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An efficient inversion scheme is given to derive the local currents in a superconductor from thez component
of the magnetic field measured above its surface, as is done using magneto-optical indicators. The method
works for samples of arbitrary thickness provided that the current vector has onlyx andy components. Data
storage is much lower and convergence much faster than in previously reported schemes. The influence of the
distance of observation and of the sample aspect ratio on the measured fieldHz is investigated. The current
calculated from the magneto-optical observation of a real sample~a Bi2Sr2CaCu2O8 single crystal! is in good
agreement with the value measured directly by means of torque magnetometry.@S0163-1829~96!07534-0#

I. INTRODUCTION

The current distribution in type-II superconductors of
various shapes in a magnetic field has been the subject of
many theoretical papers. For example the shielding currents
for the strip geometry were considered by Brandtet al.1 and
for a disk by Frankel2 and Brandt3 while also Zeldovet al.4

considered this problem. The flux penetration process was
considered by Fedorovet al.5 and for rectangular samples by
Brandt.6

Magneto-optical observations of superconductors give de-
tailed information on thez component of the local magnetic
field and for this reason the magneto-optical technique has
become increasingly popular~thez component is defined by
the normal to the plane of the magneto-optical detector!. It is
not widely realized that the magneto-optical technique can
also yield accurate values for the local current densities and
for their relaxation in time. An attempt to determine the cur-
rents in a disk-shaped sample from magneto-optical observa-
tions was made by Theusset al.,7 who used adjustable cur-
rents through a set of concentric conducting rings to fit
calculatedHz values to measured ones. Clearly, in this case
the geometry of the current pattern is fixed from the outset.
This is a severe disadvantage, e.g., for samples with un-
known defects.8 A method which finds not only the currents,
but also the current flow pattern is given by Brandt,9 while a
similar method was later given by Xinget al.10 Both meth-
ods work for infinitely thin samples only and the absolute
calibration of the currents is difficult due to the fast change
with distance of the magnetic field above such samples and
the fact that in real measurements this distance is not known
precisely. In the present paper this problem is solved by tak-
ing the thickness of the samples explicitly into account. We
consider a sample which is a rectangular cylinder of arbitrary
cross section and arbitrary height~see Fig. 1! which we will
designate for simplicity henceforth as a ‘‘flat’’ sample. In the
next section a relation between the currents in such a sample
and thez component of the magnetic field,Hz , is derived. In
Sec. III this relation is numerically inverted by making use of
the fact thatHz is measured at discrete positions. In Sec. IV

we show that the currents in the sample can be found even if
the distance between the detector and the sample is not
known accurately. In Sec. V our formalism is applied to
measurements on a real sample~a Bi2Sr2CaCu2O8 single
crystal! and the results are compared to macroscopic mea-
surements of the current.

II. FINDING THE CURRENTS FROM THE FIELD Hz :
ANALYTICAL FORMALISM

In a typical magneto-optical experiment, shown schemati-
cally in Fig. 1 and to be discussed in more detail in Sec. III,
thez component of the magnetic field,Hz

meas is measured at
a distanced above a superconducting sample. The purpose
of this paper is to find the currents flowing in the sample
from the measuredHz

meas(x,y,d) values. If the measurements
are performed in an external fieldHz

ext then

HW meas5HW ext1HW self, ~1!

FIG. 1. Schematic representation of the measurement layout.
The detector plane indicates the position of the magneto-optical
layer. The distances and vectors are explained in the text.
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where the self-fieldHW self is the field generated by the currents
in the sample. In an experiment the external field component
Hz
ext is known,Hz

meas, is measured, and thez component of

the self-field,Hz
self, can thus be found using Eq.~1!.

To derive an algorithm for the calculation of the currents
in the sample fromHz

self, we first prove in this section that
any two-dimensional~2D! current flow can be decomposed
into a spatial distribution of magnetic dipole moments of unit
strength. For simplicity of notation the self-field will from
now on be designated byHW in this and in the next section.
The self-fieldHW at any positionrW induced by an electrical
current densityjW(sW) in the sample is given by the Biot-Savart
formula11

HW ~rW !5
1

4pEV jW~sW !3
rW2sW

urW2sWu3
d3s, ~2!

where the integral is over the volume of the sampleV. Since
there are no currents flowing outside the sample, the integral
can of course also be taken over the whole space. For a 2D
current pattern, where the currents are flowing only in the
x and y directions, Brandt9 introduced the scalar fieldg,
defined by

jW~sW ![¹sW3@g~sW !ẑ#. ~3!

The definition in Eq.~3! guarantees that¹• jW50. In fact,g is
defined apart from an integration constant and a gradient
term, which both are chosen to be zero. It is important to
note that contrary to Brandt9 we do not use the concept of
sheet currents; hence in the present work the dimension of
g is @A/m# and in Eq.~2! the current density is also inte-
grated over the thickness of the sample. With the notation
mW [g(sW) ẑ, substitution of Eq.~3! in Eq. ~2! yields

HW ~rW !5
21

4p E
V

rW2sW

urW2sWu3
3~¹sW3mW !d3s

[
21

4p E
V
RW 3~¹sW3mW !d3s. ~4!

The second equality defines the vectorRW , which is used to
simplify the notation. We now use the vector identity

¹sWW~mW •RW !5~mW •¹sW!RW 1~RW •¹sW!mW 1mW 3~¹sW3RW !

1RW 3~¹sW3mW ! ~5!

and note that

E
V
¹sW~mW •RW !d3s5E

S
~mW •RW !nWd2s50W , ~6!

sincemW is zero outside the sample. In addition, using partial
integration, we find

E
V
~RW •¹sW!mW d

3s52E
V
mW ~¹sW•R

W !d3s50W , ~7!

since¹sW•R
W 50, as can be easily verified. For the calculation

of the field at positionsrW outside the sample, the partial in-

tegration is always justified because the numerator inRW is
always positive:rW is always larger thansW if sW is inside the
sample. From explicit calculation one finds

¹sW3RW 50W . ~8!

Substitution of Eq.~6!–~8! into Eq. ~5! gives

E
V
RW 3~¹sW3mW !d3s5E

V
2~mW •¹sW!RW d

3s, ~9!

and using the definition ofRW this may be further evaluated:

~mW •¹sW!RW 5
1

urW2sWu3
~mW •¹sW!~rW2sW !1~rW2sW !~mW •¹sW!

1

urW2sWu3
•

~10!

From the fact thatmW has only a nonzeroz component it
follows that

~mW •¹sW!~rW2sW !5g~sW !ẑ
]

]z
~r z2z!52mW . ~11!

Substitution in Eq.~10!, carrying out the differentiation of
1/urW2sWu3, and substitution of the result in Eq.~9! gives an
expression for*VRW 3(¹sW3mW )d3s. If this is substituted in
Eq. ~4!, one finds

HW ~rW !5
1

4pE 3n̂~mW •n̂!2mW

urW2sWu3
d3s

5
1

4pE g~sW !
3n̂~ ẑ•n̂!2 ẑ

urW2sWu3
d3s ~12!

@with n̂5(rW2sW)/urW2sWu#. This expression gives the field out-
side the sample for any 2D current flowjW(sW)5¹sW3mW with
mW 5g(sW) ẑ.

It is easily verified that forg(sW) ẑ5mW d3(sW), Eq. ~3! yields
the current for the ideal dipole moment at the origin. If
mW 5mW d3(sW) is substituted in Eq.~12!, then it reduces to the
well known12 formula for the field of a dipole momentmW :

HW ~rW !5
1

4p

3r̂ ~mW • r̂ !2mW

r 3
, ~13!

where r̂5rW/urWu. This implies that theHz field of any 2D
current distributionjW(sW) can be expressed in terms of a spa-
tial distribution g(sW) of magnetic dipole moments of unit
strength, the relation betweenjW(sW) andg(sW) being given by
Eq. ~3!.

To proceed with the calculation for this 2D current pattern
we replace the vectorsW by the vector (sW ,z), wherez is the
depth in the sample measured from the top surface; see Fig.
1. Likewise we replace the vectorrW by (rW ,d) whered is the
height above the sample where the magnetic field is mea-
sured. To be able to find the inversion scheme for calculating
the current flowing in the sample from the measured external
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field, one extra assumption is necessary. We take~within the
sample! a current which is uniform over the thickness:jW is
independent ofz, which through Eq.~3! also implies thatg
is independent ofz.

Using this and the new variables, one obtains for samples
of any thicknesst from Eq. ~12!

Hz~rW ,d!5
1

4pESg~sW !E
0

t 2~d1z!22urW 2sW u2

@ urW 2sW u21~d1z!2#5/2
dzd2s,

~14!

where the first integral is over any area containing the sample
surfaceS @sinceg(sW ) is zero outside the sample#. It is this
result which is at the basis of the inversion scheme discussed
in the next section.

The assumptiong(sW ,z)5g(sW ) ~equivalent to a current
which is uniform over the thickness of the sample! is justi-
fied for samples which are thin compared to the supercon-
ducting penetration depthl, i.e., t<l, because in a super-
conductor the current cannot vary over a scale smaller than
l. It is also justified~except, possibly, close to the upper and
lower surfaces! in the other extreme case, a very long sample
with t@w, because in this case there is translational symme-
try alongz. In the intermediate casel,t,w the situation is
more complicated and may lead to az-dependent current
which is, however, still 2D. Forz.t it turns out that this is
not really a problem.

A potential problem is the very strong pinning of vortices
in which case the vortices may not be able to adjust their
curvature~or density! to a changing external field. In such a
case the current can be nonuniform over the thickness of the
sample. For most superconductors this situation does not oc-
cur. In particular even at zero temperature high-Tc supercon-
ductors exhibit quantum creep,13 which allows the vortices to
relax; for these materials we thus expect a current uniform
over the thickness. For further details the reader is referred to
the discussion by Brandt.14

We note that for the case of straight vortices only~large
sample thicknesst), the local vortex density is proportional
to g(sW ). In Sec. III a method is derived to findg(sW ) from
Hz(rW ,d); hence for straight vortices the magneto-optical
measurement can be used to determine the vortex density
directly.

In this section a method was derived to calculate
Hz(rW ,z) from jW(sW ) for flat samples of arbitrary thickness; in
the next section we show that our goal of derivingjW(sW ) from
the measuredHz(rW ,z) values can be reached by discretizing
the spatial variables.

III. FINDING THE CURRENTS FROM THE FIELD Hz :
NUMERICAL INVERSION SCHEME

In a typical magneto-optical experiment, thez component
of the magnetic field,Hz , above a sample is made visible by
means of a magneto-optic~MO! layer parallel to theXY
plane. Such a layer is usually made of materials with a large
Faraday effect, such as EuS, EuSe, EuTe, and iron garnet
films.15 Between this layer and the sample top surface, a
mirror layer is placed. Polarized light reflected by such a

double layer has a polarization vector turned by an angle
proportional to thez component of the local magnetic field in
the layer. After having passed through an analyzer in crossed
position with respect to the polarizer, the intensity of the
reflected light is given by

I5I 0sin
2~gHz!, ~15!

whereg is the product of the thickness of the MO layer and
its Verdet constant.15 The experiment can be done in an im-
aging mode such that after the analyzer an image of the MO
layer is formed on the charge-coupled-device~CCD! chip of
a TV camera. From the intensity values measured by the
CCD camerauHzu as a function of position on the sample can
be obtained by means of Eq.~15!. The sign ofHz is usually
known from the history of the experiment, but can always be
determined experimentally~if necessary! by turning one of
the polarizers.16

To be able to derive an efficient inversion scheme@based
on Eq. ~14!# for the currents in a flat sample from the
magneto-optical data, we discretize the measured
Hz(x,y,d) values. This is a natural procedure since, due to
the construction of CCD cameras, the measured image is
inherently discretized to, e.g., 7683576 so-called pixels. By
image-processing techniques~binning! this number can be
reduced. The number of significant pixels depends very
much on the experiment. For simple current patterns
60360 pixels may be sufficient, while for very complicated
current patterns a maximum resolution of, e.g., 7683576
may be required.

To proceed, we identify the pixels alongx and y by
( i , j ) in the detector. In analogy we also discretize the
g(sW ) function and designate the pixels in the sample by
(k,l ) ~see Fig. 1!. The linear pixel size in the detector and
sample, both alongx andy, is set equal toa ~square pixels!.
In Eq. 14, the integration alongx andy is written explicitly
by replacing d2s by dhdj, while the integral over the
sample is replaced by a sum over all pixels times an integral
over a given pixel~and the sample thickness! to obtain

Hz~ i , j ,d!

5
1

4p(
k,l

g~k,l !E
k21/2

k11/2E
l21/2

l11/2E
0

t

3
2~d1z!22a2~j2 i !22a2~h2 j !2

@~d1z!21a2~j2 i !21a2~h2 j !2#5/2
dzdhdj.

~16!

The g(k,l ) is taken to be constant within one pixel~i.e.,
details in the current distribution can be seen down to the
scale of one pixel, but finer details are lost! and hence is put
in front of the integral. In this case the integral can be carried
out easily using

E E E 2z22x22y2

@z21x21y2#5/2
dzdydx52arctan

xy

zAx21y21z2

1C, ~17!
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whereC is an integration constant. The analytical result is
used in the computer programs to be discussed below. Since
the value of the integral depends only on the distanced and
the pixel sizea, it is fixed once and for all for a given
sample-detector configuration. For fixeda andd, it can be
denoted byM ( i , j ,k,l ), whence Eq.~16! may be written as

Hz~ i , j !5
1

4p(
k,l

M ~ i , j ,k,l !g~k,l !. ~18!

This is a matrix equation of the formh5 Mg from whichg
must be calculated: The currents in the sample can then be
found from g using Eq.~3!. Our problem is thus formally
solved except for the inversion of the matrix equation~18!.

In his 1992 paper,9 by a clever use of physical knowledge
of the problem, Brandt finds an iteration procedure which
yields g. Xing et al.10 either invertM explicitly or use an
ad-hocprocedure17 for solving Eq.~18!. In this iterative pro-
cedureg(k,l ) is continuously adjusted until Eq.~18! yields
the measuredHz( i , j ). For the adjustment ofg(k,l ), it is
assumed that to first order an error inHz at the point (i , j )
can be corrected by adjustingg( i , j ) only. This method
works, but is rather slow. A serious problem for the applica-
tion to real experiments is that in all these methods the
sample thickness is not taken into account. Due to this, the
calculated currents depend very much on the assumed effec-
tive sample-detector distanced, which is not precisely
known.

By contrast to these methods, our algorithm explicitly
takes the sample thicknesst into account and thereby~as will
be shown below in Sec. IV! solves the problem of unknown
distance between sample and detector. Also our method is
more efficient due to the use of the conjugate gradient
method in the iteration procedure and due to our observation
that the matrixM is in fact a Toeplitz block Toeplitz matrix.
This implies that very efficient storage is possible. If the
image containsn2 pixels, thenM hasn4 elements. However,
there are onlyn2 differentelements. If this fact is used,M
requires not more storage space than the original image
Hz(k,l ). Since it is not practical to invertM because it re-
quires too much memory~e.g., for a 3003300 image
1.631010 bytes are needed!, Eq. ~18! is solved iteratively,

using a standard conjugate gradient~CG! method. This
method is applicable becauseM is a symmetric semipositive
definite matrix. Compared to thead-hocmethod of Xing
et al.,17 it decreases the number of iteration steps by at least
a factor of 5. No difference was found between the Fletcher-
Reeves and Polak-Ribiere CG algorithms, indicating that the
problem is well behaved~locally quadratic!. In our algo-
rithm, the number of iteration steps depends only weakly on
the size of the image and the CPU time needed for the com-
putation was found to scale asn4.5; see Fig. 2. The calcula-
tions were done on an IBM SP2/9076 machine, which using
a single processor needed 35 s for a size of 65365 pixels
~see Fig. 2!. An almost linear speedup with the number of
processors is observed and a 6003415 image is inverted in
about 1 h using 32 processors~for detailed discussion see the
separate publication by Spoelder18!.

To test our method, theHz field was calculated by means
of Eq. ~2! for a set of square wire frames in a plane, at equal
spacing, and all carrying the same current. From thisHz
field, using the method described above, we calculated the
currents in the sample which should be equal to the chosen

FIG. 2. Computer time~in CPU seconds! needed on a single
processor or eight processors of an IBM SP2/9076 machine for the
inversion of the matrix equation~18! for square images as a func-
tion of the linear size of the image.

FIG. 3. Verification of the numerical algorithm on a 1013101
image.~a! Hz generated by a set of equidistant wires, each carrying
the same currentj5100, ~b! g image as found from solving Eq.
~18!, ~c! the absolute value of the calculated current~the arrows
indicate the current flow direction!, ~d! cross section of~c! ~but
including the sign of the current! along the linea-a through the
center and parallel to a side, showing that the calculated current
matches very well the input currentj in the wires, and~e! enlarge-
ment of ~d! showing that the maximum error in the current ampli-
tude u j u is about 2% and occurs at the edge only. The dip in the
center is caused by the change of flow direction.
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currents in the wire frames. In Figs. 3~d! and 3~e! the calcu-
lated current is shown along the linea-a through the center
and parallel to a side of the square sample. The input current
has the value 100. Clearly, within the bulk of the sample the
currents are reproduced excellently. There is a small overes-
timation of the edge currents, but the deviation is limited to a
band of a few pixels wide. In the center of the sample the
current changes sign, which explains the dip in the center of
the absolute currentu j u in Fig. 3~e!: We cannot resolve cur-
rents on a scale smaller than one pixel. At this point we
stress that our method is not only faster and more efficient in
memory use than previous ones, but also more general:
Equation~18! holds for samples of arbitrary thickness, while
previous authors9,10,17 considered infinitely thin samples. As
will be seen below, this has the important advantage that it
alleviates the problem of knowing exactly the distance be-
tween sample and detector~magneto-optical layer!.

As a side result of the present work a method is found to
calculateHz from a known current distribution~and hence a
known g! for a plane-parallel sample of arbitrary shape and
thickness. For this purpose Eq.~18! is used without matrix
inversion. As an example, the fieldHz is calculated for a
square sample of several thicknessest but constant width
w. The result forHz at the surface of the sample and along
the line through the center and parallel to a side is presented
in Fig. 4. As expected, for thick samples with small aspect
ratiosw/t the triangular Bean profile is recovered, while for
large aspect ratios the thin film result1 is found. It is interest-
ing to point out that even an aspect ratiow/t'1 ~i.e., the
sample is a cube! is large enough to yield almost the standard
triangular Bean profile found in samples of infinite thickness
~i.e.,w/t→0).

IV. ABSOLUTE CALIBRATION OF THE CURRENT
DENSITY

As stipulated above, if the currents in the sample are to be
determined not only relative to one another, but on an abso-
lute scale~i.e., in A m22) there is a potential difficulty since
the experimental configuration, in particular the sample-
detector distanced, is often not known exactly. Of course,
the distance from the sample can be determined quite accu-

rately whend is large, but this is not useful since it leads to
a great loss of detail in the observations. On the other hand,
when the MO layer is placed directly on the sample, the
effective distance from the sample is not known precisely.
This is partly due to the surface roughness of sample and
sensor and partly due to the thickness of the MO layer itself.
To investigate the effect of the sample-detector distanced,
theHz field of a sample with aspect ratio 1/40 was calculated
as a function ofd. The result is shown in Fig. 5: The plot
shows the value of the magnetic field on the fourfold sym-
metry axis of the sample as a function of distanced from the
surface. The images 5~A!–5~H! show uHzu in the plane par-
allel to the sample surface at the distances indicated by the
corresponding characters in the top graph. From the figure it
is clear that ford/t*0.1 the field is very much dependent
upon distance, while ford/t!0.1 the field is constant.
Clearly, quantitative measurements can easily be made if it is
known thatd/t!0.1; it is then not even necessary to know
the value ofd. Even for very thin single crystals this condi-
tion can be easily satisfied; for thin film samples, however, it
may be more difficult. Incidentally, from the images in Fig. 5
it is clear that the magneto-optical images themselves indi-

FIG. 4. Field profiles as a function of the sample’s aspect ratio
w/t, wherew is the sample width andt is its thickness, as indi-
cated in the inset. The profiles are taken along the line L~inset! on
the surface of the sample. The sample is 81381 pixels; the thick-
ness is varied. All curves are normalized with respect to their maxi-
mum to clearly show the change in shape.

FIG. 5. Influence of the distanced between sample surface and
detector plane on the magneto-optical image andHz values. The
graph showsHz as a function of the ratio distance/thickness
(5d/t) on a line perpendicular to the sample and trough the center.
The sample is 81381 pixels with a thickness of 2 pixels; the dis-
tance is varied. The images, showinguHzu for selected distances,
are also shown. If the distance is kept fixed and the thickness is
varied, very similar~but not identical! results are found.
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cate whether or not the conditiond/t!0.1 applies: If not,
then the image is blurred@images 5~E!–5~H!#. We note that
our method of findingjW(sW) from HW z(x,y,d) only works so
well because the sample thickness is taken into account ex-
plicitly in Eq. ~16!. This is a very important improvement
over the older schemes.9,10

V. APPLICATION TO A REAL SAMPLE

To demonstrate the value of our inversion scheme, an
experiment on a single crystal of the high-Tc superconductor
Bi 2Sr2CaCu2O8 was performed. Directly on top of the crys-
tal a magneto-optical indicator was placed consisting of a
glass substrate, an EuSe film of 250 nm, and an aluminum
mirror layer of 100 nm thickness. This assembly was
mounted in our home-built cryogenic polarization
microscope19 which is in the variable-temperature insert of
an Oxford Instruments 7 T magnet system. The image is
recorded by a low-light level CCD camera~Tokyo Electronic
Industry CS8320C! connected to a videocassette recorder
~Sony EVO-9650P!. Images are grabbed and digitized using
a Videopix frame grabber in a SUN workstation.

In the experiment the crystal was cooled in zero field from
above its critical temperature down to 4.2 K. Subsequently
the external field was raised to 2 T, which resulted in mag-
netic flux entering the superconductor and in shielding cur-
rents being established. As a consequence the local field is
still zero in the center of the sample~there the self-field due
to the shielding currents cancels the external field!, while at
its edges it is higher than the external field~the field of the
shielding currents is parallel to the external field there!.

In Fig. 6~a! the resulting magneto-optical image is shown.
The vertical curved linekk is a scratch in the MO layer and
is of no concern. The dark region in the center is the field-
free region, while brighter regions correspond to higher local
fields. From such an image first the local fieldHz

meas is de-
termined and then the self-fieldHz

self is calculated as the dif-
ference of the local field and the applied external fieldHz

ext

see Eq.~1!. From the self-field, the currents are determined
using the algorithm described in the previous section. To find
the local field from the magneto-optical intensity image, we

first correct for possible uneven illumination. For this pur-
pose a so-called illumination image of the sample is taken
with uncrossed polarizers at a temperature aboveTc . Ideally,
under these circumstances the image should be uniform in
intensity. After substraction of an offset of both images~nec-
essary due to the electronics!, any raw magneto-optical im-
age@such as Fig. 6~a!# is divided by the illumination image
to correct for uneven illumination.

To be able to determine the local field, a relation between
intensity I and fieldHz is needed. Since the Verdet constant
can be field dependent, the functional dependencef in

I5b f ~Hz
2! ~19!

is determined in a separate experiment for each MO layer
and hence is known. The proportionality constantb depends
among others upon the intensity of illumination. It can be
found if the magnetic field at one position in the image is
known. Generally, at large lateral distance from the sample
the local field is equal to the known external field. Using the
measured intensity at the same position,b can be found and
hence Eq.~19! may be used to calculate the local field at any
position in the image. During one experimental run the co-
efficientb is, in principle, the same for all images; hence the
procedure just described can also be used for images in zero
external field, wheref (Hz50)50 and hence direct calibra-
tion is impossible. Depending on the camera used, some-
timesb is slightly dependent upon the total intensity of the
image. In such cases we use images at higher fields, but with
the same total intensity to calibrateb for images around zero
field. In this way, the local field is determined except for its
sign, because the functionf in Eq. ~19! depends quadrati-
cally onHz . In the actual magneto-optical experiments this
sign, however,can be determined by rotating the analyzer
since the Faraday effect results in a clockwise~anticlock-
wise! rotation of the polarization vector for positive~nega-
tive! fields. Mostly, however, the sign of the local field is
known from the history of the experiment. In the example of
Fig. 6~a!, the local field has the same sign everywhere. By
substraction of the external field from the local field one
easily finds the self-field of the sample. In Fig. 6~b! the nega-

FIG. 6. Magneto-optical measurement on
a Bi2 Sr2CaCu2O8crystal of 1.1330.67
30.025 mm3. ~a! Intensity image~the line
kk is a scratch on the magneto-optical film!,
~b! the z component of the self-field,Hz

self ,
and ~c! the local currents as calculated from
the algorithm discussed in the text. The grey
scale indicates the absolute value of the cur-
rent, and the arrows indicate the local current
flow direction; the length of the arrows is pro-
portional to u j u. ~d! The contour lines of the
g image, which are the current-flow lines.
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tive of the self-field is shown; i.e., black corresponds to zero
self-field, while increasing brightness corresponds to increas-
ingly negative values of the self-field. Using the procedure
described in the previous section, the currents in the sample
can be determined. Optionally the number of pixels may first
be reduced to decrease the necessary calculation time; how-
ever, this also reduces the detail in the calculated current
pattern. The result for 5763368 pixels~calculated using the
IBM SP2/9076! is shown in Fig. 6~c!. It is not our purpose to
discuss the current pattern here. However, we note that the
current is strongest along the edges of the sample and
quickly falls off towards its center in agreement with calcu-
lations for thin samples.1 The current vectors drawn on a
rectangular grid in Fig. 6~c! easily yield a wrong visual im-
pression of the current flow pattern. For this reason in Fig.
6~d! the contour lines ofg, which are also the current-flow
lines @see Eq.~3!#, are shown.

The determination of local currents as described above is
quantitative. The currents can be calculated with an esti-
mated absolute accuracy of about 15%, mainly due to uncer-
tainties in the calibration of the local field; the relative accu-
racy is, of course, much higher. To verify the calculation of
the local currents, we also performed bulk magnetic moment
measurements on the sample shown in Fig. 6~a!, using a
sensitive capacitance torque magnetometer.20 If it is assumed
that the current densityj s is uniform, a valuej s5731010

A m22 is calculated from these measurements. This is in-
deed of the same order of magnitude as the currents deter-
mined magneto-optically and shown in Fig. 6~c!, which have
a maximum value aroundj s51.231011 A m22. Of course
we know from Fig. 6~c! that the current distribution is not
uniform. It is therefore not surprising that the average value
determined from magnetic moment measurements is lower
than the maximum local current.

VI. CONCLUSION

For a sample which is a rectangular cylinder of arbitrary
cross section and arbitrary height, the currents flowing in it
may be determined from magneto-optical measurements of
the localHz field, provided that the current vector has noz
component. An fast algorithm with limited storage require-
ments and based on the conjugate gradient method was de-
signed for this inversion and tested on a typical

Bi 2Sr2CaCu2O8 single crystal. The currents found from this
algorithm agree well with those determined from bulk mag-
netometry. The same ideas can also be used for model cal-
culations of the field generated by a 2D current pattern in
plane-parallel arbitrarily shaped samples. With such simula-
tions it is possible to calculate the magneto-optical image as
a function of distance from the sample. By comparison with
the experiment it is possible to estimate whether the detector
layer is in close contact with the sample or not.

Although we have discussed only magneto-optical mea-
surements ofHz , the method discussed in this paper is di-
rectly applicable to local-probe Hall measurements,21 where
an array of Hall probes is placed just above the sample and
the local magnetic field is deduced from the Hall voltage in
each individual sensor, since also with this method the local
field can be measured at a large number of positions. With
existing technology this number is, however, much small
than the number of pixels in magneto-optical experiments.

Further improvements of the speed of the inversion algo-
rithm might be found using a generalization of the Levinson
algorithm for solvinga5 Mx , whereM is a Toeplitz matrix.

The absolute accuracy of the magneto-optical method
could be increased significantly if at~at least! one position
the local field could be more accurately determined, e.g., by
a Hall probe, while the spatial resolution of the Hall probe
technique would benefit from combination with the magneto-
optical one. Another possibility would be to measure simul-
taneously the magneto-optical response and the total mag-
netic moment of the sample. The experimental difficulties
associated with such a combination are not small but worth
the effort.
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