GoE ([l (D) + 0l (D]

where 7y, is the well-known stationary autocorrelation func-
tion of an Ornstein-Uhlenbeck process with vanishing mean,
that is,

where the variablegy , €, and&; are defined as

&0 - __»(_)(rum)
§D<t>)' =" 1))

bo(t):=£g, (=M. By means of Eqs(45), (65), and (66) we can now explain
To gain further insight into the model properties, we nowthe characteristic featulres of the mean squared displacement
reduce the number of independent variables. We look foff(At) of the COP motior(cf. Fig. 4. _
cases in which a distinction can be made between order pa- The correlation functiorC(At) exhibits two different re-
rameters and enslaved variab[&8,76. It has been argued 9dimes because of the two different time scales ofMfendg
that neural systems typically allow for such a partitioningdynamics that are already present in the conventional VITE
(Ref [77], Sec. 20)_ According|y, we consider the afore- model; cf. Eq5(49)—(51) Moreover, the correlation function
mentioned case in which is much larger than Inote that ~C(At) scales faster than linearity in the short-term regime
we rescaled time to elimina®®. In addition, we assume that due to the mean field affecting trggdynamics of the ex-
the productGem is bounded, so that far>1 the conditions ~ tended version; cf. Eqg52)—(54). In short, the interplay of
4Gym<(1-c)?, |INO)[=|A()], and|r()|>1 hold. Then f[he megn-ﬂ_eld coupllr_1g and the VITE model a||OWS for an
both eigenvalues are real and negative, and we can identifjpteresting interpretation of postural data. In detail, we as-

(D) andEg(t) as the order parameters, whiig(t) can be sume that in the short-term regingee., At e (0s,1s]) the

viewed as the enslaved mode. Accordingly, adiabatic e"mi_autocorrelanon function 7y varies slowly, whereas

) L~ i ~ ~ Nur:g (At) decays rapidly to its saturation valu@?.
nation yieldsép(t) as a function oky(t), &(1), and of the  cp6a5inge(2) appropriately, we can model the characteris-
time-averaged noise sourcé!exp{— |\ |(t—)T\(7)d7.

. o . . tic scaling behaviolC(At)=(At)Hs, with H,>0.5. For ex-
Neglecting this noise sourceNand using the inverse transforémpb, introducing a characteristic time scaje and utiliz-
mation &p(t) = w; &y(t) + w5 Y& (t), we can explicitly ex-  ing #(2)=(2vz>" Yl 74 for ND|At=~0, Eq. (65 can be

pressép(t) in terms of,(t) and§, as approximated by

Ev(t)‘zﬁ(ﬂ

60) (A = (&) sexp{ — [N At (66)
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two-point the condition Tg,<1/|)\(+)|, can also be observed for the
correlation long-term approx. weaker conditionry, < 1/|)\(+)|.
[mm2(s]

4

A

V. CONCLUSIONS

In the present paper we studied interactions between sub-
systems that depend nonlinearly on mean fields which, in
turn, are generated by these subsystems. In line with conven-
tional mean-field approaches, we derived mean-field
NLFPE’s which can approximate the overall stochastic be-
havior of such systems. We illustrated our results by two
examples: a formal dynamical system showing a pitchfork

shortterm appror. bifurcation in the second moment, and a neurophysiologi-
cally motivated model for postural control.
FIG. 5. lllustration of the correlation functio@y of the multi- In closing, we would like to highlight two specific but

plicative compound process and its two constituents that are relategheoretically important features of the stochastic concept pre-
to a “fast” Ornstein-Uhlenbeck process with mean field coupling sented in this paper by comparing it with the theoretical ap-
and to a “slow” and ordinary Ornstein-Uhlenbeck process. Theproach to the problem of quiet standing adopted by Chow
graph ofCp (solid line) was computed from Ed65). The graph of and co-workers: the pinned polymer modéi,62. This
the short-term approximatiotiower dashed linewas computed 40| js hased on the assumption that postural control is
from Eq. .(67)' T.he graph o.f the lpng'term approx'mat'(é.“pper achieved in a spatially distributed physical bagduch as the
dalsh;ad I'rge varies 0”.'{‘ Sh“ght'y Ik? ﬁtge. sr;]ortl'term regime\l 1 man bodywhose degrees of freedom are restricted to two
<1s), and merges with the grap in the long-term regime . . SR . !
(At>1s). The long-term approximation was calculated from Eq.?ér;gﬂt?n; r?ilrJ]Z) t(I)na(:gr?tIrnat!L(ethrtlag:jdeggrri]nt?grgloor; ;octg% ?gr\:'
(68), and reflects the contribution (?f the "slow” Ordi{f’}ryf) rstein- dom Walkpvia zerb-dimensior;al stochast?c processes does not
S;Ifg?;ikgg?;icszss,t% thi.??Zi\gzr(?\zi':g_;' =08, require the physical body under consideration to be vastly
extended in space. Consequently, the present paper raises the
- question of_whether co_rrelateo_l random Wa_lks with the tex-
C (At)wZ(?(EZ) tg2 (1—ex _ (A1) ) ture of f_ractlonaI.Browr_nan motions and stationary two-point
D V/sbstg! Ty correlation functions displaying kinks can also be found, for
(02er, gxample, during postural contrql of limbs With compara-
9 tively small masses and extensions such as fingers or the
= Cp(At) human handhand tremoy. In addition, the above-mentioned
o (At)2". (67) features of postural sway may further be four_1d, for instance,
in the stationary performance of rhythmic movements

. . : . . because—as the analyses in this paper clearly suggest—they
After this rapid saturation ofy;q/(At), there might still be do not necessitate a rigid link of the limb with the environ-

some significant exponential decay of the autocorrelatior?nent_ In contrast, our main finding was that two-point cor-

function #7g . In this case, the mean squared displacemeny|ation functions that resemble correlation functions of frac-
decreases sublinearfgoncavity of exponential functiond  tional Brownian walks, and are interspersed by kinks, can be

the long-term regime, and we can approximatg(At) by induced by cooperative effects of distinct neural motor con-
trol units being subjected to noise and composed of a large
CD(At)%Zé2<E\2/>St(<§S’>St_ m2 exp{ — |\ ()| At}). number of mean-field coupled subsystems. This result can

(69) provide a sound basis for future experimental investigations
designed to study stochastic phenomena of this kind. The

The qualitative reproduction of the aforementioned experi-Second important issue that we want to emphasize here con-

I . . P erns the applicability of the concept of stochastic processes
mental f|nd|Dgs~gan be rzealevy achieved by ?dIUSt_mg the fre%efined by mean-field nonlinear Fokker-Planck equations.
parameterst*(&)s;, (&), M, 74, and \(*). Figure 5

g ¢ Unlike the pinned polymer model, the concepts of stochastic
shows a rough fit ofCp(At) defined by Eq.(65 to the  processes described by mean-field nonlinear Fokker-Planck
empirical correlation functiol©{,,{At) displayed in Fig. 4. equations can be applied to various deterministic motor con-
In Fig. 5 a more general case Is shown, in which the timerol theories, provided that they are formulated in terms of
scales of the autocorrelation functiofy and nye,q- are not  ordinary differential equations. The latter have to be replaced
markedly different. Therery, <1/\*)| holds rather than by a set of identical ordinary differential equations with ad-
Tg,<1/|)\(+)|, so that the random procegg also affects the ditional (white) noise forces and appropriately defined mean-
short-term regime. This may result in a scaling exponent field couplings. Such applications, however, should not be
that is significantly larger than the one of the short-term reviewed as mere supplements of deterministic theories aiming
gime Hg (cf. Fig. 5. The main features, however, of the at a stochastic description of phenomena that can already be
mean squared displacemditiq. (65)], as discussed under explained by deterministic models. On the contrary, the con-
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cepts of stochastic processes determined by nonlinear 1
Fokker-Planck equations predict and explain phenomena that D(‘I),t):f f 5( o mz f{xut
can hardly be handled by traditional stochastic theories, and kT

that are impossible to handle by deterministic models.

APPENDIX A: SECOND DERIVATION OF THE
MEAN-FIELD NLFPE (11)

The crucial step in the derivation of the mean-field

NLFPE (11) is to show tha®] M, ], as defined by Eq14),

can be approximated by E(L9), provided that foN>1 the
joint probability densityM, factorizes intoN—1 copies of a
one-variable limiting case probability densify. Now, we

dispense with conditiofiL2), and assume that mean and vari-
ance ofR(x,t) are finite. If the transformed probability den-

sity R'(x’,t), defined byR’'(x',t)dx":=R(x,t)dx with x’
=f,(x), satisfies the Lindeberg conditidi@8,79, then, as
shown below, we find that

y[Mr] :§< NiKl::<fy(X)>R(X,t) 1K2

+0

W
=)

1/2 7z—K
G(NKy K 2>—\/(2 K) f (z)exp{ (2 K:)

:f ’y(Z)g(Z,K]_,Kle)dZv

- ﬁo [F(x)— K4 ]2R(x,1)dx

(A1)

i

where the Gaussian probability dens@yz;K,,K,/N) has
meanK; and varianceK, /N, and tends to & distribution
for N>1; that is, we have ligg_.. 9(N,K,K5)=y(K,).
Inserting this limit into Eq(A1) yields

MMr] = Y(<f7(x)>7€(x,t))!

which coincides with Eq(19). However, by inserting Eq.
(A1) instead of Eq.A2) into Eq. (20), we obtain a mean-

(A2)

field NLFPE which can be considered as a higher order a
proximation. According to Eq(Al) the error of these esti-

mate is of the order 1N, whereas for Eq.(A2) an
additional error e(N)=|y(Ky)— [ v(2)G(z;K1,K,/N)dZ

occurs. For very largéN, however, both the term propor-

tional to 1A/N and the terme(N) become arbitrarily small

><|H R(x,,1)dx . (A4)
#r
Then Eq.(A3) can be written

M= [ v@p@pde. a9

D(d,t) can be determined by use &' (z',t) defined on
A':={z":2'=1 (z)0ze (—=,*)} according to

1
D((I),t)zfA,mfA,(S(d)—mz xlﬁ)H R (X[ ,t)dx .

k#r I#r
(A6)

If X(t) andx’(t) [o?(t) ando’?(t)] denote the mear(sari-
ance$ of R(x,t) andR'(x',t), then we find

Y’(t)::f Z’R’(z’,t)dz’:Joc f(2)R(z,1)dz,
A —w

(A7)
o'(t):= J [z=X

f [f(2)—

We assume that(t) and o(t) are finite, which implies for
k,>1 thatx’(t) ando'2(t) are also finitgfor k,e(0,1] we
have to guarantee that(t) ando’'?(t) are f|n|tq When we
use the parameter-dependent scalffigN)=z'/(N—1), so
that the corresponding variance, mean value, and probability
density read o"%(t,N):=c'2(t)/(N-1)?, X'(t,N)
=x"(t)/(N-1), and R"(Z",t,N)dZ'(N):=R'(z’,t)dZ,
then, Eq.(A6) becomes

X' 1?’R'(z' ,t)dZ’

X 1?R(z,t)dz

p-

D(@,t):f f 5(@—2 x;;)l'[ R (X, t)dx .

k#r I#r
(A8)

and negligible. Note that, by analogy, we can derive a resulNow D(®,t) is the probability density of a random variable

similar to Eq.(Al) for the diffusion term of the NLFPIE0).
To outline the derivation of EqA1), we first rewrite the
integral )] M, ] in Eq. (14) in terms of R(x, ,t) as

1
J{Mr]:f f V(WEr fy{xk})ll;[r R(x;,t)dx .
(A3)
We can express the probabiliy(®,t)d® that we find the

mean fields, =%, f (&)/(N—-1) [cf. Eq.(D)], in [P, P
+d®] by

which can be computed from the sumMf- 1 random vari-
ables. As stated earlier, we require th&t(z',t) obeys
the Lindeberg condition [78,79, that is, VA
>0: limy_.[s[2' 1?R'[2' =X (t),t]dZ' =0, where the set
B’ is defined byB':=A'/{z":|z’'|<\ JN}. Note that the Lin-
deberg condition states that the asymptotic parts of probabil-
ity densities(i.e., the tail$ are negligible. Since, by assump-
tion, the Lindeberg condition is satisfied fét'(z',t), the
Lindeberg condition is also satisfied f&"(z",t) [80]. Con-
sequently, the central limit theoref2,78,79,81 applies to
Eqg. (A8), and forN>1 we obtain
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/ (®—NX'(t,N))2 d 0
CI) t) //2 t N) eXp{ 27TN0'”2(t,N) } a#(t)_V{REy (t)}[ﬂ(t)_m]a

d
+0 ﬁ (A9) i =(0=—2/{"EP O}w()+Q{FEQ' (1}, (B3
N N(D—F'(1))? p(t)=(Nrxty» @ (to)=([x—m(to) 1) rxty -
= 2 12 eXp - 2 12
moo) mo (o) Note that on account of E¢B2), the functionl{ is normal-
~ ~ ~ ized, and can be seen as a probability density. As indicated
GHB:E (1),0" 2D} N by the preceding upper indeR, the expectation values
REW(t) and REY(1) for n=1,... ng in Egs.(B1)—(B3)
‘o L are computed fronR(x,t) rather tharl/(x,t). Henceld(x,t)
JN (A10)  does not coincide with\V[x;a(t),x(t)], and Eq.(B1) re-

mains linear with respect téd/ but contains the time-

This result, in combination with Eq$A5) and (A7), corre- ~ dependent  drift and  diffusion  coefficientsy(t)
sponds to propositiofA1). To estimate the error in Eq. =¥{*E)(t)} and Q(t):=Q{*E{(1)}. We can therefore
(A9), we can derive Eq(A9) via Taylor expansion of prob- adopt theH theorem of the theory of linear Fokker-Planck
ability operatorgRef.[78], Chap. 8, and find that the range equations by introducing the functional
in which the Taylor expansion is evaluated scales witfiNL/
(i.e., € defined in Ref[78] is proportional to 1{N). Hence R(x,t)
VX:|If x(X—2)[D(z,t) — G(z,t)]dZ||<O(1/YN) (theorem 1 U(x,1)
in Ref.[78], Sec. 8.4, wherex(z) e ([ —»,»] denotes a test
function and||-|| corresponds to the supremum norm. Conse<Since the Fokker-Planck equations & and/ have com-
quently, with X=0 and x(z2)=y(—-2) we find that on grift and diffusion coefficientd/(t) andQ(t), we can
I/ ¥(2)[D(z,t) - G(z,t)1dZ|=O(1/\N), which is consistent  girectly calculate the derivative ¢f, and obtain
with Eq. (A10). For an alternative derivation of tf@(1/\/N)
term, we refer to Refl81], Chap. 1.
o
(BS)

dx=0. (B4)

H(t) —f R(X,)IN| ———

R(X,1)
L{(x t)

(9
H(t)——Q(t)j R(X,1) (

APPENDIX B: ASYMPTOTIC SOLUTIONS— H
THEOREM From Eqgs.(B4) and (BS), it follows that in the limitt—t,
We show that any probability densitg(x,ty) given at = thg denvaﬂveBH _vanlshes. Given the p_osm_\nty of the
the initial timet, converges in the limit—ty— to a cor- ~ fluctuation strengttQ, lim,_; _..dH(t)/dt=0 implies
responding Gaussian probability densitf x, w (t), u(t)] as
defined by Eqs(23) and(24). To prove this assertion, let us lim [R(x,t)—U(x,t)]=0. (B6)
consider an arbitrary probability densif(x,t) solving Eq. t—tg—o

(22), and a functiori/(x,t) which satisfies
For further details the reader is referred to Ré&0]. In the

d d 1 limit t—ty—, we can now replace the expectation values
U0 = 2 ARE O padx) REM(t) and REQ(t) computed fromR(x,t) by “EM(t)

L 7 and “E(”)(t) computed fromiA(x,t), so that Eqs(BZ) and
+_Q{RE(1>(U}_2U(X,»[)_ (B1) (B3) agree with Eqs(23) and (24), and U(x,t) coincides

2 Q@ ax with Wx;w(t), u(t)]. By virtue of Eq.(B6), we can thus

. conclude that
Using the ansatz

lim R(x,t)= lim UXt)=WX;w(t),u(t)],

(BZ) t—tg—> t—tg—>

ity L ey X (0)] ]

V2mw(t) D[ 2w (t)

leads, in analogy to Eq$23) and(24), to the set of ordinary with W x;w(t),«(t)] described by Eq9423) and(24), and
differential equations the initial conditions formulated in EdB3).

(B7)
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