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Spectroscopic factors for nucleon knock-out from0 at small missing energy
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Spectroscopic factors for one-nucleon knock-out fréf@® are calculated for states with low excitation
energy in N with the BonnC potential. A method is proposed to deal with both short- and long-range
correlations consistently. For this purpose a Green’s function formalism is used and the self-energy in the
Dyson equation is approximated as the sum of an energy-dependent HartregHFpdkrm and dispersion
and correlation terms of higher order in tematrix interaction. ThisG matrix is obtained by solving the
Bethe-Goldstone equation with a Pauli operator which excludes just the model space treated in the subsequent
calculation of the self-energy. The energy dependence of the HF energies induces an additional reduction of the
spectroscopic factors for quasiparticle states close to the Fermi level by about 10%. Experimental data may
signal the need of some further improvement in the treatment of intermediate- and long-range correlations.
[S0556-28186)04105-2

PACS numbgs): 21.10.Jx, 21.30.Fe, 21.60.Jz, 27:20.

[. INTRODUCTION repulsive cores of a realistidN interaction. For this reason
one normally deals with a limited model space, of say four or
In several £,e’p) experiment§1—4], a substantial frag- five major shells, and a Brueckn& matrix as an effective
mentation of the one-nucleon knock-out strength has beeiteraction. By construction th& matrix, which is the solu-
observed. In various calculations of the one-nucleon spectrdion of a Bethe-Goldstone equation, is energy dependent.
function at low energie$5—8] this fragmentation has been This energy dependence is rather weak, however, as com-
shown to be due to long-range correlations. It was also nopared to that of the dispersion effects which at low energies
ticed, however, that an additional mechanism must be actingontribute pole terms to the self-energy. Therefore, in low-
which reduces the spectral strength in the low-energy regiorgnergy nuclear structure calculations, Genatrix is usually
especially themain) quasiparticle peak. The effect of short- considered as a static, i.e., energy-independent interaction. In
range correlations represents a prime candidate for the expléhe present work however, it is our aim to take its energy
nation of this discrepancy between the calculations and théependence into account and study its effect on the spectral

data. Calculations in nuclear mat{@] show that this effect function at low energies. It may be expected that by doing
is about 15%. S0, one accounts to a good approximation for the effects of

In other theoretical studies, the spectral function calcuthe short-range correlations, which were treated in the con-
lated for nuclear matter was transformed to the finite nucleustruction of theG matrix. In this sense, our results do incor-
by a local density approximatidri0]. In these calculations, porate effects of both short- and long-range correlations con-
spectroscopic factors for the states around the Fermi levelistently.
came out even considerably lower than deduced from the The computational procedure and input are described in
data. This is possibly due to double counting when the effecBec. Il. Resullts for the one-body spectral functiori® are
of surface vibrations deduced from phenomenological optipresented and compared with the available data in Sec. III.
cal potentials is added on top of that deduced from nuclea$ection IV contains a short summary and conclusions.
matter.

The quasihole wave function dfO was also calculated
with variational methodfl1]. These results were compatible Il. GREEN'S FUNCTION METHOD:
with a 20%(10%) reduction of the spectroscopic factor de- CALCULATION OF THE SELF-ENERGY
pending on whether center-of-mass motion was taken care of
or not. Also in Brueckner-Hartree-Fock calculatidag], ne-
glecting center-of-mass motion, a value of 0.91 for the hol
spectroscopic factor was found.

The reason why long- and short-range correlations wer
not dealt with simultaneously in a calculation for a finite
nucleus so far is that an excessively lafgleel) model space Aol NE
would be required to include the scattering by the strongly Sn(a) = (¥~ |, ¥o)l~. D

The spectroscopic factors for the one-nucleon removal are
edefined as the square of the overlap of the ground state wave
function from which a particle in orbitr is removed, with

the states of the final nucleus
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A. Energy dependence of Brueckner) HF self-energy

| m| | ml The contribution to the irreducible self-energy of first or-
der in theG matrix, depicted in the Hartree-Fock diagram of
Fig. 1, is given by
FIG. 1. Graphical representation of some contributions to the
irreducible self-energy.*, that appear in the Dyson equati¢®). ] do’
The thick lines indicgt% single-pzfr?icle propagat)(f)rshatqare solu- Egg(‘”) =1 25 f ﬁGw/B&(“"" w,)gyé(w,)! 5
tions of the Dyson equation. The wiggly lines denote the Y
G-matrix interaction. The first diagram is the Hartree-Fock contri-
bution (5), the second and third diagrams include two-particle—oneWhere the proper energy dependence ofGhmatrix is taken
hole and two-hole—one-particle interactions in Tamm-Dancoff ap4nto account. Thigs-matrix interaction is constructed for the
proximations, cf. Eq(10). finite nucleus®O by the method described j6]. With this
method the Bethe-Goldstone equation for Gematrix
These may be obtained from the diagonal elements of the
one-body Green'’s functiofil3,14]

(VolaglPp H)(wp *allwo)
w—(Eg—Ep =iz

5 VB O v

™ o—(ENTY—ED+iy |

G=V+V G, (6)

_

Qup(©) =2
is solved for a set of starting energies ranging from
—110 to —5 MeV. The Pauli operato excludes a shell
model space of theslup to 2p1f harmonic oscillator states,
with oscillator parameteln=1.76 fm. The(long-rangé cor-
This also contains amplitudes for the addition of one parrelations within this excluded space are treated later, by the
ticle. The interesting property of the Green’s function is thatmethods discussed in the next section.
it may be calculated by solving the Dyson equation The NN interactionV adopted in this work is the Bonn-
C potential[17]. We expect that other realistic potentials will
—q° 0 * yield results which are similar to the ones obtained with this
Oasl) gaﬁ(w)+% Garl@)Zys(@)agle). (3 potential. Realistic potentials may differ considerably in the
. ) ] central repulsion at short distance as well as in the tensor
with the irreducible self-energy* (w) - The latter acts as an part. In order to fit the samd N phase shifts and the binding
effective, energy-dependent, potential for which formally agnergy of the deuteron, however, a stronger central repulsion
Feynman-Dyson series expansion is giya8,14, but for  requires a stronger tensor force, which in turn yields a lager
which in practice some approximation must be adopted.  §_state probability of the deuteron wave function. For the
For shell model orbitsy=(ng,l4,ja,Ma) 1U§tl below the  Bonn.C potential thed-state probability of the deuteron
Fermi energy, there is usually one final stdtg™* for which  \ave function is 5.6%, close to that for the Paris potential
the spectroscopic factor is large, i.e., comparable with unity[lg] and the Argonne potentigll9] and intermediate be-
In calculations within a finite model space, one finds thatyyeen the 6.5% for the Reid soft core potent{iab] and
these orbits are to a good approximation {Bruecknef 4 49 for the very “soft” BonnA potential.
Hartree-Fock orbits. Other orbits, with different radial quan- e depletion of orbits below the Fermi level by short-
tum numbers, contribute little at low energy. This agreesange and tensor correlations is not very sensitive to the
with the experimental findinfl—4] that the missing momen-  aqoptedNN potential. Calculations for nuclear matter at a
tum distributions in €,e’p) reactions are the same for all porm; momentunkg=1.36 fm~! yield an average occupa-
final states with the same spin and parity and low excitationjon probability for states below the Fermi level of 0.83 for
energy. So these may be interpreted as fractions of thge Reid potential and 0.86 for the OBEPinteraction[21].
knock-out strength from the same shell model orbit. Theregecypation numbers for states with small momenta obtained
fore the Green’s functiori2) may be treated as diagonal in ith gifferent potentials and using various methods are
the orbital indices within a suitably chosen shell model baSiShardIy distinguishable. Employing Brueckner thedi32]
The spectroscopic factors are then obtained from the normalk 4 the Paris potential an occupation number of 0.82 is ob-

)

ization condition tained, while recent calculations with correlated basis func-
I5* ()| L tions and the.Urbana vl4 p(_)tent[ﬂ3] yield 0.83[24] and
|<‘1’§11|aa|‘1’3>|2=<1— a ) . Green’s function methods with the Reid potential 0[&5].

Jw w-EA—gA1 In the present approach the depletion of orbits by the

short-range correlations is introduced through the energy de-
The irreducible self-energy* is approximated here by pendence of th& matrix in the HF self-energy. In that case

the diagrams of Fig. 1, which are discussed below. In thelso the single-particle energies in the HF propagator,
Hartree-Fock(HF) diagram the energy dependence of the
G matrix simulates the effect of short-range correlations at 0(a—F) O(F—a)
low energy; the 2plh and 2hlp propagator diagrams should g',;'F(w)=
account for the fragmentation of strength at low energy due
to long-range correlations. This 2plh Tamm-Dancoff ap-
proximation(TDA) self-energy has been studied[it5]. become energy dependent:

)

w—s';':(w)-f-ir] w—ng(w)—in '
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20 . . . - . of particle-hole or hole-hole collective states among the three
lines was described in the random phase approximation
(RPA), but unsatisfactory features of that method turned up.
The Pauli principle between the collective pair and the third
fermion is neglected, like in most phenomenological
particle-phonon coupling models. Moreover, some of the
RPA phonons, to which the hole was coupled, became un-
stable with theG-matrix interaction and were simply dis-
carded in[27]. Therefore an alternative approach, in which
these problems are avoided, is adopted here. This was first
discussed 128,29 and applied recentlj15] in a study of
the spectral function of®Ca. In this approach one sums the
. self-energy to all orders in the interaction, but with the re-
-100 -80 -60 -40 20 0 striction that at the intermediate stages there are always just
@ (MeV) three lines. For this reason it was coined the “Faddeev”
approximation in[29]. Diagrams with more than two holes
FIG. 2. Values of the HF energie®) for w=—110, —70, and one particle at a time are neglected. Those with only one
—40, —20, and—5 MeV are plotted for various shells:s1/2)  line as an intermediate stepustbe rejected, because other-
(circles, 1p(3/2) (squarey 1p(1/2) (diamondy, and d(5/2) (iri-  wise the self-energy is no longer irreducile3,14). As dis-
angles. Intersection of the interpolated curves with the dotted linecussed in more detail if15,28,29, this Faddeev approxima-
yields the self-consistent solutian=¢"""(w) of the HF energies.  tion for the three propagating lines corresponds to a full
diagonalization of the interaction within the 2p1h and 2hlp
et (0)=T,+3"(w) model spaces. This is what is usually called the 2(2Hip
Tamm-Dancoff approximation. The diagonalization yields
the eigenvalues”, numbered by the upper index With
the corresponding eigenvectdsng,,, in which the indices
I, m, andn denote the particle and hole quantum numbers,
the propagation of the three interacting lines in the self-
energy diagrams, Fig. 1, is then represented by the irreduc-
ible propagatof15]

£"(w) (MeV)

-60

= 10220+ ,+3)+ ;F Gayayw+ehh).

8

The kinetic energyl , is calculated for the basis of harmonic
oscillator states#Q= 14 MeV), using the same basis in

which also the Bethe-Goldstone equation was solved. The o b’ b?
sum in(8) runs over all states below the Fermi level and the len_pqs(w)zz ””“_PSS (9)
’ y W—w

self-consistency relation = sZF(w) should be imposed. The

energy dependence in the range of energies around the Fer[ﬂHe contribution of the complete diagrams to the irreducible

level is very smooth, so the self-consistent solutiong&f % . L . :
can be obtained by interpolation, as shown in Fig. 2. If theself—energyz is obtained by sandwiching this expression

self-energyS* is restricted to the HF term only, the slope of witg' the G-matrix interactions at the beginning and at the
the curves at the crossing points in Fig. 2 now causes §no-

reduction of pole strengtt¥) already in the HF approxima- o

tion. In the present calculation this reduction is 5-7 %. It 3% (0)=3"5(w)+ X 3G umnRmnipgs @) 3Gpggs-
means that the short-range correlations treated in Brueckner- Imn:pgs

Hartree-Fock approximation give rise to a high-enetayd (10
momentum tail of the spectral function which is of about
this magnitude, and is invisible in the low-energy spectra
This result is consistent with the numbers obtained in th
direct calculation of(26], where the focus is on the high-
momentum part of the spectral function.

In principle the calculation of the eigenvalues and eigen-
vectors of the Hamiltonian within the 2p1h and 2h1p spaces,
Efeading toR (9), should be performed with the energy-
dependentG-matrix elements and single-particle energies.
This is a cumbersome procedure and in fact unnecessary for
practical purposes. A simpler procedure is justified by the
B. Long-range correlations included by 2p1h TDA self-energy  fo|lowing two observations. First, the dependence of the

The fragmentation of particle removal strength over sev-G matrix and the HF energies is weak and smooth as com-
eral states in the low-energy domain is mainly caused by thpared to the pole structure & (9). So a large amount of
mixing of the one-hole with two-hole—one-partic{ghlp computational effort may be saved by calculating these poles
configurations. This may be described by including contribu-and eigenvectors i®) with a fixed “starting energy” for the
tions depicted on the right in Fig. 1 to the self-enekgy. In G matrix, for which a value of-40 MeV was taken as a
the simplest diagram of second order in the interaction, onsuitable average for a 2hlp state. For the 2plh states one
has just three noninteracting lines as the intermediate stageould prefer a higher starting energy, but these states are
That approximation was employed [ii]. If no further inter-  less important for the description of the experimentally mea-
action between the three lines is included, one neglects sured hole spectral function. The second observation is that
possible formation of intermediate collective excitations, i.e.the calculation of the self-energy and the procedure of solv-
of typical particle-plus-phonon states. [I27] this formation  ing the Dyson equation become effectively decoupled when
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TABLE I. Shell model space# for 10, in which the self- TABLE II. Influence of the energy dependence of the Hartree-
energies(10) are calculated. The listed single-particle energies ard=ock energies in the calculation of one-proton removal or addition
obtained by the procedure sketched in Fig. 2 and further discussestrengths for*é0O. Listed are the proton removal strengths summed

at the end of Sec. Il B. over all final statesthole), as a fraction of the values for the
independent-particle shell model and the same for the proton-

Shell Proton energyMeV) Neutron energyMeV) addition strength(particle). Also the strength for the single state
with largest spectroscopic fact@main peak is given.

1s3 -35.0 —40.0 gestsp P main peakis g

3

1p2 —-185 —-21.8 Energy dependent"* Energy independent™*

1ps3 —-121 —15.7 Shell Hole Particle Main peak Hole Particle Main peak

1d3 -0.6 -4.1 -

1d3 4.4 0.9 1d3 0.035 0.914 0.82  0.037 0.963 0.87

2si —01 —33 1d3 0.034 0.913 0.86 0.037 0.963 0.91

172 17.4 14.0 1p§ 0.837 0.094 0.77 0.903 0.097 0.83

1f3 235 202 1pl§ 0.879 0.052 0.76 0.945 0.055 0.82

2p3 16.0 12.4 1s; 0.880 0.043 — 0.954 0.046 —

2p3 17.7 14.3

ated by the Lanczo@BAGEL) [8] method. In this method,
the condition is imposed that, for the shells around the Fermﬂhe Dyson equation is written as a matrix equation' within
level, the calculated quasiparticle energies must corresponfle space composed of the one-hole state and the 2h1p states.
to the experimental ones. The method adopted here is tphe most important eigenvectors are then filtered out by the
calculate the eigenvalues” and eigenvectorbjy,, with the | anczos method. A self-consistent calculation of the one-
single-particle energie®) and G= —40 MeV). Next, the  pody propagator for the tin isotopes with a pairing force and
Dyson equation(3) is solved with the self-energie€l0) a 2p1h TDA self-energy is given if80].
within the model space of four harmonic oscillator major As a consequence of the lack of self-consistency, elemen-

shells. If Fhe energies of the.main guasiparticle peaks aroungry sum rules may be violated. For a given orbit, the sum of
the Fermi level differ appreciably from the experimental Val'all removal and addition spectroscopic factors, i.e., of all

ues, the corresponding _smgle-part!cle ener@;‘f(w) IS” " residues of the corresponding Green'’s functions, must be
shifted by a constant, which has no influence on the der'vaanity In the present case, however, this sum is already

tive in Fig. 2, and the whole procedure s repeated. As maller in HF approximation. As a consequence of the en-

result the single-particle values of Table | were obtained. No rav dependence of the matrix. the strenath at very hiah
many iterations are needed because the adjustments argdy dep ' 9 y g

small. Moreover, high precision at this point is not meaning-energ'ﬁS dgel tq sho;t-Lange corrtlala'gons IS rk\‘lddlenl.(Scf) o l?s'
ful in view of the various approximations and slight incon- sess the violation of the sum rule due to the lack of sefl-

sistencies that are still inherent in the method and which ar§ONSistency, we have also performed a calculation without
shortly addressed in the next section. any energy dependence in the HF part. In that case the vio-

lation appeared to be only of the order of 0

C. Self-consistency and sum rule check

. . o IIl. HOLE SPECTRAL FUNCTIONS: RESULTS
Besides the use of a fixad value for theG-matrix inter-

action in the calculation of the 2p1lh and 2hlp amplitudes, With the self-energie&l0), constructed with th€& matrix
there is a more important problem if one wishes to solve thef the Bonn€ potential within the model space of four ma-
Dyson equation with a self-consistent self-energy. Thigor oscillator shells, the Dyson equatid® may be solved
arises as soon as the 2plh propagator in Fig. 1 is no longand the spectroscopic facto®) obtained. These are hereby
restricted to its Faddee{¢TDA) form, but consists of dia- computed not only for the removal of a nucleon, but for
grams that involve “dressed” nucleons, i.e., nucleons fully energies above the Fermi level they refer to the addition of a
interacting with all other nucleons. These dressed nucleonsucleon. The gross features of the spectroscopic strengths as
are then described with a fragmented one-body propagata function of energy are the same as in earlier calculations
and no longer with the single-pole propagator of Ef).  [5,7]. For orbits around the Fermi level, there is one solution
Now the self-energy(10) depends on the solution of the with a large spectroscopic factor, called the quasiparticle
Dyson equation in which it appears. The use of an iterativestate. The other solutions with small spectroscopic factors
scheme, where the propagator of time-(1)th step is used as scatter over a wide energy range of several tens of MeV. The
input for the calculation of the self-energy in ti¢h step  main difference between the present and earlier calculations
becomes very cumbersome, because in each step the numligthat the sum of the spectroscopic factors for removal of a
of poles increases and thereby the complexity of the the exparticle from a certain orbit plus that for addition of a par-
pressions for the self-energy. The self-consistency can onlicle in that same orbit add up to only about 93% of the
be studied for simple approximations of the self-energy, e.g.independent-particle shell model value. This is illustrated in
without further interaction between the three lines in Fig. 1.Table Il. The missing amount, about 7%, which is a conse-
This has been applied by Van Negk, who represented the quence of the energy dependence of the Hartree-Rd€k
propagators in a limited set of energy bins. A different ap-energies(8), must be ascribed to orbits outside the model
proach to reach a certain self-consistency is the basis genepace. Table Il illustrates that this energy dependence of the
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1.0 —— —— s 10 energies, because the discrepancy between calculations and
08| calc. =0 I exp. 1=0 {08 data is less for the integrated strength over the whole energy
gi ] 1 ] gi range up to 40 MeV. The daf&1] gave 4.30 fol=1 and
oz b Hﬂ ] 1oz 0.254 forl =2 as compared to 4.78 and 0.261 for the calcu-
0.0 —LL ill R e e Y lations. The calculated spectral function flor2 in Fig. 3
—.;‘ sor =17 1=1 730 agrees rather nicely with the data, as its nonzero value is
20 T 129 entirely due to correlations. Also for these orbits a larger role
3_1.0 - H T H 110 of collectivity at low energy would give a slight further im-
D 00 e TP L R 0.0 provement, viz. in this case a stronger concentration in the
010 ¥ =2 7 (=2 7010 lowest (collective) state would be achieved.
0.05 - T+ 4 0.05
0.00 el MTO“ e L I LT IV. SUMMARY AND CONCLUSIONS
E, (MeV) E,, (MeV)

A method is proposed and applied to the nuclé®® to
include the effect of both short- and long-range correlations
in the calculation of the one-proton removal amplitudes by
taking into account the energy dependence ofGhmatrix.

Due to this energy dependence an extra depletion of the one-
proton removal strength by somewhat less than 10% is
found. The size of this effect is in agreement with a calcula-
HF energies reduces all parts of the strength by roughly théion of high-momentum components #30 [26]. The frag-
same factor. mentation by long-range correlations is described by the cou-

A more detailed comparison with the spectroscopicpling to the 2h1p and 2p1h propagator in the Tamm-Dancoff
strength deduced frome(e’p) data[31] is made in Fig. 3. approximation. The obtained fragmentation is too small for
This figure clearly shows that the calculated spectroscopi¢he |=1 strength which signals that not yet all the relevant
factors for the lowesg™ and 3~ states (=1) are still too  |ow-energy dynamics is adequately incorporated. This was to
large by about 1520 % of the independent-particle shell be expected in view of the complicated excitation spectrum
model values. This discrepancy would have been 7% largesf the initial nucleus ¥%0). The totall =2 hole strength in
when the energy dependence of Bamatrix, simulating the  the experimentally explored energy range compares well
effect of short-range correlations, had been neglected. with the data. The fragmentation of the deep-lyirg0 hole

One may think of severalpartia) explanations for the state probably requires a continuum description of the final
remaining discrepancy. It could be that short-range correlanucleus, as its energy spectrum peaks well above the two-
tions are not sufficiently dealt with by the present approachpucleon emission threshold.

However, their effect in the present work agrees with more The calculations might be improved using a larger model
direct calculationd12,2¢. In [11] it was claimed that the space for the long-range correlations. Also a Faddeev calcu-
quasihole peak is reduced by another 10% when the centelation in full space would be interesting. Extensions of the
of-mass motion is treated properly. This result seems to be iFaddeev approximation, to incorporate RPA-lilkkeckward
contradiction with[32], in which it is argued that the spuri- going) diagrams would be interesting too, but it is as yet
osity of the s state in%0 actually leads to an enhancement ynclear how that may be accomplishiglb]. A point to be

of the spectroscopic factors for the Bhells. Further work investigated further is the effect of the center-of-mass mo-
on this subject should clarify this issue. tion, which might be as large as 10%, but for which seem-

A more likely shortcoming is that the treatment of long- ingly contradictory statements have been mgtig37.
range correlations is still not quite adequate. Figure 3 shows

that the fragmentation of tHe=0 strength as well as the side
peaks forl=1 are underestimated by the calculations. It is
not easy, however, to find a better, numerically still tractable,
approximation for the self-enerdyl5]. The search for such Part of this work was supported by the U.S. National Sci-
an approximation should focus on complex structure at lonence Foundation under Grant No. 9307484.

FIG. 3. The calculated one-proton removal strength as a func
tion of the “missing energy’E,,= EA~1—EA for 60 for different
| values (weighted with a factor R,+1) is compared with the
measured one-hole spectral function6® taken from[31].
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