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We discuss the effects of so-called gluonic poles in twist-three hadronic matrix elements, as first considered
by Qiu and Sterman, in the Drell-Yan process. These effects cannot be distinguished from those of time-
reversal odd distribution functions, although time-reversal invariance is not broken by the presence of gluonic
poles. Both gluonic poles and time-reversal odd distribution functions can lead to the same single spin asym-
metries. We explicitly show the connection between gluonic poles and large distance gluon fields, identify the
possible single spin asymmetries in the Drell-Yan process and discuss the role of the intrinsic transverse
momentum of the partons.@S0556-2821~98!02205-X#

PACS number~s!: 13.85.Qk, 13.88.1e
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I. INTRODUCTION

In the usual description of the Drell-Yan~DY! process in
terms of quark and antiquark distribution functions tim
reversal symmetry implies the absence of single spin as
metries at the tree level, even including order 1/Q correc-
tions @1#. Additional time-reversal odd~T-odd! distribution
functions are present when the incoming hadrons canno
treated as plane-wave states. This may occur due to s
factorization breaking mechanism@2#. We will show that,
even apart from such mechanisms, the contributions of
odd distribution functions may effectively arise due to t
presence of so-called gluonic poles attributed to asympt
~large distance! gluon fields. The gluonic poles appearing
the twist-three hadronic matrix elements@3–6# together with
imaginary phases of hard subprocesses effectively give
to the same single spin asymmetries. This is the origin of
single spin asymmetry of Ref.@7#. Hence, the absence o
presence of single spin asymmetries in the DY process
be viewed as a reflection of the absence or presence of
onic poles. The ‘‘effective’’ T-odd functions coming from
gluonic poles do not constitute a violation of time-rever
invariance itself.

The outline of the article is as follows. We will first dis
cuss how the DY process is described in terms of so-ca
correlation functions~Sec. II!, which themselves are param
etrized in terms of distribution functions~Sec. III!. We focus
especially on T-odd distribution functions, which show up
the imaginary part of the equations of motion~e.o.m.!, which
relate quark correlation functions with and without an ad
tional gluon. In Sec. IV we will investigate the behavior
the quark-gluon correlation function in case it has a p
when the gluon has zero momentum. We will show that s
poles will effectively contribute to the imaginary part of th
e.o.m. and hence, to T-odd distribution functions. The la
distance nature of gluonic poles is elaborated upon, in p
570556-2821/98/57~5!/3057~8!/$15.00
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ticular, the boundary conditions. In the final section w
present theQT-averaged DY cross section with emphasis
the contributions of the effective T-odd distribution functio
and the intrinsic transverse momentum.

II. THE DRELL-YAN PROCESS IN TERMS
OF CORRELATION FUNCTIONS

We employ methods originating from Refs.@8–15# in or-
der to describe the soft~nonperturbative! parts of the scatter-
ing process in terms of correlation functions, which are~Fou-
rier transforms of! hadronic matrix elements of nonloca
operators. We restrict ourselves to the tree level, but incl
1/Q power corrections. The asymmetries under investigat
are loosely referred to as ‘‘twist-three’’ asymmetries, sin
they are suppressed by a factor of 1/Q, where the photon
momentumq sets the scaleQ, such thatQ25q2. We do not
takeZ bosons into account, since the asymmetries are lik
to be negligible at or above theZ threshold.

For the Drell-Yan process up to order 1/Q the quark cor-
relation functions to consider are@8–10,12#

F i j ~P1 ,S1 ;p!5E d4z

~2p!4
eip•z^P1 ,S1u c̄ j~0!c i~z!uP1 ,S1&,

~1!

FAi j
a ~P1 ,S1 ;p1 ,p2!

5E d4z

~2p!4

d4z8

~2p!4
eip1•zei ~p22p1!•z8

3^P1 ,S1u c̄ j~0!gAa~z8!c i~z!uP1 ,S1&. ~2!

We have included a color identity andg times ta from the
hard into the soft partsF andFA

a , respectively. The inclu-
3057 © 1998 The American Physical Society
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sion of path-ordered exponentials, which are needed in o
to render the correlation functions gauge invariant, is i
plicit.

The quark-quark correlation functionF i j (p) can be ex-
panded in a number of invariant amplitudes according
Dirac structure@9#. The available vectors are the momentu
and spin vectorsP1 ,S1 of the incoming hadron~spin-1/2!,
such thatP1•S150, and the quark momentump. In the case
of a hard scattering process the momentum of the str
quark is predominantly along the direction of the hadr
momentum, which itself is chosen to be predominantly alo
a lightlike direction given by the vectorn1 . Another light-
like direction n2 is chosen such thatn1•n251; both vec-
tors are dimensionless. The second hadron is chosen t
predominantly in the n2 direction, such thatP1•P2
5O(Q2). We make the following Sudakov decomposition

P1
m[

Q

x1A2
n1

m 1
x1M1

2

QA2
n2

m , ~3!

P2
m[

x2M2
2

QA2
n1

m 1
Q

x2A2
n2

m , ~4!

qm[
Q

A2
n1

m 1
Q

A2
n2

m 1qT
m , ~5!

for QT
2[2qT

2!Q2. We will often refer to the6 components
of a momentump, which are defined asp65p•n7 . Further-
more, we decompose the parton momentap,p1 and the spin
vectorS1 of hadron-one as

p[
xQ

x1A2
n11

x1~p21pT
2!

xQA2
n21pT'xP11pT , ~6!

p1[
yQ

x1A2
n11

x1~p1
21p1T

2 !

yQA2
n21p1T'yP11p1T , ~7!

S1[
l1Q

x1M1A2
n12

x1l1M1

QA2
n21S1T'

l1

M1
P11S1T .

~8!
er
-

o

k

g

be

:

Also we note that up to order 1/Q only the transverse com
ponents ofAa matter insideFA

a .
The Drell-Yan process consists of two soft parts and o

of them is described by the above quark correlation fu
tions, whereas the other is defined by the antiquark corr
tion functions, denoted byF andFA

a . The correlation func-
tion F depends on the second hadron momentum
polarization,P2 andS2, and the antiquark momentumk and
is given by@9#

F i j ~P2 ,S2 ;k!

5E d4z

~2p!4
e2 ik•z^P2 ,S2uc i~z!c̄ j~0!uP2 ,S2&. ~9!

The vectors inF andFA
a are also decomposed inn6 ,

k[
x̄Q

x2A2
n21

x2~k21kT
2!

x̄QA2
n11kT' x̄ P21kT , ~10!

S2[
l2x2Q

M2A2
n22

l2M2

x2QA2
n11S2T'

l2

M2
P21S2T .

~11!

The functionFA
a and the additional momentumk1 are analo-

gously defined as for the quark case.
At tree level four-momentum conservation fixesxP1

1

5p15q15x1P1
1 , i.e., x5x1 and similarly x̄ 5x2, and al-

lows up to 1/Q2 corrections for integration overp2 andk1.
However, the transverse momentum integrations canno
separated, unless one integrates over the transverse mo
tum of the photon. In that case one arrives at correlat
functions also integrated over their transverse momentum
pendence, such that they only depend on the momen
fractions x,y and x̄ , ȳ . These partly integrated correlatio
functionsF(x),F( x̄ ),FA

a(x,y) andFA
a( x̄ , ȳ ) are the quan-

tities that are parametrized in terms of so-called distribut
functions. For details see Ref.@1#.

The five relevant diagrams lead to the following expre
sion for the hadron tensor integrated over the transverse
ton momentum~up to order 1/Q):
E d2qTWmn5
e2

3 H Tr„F(x)gmF( x̄ )gn
…1E dyTrS FA

a~y,x!gmF~ x̄ !ga

n” 1

QA2

x2y

x2y1 i e
gnD

1E dyTrS FA
a~x,y!gm

n” 1

QA2

x2y

x2y1 i e
gaF~ x̄ !gnD 2E d ȳTrS F~x!gmFA

a~ ȳ , x̄ !gn
n” 2

QA2

x̄ 2 ȳ

x̄ 2 ȳ 1 i e
gaD

2E d ȳTrS F~x!ga

n” 2

QA2

x̄ 2 ȳ

x̄ 2 ȳ 1 i e
gmFA

a~ x̄ , ȳ !gnD J . ~12!
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57 3059SINGLE SPIN ASYMMETRIES FROM A GLUONIC . . .
We will explain the above expression. The factor 1/3 ari
from the color averaging in theq q̄ annihilation. We have
omitted flavor indices and summation; furthermore, there
contribution from diagrams with reversed fermion flow
which is similar as the above expression but withm↔n and
q→2q replacements. In the expression the terms withn” 6

arise from the fermion propagators in the hard part negl
ing contributions that will appear suppressed by powers
Q2,

p” 12q” 1m

~p12q!22m21 i e
'2

n” 1

QA2

x2y

x2y1 i e
, ~13!

q” 2k” 11m

~q2k1!22m21 i e
'

n” 2

QA2

x̄ 2 ȳ

x̄ 2 ȳ 1 i e
, ~14!

where the approximate signs hold true only when the pro
gators are embedded in the diagrams. From these expres
one observes that the casex5y, i.e., the case of a zero
momentum gluon, corresponds to an on-shell quark propa
tor.

Note thatF(x),F( x̄ ),FA
a(x,y) and FA

a( x̄ , ȳ ) are now
integrals involving only one light-cone direction, for in
stance,

F i j ~x![E dl

2p
eilx^P,Su c̄ j~0!c i~ln2!uP,S&. ~15!

We observe that in the above expression one cannot
ply replaceFA

a(x,y) by FD
a (x,y), where

FDi j
a ~x,y![E dl

2p

dh

2p
eilxeih~y2x!

3^P,Su c̄ j~0!iD T
a~hn2!c i~ln2!uP,S&

~16!

and iD a5 i ]a1gAa. One must take into account the diffe
ence proportional to*d2pTpT

aF(x,pT). This difference is
only zero, in case there are no transverse polarization vec
present. Similarly for the difference betweenFA

a andFD
a .

III. DISTRIBUTION FUNCTIONS

For the correlation functionsF and FD
a we need up to

order 1/Q the following parametrizations in terms of distr
bution functions@14,15#:

F~x!5
1

2
@ f 1~x!P” 11g1~x!l1g5P” 11h1~x!g5S” 1TP” 1#

1
M1

2 Fe~x!11gT~x!g5S” 1T1hL~x!
l1

2
g5@n” 1 ,n” 2#G ,

~17!

FD
a ~x,y!5

M1

2
@GD~x,y!i eT

abS1TbP” 11G̃D~x,y!S1T
a g5P” 1

1HD~x,y!l1g5gT
aP” 11ED~x,y!gT

aP” 1#, ~18!
s

a

t-
f

a-
ons

a-

m-

rs

where eT
mn5eabmnn1an2b . We make a similar expansio

for FA
a(x,y) with the functions GD , . . . replaced by

GA , . . . , while the rest stays the same.
The parametrization ofF(x) is consistent with require-

ments imposed onF following from Hermiticity, parity and
time-reversal invariance:

F†~P1 ,S1 ;p!5g0F~P1 ,S1 ;p!g0 @Hermiticity#,
~19!

F~P1 ,S1 ;p!5g0F~ P̄1 ,2 S̄1 ; p̄ !g0 @parity#, ~20!

F* ~P1 ,S1 ;p!5g5CF~ P̄1 , S̄1 ; p̄ !C†g5 @ time reversal#,
~21!

where p̄5(p0,2p), etc. For the one-argument functions
Eq. ~17! it follows from Hermiticity that they are real. Note
that for the validity of Eq.~21! it is essential that the incom
ing hadron is a plane wave state. ForFD

a and similarly for
FA

a Hermiticity, parity and time-reversal invariance yield th
following relations:

@FD
a ~P1 ,S1 ;p1 ,p2!#†

5g0FD
a ~P1 ,S1 ;p2 ,p1!g0 @Hermiticity# ~22!

FD
a ~P1 ,S1 ;p1 ,p2!5g0FDa~ P̄1 ,2 S̄1 ; p̄1 , p̄2!g0 @parity#

~23!

@FD
a ~P1 ,S1 ;p1 ,p2!#*

5g5CFDa~ P̄1 , S̄1 ; p̄1 , p̄2!C†g5 @ time reversal#.

~24!

Hermiticity then gives for the two-argument functions in E
~18! the following constraints:

GD~x,y!52GD* ~y,x!, ~25!

G̃D~x,y!5G̃D* ~y,x!, ~26!

HD~x,y!5HD* ~y,x!, ~27!

ED~x,y!52ED* ~y,x!. ~28!

Hence, the real and imaginary parts of these two-argum
functions have definite symmetry properties under the in
change of the two arguments. If we would impose tim
reversal invariance all four functions must be real andG̃D
andHD are then symmetric andGD andED are antisymmet-
ric under interchange of the two arguments, such that ax

5y only G̃D andHD survive.
In the remainder of this section we do not impose tim

reversal invariance and hence allow for imaginary parts
these functions. In addition, the following~T-odd! one-
argument distribution functions then appear:
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F~x!uT-odd5
M1

2 F f T~x!eT
mnS1TmgTn2eL~x!l1ig5

1h~x!
i

2
@n” 1 ,n” 2#G . ~29!

Also we parametrize

F]
a~x![E d2pTpT

aF~x,pT!52
M1

2
@ i f 1T

'~1!~x!i eT
abS1TbP” 1

2g1T
~1!~x!S1T

a g5P” 11h1L
'~1!~x!l1g5gT

aP” 1

1 ih1
'~1!~x!gT

aP” 1#. ~30!

The superscript (1) stands for the firstkT
2-moment of

kT-dependent distribution functionsf (x,kT
2),

f ~1!~x!5E d2kTS kT
2

2M2D f ~x,kT
2!. ~31!

This particular parametrization Eq.~30! is written in a form
similar to Eq.~18!, while using thekT-dependent functions
of Ref. @16#. Note thatf 1T

'(1)(x) andh1
'(1)(x) are T-odd.

We observe~sinceiD a5 i ]a1gAa)

E dy@GD~x,y!1GD~y,x!#5E dy@GA~x,y!1GA~y,x!#

22i f 1T
'~1!~x!, ~32!

E dy@G̃D~x,y!1G̃D~y,x!#5E dy@G̃A~x,y!1G̃A~y,x!#

12g1T
~1!~x!, ~33!

E dy@HD~x,y!1HD~y,x!#5E dy@HA~x,y!1HA~y,x!#

22h1L
'~1!~x!, ~34!

E dy@ED~x,y!1ED~y,x!#5E dy@EA~x,y!1EA~y,x!#

22ih1
'~1!~x!, ~35!

while for the ‘‘differences’’ nokT
2 moments appear:

E dy@GD~x,y!2GD~y,x!#5E dy@GA~x,y!2GA~y,x!#,

~36!

etc.
The two-argument functions and the one-argument fu

tions are related by the classical e.o.m., which hold ins
hadronic matrix elements@11#. Using the above parametriza
tions one has the following relations@13,15#:

E dy@GD~x,y!2GD~y,x!1G̃D~x,y!1G̃D~y,x!#

52xgT~x!22
m

M
h1~x!, ~37!
-
e

E dy@GD~x,y!1GD~y,x!1G̃D~x,y!2G̃D~y,x!#

52ix f T~x!, ~38!

E dy@HD~x,y!1HD~y,x!#5xhL~x!2
m

M
g1~x!, ~39!

E dy@HD~x,y!2HD~y,x!#52 ixeL~x!, ~40!

E dy@ED~x,y!2ED~y,x!#5xe~x!2
m

M
f 1~x!, ~41!

E dy@ED~x,y!1ED~y,x!#5 ixh~x!. ~42!

From this we see that the~T-odd! imaginary parts of the
two-argument functions are related to the T-odd on
argument functions, as one expects. So if time-reversal
variance is imposed, the imaginary parts of the e.o.m. E
~38!, ~40! and~42! become three trivial equalities. We like t
point out that if one integrates Eqs.~37! and ~38! over x,
weighted with some test functions(x), one arrives at the
sum rules discussed in@13,17#.

In order to observe the role of intrinsic transverse mom
tum, we will use some specific combinations of distributi
functions, indicated by a tilde on the function. The tild
functions are the true interaction-dependent twist-three p
of subleading functions, which often contain twist-two pa
~in analogy tog2) called Wandzura-Wilczek parts@18#. They
are defined such that in the analogues of Eqs.~37!–~42! for
GA etc. only tilde functions appear,

E dy@ReGA~x,y!1ReG̃A~x,y!#

5xgT~x!2
m

M
h1~x!2g1T

~1!~x![x g̃T~x!, ~43!

E dy@ ImGA~x,y!1ImG̃A~x,y!#5x fT~x!1 f 1T
'~1!~x!

[x f̃ T~x!, ~44!

E dy@2ReHA~x,y!#5xhL~x!2
m

M
g1~x!12h1L

'~1!~x!

[x h̃L~x!, ~45!

E dy@2ImHA~x,y!#52xeL~x![2x ẽL~x!, ~46!

E dy@2ReEA~x,y!#5xe~x!2
m

M
f 1~x![x ẽ~x!, ~47!

E dy@2ImEA~x,y!#5xh~x!12h1
'~1!~x![x h̃~x!.

~48!
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IV. GLUONIC POLES AND TIME-REVERSAL ODD
BEHAVIOR

We are interested in the behavior of the quark-gluon c
relation functionFA

a in casex5y, when the gluon has zer
momentum. For this purpose, we define (a is a transverse
index!

FFi j
a ~x,y![E dl

2p

dh

2p
eilxeih~y2x!

3^P,Su c̄ j~0!F1a~hn2!c i~ln2!uP,S&

~49!

and Frs(z)5( i /g)@Dr(z),Ds(z)#. Defined as given above
the matrix element has the same Hermiticity, but the op
site time-reversal behavior asFD

a and FA
a and we will pa-

rametrize it identically with help of functions calle
GF(x,y), G̃F(x,y), HF(x,y) and EF(x,y), noting that
time-reversal implies~in contrast toFD

a or FA
a) that GF and

EF are symmetric and thus may survive atx5y. In the gauge
A150 one hasF1a5]1AT

a and one finds by partial integra
tion

~x2y!FA
a~x,y!52 iFF

a~x,y!. ~50!

If a specific Dirac projection ofFF
a(x,x) is nonvanishing,

then the corresponding projection ofFA
a(x,x) has a pole,

hence the name gluonic pole. An example is the function

T~x,ST!5pTr@FF
a~x,x! eTbaST

bn” 2#/P1

52p iMST
2GF~x,x!

discussed by Qiu and Sterman in Refs.@3,4#.
In order to define Eq.~50! at the pole, one needs a pr

scription, which is related to the choice of boundary con
tions onAa(h56`) inside matrix elements. Possible inve
sions ofF1a5]1AT

a are ~only considering the dependenc
on the minus component!

AT
a~y2!5AT

a~`!2E
2`

`

dz2u~z22y2!F1a~z2!

5AT
a~2`!1E

2`

`

dz2u~y22z2!F1a~z2!

5
AT

a~`!1AT
a~2`!

2
2

1

2E2`

`

dz2

3e~z22y2!F1a~z2!. ~51!

One can use the representations for theu ande functions, to
obtain
r-

-

-

FA
a~x,y!5d~x2y!FA~`!

a ~x!1
2 i

x2y1 i e
FF

a~x,y!

5d~x2y!FA~2`!
a ~x!1

2 i

x2y2 i e
FF

a~x,y!

5d~x2y!
FA~`!

a ~x!1FA~2`!
a ~x!

2

1P
2 i

x2y
FF

a~x,y!, ~52!

where

d~x2y!FA~6`!i j
a ~x!

[E dl

2p

dh

2p
eilxeih~y2x!

3^P,Su c̄ j~0!gAT
a~h56`!c i~ln2!uP,S&. ~53!

So Eq.~52! shows the importance of boundary conditions
the inversion of Eq.~50!, if matrix elements containing
Aa(h56`) do not vanish. When such matrix elements va
ish ~implicitly assumed in@1#! the pole prescription does no
matter. Also one obtains

2pFF
a~x,x!5@FA~`!

a ~x!2FA~2`!
a ~x!#, ~54!

which shows the relation between the zero-moment
quark-gluon correlation function and the boundary con
tions.

The behavior ofFA(6`)
a (x) under time reversal is

FA~6`!
a* ~x!5g5CFA~7`!a~x!C†g5 . ~55!

This relation implies that time-reversal invariance only
lows for symmetric or antisymmetric boundary conditions

To study the effect of gluonic poles we will consider th
~nonvanishing! antisymmetric boundary condition,1

FA(`)
a (x)52FA(2`)

a (x), which implies pFF
a(x,x)

5FA(`)
a (x). In the diagrammatic calculation resulting in E

~12! one always encounters the pole of the matrix elem
~in this case in the principal value prescription! multiplied
with the propagator in the hard subprocess~having a causal
prescription!,

FA
aeff~y,x![

x2y

x2y1 i e
FA

a~y,x!5
2 i

x2y1 i e
FF

a~y,x!

5FA
a~y,x!2pd~x2y!FF

a~y,x!. ~56!

The time-reversal constraint applied toFA
a(x,y) implies the

analogue of Eq.~24!, while FF
a(x,y) has the opposite behav

ior under time-reversal compared toFA
a(x,y). Thus for

FA
aeff(x,y) one does not have definite behavior under

reversal symmetry. Specifically, the allowed T-even fun
tions ofFF

a(x,x), GF(x,x) andEF(x,x), can be identified

1The consistency of antisymmetric boundary conditions w
Maxwell’s equations has already been shown in@19#.
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with T-odd functions in the effective correlation functio
FA

aeff(x,y). This implies thatGA
eff(x,y) and EA

eff(x,y) will
have an imaginary part and this gives rise to two ‘‘effectiv
time-reversal-odd distribution functionsf̃ T

eff(x) and h̃eff(x)
via the~imaginary part of the! e.o.m. Since by identification

ipGF~x,x!5E dyImGA
eff~y,x!, ~57!

ipEF~x,x!5E dyImEA
eff~y,x!, ~58!

it follows from Eqs.~44! and ~48! that

x f̃ T
eff~x!5 ipGF~x,x!5

1

2MST
2

T~x,ST!, ~59!

x h̃eff~x!52ipEF~x,x!5
2 ip

2M P1
Tr@FF

a~x,x!gTan” 2#.

~60!

The functionẽL
eff receives no gluonic pole contribution, sinc

time-reversal symmetry requiresHF(x,x)50.
Of course, the mechanism for generating finite projectio

of FF
r (x,x) remains unknown. We just can conclude that

there is indeed a nonzero gluonic pole~in the case of nonzero
antisymmetric boundary conditions!, then at twist-three there
are two nonzero ‘‘effective’’ T-odd distribution functions
namely f̃ T and h̃ . The first one generates the single sp
twist-three asymmetry found by Hammonet al. @7#, in their
notation it is proportional toT(x,x). The second one leads t
a new asymmetry~see next section!. Summarizing, we find,
for the parametrization ofFA(`)

a (x),

FA~`!
a ~x!52

ixM

2 F f̃ T
eff~x!i eT

abSTbP” 1
1

2
h̃eff~x!gT

aP” G ,
~61!

which is constrained by time-reversal symmetry but beha
exactly opposite to for instanceF]

a(x), hence in their param
etrizations the meaning of time-reversal even or odd fu
tions are opposite also.

The case of nonvanishing symmetric boundary conditi
is less interesting, sinceFF

a(x,x)50, but it is allowed. The
delta-function singularity in this case will contribute to th
functionsG̃A(x,x) and HA(x,x) and hence, to T-even tilde
functions. This would only affect the magnitude of~time-
reversal even! double spin asymmetries.

The antisymmetric nonvanishing boundary condition
FA(6`)

a (x) might arise from a linear A field, giving a con
stant field strength~cf. e.g.,@20,21#!. One might also think of
an instanton background field. In both cases one should
terpret infinity to mean ‘‘outside the proton radius.’’ Also
the constant field strength should be understood as an a
age value of the gluonic chromomagnetic field, which is no
zero due to a correlation with the direction of the prot
spin. The large distance origin of the asymmetries aris
from such a gluonic pole is apparent.

We like to point out that so-called fermionic poles play
role in off-forward scattering, such as prompt photon prod
tion @22,3–6#, but not in the DY process to this order.

The fragmentation function that is the analogue of
distribution function f T ~called DT), shows up in a single
s
f

s

-

s

r

n-

er-
-

g

-

e

spin asymmetry in hadron production ine1e2 annihilation
@23,24#, allowed because final state interactions lead to
odd fragmentation functions. In Ref.@25# both gluonic poles
and final state interactions are considered, but without tak
into account boundary terms in the matrix elements. T
result is in fact an example of the effective relation we ha
shown~see also@17#!.

V. THE DRELL-YAN CROSS SECTION
IN TERMS OF DISTRIBUTION FUNCTIONS

We will now discuss the Drell-Yan cross section in ca
one integrates over the transverse photon momentum.
uses the above parametrizations of the correlation funct
in the expression for the integrated hadron tensor as give
Eq. ~12!, which after contraction with the lepton tenso
yields the cross section. The parametrizations in terms
distribution functions are defined with the help of the vecto
n1 ,n2 and several transverse vectors. However, we are
ing to discuss the angles with respect to another set of v
tors. Depending on the choice of this set, we find differe
combinations of functions with and without a tilde. Needle
to say, the cross section itself is an observable and does
depend on the choice of vectors, even though its appear
changes.

We choose the following sets of normalized vectors:

t̂[q/Q, ~62!

ẑ[~12c!
2x1

Q
P̃12c

2x2

Q
P̃2, ~63!

x̂[qT /QT5~q2x1P12x2P2!/QT , ~64!

characterized by a parameterc and whereP̃i[Pi2q/(2xi),
such that

n1
m 5

1

A2
F t̂m1 ẑm22c

QT

Q
x̂G , ~65!

n2
m 5

1

A2
F t̂m2 ẑm22~12c!

QT

Q
x̂mG . ~66!

So the parameterc basically distributes the transverse m
mentum betweenP1 and P2 in different ways~Fig. 1!. If c
50 (c51), thenP1(P2) has no transverse component. T
symmetric casec51/2 is the one used in Ref.@26#.

In this way we arrive at the following expression for th
Drell-Yan cross section in case of unpolarized lepto

FIG. 1. Kinematics of the Drell-Yan process in the lepton cen
of mass frame, for a particular value ofc.
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ds~h1h2→ l l̄ X!

dVdx1dx2
5

a2

3Q2(
a, ā

ea
2H A~y!~ f 1 f̄ 12l1l2g1 ḡ1!1B~y!uS1TuuS2Tucos~fS1

1fS2
!~h1 h̄1!1C~y!uS1Tusin~fS1

!

3S 2M1

Q
x1„~12c! f T1c f̃ T… f̄ 11

2M2

Q
x2h1„c h̄1~12c! h̃̄…D1C~y!uS2Tusin~fS2

!

3S 2M2

Q
x2f 1„c f̄ T1~12c! f̃̄ T…1

2M1

Q
x1„~12c!h1c h̃…h̄1D1C~y!l2uS1Tucos~fS1

!

3S 2M1

Q
x1„~12c!gT1c g̃T…ḡ11

2M2

Q
x2h1„c h̄L1~12c! h̃̄ L…D2C~y!l1uS2Tucos~fS2

!

3S 2M2

Q
x2g1„c ḡT1~12c! g̃̄ T…1

2M1

Q
x1„~12c!hL1c h̃L…h̄1D J , ~67!
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where dV52dy df l and f l gives the orientation ofl̂'
m

[(gmn2 t̂ $m t̂ n} 1 ẑ$mẑn} ) l n , the perpendicular part of th
lepton momentuml , andy5 l 2/q2. In this result we encoun
ter the following functions ofy:

A~y!5~122y12y2!/2, ~68!

B~y!5y~12y!, ~69!

C~y!5~122y!Ay~12y!. ~70!

Furthermore,f 1 f̄ 15 f 1
a(x1) f̄ 1

a(x2), etc. and wherea is the
flavor index.

For c51/2 we find agreement with the results of@1# for
the cross section without T-odd distribution function
Hence, we confirm the deviation of that result from the o
found in @15#.

We observe single-transverse-spin asymmetries with
possible angular dependences, namely sin(fS1

) and sin(fS2
).

Each of them comes with two products of functions, in p
ticular an unpolarized one (f 1 or h) times a polarized one
( f T or h1). There is no choice ofc to eliminate the tilde
functions from this expression, nor to only retain tilde fun
tions. This shows the nontrivial role of intrinsic transver
momentum of the partons and one cannot discard it. T
means that unlike in the case of deep inelastic scatte
~DIS!, one cannot take onlyF(x) and FD

a (x,y) as a basis
@12#.

If we assume that the presence of T-odd distribution fu
tions is only effective, arising due to gluonic poles, and t
FA(`)

a 5FD(`)
a , then f̃ T

eff5 f T
eff and h̃eff5heff. This implies

the following single spin asymmetry~hadron-two unpolar-
ized!, given in the lepton center of mass frame:

AT5
2sin~2u!sin~fS1

!

11cos2u

uS1Tu
Q (

a
ea

2@2M1x1f T
a~x1! f 1

ā~x2!

12M2h1
a~x1!x2hā~x2!#Y(

a
ea

2f 1
a~x1! f 1

ā~x2!, ~71!

where we used thaty5(11cosu)/2 andu is the angle of
hadron-two with respect to the momentum of the outgo
.
e

o

-

-

is
g

-
t

g

leptons. The first term in the asymmetry~proportional tof T)
is the one discussed in@7# @in their notation it is proportional
to T(x,x)q(y)#, which will also be present in DIS@ f 1(x2)
5d(12x2)#. The second term is the other, new single sp
asymmetry arising in the DY cross section from a gluon
pole. It is not proportional toT(x,ST), but to another projec-
tion of FF

a in the pointx5y, cf. Eq. ~60!.

VI. CONCLUSIONS

We have shown how the effects of so-called gluonic po
in twist-three hadronic matrix elements, which were first d
cussed by Qiu and Sterman@3,4#, cannot be distinguished
from that of T-odd distribution functions. We investigate
this for the Drell-Yan process, which is expressed in terms
products of distribution functions. Even in the absence
T-odd distribution functions, imaginary phases arising fro
hard subprocesses together with gluonic poles give rise
effectiveT-odd distribution functions. This leads to sing
spin asymmetries for the Drell-Yan process, such as the
found recently by Hammonet al. @7#. These asymmetries
therefore can have a different origin than the analog
asymmetries in inclusive hadron production ine1e2 annihi-
lation @23,24#, which can also arise due to final state intera
tions, which are expected to be present always in contras
initial state interactions. We have moreover shown that
presence of gluonic poles is in accordance with time-reve
invariance and requires a large distance gluonic field w
antisymmetric boundary conditions. Our analysis shows a
the role of intrinsic transverse momentum of the partons
the DY cross section at subleading order.

ACKNOWLEDGMENTS

We thank A. Scha¨fer for useful discussions. This wor
was in part supported by the Foundation for Fundame
Research on Matter~FOM! and the National Organization
for Scientific Research~NWO!. It is also performed in the
framework of Grant 96-02-17631 of the Russian Foundat
for Fundamental Research and Grant No. 93-1180 fr
INTAS.



-

2-

.

s.

-
r

3064 57D. BOER, P. J. MULDERS, AND O. V. TERYAEV
@1# R. D. Tangerman and P. J. Mulders, Phys. Rev. D51, 3357
~1995!; NIKHEF Report No. NIKHEF-94-P7, hep
ph/9408305.

@2# M. Anselmino, M. Boglione, and F. Murgia, Phys. Lett. B362,
164 ~1995!.

@3# J. Qiu and G. Sterman, Phys. Rev. Lett.67, 2264~1991!.
@4# J. Qiu and G. Sterman, Nucl. Phys.B378, 52 ~1992!.
@5# V. M. Korotkiyan and O. V. Teryaev, Dubna Report No. E

94-200~unpublished!.
@6# A. V. Efremov, V. M. Korotkiyan, and O. V. Teryaev, Phys

Lett. B 384, 577 ~1995!.
@7# N. Hammon, O. Teryaev, and A. Scha¨fer, Phys. Lett. B390,

409 ~1997!.
@8# D. E. Soper, Phys. Rev. D15, 1141 ~1977!; Phys. Rev. Lett.

43, 1847~1979!.
@9# J. P. Ralston and D. E. Soper, Nucl. Phys.B152, 109 ~1979!.

@10# J. C. Collins and D. E. Soper, Nucl. Phys.B194, 445 ~1982!.
@11# H. D. Politzer, Nucl. Phys.B172, 349 ~1980!.
@12# R. K. Ellis, W. Furmanski, and R. Petronzio, Nucl. Phy

B212, 29 ~1983!.
@13# A. V. Efremov and O. V. Teryaev, Sov. J. Nucl. Phys.39, 962

~1984!.
@14# R. L. Jaffe and X. Ji, Phys. Rev. Lett.67, 552 ~1991!.
@15# R. L. Jaffe and X. Ji, Nucl. Phys.B375, 527 ~1992!.
@16# P. J. Mulders and R. D. Tangerman, Nucl. Phys.B461, 197

~1996!; B484, 538~E! ~1997!.
@17# O. V. Teryaev, inProceedings of the 12th International Sym

posium on High-Energy Spin Physics, edited by C. W. de Jage
et al. ~World Scientific, Singapore, 1997!, p. 594.

@18# S. Wandzura and F. Wilczek, Phys. Lett.72B, 195 ~1977!.
@19# J. B. Kogut and D. E. Soper, Phys. Rev. D1, 2901~1970!.
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