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Metastable intermediates in the condensation of semiflexible polymers
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Motivated by results from an earlier Brownian dynamics simulation for the collapse of a single, stiff polymer
in a poor solvent@B. Schnurr, F. C. MacKintosh, and D. R. M. Williams, Europhys. Lett.51, 279 ~2000!# we
calculate the conformational energies of the intermediate~racquet! states suggested by the simulations. In the
absence of thermal fluctuations~at zero temperature! the annealed shapes of these intermediates are well-
defined in certain limits, with their major structural elements given by a particular case of Euler’s elastica. In
appropriate units, a diagram emerges that displays the relative stability of all states, tori, and racquets. We
conclude that, in marked contrast to the collapse of flexible polymers, the condensation of semiflexible or stiff
polymers generically proceeds via a cascade through metastable intermediates, the racquets, towards a ground
state, the torus or ring, as seen in the dynamical simulations.
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I. INTRODUCTION

The conformation of individual polymer chains depen
on the properties of their environment, i.e., the solvent@1–3#.
In the presence of apoor solvent, isolated polymer chain
tend to collapse toward compact states, in which polym
solvent contacts are minimized. For flexible polymers,
kinetics of this coil-globule transition have been the subj
of much research over the past few decades@4–9#. The ki-
netic pathway for flexible polymer collapse has only recen
been experimentally confirmed to involve the formation o
pearl necklace and the gradual diffusion of large pearls fr
the chain ends@10,11#.

In contrast to the flexible case, many polymers exh
substantial bending stiffness, thus adding the~opposing! ten-
dency to form extended structures. This makes a com
globule energetically unfavorable forsemiflexiblepolymers
because compact globules involve large amounts of bend
Such chains are described by the persistent or worm
chain ~WLC! model @3#, examples of which include pre
dominantly biopolymers~e.g., F-actin and DNA! but also
some synthetic polymers~e.g., kevlar!. The balance betwee
the tendencies to straighten the filament~due to a bending
energy! and to condense it~due to an effective short-rang
attraction or poor solvent! is at the heart of the condensatio
of semiflexible polymers.

The apparent equilibrium collapsed state for semiflexi
polymers is well known: chains with significant bendin
stiffness can form rings or toroids to avoid incurring t
large bending penalty of a spherical shell or a globule. T
condensed state has been suggested and studied theore
@12–15#, demonstrated in a variety of experimental syste
@16–21#, and confirmed by computer simulation@22–25#.
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Theoretical work has predominantly addressed structural
tures, such as the detailed packing of filaments@26–31#,
while dynamical simulations and atomic force microsco
~AFM! among others have increasingly focused on kine
aspects and condensation intermediates@19,20,24,32,33#.

A particular set of recent dynamical simulations of is
lated chains@34# has strongly suggested a possible~and in
fact generic! pathway for the collapse of semiflexible poly
mers. These simulations showed not only the eventual
mation of tori from extended chains quenched in poor s
vent but demonstrated a series of long-lived, partia
collapsed intermediate states. Very similar chain morpho
gies~our racquet states! also appear in other simulation wor
@24# and AFM studies of DNA condensation@19#. Motivated
by these results, we develop and analyze a hierarchical f
ily of metastable racquet states. In particular, we demonst
that their relative conformational energies are consistent w
the role they play in the simulations: they form an energe
cally driven cascade of increasingly compact conformatio
with sharp transitions between them.

We begin in Sec. II with a brief summary of the dynam
cal simulation results@34# that motivated this analysis. Sec
tion III addresses the morphology and evolution of t
shapes to be analyzed in the remainder of the paper.
approach to calculate the surface contributions to the con
mational energies is developed in Sec. IV, followed by t
two main sections containing a detailed analysis of torus
racquet states~Secs. V and VI, respectively!. Section VII
finally compares their relative stability and discusses
qualitative agreement with the dynamical simulation resu
we set out to understand.

II. BRIEF REVIEW OF THE DYNAMICAL
SIMULATION RESULTS

The work described in Ref.@34# applied a standard
Brownian dynamics~BD! algorithm@2# to a bead-and-spring
model of a single polymer chain in the plane to capture
©2002 The American Physical Society04-1
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B. SCHNURR, F. GITTES, AND F. C. MacKINTOSH PHYSICAL REVIEW E65 061904
most general features of a rather complex and biologic
important process, the condensation of DNA. The techn
details of that study are discussed elsewhere@34,35#. Here,
we merely sketch the gross features and the generic re
that motivated our work in this paper.

The dynamical evolution of a simulated chain followed
Langevin equation of the form

j
dxi

dt
52

]U

]xi
1h i~ t !5Fxi

~1!

for each beadi, wherej is the coefficient of viscous dra
(Fvisc5jv) andh the random noise. Each bead is displac
by Dxi5(Fxi

/j)Dt during a time stepDt. The potentialU
contains all interactions internal to the chain, including t
bending energy, a short-range attractive interaction betw
beads~mimicking poor solvent conditions! and a very stiff
longitudinal compliance. After thermalization of each cha
the solvent quality was quenched att50.

Previous work@34,35# showed the typical dynamical evo
lution of a relatively short chain~a few persistence lengths!
as a progression through well-defined stages identified
three types of conformations: extended chain with therm
undulations, various racquet states~see Figs. 1 and 2!, and
the torus or ring. We also pointed out that the end-to-e
distance of the filament as a function of time changes sha
with the conformational transitions between states. It is
portant to note that the described conformations persis
time, as seen by quasiplateaus in the end-to-end dist
evolution, each lasting for a considerable time of ab
106 BD steps, about one-tenth of the entire condensa
event. We can roughly estimate the correspondence betw
simulation steps and physical time for a particular system
do this, we express the link length as a fraction of the p
sistence length and substitute for the local drag coeffici
assuming the viscosity to be of water. ForF-actin, such an
estimate suggests that an entire simulation of 107 BD steps
models a filament for about 0.1 s. For DNA, this interv
corresponds to a fraction of a millisecond.

Temporal persistence of racquet structures was s
throughout the simulations, suggesting that metastable in
mediates are a general feature in this collapse. Presum
energy barriers between intermediates are responsible
their local ~meta!stability but we have not attempted to es
mate their size.

FIG. 1. Annealed shape of a racquet head from the BD sim
tion, achieved by slowly lowering the effective temperature on
the structure has formed. The shape coincides with the analy
curve to within a linewidth.
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III. IDENTIFICATION OF INTERMEDIATE STATES

The dynamical simulations@34# suggest that the mecha
nism of collapse of semiflexible chains generically involv
transitions through a series of long-lived intermediate sta
In the absence of thermal fluctuations these intermedi
anneal to certain underlying shapes that are well defined
allow a straightforward calculation of their conformation
energies. The crucial element in the underlying shapes
characteristic looped section that we call a racquet head.
the single racquet, the shape of the head~see Fig. 1! was
produced in the simulation by annealing. While missing t
effects of thermal undulations, our calculations of the co
formational energies and detailed shapes of the anneale
termediates provide an insightful framework for understa
ing the simulation results.

In order to simplify the reference to specific states,
label all racquet states by their number of looped sectio
Thus the rod is theN50 state, the racquet with a single loo
at one end is theN51, and so forth, as indicated in Fig. 2
We refer to the loop formed at the ends of the structure as
‘‘head’’ and to the bundle of filaments connecting heads
the ‘‘neck.’’ For the moment we neglect the more sub
question of the exact location of filament ends. Naively, o
might assume that filament ends coincide with the ends
the neck, since it is straight; that is, the ends of the filam
are expected to span the entire neck as they incur no ben
penalty, but generally gain from increasing their overlap.

The picture as described provides an adequate sta
point for labeling the states we consider here. Among
shapes indicated in Fig. 2 we distinguish two basic racq
symmetries: even and odd total numbers of headsN. For
racquets with evenN, the number of overlaps in the hea
sections is equal on the two sides,p5q5N/2. For racquets
with oddN, one side~we arbitrarily call it the left, following
Fig. 2! has one lessp5(N21)/2 than the other:q5(N
11)/2. As a consequence, the filament ends of an even
quet are on opposite sides of the neck.

-
e
al

FIG. 2. Schematic ‘‘family’’ of racquet states. The rod can
thought of as a trivial racquet without a head (N50). All subse-
quent states are labeled by their number of head sections.
4-2
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METASTABLE INTERMEDIATES IN THE . . . PHYSICAL REVIEW E 65 061904
Note that the dynamical simulations modeled the case
fixed experimental conditions after the solvent quench. T
polymer chain is merely exploring a given conformation
energy landscape via thermal fluctuations. However, it can
instructive to consider as aGedankenexperimentthe case of
variable filament length, and we use this perspective in
discussion. A~reduced! chain length is also a natural inde
pendent variable for the presentation and comparison
states. In this alternative perspective, the evolution of sha
starts with a short filament that gradually lengthens. At fi
only the neck grows until the formation of a new head
favored. The incremental unit of growth between conform
tions thus consists of one head plus one neck segment.
procedure can be continued to arbitraryN, given enough fila-
ment. In Sec. IV C we will see that the appropriate formu
tion of the problem accomplishes changes in the~effective!
filament length by adjusting the solvent quality instead of
actual chain length.

In the simulations, the actual transition into the torus st
could not be resolved in detail. It is clear, however, that th
are in principle at least two ways in which a loop can for
two chain segments can meet with their tangent angles a
angle ofp or 2p. The former case leads to a racquet he
while the latter makes a ring that allows the chain to wind
into a torus directly. Since it is more likely for a stiff chain t
bend into the smaller angle, one would expect the transi
to racquets to be favored, at least for short chains. Stat
cally, the simulations@34# confirm this. Most of the chains
studied there were relatively short~less than 10 persistenc
lengths! though a few examples~see Fig. 3! of longer chains
showed qualitatively similar behavior but with increas
complexity, such as the display of superstructures of racq
within racquets.

IV. CONFORMATIONAL ENERGIES

Having discussed the basic morphology of the interme
ate states, we turn to the calculation of their conformatio
energies in the absence of thermal undulations. Racquet
torus conformations at zero temperature can be thought o
the underlying shapes, which become modified by fluct
tions at finite temperatures. Apart from the bending contri
tions to the conformational energies, we need to describe
nature of the surface energy by which we model the p
solvent conditions that induce condensation. This surface
ergy assumes the packing or bundling of filaments in a h
agonal lattice~in cross section! and distinguishes betwee
polymer and solvent exposures. The local arrangement in
hexagonal columnar phase has been confirmed, for exam

FIG. 3. Early stages in the evolution of a long chain~300-mer,
roughly 20,p) showing combinations of the conformational el
ments seen in shorter chains.
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by x-ray diffraction applied to bundles of DNA and othe
charged polymer chains@36–40# and the detailed structur
within bundles of semiflexible polymer chains has been st
ied theoretically@41,42#.

Our calculations describe the simplified model with fil
ments of vanishing thickness~compared to other length
scales in the problem!, while we model their packing on a
perfect hexagonal lattice. Thus we do not take into acco
any winding defects due to topological constraints or var
tions in curvature due to the finite filament thickness.
implicit in the description of a wormlike chain, we assume
uniform bending modulus. In the torus state, such an id
chain forms a circular ring with a single radius of curvatu
Furthermore, we assume for both racquet heads and t
that partial filament overhang, an effective nonuniformity
the bending modulus, does not change their shape but
their size. Neglecting these higher order corrections is c
tainly justified in the limit that the bundling numberN gets
large.

A. Surface energy of hexagonal bundles

In a hexagonally close-packed bundle, each filamen
cross section can be thought of as having six sites occu
by either solvent or polymer. The poor solvent lowers t
energy for polymer-polymer relative to polymer-solvent co
tacts. To express the fact that there is arelative energetic
advantage for filaments to bundle versus being expose
solvent, we explicitly evaluate the total number of solve
exposed sites and express the energy as a surface tens

Particular surface energies are evaluated as follows.
find the coordination numberaN for an N bundle, consider
the total number of surfaces or binding sites in the bun
with hexagonal order (6N). This number is proportional to
the energy ofN individual filaments completely exposed t
solvent. To account for the effect of bundling, we note tha
bond corresponds to the merging of two binding sites
neighboring filaments. We thus subtract the number of bo
formed from only half the number of sites (3N) to find the
coordination numberaN . As an example of this numerolog
consider the cases forN55 and 10: for five filaments there
are seven bonds, resulting in a coordination of 8, while
filaments make 19 bonds and thus have a coordination of
Multiplying by the surface tension parameterg finally yields
the surface energy per unit length for such a bundle.

B. Filled shells and ‘‘magic’’ numbers

Differences between subsequentaN’s are always either 0
or 1 ~except betweenN51 and 2!. This creates nonunifor-
mities in the effective binding strengths per unit length, th
favoring particular bundling numbers. We expect this effe
for N with the same coordination as their predecessor (aN
5aN21) but a coordination of one less than the (N11)
bundle (aN115aN11). This is the case whenever an add
filament adds three instead of two bonds, thereby filling
shell. Examples of this situation are found forN
57,10,12,14,16,19,21, . . . and werefer to them as magic
numbers or filled shells. Cross sections of magic num
4-3



s

xa
e

s
u
io

e

e

n

s

e
va

s

h
th

s

n

a
ip
ru

the

ce

r

l

ist.

ist,

-

e-
l-

eries

of

by
on-
er,
and.

n
m

B. SCHNURR, F. GITTES, AND F. C. MacKINTOSH PHYSICAL REVIEW E65 061904
bundles correspond to arrangements with high degree
symmetry, as shown in Fig. 4.

A few supermagic numbers (N57,19,37, . . . ) represent
bundles with the special symmetry of the equilateral he
gon; we will not treat these cases separately. In agreem
with Pereira and Williams@43# we find that bundles of magic
numbers~and particularly the supermagic ones! play the role
of preferred states with increased stability.

C. ‘‘Condensation’’ length and energy

The formulation of the problem as presented contain
characteristic length scale that greatly simplifies the disc
sion and presentation of our results. Balancing express
for typical bending and surface energies (k/L;gL) for a
given filament lengthL defines a measure that we call th
condensation length Lc[Ak/g. Its role in the behavior of a
chain under particular conditions is the following: given th
physical parametersk and g, a filament much shorter than
Lc will rarely self-intersect and therefore typically forms a
extended structure, while one much longer thanLc is likely
dominated by overlaps and will form collapsed or at lea
partially collapsed~intermediate! structures.

Another combination of the two basic parametersk andg
sets an analogous energy scale, thecondensation energy Uc
[Akg. With these measures, all conformational energiesUN
can be presented in dimensionless units, where physical
ergies and lengths are normalized by their condensation
ues:uN[UN /Uc and l[L/Lc . This formulation also pro-
vides a convenient~experimental! realization of ‘‘changing
the filament length.’’ We can vary the reduced lengthl by
adjusting the values ofk andg independently.

V. TORUS STATES

We describe a torus by the following two~dimensionless!
variables: a filament of lengthl is wound into a circle of
constant radiusr, as shown in Fig. 5. In general, the toru
can have any numberN of complete windings~through an
angle 2p) and an amount of extra overhangs subject to the
conditions,2pr. Since the entire filament contour lengt
l has a constant curvature, the bending contribution to
conformational energy is alwaysl/2r2.

We find it convenient to distinguish forms of the toru
with different numbers of complete revolutionN defined as
the largest integer inl/2pr. Any noninteger portion of this
ratio represents overhang of filament beyond complete wi
ings, defined ass[l2N(2pr). Our distinction of different
tori by N naturally separates cases with different coordin
tion numbers and thus different surface energies. In antic
tion of an important distinction that emerges, we call a to

FIG. 4. Bundle cross sections of the lowest magic numbers o
hexagonal lattice. Note the arrangements of the ‘‘supermagic’’ nu
bers 7 and 19 into perfect hexagons.
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without extra overhang (s50) an ‘‘exact N’’ while we
refer to the generic torus with finite overhang (sÞ0) as an
‘‘ N1.’’

For the torus as described, we can then write down
following expression for its total conformational energy:

uN
torus~l,r,s!5

l

2r2
12pr@aN#1s@aN112aN#, ~2!

with the common bending term followed by two surfa
terms describing the contributions from the completeN-fold
ring and the extra piece of overhangs, respectively.

Substituting fors leads to the torus energy in terms ofl
and r only, which allows us to find the equilibrium size o
radiusrN(l) for a particular stateN by minimization with
respect tor: note that]2uN

torus/]r253l/r4 is positive every-
where. Resubstitution ofrN(l) yields the conformationa
energyuN

torus(l) in terms of the single variablel. The ex-
pressions found in this way are valid in the ranges ofl
betweenN andN11 times the circumference 2prN . How-
ever, a real solution for this equilibrium size need not ex
This happens exactly for the magic numbers withN>12.
When a real solution for the equilibrium radius does ex
the resulting energy has two terms: one proportional tol1/3,
the other tol. The coefficient of the linear term is the com
bination of coordination numbers (aN112aN) that can
vanish for N just below the magic numbers~at N
56,9,11,13, . . . ) leaving these cases with the functional d
pendence ofl1/3 only. Another consequence of the numero
ogy of hexagonal packing is that different statesN can
share the same energy expressions. Examples are the s
N5(2,3,4,5) and the pairsN5(7,8),(17,18),(22,23),
(25,26),(28,29), . . . . These cases form a particular class
transitions wheres grows continuously withl.

A. Stability

The above method for finding the optimal torus sizes
minimizing the conformational energy represents the c
ventional approach to determine metastability. Howev
there is a somewhat unusual aspect to the problem at h
The energy expressions for torus states with differentN are

a
-

FIG. 5. Sketch of a generic torus~here a 11 in our labeling
scheme! of radiusr and overhangs.
4-4
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METASTABLE INTERMEDIATES IN THE . . . PHYSICAL REVIEW E 65 061904
in general not the same. This introduces discontinuities in
form of the energy between adjacent states. Conseque
not only the conventional minima are identified by their va
ishing slopes, but also another class of solutions is identi
with discontinuities in slope at points where the energy
pressions to the left and right differ due to the filament c
ordination. These are not minima in the usual sense~for in-
stance, they are not locally quadratic minima!; they are
stabilized by finite slopes on both sides and do not have
usual signature of a vanishing slope. Our results for the
are displayed in Fig. 6.

In order to establish the metastability of the tori of diffe
entN in more detail, we consider the behavior of the ene
derivatives with respect to the radius]uN

torus/]r evaluated at
the radii where the exactN and N11 form. These deriva-
tives are all monotonic functions~functional dependence
2l22) with at most a single zero indicating a limit of met
stability. Around these zeros, the derivative is generica
negative to the left and positive to the right. When negati
the energy is lowered by increasing the radiusr, thus driving
any overhangs to vanish and making the torus an exactN.
When positive, the opposite is true, drivings to grow, mak-
ing the torus anN1. Note that there are cases~notably again
for the magic numbers withN>12) where]uN /]r is nega-
tive everywhere. These cases form an important clas
which tori never evolve~with increasingl) towards states
with finite overhangs: they remain metastable~with complete
or exact overlap! for all lengths beyond some lower limit
The relative positions of the zeros in the energy derivati
combine in two fundamental ways, resulting in exact andN
1 tori for various ranges ofl. A more detailed discussion o
the various cases can be found in Ref.@35#.

The rod (N50) is of course a special~trivial! case with-
out any bending contribution. Due to the absence of a

FIG. 6. Conformational energies of the torus states as a func
of filament length in reduced units. The thinner lines indicate~meta-
stable! solutions in regions where they are not the ground st
which in turn is indicated by bold segments. The dashed line sh
the largeN solution calculated in Sec. V C.
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competition between bending and self-affinity, the rod is~at
least! metastable for all lengths and follows a straight lin
The lower limit of the 11 state is given by the circumfer
ence of a single ring that just closes (l52p), a circle with
the radius of a condensation length. The subsequent smN
states show variations depending on the numerology of
hexagonal coordination numbers. For largerN a perhaps ge-
neric type of series emerges whereN1 become exactN
11, which remain metastable to infinity. Thus, in contrast
what we have emphasized here by treating only cases
relatively smallN in detail, only the few tori withN below
12 show variations to the generic pattern of exact~magicN)
tori without extra overhangs.

A direct comparison between relevant branches of the
lutions over regions ofl provides the transition points be
tween stable~or ground! states, as summarized in Table I.

It appears that the majority of stable torus states~perhaps
all N>12) are exact states over their entire range. Th
labelsN are a subset of the magic numbers.

B. Discreteness

Another notable result are the discontinuities due to
hexagonal packing and the discrete coordination numb
We might have expected the overhangs and the torus sizer
to be continuous with changes inl. At least for smallN we
find instead that small changes inl can cause discrete jump
in the size of the ringr. This characteristic has previousl
been described by Pereira and Williams@43#. To what extent
these effects are experimentally observable is not known
N grows large, the effect should weaken and ultimately d
appear altogether.

Discrete jumps are perhaps most prominently displayed
discontinuities in the torus size. Figure 7 shows the sizes
radii rN(l) of the ground states as a function ofl. The first
bold curve segment starts where the filament first make
stable 11. Note that the functional dependence of the fi
two segments is different from the subsequent~linear! ones.
The first two series evolve continuously according to th
equilibrium solution forrN with a functional dependence o

n

,
s

TABLE I. Transition points for the lowest energy states~ground
states! up toN524. Only for the ‘‘shortest’’ chains (l up to 11.543!
is the rod stable to the torus.

State labels Transition points

01→11 11.543
11→21 12.957
21→31 18.850
31→41 29.021
41→7 38.871
7→10 73.625
10→12 93.195
12→14 119.876
14→16 148.687
16→19 155.672
19→24 228.700
A A
4-5
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B. SCHNURR, F. GITTES, AND F. C. MacKINTOSH PHYSICAL REVIEW E65 061904
l1/3. Their prefactors are determined by some combination
the appropriate coordination numbers. By contrast, all sub
quent segments are due to solutions that are constrained
exact ~by virtue of the magic numbers! and thus have the
linear dependence ofl/2pN. The length of the various seg
ments indicates the stability of the states they repres
Clearly, states with supermagic bundling numbers~the figure
only showsN57 and 19! are especially stable. The dash
line indicates the~continuous! solution found in the limit of
largeN, as discussed in the following section.

C. Large N limit and scaling

The scaling argument of the torus size with filame
length goes back to the work of Ubbink and Odijk@28#. We
sketch a similar argument here in order to compare it in S
VI D with the analogous argument for the racquets. First,
give the straightforward scaling argument. In a second p
we then determine the prefactors based on the more accu
hexagonally faceted cross section of the torus.

In the limit asN grows large, we can neglect such deta
as partial overhangs~finite s) since differences betweenN
andN11 vanish as 1/N. We assume first that the torus is
perfect cylinder with circular cross section. It grows asN, the
number of filaments wound around its circumference. Th
we expect the total torus surface area to scale asrAN. Sub-
stituting for the radius in a scaling sense (r;l/N) we find
that the conformational energy has two terms: one prop
tional to l/N1/2, the other toN2/l. Minimization with re-
spect toN ~implicitly letting N to be a continuous variable!
yields the following set of scaling relations:

N;l4/5, ~3a!

r`;l1/5, ~3b!

FIG. 7. Radii of the stable torus states~bold! as a function of
filament length in reduced units, showing discrete transitions
tween the various series of states. The series shown are labele
the states at their lower extremes. For comparison, the contin
largeN solution is shown as a dashed line.
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u`;l3/5. ~3c!

To find the prefactors, we need to consider a geometric
more careful treatment. We assume that the torus formed
both a perfect hexagonal cross section and an integer w
ing number~no partial overhangs!. These assumptions ar
reasonable: it can be shown by direct calculation that
surface tension for a fixed number of filaments on a trian
lar lattice is smaller for the hexagonal than for the circu
cross section. This is analogous to a Wulff construction@44#
that captures, for instance, the faceting of crystals in so
state physics. The integer winding number is justified sin
the difference in the surface energies betweenN and N11
filaments vanishes asN becomes very large.

For an ~equilaterally! hexagonal cross section with it
symmetries, we can determine the following relationsh
geometrically. As a characteristic for the size of the hexag
we label the integer number of lattice spacings on a side
m. The counting of lattice sites~or filaments! in such a hex-
agonal bundle isN53m2 to leading order inm. Proper
counting adds a linear and a constant term:N53m213m
11 but in the limit of largeN we keep only the leading orde
in m.

We find the surface energy of such a bundle by count
solvent-exposed filament sites. A filament at an edge~of
which there arem21) exposes two sites, while one at
corner exposes three. Taking into account the sixfold sy
metry of the hexagon, this results in 12m16 exposed sites
on the surface. Substitution then yields the limiting coor
nation number ~a surface energy per unit length! a`

52A3N for a hexagonal bundle ofN filaments. This coordi-
nation number also provides the prefactors for the conform
tional energy of the torus in the limit of largeN,

u`5
2A3l

AN
1

2p2N2

l
. ~4!

The expressions analogous to Eqs.~3! with geometrical pre-
factors are then

N5
31/5

~2p!4/5
l4/5'0.286l4/5, ~5a!

r`5~6p!21/5l1/5'0.556l1/5, ~5b!

u`5
5~3p!2/5

23/5
l3/5'8.092l3/5. ~5c!

The last two expressions are shown in Figs. 6 and 7
dashed lines. We see outstanding agreement between
largeN limit and the exact solutions down to the lowestN in
Fig. 6.

VI. RACQUET STATES

The racquet conformational energies are made up
bending contributions from each of the heads, and surf
contributions from the heads as well as the neck region

-
by
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METASTABLE INTERMEDIATES IN THE . . . PHYSICAL REVIEW E 65 061904
between. As shown in Fig. 8, the racquets divide natura
into two groups: those with even and odd numbers of hea

In the even case, the number of heads on each side eq
n[N/2 by symmetry. In the odd case, we havep[(N
21)/2 heads on the ‘‘left’’ andq[(N11)/2 on the ‘‘right.’’
The labels left and right are our arbitrary naming convent
~see Fig. 8!. The variablesp andq for the bundling numbers
of the heads always differ by 1 (q5p11) and sum toN. The
bundling number of filaments forming the neck is alwa
N11.

Given these bundling numbers, the remaining variab
~in dimensionless units! for the generic racquet are the ove
all filament lengthl, and the head sizes on the two sid
~namely, the contour lengths of the heads, labeledxp and
xq). So far, we have described the racquets with their fi
ment ends coinciding with the ends of the neck. However
general~and in analogy with the overhangs in the torus
case! we need to allow for the extension of these ends in
the heads, or the retraction into the neck. Lengths of ov
hang are labeledsp andsq and their sign indicates whethe
they extend into or retract back from the heads. The length
the neckt is not an independent variable once all other p
rameters are fixed, since the total filament length impose
constraint.

For the even racquet with a givenl, the number of vari-
ables reduces to only 2. Since the left and right heads
even racquets are identical by symmetry, we collapse t
labels and are left with only one head size (xn[xp5xq) and
a single overhang variable (sn[sp5sq). The overall fila-
ment length for the even racquet is distributed intolN

even

5Nxn12sn1(N11)t where the terms are ordered a
heads, overhang, and neck. For the odd racquet, we leav
left and right head sizes separate, but require any overhan
be symmetrically distributed on the left side. This is not t

FIG. 8. Comparison of the structure and labels of generic e
and odd racquets, represented here by theN52 and 3. All the heads
on one side are identical; the schematic separates head and
filaments only to indicate their multiplicity.
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only possible metastable solution, but the one we desc
here generically is the most symmetrical; we will discuss
details of other possible solutions further in Sec. VI C. In t
odd case, the overall chain length divides itself intolN

odd

5pxp1qxq12sp1(N11)t where we use the single ove
hang variablesp to indicate that the two possible pieces
overhang are always on the left side~see Fig. 8!.

By way of a preview, we state here that the racquet so
tions ~see Fig. 9! differ fundamentally from those of the tori
While the size of the torus was found to increase as a fu
tion of l ~up to discontinuities!, the sizes of the racque
heads~as well as any lengths of overlap! are fixed for each
state by the local force balance between the bundles of
ments making up head and neck. Having determined
head sizes and overhangs for a particular state, its lower l
of validity l low is found by adding up the head sizes a
overhangs in the absence of any neck at all (t→0). This is
the minimal filament length required to form a particul
racquet. For all lengths beyond, the racquets remain m
stable as their energies increase linearly with slo
aN11 /(N11). Adding extra filament to any racquet con
figuration only lengthens its neck, while the head sizes a
any overhang remain fixed. As a consequence, all racq
are ~at least! metastable solutions for anyl beyond their
lower cutoff l low . What remains to formulate the total con
formational energies of the racquets is the bending contr
tion due to partial overhangs.

A. Head shape—an elastica

Having identified the racquet head as the distinguish
common element among the intermediate states, we calcu

n

eck

FIG. 9. Racquet state energies, shown as a function of filam
length in dimensionless units, form a dense spectrum of soluti
each increasing linearly. For comparison, the scaling solution w
proper prefactor in the limit of largeN is superimposed~dashed
line!. Note the nearly perfect agreement of the scaling solution w
the lower envelope of the racquet states, down to the very low
values ofN.
4-7
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B. SCHNURR, F. GITTES, AND F. C. MacKINTOSH PHYSICAL REVIEW E65 061904
its geometrical shape~see Fig. 10! in the absence of therma
fluctuations from the bending of a slender, elastic rod. T
expression for this head shape is necessary for the dete
nation of bending energies for the racquets. The general c
of shapes resulting from the bending of a slender rod
forces and couples applied at its ends only are known
elastica. Such solutions were first studied by Euler in 174
The particular solution we seek is schematically drawn
Fig. 51 of the treatise by Love@45#.

To solve for the shape of a racquet head of total cont
lengthH we consider the geometry as shown and labeled
Fig. 10. In this section we use physical variables instead
the dimensionless units introduced previously, as they
more intuitive here and allow for dimensional analys
Given the obvious symmetry about they axis, it is sufficient
to solve for one half of the racquet head only. The tang
angle along the curve increases fromu50 at the originO
(s50), via a maximum at the inflection pointI, to u5p/2 at
V2 (s5H/2, where the head joins the neck!. Note that there
are two pointsV1 and V2 at which the tangent is vertica
(u5p/2), with an inflection pointI between them. Thes
three points define an additional symmetry~about the inflec-
tion point I ) for the contour between pointsV1 andV2.

Our particular elastica is solved@46# by minimizing the
WLC ~wormlike chain! Hamiltonian subject to the boundar
condition that the two halves of the head join in the neck
x50. We impose this constraint by means of a Lagran
multiplier z,

U5E
0

H/2

dsH k

2 S ]u

]sD 2

1z cosuJ . ~6!

FIG. 10. Schematic figure of a racquet head with axes appro
ate for our calculation. Local tangent anglesu are measured from
thex axis. Symmetrical regions along the contours are delimited by
solid circles.
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Applying Euler’s equation to this expression leads to t
differential equation

d2u

ds2
52b2sinu~s!, ~7!

where we made the substitutionb2[z/k and expressed the
angleu(s) explicitly as a function of the contour lengths.
Note that the Lagrange multiplierz has the dimensions of a
force and expresses the force required to join the two fi
ment bundles in the neck. Equation~7! can be integrated to
yield an expression for the curvature along the head con
s as a function of the tangent angleu,

du

ds
5

2b

k
A12k2sin2~u/2!. ~8!

Equivalently, one can rearrange terms and express the
tour lengths scaled byb in the form of an incomplete ellip-
tic integral of the first kindF(f,k),

bs5kE
0

u/2 dt

A12k2sin2~ t !
5kF~u/2,k!, ~9!

wherek is the elliptic modulus~yet to be determined! and t
an integration variable. This is the parametric solution of
elastica: it gives the contour lengths as a function of the
tangent angleu. The expression is multivalued over it
range, but invertible in certain regions. Four such regions
defined by the axial symmetry of the head~through the ori-
gin and the neck! and the pair of inflection points in between
We thus cover the entire racquet head in a piecewise fash
while only two of these regions are essentially different: t
piece fromO to V1 and that fromV1 to I ~with its reflection
from I to V2). The yet unknown elliptic modulusk for our
elastica is found from a geometrical constraint. By the sy
metry between the segments around the inflection point,
demand that thex value at pointV1 is twice that at the
inflection pointI. Solving the resulting equation numerical
gives the value for the modulus ask51.1695. The inflection
point is identified by the vanishing curvature of Eq.~8!,
which corresponds to a tangent angle ofu I52.052.

The expression for the curvature@in Eq. ~8!# allows us to
evaluate the bending energy of such a racquet head. S
the bending energy is an integral over the squared curvat
we can use Eq.~8! to evaluate this energy over any segme
of the racquet head by integration. This requires the num
cal evaluation of an incomplete elliptic integral of the seco
kind, E(f,k),

U5
bk

k E duA12k2sin2~u/2!5
2bk

k
E~u/2,k!. ~10!

Adding up the symmetrical pieces of this solution for t
entire head yields the total bending energy of a comp
racquet headUhead5A(k/H) with A representing the nu
merical constant 18.3331. Thus, the bending energy in a
quet head depends~apart from the value for the bendin
modulusk) only on its contour length. Note also that th

ri-
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METASTABLE INTERMEDIATES IN THE . . . PHYSICAL REVIEW E 65 061904
bending energy of the racquet head is very close to~but
slightly below! that of a circular ring with the same contou
length H (U ring52p2k/H'19.7392k/H). Using circular
rings as racquet heads would thus provide a reasonable
proximation for the calculation of conformational energie
provided we neglect the penalty due to the sharp bends a
neck.

The form of the solution in Eq.~9! reveals that our rac
quet head shape or elastica is unique, in the sense that
independent of any parameters in the problem. Both
parametric head shapes(u) and the bending energyU(u) are
scaled by the factorb, related to the local force balance
V2. The overall size of the resulting shape is merely sca
up or down, while its aspect ratio remains. Any slender, u
form rod, subject to these boundary conditions, will assu
the described racquet head shape. We emphasize that th
of the racquet head doesnot depend on the overall filamen
lengthl, unlike in the case of the torus.

This dependence of the head size on the local force
ance also suggests that the following experiment should
possible, at least in principle. Evaluating head sizes i
sample of partially condensed filaments would measure
local interaction strength between filaments, a quantity
easily found by other means. This approach assume
course, that the value for the bending modulus~or equiva-
lently the persistence length! is known from an independen
measurement.

B. Bending energy in racquet heads

To evaluate the bending contribution to the conform
tional energies we recall the expression for the bending
ergy in a head of sizex. Generalized to anN bundle~which
effectively multiplies the bending modulusk) the dimen-
sionless bending energy for anN racquet head become
uN

head(x)5A(N/x), where A is again the same numerica
constant evaluated previously from elliptic integrals. A s
bility analysis and numerical minimizations found that ‘‘pe
fect’’ racquets~with s50) are the solution for only a subse
of all racquets.

In order to account for partial overhang into the heads,
need to generalize the notion of the numerical prefactorA.
This ‘‘constant’’ is really a function of the partial overhan
Due to the scale invariance of our elastica, it is not surpris
that A depends only on therelative overhang§[s/x. In
terms of§ the four regions are delimited by the followin
values: 0, 0.1627, 0.5, 0.8373, and back to 1, measured
the neck. The three intermediate values identify the two
flection points and the halfway point~the origin in Fig. 10!;
note that these values are measured in the opposite s
from the one defined in the figure. Reconstruction of
piecewise solutions for any amount of partial overhangs
yields the expressionupartial(s,§)5A(§)/s with the numeri-
cal prefactorA[A(§51) generalized to thefunction A(§).

C. Even and odd racquets

The surface energy terms for all racquets consist of s
eral terms with different coordination numbers in gener
The only term the even and odd cases share is the coord
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tion in the neck, whose lengtht is shared by (N11) fila-
ments. For the even racquet, symmetry simplifies the exp
sions somewhat. In each of its heads, we find a lengthxn
2sn) with coordinationan and the overhang piecesn with
coordinationan11 while the neck has the common coord
nationaN11, which leads to the full expression for the co
formational energy of the even racquet,

uN
even5AF N

xn
G12A~sn /xn!F 1

sn
G12@an~xn2sn!

1an11~sn!#1aN11~t!. ~11!

The first two terms are the bending contributions for co
plete heads and partial overhang, while the three follow
terms are surface contributions for head segments and n
respectively. For the odd racquets, the expression becom

uN
odd5AF p

xp
1

q

xq
G12A~sp /xp!F 1

sp
G1ap~xp22sp!

1aq~xq12sq!1aN11~t!. ~12!

In the even case, there are only two free variables,xn and
sn . We find their optimal values by simultaneous, numeri
minimization. In the odd case, the situation is slightly diffe
ent, since we lack the symmetry between heads. Howe
we can make use of the fact that both filament ends~and
therefore any potential overhangs! are on the left side. This
leaves the right head with a well-defined structure ofq fila-
ments in the head andN1152q filaments in the neck. Since
the head size is solely determined by the respective bund
numbers in head and neck, we can determine right head s
independently of any overhang on the left by minimization
terms of the various bundling and coordination numbers
A only,

xq5A 2qA

2aq2a2q
. ~13!

We then numerically minimize over the two remaining fr
variablesxp andsp of the left head. Plotting constant energ
contours as a function of the two free variables genera
reveals the approximate location of the relevant minimu
and their coordinates were used as a starting point for
minimization routine. This procedure finds two possible o
comes for both even and odd cases. In the simpler case
energy is minimized without overhang (s50) and we re-
cover the naively assumed, perfect racquet structure. In
other case, we find a local minimum with respect tos andx
for finite values of overhang. In every case we have chec
~up toN530), these solutions put the fractional overhang
the second region of the racquet head, between the inflec
and halfway points, as indicated in Fig. 11.

Since both filament ends are on the same~left! side for the
odd racquets, there are several possible configurations
overhang to be arranged, as shown in Fig. 12. The two pie
of equal lengthsp could be arranged symmetrically on op
posite sides of the head. Alternatively, the two pieces
overhang can be on the same side, but not necessaril
4-9
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B. SCHNURR, F. GITTES, AND F. C. MacKINTOSH PHYSICAL REVIEW E65 061904
equal length. All the cases we examined are minimized
one unique value ofs, corresponding to cases~a! and~c! in
Fig. 12, which turn out to be degenerate in energy. In re
spect we were thus justified to describe the odd racquet
overhang generically as the symmetric case~a!, while a sec-
ond ~asymmetrical! solution, degenerate in overhang and e
ergy, exists.

All racquet head sizesxp and xq found either by direct
calculation or by numerical minimization are displayed a
function of the racquet state labelN in Fig. 13 to show the
general trend and their convergence towards the largeN so-
lution. Head sizes typically increase withN, though not
monotonically, and right heads are typically larger than l
for the odd racquets. Even racquet heads are of the s
size, by construction.

Since our minimization allowed only for extension in
the heads but not retraction of the filament ends back into
neck, we tested the stability of racquets~up to N530) to
small perturbations, subject to fixed overall lengthl. We
found three types of results. In the simplest case, the racq
are stable to any small change. These racquets~with N
51,2,3,11,15,17,20, . . . ) remain exact (s50). A second
class is identified by stability to retraction but not to exte
sion. These racquets~with N54210,13,18,22, . . . ) develop
finite ~positive! overhang. The remaining cases are the ma
numbers starting with 12~namely,N512,14,16,19,21, . . . ),
which are unstable~or marginally stable! to retraction along
the neck. A subset of these states are unstable to exten
and solutions with finite, positive overhang exist. Howev

FIG. 11. Partial overhangs ~solid line! into an existing head of
sizex ~dashed!. The ratio ofs/x defines the fractional overhang§.
This schematic shows the typical situation for racquet soluti
with nonzero overhang, with the filament end located somewh
between the inflection and the halfway points~solid circles!.

FIG. 12. Three possible solutions for partial overhang into
left head of an odd racquet. Case~a! is the one described in the tex
The more general case with different amounts of overhang on
same side~b! is always minimized by the arrangement in case~c!
where the two ends coincide.
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those cases that are stable to extension have no metas
solution at all. We thus conclude that no racquet solutio
exist for N514,16,21,24, . . . andthese states are omitte
from our energy spectra~Fig. 9! and the series of head size
~Fig. 13!.

D. Large N limit and scaling

We perform the analogous calculation to that done for
torus states in Sec. V C, under the assumption that bun
form hexagonal cross sections as their bundling numberN
become large, to find the behavior of the racquet energie
the same limit. The result is shown as the dashed line
Figs. 9 and 13. To compute it, we assume that the largN
racquet be even and without overhang (s50) as differences
between bundles of nearly the same number of filame
vanish in this limit. This even racquet has a neck lengtht
and a limiting head sizex` for large bundling numbersn in
the heads andN in the neck~see Fig. 14!.

Since the size of the heads depends only on the balanc
forces at the point where the head and neck bundles mee
can calculate the optimal head sizex` as in Eq.~13! for the
right head of an odd racquet. As in Sec. V C, we determ
the optimal bundling numberNopt(l) by minimizing the en-
ergy with respect toN, which yields the scaling results with
prefactors as functions ofl only,

s
re

e

e

FIG. 13. Left and right head sizes versus the state labelN. Pairs
of even heads are of the same size, by symmetry. The general
is for heads to grow withN, if not monotonically. Notice the con-
vergence towards the asymptotic solution@dashed line, see Eqs
~14!# with increasingN.

FIG. 14. Schematic racquet in the limit of largeN where we
assume the symmetry of the even racquet and neglect any
overhang.
4-10
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FIG. 15. Spectrum of rod, racquet, and torus states shown as conformational energy versus filament length in reduced units. On
~at smalll) and the tori~for all l beyond a transition point! are globally stable states. Notice the rather large gap between the spectr
racquet states and the stable torus solution. Metastable torus solutions are omitted for clarity.
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Nopt'0.303l4/5, ~14a!

x`'2.653l1/5, ~14b!

u`'10.482l3/5. ~14c!

Knowing the head sizex` , we can calculate the lowe
limit of validity l low in a scaling sense. This allows us
compare the expressions for the filament length from m
mization (lopt'4.442N5/4) with the length found by simply
removing the neck altogether (l low'3.575N5/4). Since the
optimal lengthlopt exceeds the minimal lengthl low , a large
06190
i-

N racquet will be one with a finite neck. This is an importa
result since it hints at the evolution of very long chains
they condense into racquets with increasingly largerN. In
fact, we can estimate the growth of the neck lengtht` from
the difference between the prefactors inl low and lopt. Its
scaling is given byt`'0.644l1/5. Thus, the neck grows with
the same power ofl as the heads but with a smaller prefa
tor. We may have anticipated that the growing heads prov
a simple pathway towards the torus, as the inevitable limi
the heads growing at the expense of the neck. For a fi
filament length, the neck would have had to shrink to ze
with increasingN, opening up the structure to form a toru
4-11
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B. SCHNURR, F. GITTES, AND F. C. MacKINTOSH PHYSICAL REVIEW E65 061904
For the particular racquet solutions shown in Fig. 9 we not
that the end points are relatively dense and represen
times, the lowest point in the spectrum of states. Especi
for such states, it is still true that their neck can shrink
very small or vanishing lengths, depending onl. Thermal
fluctuations can then lead to the opening up of the neck
form a torus. Yet, even if the limit of largeN does not pro-
vide an absolutely compelling pathway for the collapse to
torus, we now appreciate the energetics involved.

VII. DISCUSSION: RACQUETS VERSUS TORI

Figure 15 shows the individual racquet solutions of Fig
now compared to the stable torus ground states found in
V A. In anticipation of these results, we described the low
metastable torus state over any range ofl as the ground state
of the system. Figure 15 confirms this claim by direct co
parison of racquets and tori. In addition, we found that
largeN solutions for tori and racquets both grow asl3/5 but
with different prefactors. In combination with the clos
agreement between particular solutions and the largeN limit,
this strongly suggests that the torus remains in the gro
state for alll beyond the transition point (l511.543). Only
for shorter chains, does the rod represent the ground sta

There appears to be only one region where the energie
racquets and tori are even close, at the very low values ol
near the transition point. Figure 16 shows the relevant reg
in detail. TheN51 racquet solution comes extremely clo
to the solutions for both the rod (N50) as well as the 11
torus, but remains above. Thus the only stable~ground state!
solutions for this system~in the absence of thermal fluctua
tions! are the rod at smalll and the tori everywhere beyon
the transition point. At energies above this ground state,
see a dense spectrum of metastable solutions, made u

FIG. 16. Close-up of the rod, racquet, and torus solutions in
region where they are closest to each other. Racquets are in
never stable, though their energy is very close to both the rod
the tori in this region.
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other~metastable! torus~see Fig. 6 for details! and increasing
number of racquet states.

For fixed conditions we need only consider a vertical sl
through the spectrum of energies. Along such a line, we
imagine a filament cascading down from an extended, r
like configuration, through various metastable intermedia
while lowering its energy along the way. Our calculations
not of course capture the entire physical picture, as we
glect filament size in the bundling and our states are ca
lated in the absence of thermal undulations. So far we h
no estimate of the energy barriers between the metast
intermediates. However, the dynamical simulation resu
@34# suggest that these barriers as well as the energy g
between states are large compared tokBT: transitions that
increaseN are infrequent and sharp, while transitions in t
opposite direction are essentially never observed. This is
pecially true for the transition from the racquet spectrum t
torus, indicating that this energy gap is even larger for
parameters chosen in the simulation. This picture is con
tent with the analytic results in Fig. 15 that clearly shows t
large gap stabilizing the ground state. The results of
analysis thus nicely corroborate, at least qualitatively,
results of our prior computer simulations as well as th
relevance to the condensation of stiff chains.

We would like to note that the shape of condensed fi
ments may depend on the nature and molecular structur
the condensing agent. Our study only addresses an inte
tion that is uniform along the filament, such as the effect d
to a poor solvent. Other systems, with more pointlike org
nizing centers, have been shown to exhibit intricate multil
or flower patterns@32,47#.

Our observations suggest that the pathway for the colla
of extended chains into condensed structures via interm
ate racquet states is a viable, even generic alternativ
the perhaps more immediately guessed direct winding
upon the meeting of filament ends at an obtuse angle. S
of the simulations show the latter collapse pathway, but i
much less frequent. Furthermore, this cascade pic
through which our calculations reinforce and at least p
tially explain the simulation results, seems robust. We fi
this cascade through intermediate states even for a m
more naive treatment of the poor solvent interaction used
a first pass. The individual curves~e.g., in Fig. 15! are shifted
but show a qualitatively similar picture. The generic casca
through metastable intermediates is so dominant that i
retained regardless of the detailed realization of the inte
tions.
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