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Multivariate Ornstein-Uhlenbeck processes with mean-field dependent coefficients:
Application to postural sway

T. D. Frank, A. Daffertshofer, and P. J. Beek
Faculty of Human Movement Sciences, Vrije Universiteit, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherland

~Received 2 May 2000; published 21 December 2000!

We study the transient and stationary behavior of many-particle systems in terms of multivariate Ornstein-
Uhlenbeck processes with friction and diffusion coefficients that depend nonlinearly on process mean fields.
Mean-field approximations of this kind of system are derived in terms of Fokker-Planck equations. In such
systems, multiple stationary solutions as well as bifurcations of stationary solutions may occur. In addition,
strictly monotonically decreasing steady-state autocorrelation functions that decay faster than exponential
functions are found, which are used to describe the erratic motion of the center of pressure during quiet
standing.
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I. INTRODUCTION

The growing interest in the cooperative behavior of s
chastic many-particle systems has amplified the need
suitable analytical tools for investigating their transient a
stationary properties. Analytical treatments of overdamp
stochastic systems consisting of a large number of mutu
coupled subsystems often require analytical treatment
terms of mean-field approaches. Such approaches may
serve as entry points for investigations of complex syste
exhibiting more general structures. Many authors have s
ied mean-field approximations of multivariate Langev
equations. The validity of these works will be taken f
granted in this paper.

Kometani and Shimizu introduced a system involvi
mean-field coupling to describe biochemical reactions dur
muscular contraction@1#. This model was examined by Des
and Zwanzig in terms of a mean-field approximation@2,3#,
and a corresponding nonlinear Fokker-Planck equa
~NLFPE! was derived@4#. Dawson@5# presented an alterna
tive derivation of this NLFPE on the basis of studies
McKean @6#. Since then, many studies were devoted to
topic of such mean-field couplings. For instance, Shiino@7#
derived anH theorem for the NLFPE proposed by Desai a
Zwanzig. Several numerical techniques were proposed
deal with both the stochastic differential equations@8# and
the NLFPE @9–11#. Mean-field approximations of model
that describe spatially distributed systems and take mult
cative noise processes into account were extensively stu
by van den Broeck and co-workers and others@12–16#.

All the studies listed so far have in common that me
fields are established as linear superpositions of the state
the subsystems. In contrast, mean fields generated by no
ear superpositions of the state variables of the subsys
were predominantly studied in the context of the coup
oscillator models proposed by Winfree@17# and Kuramoto
@18,19#, who found applications in neuroscience and artific
neural networks theory@20–23#, with a specific emphasis o
coupled oscillators with unequal eigenfrequencies@24–30#.
Both Kuramoto@19# and Desai and Zwanzig@4# interpreted
the respective mean fields as macroscopic variables tha
1063-651X/2000/63~1!/011905~16!/$15.00 63 0119
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generated by the subsystems and, at the same time, act o
subsystems. Irrespective of its generating structure~linear or
nonlinear superposition! the dependency of the evolutio
equations of the subsystems on the mean fields is usu
considered to be linear. In biology, however, we are of
concerned with systems that depend in a nonlinear fash
on these macroscopic variables. For example, in neu
science we may regard the soma membrane potential
particular neuron of a spatially distributed population of ne
rons as a mean-field variable based on the superpositio
the dendritic currents delivered by other members of
population in question. The pulse rate generated by this
ticular neuron may depend in a highly nonlinear fashion
the soma potential, that is, on the mean-field varia
@20,31–36#. In studies of human movement, mean-field va
ables may express physiologically relevant quantities.
instance, the variance computed from the outputs of sim
neurons of a single motor control unit may be seen as
accuracy measure for output signals of that unit. Beek
co-workers@37,38# and Bullock et al. @39#, among others,
emphasized the need for comprehensive models of hu
motor control that incorporate such physiologically meanin
ful variables~informational variables and variables of pe
ception!. Furthermore, it was argued that neurophysiologi
variables such as task-related neural processing times sh
be incorporated into models of human motor control@40,41#.
This requirement is tantamount to taking stochastic prop
ties of afferent and efferent signals into account because
cessing time is related to stochastic variables such as m
ment accuracy, variance, and entropy of motor performa
~Ref. @42#, Chaps. 6–9!. At issue, therefore, is how to exten
concepts derived for stochastic subsystems that depend
early on their mean fields to more general, nonlinear ca
In other words, mean-field models such as proposed by
sai and Zwanzig and by Kuramoto depend linearly on me
fields composed of arbitrary interactions of their subsyste
Regardless of the explicit form of the interactions~linear or
nonlinear!, these models are, by definition, linear with r
spect to the mean fields. Both a phenomenological an
structural microscopic point of view, however, suggest t
many systems depend nonlinearly on mean fields, which
quires a generalization of the theory of mean-field coup
systems developed so far.

The present paper seeks to contribute to such a gene
©2000 The American Physical Society05-1
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zation by investigating appropriately defined classes of
chastic systems. NLFPE’s are obtained from mean-field
proximations of these systems, and their transient
stationary solutions are discussed. The paradigmatic cas
mean fields established by the system’s cumulants is stu
in detail. In the context of pitchfork bifurcations, the eme
gence of multiple stationary solutions is discussed. Furth
more, stochastic systems featuring a general class of st
autocorrelations are proposed. These findings are finally
plied in a physiologically motivated model of human mot
control that can reproduce the experimentally observed
chastic properties of the random walk of the center of pr
sure during quiet standing of humans. In short, the pres
paper focuses on the derivation of NLFPE’s for systems
large ensembles. The constituents arbitrarily interact w
each other, and generate mean fields that affect the e
system in a nonlinear fashion. After investigating more g
eral properties of such systems, we apply these forms
explain some key features of postural sway during qu
stance.

We would like to emphasize that mean-field NLFPE’s c
be viewed as macroscopic descriptions of stochastic sys
derived from microscopic descriptions of their constituen
Similar NLFPE’s can be derived, however, on the basis
purely macroscopic considerations invoking variables s
as the systems’ entropy or energy~e.g., Refs.@43–49#!.

II. SYSTEMS WITH MEAN-FIELD-DEPENDENT
COEFFICIENTS

We consider a system that is composed ofN individual
subsystems. Each subsystem, indexed byj 51,...,N, is de-
scribed by a real dimensionless stochastic variablej j . For
the entire set$j j% j 51,...,N of random variables we can for
mally define the corresponding multivariate probability de
sity P(x1 ,...,xN). However, we may also be interested in t
one-variable probability densities achieved by integrati
Wk(xk)ª*¯*P(x1 ...,xN)P l 51,lÞk

N dxl . Suppose that the
subsystems are coupled by means of a superposition of
individual statesj j according tosª$S j 51

N f (j j )%/N, with
f (z)5z. In this particular case, we can interpret the varia
s as a mean field generated by all subcomponents, so tha
large populations (N@1) the system as a whole becom
amenable to a mean-field approximation. Thens can be re-
placed by its expectation valuês&P , where the functional
^•&P denotes the average with respect to the probability d
sity P @2,3#. Since^s&P represents a scalar, this approxim
tion usually yields a simplified description of the problem
hand, which can often be solved analytically in a se
consistent fashion. In a similar manner, nonlinear coupl
functions of the forms̃5$S j 51

N f (j j )%/N can be handled
whenf is an arbitrary infinitely differentiable function. In th
present paper, we treat stochastic processes that arise
multivariate Ornstein-Uhlbenbeck processes by replacing
friction coefficient and the fluctuation strength by functio
of mean field variables. In detail, the system of study rea
for N@1,
01190
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d

dt
j j~ t !52g~sg, j !@j j~ t !2m#1AQ~sQ, j !G j~ t !,

~1!

sg, j5
1

N21 (
k51,kÞ j

N

f g~jk!, sQ, j5
1

N21 (
l 51,lÞ j

N

f Q~j l !.

In the following, we restrict ourselves to the case of natu
boundary conditions by assuminguxW u→`⇒P(x1 ,...,xN ,t)
→0, with xW5(x1 ,...,xN). For the individual terms in Eq.~1!
we further requiref g(•), f Q(•),g(•),Q(•)PC`(R) and we
put g>0 and f v(cz)5ckv f v(z), with kv.0 for cPR and
vP$g,Q%. Hence we utilize homogeneous functions of d
greekv larger than zero. As common, the Langevin forc
G j (t) are assumed to be statistically independent white no
sources with^G i(t)&50 and ^G i(t)Gk(t8)&5d i ,kd(t2t8),
where d~•! is the d distribution andd i ,k denotes the Kro-
necker symbol. The fluctuation strength is measured byQ
.0 and, in general, may depend on a mean fieldsQ, j . Fur-
thermore, we interpret the stochastic evolution equations
Ito-Langevin equations@50#. Note that in the deterministic
case (Q→0), for g(z)5const.0, the constantm describes
the stable fixed point of the system, and we do not allow
self-interactions of the subsystems, cf. the definitions ofsg, j
and sQ, j in Eqs. ~1!. In the following, we assume the exis
tence of transient and stationary solutions of the system
equations~1!, and attempt to determine these solutions,
least approximately, using mean-field approaches.

A. Steady-state solutions

We first study the stationary solutions of the mean fie
approximation of Eq.~1!. To this end, we replacesg, j and
sQ, j by the respective expectation values, which yields

d

dt
j j~ t !52g~^sg, j&P!@j j~ t !2m#1AQ~^sQ, j&P!G j~ t !,

^sg, j&P5
1

N21 (
kÞ j

^ f g~xk!&Wk
, ~2!

^sQ, j&P5
1

N21 (
lÞ j

^ f Q~xl !&Wl
,

with ^ f v(xr)&Wr
5* f v(xr)Wr(xr ,t)dxr for nP$g,Q%. All

the N subsystems in Eqs.~2! can be considered as formall
equivalent random walks with similar stochastic properti
Consequently, we assume that for largeN the corresponding
probability densities are almost identical, that is,W1(•,t)
'W2(•,t)'¯'WN(•,t)'R(•,t), so that Eqs.~2! be-
comes

d

dt
j j~ t !52g~^ f g~xj !&Pst

!@j j~ t !2m#

1AQ@^ f Q~xj !&Rst
#G j~ t !, ~3!

which is a self-consistent stochastic differential equation.
the stationary case, the friction coefficientg and the fluctua-
5-2
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tion strengthQ correspond to the stationary valuesgst.0
and Qst>0, respectively. From Eq.~3! we can derive the
stationary probability densityRst(x) by computing the ex-
pectation valueŝ(x2m)n&Rst(x)

for all n>1, cf., e.g., Ref.
@50#, Chap. 3, which leads to

Rst~x!5S gst

pQst
D 1/2

expH 2
gst

Qst
~x2m!2J ~4!

and

gst/Qst5g@^ f g~x!&Pst
#/Q@^ f Q~x!&Pst

#. ~5!

We dropped the indexj to indicate that this result holds fo
any subsystemj. In order to determine the explicit form o
Rst(x), we first solve the transcendent equation~5! for the
ratio gst/Qst, which, when inserted into Eq.~4!, yields the
stationary solution.

B. Transient solutions—linear casesg„z…Äg̃z and Q„z…ÄQ̃z

We proceed by discussing mean-field approximations
the transient solutions of the general system given by Eq.~1!.
First, however, we review the linear case~also see Desai an
Zwanzig @4#!. The stochastic process@Eq. ~1!# can equiva-
lently be expressed by the multivariate Fokker-Planck eq
tion ~cf., e.g., Ref.@50#!

]

]t
P~x1 ,..,xN ,t !5(

j 51

N
]

]xj
g~sg, j !@xj2m#P~x1 ,...,xN ,t !

1
1

2 (
j 51

N
]2

]xj
2 Q~sQ, j !P~x1 ,...,xN ,t !,

~6!

sg, j5
1

N21 (
k51,kÞ j

N

f g~xk!, sQ, j5
1

N21 (
l 51,lÞ j

N

f Q~xl !.

For linear formsg(z)5g̃z and Q(z)5Q̃z, with g̃, Q̃.0,
one obtains

]

]t
P~x1 ,...,xN ,t !5

g̃

N21 (
j 51

N F (
k51,kÞ j

N

f g~xk!G
3

]

]xj
@xj2m#P~x1 ,...,xN ,t !

1
Q̃

2~N21! (j 51

N F (
k51,kÞ j

N

f Q~xk!G
3

]2

]xj
2 P~x1 ,...,xN ,t !. ~7!

We can then exploit the identity
01190
f

a-

H E ¯E h̃~xk!
]

]xj
@xj2m#P~x1 ,...,xN ,t ! )

l 51,lÞr

N

dxlJ
j Þk

[H d j ,rE h̃~xk!
]

]xr
@xr2m#r r ,k~xr ,xk ,t !dxkJ

j Þk

, ~8!

where h̃(z)PC` denotes an arbitrary function, an
r r ,k(xr ,xk ,t) the joint probability density defined by
r r ,k(xr ,xk ,t)ª*¯*P(x1 ,...,xN)P l 51,lÞr ,lÞk

N dxl . Accord-
ingly, integrating Eq.~7! with respect to the variablesxj with
j Þr yields the evolution equation of the one-variable pro
ability densitiesWr(xr ,t):

]

]t
Wr~xr ,t !5

g̃

N21 (
k51,kÞr

N
]

]xr

3@xr2m#E f g~xr !r r ,k~xr ,xk ,t !dxk

1
Q̃

2~N21! (
k51,kÞr

N
]2

]xr
2

3E f Q~xr !,r r ,k~xr ,xk ,t !dxk . ~9!

Following Desai and Zwanzig@4#, we assume that forN
@1 the joint probability densities factorize according
r r ,k(xr ,xk ,t)5Wr(xr ,t)Wk(xk ,t). Given that the one-
variable probability densities again describe identical s
chastic processes, that is,W1(•,t)'W2(•,t)'¯'WN
(•,t)'R(•,t) @cf. Eq. ~3!#, the diffusion equation~9! be-
comes

]

]t
R~x,t !5g̃•^ f g~x!&R

]

]x
@x2m#R~x,t !

1
Q̃

2
•^ f Q~x!&R

]2

]xj
2 R~x,t !. ~10!

Note that we dropped the indexr. Obviously, the stationary
solution of the NLFPE~10! agrees with the stationary solu
tion defined by Eqs.~4! and ~5!, and we can conclude tha
the NLFPE~10! describes a mean-field approximation of t
transient and steady-state behavior of the system given
Eq. ~1! for the linear case@g(z)5g̃z, Q(z)5Q̃z#.

C. Transient solutions—nonlinear case and hierarchies
of mean-field couplings

In analogy to the special case of a linear dependency
the friction coefficient and the fluctuation strength on me
fields, we now propose an NLFPE of the form

]

]t
R~x,t !5g@^ f g~x!&R#

]

]x
@x2m#R~x,t !

1
1

2
Q@^ f Q~x!&R#

]2

]x2 R~x,t ! ~11!
5-3
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for the nonlinear case. Note that forg(z)5g̃z and Q(z)
5Q̃z the NLFPE~11! recovers the linear case given by E
~10!. Moreover, for arbitraryg(sg, j ) andQ(sQ, j ) the station-
ary solution of the NLFPE~11! agrees with the stationar
solution given by Eqs.~4! and ~5!. Therefore, the question
arises whether transient solutions of the NLFPE~11! can be
viewed as mean-field approximations of the solutions of
original system defined by Eqs.~1!. Unfortunately, we can-
not answer this question in general but we can derive
~11! using two approaches. We will first obtain Eq.~11!
under quite restrictive conditions with regard to the stoch
tic processes being studied. This first derivation, howev
appeals to our intuitive understanding of mean-field coup
systems. The second derivation of Eq.~11! is based on the
central limit theorem, and is presented in Appendix A. Us
this second derivation we can weaken the conditions
posed on the processes under considerations. In addition
can discuss the accuracy of the mean-field approximatio

We confine ourselves now to an important special cas
which the time-dependent joint probability densi
P(x1 ,...,xN ,t) has a single global maximum. Explicitly, w
require

;t: zu$x̄* :P~x1* ,...,xN* ,t !5max%uz51, ~12!

wherezu$•%uz denotes the number of elements of the set$•%. Of
course, whether stochastic processes determined by Eq~1!
obey condition~12! depends on the explicit forms ofg(•),
Q(•), f g(•), and f Q(•), as well as on the initial distribu
tions. Nevertheless, the processes satisfying Eq.~12! repre-
sent a rather general class of stochastic processes. Fo
sake of simplicity, to derive Eq.~11! we first put Q(z)
5Q05constant withQ0.0. To treat this case, we start wit
the evolution equation of the one-variable probability den
ties Wr(xr ,t) that can be obtained from the multivaria
Fokker-Planck equation~6! according to

]

]t
Wr~xr ,t !5

]

]xr
@xr2m#

3E ¯E gH 1

N21 (
kÞr

f g~xr !J
3P~x1 ,...,xN ,t !)

lÞr
dxl1

Q0

2

]2

]xr
2 Wr~xr ,t !.

~13!

For N@1 we assume that the random variablesj j become
statistically independent. In this case, we can decomposP
into the product of the one-variable probability densityWk of
the random variablejk and the joint probability densityMk
of all other random variablesj j but jk , that is,
P(x1 ,...,xN ,t)5Wk(xk ,t)Mk(...,xk21 ,xk11 ,...,t). Then
Eq. ~13! can be transformed into
01190
e

q.

-
r,
d

-
we

in
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]

]t
Wr~xr ,t !5Y@Mr #

]

]xr
@xr2m#Wr~xr ,t !

1
Q0

2

]2

]xr
2 Wr~xr ,t !,

~14!

Y@Mr #ªE ¯E gH 1

N21 (
kÞr

f g~xk!J
3Mr~ ...,xr 21 ,xr 11 ,...,t !)

lÞr
dxl .

Now we introduce new time-dependent variablesxW r
max(t)

5@...,xr21
max(t),xr11

max(t),...# that describe the maximum ofMr at
time t. Any point xW r of the respective subspaceR(N21) dif-
ferent from xW r

max is thus assigned to a probability densi
Mr(xW r ,t) that is much smaller thanMr@xW r

max(t),t#. That is,
N@1⇒Mr(xW r ,t)!Mr@xW r

max(t),t# for xW rÞxW r
max. Conse-

quently, for suitably chosen functionsf g , for N@1 the joint
probability densityMr(xW r ,t) can act similarly to ad distri-
bution. Let us elucidate this point by substitutingyi
ªxi /(N21)1/kg, so thatY@Mr # becomes

Y@Mr #5E ¯E gH (
kÞr

f g~yk!J
3Mr8~ ...,yr 21 ,yr 11 ,...,t;N!)

lÞr
dyl . ~15!

Mr8(...) is thenormalized joint probability density

Mr8~yW r ,t;N!ª~N21!~N21!/kgMr@~N21!1/kgyW r ,t#. ~16!

By definition, Mr(xW r ,t) has a unique maximum atxW r
max(t)

and, consequently, the rescaled joint probability densityMr8
has a unique maximum atyW r

max5xW r
max/(N21)1/kg. For N@1

we assume again that the individual random proces
are statistically equivalent @i.e., W1(•,t)'W2(•,t)
'¯'WN(•,t)'R(•,t)#. Then, Mr8(yW r(t),t;N) can be
expressed as

Mr8~yW r ,t;N!ª~N21!~N21!/kg )
k51,kÞr

N

R~@N21#1/kgyk ,t !

~17!

and the ratio$Mr8(yW r ,t;N)/Mr8@yW r
max(t),t;N#% vanishes for

any yW rÞyW r
max(t) for N@1. In addition, the functionv t(z)

ªR@(N21)1/kgz,t# decays rapidly from its maximum valu
becausekg.0. In sum,Mr8 converges forN@1 to ad dis-
tribution: Mr8(yW r ,t;N@1)'d(yW r2yW r

max$t%), allowing inte-
gral ~15! to be written as

Y@Mr #5gS E ¯E F(
kÞr

f g~yk!G
3Mr8~ ...,yr 21 ,yr 11 ,...,t;N!)

lÞr
dyl D ~18!
5-4
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5gS (
kÞr

^ f g~xk!&Wk~xk ,t !D
5g@^ f g~xr !&R~xr ,t !#. ~19!

Inserting into Eq.~14! results in

]

]t
R~x,t !5Y ]

]x
@x2m#R~x,t !1

Q0

2

]2

]x2 R~x,t !.

~20!

The key property that we used in the derivation of Eq.~20! is
the assumption that constraint~12! holds. By the same rea
soning, we can deal with a fluctuation strengthQ5Q(z)
depending on mean-field variables such asz5sQ, j . In this
case, Eq.~20! assumes the form of the NLFPE~11! proposed
at the beginning of this section.

Note that the preceding findings can be even general
further in terms of coupling functionsf g(z,u) and f Q(z,v)
that depend on additional mean-field variablesu5sg, j8 and
v5sQ, j8 . The mean fieldssg, j8 andsQ, j8 , in turn, may involve
coupling functionsf g8(z,u) and f Q8 (z,v) that depend on othe
mean-field variablesu5sg, j9 andv5sQ, j9 . Let us denotesg, j

andsQ, j assg, j
(1) andsQ, j

(1) , respectively; cf. Eq.~1!. Then, we
can ‘‘recursively’’ define a hierarchy of mean-field co
plings, according to

sn, j
~n!
ª

1

N21 (
k51,kÞ j

N

f n
~n!~jk ,sn, j

~n11!!,

~21!

sn, j
~nd!

ª

1

N21 (
k51,kÞ j

N

f n
~nd!

~jk!,

for n51,2,3,...,(nd21) and nP$g,Q%. Analogously with
previous considerations, we can then derive a mean-field
proximation of the multivariate Langevin equation~1! in
terms of the NLFPE,

]

]t
R~x,t !5g$REg

~1!~ t !%
]

]x
@x2m#R~x,t !

1
1

2
Q$REQ

~1!~ t !%
]2

]x2 R~x,t !,

~22!
REn

~n!~ t !ª^ f n
~n!~x, REn

~n11!$t%!&R~x,t ! ,

REn
~nd!

~ t !ª^ f n
~nd!

~x!&R~x,t ! ,

for n51,2,3,...,(nd21) andnP$g,Q%. Based on the struc
ture of the NLFPE~22!, one can derive exact time-depende
solutions in terms of Gaussian probability densities. In det
the one-point probability densityR(x,t) is described by

W@x;Ã~ t !,m~ t !#5
1

A2pÃ~ t !
expH 2

@x2m~ t !#2

2Ã~ t ! J ,

~23!
01190
d

p-

t
l,

with time-dependent parametersÃ(t) and m(t), that is,
R(x,t)5W@x;Ã(t),m(t)#. For the functions m(t) and
Ã(t), this leads to

d

dt
m~ t !52g$ WEg

~1!~ t !%@m~ t !2m#,

~24!
d

dt
Ã~ t !522g$WEg

~1!~ t !%Ã~ t !1Q$WEQ
~1!~ t !%,

where Ã corresponds to the variance ofW. For constant
friction and diffusion coefficients,g5g0 and Q5Q0 , Eqs.
~23! and ~24! constitute the exact time-dependent stocha
description of classical Ornstein-Uhlenbeck processes@50#,
while, in general, they portray the exact time-dependent
lution of the NLFPE~22! in the case of an initial Gaussia
probability density. It can be shown that any solution of t
NLFPE ~22! converges to these Gaussian solutions; see
pendix B.

III. CUMULANTS AS MEAN FIELD COUPLINGS

A. Pitchfork bifurcation

We examine system~1! specifically for g5g0.0 and
m50 in the case of an arbitrary but symmetric coupli
function f Q(z)5 f Q(2z) ~here we dropped the superscri
f Q

(1)→ f Q). The corresponding mean-field~MF! approxima-
tion @Eq. ~22!# reads

]

]t
R~x,t !5g0

]

]x
xR~x,t !1

1

2
Q@^ f Q~x!&R~x,t !#

]2

]x2 R~x,t !,

~25!

which is solved by the Gaussian probability densityW; cf.
Eq. ~23!. According to Eq.~24! the dynamics of meanm(t)
and varianceÃ(t) of W then reads

d

dt
m~ t !52g0m~ t !,

~26!
d

dt
Ã~ t !522g0Ã~ t !1Q@^ f Q~x!&W@x;Ã~ t !,m~ t !##.

To discuss a stability criterion for this kind of stationa
solutions, letu andv be small deviations from the stationar
valuesmst50 andÃst5Qst/@2g0#, respectively. Then, the
linear stability analysis on the basis of Eq.~26! yields
du/dt52g0u and dv/dt5lv, where the corresponding
Lyapunov exponentl reads

l522g0F12
1

2g0

dQ8

dÃ U
Ãst

G ,

~27!
Q8~Ã!ªQ@^ f Q~x!&W@x;Ã~ t !,m~ t !##

5QS 1

A2pÃ~ t !
E f Q~x!expH 2

@x#2

2Ã~ t !J dxD .
5-5
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T. D. FRANK, A. DAFFERTSHOFER, AND P. J. BEEK PHYSICAL REVIEW E63 011905
Because of the symmetryf Q(z)5 f Q(2z) the expression
]Q8/]uum5mst50,Ã5Ãst

vanishes. In fact, the transcende

equation Ãst5Q8(Ãst)/@2g0#, in combination with Eq.
~27!, allows one to address the issue of stability in terms
geometric considerations. First we plot the functionsy1(Ã)
5Ã and y2(Ã)5Q8(Ã)/(2g0) in one diagram. Then the
intersections of the curves yields the valuesÃst at the sta-
tionary points. If the slope ofy2(Ã) at a particular pointÃst*
is larger than the slope of the diagonal, then the correspo
ing Lyapunov exponent is positive, that is, the station
solution is unstable. Otherwise, the stationary solution
stable@51#—a similar geometric stability criterion was de
rived by Shiino for the mean-field model proposed by De
and Zwanzig@7#.

In the following we illustrate these results by a syste
whose diffusion coefficientQ is composed of two parts ac
cording toQ5Q01QMF(sQ, j ). Q0 corresponds to a constan
fluctuation strength, whereasQMF couples the subsystem
For QMF[0 the stationary second momentM2,st is given by
M2,st5Q0 /(2g0). We assume thatQMF measures the devia
tion of the actual empirical second momentM2,j ,emp(t)
ª(kÞ jjk

2(t)/(N21) from Q0 /(2g0). Note that in this sec-
tion we consider systems with vanishing mean, so that s
ond moments and second cumulants are identical. Spe
cally, we choose

Q~sj !ªQ012aS H 1

N21 (
kÞ j

jk
2J 2

Q0

2g0
D

22bS H 1

N21 (
kÞ j

jk
2J 2

Q0

2g0
D 3

, ~28!

with positive control parametersa and b. Comparing Eq.
~28! with Eqs. ~21! and ~22!, we find f Q

(1)(z)5z2 and nd

51 and the mean-field approximation@Eq. ~25!# with

Q~^x2&R~x,t !!5Q012aS ^x2&R~x,t !2
Q0

2g0
D

22bS ^x2&R~x,t !2
Q0

2g0
D 3

. ~29!

More explicitly, insertingQ(^x2&R(x,t)) into Eq. ~25! yields

]

]t
R~x,t !5g0

]

]x
xR~x,t !1H Q0

2
1aS ^x2&R~x,t !2

Q0

2g0
D

2bS ^x2&R~x,t !2
Q0

2g0
D 3J ]2

]x2 R~x,t !. ~30!

Since transient solutions converge to Gaussian solution
the limit t→` ~cf. Appendix B!, we restrict the following
stability analysis to a time-dependent Gaussian probab
density W with vanishing mean defined by Eq.~23! with
m(t)[0. In this case, we can identifyM2(t)ª^x2&R(x,t) with
Ã(t). From Eq.~26! in combination with the definition for
Q(•) @cf. Eq. ~29!#, we obtain the evolution equation of th
second momentM2(t) according to
01190
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d

dt
M2~ t !522~g02a!H M2~ t !2

Q0

2g0
J

22bH M2~ t !2
Q0

2g0
J 3

, ~31!

which reveals a pitchfork bifurcation of the variableq(t)
5M2(t)2Q0 /(2g0) @52–54#. The stationary values becom
M2,st

(a)5Q0 /(2g0) for a.0 and M2,st
(b,6)5Q0 /(2g0)

6A(a2g0)/b for a.g0 . A stability analysis based on Eq
~31! reveals thatM2,st

(a) represents a stable stationary soluti
~cf. Ref. @51#! for a,g0 , and an unstable one fora.g0 ,
whereasM2,st

(b,6) describe stable stationary probability den
ties for a.g0 . In fact, we obtain identical results from th
stability analysis based on Eq.~27! by substitutingQ(•) de-
fined by Eq.~29! into Eq.~27!, and computing the Lyapunov
exponentl for the stationary solutionsM2,st

(a) andM2,st
(b,6) . In

detail, forM2,st
(a) we obtainl52(a2g0). For M2,st

(b,6) we ob-
tain l524(a2g0).

To further examine the impacts of the statistically mod
lated diffusion coefficients@Eq. ~28!# we finally analyze the
system numerically. To this end, we rescale Eqs.~1! and~28!
by means oft5g0t, e5a/g0 , and b85b/g0 and use the
random variablesj j8(t)5j j (t/g0) for which the Langevin
equations read

d

dt
j j8~t!52j j8~t!1F2C012eS H 1

N21 (
kÞ j

jk
2J 2C0D

22b8S H 1

N21 (
kÞ j

jk
2J 2C0D 3G1/2

G~ t !, ~32!

with C0ªQ0 /(2g0). Given Eq.~31!, the pitchfork bifurca-
tion occurs at the critical valuee51. Note thatQ(sj ).0 is
always satisfied by the stationary valuesM2,st

(a) and M2,st
(b,1) .

However, the admissible range ofe is restricted in the case o
M2,st

(b,2) in terms ofe,C0
2b811 ~cf. definitions ofM2,st

(b,2) ,
b8, andC0). Figure 1 shows the bifurcation diagram in th
stationary second momentM2,st obtained by simulating Eq
~32! for C051 and b854. The simulation of the lower
branch (M2,st

(b,2)) indicates the convergence of the stationa
probability density to ad distribution whene approaches its
maximal admissible valueemax55. Figures 2 and 3 illustrate
the stationary one-variable probability densitiesWst(x) for
different values ofe corresponding to the upper branch~Fig.
2! and the lower branch~Fig. 3! of the diagram in Fig. 1.

B. Stationary autocorrelations

In anticipation of the application of mean-field models
human motor control that will be presented in Sec. IV, w
now turn our attention to stochastic systems with nonvan
ing means, and consider the empirical variance§emp

2 in place
of the second moment. In contrast to Sec. III A, we exam
the solutions of Eq.~1! for a constant diffusion coefficien
~i.e., Q5Q05const) but consider a statistically modulate
drift term

gªg$§ i ,emp
2 ~ t !%
5-6
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FIG. 1. Bifurcation diagramM2,st as function ofe ~stable solu-
tions only!. Both curves were computed from the discrete vers
~cf. Ref. @50#! of the Langevin equation~32!: N510 000, single
time stepDt50.01, and 3000 iterations for everye. A d distribution
at x50 served as the initial distribution for thee50 trial. e was
increased in steps of 0.35~upper branch! and 0.19~lower branch!.
The final distribution of everye was used as initial distribution fo
the subsequent trial with increasede. 20 trials were performed. Due
to numerical constraints only one bifurcation branch was realize
the bifurcation point. To control the bifurcation of the solutions,
the bifurcation point the initial distribution was broadened by m
tiplying each representationj j by 1.05 in the upper branch o
squeezed by a factor ofj j by 0.95 in the lower branch.

FIG. 2. Stationary stable probability densities corresponding
the upper branch in Fig. 1. Beyond the critical valuee51, the
probability density evolves toward the uniform distribution whene
is increased.
01190
and

§ i ,emp
2 ~ t !ª

1

N21 (
kÞ i

S jk~ t !2H 1

N21 (
lÞ i

j l~ t !J D 2

.

~33!

Comparing Eq.~33! with Eqs. ~21! and ~22!, we find the
identities f g

(1)(z,sg, j
(2))5(z2sg, j

(2))2, f g
(2)(z)5z, and nd52.

With respect to the upcoming application, we are interes
in the steady-state autocorrelation functionh r of an indi-
vidual subsystemr defined as

h r~Dt;N!ª^j r~ t1Dt !j r~ t !&T
r ,st
~N!, ~34!

that can be computed from the stationary two-point proba
ity density T r ,st

(N)(yr ,t1Dt;xr ,t)ª*¯*P(N)(yW ,t
1Dt;xW ,t)P iÞr ,kÞrdyidxk , whenDt denotes the time inter
val Dtªt82t>0. The key idea is to approximateh r(Dt;N)
in terms of the steady-state autocorrelation function of
mean-field approximationhMF ; that is, we put

h r~Dt;N!'hMF~Dt !ª^j~ t1Dt !j~ t !&T
st
MF. ~35!

T st
~MF!(y,t1Dt;x,t) is the stationary joint probability densit

of the NLFPE ~22!. Generally, the correlation function
hMF(Dt) can be computed as

~36!

n

at
t
-

o

FIG. 3. Stationary stable probability densities corresponding
the lower branch in Fig. 1. Beyond the critical valuee51 the prob-
ability density evolves toward ad distribution for increasinge.
5-7
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Here T ~MF!(y,t8ux,t) represents the conditional probabili
density solving the NLFPE~22!. Therefore, the inner integra
in Eq. ~36! can be viewed as the conditional mean ofj(t8)
that can be computed from the NLFPE~22! assuming the
initial condition R(z,t)5d(z2x). Indeed,T ~MF!(y,t8ux,t)
coincides withW@y;Ã(t8),m(t8)# defined by Eqs.~23! and
~24! for m(t8→t)5x andÃ(t8→t)50. Thus we can inter-
pret Ã(t8) as the conditional variancej2(t8)j(t)5x of
R(x,t), and m(t8) as the conditional mean valu
^j(t8)&j(t)5x , so that the first equation of Eqs.~24! becomes

d

dt8
^j~ t8!&j~ t !5x52g@§2~ t8!j~ t !5x#$^j~ t8!&j~ t !5x2m%

⇒^j~ t8!&j~ t !5x

5m1$x2m%

3expH 2E
t

t8
g@§2~ t̃ !j~ t !5x#d t̃J . ~37!

Since we are interested in the stationary case, we replac
probability density in Eq.~36! by R(x,t)→Rst(x). Inserting
into Eq. ~36! yields

hMF~Dt !5m^j&Rst
1~^j2&Rst

2m^j&Rst
!

3expH 2E
t

t1Dt

g@§2~ t̃ !j~ t !5x#d t̃J . ~38!

From the stationary solution@Eq. ~4!# we can further read off
that ^j&Rst

5m holds, which yields

hMF~Dt !5m21§st
2 expH 2E

t

t1Dt

g@§2~ t̃ !j~ t !5x#d t̃J .

~39!

The conditional variance evolves like@cf. Eq. ~24!#

d

dt8
§2~ t8!j~ t !5x522g@§2~ t8!j~ t !5x#§

2~ t8!j~ t !5x1Q0

~40!

with the initial condition§2(t)j(t)5x50. When we require
that g(0)>0 holds and thatg(z) is a strictly monotonically
increasing function, the structure of Eq.~40! already implies
the existence of a stationary value of the variance, and i
cates that fort8>t the argumentz5§2(t8)j(t)5x increases
strictly monotonically from§2(t)j(t)5x50 toward this steady
state @55#, §st

2 is implicitly given via g@§st
2#§st

25Q0/2, and
for large t82t the integral in Eq. ~37! converges to
Q0(t82t)/(2§st

2). Consequently, we find thatt82t

→`⇒*g(•)d t̃→`, leading to limt82t→`^j(t8)&j(t)5x5m.
Then the probability densityR(x,t8)5W@x;§2(t8),m(t8)#
converges to a stationary solution.

Apart from these stationarity features, we can further
pack the explicit formg(z). For the sake of convenience, w
denote the conditional variance by§2(t) rather than by
01190
the

i-

-

§2(t)j(t)5x . We can expressg(z) in terms of the steady-stat
autocorrelation functionhMF . For that purpose, we inser
f(t)5g(§2$t%) into Eq. ~40!,

d

dt
§2~ t !522bf~ t !§2~ t !1Q0 ~41!

and solve Eq.~41! for §2(t8) with t8>t and §2(t)50. Ac-
cording to our previously derived results, there exists
unique time-dependent solution of Eq.~41! with §2(t)50
that reads

§f
2 ~Dt !5Q expH 22E

0

Dt

f~ t8!dt8J
3E

0

Dt

expH 2E
0

t8
f~ t9!dt9J dt8. ~42!

Although this leads tof(z)5g(§f
2 $z%), the functiong(z)

remains unknown. On account of the monotony of the va
ance, however,§f

2 (z) is invertible. Let@§f
2 #21(•) denote the

inverse of§f
2 (•). Then we can computeg(u) by means of

u5§f
2 (z) andz5@§f

2 #21(u), which yields

g~u!5f$@§f
2 #21~u!%. ~43!

To further elaborate this form, we expressf(z) in terms of
hMF(z) by means of

f~z!5S 1

hMF~z!2m2D d

dz
hMF~z! ~44!

cf. Eq. ~39!. In sum, from Eqs.~42!–~44! one can derive the
explicit form of the friction coefficientg(u) for any steady-
state autocorrelation functionhMF . The requirement tha
g(u) is a strictly monotonically increasing function, how
ever, restrictshMF . From Eq. ~39! we can infer thathMF
always decays faster than an exponential function. Only
the trivial case, that is, forg5const, does the autocorrelatio
function exhibit an exponential decay—as is known for co
ventional Ornstein-Uhlenbeck processes. Finally, we m
expresshMF(z) by means off(z). Using Eq. ~39!, we
readily obtain

hMF~Dt !5m21§st
2 expH 2E

t

t1Dt

f~z!dzJ . ~45!

IV. AN EXPLICIT APPLICATION—POSTURAL SWAY

A. Basic experimental findings

A classical paradigm showing the impact of fluctuatio
on motor control strategies is erratic motion of the center
pressure~COP! in upright stance. Corresponding stochas
aspects of quiet standing were frequently discussed in
literature@56–59#. In line with these studies, we interpret th
random motion of the COP as a steady-state property of
postural control system@60–63#. Accordingly, the COP evo-
lution ~or, in general, the postural sway! may be considered
5-8
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as a stationary random walk whose statistical properties
be quantified by use of the two-point displacement funct
C(t,t1Dt), defined as

Cj~ t,t1Dt !ª^@j~ t !2j~ t1Dt !#2&. ~46!

The random variablej(t) is the COP, trajectory and̂•& de-
notes the ensemble average—note that we always assum
time average and ensemble average to be interchange
when discussing empirical data@56,57#. Dependent on the
time lagDt, the functionCj exhibits three qualitatively dif-
ferent regimes. In the short-term regime, covering time in
valsDt from zero to about 1 s, the correlation function sca
faster thanDt, that is, DtP(0 s,1 s#:Cj}(Dt)2Hs with a
characteristic scaling exponentHs.0.5. In the long-term re-
gime, ranging from about 1 s to about 10 s, the correlation
function increases sublinear, that is,DtP(1 s,10 s#,Cj,A1
1A2(Dt2A3), where A1 ,...,A3 s represent positive con
stants, andA3'1 s. Alternatively, the experimental resul
regarding the long-term regime may be written asCj5A1
1A2(Dt2A3)2Hl, with Hl,0.5 for DtP(1 s,10 s#. Finally,
for time lags longer than 10 s the displacement function ty
cally attains its saturation value by means ofDt.10 s:Cj

→const orCj}DtHsatu, with Hsatu'0. The scaling exponent
Hs , Hl , andHsatu can be read off from the logarithmic rep
resentation of the correlation functionCj shown in Fig. 4.
They represent the slopes of the graph in the three regim

In line with the preceding sections, we now interpret t
COP random walk as a phenomenon generated by a stoc
tic mean-field model as described by Eq.~1!. To this end, we
rewrite the mean squared displacementCj(t,t1Dt) accord-
ing to

Cj~ t,t1Dt !52$^j2&st2^j~ t !j~ t1Dt !&%

52$^j2&st2h~ t1Dt,t !%. ~47!

FIG. 4. Log-log plot illustrating the empirical correlatio
function Cemp

T (Dt) of the COP displacements as a functio
of time interval Dt. The graph was drawn fromCemp

T (Dt)
5Ds(Dt)2Hsu(12t) 1 (Ds 1 Dlt

2Hl)u(Dt 2 1)u(102Dt) 1 (Ds

1Dl102Hl)u(Dt210), whereu(x) denotes the Heaviside functio
andDs52.7, Dl50.45,Hs50.73, andHl50.21 ~Ref. @56#, Tables
1 and 2!. Three regions can be distinguished as follows: 0s<Dt
<1s, scaling faster than linear, 1s<Dt<10 s, scaling sublinear
andDt>10 s, saturation. The slopes in the different regimes rep
sent the respective scaling exponentsHs , Hl , and Hsatu; see the
text.
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For the special case discussed in Sec. III B, we immedia
obtain

Cj~ t,t1Dt !52§st
2S 12expH 2E

t

t1Dt

f~z!dzJ D . ~48!

Inspired by this simple structure, we could, of course, fit t
function f(z) to the experimental findings. The character
tic kink in the graph of the correlation functionCemp

T ~see
Fig. 4! would then correspond to a kink in the functionf(z)
which determines the stochastic mean-field process in q
tion. The origin of this discontinuity in the derivative o
Cj(Dt), however, would remain obscure. Put differently,
plain data fit does not really deepen our understanding of
underlying postural control mechanisms. To achieve such
understanding, we have to incorporate recent findings in
study of human motor control, which basically hint at th
presence of, at least, two control processes, even in the
of very simple movements~see, e.g., Refs.@64–66#!. Such
findings also reflect an earlier suggestion of Collins and
Luca to the effect that quiet standing is characterized by
presence of two different processes@56#. Recently, Dijkstra
attempted to identify these two processes with the stabil
tion of a set point and the dynamics of the set-point its
@67#.

B. Stochastic VITE model

To specify an explicit model structure we adopt the s
called vector-integration-to-end-point~VITE! model to de-
scribe global movements of the body during quiet stand
and, in particular, the observed erratic motion of the CO
The VITE model was originally proposed by Bullock an
Grossberg to explain the emergence of typical properties
reaching such as a speed-accuracy trade-off and a
shaped velocity profile~e.g., Refs.@39,68#!. Its central ele-
ments are three-dimensional vectors denoted asDW andVW and
the scalarg. The vectorDW is called the difference vector, an
is a measure of the distance between the limb position
the target position, andVW assumes time-averaged weight
values ofDW , and is referred to as the averaged differen
vector. The scalarg represents a time-dependent gain sig
~comparable to Bullock and Grossberg’s GO signal! which
controls the rate of change of the vectorsDW and VW . The
scalarg does not depend onDW andVW . We restrict ourselves
to an investigation of a random walk in one dimension, a
consider the componentsD and V related to either the me
diolateral or the anteroposterior direction. Furthermore,
collapse the neural motor control units related to agonist
antagonist muscles into a single control unit, while bei
fully aware that a more sophisticated model should reflect
the brain level the reciprocal organization of the muscu
level ~cf. Ref. @68#!. In line with this simplification,D andV
can take positive and negative values: positiveD values
would, for instance, correspond to the activity of agon
muscles, and negativeD values to the activity of antagonis
muscles. Following Bullock and Grossberg, we study th

-
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kinds of interacting neural populations@68#. In particular, we
study the set of deterministic evolution equations

d

dt
V5a~V2D !, ~49!

d

dt
g52b~g2m!, ~50!

d

dt
D52cD2G0gV, ~51!

in which the variablesa, b, c, m, andG0 are positive con-
stants~see below!. At movement onsettstart, the differenceD
is initialized by the distance between the limb and tar
position. Furthermore, we assumeg(tstart)50 and V(tstart)
50 ~cf. Ref. @68# for alternative scenarios!. D is viewed as
an index of the efferent output signal of a particular mo
control unit, and serves two purposes: first, so-called effe
copies ofD are weighted and integrated, giving rise to t
averaged difference vectorV @cf. Eq. ~49!#; second,D sig-
nals lead to motor commands, and thus give rise to li
movements. By means of a time-varying gain signalg and a
time-independent amplitudeG0 the averaged differenceV is
amplified, and impinges on the neuralD population of the
motor control unit according to Eq.~51!. The gaing is de-
termined by the autonomous differential equation@cf. Eq.
~50!# and increases monotonically toward the station
valuem. The system of equations~49!–~51! has a unique and
globally stable fixed point at Vst50, gst5m, and
Dst50—note thatD(t)50 reflects the case in which lim
and target position coincide. Three subtleties are worth m
tioning. First, according to the VITE model, efferent~output!
signals that are sufficient to execute successfully go
directed movements can be produced solely on a neural l
irrespective of any afferent information provided by the se
sorymotor system. This is, in fact, in agreement with vario
experimental findings showing that goal-directed moveme
can be performed in the absence of afferent signals. Sec
for the sake of convenience, in the place of the so-ca
present position vector of the original VITE model of Bu
lock and Grossberg, we use the variableD(t). Both variables
agree except for a shift by the target position. Finally,
model given by Eqs.~49!–~51! provides a consisten
integrate-to-end-point model because bothV and D can be
conceived of as quadratures involving exponential mem
by means of V(t)5* t exp$2a@t2t#%D(t)dt and D(t)
5G0* t exp$2c@t2t#%g(t)V(t)dt, respectively. Regarding th
latter, we note that Bullock and Grossberg studied the cas
vanishingc @68#, whereas we will always considerc values
that are large compared to the parametera which determines
the time scale ofV. Recall thatD signals are conveyed t
muscles leading to limb movements and, hence,D50 cor-
responds to the absence of a movement. Here, however
deal with postural control rather than the control of ind
vidual limb movements. Thus we interpret the evolution ofD
as measure for global body movement, and identify the r
dom walk ofD(t) with the COP trajectory.
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However, a system given by Eqs.~49!–~51! is mute to
fundamental properties of postural and motor control s
tems. Taking a neurophysiological point of view, neural co
trol systems putatively consist of many interacting su
systems, which act together in generating a motor comma
Evidence for such a collective behavior was gathered in s
eral studies that focused on intracranial brain activity a
encephalographic signals related to motor performance;
e.g., Refs.@69–73#. Therefore, we study an ensemble of m
tually coupled neural control systems rather than a sin
postural or motor control system. Here we implement t
idea by investigating mean-field coupled systems. Moreo
the VITE model given by Eqs.~49!–~51! discards the rel-
evance of informational variables. Postural control and m
tor performance, however, may evaluate temporal and p
tional information such as the expected execution time
performance accuracy. In fact, such information can
gained via statistical quantities. For example, process ex
tion time may be related to the entropy of neural motor co
mand signals~Fitts law @74#! or accuracy may be measure
by means of the output variance of neural control units. S
tistical quantities can be computed from ensembles of sim
subsystems, and may assume the form of mean-field v
ables. In sum, from a neurophysiological point of view
well as from a phenomenological point of view it seem
plausible to incorporate mean-field variables in postural a
motor control systems.

In line with the preceding observation, we extend the s
tem of equations~49!–~51! in terms of an interaction through
a mean field. In addition, we take stochastic forces into
count. In detail, we study a stochastic system defined by

d

dt
jV52~jV2jD!1GV , ~52!

d

dt
jg, j52g~§ j ,emp

2 !~jg, j2m!1Gg, j , ~53!

d

dt
jD52cjD2G0jgjV , ~54!

where GV and Gg, j are statistically independent Langev
forces, and only Eq.~53! is regarded as a particular sub
systemj of a population of subsystems that are described
Eqs. ~2! and ~33!. For the sake of simplicity, we neglec
explicit fluctuations acting on the difference vector and co
fine ourselves to a mean-field interaction for the gain signag
because this population might be particularly sensitive
perceptual and informational influences@37#. In this case we
can interpret the empirical variance§ j ,emp

2 as an accuracy
measure or as a measure of temporal aspects of postural
trol @75#. Alternatively, § j ,emp

2 may account for interactions
between subsystems of theg population which scale with the
square of the subsystems’ states. Sinceg(§ j ,emp

2 ) does not
depend onjg, j , a linear stability analysis of Eqs.~52!–~54!
can be carried out by conventional techniques; see e.g., R
@52–54#. In detail, we linearize the system in the vicinity o
its fixed point, yielding a set of eigenvalues
5-10
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l~6 !
ª2

11c

2
6Z with ZªAF S 12c

2 D 2

2G0mG1/2

,

~55!

and the eigenvectorsvW (6) and dual vectorsVW (6);

vW ~6 !5S v1
~6 !

v2
~6 !DªS 1

~12c!/26ZD ,

~56!

VW ~6 !5S V1
~6 !

V2
~6 !Dª 1

2Z S Z7~12c!/2
61 D ,

where vW (1)VW (1)51, vW (1)VW (2)50, vW (2)VW (2)51, and
vW (2)VW (1)50. Subsequently, we transform the system
equations~52!–~54! to

d

dt
j̃V~ t !5l~1 !j̃V~ t !1VW ~1 !

3S GV

2G0j̃g~ t !@v1
~1 !j̃V~ t !1v1

~2 !j̃D~ t !# D , ~57!

d

dt
j̃g~ t !52g~• !j̃g~ t !1Gg, ~58!

d

dt
j̃D~ t !5l~2 !j̃D~ t !1VW ~2 !

3S GV

2G0j̃g~ t !@v1
~1 !j̃V~ t !1v1

~2 !j̃D~ t !# D , ~59!

where the variablesj̃V , j̃d, and j̃g are defined as

j̃V~ t !ªVW ~1 !S jv~ t !
jD~ t ! D , j̃D~ t !ªVW ~2 !S tv~ t !

jD~ t ! D ,

~60!
j̃g~ t !ªjg, j~ t !2m.

To gain further insight into the model properties, we no
reduce the number of independent variables. We look
cases in which a distinction can be made between order
rameters and enslaved variables@53,76#. It has been argued
that neural systems typically allow for such a partitioni
~Ref. @77#, Sec. 20.1!. Accordingly, we consider the afore
mentioned case in whichc is much larger than 1~note that
we rescaled time to eliminatea!. In addition, we assume tha
the productG0m is bounded, so that forc@1 the conditions
4G0m,(12c)2, ul (2)u@ul (1)u, and ul (2)u@1 hold. Then
both eigenvalues are real and negative, and we can ide
j̃V(t) and j̃g(t) as the order parameters, whilej̃D(t) can be
viewed as the enslaved mode. Accordingly, adiabatic eli
nation yieldsj̃D(t) as a function ofj̃V(t), j̃g(t), and of the
time-averaged noise source* t exp$2ul(2) u(t2t)%GV(t)dt.
Neglecting this noise source and using the inverse trans
mation jD(t)5v2

1j̃V(t)1v2
(2)j̃D(t), we can explicitly ex-

pressjD(t) in terms ofj̃V(t) and j̃g as
01190
f

r
a-

ify

i-

r-

jD~ t !5 j̃V~ t !S v2
~1 !1

v2
~2 !v1

~1 !V2
~2 !G0

l~2 ! j̃g~ t ! D . ~61!

To cast the evolution equations forj̃V(t), j̃g , andj̃D(t) @cf.
Eqs. ~57!, ~58!, and ~61!# into forms similar to Eqs.~52!–
~54!, we define the constantsc̃ª(v2

(2)v1
(1)V2

(2)G0)/l (2)

.0 and m̃ªv2
(1)/ c̃. Further, we introduce a shifted gai

signaljg8(t)ª j̃g(t)1m̃5jg(t)1(m̃2m), approximate Eq.
~57! by its linear parts, and ignore any multiplicative noi
sources. In sum, we obtain

d

dt
j̃V~ t !52ul~1 !u j̃V~ t !1V1

~1 !GV , ~62!

d

dt
jg8~ t !52g~§emp.

2 !@jg8~ t !2m̃#1Gg , ~63!

jD~ t !52 c̃j̃V~ t !jg8~ t !. ~64!

Given Eq.~64! the stationary correlation functionCD of the
random variablejD consists of autocorrelation functions re
lated to bothj̃V(t) and jg8(t). In line with the arguments
advanced in Sec. III, we therefore approximate the autoc
relation function ofjg8(t) by the autocorrelation function o
the mean-field NLFPE@cf. Eq. ~35!#. Thus we obtain

CD~Dt !'2c̃2$^j̃V
2&st̂ jg8

2 &st2h Ṽ~Dt !hMF;g8~Dt !%,
~65!

whereh Ṽ is the well-known stationary autocorrelation fun
tion of an Ornstein-Uhlenbeck process with vanishing me
that is,

j Ṽ~Dt !5^j̃V
2&stexp$2ul~1 !uDt%. ~66!

By means of Eqs.~45!, ~65!, and ~66! we can now explain
the characteristic features of the mean squared displace
C(Dt) of the COP motion~cf. Fig. 4!.

The correlation functionC(Dt) exhibits two different re-
gimes because of the two different time scales of theV andg
dynamics that are already present in the conventional V
model; cf. Eqs.~49!–~51!. Moreover, the correlation function
C(Dt) scales faster than linearity in the short-term regim
due to the mean field affecting theg-dynamics of the ex-
tended version; cf. Eqs.~52!–~54!. In short, the interplay of
the mean-field coupling and the VITE model allows for
interesting interpretation of postural data. In detail, we
sume that in the short-term regime~i.e., DtP(0s,1s#! the
autocorrelation function h Ṽ varies slowly, whereas
hMF;g8(Dt) decays rapidly to its saturation valuem̃2.
Choosingf(z) appropriately, we can model the character
tic scaling behaviorC(Dt)}(Dt)Hs, with Hs.0.5. For ex-
ample, introducing a characteristic time scaletg8 and utiliz-
ing f(z)5(2nz2n21)/tg8 for ul (1)uDt'0, Eq. ~65! can be
approximated by
5-11
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CD~Dt !'2c̃2^j̃V
2&st§st,g8

2 S 12expH 2
~Dt !2n

tg8
J D

⇒
~Dt !2n!tg8

CD~Dt !

}~Dt !2n. ~67!

After this rapid saturation ofhMF;g8(Dt), there might still be
some significant exponential decay of the autocorrela
function hj̃V

. In this case, the mean squared displacem
decreases sublinearly~concavity of exponential functions! in
the long-term regime, and we can approximateCD(Dt) by

CD~Dt !'2c̃2^j̃V
2&st~^jg8

2 &st2m̃2 exp$2ul~1 !uDt%!.
~68!

The qualitative reproduction of the aforementioned exp
mental findings can be readily achieved by adjusting the
parameters:c̃2^j̃V

2&st, ^jg8
2 &, m̃, tg8 , and l (1). Figure 5

shows a rough fit ofCD(Dt) defined by Eq.~65! to the
empirical correlation functionCemp

T (Dt) displayed in Fig. 4.
In Fig. 5 a more general case is shown, in which the ti
scales of the autocorrelation functionh Ṽ andhMF;g8 are not
markedly different. There,tg8,1/ul (1)u holds rather than
tg8!1/ul (1)u, so that the random processjq also affects the
short-term regime. This may result in a scaling exponenn
that is significantly larger than the one of the short-term
gime Hs ~cf. Fig. 5!. The main features, however, of th
mean squared displacement@Eq. ~65!#, as discussed unde

FIG. 5. Illustration of the correlation functionCD of the multi-
plicative compound process and its two constituents that are re
to a ‘‘fast’’ Ornstein-Uhlenbeck process with mean field coupli
and to a ‘‘slow’’ and ordinary Ornstein-Uhlenbeck process. T
graph ofCD ~solid line! was computed from Eq.~65!. The graph of
the short-term approximation~lower dashed line! was computed
from Eq. ~67!. The graph of the long-term approximation~upper
dashed line! varies only slightly in the short-term regime (Dt
,1 s), and merges with the graph ofCD in the long-term regime
(Dt.1 s). The long-term approximation was calculated from E
~68!, and reflects the contribution of the ‘‘slow’’ ordinary Ornstein
Uhlenbeck process to the behavior ofCD . n53, ul (1)u2150.5,

tg853.3, ^jg8
2 &53.85,m̃251.1, andc̃2^j̃V

2&50.5.
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the conditiontg8!1/ul (1)u, can also be observed for th
weaker conditiontg8,1/ul (1)u.

V. CONCLUSIONS

In the present paper we studied interactions between
systems that depend nonlinearly on mean fields which
turn, are generated by these subsystems. In line with con
tional mean-field approaches, we derived mean-fi
NLFPE’s which can approximate the overall stochastic
havior of such systems. We illustrated our results by t
examples: a formal dynamical system showing a pitchf
bifurcation in the second moment, and a neurophysiolo
cally motivated model for postural control.

In closing, we would like to highlight two specific bu
theoretically important features of the stochastic concept p
sented in this paper by comparing it with the theoretical
proach to the problem of quiet standing adopted by Ch
and co-workers: the pinned polymer model@61,62#. This
model is based on the assumption that postural contro
achieved in a spatially distributed physical body~such as the
human body! whose degrees of freedom are restricted to t
dimensions due to a pointlike rigid connection to the en
ronment~pinning!. In contrast, the description of a COP ra
dom walk via zero-dimensional stochastic processes does
require the physical body under consideration to be va
extended in space. Consequently, the present paper raise
question of whether correlated random walks with the t
ture of fractional Brownian motions and stationary two-po
correlation functions displaying kinks can also be found,
example, during postural control of limbs with compar
tively small masses and extensions such as fingers or
human hand~hand tremor!. In addition, the above-mentione
features of postural sway may further be found, for instan
in the stationary performance of rhythmic movemen
because—as the analyses in this paper clearly suggest—
do not necessitate a rigid link of the limb with the enviro
ment. In contrast, our main finding was that two-point co
relation functions that resemble correlation functions of fra
tional Brownian walks, and are interspersed by kinks, can
induced by cooperative effects of distinct neural motor co
trol units being subjected to noise and composed of a la
number of mean-field coupled subsystems. This result
provide a sound basis for future experimental investigati
designed to study stochastic phenomena of this kind.
second important issue that we want to emphasize here
cerns the applicability of the concept of stochastic proces
defined by mean-field nonlinear Fokker-Planck equatio
Unlike the pinned polymer model, the concepts of stocha
processes described by mean-field nonlinear Fokker-Pla
equations can be applied to various deterministic motor c
trol theories, provided that they are formulated in terms
ordinary differential equations. The latter have to be repla
by a set of identical ordinary differential equations with a
ditional ~white! noise forces and appropriately defined mea
field couplings. Such applications, however, should not
viewed as mere supplements of deterministic theories aim
at a stochastic description of phenomena that can alread
explained by deterministic models. On the contrary, the c

ed

.
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cepts of stochastic processes determined by nonlin
Fokker-Planck equations predict and explain phenomena
can hardly be handled by traditional stochastic theories,
that are impossible to handle by deterministic models.

APPENDIX A: SECOND DERIVATION OF THE
MEAN-FIELD NLFPE „11…

The crucial step in the derivation of the mean-fie
NLFPE ~11! is to show thatY@Mr #, as defined by Eq.~14!,
can be approximated by Eq.~19!, provided that forN@1 the
joint probability densityMr factorizes intoN21 copies of a
one-variable limiting case probability densityR. Now, we
dispense with condition~12!, and assume that mean and va
ance ofR(x,t) are finite. If the transformed probability den
sity R8(x8,t), defined byR8(x8,t)dx8ªR(x,t)dx with x8
5 f g(x), satisfies the Lindeberg condition@78,79#, then, as
shown below, we find that

Y@Mr #5g̃S N,K1ª^ f g~x!&R~x,t ! ,K2

ªE
2`

`

@ f g~x!2K1#2R~x,t !dxD 1OS 1

AN
D ,

~A1!

g̃~N,K1 ,K2!ªAS N

2pK2
D 1/2E

2`

`

g~z!expH N~z2K1!2

2pK2
J dz

5E
2`

`

g~z!G~z;K1 ,K2 /N!dz,

where the Gaussian probability densityG(z;K1 ,K2 /N) has
meanK1 and varianceK2 /N, and tends to ad distribution
for N@1; that is, we have limN→` g̃(N,K1 ,K2)5g(K1).
Inserting this limit into Eq.~A1! yields

Y@Mr #5g~^ f g~x!&R~x,t !!, ~A2!

which coincides with Eq.~19!. However, by inserting Eq
~A1! instead of Eq.~A2! into Eq. ~20!, we obtain a mean-
field NLFPE which can be considered as a higher order
proximation. According to Eq.~A1! the error of these esti
mate is of the order 1/AN, whereas for Eq.~A2! an
additional error e(N)5ug(K1)2*g(z)G(z;K1 ,K2 /N)dzu
occurs. For very largeN, however, both the term propor
tional to 1/AN and the terme(N) become arbitrarily smal
and negligible. Note that, by analogy, we can derive a re
similar to Eq.~A1! for the diffusion term of the NLFPE~20!.

To outline the derivation of Eq.~A1!, we first rewrite the
integralY@Mr # in Eq. ~14! in terms ofR(xr ,t) as

Y@Mr #ªE ¯E gS 1

N21 (
kÞr

f g$xk% D)
lÞr

R~xl ,t !dxl .

~A3!

We can express the probabilityD(F,t)dF that we find the
mean fieldsg,r5SkÞr f g(jk)/(N21) @cf. Eq. ~1!#, in @F,F
1dF# by
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D~F,t !ªE ¯E dS F2
1

N21 (
kÞr

f g$xk% D
3)

lÞr
R~xl ,t !dxl . ~A4!

Then Eq.~A3! can be written

Y@Mr #5E
2`

`

g~F!D~F,t !dF. ~A5!

D(F,t) can be determined by use ofR8(z8,t) defined on
A8ª$z8:z85 f g(z)∧zP(2`,`)% according to

D~F,t !5E
A8
¯E

A8
dS F2

1

N21 (
kÞr

xk8D)
lÞr

R8~xl8 ,t !dxl8 .

~A6!

If x̄(t) andx̄8(t) @s2(t) ands82(t)# denote the means~vari-
ances! of R(x,t) andR8(x8,t), then we find

x̄8~ t !ªE
A8

z8R8~z8,t !dz85E
2`

`

f g~z!R~z,t !dz,

~A7!

s82~ t !ªE
A8

@z2 x̄8#2R8~z8,t !dz8

5E
2`

`

@ f g~z!2 x̄8#2R~z,t !dz.

We assume thatx̄(t) ands2(t) are finite, which implies for
kg.1 thatx̄8(t) ands82(t) are also finite@for kgP(0,1# we
have to guarantee thatx̄8(t) ands82(t) are finite#. When we
use the parameter-dependent scalingz9(N)5z8/(N21), so
that the corresponding variance, mean value, and probab
density read s92(t,N)ªs82(t)/(N21)2, x̄9(t,N)
ª x̄8(t)/(N21), and R9(z9,t,N)dz9(N)ªR8(z8,t)dz8,
then, Eq.~A6! becomes

D~F,t !5E ¯E dS F2(
kÞr

xk9D)
lÞr

R9~xl9 ,t !dxl9 .

~A8!

Now D(F,t) is the probability density of a random variab
which can be computed from the sum ofN21 random vari-
ables. As stated earlier, we require thatR8(z8,t) obeys
the Lindeberg condition @78,79#, that is, ;l
.0: limN→`*B8@z8#2R8@z82 x̄8(t),t#dz850, where the set
B8 is defined byB8ªA8/$z8:uz8u,lAN%. Note that the Lin-
deberg condition states that the asymptotic parts of proba
ity densities~i.e., the tails! are negligible. Since, by assump
tion, the Lindeberg condition is satisfied forR8(z8,t), the
Lindeberg condition is also satisfied forR9(z9,t) @80#. Con-
sequently, the central limit theorem@2,78,79,81# applies to
Eq. ~A8!, and forN@1 we obtain
5-13
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D~F,t !5A 1

2pNs92~ t,N!
expH 2

~F2Nx̄9~ t,N!!2

2pNs92~ t,N! J
1OS 1

AN
D ~A9!

~A10!

This result, in combination with Eqs.~A5! and ~A7!, corre-
sponds to proposition~A1!. To estimate the error in Eq
~A9!, we can derive Eq.~A9! via Taylor expansion of prob
ability operators~Ref. @78#, Chap. 8!, and find that the range
in which the Taylor expansion is evaluated scales with 1/AN
~i.e., e defined in Ref.@78# is proportional to 1/AN). Hence
;X: zu*x(X2z)@D(z,t)2G(z,t)#dzuz}O(1/AN) ~theorem 1
in Ref. @78#, Sec. 8.4!, wherex(z)PC@2`,`# denotes a tes
function andzu•uz corresponds to the supremum norm. Con
quently, with X50 and x(z)5g(2z) we find that
zu*g(z)@D(z,t)2G(z,t)#dzuz}O(1/AN), which is consistent
with Eq. ~A10!. For an alternative derivation of theO(1/AN)
term, we refer to Ref.@81#, Chap. 1.

APPENDIX B: ASYMPTOTIC SOLUTIONS— H
THEOREM

We show that any probability densityR(x,t0) given at
the initial time t0 converges in the limitt2t0→` to a cor-
responding Gaussian probability densityW@x,Ã(t),m(t)# as
defined by Eqs.~23! and~24!. To prove this assertion, let u
consider an arbitrary probability densityR(x,t) solving Eq.
~22!, and a functionU(x,t) which satisfies

]

]t
U~x,t !5

]

]x
g$REg

~1!~ t !%xU~xt!

1
1

2
Q$REQ

~1!~ t !%
]2

]x2 U~x,t !. ~B1!

Using the ansatz

U~x,t !5
1

A2pÃ~ t !
expH 2

@x2m~ t !#2

2Ã~ t ! J ~B2!

leads, in analogy to Eqs.~23! and~24!, to the set of ordinary
differential equations
01190
-

d

dt
m~ t !2g$REg

~1!~ t !%@m~ t !2m#,

d

dt
Ã~ t !522g$REg

~1!~ t !%Ã~ t !1Q$REQ
~1!~ t !%, ~B3!

m~ t0!5^x&R~x,t0! , Ã~ t0!5^@x2m~ t0!#2&R~x,t0! .

Note that on account of Eq.~B2!, the functionU is normal-
ized, and can be seen as a probability density. As indica
by the preceding upper indexR, the expectation values
REg

(n)(t) and REQ
(n)(t) for n51, . . . ,nd in Eqs. ~B1!–~B3!

are computed fromR(x,t) rather thanU(x,t). HenceU(x,t)
does not coincide withW@x;a(t),m(t)#, and Eq.~B1! re-
mains linear with respect toU but contains the time-
dependent drift and diffusion coefficients g̃(t)
ªg$REg

(1)(t)% and Q̃(t)ªQ$REQ
(1)(t)%. We can therefore

adopt theH theorem of the theory of linear Fokker-Planc
equations by introducing the functional

H~ t !ªE
2`

`

R~x,t !lnFR~x,t !

U~x,t ! Gdx>0. ~B4!

Since the Fokker-Planck equations forR and U have com-
mon drift and diffusion coefficientsg̃(t) and Q̃(t), we can
directly calculate the derivative ofH, and obtain

d

dt
H~ t !52Q̃~ t !E

2`

`

R~x,t !H ]

]x
lnFR~x,t !

U~x,t ! G J dx<0.

~B5!

From Eqs.~B4! and ~B5!, it follows that in the limit t2t0
→` the derivative ofH vanishes. Given the positivity of the
fluctuation strengthQ̃, limt2t0→`dH(t)/dt50 implies

lim
t2t0→`

@R~x,t !2U~x,t !#50. ~B6!

For further details the reader is referred to Ref.@50#. In the
limit t2t0→`, we can now replace the expectation valu
REg

(n)(t) and REQ
(n)(t) computed fromR(x,t) by UEg

(n)(t)
and UEQ

(n)(t) computed fromU(x,t), so that Eqs.~B2! and
~B3! agree with Eqs.~23! and ~24!, and U(x,t) coincides
with W@x;Ã(t),m(t)#. By virtue of Eq. ~B6!, we can thus
conclude that

lim
t2t0→`

R~x,t !5 lim
t2t0→`

U~x,t !5W@x;Ã~ t !,m~ t !#,

~B7!

with W@x;Ã(t),m(t)# described by Eqs.~23! and ~24!, and
the initial conditions formulated in Eq.~B3!.
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