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Spectroscopic factors for one-nucleon knock-out from16O are calculated for states with low excitation
energy in 15N with the Bonn-C potential. A method is proposed to deal with both short- and long-range
correlations consistently. For this purpose a Green’s function formalism is used and the self-energy in th
Dyson equation is approximated as the sum of an energy-dependent Hartree-Fock~HF! term and dispersion
and correlation terms of higher order in theG-matrix interaction. ThisG matrix is obtained by solving the
Bethe-Goldstone equation with a Pauli operator which excludes just the model space treated in the subseque
calculation of the self-energy. The energy dependence of the HF energies induces an additional reduction of th
spectroscopic factors for quasiparticle states close to the Fermi level by about 10%. Experimental data ma
signal the need of some further improvement in the treatment of intermediate- and long-range correlations
@S0556-2813~96!04105-2#

PACS number~s!: 21.10.Jx, 21.30.Fe, 21.60.Jz, 27.20.1n
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I. INTRODUCTION

In several (e,e8p) experiments@1–4#, a substantial frag-
mentation of the one-nucleon knock-out strength has be
observed. In various calculations of the one-nucleon spect
function at low energies@5–8# this fragmentation has been
shown to be due to long-range correlations. It was also n
ticed, however, that an additional mechanism must be acti
which reduces the spectral strength in the low-energy regio
especially the~main! quasiparticle peak. The effect of short-
range correlations represents a prime candidate for the exp
nation of this discrepancy between the calculations and t
data. Calculations in nuclear matter@9# show that this effect
is about 15%.

In other theoretical studies, the spectral function calc
lated for nuclear matter was transformed to the finite nucle
by a local density approximation@10#. In these calculations,
spectroscopic factors for the states around the Fermi lev
came out even considerably lower than deduced from t
data. This is possibly due to double counting when the effe
of surface vibrations deduced from phenomenological op
cal potentials is added on top of that deduced from nucle
matter.

The quasihole wave function of16O was also calculated
with variational methods@11#. These results were compatible
with a 20%~10%! reduction of the spectroscopic factor de
pending on whether center-of-mass motion was taken care
or not. Also in Brueckner-Hartree-Fock calculations@12#, ne-
glecting center-of-mass motion, a value of 0.91 for the ho
spectroscopic factor was found.

The reason why long- and short-range correlations we
not dealt with simultaneously in a calculation for a finite
nucleus so far is that an excessively large~shell! model space
would be required to include the scattering by the strong
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repulsive cores of a realisticNN interaction. For this reason
one normally deals with a limited model space, of say four o
five major shells, and a BruecknerG matrix as an effective
interaction. By construction theG matrix, which is the solu-
tion of a Bethe-Goldstone equation, is energy depende
This energy dependence is rather weak, however, as co
pared to that of the dispersion effects which at low energi
contribute pole terms to the self-energy. Therefore, in low
energy nuclear structure calculations, theG matrix is usually
considered as a static, i.e., energy-independent interaction
the present work however, it is our aim to take its energ
dependence into account and study its effect on the spec
function at low energies. It may be expected that by doin
so, one accounts to a good approximation for the effects
the short-range correlations, which were treated in the co
struction of theG matrix. In this sense, our results do incor
porate effects of both short- and long-range correlations co
sistently.

The computational procedure and input are described
Sec. II. Results for the one-body spectral function of16O are
presented and compared with the available data in Sec.
Section IV contains a short summary and conclusions.

II. GREEN’S FUNCTION METHOD:
CALCULATION OF THE SELF-ENERGY

The spectroscopic factors for the one-nucleon removal a
defined as the square of the overlap of the ground state wa
function from which a particle in orbita is removed, with
the states of the final nucleus

Sn~a!5u^Cn
A21uaauC0

A&u2. ~1!
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These may be obtained from the diagonal elements of
one-body Green’s function@13,14#

gab~v!5(
n

^C0
AuabuCn

A21&^Cn
A21uaa

† uC0
A&

v2~E0
A2Em

A21!2 ih

1(
m

^C0
Auaa

† uCm
A11&^Cm

A11uabuC0
A&

v2~En
A112E0

A!1 ih
. ~2!

This also contains amplitudes for the addition of one pa
ticle. The interesting property of the Green’s function is th
it may be calculated by solving the Dyson equation

gab~v!5gab
0 ~v!1(

gd
gag
0 ~v!Sgd* ~v!gdb~v!, ~3!

with the irreducible self-energyS* (v). The latter acts as an
effective, energy-dependent, potential for which formally
Feynman-Dyson series expansion is given@13,14#, but for
which in practice some approximation must be adopted.

For shell model orbitsa5(na ,l a , j a ,ma) just below the
Fermi energy, there is usually one final stateCn

A21 for which
the spectroscopic factor is large, i.e., comparable with un
In calculations within a finite model space, one finds th
these orbits are to a good approximation the~Brueckner!
Hartree-Fock orbits. Other orbits, with different radial qua
tum numbers, contribute little at low energy. This agre
with the experimental finding@1–4# that the missing momen-
tum distributions in (e,e8p) reactions are the same for al
final states with the same spin and parity and low excitati
energy. So these may be interpreted as fractions of
knock-out strength from the same shell model orbit. The
fore the Green’s function~2! may be treated as diagonal in
the orbital indices within a suitably chosen shell model bas
The spectroscopic factors are then obtained from the norm
ization condition

u^Cm
A21uaauC0

A&u25S 12
]Sa* ~v!

]v D
v5E

0
A2E

m
A21

21

. ~4!

The irreducible self-energyS* is approximated here by
the diagrams of Fig. 1, which are discussed below. In t
Hartree-Fock~HF! diagram the energy dependence of th
G matrix simulates the effect of short-range correlations
low energy; the 2p1h and 2h1p propagator diagrams sho
account for the fragmentation of strength at low energy d
to long-range correlations. This 2p1h Tamm-Dancoff a
proximation~TDA! self-energy has been studied in@15#.

FIG. 1. Graphical representation of some contributions to t
irreducible self-energyS* , that appear in the Dyson equation~3!.
The thick lines indicate single-particle propagatorsg, that are solu-
tions of the Dyson equation. The wiggly lines denote th
G-matrix interaction. The first diagram is the Hartree-Fock cont
bution ~5!, the second and third diagrams include two-particle–on
hole and two-hole–one-particle interactions in Tamm-Dancoff a
proximations, cf. Eq.~10!.
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A. Energy dependence of„Brueckner… HF self-energy

The contribution to the irreducible self-energy of first or-
der in theG matrix, depicted in the Hartree-Fock diagram of
Fig. 1, is given by

Sab
HF~v!5 i(

gd
E dv8

2p
Gagbd~v1v8!ggd~v8!, ~5!

where the proper energy dependence of theG matrix is taken
into account. ThisG-matrix interaction is constructed for the
finite nucleus16O by the method described in@16#. With this
method the Bethe-Goldstone equation for theG matrix

G5V1V
Q̂

v2H01 ih
G, ~6!

is solved for a set of starting energiesv ranging from
2110 to25 MeV. The Pauli operatorQ̂ excludes a shell
model space of the 1s up to 2p1 f harmonic oscillator states,
with oscillator parameterb51.76 fm. The~long-range! cor-
relations within this excluded space are treated later, by the
methods discussed in the next section.

TheNN interactionV adopted in this work is the Bonn-
C potential@17#. We expect that other realistic potentials will
yield results which are similar to the ones obtained with this
potential. Realistic potentials may differ considerably in the
central repulsion at short distance as well as in the tensor
part. In order to fit the sameNN phase shifts and the binding
energy of the deuteron, however, a stronger central repulsion
requires a stronger tensor force, which in turn yields a lager
d-state probability of the deuteron wave function. For the
Bonn-C potential thed-state probability of the deuteron
wave function is 5.6%, close to that for the Paris potential
@18# and the Argonne potential@19# and intermediate be-
tween the 6.5% for the Reid soft core potential@20# and
4.4% for the very ‘‘soft’’ Bonn-A potential.

The depletion of orbits below the Fermi level by short-
range and tensor correlations is not very sensitive to the
adoptedNN potential. Calculations for nuclear matter at a
Fermi momentumkF51.36 fm21 yield an average occupa-
tion probability for states below the Fermi level of 0.83 for
the Reid potential and 0.86 for the OBEP-B interaction@21#.
Occupation numbers for states with small momenta obtained
with different potentials and using various methods are
hardly distinguishable. Employing Brueckner theory@22#
and the Paris potential an occupation number of 0.82 is ob-
tained, while recent calculations with correlated basis func-
tions and the Urbana v14 potential@23# yield 0.83@24# and
Green’s function methods with the Reid potential 0.83@25#.

In the present approach the depletion of orbits by the
short-range correlations is introduced through the energy de-
pendence of theG matrix in the HF self-energy. In that case
also the single-particle energies in the HF propagator,

ga
HF~v!5F u~a2F !

v2«a
HF~v!1 ih

1
u~F2a!

v2«a
HF~v!2 ihG , ~7!

become energy dependent:
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«a
HF~v!5Ta1Sa

HF~v!

5 1
2\V2~2na1 l a1 3

2 !1 (
g,F

Gagag~v1«g
HF!.

~8!

The kinetic energyTa is calculated for the basis of harmonic
oscillator states (\V5 14 MeV!, using the same basis in
which also the Bethe-Goldstone equation was solved. T
sum in~8! runs over all states below the Fermi level and th
self-consistency relationv5«a

HF(v) should be imposed. The
energy dependence in the range of energies around the Fe
level is very smooth, so the self-consistent solutions of~8!
can be obtained by interpolation, as shown in Fig. 2. If th
self-energyS* is restricted to the HF term only, the slope o
the curves at the crossing points in Fig. 2 now causes
reduction of pole strength~4! already in the HF approxima-
tion. In the present calculation this reduction is 5–7 %.
means that the short-range correlations treated in Brueckn
Hartree-Fock approximation give rise to a high-energy~and
momentum! tail of the spectral function which is of abou
this magnitude, and is invisible in the low-energy spectr
This result is consistent with the numbers obtained in t
direct calculation of@26#, where the focus is on the high-
momentum part of the spectral function.

B. Long-range correlations included by 2p1h TDA self-energy

The fragmentation of particle removal strength over se
eral states in the low-energy domain is mainly caused by
mixing of the one-hole with two-hole–one-particle~2h1p!
configurations. This may be described by including contrib
tions depicted on the right in Fig. 1 to the self-energyS* . In
the simplest diagram of second order in the interaction, o
has just three noninteracting lines as the intermediate sta
That approximation was employed in@5#. If no further inter-
action between the three lines is included, one neglect
possible formation of intermediate collective excitations, i.e
of typical particle-plus-phonon states. In@27# this formation

FIG. 2. Values of the HF energies~8! for v52110, 270,
240, 220, and25 MeV are plotted for various shells: 1s(1/2)
~circles!, 1p(3/2) ~squares!, 1p(1/2) ~diamonds!, and 1d(5/2) ~tri-
angles!. Intersection of the interpolated curves with the dotted lin
yields the self-consistent solutionv5«a

HF(v) of the HF energies.
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of particle-hole or hole-hole collective states among the thr
lines was described in the random phase approximat
~RPA!, but unsatisfactory features of that method turned u
The Pauli principle between the collective pair and the thi
fermion is neglected, like in most phenomenologic
particle-phonon coupling models. Moreover, some of th
RPA phonons, to which the hole was coupled, became u
stable with theG-matrix interaction and were simply dis-
carded in@27#. Therefore an alternative approach, in whic
these problems are avoided, is adopted here. This was
discussed in@28,29# and applied recently@15# in a study of
the spectral function of48Ca. In this approach one sums th
self-energy to all orders in the interaction, but with the r
striction that at the intermediate stages there are always
three lines. For this reason it was coined the ‘‘Faddee
approximation in@29#. Diagrams with more than two holes
and one particle at a time are neglected. Those with only o
line as an intermediate stepmustbe rejected, because other
wise the self-energy is no longer irreducible@13,14#. As dis-
cussed in more detail in@15,28,29#, this Faddeev approxima-
tion for the three propagating lines corresponds to a f
diagonalization of the interaction within the 2p1h and 2h1
model spaces. This is what is usually called the 2p1h~2h1p!
Tamm-Dancoff approximation. The diagonalization yield
the eigenvaluesvn, numbered by the upper indexn. With
the corresponding eigenvectorsblmn

n , in which the indices
l , m, andn denote the particle and hole quantum numbe
the propagation of the three interacting lines in the se
energy diagrams, Fig. 1, is then represented by the irred
ible propagator@15#

R̄lmn;pqs~v!5(
n

blmn
n bpqs

n

v2vn . ~9!

The contribution of the complete diagrams to the irreducib
self-energyS* is obtained by sandwiching this expressio
with the G-matrix interactions at the beginning and at th
end:

Sab* ~v!5Sab
HF~v!1 (

lmn;pqs

1
2Ga lmnR̄mnl;pqs~v! 1

2Gpqbs .

~10!

In principle the calculation of the eigenvalues and eige
vectors of the Hamiltonian within the 2p1h and 2h1p spac
leading to R̄ ~9!, should be performed with the energy
dependentG-matrix elements and single-particle energie
This is a cumbersome procedure and in fact unnecessary
practical purposes. A simpler procedure is justified by t
following two observations. First, thev dependence of the
G matrix and the HF energies is weak and smooth as co
pared to the pole structure ofR̄ ~9!. So a large amount of
computational effort may be saved by calculating these po
and eigenvectors in~9! with a fixed ‘‘starting energy’’ for the
G matrix, for which a value of240 MeV was taken as a
suitable average for a 2h1p state. For the 2p1h states
would prefer a higher starting energy, but these states
less important for the description of the experimentally me
sured hole spectral function. The second observation is t
the calculation of the self-energy and the procedure of so
ing the Dyson equation become effectively decoupled wh

e
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the condition is imposed that, for the shells around the Fe
level, the calculated quasiparticle energies must corresp
to the experimental ones. The method adopted here i
calculate the eigenvaluesvn and eigenvectorsblmn

n with the
single-particle energies~8! and G(v5240 MeV!. Next, the
Dyson equation~3! is solved with the self-energies~10!
within the model space of four harmonic oscillator maj
shells. If the energies of the main quasiparticle peaks aro
the Fermi level differ appreciably from the experimental va
ues, the corresponding single-particle energy«a

HF(v) is
shifted by a constant, which has no influence on the der
tive in Fig. 2, and the whole procedure is repeated. As
result the single-particle values of Table I were obtained. N
many iterations are needed because the adjustments
small. Moreover, high precision at this point is not meanin
ful in view of the various approximations and slight inco
sistencies that are still inherent in the method and which
shortly addressed in the next section.

C. Self-consistency and sum rule check

Besides the use of a fixedv value for theG-matrix inter-
action in the calculation of the 2p1h and 2h1p amplitud
there is a more important problem if one wishes to solve
Dyson equation with a self-consistent self-energy. T
arises as soon as the 2p1h propagator in Fig. 1 is no lon
restricted to its Faddeev~TDA! form, but consists of dia-
grams that involve ‘‘dressed’’ nucleons, i.e., nucleons fu
interacting with all other nucleons. These dressed nucle
are then described with a fragmented one-body propag
and no longer with the single-pole propagator of Eq.~7!.
Now the self-energy~10! depends on the solution of th
Dyson equation in which it appears. The use of an iterat
scheme, where the propagator of the (n21)th step is used as
input for the calculation of the self-energy in thenth step
becomes very cumbersome, because in each step the nu
of poles increases and thereby the complexity of the the
pressions for the self-energy. The self-consistency can o
be studied for simple approximations of the self-energy, e
without further interaction between the three lines in Fig.
This has been applied by Van Neck@7#, who represented the
propagators in a limited set of energy bins. A different a
proach to reach a certain self-consistency is the basis ge

TABLE I. Shell model spaceM for 16O, in which the self-
energies~10! are calculated. The listed single-particle energies
obtained by the procedure sketched in Fig. 2 and further discus
at the end of Sec. II B.

Shell Proton energy~MeV! Neutron energy~MeV!

1s12 235.0 240.0
1p 3

2 218.5 221.8
1p 1

2 212.1 215.7
1d 5

2 20.6 24.1
1d 3

2 4.4 0.9
2s12 20.1 23.3
1 f 72 17.4 14.0
1 f 52 23.5 20.2
2p 3

2 16.0 12.4
2p 1

2 17.7 14.3
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ated by the Lanczos~BAGEL! @8# method. In this method,
the Dyson equation is written as a matrix equation, within
the space composed of the one-hole state and the 2h1p stat
The most important eigenvectors are then filtered out by th
Lanczos method. A self-consistent calculation of the one
body propagator for the tin isotopes with a pairing force and
a 2p1h TDA self-energy is given in@30#.

As a consequence of the lack of self-consistency, elemen
tary sum rules may be violated. For a given orbit, the sum o
all removal and addition spectroscopic factors, i.e., of al
residues of the corresponding Green’s functions, must b
unity. In the present case, however, this sum is alread
smaller in HF approximation. As a consequence of the en
ergy dependence of theG matrix, the strength at very high
energies due to short-range correlations is hidden. So to a
sess the violation of the sum rule due to the lack of self
consistency, we have also performed a calculation withou
any energy dependence in the HF part. In that case the vio
lation appeared to be only of the order of 1028.

III. HOLE SPECTRAL FUNCTIONS: RESULTS

With the self-energies~10!, constructed with theG matrix
of the Bonn-C potential within the model space of four ma-
jor oscillator shells, the Dyson equation~3! may be solved
and the spectroscopic factors~4! obtained. These are hereby
computed not only for the removal of a nucleon, but for
energies above the Fermi level they refer to the addition of
nucleon. The gross features of the spectroscopic strengths
a function of energy are the same as in earlier calculation
@5,7#. For orbits around the Fermi level, there is one solution
with a large spectroscopic factor, called the quasiparticle
state. The other solutions with small spectroscopic factor
scatter over a wide energy range of several tens of MeV. Th
main difference between the present and earlier calculation
is that the sum of the spectroscopic factors for removal of
particle from a certain orbit plus that for addition of a par-
ticle in that same orbit add up to only about 93% of the
independent-particle shell model value. This is illustrated in
Table II. The missing amount, about 7%, which is a conse
quence of the energy dependence of the Hartree-Fock~HF!
energies~8!, must be ascribed to orbits outside the mode
space. Table II illustrates that this energy dependence of th

are
sed

TABLE II. Influence of the energy dependence of the Hartree-
Fock energies in the calculation of one-proton removal or addition
strengths for16O. Listed are the proton removal strengths summed
over all final states~hole!, as a fraction of the values for the
independent-particle shell model and the same for the proton
addition strength~particle!. Also the strength for the single state
with largest spectroscopic factor~main peak! is given.

Energy dependenteHF Energy independenteHF

Shell Hole Particle Main peak Hole Particle Main peak

1d 3
2 0.035 0.914 0.82 0.037 0.963 0.87

1d 5
2 0.034 0.913 0.86 0.037 0.963 0.91

1p 1
2 0.837 0.094 0.77 0.903 0.097 0.83

1p 3
2 0.879 0.052 0.76 0.945 0.055 0.82

1s12 0.880 0.043 — 0.954 0.046 —
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HF energies reduces all parts of the strength by roughly t
same factor.

A more detailed comparison with the spectroscop
strength deduced from (e,e8p) data@31# is made in Fig. 3.
This figure clearly shows that the calculated spectroscop
factors for the lowest12

2 and 3
2
2 states (l51) are still too

large by about 15220 % of the independent-particle shel
model values. This discrepancy would have been 7% larg
when the energy dependence of theG matrix, simulating the
effect of short-range correlations, had been neglected.

One may think of several~partial! explanations for the
remaining discrepancy. It could be that short-range corre
tions are not sufficiently dealt with by the present approac
However, their effect in the present work agrees with mo
direct calculations@12,26#. In @11# it was claimed that the
quasihole peak is reduced by another 10% when the cen
of-mass motion is treated properly. This result seems to be
contradiction with@32#, in which it is argued that the spuri-
osity of the 1s state in16O actually leads to an enhancemen
of the spectroscopic factors for the 1p shells. Further work
on this subject should clarify this issue.

A more likely shortcoming is that the treatment of long
range correlations is still not quite adequate. Figure 3 sho
that the fragmentation of thel50 strength as well as the side
peaks forl51 are underestimated by the calculations. It
not easy, however, to find a better, numerically still tractabl
approximation for the self-energy@15#. The search for such
an approximation should focus on complex structure at lo

FIG. 3. The calculated one-proton removal strength as a fun
tion of the ‘‘missing energy’’Em5EA212EA for 16O for different
l values ~weighted with a factor 2j a11) is compared with the
measured one-hole spectral function of16O taken from@31#.
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energies, because the discrepancy between calculations
data is less for the integrated strength over the whole ene
range up to 40 MeV. The data@31# gave 4.30 forl51 and
0.254 forl52 as compared to 4.78 and 0.261 for the calcu
lations. The calculated spectral function forl52 in Fig. 3
agrees rather nicely with the data, as its nonzero value
entirely due to correlations. Also for these orbits a larger ro
of collectivity at low energy would give a slight further im-
provement, viz. in this case a stronger concentration in t
lowest ~collective! state would be achieved.

IV. SUMMARY AND CONCLUSIONS

A method is proposed and applied to the nucleus16O to
include the effect of both short- and long-range correlation
in the calculation of the one-proton removal amplitudes b
taking into account the energy dependence of theG matrix.
Due to this energy dependence an extra depletion of the o
proton removal strength by somewhat less than 10%
found. The size of this effect is in agreement with a calcula
tion of high-momentum components in16O @26#. The frag-
mentation by long-range correlations is described by the co
pling to the 2h1p and 2p1h propagator in the Tamm-Danco
approximation. The obtained fragmentation is too small fo
the l51 strength which signals that not yet all the relevan
low-energy dynamics is adequately incorporated. This was
be expected in view of the complicated excitation spectru
of the initial nucleus (16O!. The total l52 hole strength in
the experimentally explored energy range compares w
with the data. The fragmentation of the deep-lyingl50 hole
state probably requires a continuum description of the fin
nucleus, as its energy spectrum peaks well above the tw
nucleon emission threshold.

The calculations might be improved using a larger mod
space for the long-range correlations. Also a Faddeev calc
lation in full space would be interesting. Extensions of th
Faddeev approximation, to incorporate RPA-like~backward
going! diagrams would be interesting too, but it is as ye
unclear how that may be accomplished@15#. A point to be
investigated further is the effect of the center-of-mass m
tion, which might be as large as 10%, but for which seem
ingly contradictory statements have been made@11,32#.
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