
Some Myths of Software Engineering Education

Hans van Vliet
hans@cs.vu.nl

Department of Computer Science
Vrije Universiteit Amsterdam

The Netherlands

ABSTRACT
Based on many years of teaching software engineering, I present
a number of lessons I have learned over the years. I do so in the
form of a series of myths, the reverse of which can be considered
challenges to educators. The overall message I wish to convey is
that there’s more to software engineering than engineering. The
engineering metaphor gives us a lot of useful guidance in shaping
our profession. But there’s also a downside, in that this goes at the
expense of the human, social dimension that is an essential element
of our profession.

Categories and Subject Descriptors
K.3.2 [Computing Milieux]: Computer and Information Science
Education

General Terms
Human Factors

Keywords
software engineering, education

1. INTRODUCTION
Software engineering is vital, and so is software engineering ed-

ucation. The amount of software is only growing, in terms of both
size and complexity. The degree to which society depends upon
software puts ever greater demands on its quality. The degree to
which our e-society demands solutions ever quicker requires bet-
ter ways to produce systems. These developments put considerable
pressure on software engineering education.

Over the past years, the software engineering community has
paid much attention to organizing the knowledge we have, and
ways to transform this into a curriculum. The first has resulted in
SWEBOK, the Guide to the Software Engineering Body of Knowl-
edge. It reflects a widely agreed-upon view on what a software
engineer who has a Bachelor’s degree and four years of experi-
ence should know. The latter has resulted in SEEK, giving cur-
riculum guidelines for undergraduate degree programs in software

Copyright is held by the author/owner.
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.
ACM 1-58113-963-2/05/0002.

engineering. It can be seen as the education counterpart of SWE-
BOK. Both are important milestones, the results of many years of
experience, and many discussions within their respective working
groups. The effect of these milestones on software engineering ed-
ucation is already visible, and is likely to increase in the years to
come. This is both good and bad. The good by far outweighs the
bad. I will concentrate on the bad though, my primary aim being to
provoke discussion.

Others have emphasized the ‘engineering’ in software engineer-
ing [3], [4]. The overall message I wish to convey is that there’s
more to software engineering than engineering. More specifically,
there’s an important social dimension in software engineering, that
easily gets into a tight place because of the omnipresent engineer-
ing attitude.

2. MYTHS OF SOFTWARE EDUCATION

Myth 1: A software engineering course needs a real-life practi-
cal part
The idea behind this is that we should prepare students for ”the real
world”, which is full of inconsistencies, complex, and changes all
the time. The real world also involves participants from different
domains, and has political and cultural aspects. To meet this chal-
lenge, we may do a project based on real examples from industry,
or introduce obstacles and dirty tricks in student exercises. The
question is how helpful this is.

Students entering a software engineering course typically are
quite immature with respect to software development. They may
have spent less than two years at the university, and done courses
on programming, data structures, and so on. In these courses, the
work is usually well-organized. The problems they are given are
unambiguous. And often too, there is only one right answer. In the
software engineering course, they are overwhelmed with a large
number of topics that are very new to them. One may of course
claim that it is also possible to gently introduce some software en-
gineering principles in other introductory courses. In practice, this
is not easy to accomplish in a CS environment.

I consider my students as toddlers in the software engineering
playground. So I concentrate on one or a few issues, in an orches-
trated environment. Of course, I treat all of the topics in the course,
and tell my favorite anecdotes. But the accompanying project high-
lights only a few. In later years, the students then get confronted
with more real-life aspects in other courses. I have noticed quite
often that appreciation for the software engineering course only
comes years after students suffered it.

Myth 2: Software Engineering is like other branches of engi-
neering
All software engineering texts discuss the relationship between soft-

621

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15451689?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ware engineering and other branches of engineering. And of course
they also tell us that there are differences between software engi-
neering and these other branches as well. But the overall message
is that the similarities prevail, and that the metaphor is a useful one.

But there also is a downside to the widespread use of this metaphor.
Our field has a large number of ”engineering” words: building
software, requirements, specification, process, maintenance, and so
on. Altogether, this induces a model of how we view the software
development practice. The metaphor plays an active role in our
thought processes. See [1] for an enlightening discussion hereof.

At a larger scale, we see a similar tension between the heavy-
weight, document and planning driven life cycle models from the
engineering realm of software engineering, and the various lightweight
approaches that emphasize the human aspects in software develop-
ment. It is a major challenge to combine the virtues of both. This
not only holds for the state-of-the-practice, but the more so for the
educational environment, where students are entrenched in the en-
gineering view of the world of software development.

Myth 3: Planning in Software Engineering is worse than in
other fields
Many papers on software engineering or software engineering ed-
ucation have quotes like ”. . . approximately 75 percent of all soft-
ware projects are either late or cancelled”. In his wonderful book
Death March, Edward Yourdon quotes gurus like Capers Jones and
Howard Rubin and states that ”the average project is likely to be 6
to 12 months behind schedule and 50 to 100 percent over budget.”
The sometimes explicit, sometimes implicit message is that a bet-
ter software education will help. And eventually maybe even does
away with most runaway projects. I question this relation between
the level of software engineering education and planning accuracy.

Here we may ask ourselves whether other fields fare better in this
respect. The Danish economist Bent Flyvbjerg studied over 250
infrastructure projects all over the world, and found that the costs
are underestimated in nine out of ten projects. At the same time,
the revenues are almost always overestimated. This way projects
look good, and decision makers approve of them [2].

I think many of the arguments that hold for cost and schedule
overruns of infrastructure projects, are also valid for software de-
velopment projects. Better function point counting mechanisms,
requirements engineering methods, and the many other ingredients
of our field, and us educating software engineers in them, will by
themselves not do away with these issues. To quote Tom DeMarco:
”One chief villain is the policy that estimates shall be used to create
incentives”. This is as true today, as it was in 1982.

Myth 4: The user interface is part of low-level design
The user interface of a system is important. About half of the code
of an interactive system is devoted to the user interface. A recent
study found that 60% of software defects arise from usability er-
rors, while only 15% of software defects are related to functionality
[5].

SWEBOK and SEEK both consider user interface design as a
”related discipline”. My position is that this totally ignores the fact
that many software development projects currently and in the future
will aim to develop systems where human use and human factors
in the context of use are decisive factors for product quality. As a
consequence, I take a different stance, one in which the design of
the interface and the design of the functionality go hand-in-hand.
We might even say: ‘The user interface is the system’.

Myth 5: SWEBOK represents the state-of-the-practice
In my opinion, SWEBOK (and also SEEK) lags behind the state-of-
the-practice in some areas, and it runs in front of the herd in others.
In a recent European research project that investigated software en-

gineering methodologies for embedded systems, it was found that
actual industrial experiences at participating companies are quite
a bit removed from the average software engineering textbook or
SWEBOK. And fresh graduates from our schools enter an envi-
ronment that might well be characterized by these practices. Such
might give a clash, and further increase the perceived distance be-
tween universities and industry.

As for the lagging behind of SWEBOK: the field of software en-
gineering changes rapidly. New approaches such as model-driven
development (MDA), service-oriented architecture (SOA), seem to
make quite an impact on both research and practice, and yet have
not made it to either SWEBOK or SEEK.

One major theme underlying recent developments is that soft-
ware engineering becomes more and more heterogeneous: (1) dis-
tributed development involving teams from different cultures im-
pacts work processes, (2) the combination of in-house developed
software with COTS, Open Source and other externally acquired
software more and more becomes a policy, if not necessity, rather
than an unfortunate event, and (3) traditional, document-driven de-
velopment approaches are combined with the more recent, people-
driven agile development approaches to get the best of both worlds.

Both SWEBOK and SEEK still follow, in their basic structure,
quite a traditional view. Though the importance of evolution is
stressed at quite a few places, the surface structure of both doc-
uments still suggests a greenfield situation. Even though not in-
tended, this is likely to influence student attitude. The emergent
heterogeneous situation sketched above further complicates indus-
trial practice, and should get some counterpart in education.

3. REFERENCES
[1] A. Bryant. Metaphor, myth and mimicry: The bases of

software engineering. Annals of Software Engineering,
10:273–292, 2000.

[2] B. Flyvbjerg, N. Bruzelius, and W. Rothengatter.
Megaprojects and Risk: An Anatomy of Ambition. Cambridge
University Press, 2003.

[3] P. Kruchten. Putting the ”engineering” into ”software
engineering”. In P. Strooper, editor, Australian Software
Engineering Conference (ASWEC 2004), pages 2–8,
Melbourne, Australia, 2004. IEEE Computer Society.

[4] D. Parnas. Software Engineering Programs Are Not Computer
Science Programs. IEEE Software, 16(6):19–30, 1999.

[5] O. Vinter, P. Poulsen, and S. Lauesen. Experience Driven
Software Process Improvement. In Software Process
Improvement, Brighton, 1996.

622


