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Percolative vortex motion in high-temperature superconductors
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A model for percolative vortex motion in inhomogeneous superconductors is introduced. Near the percola-
tion threshold the linear, frequency-dependent electronic conductivity is found to obey scaling laws. The
percolation model for vortex motion provides an alternative explanation to the experimental finding of scaling
in the electronic conductivity that is conventionally attributed to a vortex glass transition. The critical expo-
nents derived from simulations of bond percolation on three-dimensional lattices are in satisfying agreement
with critical exponents obtained from the scaling analysis of the conductivity of,€Bg0-_ 5 twinned single
crystals and ceramics. The electronic conductivity is calculated in an effective medium approximation and is
compared to experimental data.

[. INTRODUCTION current-voltage characteristic at low currettsising the lin-
ear current voltage characteristic Kesal® and Geshken-

In high-temperature superconductors large thermal flucheinet al’® developed a simple theory for the ac response of
tuations due to the high operating temperatures and smafl superconducting sample that is described as a normal con-
pinning energies lead to considerable vortex motion even aductor with a frequency-independent resistivity of thermally
small driving currents. The vortex motion in the linear re- activated form(TAFF). This theory was extended by Coffey
gime is most favorably investigated by measurements of thend Cleni and Brandt to include pinning effects, flux flow,
frequency-dependent electronic conductivityw). Accord- ~ and losses due to the normal fluid component.
ing to theoretical considerationg,in samples with strong The extended TAFF theory was successfully used to de-
random pinning disorder three regions of a qualitatively dif-scribe surface impedance measurements in the GHz régjion.
ferent vortex response are expected in the vortex glass phagk semiquantitative agreement was found for ac susceptibility
the vortex liquid phase, and near the vortex glass transitiomeasurements on Bsr,CaCu,0g single crystal§’ and for
temperaturd . At low temperatures the vortex system is in Vibrating reed measurements on Y3075 single crys-

a glassy phase and a weak frequency dependence of the véals and films® Reedet al® and Kazler et al®*® showed

tex response to ac currents is foutftiNear the transition that the extended TAFF model was in quantitative agreement
between the glassy and the liquid vortex phases the elewith the frequency-dependent ac susceptibility of Y-1:2:3
tronic conductivity obeys scaling lavé and far above the single crystals and films nedy,, whereas the ac susceptibil-
transition the motion of the vortex liquid is diffusive’ ity at lower temperatures was in agreement with the exist-

The existence of a scaling regime for the linear,ence of critical fluctuations around a vortex glass transition
frequency-dependent conductiity® o(w) and the nonlin-  temperatureT .
ear dc conductivity*? o(j) is firmly established. Though In this work simple expressions for the electronic conduc-
these experimental findings in transport quantities suppofivity are derived in an effective medium approximation
the existence of a vortex glass transition, measurements 6EMA). The EMA provides the frequency-dependent con-
thermodynamic variables have not shown an indication of gluctivity far from the percolation transition. Furthermore, the
phase transition. Moreover, recent theoretical investigationEMA predictions are a first approximation for the crossover
even show the absence of a vortex glass transition in moreegion from the scaling regime near the percolation threshold
realistic models of three-dimension&@D) superconductors to the mean field regime far from threshold.
with a finite screening length. Thus the evidence for the
existence of a vortex glass transition is still doubtful. [l. CALCULATION OF THE ELECTRONIC

In this work an alternative explanation to the vortex glass CONDUCTIVITY IN A PERCOLATION MODEL
theory, i.e., a model of percolative vortex motion in inhomo-
geneous superconductors is proposed. The model of percola-
tive vortex motion accounts for the existence of a critical Different pinning mechanisms are usually present in high-
scaling regime in transport quantities. In this model the pertemperature superconductors. Especially at high tempera-
colation transition corresponds to the vortex glass transitiotures pinning by twin planes has proved to be strong for
derived from scaling analyses. The limiting forms of the magnetic fields tilted by an angke 10°—-20° with respect to
scaling functions are identical to the predictions of vortexthec axis of the superconductdt.lt is expected that pinning
glass theory. by different extended defects, e.g., grain boundaries and in-

Besides the vortex glass theory a variety of phenomencelusions, is equally well important. The intrinsic pinning of
logical models has been developed for the thermally activortices by the layered crystal structure seems to be relevant
vated flux motion. The thermally activated hopping of vortexonly at rather small angles:2° between the Cu@ planes
bundles out of their pinning potentials results in a linearand the magnetic fieltP In single crystals as well as in thin

A. General model
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films a further pinning mechanism, i.e., pinning of vortices p 9B
by point defects, is important. Resistive measurements of the —V26B=—,
range of the pinning potential in Y-1:2:3 thin films yielded Mo ot
very small values-5-10 A consistent with core pinning of with the averaged vortex diffusivitp = p/ . Therefore the
vortices by point defect&. Therefore inhomogeneities even glectronic conductivityr=p ! is related to the vortex dif-
on a small length scale can lead to deviations from a homofysivity by

geneous vortex flow. Since the material processing of the

high-temperature superconducting oxides is quite complex, o=[uoD] *=[ oDy F(p,h)] . (4)
inhomogeneous distributions of material defects can be %= quati @i lid if | fluid | b lected
pected. Interlaced regions of different pinning potential quation(=) 1S valid I hormay fiuid 1osses can be neglected.

strength that consist of regions of different point defect den- The fu_ncUonF_(p,h) can b_e de_termmed _numerl_cally orin

sity or of regions with extended pinning centers form a Ioer_an effective medium approximation that will be d|scusse(_j in

colation network for vortex motiof?-23 Sec.lID. In Sec. I_I C scaling laws near the percqlatlon
In the following the vortex motion in an inhomogeneousthreShOId are investigated. In the next section expressions for

superconductor will be described in a bond percolationthe vortex diffusivitiesDyg and Dy, in the pinned and un-

model on a lattice. Consider randomly distributed regionsomned vortex regions are derived.
with different pinning strengths. At high temperatures vorti-
ces in the weak pinning regions are unpinned, whereas vor-
tices in strong pinning regions are already pinned. Since the The vortex diffusivities in the vortex glass and vortex
local pinning potential is a function of temperatufeand  liquid phases are derived from the averaged equation of vor-
magnetic fieldB, the extensions of these regions changetex motion?®
upon variation of temperature and field. Lgtdenote the R
concentration of regions with an unpinned flux line lattice n+BuXB=]XB+F,, (5)
with p—0 for T—0 andp—1 for T—T.. For convenience . -
the pinned and unpinned vortex lattices will be called vortexwherev denotes the vortex velocity;, the pinning force,
glass and vortex liquid, respectively. In this context vortexandB a unit vector along the direction of the magnetic field.
glass means a pinned, disordered vortex lattice. They is the vortex viscosity an@ the coefficient of the Magnus
frequency-dependent vortex diffusivities in the zero currenforce. If |fp is known, Eq.(5) can be solved for and the
limit are denoted byDyg(T,B, ) andDy, (T,B,w) in the  itysivity is then obtained fromE=Bxv and Maxwell's
glass and liquid phases, respectively. equations.

The macroscopic vortex diffusivit® (T,B, w) is obtained
after averaging the local diffusivities over the sample vol- 1. Unpinned flux line lattice
ume. The averaging procedure will be performed in a bond . o
percolation model which represents the superconductor by a !N the vortex liquid phase the pinning forég, leads to a
regular lattice. A bond of this lattice lying with probability '€nermalization of the viscous term but not of the Magnus

p in the vortex liquid phase is assigned a diffusividy, , force term in E_q.(S). T_hg moving flux ”T‘e Iattiqe experi-
whereas it has a diffusivitDyg, if it is with probability ences an additional friction due to the interaction with the

g=1-p, in the vortex glass phase. The averaged vortesPinning sites’i.e.,F,= — »*v with an effective vortex vis-
diffusivity is?* cosity * «expU/kgT). U is a typical activation barrier for

vortex hopping. Introducing;= 7+ »* one obtains the vor-
D=Dy, F(p,h), (1)  tex velocityv from Eq.(5),

(©)

B. Estimation of vortex diffusivities

whereF denotes an unkown function atd=D, /Dy, the - B . . .

diffusivity ratio. ) v= e (7i xXB+Bj), (6)
Under the application of a curreftthe vortices start to

move and generate an electric figid=p(T,b,w)j. p de-

and the electric field

notes the averaged electronic resistivity anthe local mag- ) B2 .
netic field averaged over a few vortex spacings. With the E== 2("7}j +BBXj). (7
induction law VXE=—db/dt and Ampee’s law B
VX b=pu,j a nonlinear diffusion equation From the linearized diffusion equatiof®) one obtains the
vortex liquid diffusivity
X b —
VX(pVXb)=—po— 2 7B
ot VL:T' (8)
Ho( 7"+ B%)
is obtained. In the following the experimental situation is
considered in which a small frequency-dependent magnetic 2. Pinned flux line lattice
field 5Bcexp(wt) is superimposed on a large dc fiddi.e., In the vortex glass phase the vortices perform small oscil-

b=B+ B. Linearization of Eq(2) leads to a linear diffu- lations about their equilibrium sites under the influence of a
sion equation for the disturbarfcesB, small driving currenu'»oceprwt). Assuming a harmonic pin-
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ning potentia| at small vortex disp|acemem_i§he pinning Tg. obtained from Scali.n.g an.alyses of the electronic conduc-
force is given bylfp:_al] with the Labusch paramefdr tivity. Near the transition it is plausible to assundep

15 g ru wit MeEr T T,
= - g - - . .
a. Sinceuxexp(et) andv =iwu, the vortex glass diffusiv For a further discussion of the scaling functions the con-

ity is given by ductivity ratio h is expressed by the vortex diffusivities,
o Eq. (8) and Eq.(9), derived in the previous section. The
n+ — | B2 Magnus force term is neglected, i.e8=0. Sincé
Doz lo 9 7 expUlkgT)>7  one  obtains Dy =B pon*
Ve a\® ] xexp(—UlkgT). For not too large frequenciesr, <1, with
Ko ( n+ o +B 7,= nl @, one obtains from E¢(9) a purely inductive vortex

glass diffusivityDVG:iwxﬁ. \. denotes the Campbell pen-
Brandt proposed to include thermally activated vortex hop-etration dept® N.=(B%umoa)Y®2 In YBa,Cus0,_;
ping out of the pinning potential by substituting by the  samples the relaxation time, is estimated tor,~10"° s
Fourier transform ofe. If an exponential decay of the La- for single crystal®’ and thin films®®
busch parameter is assumedt) = aexp(-t/ry), « has to be Inserting the diffusivity ratio h=iw/w, with
substituted bi,/, al(1-ilwTy). 7pxexpUlkgT) denotes a 4 =D,, /A2 in Eq. (10) one realizes that the percolation
pinning time,” i.e., the mean time the vortex is bound t0 model predicts the same scaling law as the vortex glass

the pinning center. _ _ theory? In the limit (w/we)|Ap| "3<1 one obtainso
The inclusion of a Magnus force term in the equation Ofoc|Ap|_t above the percolation transiton andr

vortex motion, Eq(5), leads to a renormalization of the vor- «| A p[s/(iw) below the transition; i.e., the linear dc resistiv-
tex dn‘fus_wmes. Slnce_ the Mialgnus for(_:e term is only impor- ity pg=lim,_oo (w) vanishes at the percolation transi-
tant at high frequenciee>7;"=a/g, it will be neglected  tjon andp,.= 0 in the vortex glass phase. This result is con-
in the following. sistent with the description of the nonlinear dc resistivity
p(j) in the vortex glass phase. The pinned vortex lattice is
C. Scaling regime described by an effective activation bartidd(j) that di-
verges for small current densitiegs—0 such thatp(j)

In the critical region around the percolation threshpld . . . ; :
the averaged electronic conductivity assumes the scalin§exq—u(l)/kBT]HO in the linear regime considered here.

form?24 he full treatment of the nonlinear percolation problem is
beyond the scope of this work. There are indications in the

1 literature that the nonlinear dc conductivity(j) calculated
o= [Ap| "= . (h|Ap|~'7S), (10 in a percolation model obeys scaling laws similar to the scal-

oD ing laws of vortex glass theord}. Yamafuji and Kiss? have

recently derived scaling laws for the nonlinear dc resistivity
in a model that considers a critical current distribution. These
scaling laws are indeed similar to the scaling laws of vortex

with Ap=p—-p. andh=D,,/D,, . Following the standard
notatiorf* the critical exponents are callédands; an inter-
change with the time variable that is also calteid unlikely
since the time variable is not used in this and the following8/ass theory. . :
sections. The scaling functior$, (x) in the vortex liquid The phase anglé =arctan("/o”) of the electronic con-
(p>p.) and3_(x) in the vortex glass f<p.) phase as- ductivity at the percolation transitioAp=p—p.=0 is
sume the asymptotic forrffs

d(p=p)= T 1 > 15

. (p=po)=5|1- 5/ (15
2+ const, (1) Since the scaling laws of the percolation model and the vor-
tex glass model are equivalent, one obtains the following
x=0  const relationship between the critical exponents of the two mod-

S _(X) —— " (12 els:
S . (X) — constx x V(1) (13
s{=v. (17

x=h|Ap|~'"° denotes the scaling variable. In the effective

medium approximation the scaling functionsdmlimensions ~ The critical exponent# andz of the vortex glass model are
are defined by the divergence of the vortex glass correlation

length&y|T—Ty| " and the time scale for critical fluctua-
2(d—1) tions, rye* &g -
2= [d2+4(d—1)x]¥?=d’ (14) Since the exponent is not known, only the ratio
t/s=z—1 can be compared with theoretical estimates for the
with t=s=1. critical exponents of percolation theory.
The concentratiorp of vortex liquid regions cannot be In Table | the critical exponents and z derived from
easily accessed experimentally. The percolation thresholtheasurements of the frequency-dependent conductivity of
p. is identified with the vortex glass transition temperatureYBa,Cu;0;_s samples are summarized. For twinned
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TABLE |. Critical exponents of YBaCu;O,_s samples ob- TABLE II. Theoretical critical exponents for bond percolation
tained from the scaling of the linear, frequency-dependent conduaetworks.

tivity.

t S t/s=z—1 Reference
Twinned YB&Cuz0;_ s single crystals

B v z Reference
EMA 1.0 1.0 1.0 24
d=2 1.299-0.002 1.2990.002 1.0 39

| c 0.69+0.13 3.0:04 33 d=3 1.9+0.1 0.73:0.01 2.60:0.14 40,41

| e 0.70+0.05 3.0:0.3 8

| ¢ 3.1+03 3.1x0.3 9

Lée 1.6+0.3 6.3-0.3 9 _ _ _

I& 31 31 34 value_found_ for Y-1:2:3 films. The dual_lty ;ymmetry Igads in
two dimensions to the valé&t/s= 1, which is not consistent

YBa,Cus0,_, films with the_ experimental (_jata. _ §

5 , z Reference Continuum percolation problen{SSW|§s cheese mod_-
els) can be mapped on lattice percolation problems with a
distribution of bond strengtH¥,

| ¢ 1.1+0.4 5.2+0.6 35 ~a

| ¢ 3.70+0.46 36 9(Bv)=Dy ", (20)

| c 1.7+0.1 5.5-0.5 10 whereD,, denotes a local vortex diffusivity. It is found that

| ¢ 2.0£05 55-1.0 37 the critical exponents ands in these systems can be con-

| € 3.34+0.64 30 siderably enhanced over their counterparésds in simple

| € 6.0+2.0 30 lattice models. If one considers the lower boundstfand
's given by Fenget al*? to be exact, as was suggested by

YBa,Cu;0-_ 5 ceramic Lubensky and Trembla$? one obtains
B v z Reference 1
t=A(d 2)+1_a, (21
3.0£04 3.0-04 38
_ 1
s=A(2—d)+ T a (22

\ denotes the geometric exponent of the percolation correla-
Y-1:2:3 single crystals in a magnetic field parallel to the tjon length&,oc[Ap| .
axis, in a ceramic Y-1:2:3 sample and in two Y-1:2:3 films  |n d=3 dimensions one has=0.87524 Interpreting the
z=3.0 is found. However, the values for the Y-1:2:3 films ratio t/s=4.4+0.6 observed for Y-1:2:3 films as arising
obtained in Refs. 30 and 36 are only derived from the criticakrom a distribution of bond diffusivities one obtains
loss angleP(T,) instead of performing a full scaling analy- a=0.28+0.05.
sis. Therefore these values have to be viewed with some These findings might be interpreted as follows. The satis-
care. Olssoret al,* Kotzler et al,'® and Baselgia Stahel fying agreement between the experimentally determined and
et al*” found valuez>5 for Y-1:2:3 films. These values are the calculated value of the ratifs for Y-1:2:3 twinned crys-
in agreement with critical exponents obtained from the scaligls and ceramics indicates that two pinning mechanisms
ing of the nonlinear dc resistivity: A with different pinning strengths exist in these materials. The

For the twinned Y-1:2:3 single crystal8|c) and the two pinning mechanisms lead to well-defined regions of

Y-1:2:3 ceramic one obtains a mean value for the ratio of thginned and unpinned flux lines. Thus a simple lattice perco-
critical exponents, lation model with two bond strengths is appropriate. The two

pinning mechanisms might be related to point defect pinning

t/s=z—1=2.0+0.4, (18  and pinning by twin boundaries, respectively.
The results for the Y-1:2:3 films indicate that in thin films

whereas for Y-1:2:3 fiIminHé) the ratio a continuous distribution of pinning strengths is present.

t/s=7—1=4.4+0.7 (19) D. Effective medium approximation

Well outside the critical region the averaged diffusivity

seems more appropriate. D is well described within the effective medium approxima-

In Table Il the critical exponents for percolation on ation (EMA).** If Dy denotes a local vortex diffusivity and
lattice are summarized. The ratits=2.60+0.14 obtained f(Dy) the distribution function for the vortex diffusivity, the
for lattice percolation ind=3 dimensions is in satisfying averaged diffusivityD can be obtained frofi#644
agreement with the experimentally determined value
t/s=2.0+0.4 for twinned Y-1:2:3 single crystals and J’ £(Dy) D—-Dy dDu=0 29
Y-1:2:3 ceramics. However, it is considerably lower than the V' Dy+(d—1)D "V -
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d denotes the dimension of the system.

In the following only the binary distribution 0" grmrrmr—T S (;)
f(Dy)=pd(Dy ) +q8(Dyg) with g=1—p will be consid- [ 00y no0ga0, ]
ered. 5(x) denotes Dirac’s delta function. In this case the 10 3 ® 90 05580000003
electronic conductivity is given by o R S :ggggggi

= ol o000 0000008 S8 % XECEER]
1 2(1-p,) s 10 KR e f L e
o c F x X x X v ]
o=0' —idg"= 75+ (29 i G oV Ré
#oDvi (P=Ppe) +(a—pc)h+A ol * o o0 ]
107 o 3

A=(p=pc)*+(a—pc)*h?+2(pc—pz+pah, (25 § °

W|th pC:dil andh:DVG/DVL. 1016 .ru

It was shown in the previous section that at low frequen- 0B Fs %o (b)
cies w< r;lza/n= 10 GHz (Refs. 16,30 the vortex glass 101‘3‘ r T, :D .
diffusivity is well approximated byDyg=iw\?2, yielding an ) }812 ' Seoortl e,
imaginary diffusivity ratio S 1ol E XX 9 grty o

&5 0T SaxXigtio
2 10 é’ AAZX°O+‘:‘D
@ B 100r iyiine,
h=i w0y (26) = 187 r Y-1:2:3 film vo*k éﬁ%g}{%f@
1 Vv V** )
10°f B=04T ok

Since the vortex liquid diffusivityD, and the Labusch 10° %
parametera at the transition temperaturgy are not well 103102101 10° 10! 102 102 10* 10° 10° 107 108
known, it is difficult to estimate the frequency scalg.

From high-frequency surface impedance measurements on o/2n (Hz)

Y-1:2:3 films'® & can be estimated to~ 10'"— 1G?° N/m* at
high temperatures an8=1 T. Using typical resistivities of
Y-1:2:3 films at the irreversibility lin® that is close to the
glass transition line one obtaim®, ~10 °-10 2 m?s™ !
and thereforevy~10P-10"> Hz atB=1 T. In the following
calculated values of the conductivity modulus
|o|=(0"?+ 0"?)Y? and the loss tangent

FIG. 1. (a) Loss tangent anth) modulus of the electronic con-
ductivity of a Y-1:2:3 film as a function of frequency B&=0.4 T.
The data are taken from Ref. 10, 88.0 K; +, 88.9 K;O, 89.1 K;
A, 89.3K;V, 89.6 K; ¢, 90.0 K.

o 10°
tan(®)=— (27) 10°§
g 104 E
are compared to experimental values. Since the experimental }gz 3
values were obtained in the critical region and the EMA is @ 10k
valid well outside the critical region, the comparison be- S 100
tween theory and experiment only shows qualitative agree- = 101§
ment. 102 k
In Figs. Xa and Xb) the loss tangent tad() and the 107 f
modulus|a| of the electronic conductivity of a 250 nm thin 10 f
Y-1:2:3 film in a fieldB=0.4 T are shown as a function of I
frequency. The data were obtained bytKer et all° from 10° |
the numerical inversion of the frequency-dependent ac sus- 107
ceptibility. The phase angké (Tg) =0.82(wr/2) at the transi- 10°
tion temperaturd ;=88.9 K is independent of frequency in E 10j J
agreement with the scaling law, E@G.5). L 10y
In Figs. 2(a) and 2b) the loss tangent tad{) and con- L 0 !
ductivity modulus |o| according to the extended TAFF 107
model are shown. The curves are calculated with . 10" b
including the effect of thermally activated vortex hopping by 10°
the introduction of an exponentially relaxing Labusch param- B S e e T
eter. The conductivity is normalized by the flux flow conduc- 107107 107107 107 107 10 107 107 107 10
tivity ore= 7/B2. The curves are calculated in the absence T
of a Magnus forcesz;= B/a=0, for different values of the n

viscosity 7,= n/a. For large pinning times,,> 7, the loss FIG. 2. (a) Loss tangent anth) modulus of the electronic con-

tangent is large, ie., ta®)>1, and a frequency- qyctivity in the extended TAFF model; see E6). The conductiv-
independent plateau valuk=m/2 is observed at low fre- jty js normalized to the flux flow conductivity. The curves are cal-
guenciesw< 7-;1 in contrast to the experimentally deter- culated with the parameter valuesr,/7,=10 %2 1075,
mined nontrivial valueb(T,)=0.82(rr/2). 1073, 0.3 andrz=0.
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10° ey ey g 10° ‘. m T N
02 (a)é k. n.,.(a)
~ 10'f 10}
) o) -
g 100 = 100}
- S E
107 107
107 102k
108 108 .
®) ®)
107 F- 10"
5 105 o “g 10° e o e T
L 4t (o] .
© 10 r s 10 ;
10° = 10’}
10° ) 107
10! . ."~I::::_ 10! ..
100 :10 9 8 7 6 4 2 3 0 100 -10 ‘ 9 8
101°10° 10 107 10 107 10 10 102 107! 10 101°10° 108 107 10° 10° 10* 103 102 107! 10°
/e, w/w,

FIG. 4. (a) Loss tangent anth) modulus of the electronic con-
ductivity in the effective medium approximation fdr=3 dimen-
sions. The parameters arg=0 andr,=0. The dash-dotted line is
the percolation transitiop=p., and the dotted and solid lines are
calculated in the vortex glass and vortex liquid phase for concen-
trations|Ap|=10"° 1074, 1073 1072, 107!, 0.3.

FIG. 3. (a) Loss tangent an¢h) modulus of the electronic con-
ductivity in the effective medium approximation fdr=2 dimen-
sions. The parameters arg=0 andr,=0. The dash-dotted line is
the percolation transitiop=p., and the dotted and solid lines are
calculated in the vortex glass and vortex liquid phase for concen
trations|Ap|=10"5 1074, 1073 1072 107% 0.3.

The loss tangent tad() and conductivity moduluss| — @/@e=1. In Figs. %a) and §b) the loss tangent and the
calculated in the effective medium approximation are showrfonductivity modulus are shown =3 dimensions using
in Figs. 38 and 3b) and 4a) and 4b) for d=2 andd=3, the vortex glass diffusivity, Eq.(9), Dyg=iw\d/
respectively. The conductivity is normalized by the conduc-(1+iw7,) with 7;1210011)0. The Magnus force term is
tivity in the vortex liquid stateg, =(uoDy.) ~!. The dash- neglected 3=0. At large frequencies> 7;1 the loss tan-
dotted lines in the figures correspond to the percolation trangent above and below the percolation transition decreases as
sition Ap=0, and the dotted and solid lines are calculated intan(®)=w 1. This asymptotic form is in agreement with
the vortex glass Ap=—10"° —-10"% ..., —0.1, recent experimental results on Y-1:2:3 filifs.

—0.3) andvortex liquid phase £p=105 1074, ...,
0.1, 0.3),respectively. In both dimensiors=2 andd=3
one finds a critical phase angle(p.) = 7/4 at low frequen-
cies in contrast to the experimental value for the Y-1:2:3 |n this work the vortex motion in high-temperature super-
film, ®(T,)=0.82(r/2). Though the measured and calcu- conductors was analyzed in a bond percolation model on a
lated curves are qualitatively similar, a quantitative agreetattice. The linear, frequency-dependent electronic conduc-
ment is lacking. This is in agreement with the results oftivity o(w) is found to be inversely proportional to the vor-
Kirkpatrick** on random resistor networks, where numericaltex diffusivity. Near the percolation threshofsi the elec-
calculations and the effective medium approximation agregronic conductivity obeys scaling laws that assume the same
for Ap=0.1. However, the effective medium approximation limiting forms as the scaling laws derived in vortex glass
shows that the phase angleis frequency independent at the theory. Therefore the percolation model provides an alterna-
percolation transition fow < w,. The critical loss tangent in tive interpretation for the existence of a scaling region in
the EMA is tan(b;)=1 in contrast to the value ¢(w). The vortex glass transition temperatdigis equiva-
tan(®.)=2.13+0.18 found numericalﬁf‘ for d=3. lent to the percolation thresholal. .

In d=3 dimensions the loss tangent shows an upturn at The ratio of the critical exponents/s=2.0+0.4, ob-
large frequenciess/wo=1; see Fig. 49). This is not in dis-  served experimentally in YBa&u3;0,_; single crystal$®
agreement with the scaling law, E@.5), which is only valid  and ceramic¥ is consistent with the critical exponents for
at low frequencies. Since,=10°~10" Hz can be of the pond percolation on a 3D latti@,t/s=2.60+0.14. This is
same order of magnitude as the depinning frequencyarticularly surprising since the percolating vortices in super-
7;1210 GHz, the approximate vortex glass conductivity conductors are line objects, whereas point particles are as-
Dveziw)\ﬁ should not be used at high frequenciessumed in the simulations of bond percolation models. How-

[ll. SUMMARY AND CONCLUSIONS
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might be justified. The agreement between the calculated and
measured ratio of the critical exponentss in Y-1:2:3
twinned single crystafe and ceramic¥ indicates the pres-
ence of two pinning mechanisms with significantly different
activation energies. The different pinning mechanisms may
be related to pinning by point defects and to pinning by
extended defects.

The ratio of the critical exponents observed in
YBa,Cuz0,_ s films 351937 t/s=4.4+0.7, is considerably
higher than the theoretical value, indicating the presence of a
continuous distribution of bond diffusivities.

Calculations of the electronic conductivity in an effective
medium approximation show qualitative agreement with

tan(®)

(b) : measure_d condu_ctiviti_es. Using a transfer matrix approach
N the scaling functions in the bond percolation model can be
— 3 obtained numericall§®
b§ 3 The percolation model of vortex motion in inhomoge-
© 1 neous superconductors is valid if percolative channels for
- E vortex motion are well defined. Well-defined channels might
E 3 be expected, if the “pinning time"r,>expU/KT), i.e., the
107! r . 4 average time the vortex lines stay at their pinning centers, is
N O RO Lo/ £ s cetarecarsire long compared to the probing time scale. Since all investi-
10° 104102 102 101 10° 10! 10® 10° 10* 10° gated Y-1:2:3 samples show a scaling region in the linear

y electronic conductivity around the vortex glass temperature
W/ T4, one might conclude that a well-defined percolation
) network exists in these samples. However, for
F.IQ. 5 (a) Loss tapgent ar)(b) modulu; of .the electroqlc con-  Bj,Sr,CaCu,0g single crystals in a magnetic fieB=1 T
ductivity in the effective medium approximation for=3 dimen-  hara)6] to thec axis the absence of critical scaling in the
sions. The parameters arg=0 andwyr,=0.01. The dash-dotted g\ 1ronic conductivity is reportet].Since Bi-2:2:1:2 single
line is the percolation transitiop=p., and the dotted and solid crystals have much smaller activation energids than

lines are calculated in the vortex glass and vortex liquid phase fog{_l_z_3 sampleé7 the “pinning times” 7, are considerably
tration$Ap|=0.01,0.02,0.04,0.08,0.16. " . . - p -
concentration$ap| smaller and an ill-defined percolation network might result.
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