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Higher twist and transverse momentum dependent parton distributions:
A light-front Hamiltonian approach
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In order to study twist-3 and transverse momentum dependent parton distributions, we use light-front
time-ordered PQCD at order; to calculate various distribution functions for a dressed quark target. This study
enables us to investigate in detail the existing relations between twist-3 and transverse momentum dependent
parton distributions. Our calculation shows explicitly that two versions of such relations, considered to be
equivalent, occur in the literature which need to be distinguished. Moreover, we examine sum rules for higher
twist distributions. While the Burkhardt-Cottingham sum ruledgiis satisfied, the corresponding sum rule for

h, is violated.
DOI: 10.1103/PhysRevD.65.014009 PACS nuniber13.60.Le, 12.39.Fe, 13.87.Fh
I. INTRODUCTION ploited to make a critical examination of the Wandzura-

Wilczek relation[15]. Here, we use the same approach to

In view of the increasing accuracy of recent and plannedalculate the higher twist arki-dependent parton distribu-
high energy scattering experiments, more and more attentioifions perturbatively to ordess, and then study the Lorentz
is paid to the study of parton distributions which are ofinvariance relations by employing a dressed quark target. We
higher twist and(or) dependent on the transverse momentagdemonstrate that there exist two sets of relations that, al-
of the partons. The twist-3 distribution functions are accesthough assumed to be the same, are not identical in reality.
sible through the measurement of certain asymmetries in pd/lore precisely, only one set of relations is verified for a
larized deep inelastic scatterifgIS) [1] and Drell-Yan pro- dressed quark target, whereas the drawback in the other case

cesses [2]. The transverse momentum dependentc@" be traced back to the absence of quark-gluon-quark cor-

(kr-dependent structure functions play an important role relators, which seem to be crucial ingredients in the Lorentz

both in Drell-Yan processes and semi-inclusive D8} In invariance reIayons In a gauge theory. . . .
such reactions, e.g., the transverse momenta and the trans-Our calculation also gives us the _op_port_unlty to Investi-
P gate the sum rules for the twist-3 distributiogs and h,.

verse spin of the partons can get coupled giving rise to azis i . . i
muthal asymmetriessee e.g. Refg4—7), which are very The Burkhardt-CottinghantBC) sum rule forg, [16] is sat

. . . isfied for the dressed quark target, but the corresponding sum
suitable obs_ervables for studying the correlat_lons of guarkﬁ“e for h, [17,18 turns out to be violated. To our best
and gluons in hadrons. Often, .effects due to hlgh'er twist a”ﬂnowledge, the violation of the sum rule fbg in a pertur-
transverse momenta appear simultaneously like in the receglive treatment is a new observation.

HERMES measurements of the longitudinal single spin  The paper is organized as follows. In Sec. II, we outline
asymmetry in semi-inclusive pion productidB]. In this  the definition of the parton distributions relevant for our dis-
work, we study these higher twist akg-dependent structure cuyssion, and give a detailed account of their relations due to
functions and their interrelations in the framework of light- |orentz invariance. In Sec. Ill, first the operators for twist-3
front Hamiltonian QCD. distributions are expressed in terms of dynamical fields, and

As is well known, twist-3 andr-dependent parton distri- some relevant points regarding the dressed quark target are
butions are relate@5,6,9-11 as a consequence of Lorentz discussed. Then we present our results for the different par-
invariance. These relations impose important constraints ofbn distributions and a detailed investigation of the two sets
the distribution functions, which allow one to eliminate un- of Lorentz invariance relations. In Sec. IV, we study the sum
known structure functions in favor of known ones wheneverryles forg, andh, and conclude in Sec. V. Some conven-
applicable. Consequently, they have been used frequently ifions are summarized in an Appendix.
the literature to facilitate matters, for instance in studying the
evolution ofk;-dependent distribution functiori9,10,13. Il PARTON DISTRIBUTIONS: DEFINITIONS AND THEIR

Our motivation here is to investigate the validity of these INTERRELATIONS
Lorentz invariance relations by explicit calculation of all the
involved distribution functions. There exists a very conve- In this section we recall the definitions of various parton
nient tool based on the light-front Hamiltonian description ofdistributions that already exist in the literature and introduce
composite systems utilizing many-body wave functionsthe Lorentz invariance relations among them. We restrict the
which enables us to study these relations in the context odiscussion below to twist-3 structure functions, while in the
perturbative QCD. This tool has already been used successase ofk;-dependent functions we limit ourselves to the
fully in the literature to calculate unpolarized and polarizedtwist-2 level which is sufficient for our purpose. For a com-
parton distributiong13] as well as the transversity distribu- plete discussion one should go back to the original references
tion [14]. The simplicity of this approach has also been ex-mentioned below.
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To begin with, we specify the correlatab(x) of two
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quark fields on the light-froftin terms of which all the hl(x)—L(I)[“’ 7l
structure functions are defined V2 25y
de =4 f e 4P, SY(0)ic T ys(§)IP,S), (4
Oy0==| S AP SHOWEPS| o
\/_ Er=¢=0
D
P+
(x)= q)[y vsl
with k*=xP*. The target state is characterized by its four- V2Mm S;
momentumP and the covariant spin vect& (P?=M?, S? o g_
=—1, P-S=0). Note thatd(x) can easily be made gauge _ oik-£
invariant by putting an appropriate gauge link between the CAM ST (P.9 w(O)y s(£)|P.S),
quark fields. However, since the non-locality in the operator
is only in the longitudinal directio~ and we shall be work- (5)
ing in the light-front gaugeA*=0), we can always get rid
of the gauge link in Eq(1). Pt S
Now, the parton distributions appear in a general decom- h ()= 2\/§M N °
position of the correlato(x) where one finds three func-
tions at twist-2 and three functions at the twist-3 le\&b], 5* ok £
1 (6)
d(x)= z{fl(X)VH NG (X) yshy +h(X) ysBr i}
where, like in Eq(1), all the correlators are understood to be

M
+ W(G(XHQT(X) Ys5r

|

with n, and n_ being two lightlike vectors satisfying
n,.-n_=1. The helicity of the target state is given hy
while Sf=(0,0S;) represents the transverse spin of the tar-
get. Sometimes different notations for twist-2 distributions
are used in the literatur¢f,(x)=0q(x), g91(x)=Aq(x),
h1(x) =A1q(x) = 8q(x)]. The twist-3 part contains the well-
known transversely polarized structure functgpn, and two

hy A -
TA hL(X)'yS% (20 & but

on the light-front, i.e&" = :

In a similar way, ky-dependent parton distributions are
defined starting from the following correlation function
where the non-locality in its operator structure is not only in

By (x,kr) = (f

&r=

in & as well,

dé d?ér
(2m)°

x ek &P, S|y (0) ¢ (£)|P,S) (7)

£v=0

Here we have assumed that in tAé =0 gauge together

with antisymmetric boundary conditions for the transverse
gluon field, the gauge link can still be omitted as argued, e.g.,
in Ref. [5]. In the general decomposition of this correlator

one naturally finds more distribution functions due to the

presence of an extra vectl¥ [5],

chiral-odd distributionse and h, . Note that in Eq.(2) we
have not considered the so call&bdd parton distributions.
The structure functions in Eq2) are projected out by
performing traces ofb(x) with suitable Dirac matrices. Us-
ing the abbreviationb"1=Tr(®TI")/2, we give the explicit
expressions for those structure functions that are relevant for

our discussion here, D (x,ky)= %{ fi(x,k3)n,

ke Sy
+ N g (x, kD + TTng(X!k%

1 + f
X)= ——plr ¥l Ysh+
g1(x) x

—hyr(x,K3)i 0, YsShn’

-7 fdg e“ 4P, SY(0)y ysp(é)IP,S), (3
- H 2_ [l 5 [l [l kT. ST
& - ( A hi (X,K2) + ———hir(x,k2)
tour definition of light-front components of a generic 4-vector as iU#Vy5leLni (8)
well as further conventions are summarized in the Appendix. M
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Here we have shown only the twist-2 part, which is sufficientthe notations of Ref{11], with necessary modifications for
for our purpose, and we have omitted fi@dd functions as the conventions that we follow, the corresponding relations
before. are given hy

Like in the previous case, one projects out the structure o o
functions in Eq.(8) by performing traces ofb(x,ky) with — ,D(X,x")+D(x",x)
suitable Dirac matrices. Two of the projections necessary for  91(X)=01(x)+ d_XK(XHf X , '

: ; X' —X
our discussion are (14)
L plvtv ke ST 1dz
E(D sl(x,kr) =\ g1, (X,K3) + ———g17(x,k3), (9) h(x)=hy(x)+ > d—XK(x)
] 1 D(x,x")+D(x’,%)
1 i ) N +—f dx’ . (15
—2<I)['0 78l (X, kr) = Sthyr(x%,k§) + | N g (x,k7) 2 X' =x

Note that here quark-gluon-quark light-front correlators are
hi(x k2 10 involved, which depend on two momentum fractions denoted
T(X! T) . ( ) R
asx=k"/P*, x’=k'*/P* and the new correlation func-

tions appearing in Eq14) are given by
Note that depending on the target polarization the same pro-

K-
LSy

jection of ®(x,ky) allows one to calculate different structure _ 1 g*
functions. For example, from Ed9) we getgy (X,ky) or K(x)=
017(X,ky) for the target being polarized in the longitudinal or 4M ST
transverse direction, respectively. Therefore, E@$—(10) — i
give us a well-defined way to calculatg,t(x,k;) and X(P,S|#(0)y " idrys(§)|P,S), (16)
hi (x,ky) which are necessary for the subsequent discus- N o
sion. In what follows we need tHe?r-moments of these two D. (x,x')=— 9sP _ j di d7 glk-é=ik" -y
functions, which are defined 5] B gmMs.) 27 2w
0 , K ) X(P.SY(7)y" Ar(0) ' ys0( £)|P,S),
ng(X):f d knglT(X!kT)y (17)
— gP" (dédyp
k_%_ D (X,,X):_ i f_ eIk syp—ik- &
hyM(x) = f deTWhi(x,lé). (12) 2 gMS,) 2m 2m

. - X(P,S[¢(£)y" ¥ Ar(0) ysi(1)|P,S),
Now that we have given all the definitions of relevant
structure functions, we are in a position to discuss the exist- (18)
ing relations among them. These are usually of two kinds—

one follows from the QCD equations of motion and the other while the ones in Eq(15) are

comes as a consequence of Lorentz invariance. Here we are 5 1 dé™
mainly interested in the latter ones which, according to Refs. K(x)=— TN 2—e
[5,6], read as ™
d X(P,S|(0)y" i drysyp(€)|P,S), (19
9r(¥)=g1(x) + 5 9{P(%), (12 0 P* [ de- do
Datex)=—gyx) 2w 22 @
d _
h (0 =hs 00 = Ghit V0. (13 X(P, Sl #(n)y* Ar(0) ysi( HIP,S), (20)
+ - -
These relations have been derived from the general Lorentz D (X' X)=— gsP fdi dy ek m—ik-¢
covariant decomposition of the correlation functidrof two 20 8MN\NJ) 27 2w
quark fields before it is constrained on the light-cone and, — .
hence, they are quite naturally referred to as Lorentz invari- X(P,S|y(&)y" A7(0) ys(m)|P,S), (21)

ance relations. On the other hand, a similar relationgfer _

also attributed to Lorentz-invariance has already been prdNIth D(x,x")=3[D1(x,x')+Dx(x'.x)] and D(x,x’)
posed in Ref[9] and extended fon, in Ref.[10]. Adetailed  =2[D,(x,x")+D,(x’,x)]. In principle, Eqs(12), (13) and
account on these relations can be found in R&f]. Using  Eqgs.(14), (15 (henceforth, referred to as set A and set B,
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fact, are assumed to be identical. But there exists hardly any On=2 mqt,//+(0)
proof of that.
These relations are quite remarkable, in particular, since
they involve at the same time functions describing longitu- _
dinally and transversely polarized targets and therefore will Oy, =2 ¢+ (_‘9T+’9T ) Y5+ (£),
provide us with a consistency check while comparing data
for the measured structure functions from different experi-
ments. Moreover, they can be quite useful to predict the evo- -2 gsw (0)(

respectively should contain the same information and, i (

L) :
§+ ’}/5l/l+(§,

lution of one of the structure functions once the evolutions of Ar(&) | vs+(9)-

others are known, as has been done in R8{40,13. Keep- (25

ing their importance in mind, it is worthwhile to delve more

into these relations. We do this in the next section by checkHerem, is the quark mass anbl;=X,T?A7 the transverse

ing them through explicit calculations for a dressed quarkgauge field, while 14* is defined in the sense of the princi-

target in the framework of light-front time-ordered perturba-pal value prescription as given in EGA3). The above light-

tive QCD (PQCD. front expressions make the physical picture of twist-3 struc-

ture functions clear. It explicitly shows the contributions

associated with the quark mass, quark transverse momentum

and quark-gluon coupling operators. Although one naively

expects that the contributions depending explicitly on the
Before presenting our results, it is useful to disentanglequark mass are suppressed, it turns out that each of them is

the twist-3 parton distributions into simpler structures whichequally important to extract the information contained in

manifest the different aspects of the QCD dynamics coniwist-3 structure functions. Notice that Eq22),(23) corre-

tained in them. To achieve this, we re-express the structurgpond to what in the literature is often referred to as the

functions g+ and h, in terms of dynamical fields, the so- relations among various light-front correlators coming from

called good fields, like in the twist-2 case which right from the QCD equations of motiofsee e.g. Ref5]).

the beginning contains only the good fields. That is, we Having presented the relevant issues as far as the operator

eliminate the constrained fielg_ via the constraint equation structures involved in the parton distributions are concerned,

(A2) in terms of ¢, and AiT which are the only dynamical some comments regarding our calculation and the target state

fields in the Hamiltonian formulation of light-front QCD. are in order. The calculation is straightforward and we shall

Thus,gr andh, defined in the previous section become  avoid giving unnecessary details except mentioning the fol-
lowing points.(For details we refer the reader to REL3].)

Ill. PARTON DISTRIBUTIONS: RESULTS AND
DISCUSSION

G Firstly, all the required structure functions are calculated
gr(x,Q%) = M STf e{(P,S|(Opy+ O +Og)|P S),  for a dressed quark target given by the following Fock-space
expansion truncated at the lowest non-trivial order,

=g7(x,Q%) +977(x,Q%) +g%(x,Q?), (22) . dk; d%ky;  dkg d2ky,

[k, \y=M bl(k)|0)+ > f — —

di ‘e J V22m)%k V2(27)%;

k-&
L(XQ ) 8M)\J I <P S|(O +Ok +Og)|PS> X /2(27T)3é\'3(k_k1_k2)
=hP'(x,Q?) +hT(x,Q%) +hf(x,Q?), (23 X\ (. ser)b] (Kp)a] (kz)|0)+ - ] (26)

where we have introduced the operators t T i
whereb, (k) anda, (k) are the creation operators of quarks

1 and gluons on the light-front which obey the usual commu-
_ T) ysih. (), tation relations[see Eqs.(A8), (A9)]. The most important

ingredient in the above dressed quark state is the two particle
boost-invariant wave-function which can be calculated using
light-front time-ordered PQCD and is given by

e T i 1
Om=mgi, (0)y it

_ N R

Oy,=— ‘/’1(0)( YOt o= 7') Y5+ (£),
J J gsT®  VI—x .

D pter) =~ R202n7 &

)751!4(5% Kyoo1. . - 1-x

2— 1 4+ Z(or K)o —imgo ——
(24 T—x (T T) o1 q0T

— + 1
Og:gs‘//+(0) AT(O)I(§+ Y~

and XXrET N, » (27)
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with x and e being the relative momenta of the quark. Note o Mg ag Q? 5(1—x)

that them,-dependence in the above wave function has its ~ 97(x,Q%)= ™M 27 Cf |n;2 5 (34)
origin in the helicity flip part of the light-front QCD Hamil-

tonian. This is an essential term in investigating the dynama similar calculation forh, gives

ics of transversely polarized targets and, hence, is also very
important as far as our calculation is concerned. The constant

2

m o
N appearing in Eq(26) is determined by the normalization h"(x,Q?) = — 8(1—x)+ —SCf In—
condition M 2m K
L , , 1[1+x? 1 1+x'2
(K Nk Ny =2(2m)° k" 8(k" =K' ) 8(Kr—Kp) 8y v x -( — )—5(1—x>f dx'——| 1,
(29 X X 0 1-x

and to the ordet given by[13] (35

My as Q? 2(1-x)

201 1+4%? T(x,QY)=— =
N=1—20‘—;cf|n%z dx—. 29 ~ MOQI==groCin (36)
X

_ . My as Q%[1-x 1
Here a hadronic scalg has been introduced such the h(x,Q?) = Vz_cf Nn—|——+56(1-X%)
2 2 . . L T o 2
> u>(mgy)*, which can be considered as the factorization
scale separating the “hard” and “soft” dynamics of QCD.
This scaleu also serves as the lower cutoff of the involved Note that the above results represent pure|y the PQCD dy-
transverse mometum integration, wheres is the upper namics to theac-order relevant for the leading logarithmic
cutoff. approximation, i.e., we only keep the terms proportional to
Secondly, in our calculation we also need a transverselyy Q%42 As is well known, at this order there also appear
polarized target, for example, in the caseggf. This is ob- finite terms which are not considered here. It should be noted
tained by a superposition of two different helicity states.that all the individual contributions ig; as well ash, in the
Thus, the one polarized in thedirection can be eXpreSSGd perturbative calculation are of the same 0rdmme|y, pro-
by portional tomy/M), which means that the mass dependent
termsgy andh[" are not suppressed contrary to the common
1 belief. As mentioned aboven, is the bare quark mass and
[k, St==1)= E(|k,T>i|k,l>)- (30 up to ordera, it is given by qu.(31) in terms of the renor-
malized quark masmg. On the other hanayl is the renor-
Lastly, the quark mass renormalization enters in the calMalized target mass and, therefore, in our case it is identical
culation ata-order and we use the following expression for t0 Mg itself, M =mgq . Taking this into account, we finally get
the renormalized quark mass; in terms of its bare mass, ~ 9t andhy as follows:
[19],

. (37

2
2 gT(X,Q2)=5(1—X)+$Cf Ingz
Q 2m “

mi=m 1+3—aSCfIn— . (31
a 4 w 1+2x—x?> 1
X (:I.——)()+§5(1_X) , (38
We now present the results of our calculation, i.e., all the *
relevant structure functions for the dressed quark target in o Q2
Eq. (26) up to orderag. We first give the twist-3 structure h (x,Q%)=8(1—X)+ =—C; In—
functionsgy andh_ . It turns out that all the three terms in 2m K
Eqg. (22) and Eq.(23) have nonzero contribution to the cor- 1
responding twist-3 structure functions and for clarity we pro- X [— +=6(1—x) |, (39
vide them separately. Far(x) we obtain (1=x), 2
) where we have used the well-known “plus”-prescription.
gm(x,Q%) = Mg S(1—x)+ EC InQ— Equation(38) reproducesthe result already obtained in Ref.
o M 27 T u? [15] for a dressed quark target. Also a covariant one-loop

calculation with a quark target yields exactly the same ex-

X

1-x 1—x’'

2 d 1+x'2“
——6(1—x)f dx’ . (32
0 —X

20ur result differs from that obtained in R¢15] by a factor of%
m Q2 which appears in the definition of; that we are using. This is not
kt 2\ _ q %s relevant for our purpose as long as we use one consistent set of
X, =———CslIn 1-x), 33 s
gr' (%, Q%) M 27 " ;2( ) (33 definitions for all the parton distributions.
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pression foigr [20]. Note that the result fan, , obtained for  H(x,x')’s are identically zero, which is unlikely in a general
the first time here, does not contain any singularitxat0,  scenario. Carrying out the explicit calculation of these terms,

even though the individual pieces in E435)—(37) do. we get
To investigate the validity of the relations in set A, we
need to calculate the structure functions on the right-hand _ , ag 2
side(RHS) of them which involves explicitly calculating; , D1(x,X")=Dy(X',x)=— 5-Cf |nF(X —X)6(1-x),
oY, h; andhi™® for the dressed quark target. Carrying out (45)
the evaluation ofy{¥) andhi(") as given in Eq(11), we get
to the ag-order B,(x,x")=D(x',x)
Q? as Q :
giR(x, QZ)———cf In"2x(1-x), (40) == 5, Crin-2(X =0[8(1=%) = 5(1=x")].
(46)
2
1(1) 2y _ s Q ) ) L )
h17(x.Q )—ch |”_2(1 X). (4D We point out that no singularity inx( —x) shows up in Egs.

(14),(15). From the above results one easily observes that the

- - _ t pole there gets canceled.
We point out that in the free theorya(=0) these two apparen . :
kr-dependent functions vanish since our target carries no nE Putting the results in Eq$42)—(46) back in the RHS of

transverse momentum. The same is true for the two function qs.(lé_l),(lS), we obtaingy _and h'— as given in Egs(38),
given earlier in Eqs(33),(36). 9) which verifies the relations in set B. Moreover, we see

The results foig; andh, to a-order already exist in the that the discrepancy we found earlier in set A is exactly com-

literature[13,14] and are given by pensated by taking thed(x,x’)’s andD(x,x’)’s properly
into account. In other words, from this exercise it turns out
o Q2 that the information contained in these quark-gluon-quark
01(%,Q9)=8(1-X)+ =—CIn— correlators is missing in the relations given in set A, thereby
2m M making them incomplete.
1+x2 3 Therefore, we finally conclude that the relations in set A
W =0(1—X%) |, (42 and those in set B are not identical—while the first ones are

violated, the second ones are satisfied for a dressed
5 quark target up to ordews. Barring Eqgs.(32)—(34), (39)
hy(x,Q2) = 8(1—x) + s InQ— and (42), (43), all the results presented in this section are
e 27 T obtained for the first time here in the context of light-front
QCD. It should be noted that in the free theory both sets of
43) relations are satisfied, which is easily verified by setting all
the terms proportional te, in the above expressions for the
structure functions to zero. Since only the quark-gluon-quark
Note that thea-terms forg,; andh, contain the evolution correlators seem to be missing in set A, we believe that it is
kernels of the corresponding structure functions. Having the/alid and useful in models where no gauge fields are in-
explicit results for all the necessary structure functions apvolved. For instance, we have checked explicitly taking the
pearing in the Lorentz invariance relations as given in set Aresults for the parton distributions as obtained in the specta-
we can now compare the LHS and RHS of these relationgor model[22] that the relations in set A can be verified.
By doing so, one readily finds that the relations in set A ardHowever, in the context of a gauge theory like QCD, one
not satisfied for a dressed quark target. Therefore, the naturahould be careful and always use the relations in set B.
conclusion is either that Lorentz invariance is violated in
perturbation theory or that the relations in set A do not reflect IV. SUM RULES
the complete picture.
It is easy to see that these relations in set A in fact do not Our calculation here provides a direct way to investigate
reflect the complete picture. To make it evident, we turn outhe existing sum rules for twist-3 parton distributions in the

attention now to the relations in set B and first calculite ¢3¢ of a dressed quark target. Defining the st_ructure func-
tions g,=g1—9; and h,=2(h_—h,), the following sum

andK for the dressed quark target to the same order. It turns jes have been proposed in the literatit6—18;

out that '

2X

3
*|l1=x, 20170

1 1
Kx)=g¥(x) andK(x)=—2h;N(x). (44 fodxgz(x)=0, deXhz(X)ZO- (47)

This immediately leads us to the conclusion that the relationgrom the results presented in the previous sedte®e Egs.
presented in set A are actually different fr_om that in set B(38),(39) and (42),(43)] we can immediately write down the
unless the contributions coming from thHe(x,x’)’s and  expressions fog, andh, to the orderag,
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Q? order «g in perturbation theory. Since both sum rules have

(44
02(x,Q%) = ﬁcf In—[2x—6(1-x)], (48  been derived on the same basis of rotational invariance, the
H violation of theh, sum rule is surprising and requires further
2 investigation.
2 aS Q
h,(x,Q )=2—Cf INn—[4-268(1-Xx)]. (49
K ACKNOWLEDGMENTS
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which shows that thé, sum rule is violated in perturbation

theory. Incidentally, the second momentgfturns out to be APPENDIX A
zero, [§dx x h(x)=0, although the significance of this re-
sult is not clear.

The violation of theh, sum rule in the context of pertur-
bation theory is a new observation. Such a result is une
pected, bearing in mind that te sum rule has been derived +1la b*—arby. For they matrices we use the light-front
on the same footing of rotational invariance as the BC Sun?eéresentatigrﬁlsj
rule [21]. We point out that our observation is different from
the findings outlined in Ref21], where a possible violation (0 —i) ( i O)

H |
Y= ,

In this appendix we summarize our conventions. First, we
specify the plus and minus lightcone components of a ge-
neric 4-vectora* according toa*=a’+a®, and the inner

Xbroduct of two 4-vectors is given bya-b=3a"b”

of this sum rule for the experimentally measured structure 0_
function has been discussed. There, the origin of such a vio-
lation was attributed to quark zero modes giving rise to a
S-function singularity in the parton distribution at=0. 0 i o3 0
Since this kinematical point is usually inaccessible, a signifi- Y —( ) 0% =( B ) (A1)
cant deviation from the sum rule could occur in the experi- I3

ment. In contrast, we find the violation already at the level of ~ ~ i
the parton distributiorn, calculated to the ordeg,. More- ~ Wheréo,=o; ando,= ~ o In the usual way we define the
over, in our explicit calculation the final result fop, is not ~ dynamical field ¢, =A "4 and the constrained fields
inflicted by quark zero modes. = A" ¢, which follows the constraint equation

0
V. CONCLUSIONS W :'Z_+(i Dr+mg) iy (A2)
|

In this work we have calculated higher twist and
kT—dgpen.dent par_ton distributions. using the_ Iight—frontwhereDﬂzﬁﬂ_igSAM is the covariant derivative. The op-
Ham_lltonlan descrlptlon of composite systems in terms Oferator 14" is defined as
multi-parton wave functions. Employing a dressed quark tar-
get we have evaluated them to the ordeyrin light-front 1 1 (e
time-ordered PQCD. While we have reproduced the results —f(x)=~ dye(x—y)f(y), (A3)
for g1, hy andgy, all the other results presented in Sec. Il a* 4) =
are new.

These calculations, in particular, have given us the opporwith (x) being the sign-function. In the representatiél),
tunity to study the so-called Lorentz invariance relations exthe projection operatord “= y~ y~/4 take the simple form
isting among twist-2, twist-3 andkr-dependent structure
functions. We show explicitly that two distinct sets of such At— ( 1 0) A= ( 0 0)
relations exist in the literature. While one set is satisfied “\lo o)’ “\lo 1/)°
[Egs. (14),(15)] for the dressed quark target, the other one
[Egs. (12),(13)] is not. It turns out that quark-gluon-quark For the fermion fields we use the two-component notation
correlators are important for the Lorentz invariance[23]
relations, where these pieces are what exactly is missing in
Egs.(12), (13). The implication of our findings on the exist- 0
ing literature is yet to be explored.

Moreover, we have studied the sum rules for the structure o=
functionsg, and h,. The BC sum rule forg, is fulfilled,
whereas the corresponding sum rule ligris violated at the (A5)

(A4)

n
] 1107: 1 ~ . .
0) m_+[aT'(|0T+gsAT)+|mq]77
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where the Fourier expansions of the dynamical fieldx)
andA¢(x) are given by

_ dk+d2kT —ik-x_ 4T ik-x
n(X)—; Xxfm by(k)e " *+dZ, (k)e" "],
(A6)
dk*d 2k
Ar(x) = E fz(z e
x[ay(k)er e~ *+af (k) ef e ]. (A7)

PHYSICAL REVIEW D 65 014009

Here the creation and annihilation operators for quagks-
ons obey the anticommutatioftcommutation relations

{b,(K),b],(k)}={dy(k),d],(k")}
=2(2m)%k* S(k* =K' *) S(kr—K5) Sy nr s

(A8)

[ay(K),a), (K')]=2(2)3 " 8(k* =k’ ) 8(kr—Kf) 8y v

(A9)
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