
Predicting Maintenance Effort with Function Points
�

Frank Niessink Hans van Vliet

Faculty of Mathematics and Computer Science, Vrije Universiteit Amsterdam
De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands

E-mail:
�
F.Niessink, J.C.van.Vliet � @cs.vu.nl

Abstract

Function Point Analysis (FPA) is a well-known method
to measure the functionality of a system, from the user’s
point of view. Both Albrecht’s original model and a local
variant we studied assume that effort is primarily related
to the size of a change. Analysis of data gathered on a ma-
jor system over a period of 18 months does not confirm this
relation. Rather, our data suggests that the size of the com-
ponent to be changed has a much larger impact on effort
than the size of the change itself. Furthermore, the various
corrective factors of the function point model do not help to
improve effort estimates in the environment we studied. Fi-
nally, we found that expert estimates outperform the func-
tion point estimates, while analogy-based estimates slightly
outperform the expert estimates.

Keywords

Maintenance Effort Prediction, Function Points, Main-
tenance Function Points, Analogy-based Estimation.

1 Introduction

Function Point Analysis (FPA) is a well-known method
to measure the functionality of a system, from the user’s
point of view. It does so by calculating the number of func-
tion points of a system in a two-step process:

1. The functional size of a system is calculated by as-
signing a weight to each individual function. The sum

�
Copyright 1997 IEEE. Published in the Proceedings of ICSM’97,

September 28 – October 2, 1997 in Bari, Italy. Personal use of this material
is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works, must be obtained from the IEEE.
Contact: Manager, Copyrights and Permissions / IEEE Service Center /
445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Tele-
phone: + Intl. 908-562-3966.

of these weights is termed the Unadjusted Function
Points (UFP).

2. At the level of the complete system, a number of pre-
defined application characteristics, such as processing
complexity and transaction rate, result in a Value Ad-
justment Factor VAF.

Multiplying UFP and VAF yields AFP: the Adjusted Func-
tion Points.

The version of the FPA-model generally used is the one
published in 1983 [4]. Later refinements concern clarifica-
tion of the counting rules, not the structure of the model.

Albrecht claims that function points are ‘an effective
relative measure of function value delivered to our cus-
tomer’ [3]. Various other researchers have also found a
strong relation between the number of function points and
work effort; see e.g. [12, 5, 13, 10, 2]. FPA is a popular
method for development effort prediction, even though var-
ious researchers have criticized the underlying methodol-
ogy [17, 8].

Models to predict maintenance effort generally use
Lines Of Code (LOC) as the primary size-related factor in-
fluencing maintenance effort [14, 11]. Estimating the size
of a change in terms of LOC added/deleted/updated how-
ever may well be as difficult as estimating the size (in LOC)
in development projects. The latter is known to be noto-
riously difficult, and results of using LOC as the primary
means to predict development costs have been mixed, to
say the least. Jørgensen [11] assumes ‘that the maintenance
task size can be reasonably accurately predicted and that
the use of our LOC based size measure is meaningful.’ He
did consider Function Points as a candidate size measure,
but noted various disadvantages: Function Points are not
very meaningful on small maintenance tasks, change ori-
ented tasks and on maintenance tasks not concerned with
user functionality. The latter is obviously true. We do not
know whether the other claimed disadvantages are true or
not.

As part of the SoftCalc model for estimating mainte-
nance costs [16], Sneed proposes the use of Function Points

to measure both the size of the application and the size of
the change. However, the article does not present a valida-
tion of the model with empirical data. The only other publi-
cation we know of which describes an empirical assessment
of the relation between maintenance effort and (variants of)
FPA is [1]. See also section 2.

Under the auspices of NESMA, the Dutch branch of the
International Function Point User Group (IFPUG), a vari-
ant of FPA has been developed which is aimed at predict-
ing maintenance effort. A variant of this variant is used by
the Dutch Ministry of Transport, Public Works and Water
Management as the primary basis for billing the client orga-
nization for maintenance efforts. Data on 140 maintenance
tasks carried out from March 1995 to September 1996 are
analyzed in this paper.

The remainder of this paper is organized as follows.
Section 2 introduces the FPA variant used to model mainte-
nance effort. Section 3 describes the organization and sys-
tem for which data has been gathered. Section 4 investi-
gates the relations between maintenance function points,
expert estimates for maintenance tasks and actual hours
spent. Section 5 gives our conclusions.

2 From Development Function Points to
Maintenance Function Points

To obtain the Unadjusted Function Points of a system,
Albrecht distinguishes 5 function types and 3 complexity
levels for each function type. The 5 function types are:
External Input, External Output, External Inquiry, Internal
Logical File and External Interface File. The first three are
transaction function types, and the last two are data func-
tion types. The UFP associated with an individual func-
tion depends on the type of the function and the complexity
level associated with that function; see table 1. For trans-
action functions, the complexity level is determined by the
number of file types referenced (FTR) and the number of
data element types of those files (DET). For data functions,
the complexity level is determined by the number of record
element types (RET) and the number of data element types
of the Internal Logical File or the External Interface File in
question. As an example, table 2 indicates the complexity
levels for Input Functions.

Albrecht’s general formula for determining the number
of Function Points in a development project already takes
into account that such a project generally builds on existing
functionality [4]:

AFP � UFPdeleted � VAFpre ��
UFPchanged � UFPadded �	� VAFpost (1)

where

Complexity level
Function type Low Average High
External Input 3 4 6
External Output 4 5 7
External Inquiry 3 4 6
Internal Logical File 7 10 15
External Logical File 5 7 10

Table 1: Function types and their weights

File Types Data Element Types (DET)
Referenced (FTR) 1-4 5-15
 15

0-1 Low Low Average
2 Low Average High

 2 Average High High

Table 2: Complexity levels for Input Functions

� AFP = Adjusted Function Points for the new system,

� UFPdeleted = Unadjusted Function Points deleted from
the system,

� UFPchanged = Unadjusted Function Points changed in
the system, as expected at completion of the project,

� UFPadded = Unadjusted Function Points added to the
system,

� VAFpre = Value Adjustment Factor of the system at the
start of the project,

� VAFpost = Value Adjustment Factor of the system at
project completion.

Though one might be tempted to use this formula for main-
tenance tasks too, there are at least two reasons for not do-
ing so:

1. removing functionality from a system will most likely
be cheaper than developing that same functionality,
and

2. adding a small amount, say, � Function Points, to a
large function of, say, Function Points, will most
likely be cheaper than adding Function Points to a
function of size � .

The Dutch Function Point User Group NESMA developed
a variant of the above formula to remedy these effects. In
this model, the various Unadjusted Function Point counts
are multiplied with a Maintenance Impact Ratio (MIR), in-
dicating the relative impact of a change. Our data is based

on a variant of this variant. The latter is described below,
as far as needed to discuss the dataset and its analysis.

Obviously, MIR equals 1 for functions added to the sys-
tem. For functions deleted from the system, MIR is set at
0.2 in our environment. To determine MIR for changed
functions, a scheme similar to that for the complexity levels
of functions is used. For example, when a transaction type
function is to be changed, that change will affect a subset
of the file types referenced and their data element types. If
the change involves a small subset of FTR and DET, it is
reasonable to assume the change to cost a small fraction of
the initial development cost. If the change involves a large
fraction of FTR and/or DET, then that change may cost up
to the initial development cost. The situation is even worse
in the latter case, since such a change not only incurs an ef-
fort approximating that for the initial development, but an
extra effort to undo (remove) the original function as well.

In our environment, a 5-point scale is used for MIR-
levels for transaction type functions. The resulting scheme
for determining MIR is given in table 3. The mapping
to numerical values is given in table 4. Here, %FTR de-
notes the percentage of file types changed, i.e. %FTR =
(FTRchanged / FTRpre) � 100%. The percentage of data el-
ement types changed (%DET) is defined in a similar way.
Multiplication of UFP with MIR yields the number of Un-
adjusted Maintenance Function Points (UMFP).

Abran [1] found that most adaptive changes are small.
To handle these, he proposes a scheme in which the lower
complexity levels are further refined. This essentially
amounts to applying a Maintenance Impact Ratio, part of
the time.

For the situation we are considering, many of the Value
Adjustment Factors distinguished in [4] do not apply, sim-
ply because we are considering one system only, so that
their value is the same for each proposed change. We did
retain three of the Value Adjustment Factors, and added a
new one. More importantly, the possible influence of these
factors is taken into account at the level of an individual
transaction or data function, rather than the complete sys-
tem. So, for example, the complexity of a given function
influences the effort to change that function; the complex-
ity of other functions, or the system as a whole, does not.
The possible effect of our Value Adjustment Factors is sim-
ply multiplicative, as for instance in the COCOMO-model
[6], and occasionally additive.

The following Value Adjustment Factors are distin-
guished:

1. Functional Similarity. This is the reusability factor
of [4], though with a quite different semantics. If a
change request incurs similar changes in other func-
tions, it is reasonable to assume a copying effect from
the first such change to the next ones. In that case, all

but the first such change get a multiplicative adjust-
ment of 0.75.

2. Performance Sensitivity. A function is considered
performance sensitive if it uses a sufficiently large
database table in at least one location. In that case, a
multiplicative adjustment of 1.15 is used.

3. Complex Function. We distinguish two levels of com-
plexity: complex and very complex. If a complex
(very complex) function is added, such incurs a mul-
tiplicative adjustment factor of 1.5 (3). If a complex
(very complex) function is changed, the additive ad-
justment is 3 (12).

4. Standard Functionality. Some changes can be easily
accommodated with, because they map well onto the
primitives of the 4GL being used. If these cases, a
multiplicative adjustment factor of 0.5 is used. This
factor is not present in [4].

3 The FAIS System

FAIS is a large financial information system, custom-
developed for the Dutch Ministry of Transport, Public
Works and Water Management. FAIS is written in a 4GL
(Uniface) and uses the Sybase DBMS. The size of the sys-
tem is approx. 14,000 Function Points. It has been in op-
erational use since the summer of 1994. FAIS is used at 28
locations spread over the country. It has 1200 end users.

The FAIS support organization has three functional
units:

� Customer Contacts handles all contacts with the users
of the system. This unit develops user specifications
for change requests, and takes care of user training.

� Functional Maintenance does the design, implemen-
tation and testing of all changes of the system. Cor-
rective maintenance and small changes are handled by
one sub-unit (the helpdesk); planned maintenance and
new releases are handled by another sub-unit.

� Technical Maintenance takes care of the technical in-
frastructure and installs new releases.

The maintenance data we are analyzing in this paper
concerns planned (i.e. non-corrective) maintenance activi-
ties. An incoming change request is first analyzed by Cus-
tomer Contacts. This results in one or more change pro-
posals at the level of a FAIS-function. A FAIS-function is
a unit of application functionality which can be separately
invoked from a menu by the user of the system. Data is col-
lected at the level of a change to a single FAIS-function:

%DET
%FTR ������� ������� ������� ���������
��������
������� Very Small Small Average Large Very Large
������� Small Average Large Very Large Very Large
������� Average Large Very Large Very Large Very Large
��������� Large Very Large Very Large Very Large Very Large

�������� Very Large Very Large Very Large Very Large Very Large

Table 3: MIR levels for transaction type functions

MIR-level Very Small Small Average Large Very Large
Value 0.125 0.25 0.5 0.75 1.2

Table 4: MIR values for transaction type functions

actual time spent to design, implement and test the change,
an expert estimate of the change effort, and the number of
maintenance function points of the change.

Customer Contacts and Functional Maintenance inde-
pendently determine the number of Maintenance Function
Points for each change to a FAIS-function. They have to
come to an agreement about this number as well as the de-
scription of the change, which are then both frozen. The
Maintenance Function Points are next used to bill the client
organization. The actual planning of maintenance activi-
ties by Functional Maintenance is based on an expert esti-
mate per change to a FAIS-function. This expert estimate is
made by Functional Maintenance. We do not know the ex-
tent to which the Function Point estimates have influenced
the expert estimates. The opposite influence is unlikely,
given the detailed counting guidelines that have been used.

3.1 The dataset

As noted in section 2, the function points measurement
process includes a data function type measurement and a
transaction function type measurement. Since FAIS does
not interface other systems, the number of External Inter-
face Files is 0. Changes to Internal Logical Files often span
more than one FAIS function, or even more than one change
request. Such changes may moreover involve data conver-
sions. Though data on this type of change has been col-
lected, they are at a level which is incompatible with the
level at which function points are counted. Our analysis is
therefore restricted to the transaction function types.

Our initial dataset has 327 entries at the level of a FAIS-
function. For 175 entries, actual hours spent have not been
recorded at this level. These mostly concern changes which
take little time individually, such as the removal of one
function. For 12 entries, the data were incomplete. The

One transaction function changed 90
Multiple transaction functions changed 50
Number of changes 140

Total hours spent 6655
Total of expert estimates 6765
Total AMFP 648.88
Hours spent per AMFP 10.26

Table 5: Global information on dataset

remaining 140 data points are used in the analysis below;
of these, 90 concern a change in one transaction function,
while 50 concern more than one changed transaction func-
tion. See table 5 for some global information on this data
set and figure 1(a) for a scatter plot of effort versus Adjusted
Maintenance Function Points (AMFP).

4 Analysis

In this section we will examine the suitability of our
Maintenance Function Point (MFP) model to estimate the
effort needed to implement change requests. We will com-
pare the quality of the predictions of the MFP-model with
the quality of the expert estimates from the dataset. Also,
we will decompose the MFP to determine the contribution
of model components to the estimate (cf. [2]). Finally, we
will use analogy-based estimation as another means of as-
sessing the suitability of the dataset for estimation.

There are several criteria to evaluate the predictions of
a model [7]. The coefficient of multiple determination (�!)
is used to indicate the amount of variance that is accounted
for by the independent variables in a linear model. Because
�" tends to be an optimistic estimate of how well the model

(a) AMFP (x-axis) vs. Work-hours (b) DETchanged (x-axis) vs. Work-hours

Figure 1: Effort scatter plots

fits the population, we also provide the adjusted �" which
compensates for the number of independent variables in the
model.

We also use the Mean Magnitude of the Relative Er-
ror (MMRE) to indicate the relative amount by which the
predictions over- or underestimate the real value. We use
PRED(25) to indicate how many of the predictions lie
within 25% of the real value. Conte et al. use the simul-
taneous satisfaction of the two measures

MMRE ������� and PRED(25) #$����� (2)

as a criterion for acceptable model performance.

4.1 Assessing the maintenance function point es-
timates

First, we compare the expert estimates with those from
the Maintenance Function Point (MFP) model. To pre-
dict the Work Effort (WEpred) for change requests using
maintenance function points we use the formula WEpred �
MFP-ratio � AMFP. We calculate the MFP-ratio using
the total number of adjusted maintenance function points
(AMFP) for this dataset and the total number of hours spent
working on these 140 change requests, see table 5. The
MFP-ratio for this dataset is 10.26 hours per AMFP. We
compare the estimates of the MFP model with the expert
estimates in table 6.

It is clear that the expert estimates outperform the MFP
model on all quality figures. In the next sections we will

explore whether other combinations of model components
or other estimation techniques improve the results.

4.2 Models based on function point components

As described in section 2, the main steps taken when
computing the number of AMFP for a change request are:

UFP % MIR&'&(&�) UMFP % VAF&�&(&�) AMFP (3)

We would expect the �" to increase in each of these steps
as extra information is added to the maintenance function
point count. Table 7 displays the regression models for
UFP, UMFP and AMFP.

The values of � suggest that inclusion of MIR in the
model makes matters even worse. To find a possible reason
for this behavior, we will have to consider the more detailed
attributes that make up the value of MIR, like DETchanged.
We can only do so for changes involving one transaction
type function. For changes involving multiple transaction
functions, the type of change may differ between the trans-
action functions that constitute the change. This reduction
leaves us with 90 data points, 63 of which concern a change
to one function, 19 concern the addition of a function and
8 belong to a rest category (such as the deletion of a func-
tion). We perform the regression analysis again on the two
subsets for the same variables as in table 7, see table 8.

Note that we calculated the regression models for new
transaction functions twice. Using the 19 new transaction
function the regression analysis is quite unsuccessful. If

Equation Std. err. �" �" adj. MMRE PRED(25)
Expert Estimates - 0.66 - 57% 39%

WEpred �*���(+,��- � AMFP - 0.46 - 91% 22%

Table 6: Comparing the estimates

Equation Std. err. �" �" adj. MMRE PRED(25)
WEpred ���'+ .�/ � UFP & ���(+ ��- 44.08 0.40 0.39 110% 26%

WEpred �0��+ /�1 � UMFP � ���(+ 1�- 47.27 0.31 0.30 149% 22%
WEpred �21(+ /�- � AMFP � -3+ �3� 41.98 0.46 0.45 104% 22%

Table 7: Regression models for UFP, UMFP and AMFP

Changed transaction functions (� = 63)
Equation Std. err. �" �" adj. MMRE PRED(25)

WEpred �$-3+4��- � UFP & /(+ 1�� 22.42 0.13 0.12 117% 19%
WEpred �25(+ -�5 � UMFP � ��-(+,��1 22.77 0.10 0.09 126% 22%
WEpred �25(+,��� � AMFP � ��-(+ 1�� 22.84 0.10 0.08 121% 19%

New transaction functions (� = 19)
Equation Std. err. � � adj. MMRE PRED(25)

WEpred ��.6+4�7� � UFP � .3+ �(� 34.62 0.02 -0.04 130% 21%
WEpred �$.3+8��� � UMFP � .6+ �3� 34.62 0.02 -0.04 130% 21%
WEpred �25(+8��� � AMFP � ��5(+9�:� 34.44 0.03 -0.03 120% 21%

New transaction functions (� = 18)
Equation Std. err. �" �" adj. MMRE PRED(25)

WEpred ���'+,��1 � UFP & ��/3+ 1�� 8.16 0.51 0.48 58% 28%
WEpred �0��+9�:1 � UMFP & ��/(+ 1�� 8.16 0.51 0.48 58% 28%
WEpred ���'+ 5�/ � AMFP & �3+ 5�1 6.31 0.71 0.69 47% 28%

Table 8: Regression models for changed and new transaction functions

we look at the work-hours for these 19 change requests,
we observe that there is one outlier. One change request
costs about four times the work-hours of any of the other
18 cases. Though the dataset with new transaction func-
tions is too small to perform further analysis, the figures in
table 7 do suggest that something is wrong in the estimates
for changed functions. Because this set is sufficiently large
(63 cases) we may try to improve the models by investi-
gating alternatives. The fact that the �" for the regression
model with UFP only is as low as 0.13 is not very surpris-
ing: we do not expect the work-hours needed to implement
a change in a function to correlate well with the number of
(development) function points of that function. We do ex-
pect, however, a fair correlation between work-hours and
UMFP. The fact that the �" for UMFP is even lower at 0.10
suggests a flaw in the mapping from UFP to UMFP.

To further examine this, we try to construct a new MIR
that will improve the regression model for UMFP. In the

current MFP model, MIR is computed from a table which
has as its inputs the percentage of DET changed and the
percentage of FTR changed, see tables 3 and 4. We try to
construct a better MIR by performing a stepwise regression
on the components that make up MIR: DETchanged, DETpre,
FTRchanged and FTRpre. So we are trying to find the model
of the form:

WEpred � �<;6= � ;?> � DETchanged � ; � DETpre �;A@ � FTRchanged � ;3B � FTRpre �	� UFP (4)

Doing so yields the following model for MIR C :
MIR C ���3+4��/ � DETchanged � �3+ ��� � DETpre � �(+ ��5

(5)

Using this new MIR we recompute UMFP and AMFP –
resulting in UFMP C and AMFP C . If we use UMFP C and
AMFP C on the subset of 63 changed functions we get the
results as presented in table 9.

Changed transaction functions (� = 63)
Equation Std. err. �" �" adj. MMRE PRED(25)

WEpred �D��+,��5 � UMFP C & 5(+ 1�1 15.78 0.57 0.56 71% 21%
WEpred �D��+ ��. � AMFP C � ��+,��� 16.81 0.51 0.50 73% 32%

Table 9: Regression models with MIR C

We now have a definite improvement in the step UFP

% MIR&'&(&�) UMFP. Comparing table 3 with equation 5, we ob-
serve a striking difference. Whereas our original model as-
sumes that effort is proportional to the relative size of a
change, equation 5 suggests effort is proportional to the size
of the component changed. This observation is in line with
results reported in the literature (see, e.g. [11]): mainte-
nance effort is highly correlated with size.

The step UMFP % VAF&�&3&�) AMFP, however, still does not
improve �" . Our attempts to improve VAF by considering
its constituents have been in vain. Regression analysis on
individual factors and combinations thereof yield quite dif-
ferent parameter values, suggesting that one factor acts as
a correction to the other, rather than as an improvement of
the model as a whole. This fits in with the observation that
these adjustment factors are highly negatively correlated.

4.3 Analogy-based estimation

Analogy-based estimation [15] is an estimation tech-
nique in which we make predictions based on a few histori-
cal cases from a larger dataset. These historical cases act as
analogies for the one for which we are making the predic-
tion. Using the tool Angel (see [15]) we can automate the
search process for the analogies. Angel determines analo-
gies by computing the Euclidean distance between cases.

To assess the suitability of the dataset for making
analogy-based estimations Angel uses jack-knifing; one by
one each case is taken from the dataset and an estimate is
determined using the remainder of the dataset. The esti-
mates together determine the MMRE and PRED(25) qual-
ity figures. This process is repeated for each combination of
attributes, yielding the best combination together with the
quality figures for that combination.

If we let Angel assess our dataset using the maintenance
function point components (FTRpost, FTRpre, FTRchanged,
DETpost, DETpre, DETchanged, UFP, UMFP, MIR, VAF,
AMFP), we obtain the following result:

Variables used for prediction MMRE PRED(25)
FTRchanged, DETchanged, 39.8% 38%
DETpre, UMFP, VAF, AMFP

The values for MMRE and PRED(25) are much better
than those for the regression models in tables 6 and 7. A

possible explanation is that the dataset is rather heteroge-
neous. The scatterplot in figure 1(b) illustrates this. Plots
for other variables show similar patterns. If the number of
attributes is sufficiently large and at the same time discrim-
inates the cases well, analogy-based estimating is a promis-
ing alternative to more rigid regression-based models.

5 Conclusions

In this paper we used various FPA variants to predict
maintenance effort. We started off with a variant which,
like Albrecht’s original model, assumes that maintenance
effort is strongly determined by the size of a change. The
performance of the resulting model proved to be rather poor
on the dataset we studied.

Further analysis revealed one particularly weak spot. In
our environment the size of a component changed has a
much stronger impact on the effort needed than the size of
the change itself. The general form of the relation between
effort and the size of the component/change is better de-
scribed as

Effort E constant � size of the component

� � � �GFH� size of change � (6)

rather than as

Effort E constant � size of change (7)

On hindsight, this fits in well with other models that use size
as the primary factor influencing maintenance effort.

The steps we have taken somehow constitute a calibra-
tion of the structure of the MFP model, rather than a cali-
bration of its parameters only. Whether the need for such
a structural calibration is caused by the particular organiza-
tion we have been studying, or has more general merit, is
still an open question.

Notwithstanding the improvements we have been able to
make to the initial model, the results are still rather unsatis-
factory. None of the presented models satisfies the criterion
for prediction models mentioned in equation 2. Whether
such is partly caused by the omission of relevant factors,
such as the age of a component or its complexity, is not
known. We have simply no other attributes available than
those collected for the MFP model.

We nonetheless suspect that the heterogeneity of the
dataset remains in conflict with the ‘one model fits all’ fla-
vor of regression-type models. In such cases analogy-based
estimation seems to offer an interesting alternative.

Acknowledgements

This research was partly supported by the Dutch
Ministry of Economic Affairs, project ‘Concrete Kit’,
nr. ITU94045. Partners in this project are Cap Gemini,
Twijnstra Gudde and the Technical Universities of Delft
and Eindhoven. We furthermore acknowledge the support
of Diederik Verwoerd, Peter Nooteboom, and Douwe Schu-
macher of the FAIS support organization at the Ministry of
Transport, Public Works and Water Management.

References

[1] Alain Abran and Marcela Maya. A Sizing Measure for
Adaptive Maintenance Work Products. In ICSM [9].

[2] Alain Abran and Pierre N. Robillard. Function Point Anal-
ysis: An Empirical Study of Its Measurement Processes.
IEEE Transactions on Software Engineering, 22(12):895–
910, December 1996.

[3] A.J. Albrecht. Measuring Applications Development Pro-
ductivity. In Proceedings Application Development Sympo-
sium, pages 83–92. SHARE/GUIDE, 1979.

[4] A.J. Albrecht and J.E. Gaffney. Software function, source
lines of code, and development effort prediction: a software
science validation. IEEE Transactions on Software Engi-
neering, 9(6):639–648, 1983.

[5] R.D. Banker and C.F. Kemerer. Scale economies in new
software development. IEEE Transactions on Software En-
gineering, 15(10):1199–1205, 1989.

[6] B. Boehm. Software Engineering Economics. Englewood
Cliffs, N.J: Prentice-Hall, 1981.

[7] S.D. Conte, H.E. Dunsmore, and V.Y. Shen. Software En-
gineering Metrics and Models. The Benjamin/Cummings
Publishing Company, Inc., 1986.

[8] Norman E. Fenton and Shari Lawrence Pfleeger. Software
Metrics: A Rigorous and Practical Approach. Int. Thom-
son Computer Press, second edition, 1997.

[9] IEEE Computer Society. Proceedings of the International
Conference on Software Maintenance (ICSM ’95), Nice,
France, October 16-20 1995.

[10] Ross Jeffery and John Stathis. Function Point Sizing: Struc-
ture, Validity and Applicability. Empirical Software Engi-
neering – An International Journal, 1(1):11–30, 1996.

[11] Magne Jørgensen. An Empirical Study of Software Main-
tenance Tasks. Software Maintenance: Research and Prac-
tice, 7:27–48, 1995.

[12] C.F. Kemerer. An empirical validation of software cost es-
timation models. Communications of the ACM, 30(5):416–
429, 1987.

[13] C.F. Kemerer and B.S. Porter. Improving the Reliability of
Function Point Measurement: An Empirical Study. IEEE
Transactions on Software Engineering, 18(11):1011–1024,
1992.

[14] H. Dieter Rombach, Bradford T. Ulery, and Jon D. Valett.
Toward Full Life Cycle Control: Adding Maintenance Mea-
surement to the SEL. The Journal of Systems and Software,
18(2):125–138, May 1992.

[15] Martin Shepperd, Chris Schofield, and Barbara Kitchenham.
Effort Estimation Using Analogy. In Proceedings of the 18th
International Conference on Software Engineering, pages
170–178, Berlin, Germany, March 1996. IEEE Computer
Society Press.

[16] Harry M. Sneed. Estimating the Costs of Software Mainte-
nance Tasks. In ICSM [9], pages 168–181.

[17] C.R. Symons. Function point analysis: difficulties and im-
provements. IEEE Transactions on Software Engineering,
14(1):2–11, 1988.

