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It is shown that the Brillouin zone integral for the interstitial KKR Green function can be evaluated accu-
rately by taking proper care of the free-electron singularities in the integrand. The proposed method combines
two recently developed methods, a supermatrix method and a subtraction method. This combination appears to
provide a major improvement compared with an earlier proposal based on the subtraction method only.
Consequently, the barrier preventing the study of important interstitial-like defects, such as an electromigrating
atom halfway along its jump path, can be considered as being razed.@S0163-1829~96!07228-1#

I. INTRODUCTION

The Korringa-Kohn-Rostoker~KKR! Green function
method1–3 has proven to be a powerful and elegant approach
to calculate the electronic structure of defects in metals.4 The
expressions to be evaluated are exact results of multiple scat-
tering theory and the method has been applied successfully
in calculating effects of charge transfer and lattice distortion,
both on the electronic structure4,5 and on physical quantities
such as the Dingle temperature6 and the effective valency of
migrating atoms.7 Until recently its elegance was believed8,9

to arise only after applying the muffin-tin approximation to
the atomic potentials. This amounts to an exact description
of the electronic structure within nonoverlapping spheres
only, being embedded in an average constant potential,
called the muffin-tin zero. Fortunately it could be proven10–12

that the muffin-tin approximation is not necessary, opening
the possibility to do full-potential calculations in the frame-
work of multiple scattering theory as well.

There remains one drawback of multiple scattering
theory, and this will be the subject of the present paper. The
muffin-tin zero or free-space reference system still appears in
the expressions to be evaluated, since free-electron poles are
present in the integrand of the KKR Green functions. These
plaguing singularities have to be handled with care. As far as
substitutional defects are concerned this problem was solved
recently13,14 by implementing a supermatrix method. How-
ever, for interstitial defects, such as hydrogen in metals and
an electromigrating atom halfway along its jump path, the
problem has not yet been solved to our knowledge. In this
paper we want to present a solution. It appears that the su-
permatrix method formulated for substitutional defects can
be extended to the interstitial problem. Supplemented with a
subtraction method the expressions become manageable and
evaluable to a high degree of accuracy.

The paper is organized as follows. In Sec. II the KKR

Green function matrices of interest are defined and the dif-
ferent existing computational approaches are reviewed
briefly. In Sec. III the supermatrix method will be presented.
In Sec. IV the subtraction procedure will be described. In
Sec. V the subtraction method will be tested. The paper ends
with some conclusions and prospects.

II. RELEVANT MATRICES
AND DIFFERENT APPROACHES

In a calculation of the electronic structure of dilute alloys
by use of the KKR Green function technique two matrices
show up,15 one for defects at substitutional sites,

Tj j 85
1

VBZ
E
BZ
d3keik•Rj j 8M21~k! ~1!

and one for an interstitial defect,

Gpp85
1

VBZ
E
BZ
d3keik•Rpp8bp~k!M21~k!bp8T~2k!. ~2!

The integrals run over the Brillouin zone~BZ! with volume
VBZ . A lattice vectorRj is denoted by a labelj andRj j 8
stands for the difference vector between the sitesj and j 8.
Arbitrary sites, including nonlattice sites, are indicated by a
labelp. All matrices are a function of the energyE and carry
~suppressed! angular momentum labelsL, which stands for
( lm). Both integrands contain the inverse of the KKR matrix
M (k) given by

M ~k!5t212b~k!, ~3!

in which the matrixt expresses the scattering properties of a
host atom, and for spherical scatterers is equal to2sindeid,

PHYSICAL REVIEW B 15 AUGUST 1996-IVOLUME 54, NUMBER 7

540163-1829/96/54~7!/4531~9!/$10.00 4531 © 1996 The American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15451773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


d being scattering phase shifts to be labeled by the angular
momentum labell . The matrixb(k) follows from the matrix
bp(k), defined by

bp~k!5(
j
Bp je2 ik•Rp j, ~4!

after taking forp a lattice site label. The matrixbp(k) is the
Fourier transform of the free space propagation matrix ele-
mentBpj, given by

BLL8
p j

54p i l2 l 821(
L9

i l 9CLL8L9hL9
1

~Rp j!, ~5!

in which CLL8L9 are Gaunt coefficients and
hL

1(r )5hl
1(kr )YL( r̂ ). Real spherical harmonicsYL( r̂ ) are

used,hl
1 are spherical Hankel functions, andk5AE. The

electronic structure of the metallic host follows from the con-
dition

detM ~k!50, ~6!

which is a basic result of multiple scattering theory.
The free-electron singularities are hidden in the matrix

bp(k). They are readily made explicit by writing down its
reciprocal space representation

bLL8
p

~k!5(
n

eiKn•Rp j
FL~k1Kn!FL8

* ~k1Kn!

~k1Kn!
22E1

1 idp jdLL8

hl
1~kx!

j l~kx!
, ~7!

in which

FL~k!5A2VBZ

pk
i lYL~ k̂!

j l~kx!

j l~kx!
. ~8!

In this expression the free-electron poles at the energies
E5(k1Kn)

2 are clearly present,Kn denoting a reciprocal
lattice vector. The latter equality in fact defines the so-called
free-electron sphere. Note that forp being a lattice site the
exponential factor reduces to unity and that only for that case
does the second term contribute. Thej l are spherical Bessel
functions. As usual in Green function treatments, the energy
carries an infinitesimally positive imaginary part, which is
indicated byE1. At this point we want to remark that the
formalism discussed in this paper is currently4 applied at
complex energies as well. For that slight changes in the no-
tation are required. However, in all calculations one has to
approach the real-energy axis somewhere, so that the pole
problem shows up anyhow. It is clear that the matrixM (k)
also contains the free-electron singularities. At thek points
defined by Eq.~6!, which pertain to the electronic structure,
its determinant value is zero, while at the free-electron
sphere it is singular.

Looking at the integrand of the matrixGpp8 it is seen that
it is full of singularities. Free-electron singularities are
present in the matricesbp(k) andbp8T(2k). These are par-
tially canceled by those in the matrixM (k), but this matrix
itself introduces poles corresponding to the electronic struc-
ture of the metal regarding the condition Eq.~6!.

In order to state the problem in actual calculations clearly
we expand a little upon it. A popular way to evaluate the
matricesTj j 8 andGpp8 is using a subdivision of the Brillouin
zone into microvolumes, cubes, or tetrahedrons, going back
to Gilat and Raubenheimer,16 Jepsen and Andersen,17 and
Lehmann and Taut.18 The required matrix inversion is per-
formed by using its eigenvaluesl and eigenvectorsV,

MLL8
21

5~Vl21V†!LL85(
q

VLq

1

lq
VL8q
* , ~9!

as suggested by Lasseter and Soven19 and elaborated by Col-
eridge, Molenaar, and Lodder.20 The matrixTj j 8 is the sim-
pler one and therefore has been calculated most intensively.
This explains the availability of quite exhaustive studies of
substitutional alloys and the relative lack of results for inter-
stitial alloys.21

As an introduction we concentrate on the different evalu-
ation methods forTj j 8. These methods can be distinguished
by tracing the influence of the infinitesimally positive imagi-
nary part added to the energyE. Working out this influence
explicitly a real and an imaginary part of the integral in
Tj j 8 come out according to the well-known equality

1

x1 5P
1

x
2p id~x! ~10!

The imaginaryd function part leads to a reduction of the
Brillouin zone integral to an integral over a constant energy
surface. If one is interested in properties at the Fermi energy
EF that integral runs over the Fermi surface. The tetrahedron
grid reduces to a grid of triangles over the constant energy
surface. The real principal value part remains. In practice it is
evaluated along two different lines. The most straightforward
line is to evaluate the corresponding Brillouin zone integral
explicitly. This is achievable if one needsTj j 8 at the Fermi
energy only, because quite a fine grid ofk points is required.
Coleridge, Molenaar, and Lodder.20 proposed to use a
weighted grid, having a finer subdivision of tetrahedra at the
singular surfaces, the Fermi surface, and the free-electron
sphere, and that is the way it is applied.22 For electronic
structure calculations one needs the matrixTj j 8 at all ener-
gies, starting at the bottom of the band and going upwards.
To that end another line of evaluation23 of the real part has
been developed, taking advantage of the necessity to account
for a considerable energy interval by employing a Kramers-
Kronig relation. This relation expresses the real part ofTj j 8
in terms of its imaginary part in the form of an integral over
the energy. In this way the Brillouin zone integration is
avoided at the expense of the necessity to evaluate the imagi-
nary part, the constant-energy surface integral, up to rela-
tively high energies. At the latter point some approximation
has to be made, in choosing an upper-bound cutoff energy. It
is worthwhile to note that in practice in this method the
free-electron problem does not enter in the integrals, neither
in the evaluation of the real part, nor in integrating over the
constant-energy surface. The integrand of the imaginary part
simply is a product of unperturbed metallic-host wave-
function coefficients.23 The free-electron singularities only
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complicate the finding of the metallic bands, using Eq.~6!,
and the corresponding wave-function coefficients.

A relatively recent development13,24 is to evaluate the full
Brillouin zone integral, substitutingE15E1 id and using a
small value ford. The grid ofk points to be used is not as
fine as required for the principal value part, becauseE1 now
is a complex number, while a value ofd50.01E is already
small enough to meet both thed→0 limit and accuracy re-
quirements.

All this applies as far as the pole structure ofM21(k) is
concerned, corresponding to the metallic electronic structure.
Now we turn to the singularities inM (k) due to the free-
electron poles. These singularities do not look too serious,
becauseM21(k) approaches zero at these points. This is so
indeed, if one follows the so-called double linear method of
Coleridge, Molenaar, and Lodder.20 In that method the full
matrix M21(k) is represented as a ratio of two functions
n(k) andd(k), and the integralI (T) over a tetrahedronT is
written as

I ~T!5E
T
d3k

n~k!

d~k!
5(

i51

4

Ki~d1 ,d2 ,d3 ,d4!ni . ~11!

The third member follows analytically from the second
member assuming a linear behavior of the functionsn(k)
andd(k) inside the tetrahedron. The numbersni anddi are
the values at the four vertices. The weightsKi are given by
Oppeneer and Lodder.25 The functiond(k) is supposed to be
zero at the singularities due to the electronic structure. In
practice one takes ford(k) the eigenvalue ofM (k), which
becomes zero, and by that determines the electronic struc-
ture. Denoting this eigenvalue byl0 , the functionn(k) in
the numerator is equal tol0(qVLqVL8q

* /lq . This holds for
the alkali and noble metals. If the Fermi surface is composed
of more than one sheet more than one eigenvalue becomes
zero, of course at differentk points, and a product of the
corresponding eigenvalues is used. However, in this ap-
proach the functionn(k) is not as linear as one might wish,
even if just one eigenvalue becomes zero. In addition to
smoothly behaving eigenvalues it contains the eigenvalue
representing the free-electron singularity. Since, due to the
inverse,n(k) at such points becomes zero the method still
works, provided a relatively dense~weighted! grid is used.

In a later development26,27,13 it was considered to apply
Eq. ~11! not to the full matrixM21(k), but to each term
separately in the representation~9! instead. The functions
dq(k) in the denominator are the rootslq , and
nq(k)5VLqVL8q

* . It is clear that this cannot work without
modification, due to the terms corresponding to the highly
nonlinear free-electron roots. The modification requires an
innovative handling of the free-electron singularities. It ap-
pears that the concept of a supermatrix has to be introduced
in the description.26,13 This supermatrix method, which al-
lows for a considerable reduction of the number ofk points
to be used,14 will be discussed in Sec. III.

III. SUPERMATRIX DECOMPOSITION
OF THE INTEGRANDS

For the sake of clarity first the formulation for the matrix
Tj j 8 will be summarized,13,14 after which it is given for the

matrix Gpp8. In the supermatrix method the terms in the ma-
trix b(k), which make the matrixM (k) singular, are treated
separately in a special way. Suppose that a total number of
N reciprocal lattice vectors contribute to the singularity in
the energy range of interest. Then, glancing at Eqs.~3! and
~7!, it is possible to write the matrixM (k) as a sum of a
smooth partM0(k) and a part containing theN possible
singularities as follows:

MLL8~k!5MLL8
0

~k!2(
n

N FL~k1Kn!FL8
* ~k1Kn!

~k1Kn!
22E1 .

~12!

After defining a square diagonal matrixD with elements
Dn5(k1Kn)

22E1 and a rectangular matrixF with ele-
mentsFLn[FL(k1Kn), this equation can be written in ma-
trix form as

M5M02FD21F†. ~13!

This form suggests inversion using a supermatrixA defined
by

A5FD F†

F M0G ~14!

according to the Sherman-Morrison-Woodbury formula28

A215FD211D21F†M21FD21 2D21F†M21

2M21FD21 M21 G .
~15!

Contrary to the original matrixM , the supermatrixA is regu-
lar everywhere in the Brillouin zone. The free-electron poles
in M appear in its supermatrix representationA as free elec-
tron zeros of the matrixD in the upper left corner ofA. It is
even so that detA5detDdetM , which is clear from the fol-
lowing equality

detA5detFD F†

F M0G5detS F 1 0

FD21 1G
3FD F†

0 M02FD21F†G D 5det1det1detDdetM ,

~16!

by using Eq.~13!. One simple consequence is that the un-
pleasant original KKR condition Eq.~6! can be replaced by
the regular one

detA~k!50. ~17!

This difference betweenA andM is crucial regarding the
accuracy of the integration. According to Eq.~15! the wanted
inverted matrixM21 is given simply by the lower right
block of the supermatrixA21. In the inversion ofA, to be
achieved in a way similar to Eq.~9!, using its eigenvalues
and eigenvectors, all eigenvalues behave smoothly. Applying
the double linear method symbolized by Eq.~11! to each
term separately in the sum over the inverse eigenvalues, a
mesh of about 100k points is sufficient in most self-
consistent electronic-structure calculations. The eigenvector
productsnq(k) in the numerator even behave so smoothly
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that it appears to be sufficient to use the value of the func-
tionsnq(k) in the middle points of the tetrahedron only. By
that the third member of Eq.~11! becomes proportional to
that value, while the sum over the weightsKi reduces to one
simple weight expression. A convincing example of the
power of the supermatrix method is given in Ref. 14.

Now everything is ready to focus our attention on the
much more singular integrand of the interstitial KKR Green
function matrixGpp8. Fortunately a similar decomposition of
that integrand can be designed. In addition to the form~13!
for the matrixM one needs the forms

bp~k!5bl01FpD21F† ~18!

and

bpT~2k!5br01FD21Fp† ~19!

for the twob matrices in the integrand in Eq.~2!. The matrix
Fp is defined by

FLn
p 5eiKn•RpFLn . ~20!

Using the form~15! for the supermatrixA21 it is readily
seen that the supermatrixP, defined by the product of three
supermatrices,

P5FD F†

0 bl01FpD21F†G
3FD F†

F M0G21FD 0

F br01FD21Fp8†G , ~21!

after multiplication gets a lower right block, which is pre-
cisely the matrix product in the integrand of Eq.~2!. The left
and right supermatrices in Eq.~21! do not behave smoothly
yet, but after some rewritings, to be given in Appendix I, the
supermatrixP obtains the form

P5FD 0

0 2FpD21Fp8†G1F 0 0

2Fp bl0G
3FD F†

F M0G21F0 2Fp8†

0 br0
G . ~22!

The second term contains the inverse of the supermatrixA,
now multiplied from the left and right by a smooth matrix.
SinceA21 can be obtained in a smooth way, the second term
is easily evaluable. Only the free-electron poles in the lower
right block of the first term still require special treatment. It
can be shown that a subtraction procedure presented
recently14 allows for a quick and accurate evaluation of that
term as well. This will be the subject of the next section.

IV. THE SUBTRACTION IDEA

Originally14 the subtraction method was designed and ap-
plied in handling the free-electron singularities in the inte-
grand of the matrixGpp8 according to Coleridge, Molenaar,
and Lodder,20 using a weighted distribution of tetrahedra in
the Brillouin zone. For the sake of clarity that approach will
be summarized first.

The idea of the subtraction method is to subtract a func-
tion f (k) from the integrand, which is chosen such that the
integrand gets free of the poles, while the integral over the
function f (k) can be evaluated analytically and is added later
on. Although it can be seen by inspecting the behavior of the
integrand of Eq.~2! at the free-electron poles that the func-
tion

2(
n

ei ~k1Kn!•Rpp8
FL~k1Kn!FL8

* ~k1Kn!

~k1Kn!
22E1 ~23!

cancels these poles in the integrand, an explicit proof will be
given in Appendix B. This function cannot be integrated ana-
lytically. However, it is possible to manipulate the form~23!
such that it retains its pole-canceling property on the one
hand and can be integrated on the other hand. First the func-
tionsFL(k) given by Eq.~8! can be used in a simplified form
by taking the limitk→k, by which the Bessel function fac-
tor reduces to unity. This step may induce some oscillations
around the free-electron singularities, but at the singularity
the limit holds exactly. Another step is the introduction of an
Ewald-like convergence factor in order to improve the con-
vergence of the summation over reciprocal lattice vectors.
The final functionf (k) obtains the form

f LL8~k!52
2VBZ

pk
i l2 l 8(

n
ei ~k1Kn!•Rpp8

YL~k1Kn!YL8~k1Kn!

~k1Kn!
22E1 e2~ uk1Knu2k!2/h, ~24!

in which the Ewald parameterh controls the convergence. Upon integration over the Brillouin zone, the summation over
reciprocal lattice vectors leads to an integral over allk space. The angular part of the resulting integral can be carried out

E dk̂eik•Rpp8YL~ k̂!YL8~ k̂!54p(
L9

i l 9CLL8L9 j l 9~kRpp8!YL9~R̂pp8!. ~25!

The integral overk still contains a free-electron pole, but the principal value part can be evaluated using the equality

4534 54DEKKER, LODDER, ZELLER, AND TATARCHENKO



PE
0

`

k2dk
j l~kRpp8!e

2~k2k!2/h

k22E
5PE

0

`

dkS k2 j l~kRpp8!k1k
2

k

2
j l~kRpp8! D e2~k2k!2/h

k2k
1

k

4
j l~kRpp8!PE

0

`

2dk
e2~k2k!2/h

k2k
.

~26!

The first integral on the right-hand side is regular, while the
second integral equals the readily available exponential inte-
gral E1(E/h), being defined by29

E1~x!5E
x

`e2t

t
dt. ~27!

In this way the evaluation of the matrixGpp8 connecting
two nonlattice sitesRp and Rp8 has been made possible,
although it has to be admitted that in the used weighted mesh
sometimes over 4000k points are required.

Now we return to the supermatrixP, Eq. ~22!. From Eq.
~20! one readily sees that the matrixFpD21Fp8† in the lower
right block of the supermatrix in the right-hand side of Eq.
~22! has precisely the form~23!. Note that in Eq.~23! the
exponential factoreik•Rpp8 in the integrand ofGpp8, Eq. ~2!,
has already been included, while the lower right block ofP
represents the matrix product in Eq.~2! only. So the only real
difference between the matrix function2FpD21Fp8† and
Eq. ~23! pertains to the summation over reciprocal lattice
vectors. In Eq.~23! all of them are included, while inP only
theN pole-generating ones occur. From above it is clear that
the functionf (k) of Eq. ~24! has the same properties as Eq.
~23! as far as the free-electron poles are concerned. It can be
concluded that precisely that function can serve in evaluating
the remaining problematic Brillouin zone integral. The func-
tion 2FpD21Fp8† can be calculated straightforwardly, and
after subtraction off (k) given by Eq. ~24! it becomes
smooth.

By this the barrier in evaluating the interstitial KKR
Green functionGpp8 can be considered as being razed. In
addition, the achievement of the supermatrix approach, in
that a coarser mesh suffices compared with the original Col-
eridge approach, remains. The subtraction method will be
tested below.

V. TEST CALCULATIONS

In this section the accuracy of two integrals will be tested,
both of which suffer from the presence of free-electron sin-
gularities in the integrand. The integrations will be carried
out using the Coleridge approach20 symbolized by Eq.~11!.
The first integral is given by the left-hand side of the follow-
ing algebraic equality:

1

VBZ
E
BZ
bLL8~k!eik•Rj j 8d3k5BLL8

j j 8 . ~28!

TheB matrix in the right-hand side, for different site labels
defined by Eq.~5!, is evaluated routinely up to any desired
accuracy. Ifj 85 j this matrix is defined to be zero, in accor-
dance with the exact result for the integral on the left-hand
side. Theb matrix in the integrand, being given by the ma-

trix bp of Eq. ~4! for p5 j , is seen to be singular on the
free-electron sphere by inspecting the alternative representa-
tion, Eq. ~7!. Comparing with the matrix function
FpD21Fp8† in Eq. ~22!, clearly the singular part of the ma-
trix b coincides with it if p and p8 refer to lattice sites
labeled byj and j 8. So the integral of theb matrix can be
considered as a close test of the subtraction procedure pro-
posed. Furthermore, the choice is quite natural, because this
matrix is readily available in our computer codes.

The actual tests have been done for copper at the Fermi
energy. Using a muffin-tin radius of 0.65a/2 and a lattice
constanta of 6.831 bohrs, the phase shiftsd0 to d3 are
20.1506388, 0.0563578,20.1491734, and 0.0010149, re-
spectively, andEF50.634 Ry. In the first test only the lattice
constant and the Fermi energy enter.

In Table I results obtained without and with subtraction
are compared with the exact results according to the right-
hand side of Eq.~28!. Only some representative matrix ele-
ments are shown, indicated by (j lm) labels in the first six
columns. The seventh to tenth columns are obtained by nu-
merical integration, the last column gives the exact values.
The first row at the top indicates the way in which the inte-
gration is performed, and the second and third rows specify
the mesh and the denominator functiond(k) in Eq. ~11!,
respectively. So, the seventh column follows from straight
integration. Application of subtraction of the functionf (k),
defined in Eq.~24!, is indicated explicitly. As for the second
row at the top, straightforward integration requires a
weighted mesh, which, in the present example, is denser near
the free-electron sphere, and therefore is indicated by FES.
After subtraction the smooth integrand allows for a homoge-
neous grid, indicated by 0. Nevertheless the smoothness is
tested by doing the same calculation with the weighted grid.
The number ofk points is given in the last row of the table.
The singular surface is the free-electron sphere and the de-
nominator functiond(k) required for the straightforward in-
tegration is a product of factors (k1Kn)

22E, as many of
them that vanish somewhere in the Brillouin zone. Interest-
ingly, this latter product is precisely equal to detD, the de-
terminant value of the matrixD in the upper left block of the
supermatrixA, introduced in Eq.~14!. This is indicated in
the third row at the top. After subtractiond(k) can be chosen
freely, and a constant, indicated by 1, is used. As an implicit
test of the linearity of detD, also after subtraction a calcula-
tion is done using that function as a denominator, given in
the tenth column. Of course, in that case the weighted mesh
FES is required again. Comparing the seventh and eighth
columns with the last column it is seen that application of
subtraction leads to a major improvement. Furthermore, the
better result is obtained with a much coarser mesh. Applying
the finer mesh after subtraction, as shown in the ninth col-
umn, does not lead to significant changes. In addition it can
be concluded from the tenth column that the linearity of
detD is sufficient.
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Another test can be derived from the matrixGpp8 @see Eq.
~2!# if the arbitrary site labels are replaced by lattice site
labels. Then, becausebj (k)5bj 8T(2k)5b(k), the algebraic
identity

Gj j 852t21d j j 82Bj j 81t21Tj j 8t21 ~29!

can be derived easily, using the relation~3! betweenM (k)
andb(k). Both matricesG andT can be evaluated numeri-
cally only. However, while the integrand ofGj j 8 contains
free-electron singularities, in the integrand ofTj j 8 they
merely appear as a nonlinearity in the eigenvalues of the
matrix M (k), as described in Sec. II. In the testsGj j 8 is
evaluated only according to the original Coleridge
approach,20 including a subtraction procedure as well, in the
way the present authors have described recently.14 The ma-
trix Tj j 8 will be calculated by the supermatrix method also,
for which fewer k points are expected to be required. So
features of both the subtraction and supermatrix methods
will be illustrated by Eq.~29!.

In Table II results forGj j 8 according to the left-hand side
of Eq. ~29!, before and after applying the subtraction proce-
dure, are compared with results according to the right-hand
side. This table is constructed in the same way as Table I.
First we elucidate the denominator functionsd(k) of Eq.
~11!, as specified in the third row at the top. As far as the
poles corresponding to the electronic structure are concerned,
the product of the vanishing eigenvalues ofM (k) can be
taken, as described in Sec. II. DetM (k) might work as well,
being equal to the product ofall eigenvalues. But the latter
choice introduces a problem because of its singular~and
therefore nonlinear! behavior at the free-electron surface.
Therefore, detM (k) has to be multiplied by detD. By that
additional multiplication, regarding Eq.~16!, the denomina-
tor functiond(k) becomes equal to detA, which appears in
the modified KKR condition Eq.~17!. The free-electron sin-
gularities in the integrand ofG j j 8 require multiplication by an
additional factor of detD. So for straightforward integration
~see column 7! detAdetD has to be used. In that case the
~weighted! mesh must be taken to be dense near both the

Fermi surface and the free-electron sphere. This mesh is in-
dicated by FS/FES. After subtraction the free-electron singu-
lar surface is absent. This allows for the less dense mesh FS
and for the simpler denominator function detA, column 8. To
see the influence of the density of the mesh the same calcu-
lation is done with the denser FS/FES mesh, column 9. In
addition, also in this complicated case, the effect of the~ex-
tra! nonlinearity of the denominator is investigated, by doing
the same calculation with the denominator detAdetD, as
shown in column 10. Columns 11 to 13 give results accord-
ing to the right-hand side of Eq.~29!, the last two columns
showing supermatrix results for two different meshes. Con-
trary to the weighted meshes of the Coleridge method, the
meshes used in the supermatrix method are always uniform.

Again the results improve largely by applying subtraction.
In fact, the straightforwardly evaluated integrals can be con-
sidered as really bad. An obvious source of inaccuracy is the
behavior of the denominator function detAdetD in regions
where a tetrahedron is cut by the Fermi surface as well as the
free-electron sphere. Then the product of detA and detD does
not change sign and the denominator does not become aware
of crossing a singular surface at all. This may happen even
for a noble metal. The single sheet Fermi surface intersects
the free-electron sphere in the neck region. Comparing col-
umns 8 and 9 one sees that the denser mesh near the free-
electron surface yields not too large but yet non-negligible
modifications. The addition of the extra factor detD is not as
harmless as in the integration ofb(k), as can be seen from
column 10. This is just another illustration of the source of
inaccuracy indicated above. So it can be stated that it is
important to use a denser mesh at the free-electron sphere,
even if the integrand is not singular there. This certainly is a
disadvantage of the Coleridge method. Nevertheless, it is
satisfactory to see~columns 11 to 13! that, in evaluating the
T matrix, the Coleridge method leads to the same results as
the supermatrix method. In addition the table confirms ex-
plicitly that the subtraction method, proposed recently14 for
determining the fullG matrix, is reliable.

Finally, the table shows implicitly that the supermatrix
method for determining theG matrix is more efficient than
the subtraction method.14 Less than 1000k points are suffi-

TABLE I. BLL8
j j 8 calculated by integration ofb(k) in different ways. The last column contains its exact

value.

BLL8
j j 8 labels Straight f (k) f (k) f (k) Exact

FES 0 FES FES
j j 8 l m l8 m8 detD 1 1 detD

1 1 0 0 0 0 0.023 0.000 0.000 0.001 0
1 0 1 0 0.023 0.000 0.000 0.001 0
2 1 2 1 0.¬049 0.001 0.000 0.003 0
3 2 3 2 0.223 0.017 0.006 0.139 0
1 0 3 0 0.040 0.000 0.000 -0.002 0

2 1 0 0 0 0 0.207 0.199 0.199 0.205 0.198
1 0 1 0 0.164 0.172 0.172 0.178 0.172
2 1 2 1 0.464 0.470 0.470 0.477 0.469
3 2 3 2 2.794 2.649 2.647 2.709 2.629
1 0 3 0 0.457 0.456 0.455 0.457 0.455

Number ofk points 2247 640 2247 2247
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cient. The number of 891 in the last column is a good indi-
cation for integrating the second term in Eq.~22!, which
contains the same supermatrixA21 as the supermatrix inte-
grand of the matrixT. The subtraction procedure proposed
for the first term, having free-electron poles only, is tested by
Table I. The number of 640k points in the eighth column
suffices for that term.

VI. CONCLUSIONS AND PROSPECTS

The supermatrix method, initially proposed14 with the aim
of a fast and accurate evaluation of the KKR Green function
Tj j 8 appearing in calculations of the electronic structure of
substitutional alloys, has been extended to the interstitial
KKR Green functionGpp8. A subtraction procedure is shown
to resolve the remaining problem of integrating a function
with free-electron singularities only. In evaluating the corre-
sponding Brillouin zone integrals rather coarse grids of less
than 1000k points can be used. Applications to calculations
of transport properties such as the effective valence of elec-
tromigrating atoms are in progress.30 Study of the electronic
structure of the largely unexplored interstitial defects will be
the subject of future investigations.
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APPENDIX A

We want to give a derivation of the final form Eq.~22! of
the supermatrixP from its definition Eq.~21!. Using the
matrixA defined by Eq.~14! we first write the matrixP in a
slightly more compact form:

P5FD F†

0 bl01FpD21F†GA21FD 0

F br01FD21Fp8†G .
~A1!

Subsequently the supermatrix left of the supermatrixA21 is
written in the formXlA1Yl and the supermatrix to the right
is written similarly asAXr1Yr . In principle, the choice of
the four matricesXl , Yl , Xr , andYr is arbitrary, but a suit-
able one is

Xl5F 1 0

FpD21 0G , Yl5F 0 0

2Fp bl0G , ~A2!

Xr5F1 D21Fp8†

0 0
G , Yr5F0 2Fp8†

0 br0
G . ~A3!

The elaboration of Eq.~A1! is now straightforward and ends
up with the expression

P5FD 0

0 2FpD21Fp8†G1F 0 0

2Fp bl0GA21F0 2Fp8†

0 br0
G .

~A4!

Regarding the definition of the supermatrixA, Eq. ~14!,
this is precisely the required form Eq.~22! given in the main
text.

APPENDIX B

We want to show that the function~23! indeed cancels the
free-electron poles in the integrand of the interstitial KKR
Green function~2!. Apart from the trivial exponential factor
eik•Rpp8, the integrand, being a matrix to be denoted asa,
can be written in the following form:

a5~bl01FpD21F†!~M02FD21F†!21~br01FD21Fp8†!,
~B1!

in which Eqs.~13!, ~18!, and~19! are used. First we define a
matrix c,

TABLE II. The matrix GLL8
j j 8 calculated along different lines. rhs denotes right-hand side.

GLL8
j j 8 labels Straight f (k) f (k) f (k) rhs rhs rhs

FS/FES FS FS/FES FS/FES FS/FES super super
j j 8 l m l8 m8 detAdetD detA detA detAdetD detA matrix matrix

1 1 0 0 0 0 -0.289 -0.153 -0.150 -0.190 -0.149 -0.155 -0.155
1 0 1 0 0.008 0.166 0.160 0.106 0.161 0.180 0.169
2 1 2 1 0.351 0.538 0.524 0.461 0.525 0.551 0.536
3 2 3 2 2.201 2.311 2.366 2.371 2.486 2.278 2.284
1 0 3 0 0.061 0.105 0.089 0.080 0.087 0.106 0.106

2 1 0 0 0 0 0.014 -0.002 -0.006 -0.001 0.000 -0.006 -0.005
1 0 1 0 -0.151 -0.139 -0.137 -0.146 -0.132 -0.137 -0.138
2 1 2 1 -0.026 -0.047 -0.052 -0.054 -0.045 -0.045 -0.042
3 2 3 2 -0.568 -0.488 -0.522 -0.448 -0.435 -0.595 -0.601
1 0 3 0 -0.027 -0.079 -0.080 -0.079 -0.077 -0.068 -0.061

Number ofk points 4123 2643 4123 4123 4123 146 891
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c5~M02FD21F†!21~br01FD21Fp8†!, ~B2!

being equal to the product of two matrices in the triple prod-
uct matrixa. So

a5bl0c1FpD21F†c, ~B3!

while Eq. ~B2! can be written in the form

FD21F†c5M0c2br02FD21Fp8†. ~B4!

Three observations can be made. First, from its definition it
is clear that the matrixc is a regular one, because the poles
in numerator and denominator cancel. Secondly, as a conse-
quence, only the second term in Eq.~B3! contains the free-
electron poles. Thirdly, the left-hand side of Eq.~B4! already
has the form of that second term. Regarding Eq.~20! it be-
comes equal to that second term by multiplying Eq.~B4!
from the left with the factoreiKn•Rp. By that the third term
on the right-hand side of Eq.~B4! obtains the required form
2FpD21Fp8†. Substituting the rewritten form of Eq.~Br! in
Eq. ~B3! completes a first proof. The merit of the second
proof to be given is, that in addition it exhibits a nice link27

between the subtraction and supermatrix methods.
To that end an auxiliary rectangular matrixq is defined by

the relation

F†c52Fp8†2Dq ~B5!

by which Eq.~B4! reduces to

Fq52M0c1br0. ~B6!

Now Eqs.~B5! and ~B6! can be combined in a supermatrix
form

FD F†

F M0
GFqcG5F2Fp8†

br0
G . ~B7!

It is seen that the supermatrixA, Eq. ~14!, enters the formu-
lation.

The solution of Eq.~B7!,

FqcG5A21F2Fp8†

br0
G5FA11

21 A12
21

A21
21 A22

21GF2Fp8†

br0
G , ~B8!

requires the subblocksAi j
21 of the supermatrixA21, by defi-

nition given by

FD F†

F M0
GFA11

21 A12
21

A21
21 A22

21G5F I 0

0 I G . ~B9!

We only need the two explicitly written equations

DA11
211F†A21

215I , DA12
211F†A22

2150. ~B10!

After substitution of the matrixc according to Eq.~B8! in
Eq. ~B3! for the matrix of interesta,

a5~bl01FpD21F†!~2A21
21Fp8†1A22

21br0!, ~B11!

and making use of the equalities~B10!, one finds

a52bl0A21
21Fp8†1bl0A22

21br01FpA11
21Fp8†2FpA12

21br0

2FpD21Fp8†, ~B12!

in which form once again the term containing the free-
electron poles is made explicit.

Up to now the matrixa figures in the subtraction method
only, standing for the singular matrix in the integrand of the
interstitial KKR Green function matrixGpp8. It is interesting
to go one step further and to write Eq.~B12! in the matrix
form

a5@2Fp bl0#A21F2Fp8†

br0
G2FpD21Fp8†. ~B13!

In this form one recognizes the lower right block of the su-
permatrix P, Eq. ~A4!, which figures in the supermatrix
method. So the supermatrix and subtraction procedures ap-
pear to be intimately linked.
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