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An improved description of the critical properties of metallic multilayers is obtained by introducing the
concept of a scaled magnetic coherence length in the Takahashi-Tachiki theory. By that, the absolute magni-
tude of the upper critical fields and the position of the dimensional crossover are uncoupled and become
independent quantities. Much better phase diagrams can be obtained by using this scaling procedure. Although
this concept is inspired by the character of disagreement between the theory without scaling and experiment,
the procedure lacks an external justification. The fact that it works might serve as an indication how the
Takahashi-Tachiki theory has to be modified in order to give a realistic quantitative description of upper
critical fields in real metallic multilayers. The theory is applied to the V/Cu, V/Ag, Nb/Cu, and Nb/Ag systems.
@S0163-1829~96!06425-9#

I. INTRODUCTION

The state of the art of thin-film technology has allowed
for the fabrication of high-quality multilayer samples. That
gave experimentalists the opportunity to come to a detailed
analysis of the upper critical fields of these systems. Since
Schuller and co-workers finished their series of
experiments,1–4 a wealth of information is available for the
Nb/Cu multilayer system. Similarly, Kanodaet al.5,6 did
elaborate experiments on V/Ag multilayers, whereas Brous-
sard and Geballe7,8 studied Nb/Ta extensively. It is the quan-
titative description of these experiments that now seems to
be the most important task.

Recently, we have given a critical review9 of theoretical
studies that dealt with the proximity effect. It was concluded
that no thorough comparison of theory and experiment ex-
isted that considers absolute magnitudes of both parallel and
perpendicular upper critical fields in multilayers of various
layer thicknesses. We made an attempt9,10 to such a compari-
son for two related systems: V/Ag and Nb/Cu. The exact
solutions were calculated of the well-known Takahashi-
Tachiki equations,11 which constitute the most advanced
proximity-effect theory currently available. However, a good
matching of calculations with experimental data could not
always be achieved. Particularly, there was a disagreement in
the position of the dimensional crossover in the parallel up-
per critical field. This position is mainly determined by the
magnetic coherence length.

The present paper provides a new look at the solutions of
the Takahashi-Tachiki equations by introducing the addi-
tional concept of magnetic-coherence-length scaling. By
that, the absolute magnitude of the upper critical fields and
the position of the dimensional crossover become indepen-
dent quantities. It will be shown that by this scaling proce-
dure better phase diagrams can be obtained. Section II gives
a short exposition of the original Takahashi-Tachiki formal-
ism. Section III recalls the earlier results of our efforts and
points out the basic problems we encountered in earlier stud-
ies. It prepares the idea of magnetic-coherence-length scal-
ing, which is introduced in Sec. IV. In Secs. V and VI, the
idea of scaling is applied to the V/Ag and Nb/Cu systems,

respectively. Section VII treats the related systems V/Cu
~Ref. 12! and Nb/Ag.13 Section VIII summarizes the conclu-
sions.

II. THEORY

The starting point of the Takahashi-Tachiki theory11,14 is
Gorkov’s linearized integral equation for the pair potential15

D~r !5E K~r ,r 8!D~r 8!d3r 8. ~1!

The kernelK(r ,r 8) can be expanded as

K~r ,r 8!5V~r !kT(
v

Qv~r ,r 8!, ~2!

which contains a position-dependent BCS electron-electron
interaction coupling constantV(r ) and a summation over
discrete frequenciesv5(2n11)pkT. The summation is re-
stricted to frequenciesuvu<vD , vD being the Debye fre-
quency. According to Takahashi and Tachiki,Qv(r ,r 8) can
be derived from a set of coupled differential equations, in-
cluding diamagnetic and paramagnetic effects. Auvil, Ketter-
son, and Song16 generalized these equations to include also
magnetic impurity scattering and spin-orbit scattering. For
nonmagnetic dirty type-II superconductors, however, these
reduce to the single Green’s-function-like differential equa-
tion

@2uvu1L~“ !#Qv~r ,r 8!52pN~r !d~r2r 8!, ~3!

whereN(r ) is the position-dependent density of states at the
Fermi energy. The differential operatorL(“) is given by

L~“ ![2\D~r !S“2
2ieA~r !

\c D 2, ~4!

D(r ) being the position-dependent electronic diffusion con-
stant andA(r ) the vector potential of the applied magnetic
field. For multilayers, the three functionsN(r ), V(r ), and
D(r ) are assumed to be constant within a single material,
making discontinuous jumps at the interfaces.
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We now define the pair functionF(r )[D(r )/V(r ). It was
the idea of Takahashi and Tachiki to solve Eqs.~1! and ~3!
by using an expansion ofQv(r ,r 8) andF(r ) in terms of the
eigenfunctionscl(r ) of the operatorL(“), with corre-
sponding eigenvaluesel :

F~r !5(
l

clcl~r ! ~5a!

and

Qv~r ,r 8!5 (
l,l8

al,l8
v cl8

* ~r 8!cl~r !. ~5b!

The eigenfunctions have to obey the de Gennes boundary
conditions17 demanding the continuity ofcl(r )/N(r ) and
D(r )@“22ieA(r )/\c#cl(r ). The orthogonality and clo-
sure properties read as

E d3rcl* ~r !
1

N~r !
cl8~r !5dll8 ~6!

and

(
l

cl* ~r !cl~r 8!5N~r !d~r2r 8!, ~7!

reflecting the discontinuous nature ofN(r ). Substitution of
~5! in Eqs.~1! and ~3! finally leads to a matrix equation for
the coefficientscl :

cl5(
l8

S 2pkT(
v

1

2uvu1el
DVll8cl8, ~8!

where Vll8 is the matrix element̂cluVucl8&. When the
secular equation

detudll822pkT(
v

1

2uvu1el
Vll8u50 ~9!

is satisfied, there are nontrivial solutions for the coefficients
cl and consequently for the pair functionF(r ). The highest
temperature for which such a solution exists is the field-
dependent critical temperature. The present authors showed14

that the frequency summation appearing in~9! can be evalu-
ated exactly in terms of the digamma functionC(x), using
the identity

2pkT(
v

1

2uvu1el
5CS vD

2pkT
1

el

4pkT
11D

2CS el

4pkT
1
1

2D . ~10!

The behavior of Eq.~9! in the thin-layer limit is useful in
understanding the origin of the two solutions of our fit pro-
cedure, to be described in Sec. III. In this limit the thick-
nessesdS anddN of the superconducting and normal layers,
respectively, approach zero and the multilayer behaves as an
average bulk metal. One can use the diagonal
approximation,14 which implies that in expansions~5! only
the ground-state wave function is used. Equation~9! then
simplifies to

CS vD

2pkT
1

eG
4pkT

11D2CS eG
4pkT

1
1

2D5
1

VGG
,

~11!

where the indexG refers to the ground state. The expression
for the ground-state eigenvalues depends on the direction of
the magnetic field. They can be shown14 to read as

eG
'5

\

j2
^ND&

^N&
~12!

for perpendicular magnetic fields and

eG
i

5
\

j2
1

^N&
A^ND&K 1

ND L 21

~13!

for parallel magnetic fields, wherej is the magnetic or
Ginzburg-Landau coherence length, given by

j5A \c

2eH
. ~14!

The angular brackets denote the spatial average of the brack-
eted quantities, e.g.,̂N&[(NSdS1NNdN)/(dS1dN). The
expression for the ground-state matrix elementVGG is inde-
pendent of the field direction and reads as

VGG5
^N2V&

^N&
. ~15!

III. EARLIER RESULTS REVISITED

In two previous papers9,10 on upper critical fields in me-
tallic multilayers, a fit procedure was adopted to find out
about the ability of the theory to reproduce the data. To that
end three material parameters were used as free quantities.
These were the diffusion coefficients of both metals and the
density of states of the superconductor,DS , DN , andNS ,
respectively. We recall that there are eight material param-
eters that characterize a multilayer: the density of states at
the Fermi levelN, the BCS coupling constantV, the diffu-
sion coefficientD, and the Debye temperatureQD for each
of the two metals. Since the theory does not account for the
two metals having different Debye temperatures, an average
value must be used for this quantity. It was possible to make
a reasonable choice for the parametersNN , VN , andVS ,
which were assumed to be layer-thickness independent. The
free parameters were used to fit the experimental multilayer
Tc and the critical fieldsHc2,'(T) andHc2,i(T) for a specific
temperatureT. Consequently, they were allowed to vary
from system to system and were expected to show a depen-
dence on the thickness of the layers. All other material pa-
rameters were assumed to be layer-thickness independent. It
was argued in Ref. 9 why this is justified.

In using this fit procedure, it turned out that there are two
possible outcomes for each phase diagram. A feeling for the
origin of this is obtained by examining the thin-layer limit. In
this limit an expression for the anisotropy, defined as the
ratio of the parallel and perpendicular upper critical fields at
a certain temperature, can be derived analytically, using Eqs.
~11! – ~15!. Given the temperature, Eq.~11! determines the
ground-state eigenvalueeG , which holds for both critical
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fields, soeG5eG
'5eG

i . According to Eqs.~12! and~13! both
Hc2,' andHc2,i are proportional toeG , although the propor-
tionality factors differ. Therefore, in calculating
Hc2,i /Hc2,' , eG cancels out and the anisotropy is given by

Hc2,i

Hc2,'
5A^ND&K 1

ND L . ~16!

Working out the spatial averages yields

Hc2,i

Hc2,'
5AdA

212gdAdB1dB
2

~dA1dB!2
, ~17!

whereg is defined as

g[
1

2 S NSDS

NNDN
1
NNDN

NSDS
D . ~18!

This quantity has a minimum value of one for
NSDS5NNDN and is larger otherwise. It is symmetric with
respect to the interchange of the labelsS andN. It is clear
that an anisotropy is found as soon asgÞ1. In the thin-layer
limit the anisotropy is temperature independent. For realistic
systems, this is not true any more. The matching of the an-
isotropy is an important aspect of the fit procedure.

The application of the fit procedure is straightforward in
the thin-layer limit. The quantities to be fitted are the
multilayer Tc andHc2,i(T) andHc2,'(T) at a certain tem-
peratureT. The free parameters areNS , DS , andDN . How-
ever, while fitting, it is convenient to work withNS , g, and
Deff

' [^ND&/^N&, instead ofNS , DS , andDN . Then each
free parameter controls a distinct aspect of the phase dia-
gram. The multilayerTc is independent of the diffusion co-
efficients and consequently it completely determinesNS .
The anisotropy of the upper critical field,Hc2,i /Hc2,' , com-
pletely determinesg. Finally, Deff

' is found by fitting
Hc2,'(T) via Eq. ~12!.

From the above it is seen that the choice of free param-
eters leads to enough flexibility for the fit procedure to have
a solution. There is, however, an ambiguity in calculating
DS andDN from g andDeff

' . This is due to the fact that for
a given value ofg it is impossible to decide whether
NSDS /NNDN is smaller or larger than one. Consequently,
there are always two solutions forNS , DS , andDN . If there
is a solution withNSDS /NNDN5x, there is another with the
same ratio equal tox21. In the thin-layer limit, the phase
diagrams of the two solutions are indistinguishable. How-
ever, the diffusion coefficients can differ substantially.

Away from the thin-layer limit, there are still two solu-
tions for each fit, but now the anisotropy is not a function of
g only and the solutions will have different phase diagrams.
In Ref. 9 the choice is made for the solution with the larger
ratioNSDS /NNDN , which we will call the first solution. The
arguments were the following. First, for Nb/Cu, the first so-
lution leads to fitted diffusion coefficients that are in a much
better agreement with the values predicted by Banerjee
et al.1 Second, the dimensional crossovers found in the cal-
culated phase diagrams seem to be of the same nature as the
ones found experimentally, although the temperatures at
which they are found are much too close to the critical tem-
perature. It is admitted that the last argument is rather weak,

because no parameters could be found that fitted the phase
diagrams of two-dimensional~2D! systems over the whole
temperature range. These are the systems for which a dimen-
sional crossover is observed in the parallel upper critical
field, that is, of which the layers have intermediate
thicknesses.9

The earlier Ref. 10 presented results according to the sec-
ond solution, which is characterized by a ratio
NSDS /NNDN well below one. An example of such a fit is
reproduced in Fig. 1. This phase diagram shows a sharp di-
mensional crossover in the parallel upper critical field. At
this crossover the center of nucleation shifts discontinuously
from one layer to the other, which yields a discontinuity in
the derivative of the parallel upper critical field. This type of
crossover is due to an extreme difference of the diffusion
coefficients of the two metals in the multilayer. The experi-
mental phase diagram shows no sign of the existence of such
a crossover. There is a clear discrepancy between the theory
and the data. Extreme fitted diffusion coefficients are the
hallmark of the second solution. These values deviate sub-
stantially from the values predicted by Banerjeeet al.1 This
time, the crossover temperatures are found at too low tem-
peratures.

IV. MAGNETIC COHERENCE LENGTHS

One might wonder whether at all it is possible to obtain a
reasonable phase diagram with the Takahashi-Tachiki
theory. To find an answer to this question it is necessary to
point out the following. The form of the dimensional cross-
over is largely determined by an interplay of characteristic
length scales. Apart from the layer thicknesses, the theory
has three of them: the Ginzburg-Landau coherence lengthj
and the two BCS coherence lengthsj0,S andj0,N . The latter
two are proportional to the square roots of the respective
diffusion coefficients:

j0~r !5A\D~r !

2pkT
. ~19!

Since these are free parameters, the BCS coherence lengths
are determined by the fit procedure. On the other hand, the
Ginzburg-Landau coherence length is a function of the mag-
netic field, see Eq.~14!. Since the latter is dictated by the

FIG. 1. Upper critical field curve of V~240 Å!/Ag~480 Å!. The
solid circles show the data points of Kanodaet al. ~Ref. 6!.
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experimental data,j is a fixed parameter. Butj is just the
length scale that controls the position of the dimensional
crossover, as was discussed in the previous section. To open
up the possibility of a real modification of the phase diagram,
the value ofj needs to be changed. Its value has to be un-
coupled from the absolute magnitude of the critical fields.
Otherwise, the theory does not allow for a simultaneous fit of
both the shape and the magnitude of the critical field.

By examining Eq.~4! and realizing that the vector poten-
tial A is proportional to the magnetic fieldH, it is seen that
the only way the field enters into the theory is via the coher-
ence lengthj. Consequently,j can be completely uncoupled
from the absolute magnitude ofH by introducing an extra
free parameter into Eq.~14!. In the calculations below we
will replace this equation by

j5Aa\c

2eH
, ~20!

while leaving all other equations in whichj features un-
changed. The scaling factora can be chosen such thatj
matches the typical length scale that controls the experimen-
tal dimensional crossover. It may be different for different
combinations of metals and layer thicknesses. Thus, the first-
and second-solution results will be reconsidered extensively.
We are aware that the introduction of the scaling factor lacks
a clear physical interpretation. Nevertheless, it will come out
that Eq.~20! makes it possible to obtain much better phase
diagrams than calculated previously.

V. RESULTS FOR V/Ag

Apart from the scaling ofj, the fit procedure used to
obtain the present results is identical to the one used previ-
ously. The fixed material parameters are given by Table I. In
applying the fit procedure, we again have a first and a second
solution. Both will be considered in the present analysis. In
contrast to what was argued for the unscaled results, the
second solution now yields the best phase diagrams.

Consider the V~240 Å!/Ag~480 Å! multilayer, of which
the unscaled first solution is plotted in Fig. 4 of Ref. 9. The
desired achievement of scaling would be that the dimen-
sional crossover shifts to the left. In Fig. 2 this has been
accomplished by using a scaling factora55. To understand
the direction of the shift, consider the role of the Ginzburg-
Landau coherence lengthj. At the critical temperature
Hc2,i vanishes, so according to Eq.~14! the coherence length
is infinite. When the temperature decreases,Hc2,i increases
and, according to the same equation,j decreases monotoni-
cally. Whenj has become of the same order of magnitude as
the layer thicknesses, the dimensional crossover occurs. Let
T* be the temperature at which the second derivative of

Hc2,i is maximum. In Fig. 4 of Ref. 9 this happens at
T*53.32 K, much earlier than in the experiment. At that
temperature the value ofHc2,i is 0.97 kG andj5582 Å. In
calculating Fig. 2, the theory operates at an overall larger
coherence length, because of the scaling factor. As a conse-
quence, the dimensional crossover is postponed to
T*52.52 K. This corresponds to an upper critical field of
5.66 kG and a coherence lengthj5539 Å. Clearly, Fig. 2
considerably improves upon the previous results.T* is now
found at the correct position in the phase diagram. But there
are still discrepancies. The scaling factor has had a negligible
effect onHc2,' and the theory still does not reproduce the
experimentally observed positive curvature. Furthermore,
Hc2,i does not bend as deep as the experiment. The value of
a has been chosen such as to produce the most pronounced
concavity. For a further increase ofa, Hc2,i(T) starts tend-
ing towards a straight line, since then the three-dimensional
regime gradually seizes the temperature domain. So a larger
value ofa does not mean a further improvement.

The fitting material parameters areTc,V57.79 K,
DV511.7 cm2/s, andDAg520.6 cm2/s. The value ofTc,V is
unphysically high for this fit. The ratio of the diffusion co-
efficients has not changed much compared to the unscaled
result. The fact that, via equations like Eq.~13!, their average
value is related to the magnitude of 1/j2 is reflected by the
fact that both diffusion coefficients have increased by ap-
proximately the scaling factora.

Now consider the second solution, as plotted in Fig. 1. It
has a kink at 2.38 K. Compared to the measurements,Hc2,i

bends too deep and a better result is expected after shifting
the kink to the right. Therefore, a scaling factor less than
unity has to be adopted. Figure 3 shows the second solution
for a50.5. This curve turns out to fit the data almost per-
fectly. The discontinuous dimensional crossover inHc2,i has
shifted to 3.18 K and is hardly observable any more. It is
found thatT*52.95 K, which is in harmony with the ex-
periment. The perpendicular upper critical field has a posi-
tive curvature that is only slightly less than observed in
Kanoda’s measurements. Clearly, fora50.5, the coherence
lengths have the right magnitude and produce the correct

TABLE I. Fixed material parameters for V, Ag, Nb, and Cu.

V Ag Nb Cu

N(bulk)(10
47/Jm3) 4.50 1.00 12.0 1.98

Tc(bulk)(K) 4.24 0 8.91 0
QD(K) 390 215 275 315
vF(10

8cm/s) 0.373 1.39 0.273 1.57

FIG. 2. Upper critical field curve of V~240 Å!/Ag~480 Å!. The
first solution is shown. A scaling factora55 has been employed in
the fit procedure. The solid circles show the data points of Kanoda
et al. ~Ref. 6!.
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type and position of the dimensional crossover.
The fitting material parameters areTc,V55.39 K,

DV50.583 cm2/s, and DAg530.2 cm2/s. The vanadium
critical temperature is only slightly less than the unscaled
result. The values ofDV andDAg have decreased, as is ex-
pected fora less than unity, but not by a factor of 2. Most of
the impact of the scaling factor goes in a moderation of the
relative magnitude of the two diffusion coefficients. Whereas
for the unscales result we hadDAg /DV5109, the scaling
procedure has changed this to a value of 52. It was observed
for all systems thata,1, applied to the second solution,
leads to less extreme diffusion coefficients. In case of V~240
Å!/Ag~480 Å!, the moderation of the relative magnitude has
been such that the undesirable kink has almost been removed
from the figure. On the other hand, the ratio is still large
enough to produce the positive curvature of the perpendicu-
lar upper critical field.

The effect of magnetic-coherence-length scaling is not
equally beneficial for the other two multilayers of the same
thickness ratio. For V~200 Å!/Ag~400 Å!, the second solu-
tion for a50.8 yields a curve that fitsHc2,' at all tempera-
tures andHc2,i below 2.18 K. Above this temperature, where
Hc2,i has a discontinuous dimensional crossover, the curve
slightly overestimates the experimental data. In this region it
is also distinctly convex, which was not found in the mea-
surements. Nevertheless, the fit is still a considerable im-
provement upon the previous results. For V~160 Å!/Ag~320
Å!, the second solution fora50.6 produces a curve that fits
Hc2,' . At 1.21 K, there is a discontinuous dimensional
crossover inHc2,i . Above this temperature the experimental
data is overestimated again, due to the convexity of calcu-
lated curve. The two critical fields cannot be fitted simulta-
neously, that is, for one value ofa.

VI. RESULTS FOR Nb/Cu

Proceeding the same way, it is possible to improve upon
the phase diagrams of Nb/Cu as well. The fixed parameters
are given in Table I. Figure 4 shows the second solution for
Nb~168 Å!/Cu~147 Å! with a50.33. This value yields the

best correspondence to the data of Chunet al.4 The calcu-
latedHc2,i curve still exhibits a discontinuous dimensional
crossover at 4.27 K. Nevertheless, it reasonably fits the mea-
surements, both above and below the crossover temperature.
TheHc2,' curve is somewhat more concave than the experi-
mental one, but it fits the data much better than the unscaled
second solution. The effect ofa on the fitting material pa-
rameters is thatTc,Nb decreases from 9.61 to 9.41 K.DNb
also slightly decreases from 0.58 to 0.51 cm2/s. The param-
eter most affected is the diffusion coefficient of copper.
DCu decreases from the extreme value of 231 to a reasonable
value of 35 cm2/s.

Another example is shown in Fig. 5. It is the curve for the
Nb~171 Å!/Cu~376 Å! multilayer. The scaling factor em-
ployed isa50.25. It is seen that the data cannot be fitted as
good as for the previous system. NearTc the calculated
curve lacks the experimentally observed anisotropy and both
Hc2,' andHc2,i are underestimated. The fitting parameters of

FIG. 3. Upper critical field curve of V~240 Å!/Ag~480 Å!. The
second solution is shown. A scaling factora50.5 has been em-
ployed in the fit procedure. The solid circles show the data points of
Kanodaet al. ~Ref. 6!.

FIG. 4. Upper critical field curve of Nb~168 Å!/Cu~147 Å!. The
second solution is shown. A scaling factora50.333 has been em-
ployed in the fit procedure. The solid circles show the data points of
Chunet al. ~Ref. 4!.

FIG. 5. Upper critical field curve of Nb~171 Å!/Cu~376 Å!. The
second solution is shown. A scaling factora50.25 has been em-
ployed in the fit procedure. The solid circles show the data points of
Chunet al. ~Ref. 4!.
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this system areTc,Nb59.16 K, DNb50.47 cm2/s, and
DCu5104cm2/s. The ratio between the diffusion coefficients
is still very large, in spite of the scaling factor. However,
without scaling, the situation would be even more extreme.
In fact, for this system the unscaled fit could not be obtained
due to this behavior.

VII. RESULTS FOR V/Cu AND Nb/Ag

According to the position of the elements V, Nb, Ag, and
Cu in the Periodic System, V/Ag and Nb/Cu are expected to
have similar properties. The analyses given above and in in
Ref. 9 show that this expectation holds true. It would of
course be interesting to compare these systems to the other
two relatedS/N multilayers: V/Cu and Nb/Ag. A limited
number of measurements has been done for these two sys-
tems. Dediuet al.12 published data for V/Cu and Ikebe
et al.13 studied the Nb/Ag system. In both cases only a single
phase diagram is shown. Consequently, the analysis cannot
be as extensive as it was for the V/Ag and Nb/Cu systems.
Nevertheless, it is worthwhile to subject the available data to
a fit procedure and compare the fitting parameters to the
results of V/Ag and Nb/Cu.

A. Results for the V„250 Å…/Cu„150 Å… system

In analyzing the V~250 Å!/Cu~150 Å! system,NV , DV
and DCu were varied in order fit the experimentalTc and
Hc2,'(T) andHc2,i(T) at T52.6 K. VaryingNV is equiva-
lent to varyingTc,V at a constantVV , because these quanti-
ties are uniquely related by the BCS expression14 of the Tc
for a bulk superconductor. So we might as well speak of
Tc,V as the free parameter, which we prefer, as it gives the
information in a more appealing way. Apart fromTc,V , the
fixed material parameters of V and Cu are the ones given in
Table I. We choseTc(bulk),V55.3 K, the value that is usually
reported, instead of the smaller value employed in the analy-
sis of V/Ag. The average value of the Debye temperatures,
303 K, is used.

Table II lists the free parameter values found when apply-
ing the fit procedure to the data of Dediuet al.12 All results
correspond to the first solution and no scaling has been ap-
plied. It is seen that the fitting vanadium critical temperature
is far above the bulk value. It is even comparable to the
highest value found in Ref. 9 for V in V/Ag, which was 7.42
K. The vanadium diffusion coefficient falls slightly below
the general trend observed in Fig. 2 of Ref. 9. However,
considering the scattering in the points, the results are not in
contradiction. The copper diffusion coefficient is somewhat
higher than the value of 4.93 cm2/s, which is predicted by
Eq. ~12! of Ref. 9. It falls well in the midst of the results
plotted in Fig. 7 of Ref. 9.

Figure 6 shows the calculated phase diagram. The experi-
mental data is represented by the solid circles. The full ex-

perimental curve is found in Fig. 2 of Ref. 12. As is seen,
both the measured and calculated curves lack a profound
dimensional crossover. Consequently, the calculated curve
can follow the measured data well. At low temperatures,
Hc2,' is underestimated. Close to the critical temperature,
Hc2,i is underestimated. It is possible to improve upon Fig. 6
by using a scaling factor for the magnetic coherence length.
Figure 7 shows the scaledsecondsolution fora51.65. For
Hc2,' , the scaled curve lacks the underestimation at low
temperatures. Two-dimensional crossovers are observed for
Hc2,i . First, the curve switches continuously from the3D
regime, in which the multilayer behaves as an average bulk
metal, to the 2D regime, in which the layered nature of the
multilayer starts playing a prominent role. The crossover
temperature isT*53.83 K. The coherence length atT* is
j5257 Å. Secondly, atT51.79 K the nucleation point
shifts discontinuously from Cu to V. At this point the curve
exhibits a kink and the coherence length isj5130 Å. Com-
pared to the unscaled first solution,Hc2,i is better able to

TABLE II. Fitting parameters for the V/Cu multilayer system.

dV /dCu Tc Tfit Tc,V DV DCu

~Å/Å ! ~K! ~K! ~K! (cm2/s) (cm2/s)

250/150 4.55 2.6 7.26 1.49 5.61

FIG. 6. Upper critical field curve of V~250 Å!/Cu~150 Å!. The
first solution is shown. The solid circles show the data points of
Dediuet al. ~Ref. 12!.

FIG. 7. Upper critical field curve of V~250 Å!/Cu~150 Å!. The
second solution is shown. A scaling factora51.65 has been em-
ployed in the fit procedure. The solid circles show the data points of
Dediuet al. ~Ref. 12!.
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follow the curvature in the measured phase diagram, though
at the low-temperature side of the kink it is steeper than
desired. It is also possible to use the first solution as the
starting point of the scaling procedure. Then an almost linear
phase diagram is obtained. It entirely fitsHc2,' and the linear
regimes ofHc2,i . The factor necessary to achieve this is as
large asa'10. For such a high value, the dimensional cross-
over is completely removed from the picture. It does not
show the square-root-like behavior in the central part of the
curve.

Dediuet al.12 observed three distinct regions in their data
of Hc2,i . Below 2.32 and above 3.7 K the curve is linear,
which they associated with a three-dimensional behavior of
the multilayer. In between the two crossovers a square-root-
like temperature dependence is observed, as is characteristic
for two-dimensional behavior. At the crossover temperatures
there are kinks inHc2,i(T). The crossovers observed by De-
diu et al. are qualitatively different from the experimental
results for V/Ag. On the one hand, Fig. 2 of Dediuet al.
suggests that the multilayer is in the three-dimensional re-
gime over the whole temperature range and that the dent in
the curve is caused by some extrinsic effect. The fact that the
two linear regimes are in a direct line supports this supposi-
tion. On the other hand, it seems improbable that for layers
of such thickness there is no intrinsic dimensional crossover.
It might well be true that the square-root-like region in
Hc2,i(T) indeed corresponds to nucleation in copper. That is
suggested in Fig. 7, but this figure is not decisive in that
respect.

The value ofa in Fig. 7 is chosen such that the tempera-
ture at which the nucleation point shifts coincides with the
leftmost kink of the measurements. For this choice, the low-
temperature behavior cannot be reproduced satisfactory. It is
remarkable that a factor larger than one has been used to
improve upon the unscaled results. Ana,1 has the effect of
confining the region where nucleation occurs in the normal
metal. For V/Ag and Nb/Cu this led to a better agreement
with the data. For V/Cu, it is the other way around. By set-
ting a51.65, we have created a larger region of nucleation
in the Cu layer.

B. Results for the Nb„124 Å…/Ag„124 Å… system

For Ag, the fixed material parameters are given in Table I.
The parameters chosen for Nb are somewhat different. Now,
the more conventional value ofTc,Nb~bulk! is used, that is,
9.25 K. The average value of the Debye temperatures is
used. It is assumed thatVNb , VAg , and NAg are layer-
thickness independent. We takeVAg50, whereasVNb is cal-
culated fromTc,Nb(bulk) andNNb(bulk) . The free parameters
are once moreNNb , DNb , and DAg , where the value of
NNb will be reported in terms of the corresponding value of
Tc,Nb.

Using the data of Ikebeet al.13 and fitting Tc and
Hc2,'(T) andHc2,i(T) at T51.5 K, the results of Table III
are found. We chose the first solution. For all parameters, the
fitting values are in reasonable agreement with the results of
Ref. 9. The niobiumTc is below the bulk value of 9.26 K,
which is in accordance with the behavior of thin films. This
is in contrast with the earlier analysis of the much more
extensively investigated Nb/Cu system, in which the fitted
Tc exceeds bulkTc . The value found forDNb is close to the
prediction of Eq.~12! of Ref. 9, which is 2.68 cm2/s. The
silver diffusion coefficient is about 2 cm2/s below the gen-
eral tendency ofDAg found in V/Ag, as was shown in Fig. 3
of Ref. 9. However, this difference may well be attributed to
an actual difference in the purity of the samples used in the
experiments.

Figure 8 shows the resulting phase diagram for the
Nb~124 Å!/Ag~124 Å! system. The dimensional crossover in
the parallel upper critical field is not well reproduced. Its
position in the calculated curve is not far off from what is
measured, but the curvature below the crossover temperature
is larger than what is experimentally observed. Scaled first
solutions could only be obtained for scaling factors very
close to unity and did not lead to a significant improvement
of critical-field curves. Due to an extreme behavior of the
diffusion coefficients, scaled and unscaled second solutions
cannot be found for this system.

VIII. CONCLUSIONS

The conventional relation between the magnetic field
Hc2 and the magnetic coherence lengthj leads to a wrong
mutual dependence of the absolute magnitude of the upper
critical fields and the crossover temperature. This can only
be overcome by uncouplingHc2 andj in some way or other.
To achieve this, we introduced the concept of magnetic-
coherence-length scaling. We conserved the form of the re-
lation between the magnetic field and the coherence length,
Eq. ~20!, but we added a constant scaling factora that al-
lowed us to control the overall magnitude ofj independently
of Hc2 . This turned out to open up the possibility of obtain-
ing much better phase diagrams for many of the thick-layer
systems. In this context the appreciation for the two solutions
of the fit procedure has changed. While in the unscaled ap-

TABLE III. Fitting parameters for the Nb/Ag multilayer system.

dNb /dAg Tc Tfit Tc,Nb DNb DAg

~Å/Å ! ~K! ~K! ~K! (cm2/s) (cm2/s)

124/124 5.6 1.5 8.15 2.37 3.12

FIG. 8. Upper critical field curve of Nb~124 Å!/Ag~124 Å!. The
first solution is shown. The solid circles show the data points of
Ikebeet al. ~Ref. 13!.
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proach the first solution9 was the preferred one, now the
second solution10 regained its usefulness. For certain
multilayer systems, it did a better job than the first solution.
However, a satisfactory fit could not be obtained for all sys-
tems. Since magnetic-coherence-length scaling lacks an ex-
ternal justification, the fact that it works is an indication that
the Takahashi-Tachiki theory needs a modification in order
to give a realistic quantitative description of upper critical
fields of real metallic multilayers.

Previous publications9,10 only concerned V/Ag and Nb/
Cu. In this paper, the discussion was extended to two addi-
tional combinations of metals into multilayers: V/Cu and Nb/
Ag. However, for these systems, the limited amount of
experimental data did not allow for an equally extensive
analysis. The fitting material parameters for the first solution
could well be reconciled with the findings for the two related
systems V/Ag and Nb/Cu. For vanadium, theTc found was
high, but inside the range of values found for V in V/Ag. The

niobiumTc , on the other hand, was below the bulk niobium
value, but again inside the range of values found for Nb in
Nb/Cu. Compared to the earlier results, reasonable values
were obtained for the fitting diffusion coefficients. The ex-
perimental phase diagram of V/Cu was somewhat dissimilar
to the diagrams found for the related systems. The difference
suggested the existence of a temperature domain in which
superconductivity nucleates in the middle of the Cu layer.
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