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Metastable intermediates in the condensation of semiflexible polymers
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Motivated by results from an earlier Brownian dynamics simulation for the collapse of a single, stiff polymer
in a poor solven{B. Schnurr, F. C. MacKintosh, and D. R. M. Williams, Europhys. LBft. 279 (2000] we
calculate the conformational energies of the intermediatequet states suggested by the simulations. In the
absence of thermal fluctuatioriat zero temperatuyethe annealed shapes of these intermediates are well-
defined in certain limits, with their major structural elements given by a particular case of Euler’s elastica. In
appropriate units, a diagram emerges that displays the relative stability of all states, tori, and racquets. We
conclude that, in marked contrast to the collapse of flexible polymers, the condensation of semiflexible or stiff
polymers generically proceeds via a cascade through metastable intermediates, the racquets, towards a ground
state, the torus or ring, as seen in the dynamical simulations.
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[. INTRODUCTION Theoretical work has predominantly addressed structural fea-
tures, such as the detailed packing of filamef6—31,

The conformation of individual polymer chains dependswhile dynamical simulations and atomic force microscopy
on the properties of their environment, i.e., the solyé@rt3].  (AFM) among others have increasingly focused on kinetic
In the presence of @oor solvent, isolated polymer chains aspects and condensation intermedifl€520,24,32,3B
tend to collapse toward compact states, in which polymer- A particular set of recent dynamical simulations of iso-
solvent contacts are minimized. For flexible polymers, thdated chaing34] has strongly suggested a possiléed in
kinetics of this coil-globule transition have been the subjecfact generig pathway for the collapse of semiflexible poly-
of much research over the past few decades9]. The ki- mers. These simulations showed not only the eventual for-
netic pathway for flexible polymer collapse has only recentlymation of tori from extended chains quenched in poor sol-
been experimentally confirmed to involve the formation of avent but demonstrated a series of long-lived, partially
pearl necklace and the gradual diffusion of large pearls fron¢ollapsed intermediate states. Very similar chain morpholo-
the chain end$10,11. gies(our racquet stateslso appear in other simulation work

In contrast to the flexible case, many polymers exhibit24] and AFM studies of DNA condensati¢t9]. Motivated
substantial bending stiffness, thus adding @eposing ten- by these results, we develop and analyze a hierarchical fam-
dency to form extended structures. This makes a compadly of metastable racquet states. In particular, we demonstrate
globule energetically unfavorable faemiflexiblepolymers  that their relative conformational energies are consistent with
because compact globules involve large amounts of bendinde role they play in the simulations: they form an energeti-
Such chains are described by the persistent or wormlik&ally driven cascade of increasingly compact conformations
chain (WLC) model [3], examples of which include pre- With sharp transitions between them.
dominantly biopolymerge.g., F-actin and DNA but also We begin in Sec. I with a brief summary of the dynami-
some synthetic polymel@.g., kevlay. The balance between cal simulation result§34] that motivated this analysis. Sec-
the tendencies to straighten the filamédtie to a bending tion Il addresses the morphology and evolution of the
energy and to condense idue to an effective short-range shapes to be analyzed in the remainder of the paper. Our
attraction or poor solvepts at the heart of the condensation @pproach to calculate the surface contributions to the confor-
of semiflexible polymers. mational energies is developed in Sec. IV, followed by the

The apparent equilibrium collapsed state for semiflexiblewo main sections containing a detailed analysis of torus and
polymers is well known: chains with significant bending racquet stateg¢Secs. V and VI, respectively Section VI
stiffness can form rings or toroids to avoid incurring the flnaIIy compares their relative Stability and discusses the
large bending penalty of a spherical shell or a globule. Thiglualitative agreement with the dynamical simulation results
condensed state has been suggested and studied theoretic#{f Set out to understand.

[12-15, demonstrated in a variety of experimental systems

[16—21], and confirmed by computer simulatid@2-25. . BRIEE REVIEW OF THE DYNAMICAL

SIMULATION RESULTS

*Electronic address: bernhard.schnurr@weizmann.ac.il The work described in Ref[34] applied a standard
"Electronic address: gittes@wsu.edu Brownian dynamic¢BD) algorithm[2] to a bead-and-spring
*Electronic address: fcm@nat.vu.nl model of a single polymer chain in the plane to capture the
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FIG. 1. Annealed shape of a racquet head from the BD simula- % N=3
tion, achieved by slowly lowering the effective temperature once Neck
the structure has formed. The shape coincides with the analytical Left Head Right Head

curve to within a linewidth.

most general features of a rather complex and biologically % N=4

important process, the condensation of DNA. The technical
details of that study are discussed elsewh&&35. Here,
we merely sketch the gross features and the generic results
that motivated our work in this paper.

The dynamical evolution of a simulated chain followed a
Langevin equation of the form

FIG. 2. Schematic “family” of racquet states. The rod can be
thought of as a trivial racquet without a head=0). All subse-
guent states are labeled by their number of head sections.

dx Ju IIl. IDENTIFICATION OF INTERMEDIATE STATES
G- o FmU=Fy (o The d cal simulati )
i ynamical simulationg34] suggest that the mecha
nism of collapse of semiflexible chains generically involves
for each bead, where¢ is the coefficient of viscous drag transitions through a series of long-lived intermediate states.
(Fuise= év) and 7 the random noise. Each bead is displacedin the absence of thermal fluctuations these intermediates
by Axi=(Fy /£)At during a time stepAt. The potentiall  anneal to certain underlying shapes that are well defined and
contains all interactions internal to the chain, including theallow a straightforward calculation of their conformational
bending energy, a short-range attractive interaction betweeanergies. The crucial element in the underlying shapes is a
beads(mimicking poor solvent conditionsand a very stiff  characteristic looped section that we call a racquet head. For
longitudinal compliance. After thermalization of each chain,the single racquet, the shape of the hésele Fig. 1 was
the solvent quality was quenchedtatO. produced in the simulation by annealing. While missing the
Previous worK 34,35 showed the typical dynamical evo- effects of thermal undulations, our calculations of the con-
lution of a relatively short chaiifa few persistence lengths formational energies and detailed shapes of the annealed in-
as a progression through well-defined stages identified btermediates provide an insightful framework for understand-
three types of conformations: extended chain with thermaing the simulation results.
undulations, various racquet statege Figs. 1 and)2and In order to simplify the reference to specific states, we
the torus or ring. We also pointed out that the end-to-endabel all racquet states by their number of looped sections.
distance of the filament as a function of time changes sharplyhus the rod is th&l= 0 state, the racquet with a single loop
with the conformational transitions between states. It is im-at one end is th&l=1, and so forth, as indicated in Fig. 2.
portant to note that the described conformations persist ifVe refer to the loop formed at the ends of the structure as the
time, as seen by quasiplateaus in the end-to-end distan¢bead” and to the bundle of filaments connecting heads as
evolution, each lasting for a considerable time of abouthe “neck.” For the moment we neglect the more subtle
10° BD steps, about one-tenth of the entire condensatioguestion of the exact location of filament ends. Naively, one
event. We can roughly estimate the correspondence betwe@night assume that filament ends coincide with the ends of
simulation steps and physical time for a particular system. Tdhe neck, since it is straight; that is, the ends of the filament
do this, we express the link length as a fraction of the perare expected to span the entire neck as they incur no bending
sistence length and substitute for the local drag coefficientpenalty, but generally gain from increasing their overlap.
assuming the viscosity to be of water. Hesactin, such an The picture as described provides an adequate starting
estimate suggests that an entire simulation of BD steps  point for labeling the states we consider here. Among the
models a filament for about 0.1 s. For DNA, this interval shapes indicated in Fig. 2 we distinguish two basic racquet
corresponds to a fraction of a millisecond. symmetries: even and odd total numbers of heisldd-or
Temporal persistence of racquet structures was seemcquets with eveN, the number of overlaps in the head
throughout the simulations, suggesting that metastable intesections is equal on the two sidgs: q=N/2. For racquets
mediates are a general feature in this collapse. Presumablyjth odd N, one sidegwe arbitrarily call it the left, following
energy barriers between intermediates are responsible féiig. 2 has one lesp=(N—-1)/2 than the otherg=(N
their local (metagstability but we have not attempted to esti- +1)/2. As a consequence, the filament ends of an even rac-
mate their size. quet are on opposite sides of the neck.
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by x-ray diffraction applied to bundles of DNA and other
charged polymer chaing86—4Q and the detailed structure
within bundles of semiflexible polymer chains has been stud-
ied theoretically{41,47.

Our calculations describe the simplified model with fila-
ments of vanishing thicknes&compared to other length
FIG. 3. Early stages in the evolution of a long ch&@0-mer, scales in the problemwhile we model their packing on a

roughly 207;) showing combinations of the conformational ele- P€rfect hexagonal lattice. Thus we do not take into account
ments seen in shorter chains. any winding defects due to topological constraints or varia-

tions in curvature due to the finite filament thickness. As

Note that the dynamical simulations modeled the case ofmplicit in the description of a wormlike chain, we assume a
fixed experimental conditions after the solvent quench. Thathiform bending modulus. In the torus state, such an ideal
polymer chain is merely exploring a given conformational chain forms a circular ring with a single radius of curvature.
energy landscape via thermal fluctuations. However, it can bEurthermore, we assume for both racquet heads and torus
instructive to consider as @edankenexperimetite case of that partial filament overhang, an effective nonuniformity in
variable filament length, and we use this perspective in outhe bending modulus, does not change their shape but only
discussion. Nreduced chain |ength is also a natural inde- their size. Neglecting these hlgher order corrections is cer-
pendent variable for the presentation and comparison dginly justified in the limit that the bundling numbét gets
states. In this alternative perspective, the evolution of shapdarge.
starts with a short filament that gradually lengthens. At first,
only the neck grows until the formation of a new head is
favored. The incremental unit of growth between conforma- A. Surface energy of hexagonal bundies
tions thus consists of one head plus one neck segment. This |n a hexagonally close-packed bundle, each filament in
procedure can be continued to arbitréfygiven enough fila-  cross section can be thought of as having six sites occupied
ment. In Sec. IV C we will see that the appropriate formula-py either solvent or polymer. The poor solvent lowers the
tion of the problem accomplishes changes in tb#ective  energy for polymer-polymer relative to polymer-solvent con-
filament length by adjusting the solvent quality instead of thetacts. To express the fact that there isetative energetic
actual chain length. advantage for filaments to bundle versus being exposed to

In the simulations, the actual transition into the torus state&olvent, we explicitly evaluate the total number of solvent-
could not be resolved in detail. It is clear, however, that ther%xposed sites and express the energy as a surface tension.
are in principle at least two ways in which a loop can form:  particular surface energies are evaluated as follows. To
two chain segments can meet with their tangent angles at ahd the coordination numbety for an N bundle, consider
angle ofw or 27. The former case leads to a racquet headthe total number of surfaces or binding sites in the bundle
while the latter makes a ring that allows the chain to wind upwith hexagonal order (). This number is proportional to
into a torus directly. Since it is more likely for a stiff chain to the energy oiN individual filaments completely exposed to
bend into the smaller angle, one would expect the transitioRolvent. To account for the effect of bundling, we note that a
to racquets to be favored, at least for short chains. Statistbond corresponds to the merging of two binding sites on
cally, the simulationg34] confirm this. Most of the chains neighboring filaments. We thus subtract the number of bonds
studied there were relatively shdtess than 10 persistence formed from only half the number of sites I3 to find the
lengths though a few examplesee Fig. 3 of longer chains  coordination numbety . As an example of this numerology
showed qualitatively similar behavior but with increasedconsider the cases fd¢=5 and 10: for five filaments there
complexity, such as the display of superstructures of racquetgre seven bonds, resulting in a coordination of 8, while 10

within racquets. filaments make 19 bonds and thus have a coordination of 11.
Multiplying by the surface tension parametefinally yields
IV. CONFORMATIONAL ENERGIES the surface energy per unit length for such a bundle.

Having discussed the basic morphology of the intermedi-
ate states, we turn to the calculation of their conformational
energies in the absence of thermal undulations. Racquet and Differences between subsequen{'s are always either 0
torus conformations at zero temperature can be thought of &y 1 (except betweeN=1 and 2. This creates nonunifor-
the underlying shapes, which become modified by fluctuamities in the effective binding strengths per unit length, thus
tions at finite temperatures. Apart from the bending contribufavoring particular bundling numbers. We expect this effect
tions to the conformational energies, we need to describe thfor N with the same coordination as their predecessgy (
nature of the surface energy by which we model the poor~ ay—;) but a coordination of one less than thH«1)
solvent conditions that induce condensation. This surface eundle (@y+ 1= ay. ). This is the case whenever an added
ergy assumes the packing or bundling of filaments in a hexfilament adds three instead of two bonds, thereby filling a
agonal lattice(in cross sectionand distinguishes between shell. Examples of this situation are found foN
polymer and solvent exposures. The local arrangement into & 7,10,12,14,16,19,21.. and werefer to them as magic
hexagonal columnar phase has been confirmed, for exampleumbers or filled shells. Cross sections of magic number

B. Filled shells and “magic” numbers
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FIG. 4. Bundle cross sections of the lowest magic numbers on a
hexagonal lattice. Note the arrangements of the “supermagic” num-
bers 7 and 19 into perfect hexagons.

bundles correspond to arrangements with high degrees of
symmetry, as shown in Fig. 4.

A few supermagic numberdNE=7,19,37 .. .) represent
bundles with the special symmetry of the equilateral hexa- ) ) )
gon: we will not treat these cases separately. In agreement F'G: 2. Sketch of a generic torusere a 1 in our labeling
with Pereira and William§43] we find that bundles of magic SCnemMe of radiusp and overhang.
numbergand particularly the supermagic onggay the role ) ]
of preferred states with increased stability. without extra overhang £=0) an “exact N” while we

refer to the generic torus with finite overhang=0) as an

“ N+ .”
For the torus as described, we can then write down the

The formulation of the problem as presented contains dollowing expression for its total conformational energy:
characteristic length scale that greatly simplifies the discus-

sion and presentation of our results. Balancing expressions
for typical bending and surface energies/I(~yL) for a
given filament lengthL defines a measure that we call the
condensation length .= \«/y. Its role in the behavior of a

chain under particular conditions is the following: given the .
P J-d with the common bending term followed by two surface

physical parameterg and vy, a filament much shorter than - A
L. will rarely self-intersect and therefore typically forms an t_erms describing the contributions from the comphtéold

extended structure, while one much longer thans likely ”n% agd_thg ex;ra p:ecz of ovr:erhang respectn(ely. f

dominated by overlaps and will form collapsed or at least u st|tut|ng. oro leads to't e.torus energy in term_s)o

partially collapsedintermediatg structures. and p only, which allows us to find the equilibrium size or
Another combination of the two basic parametersnd y radius py(\) for a particular statéN by minimization with

. 2, toru 2__ 4 e
sets an analogous energy scale, tbadensation energy U  '€SPect iq: note that“uy 79p*=3\Ip" is positive every-
= |k y. With these measures, all conformational energigs

where. Resubstitution opy(\) yields the conformational
can be presented in dimensionless units, where physical eRN€rgyuy

C. “Condensation” length and energy

A
W0 i) = g+ 2mplan]+ olanaa—an], ()

1oMUY\) in terms of the single variable. The ex-

ergies and lengths are normalized by their condensation vaRressions found in this way are valid in the ranges\of
ues:uy=Uy /U, and \=L/L.. This formulation also pro- betweenN andN+1 times the circumferences2y . How-
vides a convenientexperimental realization of “changing €Ver, a real solution for this equilibrium size need not exist.

the filament length.” We can vary the reduced lenattby ~ This happens exactly for the magic numbers wik=12.
adjusting the values of and y independently. When a real solution for the equilibrium radius does exist,

the resulting energy has two terms: one proportional 3,
the other tox. The coefficient of the linear term is the com-
bination of coordination numbersaf . 1— @) that can

We describe a torus by the following twdimensionless  vanish for N just below the magic numbergat N
variables: a filament of length is wound into a circle of =6,9,11,13...) leaving these cases with the functional de-
constant radiup, as shown in Fig. 5. In general, the torus pendence of** only. Another consequence of the numerol-
can have any numbe¥ of complete windinggthrough an  ogy of hexagonal packing is that different statdscan
angle 2r) and an amount of extra overhangsubject to the share the same energy expressions. Examples are the series
condition c<2mp. Since the entire filament contour length N=(2,3,4,5) and the pairsN=(7,8),(17,18,(22,23),

\ has a constant curvature, the bending contribution to thé25,26,(28,29), ... . These cases form a particular class of
conformational energy is always/2p?. transitions wherer grows continuously with.

We find it convenient to distinguish forms of the torus
with different numbers of complete revolutidw defined as
the largest integer in/2mwp. Any noninteger portion of this
ratio represents overhang of filament beyond complete wind- The above method for finding the optimal torus sizes by
ings, defined ag=\ —N(2mp). Our distinction of different minimizing the conformational energy represents the con-
tori by N naturally separates cases with different coordinaventional approach to determine metastability. However,
tion numbers and thus different surface energies. In anticipahere is a somewhat unusual aspect to the problem at hand.
tion of an important distinction that emerges, we call a torusThe energy expressions for torus states with diffeiérare

V. TORUS STATES

A. Stability
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140 TABLE I. Transition points for the lowest energy statgsound
Metastable Rod Metastable Tori stateg up toN=24. Only for the “shortest” chainsX up to 11.543
120 is the rod stable to the torus.
3
& State labels Transition points
g 100
w 0+—1+ 11.543
€ 80 1+—2+ 12.957
g 2+ 53+ 18.850
8 60 ” Large N Scaling (dashed) 3+—4+ 29.021
S 4+ 7 38.871
3 7—10 73.625
ERR 1012 93.195
& y 1214 119.876
20| 7/ Stable Solutions (bold) 14—16 148.687
1619 155.672

19-24 228.700
20 40 60 80 100 . .

Reduced Length A

FIG. 6. Conformational energies of the torus states as a functiocompetition between bending and self-affinity, the rodais
of filament length in reduced units. The thinner lines indicateta-  |leas) metastable for all lengths and follows a straight line.
stablg solutions in regions where they are not the ground stateThe lower limit of the 1 state is given by the circumfer-
which in turn is indicated by bold segments. The dashed line showgnce of a single ring that just closes=2), a circle with
the largeN solution calculated in Sec. V C. the radius of a condensation length. The subsequent $inall

in general not the same. This introduces discontinuities in thétates show variations depending on the numerology of the

form of the energy between adjacent states. Consequentl

i inima are identifi heir van- ! . .
not only the conventional minima are identified by their va d 1, which remain metastable to infinity. Thus, in contrast to

ishing slopes, but also another class of solutions is identiﬁeWhat we have emphasized here by treating onlv cases with
with discontinuities in slope at points where the energy ex- P y g only

pressions to the left and right differ due to the filament Co_relatively sm_aII_N in detail, only _the few tori withN b_elow
ordination. These are not minima in the usual sefficein- 12 show variations to the generic pattern of exacagicN)

stance, they are not locally quadratic minjnahey are tori without extra overhangs.

stabilized by finite slopes on both sides and do not have thrf: t'A direct compansoni\betwe_zn rejtlheva':nt br_?nches_o:‘ thbe S0-
usual signature of a vanishing slope. Our results for the to tu lons ct)vglr regions o {)r;)w es the transi '%n. pc1)_|nbf Ie_
are displayed in Fig. 6. ween stabléor ground states, as summarized in Table .

In order to establish the metastability of the tori of differ- It appears that the majority of stable torus stafehaps

entN in more detail, we consider the behavior of the energ)ﬂ” N=12) are exact states over their entire range. Their

derivatives with respect to the radiasy™dp evaluated at labelsN are a subset of ihe magic numbers.

the radii where the exadd and N+1 form. These deriva-
tives are all monotonic function§functional dependence:
—X\"?) with at most a single zero indicating a limit of meta-  Another notable result are the discontinuities due to the
stability. Around these zeros, the derivative is genericallyhexagonal packing and the discrete coordination numbers.
negative to the left and positive to the right. When negative\We might have expected the overhangnd the torus sizp
the energy is lowered by increasing the ragiushus driving  to be continuous with changes in At least for smallN we
any overhangr to vanish and making the torus an exaéct find instead that small changesincan cause discrete jumps
When positive, the opposite is true, driviegto grow, mak- in the size of the ring. This characteristic has previously
ing the torus amN+ . Note that there are cas@®tably again  been described by Pereira and Williapd$]. To what extent
for the magic numbers withNN=12) whereduy/dp is nega- these effects are experimentally observable is not known. As
tive everywhere. These cases form an important class il grows large, the effect should weaken and ultimately dis-
which tori never evolvgwith increasing\) towards states appear altogether.
with finite overhangs: they remain metasta(éth complete Discrete jumps are perhaps most prominently displayed as
or exact overlapfor all lengths beyond some lower limit. discontinuities in the torus size. Figure 7 shows the sizes or
The relative positions of the zeros in the energy derivativesadii py(\) of the ground states as a functionXaf The first
combine in two fundamental ways, resulting in exact &hd bold curve segment starts where the filament first makes a
+ tori for various ranges of. A more detailed discussion of stable &. Note that the functional dependence of the first
the various cases can be found in R&5]. two segments is different from the subsequiinear ones.
The rod (N=0) is of course a specidtrivial) case with-  The first two series evolve continuously according to their
out any bending contribution. Due to the absence of anyequilibrium solution forpy with a functional dependence of

exagonal coordination numbers. For larea perhaps ge-
eric type of series emerges wheket become exaciN

B. Discreteness
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U~ N5, (30)
1.8 Stable Tori (bold)

To find the prefactors, we need to consider a geometrically
more careful treatment. We assume that the torus formed has
both a perfect hexagonal cross section and an integer wind-
ing number(no partial overhangs These assumptions are
reasonable: it can be shown by direct calculation that the
surface tension for a fixed number of filaments on a triangu-
lar lattice is smaller for the hexagonal than for the circular
cross section. This is analogous to a Wulff construcfié&fi

that captures, for instance, the faceting of crystals in solid-
state physics. The integer winding number is justified since
the difference in the surface energies betwdeand N+ 1
filaments vanishes ds becomes very large.

For an (equilaterally hexagonal cross section with its
symmetries, we can determine the following relationships
geometrically. As a characteristic for the size of the hexagon,
50 100 150 200 we label the integer number of lattice spacings on a side by

Reduced Length A m. The counting of Iatticg site@r filaments in such a hex-
FIG. 7. Radii of the stable torus staté®ld) as a function of agone}I bundle |sl\'I:3m to leading order inm froper
filament length in reduced units, showing discrete transitions begountlng adds_ a linear and a constant tefir: 3m_ +3m
tween the various series of states. The series shown are labeled B_ 1 butin the limit of largeN we keep only the leading order
the states at their lower extremes. For comparison, the continuod§ M ) .
largeN solution is shown as a dashed line. We find the surface energy of such a bundle by counting

solvent-exposed filament sites. A filament at an edgie

A3, Their prefactors are determined by some combination ofvhich there arem—1) exposes two sites, while one at a
the appropriate coordination numbers. By contrast, all subsesorner exposes three. Taking into account the sixfold sym-
guent segments are due to solutions that are constrained to breetry of the hexagon, this results inrhz2- 6 exposed sites
exact (by virtue of the magic numbersand thus have the on the surface. Substitution then yields the limiting coordi-
linear dependence of/27N. The length of the various seg- nation number(a surface energy per unit lengthx.,,
ments indicates the stability of the states they represent=2./3N for a hexagonal bundle df filaments. This coordi-
Clearly, states with supermagic bundling numhighe figure  nation number also provides the prefactors for the conforma-
only showsN=7 and 19 are especially stable. The dashedtional energy of the torus in the limit of large,
line indicates thdcontinuou$ solution found in the limit of
largeN, as discussed in the following section. 23\ 27°N?

U., +
JN A
C. Large N limit and scaling
The scaling argument of the torus size with filament! N€ €xpressions analogous to E(®.with geometrical pre-
length goes back to the work of Ubbink and Odipg]. We  factors are then

Reduced Radius p

Large N Scaling (dashed)

4

sketch a similar argument here in order to compare it in Sec. 15

V_I D with the_ analogous argument for the racquets. First, we N= A¥5~0.286.45 (58)

give the straightforward scaling argument. In a second pass, (2m)*5

we then determine the prefactors based on the more accurate,

hexagonally faceted cross section of the torus. p=(67) Y\~ 0.556\ 5, (5b)
In the limit asN grows large, we can neglect such details

as partial overhang€inite o) since differences betweex 5(3m)%° o o

andN+1 vanish as M. We assume first that the torus is a Uw=W?\ ~8.09°". (50)

perfect cylinder with circular cross section. It grows\Nyghe

number of filaments wound around its circumference. Thus-,l-he last two expressions are shown in Figs. 6 and 7 as
we expect the total torus surface area to scalp & SUb-  (ashed lines. We see outstanding agreement between the

stituting for the radius in a scaling sense~(\/N) we find largeN limit and the exact solutions down to the lowdbin
that the conformational energy has two terms: one Proporgig. 6.

tional to A/NY2, the other toN?/\. Minimization with re-
spect toN (implicitly letting N to be a continuous variable

: . - . VI. RACQUET STATES
yields the following set of scaling relations: Q

N~\%5, (33 The racquet conformational energies are made up of
bending contributions from each of the heads, and surface
Pu~AY5 (3b) contributions from the heads as well as the neck region in
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N+1 350 Racquet States
35
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(N=2)
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N+1 Odd & Large N Scaling (dashed)
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X X Reduced Length A
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FIG. 9. Racquet state energies, shown as a function of filament
FIG. 8. Comparison of the structure and labels of generic evertength in dimensionless units, form a dense spectrum of solutions,
and odd racquets, represented here byNke2 and 3. All the heads each increasing linearly. For comparison, the scaling solution with
on one side are identical; the schematic separates head and nguloper prefactor in the limit of larg&l is superimposeddashed
filaments only to indicate their multiplicity. line). Note the nearly perfect agreement of the scaling solution with
the lower envelope of the racquet states, down to the very lowest
between. As shown in Fig. 8, the racquets divide naturallywalues ofN.
into two groups: those with even and odd numbers of heads.

In the even case, the number of heads on each side equajfly possible metastable solution, but the one we describe
n=N/2 by symmetry. In the odd case, we hape=(N  here generically is the most symmetrical; we will discuss the
—1)/2 heads on the “left” andj=(N+1)/2 on the “right.”  details of other possible solutions further in Sec. VI C. In the
The labels left and right are our arbitrary naming conventiorodd case, the overall chain length divides itself imﬁf"
(see Fig. 8 The variablep andq for the bundling numbers - PXp+ xq+20,+(N+1)7 where we use the single over-
of the heads always differ by hEp+1) and sum td\. The  hang variables,, to indicate that the two possible pieces of
bundling number of filaments forming the neck is alwaysoverhang are always on the left siteee Fig. 8
N+1. _ By way of a preview, we state here that the racquet solu-

Given these bundling numbers, the remaining variablesions (see Fig. 9 differ fundamentally from those of the tori.
(in dimensionless uniisfor the generic racquet are the over- while the size of the torus was found to increase as a func-
all filament length\, and the head sizes on the two sideStion of \ (up to discontinuities the sizes of the racquet
(namely, the contour lengths of the heads, labelgdand  heads(as well as any lengths of overlapre fixed for each
Xq)- So far, we have described the racquets with their filastate by the local force balance between the bundles of fila-
ment ends coinciding with the ends of the neck. However, ifments making up head and neck. Having determined the
general(and in analogy with the overhang in the torus  head sizes and overhangs for a particular state, its lower limit
case we need to allow for the extension of these ends intaof validity A, is found by adding up the head sizes and
the heads, or the retraction into the neck. Lengths of Overgverhangs in the absence of any neck at al~Q). This is
hang are labeled, and o and their sign indicates whether the minimal filament length required to form a particular
they extend into or retract back from the heads. The length ofacquet. For all lengths beyond, the racquets remain meta-
the neckr is not an independent variable once all other pastable as their energies increase linearly with slope
rameters are fixed, since the total filament length imposes a&,,, ,/(N+1). Adding extra filament to any racquet con-
constraint. figuration only lengthens its neck, while the head sizes and

For the even racquet with a given the number of vari- any overhang remain fixed. As a consequence, all racquets
ables reduces to only 2. Since the left and right heads fogre (at least metastable solutions for any beyond their
even racquets are identical by symmetry, we collapse thelpwer cutoff\,,,. What remains to formulate the total con-

labels and are left with only one head sizg € xp=xq) @and  formational energies of the racquets is the bending contribu-
a single overhang variabler(=o,= o). The overall fila-  tion due to partial overhangs.

ment length for the even racquet is distributed intgy®"
=Ny ,+20,+(N+1)7 where the terms are ordered as
heads, overhang, and neck. For the odd racquet, we leave the
left and right head sizes separate, but require any overhang to Having identified the racquet head as the distinguishing
be symmetrically distributed on the left side. This is not thecommon element among the intermediate states, we calculate

A. Head shape—an elastica
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A y Applying Euler’s equation to this expression leads to the
differential equation
V, (s=H/2) 420

— =—B%siné(s), (7
42 B (

where we made the substitutig@f= ¢/« and expressed the
angle 6(s) explicitly as a function of the contour length

. . Note that the Lagrange multipli€r has the dimensions of a
I (Inflection Point) force and expresses the force required to join the two fila-

4
'/ ment bundles in the neck. Equati¢r) can be integrated to
K yield an expression for the curvature along the head contour
':' s as a function of the tangent angle
[
H doe 2B
H — =L [1=KZsir2(6/2)
f 5= & 1—K?sirf(6/2). )
)
'\ Equivalently, one can rearrange terms and express the con-
\‘ tour lengths scaled byg in the form of an incomplete ellip-
\.._ tic integral of the first kind~(¢,k),
O (s=0) X 612 dt
s=k | ——————==KkF(6/2k), 9
FIG. 10. Schematic figure of a racquet head with axes appropri- p 0 J1—K3siré(t) ( ) ©

ate for our calculation. Local tangent anglésre measured from
thex axis. Symmetrical regions along the contsuare delimited by

solid circles.

wherek is the elliptic modulugyet to be determingdandt
an integration variable. This is the parametric solution of an
elastica: it gives the contour lengthas a function of the

its geometrical shapesee Fig. 1Din the absence of thermal tangent af?g'e@-_ Th? expre_ssion_ s multivalued over ks
fluctuations from the bending of a slender, elastic rod. Th daerllignz’ dbgt Tﬁggﬁ: '2 (;?;:2';: r%??hnes.higtjj;;uucﬁ trﬁg'g?f are
expression for this head shape is necessary for the determ|in and th%a neckand tge pair 0)1/‘ inflection pointsgin between
nation of bending energies for the ra_cquets. The general cla e thus cover the entire racquet head in a piecewise fashibn,
of shapes resulting from. the bgndmg of a slender rod b3(/vhile only two of these regions are essentially different: the
forces and couples applied at its ends only are known asje e fromo to v, and that fromv, to | (with its reflection
elastica Such solutions were first studied by Euler in 1744.. | o V,). The yet unknown elliptic moduluk for our
The particular solution we seek is schematically drawn ing|astica is found from a geometrical constraint. By the sym-
Fig. 51 of the treatise by Lovg5]. metry between the segments around the inflection point, we
To solve for th_e shape of a racquet head of total ContOl_JEiemand that thex value at pointV, is twice that at the
lengthH we consider the geometry as shown and labeled ifnfiection pointl. Solving the resulting equation numerically
Fig. 10. In this section we use physical variables instead of a5 the value for the modulus ks 1.1695. The inflection
the dimensionless units introduced previously, as they ar§.in: is identified by the vanishing curvature of EG),
more intuitive here and allow for dimensional analySiS'which corresponds to a tangent anglefpf 2.052.
Given the obvious symmetry about thiexis, it is sufficient The expression for the curvatufie Eq. (8)] allows us to
to solve for one half of. the racquet head only. Th_e,tangenévaluate the bending energy of such a racquet head. Since
angle along the curve increases frafe0 at the originO  he pending energy is an integral over the squared curvature,
(s=0), via a maximum at the inflection poihtto 6=m/2at  \ye can use Eq(8) to evaluate this energy over any segment
V2 (s=H/2, where the head joins the ngcNote that there ¢ the racquet head by integration. This requires the numeri-
are two pointsV; andV, at which the tangent is vertical 4| gyaluation of an incomplete elliptic integral of the second
(6= =/2), with an inflection pointl between them. These kind, E(,k),
three points define an additional symmetapout the inflec-
tion pointl) for the contour between pointg; andV,. Bk : 2Bk
Our particular elastica is solvdd6] by minimizing the U= Tf do\1—Ksir(6/2)= — E(012K). (10
WLC (wormlike chain Hamiltonian subject to the boundary
condition that the two halves of the head join in the neck a‘Addmg up the symmetrical pieces of this solution for the
x=0. We impose this constraint by means of a Lagrangentire head yields the total bending energy of a complete
multiplier ¢, racquet headJ"®3=A(x/H) with A representing the nu-
w2 (k[o0)\2 merical constant 18.3331. Thus, the bending energy in a rac-
U:J’ ds[—(— guet head depend@part from the value for the bending
0 2\ds modulus k) only on its contour length. Note also that the

+¢ cosa] . (6)
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bending energy of the racquet head is very closéhbiat tion in the neck, whose length is shared by K+ 1) fila-
slightly below that of a circular ring with the same contour ments. For the even racquet, symmetry simplifies the expres-
length H (U"M9=272k/H~19.739Z/H). Using circular sions somewhat. In each of its heads, we find a length (
rings as racquet heads would thus provide a reasonable ap-o,) with coordinationa,, and the overhang pieag, with
proximation for the calculation of conformational energies,coordinationa,,,; while the neck has the common coordi-
provided we neglect the penalty due to the sharp bends at theation ay . ;, which leads to the full expression for the con-
neck. formational energy of the even racquet,

The form of the solution in Eq(9) reveals that our rac-
guet head shape or elastica is unique, in the sense that it is even_ p ﬁ
independent of any parameters in the problem. Both the Un =
parametric head shapé€d) and the bending enerdy(6) are
scaled by the factog, related to the local force balance at +anp1(on) ]+ ansa(7). 1y

V2. The overall size of the resulting shape is merely Scale.dl'he first two terms are the bending contributions for com-

up or down, while its aspect ratio remains. Any slender, uni, lete heads and partial overhang, while the three following

form rod, subject to these boundary conditions, will assum erms are surface contributions for head segments and neck
the described racquet head shape. We emphasize that the siZze 9 '

of the racquet head doemt depend on the overall filament respectively. For the odd racquets, the expression becomes
length\, unlike in the case of the torus. P q
This dependence of the head size on the local force bal- uf’=A —+ —
ance also suggests that the following experiment should be Xp  Xq
possible, at least in principle. Evaluating head sizes in a +ag(xqT20g) + ans1(7). (12)
sample of partially condensed filaments would measure the
local interaction strength between filaments, a quantity notn the even case, there are only two free variabigsand
easily found by other means. This approach assumes @f,. We find their optimal values by simultaneous, numerical
course, that the value for the bending modulas equiva-  minimization. In the odd case, the situation is slightly differ-
lently the persistence lengtis known from an independent ent, since we lack the symmetry between heads. However,

+2A(on ! xn) p
n

+2[an(xn—0n)

n

+2A(0,/ xp) p
p

+ap(xp—20p)

measurement. we can make use of the fact that both filament efatsd
therefore any potential overhamg are on the left side. This
B. Bending energy in racquet heads leaves the right head with a well-defined structureydila-

To evaluate the bending contribution to the conforma-Ments in th'e head aml+1:2q'filaments in the neg:k. Since.
tional energies we recall the expression for the bending eri® head size is solely determined by the respective bundling
ergy in a head of sizg. Generalized to al bundle(which numbers in head and neck, we can determine right head sizes

effectively multiplies the bending modulus) the dimen- independently of any overhang on the left by minimization in
sionless bending energy for aN racquet head becomes terms of the various bundling and coordination numbers and

uft®tx)=A(N/x), where A is again the same numerical A only,

constant evaluated previously from elliptic integrals. A sta- 29A

bility analysis and numerical minimizations found that “per- Xa= 50— (13
fect” racquets(with o=0) are the solution for only a subset 2aq— agq

of all racquets. We then numerically minimize over the two remaining free
In order to account for partial overhang into the heads, we y 9

need to generalize the notion of the numerical prefaétor variablesy, andoy, Of. the left head. Plotting cpnstant energy
This “constant” is really a function of the partial overhang. contours as a funqt|on of the.two free variables generally
Due to the scale invariance of our elastica, it is not surprisin eveals _the approximate location of the rele_zvant minimum,
that A depends only on theelative overhangs=a/y. In nd. th_elr_coordln_ates were used as a starting point for the
terms ofs the four regions are delimited by the following minimization routine. This procedure finds two possible out-

values: 0. 0.1627. 0.5. 0.8373. and back to 1. measured fro$°Mes for both even and odd cases. In the simpler case, the

the neck. The three intermediate values identify the two in>Nergy 1S minimized without overhangr€0) and we re-

flection points and the halfway poifthe origin in Fig. 10; cover the naivelly assumed, .p(_arfect rchuet structure. In the

note that these values are measured in the opposite se @gr case, we find a local minimum with respecttand

from the one defined in the figure. Reconstruction of the or finite values of overhang. In every case we have checked
' (

piecewse solutons for any amount of partal overhang B 0280, S SO B R TER PR SR
yields the expressionP®4(o-,g) = A(s)/ o with the numeri- 9 q ’

_ _ ; : and halfway points, as indicated in Fig. 11.
cal prefactorA=A(s=1) generalized to thaunction A(s). Since both filament ends are on the sdiaé#) side for the
odd racquets, there are several possible configurations for
overhang to be arranged, as shown in Fig. 12. The two pieces
The surface energy terms for all racquets consist of sevef equal lengtho, could be arranged symmetrically on op-
eral terms with different coordination numbers in general.posite sides of the head. Alternatively, the two pieces of
The only term the even and odd cases share is the coordinaverhang can be on the same side, but not necessarily of

C. Even and odd racquets
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equal length. All the cases we examined are minimized for
one unique value ofr, corresponding to caseéa) and(c) in

Fig. 12, which turn out to be degenerate in energy. In retro- ) ) _
spect we were thus justified to describe the odd racquet with, /G- 13- Left and right head sizes versus the state Ibbelairs
overhang generically as the symmetric cé@ewhile a sec- .Of even heads are of th.e same size, by Symmetry. T.he general trend
ond (asymmetrical solution, degenerate in overhang and en_IS for heads to grow withN, if not monotonically. Notice the con-
ergy, exists ! vergence towards the asymptotic solutirashed line, see Eqgs.

14)] with i ingN.
All racquet head sizeg, and x4 found either by direct (149] with increasing

calcqlation or by numerical minimi;atiqn are displayed as &hose cases that are stable to extension have no metastable
function of the racquet state labllin Fig. 13 to show the g4 tion at all. We thus conclude that no racquet solutions
general trend and their convergence towards the IBrge- exist for N=14,16,21,24. .. andthese states are omitted

lution. Head sizes typically increase witN, though not o our energy spectréFig. 9) and the series of head sizes
monotonically, and right heads are typically larger than Ieft(Fig 13

for the odd racquets. Even racquet heads are of the same
size, by construction.

Since our minimization allowed only for extension into
the heads but not retraction of the filament ends back into the We perform the analogous calculation to that done for the
neck, we tested the stability of racquétgp to N=30) to  torus states in Sec. V C, under the assumption that bundles
small perturbations, subject to fixed overall lengthWe  form hexagonal cross sections as their bundling numbers
found three types of results. In the simplest case, the racqueltecome large, to find the behavior of the racquet energies in
are stable to any small change. These racqueith N the same limit. The result is shown as the dashed lines in
=1,2,3,11,15,17,20 . .) remain exact §=0). A second Figs. 9 and 13. To compute it, we assume that the latge
class is identified by stability to retraction but not to exten-racquet be even and without overhang=0) as differences
sion. These racquefaith N=4-10,13,18,22...) develop  between bundles of nearly the same number of filaments
finite (positive overhang. The remaining cases are the magivanish in this limit. This even racquet has a neck length
numbers starting with 1thamely,N=12,14,16,19,21 ..), and a limiting head sizg., for large bundling numbens in
which are unstabléor marginally stableto retraction along the heads andll in the neck(see Fig. 14
the neck. A subset of these states are unstable to extension, Since the size of the heads depends only on the balance of
and solutions with finite, positive overhang exist. However,forces at the point where the head and neck bundles meet, we

can calculate the optimal head sige as in Eq.(13) for the
right head of an odd racquet. As in Sec. V C, we determine
the optimal bundling numbe,,{(\) by minimizing the en-
ergy with respect tdN, which yields the scaling results with
prefactors as functions of only,

Racquet State Label N

D. Large N limit and scaling

=N/2
' N ) L N
arge
a b c C% )
b—_
FIG. 12. Three possible solutions for partial overhang into the X, T Xy

left head of an odd racquet. Casg is the one described in the text.

The more general case with different amounts of overhang on the FIG. 14. Schematic racquet in the limit of largewhere we
same sidgb) is always minimized by the arrangement in cése  assume the symmetry of the even racquet and neglect any extra
where the two ends coincide. overhang.
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FIG. 15. Spectrum of rod, racquet, and torus states shown as conformational energy versus filament length in reduced units. Only the rod
(at small\) and the tori(for all A beyond a transition poihtare globally stable states. Notice the rather large gap between the spectrum of
racquet states and the stable torus solution. Metastable torus solutions are omitted for clarity.

Nopt*0-303\4/5, (143 N racquet will be one with a finite neck. This is an important
result since it hints at the evolution of very long chains as

Xo~2.65215 (14p  they condense into racquets with increasingly lartyerin
fact, we can estimate the growth of the neck lengthfrom

U,~10.48235, (149  the difference between the prefactorsNp,, and Aqpy. Its

scaling is given byr.,~0.644 5. Thus, the neck grows with
Knowing the head sizq.., we can calculate the lower the same power of as the heads but with a smaller prefac-
limit of validity A, in a scaling sense. This allows us to tor. We may have anticipated that the growing heads provide
compare the expressions for the filament length from mini-a simple pathway towards the torus, as the inevitable limit of
mization ()\Opt~4.442N5’4) with the length found by simply the heads growing at the expense of the neck. For a fixed
removing the neck altogethei (,,~3.573%%. Since the filament length, the neck would have had to shrink to zero
optimal length\ ,,; exceeds the minimal lengtty,,,, a large  with increasingN, opening up the structure to form a torus.
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other(metastabletorus(see Fig. 6 for detailjsand increasing
number of racquet states.

For fixed conditions we need only consider a vertical slice
through the spectrum of energies. Along such a line, we can
imagine a filament cascading down from an extended, rod-
like configuration, through various metastable intermediates,
while lowering its energy along the way. Our calculations do
not of course capture the entire physical picture, as we ne-
glect filament size in the bundling and our states are calcu-
lated in the absence of thermal undulations. So far we have
no estimate of the energy barriers between the metastable
intermediates. However, the dynamical simulation results
[34] suggest that these barriers as well as the energy gaps
between states are large comparedkid@: transitions that
increaseN are infrequent and sharp, while transitions in the

105 11 115 12 125 13 135 14 opposite direction are essentially never observed. This is es-
Reduced Length A pecially true for the transition from the racquet spectrum to a
torus, indicating that this energy gap is even larger for the

FIG. 16. Close-up of the rod, racquet, and torus solutions in thd?@rameters chosen in the simulation. This picture is consis-
region where they are closest to each other. Racquets are indeéent with the analytic results in Fig. 15 that clearly shows the
never stable, though their energy is very close to both the rod anthrge gap stabilizing the ground state. The results of our
the tori in this region. analysis thus nicely corroborate, at least qualitatively, the

results of our prior computer simulations as well as their
relevance to the condensation of stiff chains.
For the particular racquet solutions shown in Fig. 9 we notice We would like to note that the shape of condensed fila-
that the end points are relatively dense and represent, @ients may depend on the nature and molecular structure of
times, the lowest point in the spectrum of states. ESDECiaHYhe condensing agent. Our study only addresses an interac-
for such states, it is still true that their neck can shrink totjon that is uniform along the filament, such as the effect due
very small or vanishing lengths, depending bnThermal {5 5 poor solvent. Other systems, with more pointlike orga-

fluctuations can then lead to the opening up of the neck t,i;ing centers, have been shown to exhibit intricate multileaf
form a torus. Yet, even if the limit of larghl does not pro-  ; fower pattern$32,47.

vide an absolutely compelling pathway for the collapse to the
torus, we now appreciate the energetics involved.

38
Single Racquet (dashed)

36

34

Reduced Conformational Energy u

Rod

Our observations suggest that the pathway for the collapse
of extended chains into condensed structures via intermedi-
ate racquet states is a viable, even generic alternative to
VII. DISCUSSION: RACQUETS VERSUS TORI the perhaps more immediately guessed direct winding up

upon the meeting of filament ends at an obtuse angle. Some

Figure 15 shows the individual racquet solutions of Fig. 9yt the simulations show the latter collapse pathway, but it is
now compared to the stable torus ground states found in Sefhuch less frequent. Furthermore, this cascade picture

V A. In anticipation of these results, we described the IowesEhrOugh which our calculations reinforce and at least par-
metastable torus state over any ranga e the ground state tially explain the simulation results, seems robust. We find

of the system. Figure 15 confirms this claim by direct Com_this cascade through intermediate states even for a much
parison of racquets and tori. In addition, we found that the 9

largeN solutions for tori and racquets both grow)a%s but more naive treatment of the poor solvent interaction used in
with different prefactors. In combination with the close afirst pass. The individual curvés.g., in Fig. 13 are shifted

agreement between particular solutions and the Inrenit, Ut Show a qualitatively similar picture. The generic cascade
this strongly suggests that the torus remains in the grounffirough metastable intermediates is so dominant that it is
state for all\ beyond the transition point(= 11.543). Only retained regardless of the detailed realization of the interac-
for shorter chains, does the rod represent the ground state!lONs.

There appears to be only one region where the energies of
racquets and tori are even close, at the very low values of

near the transition point. Figure 16 shows the relevant region ACKNOWLEDGMENTS
in detail. TheN=1 racquet solution comes extremely close
to the solutions for both the rod\(=0) as well as the % The authors wish to thank David Williams for helpful

torus, but remains above. Thus the only stabl®und state  discussions, including sharing aspects of related VW&,
solutions for this systenin the absence of thermal fluctua- This work was supported in part by the Whitaker Foundation
tions) are the rod at smaMN and the tori everywhere beyond and by NSF Grant Nos. DMR-9257544 and INT-9605179.
the transition point. At energies above this ground state, w8.S. acknowledges support from the Minerva Foundation
see a dense spectrum of metastable solutions, made up @flax Planck Society
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