
The Human-Computer Interface is the System;
A Plea for a Poor Man’s HCI Component in Software Engineering Curricula

Gerrit van der Veer and Hans van Vliet
Division of Mathematics and Computer Science
Vrije Universiteit, Amsterdam, The Netherlands

Email: {gerrit, hans}@cs.vu.nl

Abstract

Most software engineering approaches restrict the user interface to everything a user may per-
ceive or experience. As a result, it is often designed rather independently of the system’s function-
ality. Chances are then that it does not get the attention it deserves. In the approach to software
development we sketch, the design of the user interface and the design of the functionality go hand
in hand. We give a number of examples of user interface problems, and illustrate how these can
be caught early if a more integrated approach is taken. We conclude with an outline of a minimal
course on human-computer interaction that we feel should be part of everyone’s software engineer-
ing curriculum.

1 Introduction

We can’t worry about these user interface issues now. We haven’t even gotten this thing
to work yet!
[Mulligan et al., 1991]

The user interface of a system is important. About half of the code of an interactive system is
devoted to the user interface. A recent study found that 60% of software defects arise from usability
errors, while only 15% of software defects are related to functionality [Vinteret al., 1996]. The
quality of the user interface is a critical success factor. Good user interfaces increase the efficiency
and productivity of their users, reduce errors and training time, and improve user acceptance.

What thenis the role of the user interface? And where is it located? What should every software
engineer know about user interfaces and human-computer interaction?

In 1983, a workshop on user interface management systems took place at Seeheim in West Ger-
many [Pfaff, 1985]. At this workshop, a model was proposed which separates the application proper
from the user interface. This model has become known as theSeeheim model. The Seeheim model
describes the user interface as the outer layer of the system. This outer layer is an agent responsible
for the actual interaction between the user and the application. It, in turn, consists of two layers
supporting (1) the presentation – perceptible aspects including screen design and keyboard layout,
and (2) the dialog, i.e. the syntax of the interaction including metacommunication (help functions,
error messages, and state information). If the machine is said to apply a model of its human partner
in the dialog, e.g. by choosing the user’s native language for command names, this model is also
located in the dialog layer.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15451699?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


This conceptualization of the user interface does not include the application semantics, or ‘func-
tionality’. In the Seeheim model, the tasks the user can ask the machine to perform are located in
another layer, the application interface.

The Seeheim model provides some very relevant advantages. For example, we may provide the
same outer layer to different applications. We may apply the same look and feel to a text editor,
a spreadsheet, and so on, as in Microsoft products. In this way the user need not learn different
dialog languages for different applications. Conversely, we may provide a single application to be
implemented behind different outer layers, so as to allow different companies to adopt the same
application with their own corporate interface style.

The Seeheim model, as well as other software engineering models such as the model-view-
controller paradigm of Smalltalk restrict the user interface to everything that a user may perceive or
experience. The SWEBOK view on human-computer interaction (HCI) is no exception to this line
of thought. As a result of this limited view of what a user interface is, it is often designed rather
independently of the system’s functionality. Chances are then that the user interface does not get
the attention it deserves.

The Stone Man version of SWEBOK [SWEBOK, April 2000] lists HCI and related knowledge
domains as ”related disciplines” of software engineering. We agree with this view, but not with the
importance HCI has been assigned. According to appendix D of the SWEBOK report, all human-
computer interaction aspects mentioned are of relevance only for the areas ”Software Testing” and
”Software Engineering Management”. It seems SWEBOK takes the traditional view that human
factors become relevant at the test phase of software engineering only, as an addition to other
evaluation measures after the design phase is finished. Human factors input then is only needed to
verify that the look and feel of the interface matches user needs, and it apparently does not relate
to deeper design and requirements issues. Additionally, human factors are related to management
which, of course, includes managing the (human) team of software engineers.

Our position is that this totally ignores the fact that many software engineering projects currently
and in the future will aim to develop systems where human use and human factors in the context
of use are decisive factors for product quality. As a consequence, we take a different stance in this
paper. In the approach we sketch, the design of the interface and the design of the functionality go
hand in hand. Hence the provocative title: ‘The user interfaceis the system’. Within our approach,
the design of the user interface replaces what we are used to call requirements engineering.

There are two main reasons for taking this broader view of what a user interface is:

• The system, and hence its interface, should help the user perform certain tasks. The user
interface should therefore reflect the structure of the task domain. The design of tasks and
the design of the corresponding user interface influence each other and should be part of the
same cyclical process. Like quality, the user interface is not a supplement.

• The dialog and representation alone do not provide sufficient information to the user. In order
to be able to work with a system, the user sometimes needs to know ‘what is going on behind
the screen’.

The viability of our approach is corroborated by various studies. [Lethbridge, 2000] for ex-
ample addresses the question what knowledge is important to a software professional. He found
that human-computer interaction is one of the topics with the widest educational knowledge gap.
Practitioners found HCI a very important topic, of which they had learned very little in educa-
tion. [Bevan, 1999] shows that the traditional quality assurance approach, emphasizing static and
dynamic properties of software, needs to be expanded to incorporate quality in use aspects that
address broader ergonomic issues.

2



Section 2 discusses various models that play a role in human-computer interaction. Section 3
discusses a number of user interface problems, and indicates the type of model mismatch they
originate from. Section 4 sketches an eclectic approach to user interface design whose aim is to
circumvent this type of model mismatches to occur. Finally, section 5 indicates how a minimal
course on human-computer interaction might look like.

2 Models, models, models

The concept ‘user interface’ has several meanings. It may denote the layout of the screen, ‘win-
dows’, or a shell or layer in the architecture of a system or the application. Each of these meanings
denotes adesigner’spoint of view. Alternatively, the user interface can be defined from the point of
view of the intendeduserof a system. In most cases, users do not make a distinction between layers
in an architecture and they often do not even have a clear view of the difference between hardware
and software. For most users an information system as a whole is a tool to perform certain tasks.
To them, the user interfaceis the system.

In this paper we use the termuser interface to denote all aspects of an information system that
are relevant to a user. This includes not only everything that a user can perceive or experience
(as far as it has a meaning), but also aspects of internal structure and processesas far as the user
should be aware of them. E.g., the user of a suite of programs including a text editor, a spreadsheet
and a graphics editor should know that a clipboard is a memory structure whose contents remain
unchanged until overwritten.

We define the user interface in this broad sense as theuser virtual machine (UVM). The UVM
includes both hardware and software. It includes the workstation or device (gadget) with which the
user is in physical contact as well as everything that is ‘behind’ it like a network and remote data
collections. We take the whole UVM, including the application semantics, as the subject of (user
interface) design.

When thinking about user interface design, it is important to make a distinction between the
user’s mental model, the user virtual machine, and the conceptual model.

Themental modelis a model in human memory. It is the user’s model of the system he uses. It
is based on education, knowledge of other systems, knowledge of the application domain, general
knowledge about the world, etc. The mental model is used during interaction with the system, to
plan actions and interpret system reactions. The mental model is often incomplete and inconsistent.

Theuser virtual machine(UVM) includes everything the user should know about the system in
order to use it. It includes aspects ranging from the physical outlook of the computer and connected
devices to the style of interaction and the form and content of the information exchange.

The conceptual modelis the explicit model of the system created by designers and teachers.
It is a consistent and complete representation of the system as far as relevant for the users. The
conceptual model shows itself in the interface. If there is only one class of users, the user virtual
machine and the conceptual model are the same. If there is more than one class of users (such as
ATM clients, ATM maintainers, and lawyers), there is one UVM for each class, and the conceptual
model is the union of those UVMs.

The central issue in human–computer interaction is to attune the user’s mental model and the
conceptual model as closely as possible. When this is achieved, the system becomes easier to
learn and easier to use. When the models conflict, the user gets confused and starts making errors.
Good design starts with the derivation of a conceptual model from an analysis of users and their
tasks. This conceptual model is then built into the system (the UVM) in such a way that it induces

3



adequate mental models in the users.

3 Model mismatches

Many user interface problems can be explained in terms of mismatches between the mental
model, user virtual machine and conceptual model. They may concern plain representation issues
as well as deeper problems relating to user task structure and semantics. In this section, we give a
few examples to illustrate the range of issues involved.

3.1 Task delegation

The Dutch railway company planned to remove the human operated ticket desks at small railway
stations. In order to gradually pursue this business goal, a first step was to develop ticket selling
machines for day trips, to be placed on the platforms. The early machines provided users with the
possibility to buy tickets to all railway stations in the country. However, the journey had to start at
the location the ticket was issued. The machine did not mention this and neither did the information
campaign designed to change travelers’ behavior to buy tickets at the machine instead of at the desk.
As a result, many travelers with a month pass for a certain trajectory were fighting the machines
when they wanted to extend their journey to a destination not covered by their pass. Consequently,
the intended buyer behavior did not develop according to plans.

The requirements defined for the first generation machines did not take into account actual trav-
eller behavior patterns, even at the ”high” level of planning and economic buying strategies, which
could have been found out with early user studies. This is an example of a mismatch between the
mental model users had of the machine and the conceptual model built into it.

3.2 Task semantics, functionality

[Sommervilleet al., 1994] discuss an air traffic control system redesign project. Part of their
discussion concerns the question what objects are relevant for the task space, and, hence, should be
part of the system’s task model.

Traditionally, air traffic controllers in many countries use paper ”flight strips” symbolising indi-
vidual aircraft, with a number of attributes of that flight printed on the strip. While handling the
flight, the strips get notes scribbled on them, and they get physically positioned and manipulated at
the work desk area of the group managing the space the aircraft is in. All information on the strip,
as well as its history, obviously can be handled by creating an electronic record and manipulating
that record. At the abstract level, the functionality is obvious, and its automation seems fine. Hu-
man users, though, in a situation of mental overload turn out to use elements in the physical work
situation to help them stay aware both of the level of work load in general, and of the individual
subtasks that are currently running. The paper flight strips turned out to have precisely that function
in being visibly available, together with their attributes, being grouped and otherwise manipulated
and making the users literally ”feel” the work in progress.

Observing and analysing users in actual work situations, using special human factors techniques,
provides insight in task semantics even before any detail design decisions have to be made. The
mental model of the task space in this case requires that certain information be permanently percep-
tible and manipulatible by the users. The (first version of the) user virtual machine did not provide
this functionality.

4



3.3 The syntax level of the dialogue

The dialog design should relate to human goal-driven behaviour. E.g., if a person’s goal in using
an ATM is to get money, the user tends to stop his dialog with the machine as soon as he receives
that money. Identification of the user with the help of a bank card and PIN is only a lower-level
goal, triggered by the need of the system to replace (physical) identification and verification by bank
employees during transactions. Users will accept this goal only as far as, and as long as, it helps
them reach their primary goal, getting money. The first generation of ATM’s often returned the
bank cards only after the whole transaction was finished, which resulted in a lot of users forgetting
to take out their card.

Psychological analysis of the users’ goal structure in task situations will reveal what dialog struc-
ture best matches expected behavior. By using appropriate human factors techniques, this insight
can be developed before any working prototype of the system is implemented. In the ATM case, the
aim should be to develop a user virtual machine and conceptual model that invites users to develop
a mental model that includes card handling (as a subgoal and subtask).

3.4 Representation level

Specifying the system’s image (the perceptible user interface) should take into account a whole
series of aspects:

• generic issues like human perception characteristics in relation to the actual work situation,
the cultural meaning of symbols, etc;

• the task- and situation-dependent need for specific information, like the actual system state,
options for next user actions, ranges of values to be put in, etc.

Only an analysis of the system under development with the help of early usability tests will help
the designer to make a good choice. The types of users should be taken into account in these
studies. E.g., if a system is designed to provide local information to be installed in a public place,
some experimentation might show what questions are the first ones users would want to ask, as
well as how best to state each individual question. In a menu type dialog these questions should be
immediately recognizable at the user interface. Depending on the local situation the options may
be in one or more languages, or represented by pictograms that appropriately reflect the cultural
symbol values of the types of users expected. If 95% of the people requesting this information does
not speak the local language, it does not make sense to use that language to indicate the option to
choose another language.

On-the-spot analysis of user behavior and user characteristics, with the help of an early proto-
type, prevents the development of representations that are unusable, or otherwise do not fit for the
potential user population. Again, the user virtual machine should refer to functionality that relates
to the users’ ”natural” mental models of or in the current situation.

4 A unified process model

Traditional user interface design mainly concerns the situation of a single user and a monolithic
system. In current applications, computers are mostly part of a network, and users are collaborating,
or at least communicating, with others through networks. Consequently, the UVM should include
all aspects of communication between users as far as this communication is routed through the
system. It should also include aspects of distributed computing and networking as far as this is

5



relevant for the user, such as access, structural, and time aspects of remote sources of data and
computing. For example, when using a Web browser, it is relevant to understand mechanisms of
caching and of refreshing or reloading a page, both in terms of the content that may have changed
since the previous loading operation and in terms of the time needed for operations to complete.

These newer types of application bring another dimension of complexity into view. People are
collaborating in various ways mediated by information technology. Collaboration via systems re-
quires special aspects of functionality. It requires facilities for the integration of actions originating
from different users on shared objects and environments, facilities to manage and coordinate the
collaboration, and communication functionality. Such systems are often denoted asgroupware.
Modern user interface design techniques cater for both the situation of the classical single user
system and groupware. We expect this distinction to disappear in the near future.

There are several classes of stakeholders in system development. These include at least the
clients, i.e. the people or organizations that pay for the design or acquisition of systems, and the
users, i.e. the people or groups that apply the systems as part of their daily work, often referred to
as theend users. In many situations there will be additional classes of stakeholders to cater for,
like people who are involved in maintaining the system, and people who need traces or logs of the
system to monitor cases of failure or abuse, such as lawyers.

Making a distinction between classes of stakeholders does not solve the problem of user diversity.
In complex systems design, we are confronted with different end users playing different roles, as
well as end-user groups that, as a group, have knowledge or a view on the task domain that need
not be equivalent to the (average or aggregated) knowledge and views of the individuals.

4.1 Design as an activity structure

Viewing design as a structure of interrelated activities, we need a process model. The model we
use will be familiar to software engineers: it is a cyclical process with phases devoted to analysis,
specification, and evaluation. Figure 1 depicts this process model.

user
task domain

analysis specification

feedback

models to
be evaluatedUVM

specification

knowledge

request more
knowledge

UVM models

evaluation
results

evaluation

requirements

Figure 1. A process model for user interface design

AnalysisSince the system to be developed will feature in a task situation, we start with task analy-
sis. We further structure this activity into the development of two models, labeled task model 1 and
task model 2. The first one models the current task situation. Task model 2 models the task domain
of the future situation, where the system to be developed will be used, including changes in the
organization of people and work procedures. The relationship between task models 1 and 2 reflects
the change in the structure and organization of the task world as caused by the implementation of
the system to be developed. This difference is relevant both for the client and the user.

6



The development of task model 2 from task model 1 uses knowledge of current inadequa-
cies and problems concerning the existing task situation, needs for change as articulated by the
clients, and insight into current technological developments. For a detailed discussion of task
analysis techniques, see [Kotonya and Sommerville, 1997], [SWEBOK, April 2000, chapter 2] or
[van Vliet, 2000, chapter 9].

SpecificationThe specification of the system to be designed is based on task model 2. It has to
be modeled in all details that are relevant to the users, including cooperation technology and user-
relevant system structure and network characteristics. Differences between the specification of the
new system (the user’s virtual machine or UVM) and task model 2 must be considered explicitly
and lead to design iteration.

Evaluation The specification of the new system incurs many design decisions that have to be con-
sidered in relation to the system’s prospective use. For some design decisions, guidelines and
standards might be used as checklists. In other situations, formal evaluation may be applied, us-
ing formal modeling tools that provide an indication of the complexity of use or learning effort
required. For many design decisions, however, evaluation requires confronting the future user with
relevant aspects of the intended system. Some kind of prototyping is a good way to confront the
user with the solution proposed.

The design of an interactive system as discussed here is very akin to the requirements engineering
activity as discussed in [Loucopoulos and Karakostas, 1995] or other textbooks on that subject.
The terminology is slightly different and reflects the user-centered stance taken in this paper. For
example, ‘analysis’ sounds more active than the commonly used term ‘elicitation’. ‘Evaluation’
entails more than ‘validation’; it includes usability testing as well. Finally, we treat the user and the
task domain as one entity from which requirements are elicited. In the approach advocated here,
the user is observedwithin the task domain.

4.2 Design as multi-disciplinary collaboration

The main problem with the design activities discussed in the previous section is that differ-
ent methods may provide conflicting viewpoints and goals. A psychological focus on individual
users and their capacities tends to lead to Taylorism, neglecting the reality of a multitude of goals
and methods in any task domain. On the other hand, sociological and ethnographical approaches
towards groupware design tend to omit analysis of individual knowledge and needs. Still, both
extremes provide unique contributions.

In order to design for people, we have to take into account both sides of the coin: the individual
users and clients of the system, and the structure and organization of the group for which the system
is intended. We need to know the individuals’ knowledge and views on the task, on applying
the technology, and the relation between using technology and task-relevant user characteristics
(expertise, knowledge, and skills). With respect to the group, we need to know its structure and
dynamics, the phenomenon of ‘group knowledge’ and work practice and culture.

For example, in a traditional bank setting, the client and the bank employee are on different sides
of a counter. The bank employee is probably using a computer, but the client cannot see the screen,
and does not know what the clerk is doing. In a service-oriented bank setting, the clerk and client
may be looking at the screentogether. They are together searching for a solution to the client’s
question. This overturns the existing culture of the bank and an ethnographer may be asked to
observe what this new set up brings about.

The general framework for our approach to user interface design is depicted in figure 2. It is a

7



work organization
practice

ethnography

psychological knowledge

acquisition, hermeneutics

constraints, opportunities
early evaluation

users’ knowledge

behavior / needs

usability
measuring

scenario

simulation

prototype

early

evaluation

task model 1

task model 2

specification feedback

functionality

dialog

representation

implementation

UVM
maintaining
consistency

analysis,
specification

specification
negotiation

documents

artifacts

validity analysis

client

technology

Figure 2. Structure of design team activities

refinement of figure 1, emphasizing the specialties involved in carrying out different activities. It
shows the structural relations between design activities on the one hand, and the involvement of
users and clients, and work practice on the other hand. Task model 1 is based on knowledge of
single users (psychological variables, task-related variables, knowledge and skills) and on complex
phenomena in the task situation (roles, official and actual procedures, variation in strategies, and
variation in the application of procedures). The integration of this insight in a model often does not
provide a single (or a single best) decomposition of tasks and a unique structure of relationships
between people, activities, and environments. The model often shows alternative ways to perform a
certain task, role-specific and situation-specific methods and procedures, and a variety of alternative
assignments of subtasks to people. For example, the joint problem-solving approach to the bank
counter as sketched above cannot be applied to the drive-in counter of the bank. The drive-in
counter requires a different approach and a different user interface.

Again, when detailed design decisions are being considered, early evaluation needs to include
analytical methods (formal evaluation and cognitive walkthrough techniques) in combination with
usability testing where users in different roles are studied both in the sense of traditional individual
measures and in the sense of ethnographic interaction analysis.

5 A poor man’s HCI curriculum

An approach to system design as sketched in the previous section requires that every designer of
software has a basic understanding of underlying issues. In this section we sketch a minimal course
on human-computer interaction that should be part of everyone’s software engineering curriculum.

8



For an example of how to implement this, see [van Vliet, 2000, chapter 16]. The main ingredients
of such a minimal course are:

• An introduction to the issue of human use of computers and an explanation of the main
concepts of human-computer interaction (HCI).
Most users nowadays are not IT experts. They need knowledge about relevant aspects of the
system not all of which can be made visible, at least not all at once. So users need to build
and maintain a mental model of the system, in order to plan ahead, to execute task delegation
to the system, to evaluate results, and to interpret unexpected events.
The contents of this mental model should be equivalent to all the relevant knowledge of a
certain user group, which leads to the concept of the user’s virtual machine (UVM). The
finished specification of the UVM can be seen as a complete description of the system from
the point of view of the user and, at the same time, as a subset of the requirements for the
development of the ”actual” system.
The problem of HCI has been approached from various relevant points of view. An overview
of the most important streams or ”schools” in human-computer interaction shows how they
developed from different disciplines like:

– Applied cognitive psychology: focusing on the human user’s behavior, characteristics
and needs;

– Ergonomics: aiming first of all at adapting technology to human possibilities;

– Software engineering: developing views on the architecture of user interfaces and re-
lated engineering processes;

– Graphical design and other ”arts and crafts”: applying knowledge developed in typog-
raphy, theatre, cinematography, and advertisement, on how to present information in
such a way that the ”audience” gets the message;

– Interaction design: creative design methods based on an understanding of the task dy-
namics.

• Some basics of human information processing as developed in cognitive psychology.
This part certainly can not provide a general psychological theory, and can only be based on
a choice for one of the various existing models. Topics to be covered include:

– Perception encoding phenomena, both bottom-up/data-driven processes like the semi-
automatic formation of perceptual ”gestalts”, and top-down knowledge-driven processes
like recognition;

– Physical behavior in the sense of coordination processes at the level of keystroke inter-
action, including an explanation of Fitts’ law;

– Issues of human attention and the model of a ”central executive” or cognitive processing
unit, with an illustration of the limited capacity of explicit thought processes.

This section should also cover decision making, as well as the instantiation of mental models
triggered by the situation and current human needs:

– The model of the restricted capacity of working memory, the meaning of chunks of in-
formation and the importance of expertise (and information chunking) for high-capacity
information processing;

– An account of long-term memory, the distinction between semantic knowledge struc-
tures and episodic memory, the individual differences in preference for image or verbal

9



knowledge processing, and the models for information recognition and retrieval. This
section should include an account of planning and of learning.

Each of the psychological issues mentioned can be illustrated in a way that shows its rele-
vance and importance for the design of human-machine interaction in which the capacities
and limitations of human users are optimally matched by the machine.

• Ergonomics of information systems: design as an issue of mutual adaptation of human users
and technology.
Some attention should be given to the notion of human cognitive functions that may adapt to
the system (by learning, instruction, and exploration) and others that the interface needs to
be adapted to (general human capacities and constraints, individual differences in cognitive
styles). Examples of concepts to cover:

– How to introduce information systems, when to provide instruction and when to provide
safe interfaces for user exploration;

– How to design self explaining, ”intuitive” systems, including the concept of ”affor-
dance”;

– The notion of ”impulsiveness”, and the need for undo facilities;

– How to cope with people with low spatial ability: providing navigation and overview
facilities.

• An account of designing the User Virtual Machine in a process that provides a structure of
design activities.
Figure 2 could be a guideline for this section. At a global level, design activities for inter-
active systems can be subdivided into groups of techniques like analysis, specification, and
evaluation, in an iterative process. For each of these groups, some example techniques can be
provided, including the theory they are based on, and in some cases accompanied by a small
exercise, e.g.:

– Modeling the current task situation (task model 1, see section 4.1) is in some cases based
on the knowledge elicitation from expert users. The Graesser Questioning technique,
based on the psychology of long-term memory, can be explained and is simple enough
to be demonstrated or practiced in a classroom situation. Alternative techniques for ac-
quiring task knowledge can be found in ethnography (relevant depending on the type of
work culture). A technique like interaction analysis can be explained, and demonstrated
by analyzing an ethnographic video record as a group exercise.

– Deciding on dialog styles (as part of the UVM) may well depend on user- and task-
characteristics. Based on a well described user group and a fragment of a task model,
Mayhew’s technique for choosing optimal interaction may be demonstrated or per-
formed as a classroom exercise [Mayhew, 1992]. In the case of a specification of the
UVM there is also the opportunity to show the feasibility of applying user interface
design patterns for choosing among representations or dialog styles.

– Evaluation techniques are frequently based on available representations of the analysis
or specification. While developing task model 2 or in the early stages of specifying
the functionality of the UVM, scenarios are an adequate representation that can provide
insight in the development even if details are still to be filled in. A video tape of such a
scenario can be the basis for a claims analysis, to be performed as a group exercise. If
the specification of UVM details has proceeded far enough to produce a rapid interactive

10



prototype, students can be taught to perform a cognitive walkthrough or to apply a
heuristic usability checklist.

Obviously, strong emphasis should be put on those evaluation techniques in all phases where
prospective users of the interactive system are involved. It will probably not be possible to
provide for actual experience with these techniques, but some tools can be shown, like a video
clip of a usability lab situation and a fragment of a subjective usability rating scale.

6 Conclusions

In the received view of software engineering, the design of the user interface is seen as a sepa-
rate activity, not in the mainstream requirements engineering – design – implementation – testing
process model. In this paper, we argue for an eclectic approach, in which user interface issues are
given attention from the very beginning. Slightly provocative, we state that the user interfaceis the
system. This requires that software engineers have a basic understanding of human factors issues
involved and, consequently, that a software engineering curriculum contains, as a minimum, an
introductory course on human-computer interaction. An outline for such a course is given in this
paper as well.

References

[Bevan, 1999] N. Bevan. Quality in Use: Meeting User Needs for Quality.Journal of Systems and
Software, 49(1):89–96, 1999.

[Kotonya and Sommerville, 1997] G. Kotonya and I. Sommerville.Requirements Engineering,
Processes and Techniques. John Wiley & Sons, 1997.

[Lethbridge, 2000] T.C. Lethbridge. What Knowledge Is Important to a Software Professional?
IEEE Computer, 33(5):44–50, 2000.

[Loucopoulos and Karakostas, 1995] P. Loucopoulos and V. Karakostas.Systems Requirements
Engineering. McGraw-Hill, 1995.

[Mayhew, 1992] D.J. Mayhew.Principles and Guidelines in Software User Interface Design.
Prentice-Hall, 1992.

[Mulligan et al., 1991] R.M. Mulligan, M.W. Altom, and D.K. Simkin. User Interface Design in
the Trenches: Some Tips on Shooting from the Hip. InProceedings CHI’91, pages 232–236.
ACM, 1991.

[Pfaff, 1985] G.E. Pfaff, editor.User Interface Management Systems. Springer Verlag, 1985.

[Sommervilleet al., 1994] I. Sommerville, R. Bentley, T. Rodden, and P. Sawyer. Cooperative
System Design.The Computer Journal, 37(5):357–366, 1994.

[SWEBOK, April 2000] Guide to the Software Engineering Body of Knowledge, Stone Man Ver-
sion. Software Engineering Coordinating Committee, IEEE, April 2000.

[van Vliet, 2000] H. van Vliet. Software Engineering: Principles and Practice. John Wiley &
Sons, second edition, 2000.

[Vinter et al., 1996] O. Vinter, P.M. Poulsen, and S. Lauesen. Experience Driven Software Process
Improvement. InSoftware Process Improvement, Brighton, 1996.

11


