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D. Boer
National Institute for Nuclear Physics and High-Energy Physics (NIKHEF), P.O. Box 41882, NL-1009 DB Amsterdam, The Netherlands

P. J. Mulders
National Institute for Nuclear Physics and High-Energy Physics (NIKHEF), P.O. Box 41882,
NL-1009 DB Amsterdam, The Netherlands
and Department of Physics and Astronomy, Free University, De Boelelaan 1081, NL-1081 HV Amsterdam, The Netherlands

O. V. Teryaev
Joint Institute for Nuclear Research, 141980 Dubna, Russia

(Received 3 October 1997; published 28 January 1998

We discuss the effects of so-called gluonic poles in twist-three hadronic matrix elements, as first considered
by Qiu and Sterman, in the Drell-Yan process. These effects cannot be distinguished from those of time-
reversal odd distribution functions, although time-reversal invariance is not broken by the presence of gluonic
poles. Both gluonic poles and time-reversal odd distribution functions can lead to the same single spin asym-
metries. We explicitly show the connection between gluonic poles and large distance gluon fields, identify the
possible single spin asymmetries in the Drell-Yan process and discuss the role of the intrinsic transverse
momentum of the parton§S0556-282(98)02205-X]

PACS numbsgps): 13.85.Qk, 13.88te

[. INTRODUCTION ticular, the boundary conditions. In the final section we
present th&)r-averaged DY cross section with emphasis on
In the usual description of the Drell-Y&®Y) process in  the contributions of the effective T-odd distribution functions
terms of quark and antiquark distribution functions time-and the intrinsic transverse momentum.
reversal symmetry implies the absence of single spin asym-
metries at the tree level, even including orde® Idorrec- Il. THE DRELL-YAN PROCESS IN TERMS
tions [1]. Additional time-reversal oddT-odd) distribution OF CORRELATION FUNCTIONS
functions are present when the incoming hadrons cannot be

treated as plane-wave states. This may occur due to som ; .

factorization breaking mechanisfi2]. We will show that, . erto descr!be the soﬁnonpertgrbatlv)spgrts of the scatter-
even apart from such mechanisms, the contributions of TiNg process in terms of cor_relatlon_functlons, which d¥eu-
odd distribution functions may effectively arise due to the€" transforms of hadronlc matrix elements of non_local
presence of so-called gluonic poles attributed to asymptoti perators. We res'trlct ourselves to thg tree Ieve!, but |'ncIL'1de
(large distancegluon fields. The gluonic poles appearing in /Q power corrections. The asymmetries under investigation

the twist-three hadronic matrix elemeiigs-6] together with are loosely referred to as “twist-three” asymmetries, since

imaginary phases of hard subprocesses effectively give ris,tt!.;‘ey are suppressed by a factor le/\g/herze the photon

to the same single spin asymmetries. This is the origin of th&homentuny se_ts the scalQ, S.UCh thaQ™=q". We do no';
single spin asymmetry of Ref7]. Hence, the absence or takezZ bos_ons into account, since the asymmetries are likely
presence of single spin asymmetries in the DY process calf P& negligible at or above tti threshold.

be viewed as a reflection of the absence or presence of glu- FOr the Drell-Yan process up to ordeithe quark cor-
onic poles. The “effective” T-odd functions coming from 'elation functions to consider af-10,13

gluonic poles do not constitute a violation of time-reversal

We employ methods originating from Ref8~-15| in or-

4

invariance itself. L Z . —

The outline of the article is as follows. We will first dis- q)”(Pl’Sl’p)_J (277)48p (P11l ¢1(0)41(2)|P1,Sy),
cuss how the DY process is described in terms of so-called (1)
correlation functiongSec. 1), which themselves are param-
etrized in terms of distribution functior(Sec. Ill). We focus ®;(P1,S1;p1,P2)

especially on T-odd distribution functions, which show up in

the imaginary part of the equations of moti@o.m), which

relate quark correlation functions with and without an addi- —
tional gluon. In Sec. IV we will investigate the behavior of

the quark-gluon correlation function in case it has a pole _
when the gluon has zero momentum. We will show that such X(P1,S1|#;(0)gA%(Z") 4i(2)|P1,Sy). 2
poles will effectively contribute to the imaginary part of the

e.o.m. and hence, to T-odd distribution functions. The largaNVe have included a color identity argltimest® from the
distance nature of gluonic poles is elaborated upon, in pahard into the soft partd® and®j, respectively. The inclu-

eipl'zei(p2*P1)~Z'

f d*z d*z’
(2m* (2m)*
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sion of path-ordered exponentials, which are needed in ordeXlso we note that up to order @/ only the transverse com-

to render the correlation functions gauge invariant, is im-ponents ofA“ matter insided4 .

plicit. The Drell-Yan process consists of two soft parts and one
The quark-quark correlation functio®;;(p) can be ex- of them is described by the above quark correlation func-

panded in a number of invariant amplitudes according taions, whereas the other is defined by the antiquark correla-

Dirac Structurdg] The available vectors are the momentumtion functions, denoted b¢) andq)a The correlation func-

and spin vector$,,S; of the incoming hadror{spin-1/2,

such thatP;- S;=0, and the quark momentum In the case

of a hard scattering process the momentum of the struc

quark is predominantly along the direction of the hadron

momentum, which itself is chosen to be predominantly along

a lightlike direction given by the vector. . Another light- & (P,,S,;k)

like directionn_ is chosen such that,-n_=1; both vec-

tors are dimensionless. The second hadron is chosen to be

predominantly in then_ direction, such thatP;-P, _f d*z

tion ® depends on the second hadron momentum and
olarization,P, andS,, and the antiquark momentuknand
given by[9]

e K KPPy, Sl4i(2) ¢ (0)|P2.S).  (9)

=0(Q?). We make the following Sudakov decompositions:

(2m*
o Q x;M? ) . The vectors in® and®$ are also decomposed in. ,
= nk + n“,
' x1W2 T Qy2
xQ xz(k2+k$) _
E p— n,+ kTN X P2+ kT y (10)
pu XoM3 “y Q @ Xz\/— xQv2
= n n“,
2 Q\/E ! Xz\/E
)\zsz AoM; Ao
S= ~ P2t Sor.
q#zgnﬂ+gnﬂ+qﬂ (5) IV|2\/E X2Q\/_ M2
PRI ay

for Q%; _q$< Q2. We will often refer to thet components  The functiond and the additional momentuky are analo-
of a momentunp, which are defined gs“=p-n- . Further-  gously defined as for the quark case.
more, we decompose the parton momenga, and the spin At tree level four-momentum conservation fixes;
vectorS; of hadron-one as =p*=q*=x,P;, i.e.,,x=x; and similarly x =x,, and al-
lows up to 1Q? corrections for integration ovgs~ andk™*.
xQ Xl(p2+p-2r) However, the transver;e momentum integrations cannot be
p= o+ n_+pr~xP;+py, (6) separated, unless one integrates over the transverse momen-
xl\/— xQ\/E tum of the photon. In that case one arrives at correlation
functions also integrated over their transverse momentum de-
> o pendence, such that they only depend on the momentum
= yQ X1(Pit Pir) n_+pyr~yP;+psir, (7) fractionsx,y and x,y. These partly integrated correlation
Xl\/— yQv2 functions®(x),®(x),Pa(x,y) andd(x,y) are the quan-
tities that are parametrized in terms of so-called distribution
functions. For details see Ré¢fl].
= MQ n,— X1A M, Sy~ £P1+81T- The five relevant diagrams lead to the following expres-
XM 1\2 Q2 M sion for the hadron tensor integrated over the transverse pho-
(80  ton momentum(up to order 1Q):

2
f d?q W“”=e—
T 3

Tr(®(x) WE(YW”HJ dyTr( @X(V,X)V“E(X_)VaQ\;E ” Xyrle ”)

X—y
Q\/Ex y+|e
x-y

_|._

ET

" f dyTr( DE(x,y) Y &x_)y”)— J dﬁr(@(x)y@i(ﬁy B - i

fdyTr

D(X) Y,

f@z(Tyw) ] : (12)
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We will explain the above expression. The factor 1/3 arisesvhere e&”= e‘“ﬁ“”n+an_[,. We make a similar expansion

from the color averaging in thegq annihilation. We have for ®;(x,y) with the functions Gp, ... replaced by
omitted flavor indices and summation; furthermore, there is &,, . . ., while the rest stays the same.

contribution from diagrams with reversed fermion flow, The parametrization of(x) is consistent with require-
which is similar as the above expression but with-» and  ments imposed o following from Hermiticity, parity and
g— —q replacements. In the expression the terms wiith  time-reversal invariance:

arise from the fermion propagators in the hard part neglect-

ing contributions that will appear suppressed by powers of <I>T(P1,Sl;p)=y(,(I)(Pl,Sl;p)yO [ Hermiticity],

Q% 19

et T ar P(P1,51:p) = 0@(P1,~S1P)ye [parit], (20)
pi—a)2—m?+ie -

®*(P;,S;;p)=ysCP(P,,S;;p)CTys  [time reversd),

4—k,+m ho x—y 14 (21)

(q—k)?—m’+ie QV2 x—y+ie

. . wherep_z(po,—p), etc. For the one-argument functions in
where the approximate signs hold true only when the propag, (17) it follows from Hermiticity that they are real. Note

gators are embedded in the diagrams. From these expressiqﬂ t for the validity of Eq(21) it is essential that the incom-

?nnoemngsrrr\lle?u;[)r:]atcg;reegags:ji, t(l).?i.ﬁ g;]esﬁiﬁe S;rlil zrgroz; ing hadron is a plane wave state. Fbfy and similarly for
9 ' P q prop g%)f{ Hermiticity, parity and time-reversal invariance yield the

tor. — — B E— following relations:
Note that®(x),P(x),Pa(x,y) and P4(x,y) are now

integrals involving only one light-cone direction, for in- o )
stangce, 9 o J [®F(P1,S1;p1.p2)]"

dn o =¥0P5(P1,S1:P2,P1) v  [Hermiticity] (22

(Dij(x)zf Ze""‘(P,S| $i(0)(An2)[P,S). (15 -

PR3 (P1,S1;P1,P2) = Y0Ppo(P1,— S1;P1,P2) vo  [parity]

We observe that in the above expression one cannot sim- (23
ply replace® a(x,y) by ®3(x,y), where

[q)g(Plisl;plipZ)]*

dh d7 S —
a = _ n(y—Xx)
Ppij(X,y) ij 27C © =y5CPp,(P1,S1;p1,P2)Clys  [time reversdl.

X(P, S| ¢(0)iDX(7n_)y(An_)|P,S) 24

(16) Hermiticity then gives for the two-argument functions in Eq.

. . . ) 18) the following constraints:
andiD “=ig*+gA®. One must take into account the differ- (18 g

ence proportional tof d?prp$®(x,py). This difference is

. _*
only zero, in case there are no transverse polarization vectors Go(x,y)==Gp(y.x), (25
present. Similarly for the difference betweéf and® . _ _
Gp(X,y)=Gp(Y,X), (26)
I1l. DISTRIBUTION FUNCTIONS
— *
For the correlation functiond and 7 we need up to Ho(x.y)=Hp(y.x), @7
order 1Q the following parametrizations in terms of distri-
bution functiong14,15: Ep(X,y)=—E5(Y,X). (29)
1 . .
Hence, the real and imaginary parts of these two-argument
O (x)=z[f1(X)P1+g1(X)N1y5P1+hi(X) Y58, 1P ' ginary p 9
(x) 2[ 1001 G101 ysP1F he (X) 75BirPy ] functions have definite symmetry properties under the inter-

change of the two arguments. If we would impose time-

+ % e(x) 1+ gr(X) ysb17+ hL(X)%ys[m Jh_1|,  reversal invariance all four functions must be real &l
andHp are then symmetric an@p andEp are antisymmet-
(17)  ric under interchange of the two arguments, such that at
=y only Gp andHp, survive.

In the remainder of this section we do not impose time-
reversal invariance and hence allow for imaginary parts of
these functions. In addition, the followingr-odd one-
FHo(XY)N1y5Y7P1+Ep(XY)¥7P1],  (18)  argument distribution functions then appear:

M, . ~ o
DH(X,y) ZT[GD(X,Y)I €17S115P1+Gp(X,Y) S ysP1
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M ~ —~
®(X)|T-odd:71 fr(X) €5 Sirpyro—eL(X)Niiys f dy[Gp(X,y) +Gp(Y,X)+ Gp(X,y) =Gp(Y,X)]
i =2ixf(x), (39
+h(x)§[h+,ﬁ_] . (29
m
Also we parametrize f dy[HD(le)+HD(y!X)]:XhL(X)_ Mgl(x)! (39)
cb?f(x)zf d?prps®(x,p )=—&[if“1)(x)ie“ﬁs P .
J TEARET 2 BT T ETETL f dy[Hp(X,y) —Hp(y,x)]= —ixe,(x), (40)
— 917 (0 S ysP 1+ hy V()N 17575, m
+ih M (x) y4P4]. (30) f dy[Ep(x.y) ~Ep(y.x)]=xe(x) = \rf1(x), (41)
The superscript (1) stands for the firkﬁ-moment of
kr-dependent distribution functiorf§x,k?), f dy[Ep(x,y) +Ep(y,x)]=ixh(x). (42
k2 . . .
(1)) — 2 T 2 From this we see that thél-odd) imaginary parts of the
P2 Jd kT(ZMZ)f(X’kT)' (3Y) two-argument functions are related to the T-odd one-

argument functions, as one expects. So if time-reversal in-
This particular parametrization EEBOQ) is written in a form  variance is imposed, the imaginary parts of the e.o.m. Egs.
similar to Eq.(18), while using thek;-dependent functions (38), (40) and(42) become three trivial equalities. We like to
of Ref.[16]. Note thatf1{}(x) andh;®)(x) are T-odd. point out that if one integrates Eq&37) and (38) over x,

We observgsinceiD “=igd“+gA%) weighted with some test functiom(x), one arrives at the
sum rules discussed [13,17].

In order to observe the role of intrinsic transverse momen-
tum, we will use some specific combinations of distribution
1) functions, indicated by a tilde on the function. The tilde

—2ifr7 (%), (2 functions are the true interaction-dependent twist-three parts
of subleading functions, which often contain twist-two parts
= g _ & 8 (in analogy tag,) called Wandzura-Wilczek parf48]. They
f dYLGp(X.y)+Goly.x)] j AYLCAY)+ Caly:x)] are defined such that in the analogues of Eg§%)—(42) for
G, etc. only tilde functions appear,

f dy[GD(x,y)+GD(y,X)]=f dy[Ga(X,y) +Galy.X)]

+2g17(x), (33)

| dviHoxy) oy 01 [ dyiHaty) + Hay 0! | ayiResAxy)+ReBAx))

—2hy (), (34 —xgr(X) ~ (0~ gH0=xTe(x), (43

dy[Ep(X,y)+Ep(y,x)]= | dy[Ea(X,Y)+Ea(Y. ~
f Y[Ep(x,y) +Ep(y,x)] f YLEA(X,Y) +EA(Y.X)] fdy[ImGA(X,y)+ImGA(X,y)]IXfT(X)+fﬂb(x)

—2ihi (%), (35)
while for the “differences” nok% moments appeatr: =xTr(x), (44
m
J dy[Go(x,y) = Gp(y.X)]= f dy[Ga(X,y) = Ga(y:X)], f dy[2ReHA(X,Y) ] =X (x) = 17 91(x) + 2h3 (P (x)
(36) ~

=xh (x), (45

etc.

The two-argument functions and the one-argument func- -
tions are related by the classical e.o.m., which hold inside J' dy[2ImHA(X,y)]= —Xxe (X)=—xe.(X), (46)

hadronic matrix elemen{d.1]. Using the above parametriza-
tions one has the following relation3,15:

[ avizReE ey 1=xet0— 17 0 =xE00, @7
| dy1Gox)~Go(y. 00+ Botxy) + Boly ]

j dy[ 2ImEA(x,y)]=xh(x)+2h1 Y (x)=xh(x).

m
= 2xgr(x) = 23 rhy(x), (37) (48)



IV. GLUONIC POLES AND TIME-REVERSAL ODD
BEHAVIOR

We are interested in the behavior of the quark-gluon cor-

relation functiond®j in casex=y, when the gluon has zero
momentum. For this purpose, we define is a transverse
index

Fij(xy)= fz 27Te'“e'"(y Y

X(P,S|#;(0)F**(yn_)¢;(An_)|P,S)
(49)

and F*?(z)=(i/g)[D*(z),D?(z)]. Defined as given above,

the matrix element has the same Hermiticity, but the oppo-

site time-reversal behavior aBf and ®43 and we will pa-
rametrize it identically with help of functions called
Ge(x,y), Ge(x,y), He(x,y) and Eg(x,y), noting that
time-reversal impliegin contrast tobg or ®3) thatGg and
Er are symmetric and thus may survivexaty. In the gauge

=0 one hag"*= 9" A§ and one finds by partial integra-
tion

(X=Y)PA(X,y) = —iPE(X,Y). (50

If a specific Dirac projection ofPg(x,x) is nonvanishing,
then the corresponding projection dfy(x,x) has a pole,
hence the name gluonic pole. An example is the function

T(X,Sp) =TI PE(X,X) €, Kh_1/P*
=27IMS3GR(X,X)

discussed by Qiu and Sterman in Rgf34].

In order to define Eq(50) at the pole, one needs a pre- =
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DR(X,Y)=(X—Y) Py ) (X)+ x—y—+ie¢)g(x’y)
—i
=5(x—y)<I>A(,x)(x)+m@,:(x,y)
Do) (X) + PR oy (X
ey PR+ Oy ()
2
—i
+PXqu’F(X,y), (52
where
5(X_Y)¢X(rx)ij(x)
dx d77 |)\xe|77(y X)
2w 2w
X (P,S[¢;(0)gAT(7=+%)y;(An_)|P,S). (53

So Eq.(52) shows the importance of boundary conditions in
the inversion of Eq.(50), if matrix elements containing
A%(n= £ =) do not vanish. When such matrix elements van-
ish (implicitly assumed ir{1]) the pole prescription does not
matter. Also one obtains
which shows the relation between the zero-momentum
quark-gluon correlation function and the boundary condi-
tions.

The behavior ofEDA(m)(x) under time reversal is

Dt ) (X) = Y5CP p (5 0)o(X) CTys. (55

This relation implies that time-reversal invariance only al-
lows for symmetric or antisymmetric boundary conditions.

To study the effect of gluonic poles we will consider the
(nonvanishing  antisymmetric  boundary  conditidn,
Ay (X)=—®@x_.)(X), which implies 7®g(x,X)
d),‘i(w)(x). In the diagrammatic calculation resulting in Eq.

scription, which is related to the choice of boundary condi-(12) one always encounters the pole of the matrix element
tions onA“%(»= =) inside matrix elements. Possible inver- (in this case in the principal value prescriptiomultiplied
sions of F**= 9" A% are (only considering the dependence With the propagator in the hard subproceésaving a causal
on the minus component prescription,

Py, x)= DE(y,x)= DE(Y,X)

_ o _ X—y+ie X—y+ie

Arly )=A$(°°)—f dz 6(z" -y )F"*(z")
7 = DAY, X)—mS(X—Y)PE(Y,X). (56)

The time-reversal constraint applieddg;(x,y) implies the
analogue of Eq(24), while ®{(x,y) has the opposite behav-
ior under time-reversal compared W®x(X,y). Thus for
@ﬁeﬁ(x,y) one does not have definite behavior under T-
reversal symmetry. Specifically, the allowed T-even func-

tions of ®F(x,x), Gr(x,x) andEg(x,x), can be identified

— o)+ J’:dz* Oy —z )F"%(z")

o

dz~

—o0

1

2

_Af(=) HA(—)
B 2

Xe(z -y )F ¥(z). (51

The consistency of antisymmetric boundary conditions with
Maxwell's equations has already been showilif].

One can use the representations for ¢#hend e functions, to
obtain
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with T-odd functions in the effective correlation function
®4°(x,y). This implies thatG&"(x,y) and ES"(x,y) will
have an imaginary part and this gives rise to two “effective”
time-reversal-odd distribution function&S"(x) and heff(x)
via the (imaginary part of thee.o.m. Since by identification

i TGE(X,X)= f dylmG&(y,x), (57
[ 7TE|:(X,X) = J dyImEZﬁ(an)1 (58) lepton plane (cm)
it follows from Eqs.(44) and (48) that FIG. 1. Kinematics of the Drell-Yan process in the lepton center
of mass frame, for a particular value of
Feff N _
x5 (X)—'TTGF(XvX)—ZMS%T(XvST)’ (59) spin asymmetry in hadron production @i e annihilation

[23,24], allowed because final state interactions lead to T-

—im odd fragmentation functions. In R425] both gluonic poles
T PE(XX) yrah-]. and final state interactions are considered, but without taking
into account boundary terms in the matrix elements. This
(60) result is in fact an example of the effective relation we have

The functiona¢" receives no gluonic pole contribution, since ShoWn(see alsq17)).
time-reversal symmetry requirése(x,x)=0. o V. THE DRELL-YAN CROSS SECTION
Of course, the. mechanism for geperatmg finite prOJect|o_ns IN TERMS OF DISTRIBUTION EUNCTIONS
of ®£(x,x) remains unknown. We just can conclude that if _ . o
there is indeed a nonzero gluonic péiethe case of nonzero We will now discuss the Drell-Yan cross section in case

antisymmetric boundary conditionshen at twist-three there One integrates over the transverse photon momentum. One
are two nonzero “effective” T-odd distribution functions. Uses the above parametrizations of the correlation functions

in the expression for the integrated hadron tensor as given in
Eq. (12), which after contraction with the lepton tensor
yields the cross section. The parametrizations in terms of
distribution functions are defined with the help of the vectors
n, ,n_ and several transverse vectors. However, we are go-
ing to discuss the angles with respect to another set of vec-
N XMl g 1_ . N tors. Depending on the choice of this set, we find different
P (X)) == | TT (X)ier"SrgP +5h =) y7 P, combinations of functions with and without a tilde. Needless
(61  tosay, the cross section itself is an observable and does not

which is constrained by time-reversal symmetry but behavefcsjepend on the choice of vectors, even though its appearance

. ? w . . Changes.
exz_:lctly opposite to fo.r mstan.(sb(,(x), hence in their param- We choose the following sets of normalized vectors:
etrizations the meaning of time-reversal even or odd func-
tions are opposite also. t=q/Q, (62)
The case of nonvanishing symmetric boundary conditions

xhef(x) = 2i E£(x,X) =

namely T+ and h. The first one generates the single spin
twist-three asymmetry found by Hammaen al. [7], in their
notation it is proportional t@(x,x). The second one leads to
a new asymmetrysee next section Summarizing, we find,
for the parametrization (I[)X(m)(x),

is less interesting, sinc®g(x,x)=0, but it is allowed. The - 2X 1~ 2Xo

delta-function singularity in this case will contribute to the z=(1-c¢) le_cﬁpb (63)
functions G (x,x) and H(x,x) and hence, to T-even tilde R

functions. This would only affect the magnitude gime- X=Q71/Qr=(q—X1P1—X,P5)/Qr, (64)

reversal evendouble spin asymmetries. ] -

The antisymmetric nonvanishing boundary condition forcharacterized by a parameteiand whereP;=P;—q/(2x;),
D4 +.y(X) might arise from a linear A field, giving a con- such that
stant field strengtlicf. e.g.,[20,21]). One might also think of

an instanton background field. In both cases one should in- n“:i fﬂ+2u_20%§( 65
. e . . . + ’ ( )

terpret infinity to mean “outside the proton radius.” Also, V2 Q

the constant field strength should be understood as an aver-

age value of the gluonic chromomagnetic field, which is non- “_ S Q-

zero due to a correlation with the direction of the proton n-==7% tM_ZM_Z(l_C)EXM . (66)

spin. The large distance origin of the asymmetries arising
from such a gluonic pole is apparent. So the parameter basically distributes the transverse mo-
We like to point out that so-called fermionic poles play amentum betweef®; and P, in different ways(Fig. 1). If c
role in off-forward scattering, such as prompt photon produc=0 (c=1), thenP,(P,) has no transverse component. The
tion [22,3—4, but not in the DY process to this order. symmetric case=1/2 is the one used in Rdi26].
The fragmentation function that is the analogue of the In this way we arrive at the following expression for the
distribution functionf; (called D¢), shows up in a single Drell-Yan cross section in case of unpolarized leptons:
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do(hih,—11X) a? ) — _ _ .
40 dx,dx, :3Q2276a A(Y)(f1f1=N1020191) +B(Y)|Sirl[Sprlcos s + ¢s,) (hih ) + C(y)[Sirlsin(¢s))

oM, . 2M, _ — ,
X Txl((l_c)fT_FCfT)fl"’_ szhl(Ch—i_(l_C)h) +C(y)|Srlsin( ¢s))
oM, - 2M -
X szfl(CfT+(l_C)fT)+ Txl((l_c)h_FCh)hl +C(y)A\2|Syrlcod ¢s,)
2M, - 2™, -
X Txl((l—C)QT‘*’CgT)gl‘*‘ TXZhl(ChL_l'(l_c)hL))_C(y))\l|SZT|COS¢SZ)
oM, _ - 2M, o
X TXZQI(C9T+(1_C)9T)+ TX1((1_C)hL+ChL)h1)], (67)

where dQ=2dy d¢' and ¢' gives the orientation of#  leptons. The first term in the asymmefigroportional tof 1)
=(g*"— 8 + 242N | the perpendicular part of the is the one discussed [i7] [in their notation it is proportional
lepton momentunh, andyV=I*/q*. In this result we encoun- 10 T(X;:x)d(y)], which will also be present in DI$f,(x)

ter the following functions of: =46(1—x5)]. Thg se_cond term is the othgr, new single sp@n

asymmetry arising in the DY cross section from a gluonic
A(y)=(1—2y+2y?)/2, (68  pole. It is not proportional td (x,Sy), but to another projec-
tion of ®¢ in the pointx=y, cf. Eq. (60).
B(y)=y(1-y), (69)
Cly)=(1=2y)Vy(1-y). (70) VI. CONCLUSIONS
Furthermore f; f ;=f3(x,) f 3(x,), etc. and whera is the We have shown how the effects of so-called gluonic poles
flavor index. in twist-three hadronic matrix elements, which were first dis-

For c=1/2 we find agreement with the results[dfl for ~ cussed by Qiu and Stermd8,4], cannot be distinguished
the cross section without T-odd distribution functions.from that of T-odd distribution functions. We investigated
Hence, we confirm the deviation of that result from the onethis for the Drell-Yan process, which is expressed in terms of
found in[15]. products of distribution functions. Even in the absence of

We observe single-transverse-spin asymmetries with twq-odd distribution functions, imaginary phases arising from
possible angular dependences, namelydsii(and sing)s).  hard subprocesses together with gluonic poles give rise to
Each of them comes with two products of functions, in par-effective T-odd distribution functions. This leads to single
ticular an unpolarized onef{ or h) times a polarized one spin asymmetries for the Drell-Yan process, such as the one
(f or hy). There is no choice ot to eliminate the tilde found recently by Hammormt al. [7]. These asymmetries
functions from this expression, nor to only retain tilde func-therefore can have a different origin than the analogous
tions. This shows the nontrivial role of intrinsic transverseasymmetries in inclusive hadron productioneine™ annihi-
momentum of the partons and one cannot discard it. Thiation[23,24], which can also arise due to final state interac-
means that unlike in the case of deep inelastic scatteringjons, which are expected to be present always in contrast to
(DIS), one cannot take onlgp(x) and ®3(x,y) as a basis initial state interactions. We have moreover shown that the
[12]. presence of gluonic poles is in accordance with time-reversal

If we assume that the presence of T-odd distribution funcinvariance and requires a large distance gluonic field with
tions is only effective, arising due to gluonic poles, and thatantisymmetric boundary conditions. Our analysis shows also

A= PPy, then Tefi= 1" and hef=hef, This implies  the role of intrinsic transverse momentum of the partons for

the following single spin asymmetrghadron-two unpolar- the DY cross section at subleading order.
ized), given in the lepton center of mass frame:

2sin(20)sin( ¢s.) _ ACKNOWLEDGMENTS
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