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Chapter 1

Introduction

This manuscript is a collection of the author’s results on realization theory of hybrid

systems and some other related issues. This work is based on a number of papers by

the author. Each chapter roughly corresponds to a paper. The author tried to avoid

unnecessary repetition of concepts and definitions, thus achieving a somewhat more

concise presentation.

The current chapter is intended to serve as a short informal introduction to the

contents of this work. In order to improve readability, we will split this chapter into

several sections. Section 1.1 deals with the notion of hybrid systems and describes

informally the major classes of hybrid systems we will be dealing with in this chapter.

Section 1.2 describes the problem known under the name of the realization problem.

Section 1.3 give a short informal description of the main results presented in this work.

Finally, Section 1.4 outlines the structure of this work and gives a brief presentation

of the contents of individual chapters and their interdependency.

1.1 Hybrid Systems

The field of hybrid systems emerged more than a decade ago. There is a vast litera-

ture on the subject, see [44, 79]. The field of hybrid systems became popular in the

beginning of 1990’s, but isolated papers on hybrid systems appeared already earlier.

One of the first papers addressing hybrid systems is [15]. There a class of control

systems was introduced, which is closely related to the class of piecewise-affine hy-

brid systems. The relationship between the class of systems introduced in [15] and

more modern definitions of hybrid systems was discussed in [62]. The term ”hybrid

systems” is used to denote a broad range of control systems. We will only give an
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CHAPTER 1. INTRODUCTION

informal description of the class of hybrid systems which will be the subject of this

thesis. There are many books and papers discussing hybrid systems in detail, the

interested reader is referred to the literature [44, 79, 68] for more details.

A hybrid system is a control system of the following form. The discrete dynamics

is specified by a finite-state automaton. The states of the automaton are called

discrete modes. The elements of the input alphabet of the automaton will be called

discrete events. We associate a time-invariant nonlinear control system with each

discrete mode. All the nonlinear control systems associated with the discrete modes

are assumed to have the same input and output spaces but their state spaces may be

different. The state evolution of each nonlinear system is assumed to be determined

by a differential or difference equation. Most of hybrid systems considered in this

thesis will be such that the contnious control systems will be defined by differential

equations.

The finite state automaton is assumed to be endowed with a discrete output space.

With each discrete mode and discrete event we associate a map on the continuous

state spaces. We will refer to these maps as the reset maps.

The state evolution takes place as follows. The system is started in a certain

discrete mode. The continuous state changes according to the differential/difference

equation associated with the current discrete mode. The evolution of the continu-

ous state stops if a discrete event occurs. In this case the discrete mode is changed

according to the finite-state automaton. Then the continuous state is changed by

applying the reset map corresponding to the discrete event and the discrete mode.

After that the evolution of the continuous state is resumed according to the differen-

tial/difference equation associated with the new discrete mode. The new contnious

state which is obtained as a result of application of the reset maps serves as the new

initial state for the differential/difference equation associated with the new discrete

state.

Discrete events can be triggered either externally or internally. In the latter case

a discrete event arises if the continuous state variable reaches a designated subset of

the state-space. Such a subset is called a guard. If we allow discrete events which

can be triggered internally, then we say that the hybrid system admits autonomous

switching. The discrete events which are triggered externally can be considered as

discrete inputs. The inputs of a hybrid system consist of the continuous inputs of the

nonlinear systems associated with each discrete mode and the externally triggered

discrete events. The outputs of a hybrid system consist of the continuous outputs of

the control systems associated with each discrete mode and the discrete outputs of

the finite-state automaton.

The main motivation for studying hybrid systems is the increasing significance

8



1.2. REALIZATION PROBLEM AND REALIZATION THEORY

of digital control in engineering systems. As the role of computers and the sheer

amount of functionalities of engineering systems which are subject to digital control

increases, it becomes more and more difficult to ignore the effect of discrete behaviour

of the controllers on the overall behaviour of the system. By considering the plant

and the controllers realized by digital controllers as one single system we naturally

arrive to hybrid systems. Of course, systems exhibiting hybrid behaviour can arise

from purely physical considerations too.

The problems which are normally studied for hybrid systems can be divided into

two types. The first type of problems are essentially classical control theoretic prob-

lems such as observability, stability, reachability, existence of a controller, optimal

control. The second type of questions comes from computer science and it is mostly

concerned with verification of hybrid systems, that is, proving that some property

holds for the system. Very often the property is that a certain set of states is never

reached, or the negation of it, that is certain set of states can be reached. The

presence of the two approaches reflects the involvement of both control theory and

computer science communities in the field.

The main topic of this thesis is realization theory of hybrid systems. Realization

theory is concerned with finding a (preferably minimal) hybrid system which exhibits

the specified input-output behaviour. We will discuss realization theory in more detail

in the next section, the definition given above should be enough for the objectives of

this section.

Realization theory is mostly viewed as a classical control system theoretic ques-

tion, however, its version for finite state automata play a significant role in computer

science. The significance of realization theory for control theory will be elaborated

on in the next section. That is why we consider realization theory an important

development for the field of hybrid systems. We hope that our results on realization

theory will be useful for both control theorists and computer scientists working in

the field of hybrid systems.

1.2 Realization Problem and Realization Theory

Realization theory is one of the central problems of systems theory. Historically it

is also one of the oldest, in fact, to some extend, the whole modern control systems

theory started with realization theory.

So what is realization theory about ? There are several ways to define a control

systems. One of the most widespread methods is to give a description in terms of

differential and/or difference equation. Representations of this kind we will call state-

space representations. In fact, this is not a really adequate definition of the concept
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CHAPTER 1. INTRODUCTION

known as state, but let’s accept this definition for the time being.

Such a representation has a number of attractive properties. First of all, such

models are usually easy to derive using first principles, i.e. from laws of physics or

chemistry. Probably the most spectacular case of deriving the differential equation

from the laws of physics is the derivation of models for mechanical systems. In

fact, most of us had to do it for simple toy systems in high-school physics classes.

Another attractive property of such systems is that sometimes it is not that difficult

to develop control laws for such a system. So what is the drawback of such models ?

The problem with such a model is that it is not necessarily a verifiable model. That

is, the description of the model might contain components which cannot be tested

by experiments. Typically not all relevant variables can be measured, which means

that there are variables about which we might be unable to say anything based on

our measurements. In fact, we might have several models, which behave in the same

way in the measurable variables. That is, by looking at the experiments we can not

distinguish these models.

It is quite a grim news. Not only does it mean that engineers might be unable

to derive an appropriate model, it also makes the concept of a control system it-

self unclear. After all, if the differential equation does not determine the external

behaviour of the system uniquely, then we can not identify the system with the

differential equation describing it.

Of course, as an alternative, we could try to look at the behaviour of the measur-

able variables of the system, instead of the differential/difference equations describing

the system. In this way we avoid all the ambiguity about the concept of a system

which arose before. The idea is not new and it too has a serious deficiency. It

turned out extremely difficult to design a control law for a system for which only the

behaviour of the measurable variables is known.

In fact, historically the latter approach to control systems was the first one.

Control theory was started by electrical engineers who had to ensure reliable com-

munication of telecommunication devices ( telephones, more precisely ) in the thirties

of the twentieth century. The systems were described by transfer functions, which is

in fact a description of the input-output behaviour of the system.

Intuitively the reason for the failure of designing control laws for systems in input-

output description is the following. In order to determine the control at some point

of time, one naturally needs the values of the past control actions. Generally, this

means that as we advance in time, more and more data points are needed to design

the next input action. Obviously this is not a realistic option. What we would like

to have is a finite description of some sort encoding the information about the past

inputs. Such a description is what is usually called a state of the system. For
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1.2. REALIZATION PROBLEM AND REALIZATION THEORY

example, if the system is determined by a differential equation, then the vector of

variables on which the equation is defined will play the role of the state. Indeed, the

knowledge of the vector of these variable gives us enough information to determine

the future behaviour of the system.

Therefore, it becomes important to represent systems in a state-space form and to

relate the input-output behaviour and state space representations. This is precisely

the topic of realization theory.

Realization theory is concerned with the following questions.

• When does a specified input-output behaviour have a state-space representation

of certain class. What are the necessary and sufficient conditions for existence

of a state-space representation of a certain form.

• What is the ”smallest” or ”minimal” state-space representation of a given class

for a specified input-output behaviour. Does such a representation exists and

if it does is it unique in any way. What are the system theoretic characteristics

of such a representation.

The two problems above together are called the realization problem. As the reader

might have noticed, we are looking for state-space representations of a certain class.

Typical classes of state-space representations researchers looked at before are state-

space representations in terms of linear, polynomial, analytic or rational differential,

or difference equations. The reason for not just looking for a state-space representa-

tion is that the form of the state-space representation has huge implication of what

kind of problems can be solved in it. Obviously, a problem which is relatively easy

to solve for state-space representations of one form, might be quite difficult to solve

for state-space representations of another form. Besides, physical models are usually

obtained as state-space models of certain form and the input-output behaviour of

the system very often reflects a physical model.

Of course, a certain input-output behaviour can have state-space representations

of different types and a ”minimal” state-space representation of one type might be a

non ”minimal” state-space representation of another type. Thus, speaking of ”mini-

mal” state-space representations makes sense only with respect to a certain class of

state-space representations.

As the reader might have already realized, realization theory plays an important

role in identification of systems. As it was mentioned earlier, many mathematical

models of real-life systems are derived using the laws of physics or chemistry, or

other science depending on domain of application. The models obtained in this way

are in state-space form but usually they are only partially known. For example,
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CHAPTER 1. INTRODUCTION

the equations of the model might contain parameters which are not known. In such

cases the need arises to further determine the model by means of experiments of

the physical system. Of course, only the measurable variables can be studied by

experiments. That is, from experiments one can obtain information only on the

input-output behaviour of the system. Based on this input-output behaviour one

would like to determine a good approximation of the state-space model of the system.

This range of problems is called system identification. It is quite easy to see that

realization theory and system identification are closely related. Of course, in system

identification one would like to actually compute the state-space realization, that is

one would like to use finite data. Another important point is that in the identification

problem one cannot assume that the data is exact. That is, one has to take noise and

other types of uncertainty into account. In some sense the realization problem is an

idealised version of the identification problem. Therefore, it is highly unlikely that

one can find a satisfactory solution to the identification problem for a certain class

of systems before developing the realization theory for that class of systems first.

Another important aspect of realization theory is characterisation of minimal

state-space representations of a certain class. Intuitively it is easy to see why minimal

representations are important. Any output feedback control law in fact operates on

the minimal sub-representation of the state-space representation. Not surprisingly, in

most cases minimal representations have turned out to have such important system-

theoretic properties as observability and reachability. They are also unique up to

isomorphism for most cases.

Realization theory was developed for several classes of control systems. The first

class of control systems for which realization theory was developed is the class of

linear systems [39, 40, 41, 38, 31]. Later on realization theory was developed for

bilinear systems [33, 30, 64, 73, 75, 66, 65], analytic nonlinear systems [21, 36, 34, 35,

6, 10, 67], polynomial [64, 84, 2] and rational control systems [84] both in discrete-

and continuous time. There are also some results on general nonlinear systems,

mostly concerning characterisations of minimal realizations [34, 72] Linear systems

have by far the most complete realization theory. It is also the most known to the

wider audience. Realization theory of nonlinear systems is much less well-known.

The most active research in realization theory was carried out in the two decades

between the sixties and the middle of eighties of the last century. After that the topic

did not attract substantial interest any more. There were some works in the nineties

on realization theory, mostly on positive [77, 76], max-plus algebraic [12, 13, 14] and

multidimensional systems [1]. There were some early attempts to develop realization

theory for hybrid systems in [28], but the actual development of the theory was never

done.
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1.3 Main Results

The goal of this section is to present an informal overview of the main results of the

thesis. As it was already noted at the beginning on the chapter the main topic of

the thesis is realization theory of various classes of hybrid systems. Sure, as matter

of course, reachability and observability properties of hybrid systems are studied

too, but only to the extend which is necessary for realization theory. Most of the

classes of hybrid systems discussed in this thesis are hybrid systems without guards

defined in continuous time. The only exception is the short chapter on piecewise-

affine hybrid systems. A great part of the thesis is devoted to study of switched

systems. Another major class of hybrid systems extensively studied in this thesis

is the class of linear and bilinear hybrid systems without guards. Hybrid systems

with completely nonlinear continuous dynamics are studied much less, but there is a

chapter devoted to them which lays down the basics of the theory. There is a short

chapter on piecewise-affine discrete-time systems, describing preliminary results.

Hybrid systems without guards are a quite restricted subclass of hybrid systems.

Their practical relevance is unclear. The main motivation for studying such hybrid

systems is that they might help to understand other, more general hybrid system

classes better. In some sense they form an extreme case of hybrid systems with

guards. Indeed, if we assume that our hybrid system is such that by a suitable choice

of input we can steer the system to a guard arbitrary fast and thus trigger a discrete-

state transition at any time we wish, then we in fact have a hybrid system without

guards. That is why we think that understanding realization theory of hybrid systems

without guards is necessary for developing realization theory for hybrid systems with

guards. An other way to look at hybrid systems is to think of them as interconnection

of three systems: a finite state automaton, a collection of classical control systems and

a control system defined on continuous state-space but with discrete output space.

The output space of the last system is in fact the set of input symbols of the finite-

state automaton. The role of each of the systems is quite clear. The automaton is

responsible for the discrete dynamics, the classical control systems are responsible for

the continuous dynamics, and the control system with discrete outputs is responsible

for generating discrete-state transitions which depend on the continuous states.

The different weights with which the different classes of systems are represented

in the thesis by no means reflects their relative importance. On the contrary, the

author considers the class of piecewise-affine continuous-time hybrid systems to be

the most important class of hybrid systems and this class is not even mentioned

in the thesis. The reason for that is that these systems are very difficult to study

and so far they have withstood all the attempts of the author to develop realization

13



CHAPTER 1. INTRODUCTION

theory for them. In fact, all the other systems presented in this thesis were studied

in the hope that the results obtained for them will provide a clue for solution of the

realization problem for piecewise-affine hybrid systems in continuous-time.

In the remaining part of the section we will go through each class of systems

discussed in the thesis and we will present a short description of the main results.

1.3.1 Switched Systems

Switched systems is the class of hybrid systems which is probably the closest one

to classical control theory. A switched system is nothing else but a collection of

classical continuous control systems defined on the same state-space and having the

same input and output spaces. In the setting of this thesis the sequence of discrete

modes (the switching sequence) is considered to be part of the input. That is, one can

choose when to switch and to which discrete mode. Consequently, the input-output

maps for switched systems are defined both on the space of piecewise-contnious input

functions and switching sequences. The outputs live in the shared output space of

the control systems comprising the switched system. That is, the input-output maps

map piecewise-continuous inputs and switching sequences to continuous outputs.

Two important versions of the realization problem can be distinguished. In the first

case the input-output maps are defined on all the possible switching sequences. In

the second case only a subset of the possible switching sequences is allowed and the

input-output maps are defined only with respect to these switching sequences. We

will consider only those restrictions of the set of admissible switching sequences where

the switching times are arbitrary and the sequence of discrete modes is required to

belong to a certain set (or language, in the terminology of formal language theory).

In this thesis we consider two particular types of switched systems: linear switched

systems and bilinear switched systems. Linear switched systems are switched systems

which consist of continuous-time linear control systems. Bilinear switched systems

are switched systems which consist of bilinear control systems.

We develop a full realization theory for both classes of switched systems.

For linear or bilinear switched systems such that arbitrary switching sequences

are allowed, we will present the following results. We will formulate necessary and

sufficient conditions in terms of the finiteness of the rank of the Hankel-matrix.

We will characterise minimality in terms of observability and span-reachability and

show that minimal realizations are unique up to isomorphism. Partial realization

theory will be developed too and algorithms will be formulated to compute a minimal

(partial) realization and to check minimality.

For linear or bilinear switched systems such that not all switching sequences are
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allowed the results presented in this thesis are more modest if compared to the case

of arbitrary switching. First of all, we treat only the case when arbitrary switching

times are allowed and the only restriction is on the relative order of the discrete

modes. Moreover, we assume that the set of admissible sequences of discrete modes

form a regular language, i.e. it can be decided by a finite state automaton whether a

particular finite sequence of discrete modes belongs to the admissible set or not. For

such classes of linear or bilinear switched systems we will formulate necessary and

sufficient conditions for existence of a realization in terms of finiteness of the rank of

the Hankel-matrix. Unfortunately we did not succeed in characterising minimality

for such systems. However, instead we can consider realizations which are observable

and semi-reachable and behave almost like minimal realizations. More precisely,

for any other realization the quotient of the dimension of the ”almost” minimal

realization and the dimension of the specified realization are bounded from above by

a constant (in the ideal case, for a true minimal realization this constant equals 1).

The reason for that is the following. In case of restricted switching there are sequences

of discrete modes, for which we have no information on the input-output behaviour.

On the other hand, any switched system realization of the input-output behaviour

does imply certain information on the behaviour for forbidden switchings. That is,

if we find a switched system realization, then at the same time we impose a certain

behaviour on the system with respect to the forbidden switching sequences. Thus

behaviour is in some sense arbitrary but different choices of this hidden behaviour

may result in systems having different state space dimensions. On the other hand,

if the set of admissible sequences of discrete modes is regular (which means that the

set of forbidden sequences of the discrete modes is a regular language too), then the

choice of the hidden behaviour can change the dimension only by at most a certain

constant. By the way, the choice of the ”almost” minimal realization amounts to

choosing the hidden behaviour to be zero.

As it is almost always the case with realization theory, the main tools are al-

gebraic in nature. The main tool for realization theory of both linear and bilinear

switched systems is the theory of rational formal power series. The theory of rational

formal power series has a rich history going back to the 1960’s. The concept itself

was rediscovered several times and was applied successfully to bilinear and multidi-

mensional control systems. In this thesis we will use a slight extension of the classical

theory which enables us to deal with families of formal power series instead of one

single formal power series. In fact, E.Sontag and Y.Wang have already looked at

families of formal power series before, see [84]. But they were looking at problems

which were a bit different and their paper does not contain the formulation of all

the results we need for realization theory. That is why we felt compelled to present
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the theory completely again. Interestingly, Gohberg, Kaashoek and Lerer in [37] also

looked at algebraic objects, the so called nodes, which were very similar to ratio-

nal formal power series representations. They studied the properties of those nodes

which were minimal in a certain sense. This notion of a minimal node presented in

[37] was applied to a number of control systems. In terms of classical formal power

series theory, the notion of minimality investigated in [37] corresponds to minimality

of partial representations of formal power series. By a partial representation of a

formal power series we mean a representation which generates some (not necessarily

all) of the coefficients of the formal power series. Hence, the results of [37] could

be potentially useful for studying the realization problem of switched systems with

constrained switching. However, in this thesis we will not use any of the results of

[37].

When arbitrary switching sequences are allowed, then it turns out that both

for linear and bilinear switched systems we can associate a suitable family of formal

power series with each family of input-output maps. There is a one-to-one correspon-

dence between switched linear or bilinear system realizations of a set of input-output

maps and rational representations of the associated family of formal power series.

Moreover, this correspondence maps minimal switched systems realizations to mini-

mal rational representations, in case of arbitrary switchings. Thus, we can just use

the classical theory of formal power series to derive the results on realization theory

of linear and bilinear switched systems.

The case of restricted switching is a bit more involved. We can still associate

a family of formal power series with each family of input-output maps. But in

contrast to the case of arbitrary switching, we have some freedom in choosing such

a family of formal power series. This freedom of choice stems from the fact that

the behaviour of the input-output maps is not known for those switching sequences

which are not admissible. Since the associated family of formal power series has to

capture the behaviour for all the switching sequences, we are compelled to ”make up”

some behaviour for the disallowed switching sequences. As a result, although there

is still a correspondence between switched systems and rational representations, this

correspondence fails to be one-to-one and it does not map minimal switched systems

to minimal rational representations. Nevertheless, as was already mentioned above,

there is still a possibility to define ”almost minimal” switched system realizations,

which posses quite useful properties. Such ”almost minimal” realizations arise from

minimal rational representations of the family of formal power series. Although these

switched system realizations are not minimal, they are not ”too big”, in a sense that

they cannot exceed the dimension of any other realization by more than a constant

factor. This constant factor depends only on the nature of admissible sequences of
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discrete modes, i.e. it is independent of the family of input-output maps considered.

1.3.2 Hybrid Systems Without Guards

Hybrid systems without guards is probably the next simplest class of hybrid systems

after switched systems. A hybrid system without guards consists of an automaton

and a finite collection of classical control systems. With each state of the automaton

we associate a classical control system. For each discrete-state transition we define

maps which map the continuous states of the control system associated with the

old discrete state to the continuous states of the control system associated with the

new discrete state. We will call the states of the automaton discrete modes and the

input symbols of the automaton discrete events. We will assume that all the control

systems associated with the discrete modes are continuous-time systems endowed

with the same input- and output-spaces.

The state evolution takes place as follows. The system is started in a certain

discrete mode. The continuous state changes according to the differential equation

associated with the current discrete mode. During the evolution of the continuous

state the discrete mode remains unchanged. The evolution of the continuous state

stops if a discrete event occurs. In this case the discrete mode is changed according

to the finite-state automaton. The continuous state is changed by applying the reset

map corresponding to the discrete event and the discrete mode. After that the

evolution of the continuous state is resumed according to the differential equation

associated with the new discrete mode.

The expression ”a discrete event takes place” means the following. We assume

that discrete events act as discrete inputs. That is, we can initiate any discrete event

at any time we like. The reader might think of discrete events as pressing buttons

on the control board of a machine. If a particular button is pressed, then a discrete

event takes place. Of course, one can press any button at any time one likes.

The inputs of a hybrid system without guards consist of the continuous inputs of

the control systems associated with each discrete mode and the discrete events. The

outputs of a hybrid system without guards consist of the continuous outputs of the

control system associated with each discrete mode and the discrete outputs of the

finite-state automaton.

Of course, switched systems are a particular subclass of hybrid systems without

guards. In the case of switched systems the set of discrete modes and the set of

discrete events coincide. That is, with each discrete state we associate a discrete

event and this correspondence is onto and one-to-one. The state-transition map of

the automaton is trivial, i.e. if a discrete event takes place, then the new discrete
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mode is the discrete mode which corresponds to the discrete event which took place.

That is, the automaton does not have a memory, in the sense that the new discrete

state depends only on the discrete event but not on the previous discrete mode.

As the reader might have noticed, in this thesis we will be primarily concerned

with hybrid systems without guards.

Apart from switched systems, the following three subclasses of hybrid systems

without guards will be studied: linear hybrid systems, bilinear hybrid systems and

analytic nonlinear hybrid systems.

Linear and Bilinear Hybrid Systems

Linear hybrid systems are hybrid systems without guards such that the control sys-

tems associated with discrete modes are linear control systems and the reset maps

are linear. Bilinear hybrid systems are hybrid systems without guards such that the

control systems associated with discrete modes are bilinear control systems and the

reset maps are linear.

Due to the linear structure, a fairly complete theory can be derived for the realiza-

tion problem of linear and bilinear hybrid systems. We will be able to give necessary

and sufficient conditions for existence of a (bi)linear hybrid system realization of a

family of input-output maps. These conditions involve finiteness of the rank of the

Hankel matrix. We will also present a procedure for constructing a (bi)linear hybrid

system realization from the columns of the Hankel-matrix. We will give a charac-

terisation of minimal (bi)linear hybrid system realizations in terms of observability

and semi-reachability. Semi-reachability means that the continuous state-spaces are

linearly spanned by reachable continuous states. We will also present rank conditions

for observability and reachability of (bi)linear hybrid system. These conditions will

enable us to check observability and semi-reachability of (bi)linear hybrid systems by

algorithms. Partial realization theory for (bi)linear hybrid systems will be formulated

too, along with algorithms for computing a minimal (bi)linear hybrid realization from

finite number of input-output data points.

A necessary condition for existence of a realization by a linear (bilinear) hybrid

system for a family of input-output maps is that the family admits a so called hybrid

kernel representation (hybrid Fliess-series expansion respectively). The requirement

that a family of input-output maps has a hybrid kernel representation roughly means

that the continuous valued part of each input-output map depends linearly and con-

tinuously on the continuous input, the continuous output is analytic in time for

constant continuous inputs and the discrete-valued part depends only on sequences

of discrete events. The requirement that a family of input-output maps has a hybrid
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Fliess-series expansion is more or less equivalent to requiring that the discrete-valued

parts of the input-output maps should depend only on the sequences of discrete input

events and that the continuous-valued parts should be representable as infinite series

of iterated integrals of the continuous inputs. Thus, hybrid Fliess-series expansion

can be viewed as a generalisation of the classical notion of Fliess-series expansion

from nonlinear systems theory [83, 32]. Similarly, hybrid kernel representation is a

generalisation of the classical condition that the outputs of linear control systems can

be represented as the convolution of the inputs with an analytic convolution kernel.

The main tool for developing realization theory for linear and bilinear hybrid

systems is the theory of so called rational hybrid formal power series. A hybrid

formal power series is a pair consisting of a classical formal power series in non-

commuting variables and a discrete-valued input-output map. That is, the first

component of the pair is a formal power series defined over an alphabet and having

real vector valued coefficients. Recall that such a formal power series can be viewed

as a function mapping the words over the alphabet to p tuples of real numbers for

some p. The second component is a function, mapping words over a finite alphabet

to elements of some finite set. In case of a hybrid formal power series we assume that

the input alphabet of the discrete-valued input-output map (the second component

of the pair) is a subset of the alphabet, over which the formal power series (the first

component of the pair) is defined. Thus, a hybrid formal series can be viewed as an

input-output map, mapping words over the bigger alphabet of the formal power series

to pairs consisting of real vectors and elements of a finite set. The real vectors are

the values (coefficients) of the formal power series for the given word. The element

of the finite set arises by applying the discrete-valued input-output map to the word

obtained from the specified one by forgetting all the letters which do not belong to

the input alphabet of the discrete-valued input-output map.

We will be interested in families of hybrid formal power series which admit a

rational hybrid representation. A rational hybrid representation is roughly speaking

an interconnection of a finite state Moore-automaton with a number of rational formal

power series representations. A family of hybrid formal power series admits a rational

hybrid representation if the hybrid representation, viewed as a Moore-automaton,

realizes the family of hybrid formal power series, viewed as a family of input-output

maps. Recall that a rational formal power series representation can be thought of

as an automaton, the state space of which is a finite dimensional vector space and

the readout and state-transition maps are linear. Thus, rational hybrid formal power

series can be thought of as input-output maps of machines, which are interconnections

of finite state Moore-automata and finite-dimensional linear Moore-automata, i.e.

rational representations.

19



CHAPTER 1. INTRODUCTION

It turns out that there is a one-to-one correspondence between rational hybrid

representations and (bi)linear hybrid systems. One can easily associate with each

family of input-output maps which admits a hybrid kernel representation or a hybrid

Fliess series expansion, a family of hybrid formal power series. It turns out that a

(bi)linear hybrid system is a realization of the family of input-output maps if and

only if the rational hybrid representation associated with the (bi)linear hybrid sys-

tem is a representation of the family of hybrid formal power series associated with

the family of input-output maps. In particular, a family of input-output maps has

a realization by a linear (bilinear) hybrid system, if and only if it admits a hybrid

kernel representation (hybrid Fliess-series expansion) and the associated family of

hybrid formal power series is rational. There is one-to-one correspondence between

minimal rational hybrid representations and minimal (bi)linear hybrid systems. Sys-

tem theoretic properties of (bi)linear hybrid systems such as semi-reachability and

observability can be characterised through reachability and respectively observability

of rational hybrid representations.

Thus, the realization problem for (bi)linear hybrid systems is equivalent to the

problem of finding (a preferably minimal) rational hybrid representation for a suit-

able family of hybrid formal power series. Moreover, characterisation of minimal-

ity of hybrid representations immediately yields a characterisation of minimality of

(bi)linear hybrid systems. That is, instead of investigating (bi)linear hybrid systems

it is sufficient to study hybrid representations.

Realization theory for hybrid formal power series can be developed by combining

results of automata theory and theory of rational formal power series. It turns

out that we can associate a family of classical formal power series and a family of

discrete-valued input-output maps with each family of hybrid formal power series.

The family of hybrid formal power series is rational if and only if the associated

family of formal power series is rational and the associate family of discrete-valued

input-output maps admit a realization by a finite Moore-automaton. Moreover, it

can be shown that one can construct a rational hybrid representation of the family of

hybrid formal power series from a minimal rational representation of the associated

family of formal power series and a minimal Moore-automaton realization of the

associated family of discrete-valued input-output maps. Moreover, this construction

yields a minimal rational hybrid representation. Observability and reachability of

a hybrid representation can also be translated into observability and reachability of

suitable rational formal power series representations and Moore-automata. In fact,

a hybrid representation is minimal if and only if it is reachable and observable.

Thus, the more or less classical results of automata theory and formal power series

theory yield sufficient and necessary conditions for rationality of hybrid formal power
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series, along with characterisation of minimality of hybrid representations in terms

of reachability and observability. They also enable us to define the Hankel-matrix

of a family of hybrid formal power series and a procedure for constructing a hybrid

representation of the family from the columns of the Hankel-matrix. In fact, we

can construct such a hybrid representation from the columns of a suitably big finite

sub-matrix of the Hankel-matrix. The algorithm for computing a minimal rational

representation and a minimal automaton realization yields an algorithm for comput-

ing a minimal hybrid representation. Observability, reachability and minimality of a

hybrid representation can be checked by checking observability, reachability of suit-

able a rational formal power series representation and a suitable Moore-automaton.

Thus, by using algorithms for checking observability and reachability of rational for-

mal power series representations and Moore-automata one can formulate algorithms

for checking reachability, observability and minimality of hybrid representations.

The algorithms in turn can be applied to (bi)linear hybrid systems. Thus, we

are able to formulate algorithms for checking observability, semi-reachability and

minimality of (bi)linear hybrid systems and for constructing minimal (bi)linear hybrid

system realizations. The algorithm for computing a hybrid representation from a

finite sub-matrix of a Hankel-matrix enables us to formulate partial realization theory

for (bi)linear hybrid systems. It also gives a procedure for computing a (bi)linear

hybrid system realization from finitely many input-output data.

Nonlinear Hybrid Systems Without Guards

In this thesis we will also present results on realization theory of hybrid systems with-

out guards which have a bit more general structure than linear and bilinear hybrid

systems. We will tentatively call them nonlinear hybrid systems in the subsequent

text (in the corresponding chapter they will be called nicely analytic nonlinear hy-

brid systems). As the name suggests nonlinear hybrid systems are hybrid systems

without guards such that the control system at each discrete mode is an analytic

input-affine nonlinear control system and the reset maps are analytic such that the

following condition holds. For each discrete mode there exists a distinguished point

in the state-space of the underlying analytic input-affine control system such that the

reset maps map these points into each other. That is, the value of a reset map at a

distinguished point is a distinguished point itself. We will be looking at realizations

of a single input-output map by a nonlinear hybrid system such that the continu-

ous component of the initial state from which the input-output map is realized is a

distinguished point.

The assumptions that the underlying nonlinear control systems are analytic and
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that the reset maps are analytic enable us to translate the global realization problem

to a local one. That is, instead of trying to find a hybrid system which realizes a

certain input-output map we will aim at finding a hybrid system which realizes the

specified input-output map locally, i.e. for small enough times and small enough

continuous inputs. That is, we will be looking for a hybrid system and an initial

state, such that for small enough times and continuous inputs, the input-output map

induced by the initial states coincides with the specified input-output map. Due to

analyticity of input-output maps existence of such a hybrid system realization will

also imply that the input-output map induced by the hybrid system and the specified

input-output map, realization of which is wanted, will coincide on the intersection

of their domains of definition. That is, if the found hybrid system induces an input-

output map which is defined for all times and continuous inputs, then the hybrid

system will be a realization of the specified input-output map.

The reason why we prefer to deal with the local rather than the global realization

problem is that the local realization problem can be translated to a purely algebraic

problem. Thus, the local realization problem is somewhat easier and its solution

might give important insight into the solution of the global problem. Moreover,

the conditions one gets for existence of a local realization might be easier to handle

algorithmically.

The way we translate the local realization problem to an algebraic problem re-

sembles the formal power series approach, classical in realization theory of nonlinear

systems [36, 21].

The classical solution to local nonlinear realization problem starts with associating

with each nonlinear system a formal system defined as a follows. We associate with

each vector field of the nonlinear systems a derivation on the ring of formal power

series. The derivations are obtained by taking the Taylor-series expansion of each

vector field around the initial point. The solution to the local realization problem is

reduced to finding a formal system realization for a map, which maps sequences of

input symbols to continuous outputs.

In order to repeat the procedure above for hybrid systems we will need the fact

that distinguished points are mapped to distinguished points. This will enable us to

look at Taylor series expansions of vector field, readout maps and reset maps around

the distinguished points. By viewing the continuous state-spaces as formal power se-

ries rings and viewing the vector fields, resets maps and readout maps as derivations,

homomorphisms on formal power series and formal power series respectively, we will

be able to associate a formal hybrid system with each hybrid system. Conversely, if

we have a formal hybrid system and the corresponding vector fields, homomorphism

and formal power series are convergent, then we can associate with the formal hybrid
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system a hybrid system, continuous state spaces of which are open neighbourhoods

of Rn, where n depends on the discrete-state. It turns out that a hybrid system is a

local realization of an input-output map if and only if the corresponding formal hy-

brid system is a realization of a map obtained from the input-output map as follows.

The map maps sequences of discrete inputs and indices indicating the directions of

continuous inputs to continuous and discrete outputs. The continuous valued part

is obtained by taking high-order derivatives of the input-output map with respect to

inputs and arrival times of discrete-inputs. The discrete valued part simply coincides

with the discrete-valued part of the original input-output map. In fact, in this thesis

we will pursue a seemingly different manner of obtaining this map, by defining the

concept of hybrid Fliess-series expansions and hybrid convergent generating series.

We will define the map which should be realized by the formal hybrid system by

using hybrid convergent generating series, but it is easy to see that the values of

hybrid convergent generating series can be obtained by taking high-order derivatives

of the input-output map.

Thus a necessary condition for existence of a local realization by a hybrid system

is that the map obtained from the input-output map has a realization by a formal

hybrid system.

Unfortunately, even this formal version of the realization problem is quite difficult

and we did not manage to find a satisfactory solution to it. In this thesis we will

present necessary conditions for existence of a formal hybrid realization and we will

present conditions which are ”almost” sufficient. By ”almost” sufficient we mean

that if the conditions are satisfied, then there exists a realization by an abstract

hybrid system, which is slightly more general than formal hybrid systems. Both the

necessary and the sufficient conditions involve two types of conditions. The first type

essentially requires that a certain discrete input-output map should have a realization

by a Moore-automaton. The second type requires that a certain vector space should

be finite-dimensional. Conditions of the second type are analogous to the classical

finite Lie-rank condition for classical nonlinear systems. In fact, they imply the

Lie-rank condition if applied to the special case of classical nonlinear systems.

As the reader could see, even the formal realization problem for nonlinear hybrid

systems is more difficult than the corresponding problem for simple nonlinear sys-

tems. There are many ways to solve the problem of existence of a formal realization

for classical nonlinear system. One of them is to use the theory of Sweedler-type

coalgebras and bialgebras [29, 27]. The other one gives a direct construction of a re-

alization, using theory of Lie-algebras [36, 21]. In this thesis we will use the theory of

Sweedler-type coalgebras and bialgebras for studying the formal realization problem

for hybrid systems. Note that this thesis is not the first attempt to use Sweedler-type
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coalgebra theory for hybrid systems, a similar approach was proposed in [28], but

there only some elements of the framework were sketched and no new result proven.

We believe that coalgebra theory is the natural framework for a range of problems,

including realization theory of hybrid and nonlinear systems. It also presents a

framework, which connects well to the notion of costate, introduced by E.Sontag [64]

for realization of polynomial and rational discrete-time systems. The two approaches

are dual to each other and connect roughly as follows. The state-space representation

of a system, where the state-space is a manifold, finite-dimensional linear space or an

algebraic variety corresponds to a coalgebra system. The costate-space representation

of a system, where the costate (or the space of observables) is an algebra of certain

class corresponds to an algebra systems. In fact, this duality between the two types

of representations was noticed already by Sontag in his work on polynomial systems

[64], but there he stated only the duality between finitely generated algebras or

algebras with finite transcendence degree and varieties. This duality is a special case

of duality between algebra and coalgebra systems. We hope that recognising this

duality and using the representation which suits the particular problem better might

be a useful problem solving technique.

One of the technical obstacles we encountered while trying to solve the formal

realization problem is the presence of non-invertible reset maps. It is due to the

presence of non-invertible reset maps that we failed to find necessary and sufficient

conditions for existence of a formal hybrid system realization.

1.3.3 Piecewise-affine Discrete-time Hybrid Systems

In this thesis we will also discuss realization theory for discrete-time piecewise-affine

hybrid systems. A discrete-time piecewise-affine hybrid system is essentially a PL-

system according to the terminology by E.Sontag [15]. That is, it is a discrete-time

system, such that the state-transition and readout maps are piecewise-affine. By a

piecewise-affine map we mean a map such that there exists a partitioning of its domain

into polyhedra such that the restriction of the map to each such polyhedron is a linear

map. We will study only autonomous systems, that is, systems without inputs. We

will also assume that there exists a partition of the state-space into polyhedra, such

that on each polyhedra the state-transition and readout maps are linear. We will

assume that each such polyhedron is indexed by an element of a finite set. We will

call this finite set the set of discrete modes. For autonomous systems, if we start in

a particular state of the system, then the sequence of indices of polyhedra which the

state-trajectory started in this particular states visits, is completely determined by

the structure of the system and by the particular state. We will refer to this sequence
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of indices (discrete modes) as the switching sequence induced by the particular state.

For the sake of simplicity in the subsequent text we will refer to discrete-time

autonomous piecewise-affine hybrid systems simply as hybrid systems.

We will be interested in finding necessary and sufficient conditions for existence

of an autonomous piecewise-affine hybrid system realization of an output trajectory.

Since we are looking at discrete-time systems, the output trajectory is simply an

infinite sequence of output values. We will distinguish two cases. In the first case the

set of discrete modes of the sought hybrid systems is fixed, moreover, the sequence of

discrete modes which should be visited by the state-trajectory generating the output

trajectory is fixed too. That is, the output trajectory can be viewed as a map from

finite subwords of an infinite word over the fixed set of discrete modes to output

values. The problem of finding a realization with a specified set of discrete modes

and with a specified switching sequence will be called the weak realization problem.

In contrast, in the second case we do not assume any a priori knowledge on the set

of discrete modes or switching sequence. That is, in this case the output map is

just a sequence of output values and the desired hybrid realization can have any set

of discrete modes and it can generate any switching sequence from its initial state.

We will refer to the problem described as the second case as the strong realization

problem.

The results presented in this thesis are quite elementary, they represent the first

step towards realization theory of piecewise-affine hybrid systems.

We will give necessary and sufficient conditions for existence of a realization by an

autonomous discrete-time piecewise-affine hybrid system. The conditions are of two

type. Conditions of the first type are conditions which are necessary and sufficient

for existence of a hybrid system realization such that the switching sequence induced

by the initial state is almost-periodic. The second type of conditions are conditions

for existence of a hybrid system without any further restriction on the switching

sequence induced by the initial state.

In the first case, i.e. when the induced switching sequence is required to be almost-

periodic, the sufficient and necessary condition is finiteness of an infinite matrix,

reminiscent of the Hankel-matrix. For the weak realization problem the Hankel-

matrix is very similar to the Hankel matrix of a formal power series. That is, the

output trajectory is viewed as a formal power series, which maps each finite subword

of the desired switching sequence to the value of the output trajectory at natural

number which is equal to the length of the subword. It maps each word which is not

a subword of the desired output trajectory to zero. In plain English, for all those

sequences of discrete modes for which we have no information, we assume that the

output is zero. Notice that this approach is similar to what was done for (bi)linear
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switched systems with constrained switching. In fact, the construction of a realization

in both cases relies on the very same properties of formal power series. For the strong

realization problem the Hankel-matrix is simply the classical Hankel-matrix. In fact,

if the desired switching sequence is almost-periodic, then existence of a hybrid system

realization in the strong sense is equivalent to existence of a realization by a linear

system.

The second case, i.e. when there is no restriction on the desired switching sequence

induced by the initial state is a bit more involved. We used ideas very similar to those

which appeared in theory of time-varying systems and in theory of systems over

abstract rings. If we adopt the operations of point-wise addition and multiplication

then the set of all infinite sequences of real numbers becomes a ring. Consider the

set of all infinite sequences of real number such that each sequence from the set takes

finitely many values, i.e., if it is viewed as a map from natural numbers to reals, then

its range if finite. The set of sequences with finite range forms a sub-ring of the ring

of sequences. The output trajectory can be viewed as a collection of p sequences of

real numbers, where p is the dimension of the output space. Both for the weak and

strong realization problems we define a number of sub-rings of the ring of sequences

with finite range. It is easy to see that the ring of sequences is a module over the

ring of sequences with finite range. It turns out that a necessary and sufficient

condition for existence of a hybrid system realization is that the output trajectories

are contained in a finitely generated shift invariant submodule of the module of all

sequences, where the space of all sequences is viewed as a module over a suitable sub-

ring of the ring of sequences with finite range. The choice of the sub-ring depends

on whether we consider the weak or the strong realization problems. For the strong

realization problem we use the whole ring of sequences with finite range. The choice

of the sub-ring for the weak realization problem is a bit more involved.

The necessary and sufficient condition discussed above yields a sufficient con-

dition. Namely, if the set of shifts of the output trajectories generates a finitely

generated module over a suitable sub-ring of the ring of sequences with finite range,

then the output trajectory has a realization by a hybrid system. Notice that the set

of shifts of the output trajectories is simply the set of columns of the Hankel-matrix,

thus the sufficient condition above simply says that if the module spanned by the

columns of the Hankel-matrix is finitely generated, then the output trajectory has a

realization by a hybrid system.

At this stage the reader might be puzzled as to how we reconstruct the switching

mechanism, i.e., how we find a suitable partitioning of the state-space into polyhedra.

The answer is quite simple, and yet, in the author’s opinion, it is one of the most

interesting observations of the thesis on the theory of piecewise-affine discrete-time
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hybrid systems. As we mentioned earlier, in the autonomous case the switching se-

quence induced by the initial state depends only on the initial state and the structure

of the system. Conversely, given any switching sequence over a suitable set of dis-

crete modes, we can find a suitable initial state and a piecewise-affine discrete-time

hybrid system, such that the sequence of outputs of this hybrid system is the de-

sired switching sequence. The construction of such a system is in fact known, see

[8]. Thus, existence of a realization by a discrete-time piecewise-affine hybrid sys-

tem is equivalent to existence of a realization by a linear switched system realization

with a specified switching signal. Or, in other words, existence of a hybrid system

realization is equivalent to existence of a linear time-varying realization of a very spe-

cial structure. Hence, we can use ideas from realization theory of switched systems

and time-varying systems to develop realization theory of autonomous discrete-time

piecewise-affine hybrid systems.

1.4 Structure of the Manuscript

In this section we will give a brief outline of the structure of the thesis.

Chapter 2 This chapter describes some notation and terminology which will be use

throughout the thesis. It also presents the formal definitions of the classes of

hybrid system which are discussed in the thesis. The last section of this chapter

presents the concept of abstract generating series, which will be used only in the

sections dealing with bilinear switched and hybrid systems. The only sections

the reader is strongly advised to read before going further are Section 2.1,

Section 2.2 and Section 2.3. All the other sections can be read later, when the

reader arrives to the corresponding chapters which refer to them.

Chapter 3 This chapter discusses the theory of classical and hybrid formal power

series. This is one of the most important chapters of the thesis, most of the

other chapters rely on this one. The only chapters which are independent of

this one are Chapter 5 and Chapter 6. However, for Chapter 4 and Section

10.1, Section 10.4 of Chapter 10 it is enough to read Section 3.1 of Chapter 3.

The material of this chapter can be found in [55, 51].

Chapter 4 The chapter presents realization theory of linear and bilinear switched

systems. The approach to realization theory pursued in this chapter relies

on theory of formal power series. Thus, Section 2.3, 2.4 and Section 3.1 are

prerequisites for this chapter. Section 2.6 is a prerequisite for Section 4.2. The

material of this chapter was published in [55, 51, 53].
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Chapter 5 This chapter deals with the structure of the reachable set of linear

switched systems. The only prerequisite for this chapter is Section 2.4 and

Subsection 4.1.1. The results presented in this chapter were published in [56].

The material of this chapter is in some sense a detour from the main topic of

the thesis. It presents an investigation of the structure of the reachable set for

linear switched systems using methods of nonlinear systems theory. It does not

touch the issue of realization theory.

Chapter 6 This chapter presents an alternative approach to realization theory of

linear switched systems. Instead of using formal power series, it discusses a di-

rect construction of a minimal realization. This chapter is based on [50], which

was the earliest publication on realization theory of linear switched systems.

Although all the results of this section are implied by results of Chapter 4, this

chapter still provides an interesting alternative view of realization theory of

linear switched systems. The only prerequisite for this chapter are Subsection

4.1.1 and Section 2.4.

Chapter 7 This chapter presents realization theory for linear and bilinear hybrid

systems. Perhaps this is one of the most interesting chapters of the thesis. The

approach to realization theory relies heavily on theory of hybrid formal power

series. Prerequisites for this chapter are Chapter 3 and Section 2.3. Section 7.2

of this chapter relies on Section 2.6. The material of this chapter is partially

based on [48, 54, 47].

Chapter 8 This chapter deals with realization theory of nonlinear analytic systems

without guards. The chapter is based on the conference paper [57]. The only

prerequisite to this chapter is Section 2.3 and Section 2.6. This chapter only

sketches the main constructions and states the main results. It does not provide

detailed proofs of the stated results.

Chapter 9 This chapter discusses realization theory of discrete-time autonomous

piecewise-affine hybrid systems. The prerequisites to this chapter are Section

2.5 and Section 3.1. The chapter is based on [49]. The chapter merely sketches

the main constructions, without providing too much details and omitting a

number of proofs.‘;

Chapter 10 This chapter discusses partial realization theory for linear and bilinear

switched and hybrid systems. It also presents algorithms for checking observ-

ability, semi-reachability and minimality of hybrid systems and computing a

minimal hybrid system realization. Prerequisites for this chapter are Chapter
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2, Chapter 3, Chapter 4 and Chapter 7. However, Section 10.1 requires only the

results of Section 3.1, Section 10.2 requires only Section 3.2. Section 10.4 relies

only on Section 10.1 and Chapter 4. Section 10.3 uses results from Section 3.3

and Section 10.2., Finally, Section 10.5 uses results from Chapter 3, Chapter

7, Section 10.1 and Section 10.3.

There already exists a preliminary software implementation of the algorithms

presented in this chapter.
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Chapter 2

Preliminaries

The goal of this chapter is twofold. First, we will set up notation and terminology,

which will be used in the rest of the thesis. Second, we will define those classes of

control systems which will be the object of the study in this thesis. We will start by

describing in Section 2.1 some general notation and terminology, which will be used

in the thesis without any further reference. Then we will proceed by defining the

concept of Moore-automata in Section 2.2. Section 2.3 presents the definition and

basic properties of hybrid systems without guards. Section 2.4 presents the definition

and elementary properties of switched systems. Section 2.6 presents the framework

of abstract generating convergent series. Abstract generating convergent series are

a generalisation of generating convergent series from nonlinear systems theory, see

[32, 84, 83]. Abstract generating series will be used in Section 4.2 and in Section

7.2 for defining the concepts of generalised generating convergent series and hybrid

generating convergent series respectively. The latter two notions play a central role

in realization theory of bilinear switched and hybrid systems.

2.1 Notation and Terminology

For suitable sets S,B, S ⊆ R denote by PC(S,B) the class of piecewise-continuous

maps from S to B. That is, f ∈ PC(S,B) if f has finitely many points of discontinu-

ity on each finite interval and at each point of discontinuity the right- and left-hand

side limits exist and they are finite. For a set Σ denote by Σ∗ the set of finite strings

of elements of Σ. For w = a1a2 · · · ak ∈ Σ∗ the length of w is denoted by |w|, i.e.

|w| = k. The empty sequence is denoted by ε. The length of ε is zero: |ε| = 0. Let

Σ+ = Σ∗ \ {ε}. The concatenation of two strings v = v1 · · · vk, w = w1 · · ·wm ∈ Σ∗
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is the string vw = v1 · · · vkw1 · · ·wm. If w ∈ Σ+ then wk denotes the word ww · · ·w︸ ︷︷ ︸
k−times

.

The word w0 is just the empty word ε. Denote by T the set [0,+∞) ⊆ R. Denote by

N the set of natural numbers including 0. Denote by F (A,B) the set of all functions

from the set A to the set B. By abuse of notation we will denote any constant function

f : T → A by its value. That is, if f(t) = a ∈ A for all t ∈ T , then f will be denoted

by a. For any function f the range of f will be denoted by Imf . If A,B are two sets,

then the set (A × B)∗ will be identified with the set {(u,w) ∈ A∗ × B∗ | |u| = |w|}.

For any two sets J,X the surjective function A : J → X is called an indexed subset of

X or simply and indexed set. It will be denoted by A = {aj ∈ X | j ∈ J}. The set J

will be called the index set of A. The indexed subset A = {aj ∈ X | j ∈ J} is said

to be a subset of the indexed subset B = {bi ∈ X | i ∈ I} if there exists g : J → I

such that aj = bg(j). The fact that A is a subset of B will be denoted by A ⊆ B.

Let f : A× (B ×C)+ → D. Then for each a ∈ A, w ∈ B+ we define the function

f(a,w, .) : C|w| → D by f(a,w, .)(v) = f(a, (w, v)), v ∈ C|w|. By abuse of notation

we denote f(a,w, .)(v) by f(a,w, v).

Let φ : Rk → Rp, and α = (α1, α2, . . . , αk) ∈ Nk. We define Dαφ as the partial

derivative

Dαφ =
dα1

dtα1
1

dα2

dtα2
2

· · ·
dαk

dtαk

k

φ(t1, t2, . . . , tk)|t1=t2=···=tk=0.

Let f, g ∈ PC(T,A) for some suitable set A. Define for any τ ∈ T the concatenation

f#τg ∈ PC(T,A) of f and g by

f#τg(t) =

{
f(t) if t ≤ τ

g(t) if t > τ

If f : T → A, then for each τ ∈ T define Shiftτ (f) : T → A by Shiftτ (f)(t) = f(t+τ).

If X ,Y,Z are vector spaces over R, and F1 : X → Y, F2 : Y → Z are linear maps,

then F1F2 denotes the composition F1 ◦ F2 of F1 and F2. If x ∈ X , then F1x denote

the value F1(x) of F1 at x.

2.2 Moore automata

A finite Moore-automaton is a tuple A = (Q,Γ, O, δ, λ) where Q,Γ are finite sets,

δ : Q×Γ → Q, λ : Q → O. The set Q is called the state-space, O is called the output

space and Γ is called the input space. The function δ is called the state-transition

map and the function λ is called the readout map. Denote by card(A) the cardinality

of the state-space Q of A, i.e. card(A) = card(Q).
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Define the functions δ̃ : Q×Γ∗ → Q and λ̃ : Q×Γ∗ → O as follows. Let δ̃(q, ε) = q

and

δ̃(q, wγ) = δ(δ̃(q, w), γ), w ∈ Γ∗, γ ∈ Γ

Let λ̃(q, w) = λ(δ̃(q, w)), w ∈ Γ∗. By abuse of notation we will denote δ̃ and λ̃ simply

by δ and λ respectively.

Let D = {φj ∈ F (Γ∗, O) | j ∈ J} be an indexed set of functions. A pair (A, ζ) is

said to be an automaton realization of D if A = (Q,Γ, O, δ, λ), ζ : J → Q and

λ(ζ(j), w) = φj(w), ∀w ∈ Γ∗, j ∈ J

An automaton A is said to be a realization of D if there exists a ζ : J → Q such that

(A, ζ) is a realization of D.

Let (A, ζ) and (A
′

, ζ
′

) be two automaton realizations. Assume that

A = (Q,Γ, O, δ, λ)

and

A
′

= (Q
′

,Γ, O, δ
′

, λ
′

)

. A map φ : Q → Q
′

is said to be an automaton morphism from (A, ζ) to

(A
′

, ζ
′

), denoted by φ : (A, ζ) → (A
′

, ζ
′

) if φ(δ(q, γ)) = δ
′

(φ(q), γ),∀q ∈ Q, γ ∈ Γ ,

λ(q) = λ
′

(φ(q)),∀q ∈ Q, φ(ζ(j)) = ζ
′

(j), j ∈ J . It is easy to see that composition of

two automaton morphisms is again an automaton morphism. The automaton mor-

phism φ is called injective (surjective) if the map φ is injective (surjective). If φ is a

bijection, then φ−1 : (A
′

, ζ
′

) → (A, ζ) is an automaton morphism too. An automaton

realization (A, ζ) of D is called minimal if for each automaton realization (A
′

, ζ
′

) of

D card(A) ≤ card(A
′

). Let φ : Γ∗ → O. For every w ∈ Γ∗ define w ◦φ : Γ∗ → O–the

left shift of φ by w as w ◦ φ(v) = φ(wv). For D = {φj ∈ F (Γ∗, O) | j ∈ J} define the

set WD ⊆ F (Γ∗, O) by

WD = {w ◦ φj : Γ∗ → O | w ∈ Γ∗, j ∈ J}

An automaton A = (Q,Γ, O, δ, λ) is called reachable from Q0 ⊆ Q, if

∀q ∈ Q : ∃w ∈ Γ∗, q0 ∈ Q0 : q = δ(q0, w)

A realization (A, ζ) is called reachable if A is reachable from Imζ. A realization

(A, ζ) is called observable or reduced , if

∀q1, q2 ∈ Q : [∀w ∈ Γ∗ : λ(q1, w) = λ(q2, w)] =⇒ q1 = q2

32



2.3. HYBRID SYSTEMS WITHOUT GUARDS

2.3 Hybrid Systems Without Guards

In this subsection we will present a formal definition of hybrid systems without

guards. As the name indicates, a hybrid system without guards is a hybrid system

where all the discrete events are externally triggered. More precisely, one could

describe a hybrid system without guards as follows. The system consists of a finite

state Moore-automaton, a finite collection of control systems and a collection of

reset maps. We associate a control system with each state of the Moore-automaton.

The states of the Moore-automaton are referred to as discrete states. The control

systems are assumed to be determined by differential equations. Thus, in general,

we consider nonlinear control systems, state-space of which, generally speaking is a

manifold. We associate a reset map with each discrete state transitions. Reset maps

are assumed to be maps between state-spaces of the control systems comprising the

hybrid system. The control systems associated with the discrete states are assumed

to be endowed with the input and output spaces but the state-spaces are allowed

to vary with the discrete states. The state evolution of such a hybrid system takes

place as follows. One starts in a certain discrete state with a certain continuous

initial state. The state trajectory evolves according to the differential equation of

the control system associated with the current discrete mode, until a discrete even

arrives. When a discrete even arrives, the evolution of the continuous state stops

and the discrete state of the hybrid system changes according to the state transition

rule of the Moore-automaton. The new continuous state is obtained by applying the

reset map associated with the current discrete state transition to the continuous state

where the evolution of the control stopped. All these transitions are assumed to take

place instantaneously, in zero time. After the discrete state transition and reseting

of the continuous state the state evolution proceeds according to the differential

equation of the new discrete state,by applying the flow of the differential equation to

the new continuous state. The continuous input is fed to the control system associated

with the current discrete mode. The continuous output trajectory is obtained by

concatenating the continuous state trajectories. The contnious output trajectory is

piecewise-constant, it is formed by the outputs associated with the discrete states of

the Moore-automaton visited during the state-space evolution.

We assume that the discrete events and their arrival is subject to control. In other

words, we assume that the discrete events are inputs and any specific discrete event

can be triggered at any time. Thus, timed sequences of discrete events play the role

of inputs, just as sequences of input symbols play the role of inputs for finite-state

automata.

After having described in an informal way the concept of hybrid systems without
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guards we proceed with giving a formal definition.

Definition 1. A hybrid systems without guards (HSWG) is a tuple

H = (A,U ,Y, (Xq, fq, hq)q∈Q , {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ})

where

• A = (Q,Γ, O, δ, λ) is a finite-state Moore-automaton,

• Xq is a manifold for each q ∈ Q,

• U is the set of continuous input values, it is assumed to be a manifold.

• Y is the set of continuous output values, Y is assumed to be a manifold.

• hq : Xq → Y is a smooth map

• fq : Xq × U → TXq is a smooth map, such that for each u ∈ U the map

x 7→ fq(x, u) defines a vector field.

The set Q of states of A is called the set discrete modes, the input alphabet Γ

of A is called the set of discrete events. The tuple (Xq, fq, hq) can be viewed as

the contnious control system associated with the discrete state q ∈ Q. The map

hq is called the readout map. We will assume that fq, is globally Lipschitz, or more

precisely, the coordinate functions are globally Lipschitz, so that the solution of the

differential equation
d

dt
x(t) = fq(x(t), u(t))

is well-defined for all t ∈ R and u piecewise-continuous functions, i.e., u ∈ PC(R,U).

In the rest of the section we will refer to hybrid systems without guards simply as

hybrid systems.

Let H =
⋃

q∈Q{q} × Xq. Let X =
⋃

q∈Q Xq, AH = A. As we already indicated

at the beginning of the section, hybrid systems without guards admit two types

of inputs. The inputs of the hybrid system H are functions from PC(T,U) and

sequences from (Γ × T )∗.

The interpretation of a sequence (γ1, t1) · · · (γk, tk) ∈ (Γ × T )∗ is the following.

The event γi took place after the event γi−1 and ti−1 is the elapsed time between the

arrival of γi−1 and the arrival of γi. That is, ti is the difference of the arrival times

of γi and γi−1. Consequently, ti ≥ 0 but we allow ti = 0, that is, we allow γi to arrive

instantly after γi−1. If i = 1, then t1 is simply the time when the event γ1 arrived.

The state trajectory of the system H is a map

ξH : H× PC(T,U) × (Γ × T )∗ × T → H
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of the following form. For each u ∈ PC(T,U), w = (γ1, t1) · · · (γk, tk) ∈ (Γ × T )∗,

tk+1 ∈ T , h0 = (q0, x0) ∈ H it holds that

ξH(h0, u, w, tk+1) = (δ(q0, γ1 · · · γk), xH(h0, u, w, tk+1))

where the map x : T 3 t 7→ xH(h0, u, w, t) ∈ X is the solution of the differential

equation

d

dt
x(t) = fqk

(x(t), u(t +

k∑

1

tj)

where qi = δ(q0, γ1 · · · γi), i = 1, . . . , k and

x(0) = xH(h0, u, w, 0) = Rqk,γk,qk−1
xH(x0, u, (γ1, t1) . . . (γk−1, tk−1), tk)

if k > 0 and x(0) = x0 if k = 0.

In fact, one can define a map xH : H× PC(T,U)× (T × Γ)∗ × T →
⋃

q∈Q Xq, by

(h, u, s, t) 7→ xH(h, u, s, t). It is easy to see that ΠS
q∈Q Xq

◦ ξH = xH . Define the set

of reachable states from a subset H0 ⊆ H in an obvious way as follows.

R(H,H0) = {ξH(h, u, w, t) | h ∈ H0, u ∈ PC(T,U), w ∈ (Γ × T )∗, t ∈ T}

We will say that the hybrid system H is reachable from H0 if R(H,H0) = H).

One could give an alternative definition of reachability. Define the set of contin-

uous states reachable from H0 by

Reach(H,H0) = {xH(h0, u, w, t) ∈ X | u ∈ PC(T,U), w ∈ (Γ × T )∗, t ∈ T, h0 ∈ H0}

Then H is reachable from H0 if Reach(H,H0) = X and the automaton AH is reach-

able from ΠQ(H0).

Define the function υH : H× PC(T,U) × (Γ × T )∗ × T → O × Y by

υH((q0, x0), u, (w, τ), t) = (λ(q0, w), hq(xH((q0, x0), u, (w, τ), t)))

where q = δ(q0, w). For each h ∈ H the input-output map of the system H induced

by h is the function

υH(h, .) : PC(T,U) × (Γ × T )∗ × T 3 (u, (w, τ), t) 7→ υH(h, u, (w, τ), t) ∈ O × Y

We will denote the map (u, s, t) 7→ ΠY ◦ υH(h, u, s, t) ∈ Y by yH(h, .) and we will

denote yH(h, .)(u, s, t) simply by yH(h, u, s, t). Two states h1 6= h2 ∈ H of the linear

hybrid system H are indistinguishable if υH(h1, .) = υH(h2, .). H is called observable

if it has no pair of indistinguishable states.
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Throughout the thesis we will mostly be concerned with realization of a set of

input-output maps. It means that we will have to look at systems which have not

one, but several initial states. We will use the following formalism to deal with the

issue. Let H be a hybrid system and let Φ ⊆ F (PC(T,U) × (Γ × T )∗ × T,Y × O)

be a subset of the set of input-output maps. Let µ : Φ → H be any map. We

will call the pair (H,µ) a realization . The map µ just specifies a way to associate

an initial state to each element of Φ. The statement that (H,µ) is a realization

does not imply that H is realized Φ from the set of initial states =µ. The set

Φ ⊆ F (PC(T,U)× (Γ×T )∗×T,Y ×O) is said to be realized by a hybrid realization

(H,µ) where µ : Φ → H, if

∀f ∈ Φ : υH(µ(f), .) = f

We will say that H realizes Φ if there exists a map µ : Φ → H such that (H,µ)

realizes Φ. With slight abuse of terminology, sometimes we will call both H and

(H,µ) a realization of Φ. Thus, H realizes Φ if and only if for each f ∈ Φ there

exists a state h ∈ H such that υH(h, .) = f . We say that a realization (H,µ) is

observable if H is observable and we say that (H,µ) is reachable if H is reachable

from Imµ. We will denote by µD the map Φ 3 f 7→ ΠQ(µ(f)) ∈ Q, where Q is the

discrete-state space of H. The map µ can be thought of as a map which assigns to

each input-output map f an initial state of the system H. It is just an alternative

way to fix a set of initial states. If we speak of a realization (H,µ) it will always

imply that dom(µ) is a subset of F (PC(T,U) × (Γ × T )∗ × T,Y × O), i.e. it is a set

of input-output maps, and µ : dom(µ) → H.

For a hybrid system H the dimension of H is defined as

dim H = (card(Q),
∑

q∈Q

dimXq) ∈ N × N

The first component of dimH is the cardinality of the discrete state-space, the sec-

ond component is the sum of dimensions of the continuous state-spaces. For each

(m,n), (p, q) ∈ N × N define the partial order relation (m,n) ≤ (p, q), if m ≤ p and

n ≤ q. A realization H of Φ is called a minimal realization of Φ, if for any realization

H
′

of Φ:

dimH ≤ dim H
′

The partial order relation on the dimensions of hybrid systems realizations induces

a partial order on the set of all hybrid realizations. If the set of all realizations of Φ

is considered as a partially ordered set, then a minimal realization defines a minimal

element of this set. Notice however, that our definition of a minimal realization is

quite different from the usual definition of a minimal element of a partially ordered
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set. The definition of a minimal element of a partially ordered set does not imply that

the minimal element is comparable ( in relation ) with other elements of the set. Our

definition of a minimal realization explicitly requires that the minimal realization

should have dimension which is smaller than the dimension of any other realization,

thus, in particular, it has to be comparable with all the realizations. That is, it is not

necessarily true that any minimal element of the partially ordered set of realizations

yields a minimal realization.

The reason for defining the dimension of a hybrid system as above is that there

is a trade-off between the number of discrete states and dimensionality of each con-

tinuous state-space component. That is, one can have two realizations of the same

input/output maps, such that one of the realizations has more discrete states than

the other, but its continuous state components are of smaller dimension than those

of the other system.

Let (H,µ) and (H
′

, µ
′

) be two realizations such that dom(µ) = dom(µ
′

) and

H = (A,U ,Y, (Xq, fq, hq)q∈Q , {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ})

H
′

= (A
′

,U ,Y, (X
′

q , f
′

q, h
′

q)q∈Q′ , {Rδ(q,γ),γ,q | q ∈ Q
′

, γ ∈ Γ})

where A = (Q,Γ, O, δ, λ) and A
′

= (Q
′

,Γ, O, δ
′

, λ
′

). A pair T = (TD, TC) is called a

hybrid system morphism from (H,µ) to (H
′

, µ
′

), denoted by T : (H,µ) → (H
′

, µ
′

),

if the the following holds. The map TD : (A, µD) → (A
′

, µ
′

D), where µD(f) =

ΠQ(µD(f)), µ
′

D(f) = ΠQ′ (µ
′

D(f)), is an automaton morphism and TC :
⋃

q∈Q Xq →⋃
q∈Q′ X

′

q is a map such that

• ∀q ∈ Q : TC(Xq) ⊆ X
′

TD(q),

• For each q ∈ Q, the restriction TC |Xq
: Xq → XTD(q) is a smooth map

• For all q ∈ Q, x ∈ Xq, u ∈ U

D(TC |Xq
)(x)fq(x, u) = f

′

TD
(TC(x), u) and hq(x) = h

′

TD(q)(TC(x))

where D(TC |Xq
)(x) denotes the Jacobian of the smooth map TC |Xq

at x.

• For all q1, q2 ∈ Q, γ ∈ Γ, δ(q2, γ) = q1, TCRq1,γ,q2
= R

′

TD(q1),γ,TD(q2)
TC

• TC(ΠXq
(µ(f))) = ΠX

′

TD(q)
(µ

′

(f)) for each q = µD(f), f ∈ Φ.

The hybrid morphism T is called a hybrid isomorphism if TD is a bijective map and

for each q ∈ Q the map TC |Xq
is a diffeomorphism. Two hybrid system realizations

are isomorphic if there exists a hybrid isomorphisms between them. Notice that a

hybrid morphism can be defined only between hybrid system realizations (H,µ) and
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(H
′

, µ
′

) such that the domains of µ and µ
′

coincide. Denote the state space of H1 by

H1 =
⋃

q∈Q{q}×Xq and denote the state-space of H2 by H2 =
⋃

q∈Q′{q}×X
′

q . It is

easy to see that T = (TC , TD) defines a map φT : H1 3 (q, x) 7→ (TD(q), TCx) ∈ H2.

By abuse of notation we will denote φT simply by T .

Proposition 1. If T is a hybrid isomorphism then the map φ(T ) is a bijective as a

map from H1 to H2.

Proof. Indeed, for each (q, x) ∈ H1, φ(T )((q, x)) = (TD(q), TC(x)). Thus, if

φ(T )((q
′

, x
′

)) = φ(T )((q, x))

then TD(q) = TD(q
′

) and TC(x) = TC(x
′

). By injectivity of TD we get q = q
′

and

thus x, x
′

∈ Xq. Then from the assumption that TC |Xq
is a diffeomorphism we get

that x = x
′

. Thus, φ(T ) is injective. If (s, z) ∈ {s} × X
′

s , then by surjectivity of TD

there exists a q ∈ Q such that TD(q) = s. Since TC |Xq
: Xq → X

′

s is a diffeomorphism,

there exists a x ∈ Xq such that TC(x) = z. Thus, φ(T )((q, x)) = (z, s).

The following proposition gives an important system theoretic characterisation of

hybrid morphisms.

Proposition 2. Let (Hi, µi), i = 1, 2 be two hybrid systems and let T : (H1, µ1) →

(H2, µ2) be a hybrid morphism. Then the following holds.

T ◦ ξH1
(h, .) = ξH2

(T (h), .) and υH1
(h, .) = υH2

(T (h), .),∀h ∈ H1 (2.1)

If T is an hybrid isomorphism, then (H1, µ1) is reachable if and only if (H2, µ2) is

and (H1, µ1) is observable if and only if (H2, µ2) is observable.

Proof. It is easy to see that TD(δ1(q, w)) = δ2(TD(q), w) for all q ∈ Q1 and w ∈ Γ∗.

We will first show that if x : T → X 1
q is a solution of the differential equation

d

dt
x(t) = f1

q (x(t), u(t))

then φ : T 3 t 7→ TC(x(t)) ∈ X 2
TD(q) is a solution to the differential equation

d

dt
φ(t) = f2

TD(q)(φ(t), u(t))

Indeed,

d

dt
φ(t) = DTC |X 1

q
(x(t))

d

dt
x(t) = DTC |X 1

q
(φ(t))f1

q (x(t), u(t)) =

= f2
TD(q)(TC(x(t)), u(t)) = f2

TD(q)(φ(t), u(t))
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Thus, φ(t) is indeed the solution of the differential equation d
dtφ(t) = f2

TD(q)(φ(t), u(t)).

Next, we will show that for any (q, x) ∈ H1, u ∈ PC(T,U),

w = (γ1, t1)(γ2, t2) · · · (γk, tk) ∈ (Γ × T )∗, k ≥ 0,tk+1 ∈ T

TC(xH1
((q, x), u, w, tk+1)) = xH2

((q, x), u, w, tk+1) (2.2)

We proceed by induction on k. If k = 0, then the map T 3 t 7→ xH1
((q, x), u, ε, t) ∈

X 1
q is the solution to the differential equation d

dtx(t) = f1
q (x(t), u(t)) with initial

condition x(0) = x. Thus, the map φ : T 3 t 7→ TC(xH1
((q, x), u, ε, t)) is the solu-

tion to the differential equation d
dtx(t) = f2

TD(q)(x(t), u(t)) with the initial condition

x(0) = TC(x). But the map t 7→ xH2
((TD(q), TC(x)), u, ε, t) is also a solution the

differential equation above with the same initial condition TC(x). Thus,

TC(xH1
((q, x), u, ε, t)) = φ(t) = xH2

((TD(q), TC(x)), u, ε, t)

for all t ∈ T .

Assume that (2.2) is true for all k ≤ n. Let wn = (γ1, t1) · · · (γn, tn), wn+1 =

(γ1, t1) · · · (γn+1, tn+1). By induction hypothesis,

TC(xH1
((q, x), u, wn, tn+1)) = xH2

((TD(q), TC(x)), u, wn, tn+1)

From the definition of hybrid morphisms and we get that

TC(R1
qn+1,γn+1,qn

(xH1
((q, x), u, wn, tn+1)) =

= R2
TD(qn+1),γn+1,TD(qn)TC(xH1

((q, x), u, wn, tn+1)) =

= R2
TD(qn+1),γn+1,qn

(xH2
((TD(q), TC(x)), u, wn, tn+1)

where qi = δ(q, γ1 · · · γi), i = n, n + 1. From the definition of state trajectories of

hybrid systems it follows that

R1
qn+1,γn+1,qn

(xH1
((q, x), u, wn, tn+1)) = xH1

((q, x), u, wn+1, 0)

and

R2
TD(qn+1),γn+1,TD(qn)(xH2

((TD(q), TC(x)), u, wn, tn+1)) =

xH2
((TD(q), TC(x)), u, wn+1, 0)

Thus,

TC(xH1
((q, x), u, wn+1, 0)) = xH2

((TD(q), TC(x)), u, wn+1, 0)

Notice that the map t 7→ xH1
((q, x), u, wn+1, t) is solution to the differential equation

d

dt
x(t) = f1

qn+1
(x(t), u(

n∑

j=1

tj + t))
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Thus, the map φ : t 7→ TC((xH1
((q, x), u, wn+1, t)) is the solution to the differential

equation d
dtx(t) = f2

TD(q)(x(t), u(
∑n

j=1 tj +t)). Notice that by the definition of hybrid

state trajectories the map

t 7→ xH2
((TD(q), TC(x)), u, wn+1, t)

is also a solution of the differential equation above. We just showed that φ(0) =

TC(xH1
((q, x), u, wn+1, 0)) = xH2

((TD(q), TC(x)), u, wn+1, 0). Therefore, by unique-

ness of solutions of differential equations

TC(xH1
((q, x), u, wn+1, t)) = φ(t) = xH2

((TD(q), TC(x)), u, wn+1, t))

for all t ∈ T . That is, we have just proven (2.2) for the case k = n + 1.

But equation (2.2) implies that for any (q, x) ∈ H1, u ∈ PC(T,U),

w = (γ1, t1) · · · (γk, tk) ∈ (Γ × T )∗,tk+1 ∈ T , k ≥ 0

T ◦ ξH1
((q, x), .)(u,w, tk+1) = T (ξH1

((q, x), u, w, tk+1)) =

= (TD(δ1(q, γ1 · · · γk)), TC((xH1
((q, x), u, w, tk+1))) =

(δ2(TD(q), γ1 · · · γk), xH2
((TD(q), TC(x)), u, w, tk+1)) =

= ξH2
(T ((q, x)), u, w, tk+1) = ξH2

(T ((q, x)), .)(u,w, tk+1)

Thus, we have shown the first part of (2.1). The second part follows from the following

observation. h1
q = h2

TD(q) ◦ TC and λ1(q) = λ2(TD(q)) for all q ∈ Q1. Thus, we get

that

υH1
((q, x), u, w, tk+1) = (λ1(qk), h1

qk
(xH1

((q, x), u, w, tk+1))) =

= (λ2(TD(qk)), h2
TD(qk)(TC(xH1

((q, x), u, w, tk+1))) =

= (λ2(TD(qk)), h2
TD(qk)(xH2

((TD(q), TC(x), u, w, tk+1))) =

= υH2
((TD(q), TC(x)), u, w, tk+1)

where qk = δ1(q, γ1 · · · γk) and thus TD(qk) = δ2(TD(q), γ1 · · · γk). Thus, we proved

(2.1).

Assume that T is a hybrid isomorphism. We will proceed with the proof of the

remaining part of the proposition.

Notice that T (Imµ1) = Imµ2, thus from (2.2) we get that TC(R(H1, Imµ1)) =

R(H2, Imµ2). If T is a hybrid isomorphism, then by Proposition 1 T is bijective as

a map from H1 to H2 and thus T (H∞) = H2. Moreover, is S ⊆ H1 and S 6= H1,

then T (S) 6= H2. That is, R(H1, Imµ1) = H1 if and only if T (R(H1, Imµ1)) =

R(H2, Imµ2) = H1.

Assume that H1 is not observable. Then there exists two states h, h
′

∈ H1 such

that h 6= h
′

and υH1
(h, .) = υH2

(h
′

, .). It implies that υH2
(T (h), .) = υH1

(h, .) =
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υH1
(h

′

, .) = υH2
(T (h

′

), .). Since h 6= h
′

, it follows that T (h) 6= T (h
′

) thus H2 is

not observable. Conversely, assume that H2 is not observable. Then there exists two

states s, s
′

∈ H2 such that s 6= s
′

and υH2
(s, .) = υH2

(s
′

, .). Since T is bijective, there

exists h, h
′

∈ H1 such that h 6= h
′

and T (h) = s, T (h
′

) = s
′

. But then it follows that

υH1
(h, .) = υH2

(s, .) = υH2
(s

′

, .) = υH1
(h

′

, .). That is, H1 is not observable.

In this thesis we will mostly deal with hybrid systems without guards. One partic-

ular class of hybrid systems without guards is the class of switched systems. The class

of switched systems has a structure, quite different from the general case, therefore

we will discuss switched systems in a separate section. Two important subclasses of

hybrid systems without guards are linear hybrid systems and bilinear hybrid systems.

They both merit separate treatment, and we will discuss their properties extensively

in the corresponding sections. At this stage we will just give their definition, without

delving too much into details.

Definition 2. A (time-invariant) linear hybrid system (abbreviated as LHS ) is

hybrid system

H = (A,U ,Y, (Xq, fq, hq)q∈Q , {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ})

such that

• For each q ∈ Q Xq = Rnq , i.e. Xq has the structure of the linear space Rnq for

some nq > 0,

• U = Rm and Y = Rp, i.e the input and output spaces have the structure of the

linear spaces Rm and Rp, p,m ∈ N, n,m > 0.

• For each q ∈ Q there exist linear maps Aq : Xq → Xq, Bq : U → Xq, such that

with the usual identification on Rnq of the tangent vectors with elements of Rnq

the following holds

∀x ∈ Xq, u ∈ U = Rm : fq(x, u) = Aqx + Bqu

• For each q ∈ Q there exists a linear map Cq : Xq → Y such that

∀x ∈ Xq : hq(x) = Cqx

• The reset maps are linear, i.e., for each q1, q2 ∈ Q, γ ∈ Γ, δ(q2, γ) = q1 there

exists a linear map Mq1,γ,q2
: Xq2

→ Xq1
such that

∀x ∈ Xq : Rq1,γ,q2
(x) = Mq1,γ,q2

x
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We will use the following shorthand notation for linear hybrid systems

H = (A,U ,Y, (Xq, Aq, Bq, Cq)q∈Q , {Mq1,γ,q2
| q1, q2 ∈ Q, γ ∈ Γ, q1 = δ(q2, γ)})

Definition 3. A bilinear hybrid system (abbreviated as BHS ) is hybrid system

H = (A,U ,Y, (Xq, fq, hq)q∈Q , {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ})

such that

• For each q ∈ Q Xq = Rnq , i.e. Xq has the structure of the linear space Rnq for

some nq > 0,

• U = Rm and Y = Rp, i.e the input and output spaces have the structure of the

linear spaces Rm and Rp p,m ∈ N, n,m > 0.

• For each q ∈ Q there exist linear maps Aq : Xq → Xq, Bq : Xq → Xq, such that

with the usual identification on Rnq of the tangent vectors with elements of Rnq

the following holds

∀x ∈ Xq, u = (u1, . . . , um)T ∈ U = Rm, fq(x, u) = Aqx +

m∑

j=1

(Bq,jx)uj

• For each q ∈ Q there exists a linear map Cq : Xq → Y such that

∀x ∈ Xq : hq(x) = Cqx

• The reset maps are linear, i.e., for each q1, q2 ∈ Q, γ ∈ Γ, δ(q2, γ) = q1 there

exists a linear map Mq1,γ,q2
: Xq2

→ Xq1
such that

∀x ∈ Xq : Rq1,γ,q2
(x) = Mq1,γ,q2

x

We will use the following shorthand notation for bilinear hybrid systems

H = (A,U ,Y, (Xq, Aq, {Bq,j}j=1,...,m, Cq)q∈Q , {Mδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ})

2.4 Switched Systems

This section contains the definition and elementary properties of switched systems.

Definition 4. A switched ( control ) system is a tuple

Σ = (X,U ,Y, Q, {fq | q ∈ Q,u ∈ U}, {hq | q ∈ Q})

where
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• X = Rn is the state-space

• Y = Rp is the output-space

• U = Rm is the input-space

• Q is the finite set of discrete modes

• fq : X × U → X , is a function smooth in both variables x and u, and globally

Lipschitz in x

• hq : X → Y is smooth map for each q ∈ Q

Elements of the set (Q × T )+ are called switching sequences. The inputs of the

switched system Σ are functions from PC(T,U) and sequences from (Q×T )+. That

is, the switching sequences are part of the input, they are specified externally and

we allow any switching sequence to occur. In fact, the switching sequences can be

considered as discrete inputs.

In the hybrid systems literature the discrete modes are usually viewed as part of

the state. One can think of switched systems as hybrid systems without guards, such

that the discrete state transitions are triggered by discrete inputs and the discrete

state transition rules are trivial. More precisely, there is one-to-one correspondence

between discrete states and discrete inputs, and a discrete input changes the discrete

state to the discrete state which corresponds to this particular discrete input. That

is, the new discrete state of the system depends only on the discrete input, but not on

the previous discrete state. The continuous state-space does not depend on discrete

modes, i.e. all the continuous state-spaces are the same for all discrete modes. The

reset maps are assumed to be the identity maps.

Let u ∈ PC(T,U) and w = (q1, t2)(q2, t2) · · · (qk, tl) ∈ (Q × T )+. The inputs u

and w steer the system Σ from state x0 to the state xΣ(x0, u, w) given by

xΣ(x0, u, w) = F (qk,ShiftPk−1
1 ti

(u), tk) ◦ F (qk−1,ShiftPk−2
1 ti

(u), tk−1) ◦ · · ·

· · · ◦ F (q1, u, t1)(x0)

where F (q, u, t) : X → X and for each x ∈ X the function F (q, u, t, x) : t 7→

F (q, u, t)(x) is the solution of the differential equation

d

dt
F (q, u, t, x) = fq(F (q, u, t, x), u(t)), F (q, u, 0, x) = x

The empty sequence ε ∈ (Q × T )∗ leaves the state intact: xΣ(x0, u, ε) = x0.

The reachable set of the system Σ from a set of initial states X0 ⊆ X is defined

by

Reach(Σ,X0) = {xΣ(x0, u, w) ∈ X | u ∈ PC(T,U), w ∈ (Q × T )∗, x0 ∈ X0}
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Σ is said to be reachable from X0 if Reach(Σ,X0) = X holds. Σ is semi-reachable

from X0 if X is the smallest vector space containing Reach(Σ,X0). In other words,

Σ is semi-reachable from X0 if

X = Span{x ∈ X | x ∈ Reach(Σ,X0)}

Define the function yΣ : X × PC(T,U) × (Q × T )+ → Y by

∀x ∈ X , u ∈ PC(T,U), w = (q1, t1)(q2, t2) · · · (qk, tk) ∈ (Q × T )+ :

yΣ(x, u, w) = hqk
(xΣ(x, u, w))

By abuse of notation, for each x ∈ X define the input-output map yΣ(x, ., .) :

PC(T,U) × (Q × T )+ → Y by

yΣ(x, ., .)(u,w) = yΣ(x, u, w)

The map yΣ(x, ., .) is called the input-output map of the system Σ induced by the

state x. By abuse of notation we will use yΣ(x, u, w) for yΣ(x, ., .)(u,w).

Two states x1 6= x2 ∈ X of the switched system Σ are indistinguishable if

∀w ∈ (Q × T )+, u ∈ PC(T,U) : yΣ(x1, u, w) = yΣ(x2, u, w)

Σ is called observable if it has no pair of indistinguishable states.

Let Φ ⊆ F (PC(T,U)× (Q×T )+,Y) be a subset of the set of input-output maps.

Let Σ be a switched system and let µ : Φ → X be a map. Just as it was the case

for general hybrid systems without guards, we will call the pair (Σ, µ) a realization

. As for the case of hybrid systems without guards, µ associates an initial state to

each element of Φ. Again, (Σ, µ) need not be a realization of Φ. The pair (Σ, µ) is

a realization of Φ, if

∀f ∈ Φ: yΣ(µ(f), ., .) = f

or, in other words,

∀f ∈ Φ, u ∈ PC(T,U), w ∈ (Q × T )+: yΣ(µ(f), u, w) = f(u,w)

We will say that Σ is a realization of Φ, if there exists a map µ : Φ → X such

that (Σ, µ) is a realization of Φ in the above sense. By abuse of terminology, both

Σ and (Σ, µ) will be called a realization of Φ. One can think of the map µ as a

way to determine the corresponding initial condition for each element of Φ. That

is, Σ realizes Φ if and only if for each f ∈ Φ there exists a state x ∈ X such that

yΣ(x, ., .) = f . Denote by dim Σ := dimX the dimension of the state space of the

switched system Σ.
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A switched system Σ is a minimal realization of Φ if Σ is a realization of Φ and

for each switched system Σ1 such that Σ1 is a realization of Φ it holds that

dim Σ ≤ dim Σ1

For any L ⊆ Q+ define the subset of admissible switching sequences TL ⊆ (Q ×

T )+ by

TL := {(w, τ) ∈ (Q × T )+ | w ∈ L}

That is, TL is the set of all those switching sequences, for which the sequence of

discrete modes belongs to L and the sequence of times is arbitrary. Notice that if

L = Q+ then TL = (Q × T )+. Let Φ ⊆ F (PC(T,U) × TL,Y) be a set of input-

output maps defined only on switching sequences belonging to TL. The system

Σ = (X,U ,Y, Q, {fq | q ∈ Q,u ∈ U}, {hq | q ∈ Q}) realizes Φ with constraint L if

there exists µ : Φ → X such that

∀f ∈ Φ: yΣ(µ(f), ., .)|PC(T,U)×TL = f

or, in other words,

∀w ∈ Φ, u ∈ PC(T,U), w ∈ TL: yΣ(µ(f), u, w) = f(u,w)

We will call both (Σ, µ) and Σ a realization of Φ. Notice that if L = Q+ then Σ

realizes Φ with constraint L if and only if Σ realizes Φ. If Σ is a switched system,

then we say that the realization (Σ, µ) is semi-reachable , if Σ is semi-reachable from

Imµ.

In this work we will especially be interested in the following two classes of switched

systems: linear switched systems and bilinear switched systems. We will postpone

describing them in more detail until Chapter 4. Here we will restrict ourselves to

giving the definition of these classes of switched systems.

Definition 5 (Linear switched systems). A switched system

Σ = (X,U ,Y, Q, {fq | q ∈ Q,u ∈ U}, {hq | q ∈ Q})

is called linear, if for each q ∈ Q there exist linear mappings Aq : X → X , Bq : U → X

and Cq : X → Y such that

• ∀u ∈ U ,∀x ∈ X : fq(x, u) = Aqx + Bqu

• ∀x ∈ X : hq(x) = Cqx
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To make the notation simpler, linear switched systems will be denoted by

Σ = (X ,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q})

The term linear switched system will be abbreviated by LSS.

Definition 6 (Bilinear switched systems). A switched system

Σ = (X,U ,Y, Q, {fq | q ∈ Q,u ∈ U}, {hq | q ∈ Q})

is called bilinear if for each q ∈ Q there exist linear mappings Aq : X → X , Bq,j :

X → X , j = 1, 2, . . . ,m , Cq : X → Y such that

• ∀x ∈ X , u = (u1, . . . , um)T ∈ U = Rm : fq(x, u) = Aqx +
∑m

j=1 ujBq,jx

• ∀x ∈ X : hq = Cqx.

We will use the notation Σ = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) | q ∈ Q}) to

denote bilinear switched systems.

2.5 Piecewise-affine Discrete-time Hybrid Systems

In this section definition and some elementary properties of piecewise-affine systems

will be presented. Recall the a subset H ⊆ Rn is a polyhedral set if it is of the form

H = {x ∈ Rn | Ax ≤ b, Fx < d} for some A ∈ Rp×n, b ∈ Rp, F ∈ Rd×n, d ∈ Rd,

p, d ∈ N, p, d > 0.

Definition 7 (Piecewise-affine hybrid systems). A time invariant discrete-time

autonomous piecewise-affine hybrid system ( abbreviated DTAPA ) is a tuple

Σ = (X ,Y, Q, (Xq, Aq, aq, Cq, cq)q∈Q, (q0, x0))

where

• Q is a finite set, called the set of discrete modes

• X =
⋃

q∈Q Xq, X ⊆ Rn. The set X is called the state-space.

• For each q ∈ Q the set Xq is polyhedral and Xq1
∩Xq2

= ∅, for each q1, q2 ∈ Q,

q1 6= q2.

• Y = Rp. The space Y is called the output space.

• For each q ∈ Q, cq ∈ Rp, Cq ∈ Rp×n,
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• For each q ∈ Q, aq ∈ Rn, Aq ∈ Rn×n and for each x ∈ Xq, Aqx + aq ∈ X .

• (q0, x0) is the initial state, where q0 ∈ Q and x0 ∈ Xq0

Define the following maps. Define the map hΣ : X → Y by h(x) = Cqx + cq for

all q ∈ Q, x ∈ Xq. Define fΣ : X → X by f(x) = Aqx+aq for all x ∈ Xq, q ∈ Q. It is

clear that the maps fΣ and hΣ are well-defined maps. If it does not create confusion

we will drop the subscript Σ and will write simply f and h instead of fΣ and hΣ.

Define fk : X → X by f0(x) = x and fk+1(x) = f(fk(x)) for all k ≥ 0, x ∈ X .

The state-trajectory of the system Σ is the map xΣ : X ×N → X such that xΣ(x, k) =

fk(x). The output-trajectory of the system Σ is the map yΣ : X × N → Y such that

yΣ(x, k) = h(xΣ(x, k)) = h(fk(x)).

That is, a DTAPA system Σ can be thought of as a discrete-time system of the

form

xk+1 = fΣ(xk), yk = hΣ(xk)

Denote by Qω denotes the set of all infinite sequences of elements of Q. Define

the map φ : X → Qω by φ(x) = q0q1q2 · · · qk · · · if and only if fk(x) ∈ Xqk
for all

k ≥ 0. It is easy to see that φ is well-defined.

We will say that the DTAPA system Σ has almost-periodic dynamics if the

set {Sk(φ(x0)) | k ≥ 0} ⊆ Qω is finite, where S : Qω → Qω is the shift map

S(w0w1w2 · · · ) = w1w2w3 · · · .

A map y : N → Y is said to be realized by a DTAPA Σ = (X ,Y, f, h, x0), if

∀k ∈ N : y(k) = yΣ(x, k) = h(fk(x0))

Two DTAPA systems are said to be equivalent if they realize the same output map.

In this paper we will try to solve the following two problems.

Weak realization problem for DTAPA systems For a specified set of discrete modes

Q̃, for a specified sequence w ∈ Q̃ω and output trajectory y : N → Y find

a DTAPA system Σ = (X ,Y, Q, (Xq, Aq, aq, Cq, cq)q∈Q, (q0, x0)) such that Σ

realizes y, Q̃ ⊆ Q, and φ(x0) = w.

Strong realization problem for DTAPA systems For any specified y : N → Y find

a DTAPA system Σ such that Σ realizes y. That is, in the case of strong

realization problem we also have to reconstruct the set of discrete modes.

Let Σi = (Xi,Y, Qi, (Xq,i, Aq,i, aq,i, Cq,i, cq,i)q∈Qi
, (q0,i, x0,i)), i = 1, 2 be two DTAPA

systems. A map T : X1 → X2 is called a DTAPA morphism if

T ◦ fΣ1
= fΣ2

◦ T , hΣ1
= hΣ2

◦ T and T (x0,1) = x0,2
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The DTAPA morphism T will be called injective, surjective, an isomorphism if the

corresponding map T is injective, surjective, bijective respectively. It is easy to see

that if T : Σ1 → Σ2 is a DTAPA morphism then T (xΣ1
(x, k)) = xΣ2

(T (x), k) and

yΣ1
(x, k) = yΣ2

(T (x), k) for all k ≥ 0. In particular, yΣ1
(x0,1, k) = yΣ2

(x0,2, k) for

all k ≥ 0. Thus, Σ1 realizes a map y : N → Y if and only if Σ2 realizes y.

Thus, in particular, if for some discrete mode the underlying polyhedral set Xq is

shifted or rotated, then the values cq and aq is changed accordingly.

Let Σ = (X ,Y, Q, (Xq, Aq, aq, Cq, cq)q∈Q, (q0, x0)) be a DTAPA system. Notice

that without loss of generality f and h can be assumed being piecewise-linear, that

is, we can assume that aq = 0 and cq = 0 for all q ∈ Q. Indeed, define the DTAPA

system

Σl = (X̃ , (X̃q, Ãq, 0, C̃q), (q0, x̃0))

where X̃q = {(xT , 1)T | x ∈ Xq} ⊆ Rn+1, X̃ =
⋃

q∈Q X̃q and

Ãq =

[
Aq aq

0 1

]
, C̃q =

[
Cq cq

]
, x̃0 = (xT

0 , 1)T . Define the map S : X → X̃ by

S(x) = (xT , 1)T . It is easy to see that S : Σ → Σl is a DTAPA isomorphism Hence,

yΣ(x0, k) = yΣl
(x̃0, k) and thus Σ is equivalent to Σl. We will call DTAPA systems

for which aq = 0 and cq = 0 for all q ∈ Q, linearised DTAPA systems and we will

use the following notation for them.

(X ,Y, Q, (Xq, Aq, Cq)q∈Q , (q0, x0))

Notice that for any DTAPA system Σ the DTAPA system Σl is a linearised DTAPA

and we will call Σl the linearised DTAPA associated with Σ.

Notice that DTAPA systems and PL systems from [15] are essentially the same

objects. In fact, any DTAPA system can be transformed to a PL systems generating

the same output map and conversely, any autonomous PL system can be written as

a DTAPA systems generating the same output map.

2.6 Abstract Generating Series

The aim of this section is to present some simple results on objects, which are best

thought of as a generalisation of generating convergent series. In order to formulate

the results notation has to be set up. For each u = (u1, . . . , uk) ∈ U denote

dζj [u] = uj , j = 1, 2, . . . ,m, dζ0[u] = 1
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Denote the set {0, 1, . . . ,m} by Zm. For each j1, · · · , jk ∈ Zm, k ≥ 0, t ∈ T , u ∈

PC(T,U) define Vj1···jk
[u](t) ∈ R as

Vj1···jk
[u](t) =

{
1 if k = 0∫ t

0
dζjk

[u(τ)]Vj1,...,jk−1
[u](τ)dτ if k > 1

For each w1, . . . , wk ∈ Z∗
m, (t1, · · · , tk) ∈ T k, u ∈ PC(T,U) define

Vw1,...,wk
[u](t1, . . . , tk) ∈ R

by

Vw1,...,wk
[u](t1, . . . , tk) = Vw1

(t1)[u]Vw2
(t2)[Shift1(u)] · · ·V (wk)[Shiftk−1(u)](tk)

where Shifti(u) = ShiftP
i
1 ti

(u), i = 1, 2, . . . , k−1. We will call Vw1,...,wk
[u](t1, . . . , tk)

the iterated integral of u at t1, . . . , tk with respect to w1, . . . , wk.

Let Ik, k ∈ N be a family of sets. Let p ∈ N. Define the set I =
⋃∞

k=1 Ik × (Z∗
m)k.

That is, elements of I are of the form (i, (w1, . . . , wk)), where k ≥ 0, i ∈ Ik and

w1, . . . , wk ∈ Z∗
m.

Definition 8 (Abstract convergent generating series). A map c : I → Rp is

called an abstract generating convergent series on {Ik}k≥0 with values in Rp if There

exists M > 0 and a collection Ki > 0, i ∈ Ik, k ≥ 1, such that for each k ≥ 1,

(i, (w1, . . . , wk)) ∈ Ik × (Z∗
m)k

||c((i, (w1, . . . , wk)))|| < |w1|! · · · |wk|!KiM
|w1| · · ·M |wk|

The map c is called an abstract globally convergent generating series, if for all k ≥ 1,

(i, (w1, . . . , wk) ∈ Ik × (Z∗
m)k , there exists M ≥ 0, Ki > 0, i ∈ Ik, k ≥ 1, such that

||c((i, (w1, . . . , wk)))|| < KiM
|w1| · · ·M |wk|

The notion of generating convergent series is an extension of the notion of con-

vergent power series from [67, 32]. If Ik = ∅, k > 1 and I1 is a singleton set, then

a generating convergent series in the sense of Definition 8 can be viewed as a con-

vergent generating series in the sense of [67, 32, 82]. Convergent generating series in

the latter sense play an important role in the theory of nonlinear control systems.

The paper by Wang and Sontag [82] offers an excellent exposition of the topic and

it contains many useful results which cannot be found elsewhere.

Let c : I → Rp be a generating convergent series. Define the set IT =
⋃∞

k=1 Ik ×

T k. For each u ∈ PC(T,U) and s = (i, (t1, . . . , tk) ∈ IT define the series

Fc(u, s) =
∑

w1,...,wk∈Z∗
m

c((i, (w1, . . . , wk))Vw1,...,wk
[u](t1, . . . , tk) (2.3)
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We will prove that if either
∑k

j=1 ti is small enough and u restricted to
∑k

j=1 ti is

small enough, or u, ti are arbitrary and c is globally convergent generating series,

then Fc(u, s) is absolutely convergent.

Consider a map u ∈ PC(T,U), let S ∈ T . Denote by ||u||S,∞ the supremum of

the restriction of u to [0, S], that is

||u||S,∞ = supt∈[0,S]||u(t)||

where ||.|| is the Euclidean norm on U = Rm. Since u is piecewise-continuous, and

it has finite left- and right-hand side limits at points of discontinuity, we get that

||u||S,∞ is finite for all S ∈ T .

Lemma 1. Let c : I → Rp is an abstract convergent generating series. Consider

arbitrary u ∈ PC(T,U), s ∈ IT . If one of the following conditions hold, then Fc(u, s)

is absolutely convergent

(a) The abstract convergent generating series c is an abstract globally convergent

generating series.

(b) Assume s = (i, (t1, . . . , tk)) and Ts =
∑k

j=1 ti. Then with the notation of

formula (2.3)

Ts · ||u||Ts,∞ <
1

2M(1 + m)

Proof. Assume that s = (i, (t1, . . . , tk)) ∈ IT . Since u is piecewise-continuous, there

exists R > 1 such that

sup{|uj(t)| | j = 1, 2, . . . ,m, t ∈ [0,
∑k

1 ti]} < R. Then by induction it is easy to see

that for all w ∈ Zm it holds that |Vw[u](ti)| ≤
R|w|t|w|

|w|! , consequently

|Vw1,...,wk
[u](t1, . . . , tk)| = Πk

i=1|Vwi
[u](ti)| ≤

t
|w1|
1

|w1|!
· · ·

t
|wk|
k

|wk|!
R|w1|+···+|wk|

Assume that condition (a) of the statement of the Lemma holds. Then with the

notation of Definition 8, for all w1, . . . , wk ∈ Zm.

||c((i, (w1, . . . , wk)))|| < KiM
|w1|M |w2| · · ·M |wk|

We get that
∑

w1,...,wk∈Z∗
m,|w1|+...+|wk|≤N

||c((i, (w1, . . . , wk))Vw1,...,wk
[u](t1, . . . , tk)|| ≤

≤
∑

l1+···+lk≤N

Ki(MR(m + 1))l1+···+lk
tl11
l1!

· · ·
tlkk
lk!

≤
N∑

l=0

Ki(MRk(m + 1))l T
l

l!
≤

≤ Ki exp(MRk(m + 1)T )
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where T =
∑k

1 ti. That is, each finite sum of absolute values of coefficients of

Fc(u, s) is bounded by Ki exp(MRk(m + 1)T ), thus the series Fc(u, s) is absolutely

convergent.

Assume that condition (b) of the statement of the lemma holds. Then, R can be

chosen such that TsR < 1
2M(m+1) . Moreover, for any w1, . . . , wk ∈ Z∗

m,

||c((i, (w1, . . . , wk)))|| < |w1|!|w2|! · · · |wk|!KiM
|w1|M |w2| · · ·M |wk|

Thus,
∑

w1,...,wk≤N

||c((i, (w1, . . . , wk)))Vw1,...,wk
[u](t1, . . . , tk)|| <

<
∑

w1,...,wk≤N

||c((i, (w1, . . . , wk)))|| · |Vw1,...,wk
[u](t1, . . . , tk)| <

<
∑

l1+···+lk≤N

KiM
l1 · · ·M lk(1 + m)

Pk
j=1 lj l1! · · · lk!R

Pk
j=1 li tl11

l1!

tl22
l2!

· · ·
tlkk
lk!

=

=
∑

l1+···+lk≤N

Ki(MR(1 + m)Ts)
l1+···+lk =

N∑

l=0

(

k−1∑

j=1

(
l

j

)
)Ki(MR(1 + m)Ts)

l <

<

N∑

l=0

2lKi(MR(1 + m)Ts)
l <

∞∑

l=0

Ki(2MR(1 + m)Ts)
l

In the last step we used the fact that (2MR(1 + m)Ts) = (Ts · R)(2M(1 + m)) <

1. Thus, each finite sum of absolute values of elements of Fc(u, s) is bounded by∑∞
l=1 Ki(2MR(1 + m)Ts)

l < +∞, hence we get that the series Fc(u, s) is absolutely

convergent.

Let’s introduce the following notation. If c is an abstract globally convergent

generating series, then let dom(Fc) = PC(T,U) × IT . Otherwise, let

dom(Fc) = {(u, s) ∈ PC(T,U) × IT | ||u||Ts,∞ · Ts <
1

2M(1 + m)
}

In fact we can define a function Fc

Fc : dom(Fc) 3 (u, s) 7→ Fc(u, s) ∈ Rp

Notice that Fc(u, s) depends only on the restriction of u to [0, Ts].

Lemma 2. Let c : I → Rp be an abstract generating convergent series. Then the

following holds. For each s = (i, (t1, . . . , tk)) ∈ IT , u, v ∈ PC(T,U), (u, s), (v, s) ∈

dom(Fc),

(∀t ∈ [0, Ts] : u(t) = v(t)) =⇒ Fc(u, s) = Fc(v, s)
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It is a natural to ask whether c determines Fc uniquely. The following result

answers this question.

Lemma 3. let d, c : I → Rp be two convergent generating series. If Fc = Fd, then

c = d.

In order to prove the lemma above, we will need the following result.

Lemma 4. For each w ∈ Z∗
m:

Vw[u](t1 + t2) =
∑

s,z∈Z∗
m,sz=w

Vs[u](t1)Vz[Shiftt1(u)](t2)

Proof of Lemma 4. We proceed by induction on |w|. Assume that |w| = 1, that is,

w = j ∈ Zm. Then

Vw[u](t1 + t2) =

∫ t1+t2

0

dζj(τ)dτ =

∫ t1

0

dζj(τ)dτ+

∫ t2

0

dζj(t1 + τ)dτ = Vj [u](t1) + Vj [Shiftt1(u)](t2)

Assume that w = vj. Then

Vw[u](t1 + t2) =

∫ t1+t2

0

dζj(τ)Vv[u](τ)dτ =

=

∫ t1

0

dζj(τ)Vv[u](τ)dτ +

∫ t2

0

dζj(t1 + τ) =

= Vv[u](t1 + τ)dτVw[u](t1) +

∫ t2

0

dζj(t1 + τ)Vv[u](t1 + τ)dτ

By induction hypothesis we get that

∫ t2

0

dζj(t1 + τ)Vv[u](t1 + τ)dτ =
∑

sz=v,s,z∈Z∗
m

Vs[u](t1)×

×

∫ t2

0

dζj(t1 + τ)Vz[Shiftt1(u)](τ)dτ =
∑

sz=v,s,z∈Z∗
m

Vs[u](t1)Vzj [Shiftt1(u)](t2)

That is, we get that

Vw[u](t1 + t2) = Vw[u](t1) +
∑

sz=v,s,z∈Z∗
m

Vs[u](t1)Vzj [Shiftt1(u)](t2) =

∑

sz=w,s,z,∈Z∗
m

Vs[u](t1)Vz[Shiftt1(u)](t2)
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Proof of Lemma 3. We will use the same method as in [83]. In fact, our proof is an

easy generalisation of the proof presented in [83].

Assume that Fd = Fc. It is equivalent to Fd−c = 0. That is, it is enough to show

that if Fc = 0 then c = 0.

Assume that Fc(u, s) = 0 for all (u, s) ∈ dom(Fc).

Assume that wi = wi,1 · · ·wi,ki
, wi,1, . . . , wi,ki

∈ Zm, ki ≥ 0, i = 1, . . . , k. Let

ui,1, . . . , ui,ki
∈ U and τi,1, . . . , τi,ki

∈ T , uki
(t) = ui,j for all t ∈ [

∑j−1
z=1 τi,z,

∑j
z=1 τi,z),

j = 1, . . . , ki. Then it follows from Lemma 4 that for all w ∈ Z∗
m,

Vw[uki
](

ki∑

z=1

τi,z) =
∑

v1,...,vki
∈Z∗

m,v1···vki
=w

Vv1
[ui,1](τi,1) · · ·Vvki

[ui,ki
](τi,ki

)

=
∑

v1,...,vki
,v1···vki

=wi

uv1
i,1u

v2
i,2 · · ·u

vki

i,ki
τ
|v1|
i,1 · · · τ

|vki
|

i,ki

1

|v1|!|v2|! · · · |vki
|!

where we used the following notation. If u = (u1, . . . , um)T ∈ U = Rm, then uj1···jd =

uj1uj2 · · ·ujd
, where u0 = 1 is assumed.

Thus, the following equality holds

d

dτi,1dτi,2 · · · dτi,ki

Vv[uki
](

ki∑

j=1

τi,j)|τi,j=0,j=1,...,ki
=

{
uv1

i,1 · · ·u
vki

i,ki
if there exists v1v2 · · · vki

= v and v1, . . . , vki
∈ Zm

0 otherwise

That is,

d

du
wi,1

i,1 · · · du
wi,ki

i,ki

d

dτi,1dτi,2 · · · dτi,ki

Vv[uwi
](

ki∑

j=1

τi,j)|τi,j=0,j=1,...,ki
=

{
1 if v = wi

0 otherwise

Let ξ ∈ Ik, τi,1, . . . , τi,ki
∈ T , i = 1, . . . , k. Define the map

gξ : W × V 3 (τ1,1, . . . , τ1,k1
, . . . , τk,1,

. . . , τk,kk
, u1,1, . . . , ui,k1

, . . . , uk,1, . . . , uk,kk
) 7→ Fc(ũ, s̃)

where ũ(t) = ui,j if t ∈ [
∑i

z=1

∑j−1
l=1 τz,l,

∑i
z=1

∑j
l=1 τz,l) for some i = 1, . . . , k,

j = 1, . . . , ki, and s = (ξ, (
∑k1

j=1 τ1,j ,
∑k2

j=1 τ2,j , . . . ,
∑kk

j=1 τk,j)), and W ⊆ T
Pk

i=1 ki ,

V ⊆ U
Pk

i=1 ki are suitably small neighbourhoods such that (ũ, s̃) ∈ dom(Fc). It is

easy to see that Fc = 0 implies that gξ = 0 for all ξ = 0 and gξ is an analytic

mapping.
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Notice that

gξ(τ1,1, . . . , τk,kk, u1,1, . . . , uk,kk
) =

∑

v1,...,vk∈Z∗
m

c(ξ, (v1, . . . , vk))Vv1
[uk1

](

k1∑

j=1

τ1,j)Vv2
[uk2

](

k2∑

j=1

τ2,j , . . . ,

kk∑

j=1

τk,j) =

=
∑

v1,1,...,v1,k1
,...,vk,1...vk,kk

∈Z∗
m

c((ξ, (v1,1 · · · v1,k1
, v2,1 · · · v2,k2

, . . . , vk,1 · · · vk,kk
)))×

× Πk
i=1Π

ki

j=1u
vi,j

i,j

τ
|vi,j |
i,j

|vi,j |!

Denote by Di the operator Dwi
= d

du
wi,1
i,1 ···du

wi,ki
i,ki

d
dτi,1···dτi,ki

. Thus, for each i =

1, . . . , k,

Dw1
Dw2

· · ·Dwk
gξ|τi,j=0,ui,j=0,i=1,...,k,j=1,...,ki

= c((ξ, (w1, . . . , wk)))

But if gξ = 0, then for all w1, . . . , wk ∈ Z∗
m, Dw1

· · ·Dwk
gξ = 0, i.e.

c((ξ, (w1, . . . , wk))) = 0

54



Chapter 3

Hybrid Formal Power Series

The aim of this chapter is to present the necessary ”abstract nonsense” which will

be used for developing realization theory for a number of classes of hybrid systems.

As the title of the chapter indicates, we will be mostly concerned with formal power

series-like objects in this chapter.

Although the output trajectories of hybrid systems are functions of time, for

hybrid systems without guards they are piecewise-analytic maps. Moreover, they are

such that for any switching sequence the dependence of the continuous output on

the times between consecutive switches is analytic. Thus, for small enough switching

times the behaviour of the input-output maps is determined by their high-order

derivatives at zero with respect to the relative switching times. Moreover, if the

continuous valued parts of the input-output maps are entire analytic functions of

the switching times, the high-order derivatives determine the whole global behaviour

of the input-output maps. Besides, if the input-output maps admit a hybrid system

realization, then the high-order derivatives can be expressed as composition of the

vector fields of the system with the reset and readout maps evaluated at the initial

state.

Thus, for a number classes of hybrid systems, the realization problem turns out

to be equivalent to the existence of a particular representation of the sequence of

high-order derivatives of the input-output maps. For example, for hybrid systems

with linear or affine vector fields with linear reset maps and linear readout maps,

the existence of a realization yields that there exists a finite collection of matrices

such that each high-order derivative can be expressed as a product of those matrices

taken in a particular order. With some extra condition the existence of such a

representation of the high-order derivatives is also sufficient for existence of a hybrid

realization.
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In this way, we arrive to variations of the following problem. Given a sequence

of real numbers, indexed by words over a certain alphabet, when does this sequence

admit a representation of the following form. There exists finitely many matrices of

suitable dimensions indexed by the elements of the alphabet, such that any element

of the sequence indexed by some word w can be represented as a product of the

matrices (possibly multiplied from left- and right- by suitable vectors) above taken

in the order prescribed by a subword of w chosen in a particular way.

In the simplest case the problem above amounts to the classical problem of ratio-

nality of formal power series in several non-commuting indeterminates ( indetermi-

nates correspond to the letters of the alphabet and multiplication of indeterminates

correspond to concatenation of words, hence non-commutativity). The theory of ra-

tional formal power series is a classical topic, it has been around in different forms

for over forty years. It has been successfully applied to realization problem of several

classes of control systems, the most well-known one is the class of bilinear systems.

Unfortunately, for hybrid systems the framework of rational formal power series

is no longer sufficient ( although it is still suitable for handling switched systems ).

The reason for that is that we have to take into account the discrete output and the

dependence of the value of the high-order derivatives on the change of the discrete

state. In order to capture these specific features of hybrid systems, we will have to

introduce a new formal framework, the framework of what we will call hybrid formal

power series

One can think of formal power series in non-commuting indeterminates as maps

assigning each to sequence of indeterminates a real vector in some vector space Rp.

Hybrid formal power series are pairs of consisting of a discrete-valued input-output

map and a classical formal power series. We will be interested in families of hybrid

formal power series. We will then try to find conditions for existence of a hybrid

representation of such a family of hybrid formal power series. The notion of hybrid

representation is analogous to the notion of rational formal power series representa-

tion. Roughly speaking, a hybrid representation is a composition of several rational

formal power series representations with a finite Moore-automaton.

Within such a family, certain hybrid formal power series will be grouped together,

such that such the members of each group will have the same discrete-valued parts

but different continuous valued parts. The idea is that the common discrete value

part should be realized by one of the state of the Moore-automaton of the hybrid

representation and the different classical formal power series should be represented

by different states of the representations belonging to discrete states reachable from

the discrete state realizing the discrete valued part. If it seems a bit confusing to the

reader, then we suggest to wait until the formal definition is presented.
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The theory of hybrid formal power series presented in this paper relies very much

on the classical theory of rational formal power series [64, 65, 4] and automata theory

[17, 24]. In fact, it combines the two theories. The main questions will be the

following.

Existence of a hybrid representation When does such a collection of hybrid

power series admit a hybrid representation ?

Minimality of hybrid representation What is the smallest possible hybrid rep-

resentation of a family of hybrid formal power series ? How can such hybrid

representations be characterised ? Is there always a smallest possible hybrid

representation of a family of hybrid formal power series ? Is such a minimal

hybrid representation unique ?

Partial realization theory How to construct a hybrid representation for a family

of hybrid formal power series using only finite number of data ?

The results obtained for rational hybrid representations are very similar to those

of rational formal power series and finite automata. In fact, we will proceed as follows.

We will associate with each family of hybrid formal power series a family of classical

formal power series and a family of discrete input-output maps. It turns out that

there is a correspondence between rational representations of this family of formal

power series and automaton realizations of the family of discrete input-output maps

on the one hand and hybrid representations of the original family of hybrid formal

power series on the other hand. Let us formulate the main results on hybrid formal

power series in an informal way.

Existence of a hybrid representation A family of hybrid formal power series has

a hybrid representation, i.e., it is rational if and only if the corresponding family

of classical formal power series has a rational representation, i.e, it is rational

and the corresponding family of discrete input-output maps has a realization

by finite a Moore-automaton.

Minimality of hybrid representations If a family of hybrid formal power series

has a hybrid representation, then it has a minimal hybrid representation. A

hybrid representation is minimal if and only if it is reachable and observable.

Any two minimal hybrid representations of the same family of hybrid formal

power series are isomorphic. Minimality, observability and reachability can be

checked algorithmically. Any hybrid representation can be transformed to a

minimal one and the transformation can be done by an algorithm.
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Partial realization theory If the number of available data points is big enough

and the family of hybrid formal power series is finite, then it is possible to

construct a minimal hybrid representation of the family of hybrid formal power

series from finitely many data points. The precise conditions for the number of

data points are similar to the conditions in partial realization theory of linear

and bilinear systems.

All the results announced above will be discussed in this chapter with the exception

of partial realization theory, presentation of which will be postponed until Section

10.3 of Chapter 10.

The structure of the chapter is the following. Section 3.1 presents a concise treat-

ment of the results on classical formal power series and their rational representations.

In this thesis we will need the theory of rational family of formal power series, that

is, we will be looking at rational representations of a family of formal power series.

Most of the existing literature deals with rational representations of a single formal

power series. The only exception the author is aware of is [84], but unfortunately the

results we need in this thesis are not explicitly stated there. However, the existing

theory can be easily (almost trivially) extended to deal with families of formal power

series and we will present this extension in Section 3.1.

Section 3.2 presents realization theory of Moore-automata. Again, we will need

theory for realization by Moore-automata of a family of input-output maps. The

theory of realization of a single input-output map by a Moore-automaton is a classical

topic, and we will need a simple extension of the existing theory, which will be

discussed in Section 3.2. Finally, Section 3.3 deals with the main topic of the chapter,

the theory of rational families of hybrid formal power series.

3.1 Theory of Formal Power Series

The section presents results on formal power series. The material of this section is

based on the classical theory of formal power series, see [4, 43]. However, a number of

concepts and results are extensions of the standard ones. In particular, the definition

of the rationality is more general than that one occurring in the literature. Con-

sequently, the theorems characterising minimality are extensions of the well-known

results. These generalisations and extensions are rather straightforward and can be

easily derived in a manner similar to the classical case. In order to keep the exposi-

tion self-contained and complete, the proofs of those theorems which are not part of

the classical theory, will be presented too.

Let X be a finite alphabet. A formal power series S with coefficients in Rp is a

58



3.1. THEORY OF FORMAL POWER SERIES

map

S : X∗ → Rp

We denote by Rp ¿ X∗ À the set of all formal power series with coefficients in

Rp. Let S ∈ Rp ¿ X∗ À. For each i = 1, . . . , p define the formal power series

Si ∈ R ¿ X∗ À by the following equation

Si(w) = (S(w))i = eT
i S(w)

where ei is the ith unit vector of Rp. Let J be an arbitrary (possibly infinite) set.

An indexed set of formal power series Ψ = {Sj ∈ Rp ¿ X∗ À| j ∈ J} with the index

set J is called rational if there exists a vector space X over R, dimX < +∞ and

linear maps

C : X → Rp, Aσ ∈ X → X , σ ∈ X

and an indexed set with the index set J

B = {Bj ∈ X | j ∈ J}

such that for all j ∈ J , σ1, . . . , σk ∈ X, k ≥ 0

Sj(σ1σ2 · · ·σk) = CAσk
Aσk−1

· · ·Aσ1
Bj .

The 4-tuple R = (X , {Ax}x∈X , B,C) is called a representation of S. The number

dimX is called the dimension of the representation R and it is denoted by dimR.

We will refer to X as the state-space of the representation R. A formal power series

S ∈ Rp ¿ X∗ À is called rational if the indexed set {Sj | j ∈ {∅}}, S∅ = S, with

the singleton index {∅}, is rational. That is, S is rational is the above sense if and

only if it is rational in the classical sense.

In fact, a representation can be viewed as a Moore-automaton with the state-

space X , with input space X∗, with output space Rp. The state transition function

δ : X×X → X is given by the linear map δ(x, σ) = Aσx. The output map µ : X → Rp

is given by µ(x) := Cx. The set of initial conditions is given by {Bj | j ∈ J}. The

problem of finding a representation for a set of formal power series Ψ is equivalent

to finding a realization of Ψ by a Moore-automaton of the form described above.

That is, finding a representation is equivalent to finding a realization by a special

class of Moore-automaton. We will not pursue the analogy with automaton theory in

this paper. Instead, to keep the presentation self-contained, we will built the theory

directly.

A representation Rmin of Ψ is called minimal if for each representation R of Ψ

dimRmin ≤ dim R
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In the sequel the following short-hand notation will be used. Let Aσ : X → X , σ ∈ X

be linear maps. Then

Aw := Awk
Awk−1

· · ·Aw1
, w = w1w2 · · ·wk ∈ X∗, w1, . . . , wk ∈ X

Let R = (X , {Az}z∈X , B,C), R̃ = (X̃ , {Ãz}z∈X , B̃, C̃) be two representations.

A linear map T : X → X̃ is called a representation morphism from R to R̃ and is

denoted by T : R → R̃ if the following equalities hold

TAz = ÃzT,∀z ∈ X, TBj = B̃j ,∀j ∈ J, C = C̃T

Using the automaton-theoretic interpretation discussed one can think of representa-

tion morphisms as Moore-automaton morphisms which are linear morphisms between

the state-spaces. The representation morphism T is called surjective, injective, iso-

morphism if T is a surjective, injective or isomorphism respectively if viewed as a

linear vector space morphism.

Let L ⊆ X∗. If L is a regular language then, by the classical result [4], the

power series L̄ ∈ R ¿ X∗ À, L̄(w) =

{
1 if w ∈ L

0 otherwise
is a rational power series.

Consider two power series S, T ∈ Rp ¿ X∗ À. Define the Hadamard product

S ¯ T ∈ Rp ¿ X∗ À by

(S ¯ T )i(w) = Si(w)Ti(w), , i = 1, . . . , p

Let w ∈ X∗ and S ∈ Rp ¿ X∗ À. Define w ◦ S ∈ Rp ¿ X∗ À – the left shift of S

by w by

∀v ∈ X∗ : w ◦ S(v) = S(wv)

The following statements are generalisations of the results on rational power series

from [4, 65]. Let Ψ = {Sj ∈ Rp ¿ X∗ À| j ∈ J}. be an indexed set of formal power

series with the index set J . Define the set WΨ by

WΨ = Span{w ◦ Sj ∈ Rp ¿ X∗ À| j ∈ J,w ∈ X∗}

Define the Hankel-matrix HΨ of Ψ as the infinite matrix HΨ ∈ R(X∗×I)×(X∗×J),

I = {1, 2, . . . , p} and (HΨ)(u,i)(v,j) = (Sj)i(vu).

Theorem 1. Let Ψ = {Sj ∈ Rp ¿ X∗ À| j ∈ J}.

(i) Assume that dim WΨ < +∞ holds. Then a representation RΨ of Ψ is given by

RΨ = (WΨ, {Aσ}σ∈X , B,C)
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– Aσ : WΨ → WΨ , ∀T ∈ WΨ: Aσ(T ) = σ ◦ T , σ ∈ X.

– B = {Bj ∈ WΨ | j ∈ J}, Bj = Sj for each j ∈ J .

– C : WΨ → Rp, C(T ) = T (ε).

(ii) The following equivalences hold

Ψ is rational ⇐⇒ dimWΨ < +∞ ⇐⇒ rank HΨ < +∞

Moreover, dimWΨ = rank HΨ holds.

Proof. Part (i)

Notice that for any w ∈ X∗, w = w1 · · ·wk, w1, . . . , wk ∈ X and for any T ∈ Rp ¿

X∗ À

w ◦ T = wk ◦ (wk−1 ◦ (· · · (w1 ◦ T ) · · · )))

Since Bj = Sj , and AσT = σ ◦ T , we get that for all w ∈ X∗

w ◦ Sj = AwSj = AwBj

But Sj(w) = w ◦ Sj(ε) = C(w ◦ Sj), so we get that Sj(w) = CAwBj , i.e., RΨ is

indeed a representation of Ψ.

Part (ii)

The statement

dimWΨ < +∞ =⇒ Ψ is rational

follows from part (i) of the theorem. We will prove that Ψ rational =⇒ dimWΨ <

+∞. Assume R = (X , Aσσ∈X , B,C) is a representation of Ψ. Let dimX = n and let

el ∈ X , l = 1, 2, . . . , n be a basis of X . Define Zl ∈ Kp ¿ X∗ À by Zl(w) = CAwel,

w ∈ X∗. For each j ∈ J there exist αj,1, . . . , αj,n ∈ R such that Bj =
∑n

l=1 αj,lel.

We get that

Sj(w) = CAwB =

n∑

l=1

αj,lCAwel =
∑

l=1

αj,lZl(w)

On the other hand

w ◦ Zl(v) = Zl(wv) = CAvAwel =

n∑

k=1

βk,lCAvek =

n∑

k=1

βk,lZk

where X 3 Awel =
∑n

k βk,lek. Thus, w ◦ Sj , Sj ∈ Span{Zi | i = 1, . . . , n} holds,

which implies that WΨ ⊆ Span{Zi | i = 1, . . . , n}. That is, dimWΨ < +∞.

Finally, we show that dimWΨ < +∞ ⇐⇒ rank HΨ < +∞. In fact, dimWΨ =

rank HΨ and WΨ is naturally isomorphic to the span of column vectors of HΨ.

Indeed, it easy to see that w ◦ Sj corresponds to (HΨ).,(w,j) and the rest of the

statement follows easily from this observation.
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The representation RΨ is called free. Using the theorem above we can easily show

that

Lemma 5. The indexed set formal power series Ψ = {Sj ∈ Rp ¿ X∗ À| j ∈ J}

is rational if and only if the indexed set of formal power series Ξ = {S(i,j) ∈ Rp |

(i, j) ∈ {1, . . . , p} × J} is rational, where S(i,j) = (Sj)i, j ∈ J, i = 1, . . . , p.

Proof. Indeed, define pri : Rp → R by pri(x1, . . . , xi−1, xi, xi+1, . . . , xp) = xi for

i = 1, . . . , p. It is easy to see that pri is linear and Si,j = pri ◦ Sj . Define the linear

maps Pi : WΨ 3 T 7→ pri ◦ T , i = 1, . . . , p. Notice that
⋂p

i=1 ker Pi = {0}. It is

easy to see that WΞ =
∑p

i=1 Pi(WΨ). That is, dim WΨ < +∞ =⇒ dimWΞ < +∞.

Conversely, assume that dim WΞ < +∞. Define P : WΨ →
⊕p

i=1 Zi, Zi = WΞ,

P (T ) =
∑p

i=1 zi, ∀i = 1, . . . , p : zi = Pi(T ) ∈ Zi. Then kerP =
⋂p

i=1 ker Pi = {0},

thus dim WΨ < p · dim WΞ < +∞.

Theorem 1 implies the following lemma.

Lemma 6. Let Ψ = {Sj ∈ Rp ¿ X∗ À| j ∈ J} and Θ = {Tj ∈ Rp ¿ X∗ À| j ∈ J}

be rational indexed sets. Then Ψ¯Θ := {Sj ¯Tj ∈ Rp ¿ X∗ À| j ∈ J} is a rational

set. Moreover, rank HΨ¯Θ ≤ rank HΨ · rank HΘ.

Proof. By Theorem 1 it is enough to show that

dimWΨ¯Θ < +∞. First, notice that for any T1, T2 ∈ Rp ¿ X∗ À it holds that

w ◦ (T1 ¯ T2) = (w ◦ T1) ¯ (w ◦ T2). Indeed, w ◦ (T1 ¯ T2)l(v) = (T1)l ¯ (T2)l(wv) =

(T1(wv))l(T2(wv))l = (w ◦ T1)l(v)(w ◦ T2)l(v) = ((w ◦ T1) ¯ (w ◦ T2))l(v). Then we

get that

WΨ¯Θ = Span{(w ◦ Sj) ¯ (w ◦ Tj) | j ∈ J,w ∈ X∗}

⊆ Span{(w ◦ Sj) ¯ (v ◦ Tz) | z, j ∈ J,w, v ∈ X∗}

Let wl◦Tzl
, l = 1, 2, . . . m, zl ∈ J,wl ∈ X∗be a basis of WΘ. Let vk ◦Sjk

, vk ∈ X∗, k =

1, 2, . . . n, jk ∈ J be a basis of WΨ. Then it is easy to see that

Span{(w ◦ Sj) ¯ (v ◦ Tz) | z, j ∈ J,w, v ∈ X∗} is spanned by wk ◦ Sjk
¯ vl ◦ Tzl

, l =

1, 2, . . . ,m, k = 1, 2, . . . n, jk, zl ∈ J . That is, dimWΨ¯Θ ≤ dimWΨ · dim WΘ.

The classical version of the lemma above can be found in [4].

Let R = (X , {Aσ}σ∈X , B,C) be a representation of Ψ = {Sj ∈ Rp ¿ X∗ À| j ∈

J}. Define the subspaces WR and OR of X by

WR = Span{AwBj | w ∈ X∗, j ∈ J}

OR =
⋂

w∈X∗

ker CAw
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The sets above have the following automaton-theoretic interpretation. The subspace

WR is the span of states reachable by a w ∈ X∗ from an initial state Bj . Two states

x1, x2 are indistinguishable, i.e.

CAwx1 = CAwx2 for all w ∈ X∗

if and only if x1 − x2 ∈ OR. That is, the automaton corresponding to R is reduced

if and only if OR = {0}. We will say that the representation R is reachable if

dimWR = dimR, and we will say that R is observable if OR = {0}.

Lemma 7. Let R = (X , {Aσ}σ∈X , B,C) be a representation of Ψ. Then there exists

a representation

Rcan = (Xcan, {Acan
σ }σ∈X , Bcan, Ccan)

of Ψ such that Rcan is reachable and observable, and Xcan is isomorphic to the

quotient WR/(OR ∩ WR).

The word can in Rcan stands for canonical. A system which is both reachable

and observable is often called canonical and Rcan is reachable and observable, hence

the notation.

Proof of Lemma 7. Let R = (X , {Aσ}σ∈X , B,C) be a representation of Ψ. Define

Rr = (WR, {Ar
σ}σ∈X , Br, Cr) by Ar

σ = Aσ|WR
, Br

j = Bj ∈ WR and Cr = C|WR
.

Since WR is invariant w.r.t Aσ, the representation Rr is well defined. It is easy

to see that CrAr
wBr

j = CAwBj , so Rr is a representation of Ψ. It is easy to see

that WRr
= WR and ORr

= OR ∩ WR. Define Ro = (WR/ORr
, {Ãσ}σ∈X , B̃, C̃) by

Ãσ[x] = [Ar
σx], B̃j = [Br

j ] and C̃[x] = Crx, for each x ∈ WR. Here [x] denotes

the equivalence class of WR/ORr
represented by x ∈ WR. The representation Ro

is well defined. Indeed, if x1 − x2 ∈ ORr
, then ∀w ∈ X∗ : CrAr

w(x1 − x2) = 0, so

we get that ∀w ∈ X∗ : CrAr
wAr

σ(x1 − x2) = 0. That is Ar
σx1 − Ar

σx2 ∈ ORr
. It

implies that Ãσ is well defined. It is straightforward to see that B̃j is well defined.

Since x1 − x2 ∈ ORr
implies that x1 − x2 ∈ ker Cr, we get that C̃ is well defined

too. Moreover C̃ÃwB̃j = CAwBj , so Ro is a representation of Ψ. It is easy to

see that ORo
= {0}. That is, Ro is observable. Moreover, Ro is reachable, since

Span{ÃwB̃j | w ∈ X∗, j ∈ J} = Span{[Ar
wBr

j ] | j ∈ J,w ∈ X∗} = WR/ORr
.

Theorem 2 (Minimal representation). Let Ψ = {Sj ∈ Rp ¿ X∗ À| j ∈ J}.

The following are equivalent.

(i) Rmin = (X , {Amin
σ }σ∈X , Bmin, Cmin) is a minimal representation of Ψ.

(ii) Rmin is reachable and observable.

63



CHAPTER 3. HYBRID FORMAL POWER SERIES

(iii) If R is a reachable representation of Ψ then there exists a surjective represen-

tation morphism T : R → Rmin.

(iv) rank HΨ = dimWΨ = dim Rmin

Proof. (i) =⇒ (ii)

Assume that WRmin
6= X or ORmin

6= {0}. Then by Lemma 7 there exists Rcan =

(Rmin)can representing Ψ such that

dimRcan = dimWRmin
/(ORmin

∩ WRmin
) < dimRmin

which implies that Rmin is not a minimal representation.

(ii) =⇒ (iii)

Let R = (X , {Az}z∈X , B,C) be a reachable representation of Ψ. Notice that CAwBj =

Sj(w) = CminAmin
w Bmin

j . Define T by T (AwBj) = Amin
w Bmin

j . We will show that T

is well-defined. Assume that AuBj =
∑l

k=1 αkAwk
Bjk

holds for some u,w1, . . . wl ∈

X∗, j1, . . . , jl ∈ J , α1, . . . , αl ∈ R. Then for each v ∈ X∗ it holds that CAvAuBj =∑l
k=1 αkCAvAwk

Bjl
which implies

CminAmin
v Amin

u Bmin
j =

l∑

k=1

αkCminAmin
v Amin

wk
Bmin

jl

Thus, Amin
u Bmin

j −
∑l

k=1 αkAmin
wk

Bmin
jk

∈ ORmin
= {0} which means that

Amin
u Bmin

j =

l∑

k=1

αkAmin
wk

Bmin
jk

. That is T (AuBj) =
∑l

k=1 αkT (Awk
Bjk

). Thus, T is indeed well-defined and linear.

The mapping T is surjective, since the following holds.

Xmin = Span{Amin
w Bmin

j | j ∈ J} = Span{T (AwBj) | j ∈ J} = T (X )

We will show that T defines a representation morphism. Equality TAσ = Amin
σ T

holds since

T (AσAwBj) = Amin
σ Amin

w Bmin
j = Amin

σ T (AwBj). Equality Bmin
j = TBj holds by

definition of T . Equality CminT = C holds because of the fact that CminAmin
w Bmin

j =

CAwBj = CminT (AwBj).

(iii) =⇒ (i)

Indeed, if R is a representation of Ψ, then it follows from the proof of Lemma 7 that

Rr = (WR, {Az|WR
}z∈X , B,C|WR

) is a reachable representation of Φ and dimRr ≤

dimR. By part (iii) there exists a surjective map T : Rr → Rmin. But dim R ≥

dimRr ≥ dimT (WR) = dimRmin, so Rmin is indeed a minimal representation of Ψ.
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(iv) ⇐⇒ (i)

The proof of Corollary 1 doesn’t depend on the equivalence to be proved, so we

can use it. By Corollary 1 RΨ is a minimal representation of Ψ. By construction

dimRΨ = dimWΨ = rank HΨ. A representation is minimal whenever it has the same

dimension as another minimal representation. Thus we get that Rmin is minimal if

and only if dimRmin = dim RΨ = rank HΨ = dim WΨ.

Corollary 1. (a) All minimal representations of Ψ are isomorphic.

(b) The free representation from Theorem 1 is a minimal representation.

Proof of Corollary 1. Part (a)

Let Rmin = (Xmin, {Amin
σ }σ∈X , Bmin, Cmin) be a minimal representation of Ψ. Let

R = (X , {Aσ}σ∈X , B,C) be another minimal representation of Ψ. Then R is reach-

able and there exists a surjective representation morphism T : R → Rmin. Since

dimR ≤ dim Rmin and dimRmin ≤ dimR, we get that dim R = dimRmin, which

implies that dimXmin = dimX = dimT (X ), which implies that T is a linear isomor-

phism, that is, T is a representation isomorphism.

Part (b)

The equality WΨ = Span{w ◦ Sj | j ∈ J,w ∈ X∗} = Span{AwBj | j ∈ J,w ∈ X∗}

implies that WRΨ
= WΨ. If T ∈ WΨ has the property that for all w ∈ X∗ : CAwT =

0 then it means that for all w ∈ X∗ it holds that C(w ◦ T ) = w ◦ T (ε) = T (w) = 0,

i.e T=0. So we get that ORΨ
= {0}. By Theorem 2 we get that RΨ is a minimal

representation of Ψ.

Lemma 8. Let Ψ = {Sj ∈ Rp ¿ X∗ À| j ∈ J} and Ψ
′

= {Tj′ ∈ Rp ¿ X∗ À| j
′

∈

J
′

} be two indexed sets of formal power series with index sets J and J
′

respectively.

Assume that there exists a map f : J
′

→ J , such that ∀j
′

∈ J
′

: Sf(j′ ) = Tj′ . Then,

if Ψ is rational, then Ψ
′

is also rational and rank HΨ′ ≤ rank HΨ. If f is surjective,

then rank HΨ′ = rank HΨ.

Proof. Indeed, let R = (X , {Ax}x∈X , B,C) be a minimal representation of Ψ. Then

it is easy to see that R
′

= (X , {Ax}x∈X , B
′

, C) is a representation of Ψ
′

, where

B
′

j′ = Bf(j′ ), j
′

∈ J
′

. That is, if Ψ is rational, then Ψ
′

is rational too. By Lemma

7 there exists a reachable and observable representation R
′

can such that dimR
′

can ≤

dimR
′

= dimR. But R
′

can is a minimal representation of Ψ
′

. Thus, rank HΨ′ =

dimRcan ≤ dim R = rank HΨ. The representation R is reachable and observable. It

is also easy to see that OR = OR′ = {0}, thus R
′

is observable too. It is also easy

to see that if f is surjective, then WR′ = WR = X , that is, R
′

is reachable. Thus, if

f is surjective, then R
′

is a minimal representation of Ψ
′

and rank HΨ = dim R =

dimR
′

= rank HΨ′ .
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Lemma 9. Let J1, . . . , Jn be disjoint sets. Let Ψi = {Sj ∈ Rp ¿ Q∗ À| j ∈ Ji},

i = 1, . . . , n be indexed sets of formal power series. Let J = J1 ∪ J2 ∪ · · · ∪ Jn and

let Ψ = {Sj ∈ Rp ¿ Q∗ À| j ∈ J}. Then Ψ is rational if and only if each Ψi,

i = 1, . . . n is rational.

Proof. It is easy to see that WΨ = Span{Sj | j ∈ J1 ∪ · · · ∪ Jn} =
∑n

i=1 Span{Sj |

j ∈ Ji} = WΨ1
+ · · · + WΨn

. For each i = 1, . . . , n, WΨi
is a subspace of WΨ.

If Ψ is rational, then by Theorem 1 dimWΨ < +∞ and thus dimWΨi
< +∞ for

all i = 1, . . . , n. That is, each Ψi, i = 1, . . . n is rational. Conversely, if each Ψi,

i = 1, . . . , n is rational, then by Theorem 1, for each i = 1, . . . , n, dim WΨi
< +∞

holds. Thus, dimWΨ = dim(WΨ1
+ · · · + WΨn

) < +∞, that is, Ψ is rational

Corollary 2. Let Ψ = {Sj ∈ Rp ¿ X∗ À| j ∈ J} be an indexed set of formal power

series with the index set J . Assume that J is finite. Then Ψ is rational if and only

if Sj ∈ Rp ¿ X∗ À is rational for each j ∈ J

Proof. Let J = {j1, . . . , jn}. Let Ψi = {Sj | j ∈ {ji}}, i = 1, . . . , n. Then Ψ =

{Sj | j ∈ {j1} ∪ · · · ∪ {jn}}. Thus, by Lemma 9 Ψ is rational if and only if each

Ψi, i = 1, . . . , n is rational. Let fi : {ji} 3 ji 7→ ∅ ∈ {∅}, i = 1, . . . , n. Each fi is a

bijection. For each i = 1, . . . , n let Qi = {Tj | j ∈ {∅}}, T∅ = Sji
. Applying Lemma

8 to Ψi, Qi, fi and f−1
i we get that Qi is rational if and only if Ψi is rational. Thus,

Ψi is rational ⇐⇒ Sji
is rational, for each i = 1, . . . , n. Therefore, Ψ is rational

⇐⇒ for each j ∈ J , Sj is rational.

In the classical literature one often finds a procedure for constructing a repre-

sentation of a rational formal power series from the columns of its Hankel-matrix.

A similar construction can be carried out in the setting of this chapter too. In-

deed, let ImHΨ = Span{(HΨ).,(v,j) ∈ RX∗×I | (v, j) ∈ X∗ × J}. Then the map

T : WΨ → ImHΨ defined by T (w ◦ Sj) = (HΨ).,(w,j) is a well defined vector space

isomorphism. Moreover, if Rf = (WΨ, {Aσ}σ∈X , B,C) is the free representation of

Ψ, then TBj = (HΨ).,(ε,j), CT−1(HΨ).,(v,j) =
[
(HΨ)(ε,1),(v,j) · · · (HΨ)(ε,p),(v,j)

]T

and TAσT−1(HΨ).,(v,j) = (HΨ)(.,(vσ,j) for each σ ∈ X. Define the representation

RH,Ψ = (ImHΨ, {TAσT−1}σ∈X , TB,CT−1)

Then it is easy to see that T : Rf → RH,Ψ is a representation isomorphism and

RH,Ψ is a representation of Ψ. It is also straightforward to see that the definition

of RH,Ψ corresponds to the definition of the representation on the columns of the

Hankel-matrix as it is described in the classical literature.
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If R = (X , {Aσ}σ∈Σ, B,C) is a representation of Ψ, then for any vector space

isomorphism T : X → Rn, n = dim R, the tuple

TR = (Rn, {TAσT−1}σ∈Σ, TB,CT−1)

is also a representation of Ψ. It is easy to see that R is minimal if and only if TR

is minimal. Moreover, T : R → TR is a representation isomorphism. That is, when

dealing with representations, we can assume without loss of generality that X = Rn.

From now on, we will silently assume that X = Rn holds for any representation

considered.

3.2 Realization Theory of Moore-automata

Recall from Section 2.2 the concept of Moore-automata and realization by a Moore-

automaton. In this section we will review the main results on realization theory of

Moore-automata. The results are classical, in fact, they are the oldest results on

realization theory. For more on the topic see [17, 24].

Let D = {φj : Γ∗ → O | j ∈ J} be an indexed set of input-output maps. Let

A = (Q,Γ, O, δ, λ) a Moore automaton, ζ : J → Q and assume that (A, ζ) is a

realization of D. Define the realization (Ar, ζr) by Ar = (Qr,Γ, O, δr, λ), Qr = {q ∈

Q | ∃j ∈ J,w ∈ Γ∗ : δ(ζj , w) = q}, δr(q, γ) = δ(q, γ), q ∈ Qr, γ ∈ Γ, ζr(j) = ζ(j). It

is easy to see that (Ar, ζr) is well-defined, it is reachable and card(Ar) ≤ card(A).

Moreover, card(Ar) < card(A) if and only if A is not reachable. Thus, all minimal

realizations are reachable. Indeed, if (A, ζ) is a minimal realization of D and it is not

reachable, then (Ar, ζr) is a realization of D such that card(Ar) < card(A). But this

contradicts to minimality of (A, ζ). The following result is a simple reformulation of

the well-known properties of realizations by automaton. For references see [17, 24].

Theorem 3. Let D = {φj ∈ F (Γ∗, O) | j ∈ J}. D has a realization by a finite

Moore-automaton if and only if WD is finite. In this case a realization of D is given

by (Acan, ζcan) where Acan = (WD,Γ, O, L, T ), ζcan(j) = φj and

L(φ, γ) = γ ◦ φ, T (φ) = φ(ε), φ ∈ WD, γ ∈ Γ

The realization (Acan, ζcan) is reachable and observable.

Proof. Assume that (A, ζ), A = (Q,Γ, O, δ, λ) is a realization of D. For any w ∈

Γ∗, j ∈ J , w ◦ φj(v) = λ(ζ(j), wv). Define the map F : Q → F (Γ∗, O), such that

F (q)(v) = λ(q, v), v ∈ Γ∗. Then it is easy to see that WD ⊆ F (Q). Since card(Q) <

+∞, we get that card(WD) ≤ card(F (Q)) < +∞. It is easy to see that L, ζcan
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and T are well-defined maps and thus (Acan, ζcan) is a well-defined finite Moore-

automaton. It is left to show that (Acan, ζcan) is a realization of D. The crucial

observation is that L(φ,w1 . . . wk) = L(L(· · · (L(φ,w1) · · · ), wk−1), wk) = wk◦(wk−1◦

· · · (w1 ◦ φ) · · · )) = w1 · · ·wk ◦ φ for each φ ∈ WD and w1, . . . , wk ∈ Γ, k ≥ 0.

For each j ∈ J , T (ζcan(j), w) = T (L(ζcan(j), w)) = T (w ◦ φj) = φj(wε) = φj(w)

for each w ∈ Γ∗, k ≥ 0. Thus (Acan, ζcan) is a realization of D. It is easy to

see that (Acan, ζcan) is reachable and observable. Indeed, for each w ∈ φj ∈ WD,

L(ζcan(j), w) = L(φj , w) = w ◦φj , thus Acan is reachable. If f, g ∈ WD are such that

T (f, w) = T (g, w) for each w ∈ Γ∗, then we get that g(w) = T (w ◦ g) = T (g, w) =

T (f, w) = T (w◦f) = f(w) for all w ∈ Γ∗, i.e., f = g and thus Acan is observable.

The realization (Acan, ζcan) is called the free realization. The following theorem

gives equivalent conditions for minimality of a realization.

Theorem 4. Let (A, ζ) be a finite Moore-automaton realization of D = {φj ∈

F (Γ∗, O) | j ∈ J}. The following are equivalent:

(i) (A, ζ) is minimal,

(ii) (A, ζ) is reachable and observable,

(iii) card(A) = card(WD),

(iv) For each reachable realization (A
′

, ζ
′

) of D there exists a surjective automaton

morphism T : (A
′

, ζ
′

) → (A, ζ). In particular, all minimal realizations of D

are isomorphic

Proof. Consider the free realization (Acan, ζcan) of D described in Theorem 3. We

will show that (iv) holds for (Acan, ζcan). Let (A, ζ) be a reachable realization of D.

Assume that A = (Q,Γ, O, δ, λ). Define the map F : Q → F (Γ∗, O) by F (q)(w) =

λ(q, w), w ∈ Γ∗. We claim that F is an automaton morphism and F (Q) = WD.

It is easy to see that F (δ(q, v))(w) = λ(δ(q, v), w) = λ(q, vw) = F (q)(vw), thus

F (δ(q, v)) = v ◦ F (q) for all q ∈ Q, v ∈ Γ∗. Notice that λ(q) = F (q)(ε) = T (F (q)).

Thus, F is indeed an automaton morphism. It is again easy to see that WD ⊆ F (Q),

since (A, ζ) is a realization of D. On the other hand, if (A, ζ) is reachable, then

for any q ∈ Q there exists j ∈ J , w ∈ Γ∗, such that δ(ζ(j), w) = q. Thus, F (q) =

w ◦ φj ∈ WD, i.e. F (q) ⊆ WD. Thus, F : (A, ζ) → (Acan, ζcan) is a surjective

automaton morphism.

Assume that (A, ζ) above is observable. Then the map F is injective. Indeed,

λ(q1, w) = F (q1)(w) = F (q2)(w) = λ(q2, w),∀w ∈ Γ∗ implies that q1 = q2. Thus, if

(A, ζ) is observable and reachable, then it is isomorphic to (Acan, zcan).
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Notice that if F : (Ā, ζ̄) → (Acan, ζcan) is an automaton isomorphism, then F−1

defines an automaton isomorphism F−1 : (Acan, ζcan) → (Ā, ζ̄). If (A
′

, ζ
′

) is a

reachable realization of D, then there exists a surjective morphism T : (A
′

, ζ
′

) →

(Acan, ζcan). Thus, F−1 ◦ T : (A
′

, ζ
′

) → (Ā, ζ̄) is a surjective automaton morphism.

Applying the remark above to a reachable and observable realization (A, ζ) of D,

we get that there exists an isomorphism F : (A, ζ) → (Acan, ζcan) and thus (A, ζ)

satisfies (iv). Thus (ii) implies (iv).

Next we will show that any minimal realization (Amin, ζmin) is isomorphic to

(Acan, ζcan). Indeed, if (Amin, ζmin) is minimal, then (Amin, ζmin) has to be reach-

able. But then there exists a surjective automaton morphism T : (Amin, ζmin) →

(Acan, ζcan). Thus, card(WD) ≤ card(Amin). By minimality of (Amin, ζmin) we get

that card(WD) = card(Amin). Thus, (Acan, ζcan) is minimal and all minimal real-

ization of D are isomorphic. Thus, (i) is equivalent to (iii) and (i) implies (iv) and

(i) is equivalent to (ii).

Finally, we will show that (iv) implies (i). Indeed, assume that (A, ζ) satisfies

(iv). Then there exists a surjective morphism T : (Acan, ζcan) → (A, ζ). Thus,

card(WD) ≥ card(A). But this is impossible unless card(WD) = card(A), and thus

(A, ζ) is minimal.

We get that (i) ⇐⇒ (iii), (i) ⇐⇒ (ii), (i) ⇐⇒ (iv).

The realization (Acan, ζcan) is minimal.

3.3 Hybrid Formal Power Series

The section introduces the concept of hybrid power series and hybrid power series

representation. This section contains the main contribution of the chapter. Subsec-

tion 3.3.1 contains the definition and basic properties of hybrid formal power series

and hybrid representations. Subsection 3.3.2 discusses the problem of existence of

hybrid representations. It gives necessary and sufficient conditions for a family of

hybrid formal power series to admit a hybrid representation. Subsection 3.3.3 char-

acterises minimal hybrid representations. Throughout the section the notation of

Section 3.1 will be used.

3.3.1 Definitions and Basic Properties

Let X be an alphabet, i.e. a finite set and let O be an arbitrary finite set. Assume

that X = X1 ∪ X2 such that X1 ∩ X2 = ∅. We allow X1 or X2 to be the empty set.
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Let J be any set of the following form.

J = J1 ∪ (J1 × J2)

J2 is a finite set, J2 ∩ J1 = ∅
(3.1)

Sets with the property (3.1) above will be called hybrid power series index sets.

Notice that we allow J2 to be the empty set.

A hybrid formal power series over X1,X2 with coefficients in Rp × O is a pair

S = (SC , SD) ∈ Rp ¿ X∗ À ×F (X∗
2 , O)

That is, a hybrid formal power series S is a pair of functions. The first component

of the pair is a map SC : X∗ → Rp, the second component is a map SD : X∗
2 → O.

We will denote the set of all hybrid formal power series over X1,X2 with coefficients

in Rp ×O by Rp ¿ X∗ À ×F (X∗
2 , O). If the space of coefficients and the alphabets

X1,X2 are clear from the context we will simply speak of hybrid formal power series.

If S ∈ Rp ¿ X∗ À ×F (X∗
2 , O) is a hybrid formal power series, then define the

formal power series SC ∈ Rp ¿ X∗ À and the map SD : X∗
2 → O in such a way that

S = (SC , SD). That is, SD denotes the discrete valued (O valued) component of S

and SC denotes the continuous (Rp) valued component of S.

Assume that J is a hybrid formal power series index set. Let Ω = {Zj ∈ Rp ¿

X∗ À ×F (X∗
2 , O) | j ∈ J} be an indexed set of hybrid formal power series indexed

by J such that

∀k ∈ J1, j ∈ J2 : (Zk,j)D = (Zk)D and (Zk,j)C(w) = 0,∀w ∈ X∗
2 (3.2)

Indexed sets of hybrid formal power series with the property (3.2) above will be called

well-posed indexed sets of hybrid power series . The intuition behind the definition of

well-posed indexed sets of hybrid power series is the following. We can think of the

indexed set Ω as an encoding of the indexed set Ψ = {fj | j ∈ J1}, where fj : X 3

w 7→ ((Zj)C(w), (Zj)D(v), ((Zj,k)C)(w))k∈J2
), where v = γ1 · · · γk ∈ X∗

2 and w is

assumed to be of the form w = z1γ1z2 · · · γkzk+1, z1, . . . , zk+1 ∈ X∗
1 , γ1, . . . , γk ∈ X2.

The indexed set Ψ is supposed to contain input-output maps of a system which is an

interconnection of a special form of a finite Moore-automaton and formal power series

representations. The requirement (Zj,k)C(w) = 0 for all w ∈ X∗
2 reflects the special

structure of this interconnection. The motivation of the definition of a well-posed

indexed set of hybrid power series should become clear to the reader after seeing

the definition of a hybrid power series representation. A hybrid formal power series

representation defines exactly an interconnection of a Moore-automaton and formal

power series representations such that the input-output maps of the interconnection

can be encoded by a well-defined indexed set of hybrid formal power series.
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In the sequel, we will mostly work with well-posed indexed sets of hybrid formal

power series. In the rest of the paper, unless stated otherwise, we will always mean

a well posed indexed set of hybrid formal power series whenever we speak of indexed

sets of hybrid formal power series.

Definition 9. A hybrid representation (abbreviated by HR) over J is a tuple

HR = (A,Y, (Xq, {Aq,z, Bq,z,j2}j∈J2,z∈X1
, Cq, {Mδ(q,y),y,q}y∈X2

)q∈Q , J, µ)

where

A = (Q,X2, O, δ, λ) is a Moore-automaton

Xq is a finite-dimensional vector space for all q ∈ Q. Without loss of generality we

can assume that Xq = Rnq for some nq > 0.

Y is a finite-dimensional vector space and Y = Rp for some p ∈ N, p > 0.

Mq1,x,q2
: Xq2

→ Xq1
is a linear map, for each q1, q2 ∈ Q, x ∈ X2 such that

δ(q2, x) = q2.

Aq,x : Xq → Xq is a linear map for each x ∈ X1 and q ∈ Q.

Cq : Xq → Y is a linear map for each q ∈ Q.

For each q ∈ Q, j ∈ J2, x ∈ X1, the vector Bq,x,j belongs to Xq, i.e. Bq,x,j ∈ Xq.

µ : J1 →
⋃

q∈Q{q} × Xq is a map

Define µD : J1 → Q and µC : J1 →
⋃

q∈Q Xq by

∀j ∈ J1 : µ(j) = (q, x) ⇔ µD(j) = q and µC(j) = x

If J2 = ∅, then we will use the following short-hand notation for the hybrid

representation HR

(A, (Xq, {Aq,z}z∈X1
, Cq)q∈Q , {Mδ(q,y),y,q | q ∈ Q, y ∈ X2}, J, µ)

In fact, a hybrid representation can be viewed as a some sort of cascade inter-

connection of a Moore-automaton and a formal power series representations. Recall

from Section 3.1 that a formal powers series representation can be thought of as a

Moore-automaton, state-space of which is a vector space (thus, not necessarily finite

). One could define a suitable notion of cascade interconnection for Moore-automata,

see for example [17] and view a hybrid representation as an interconnection of a finite
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Moore-automaton with a number of Moore-automata which are in fact formal power

series representations.

A hybrid representation can be itself viewed as a Moore-automaton. Before we

can explain how to view a hybrid representation as a Moore-automata, we will need

some additional definitions and notation.

Define the set

Ō =
∏

j∈J2

Rp ¿ X∗ À

An element of the set Ō is a tuple (Sj)j∈J2
such that Sj ∈ Rp ¿ X∗ À for all j ∈ J2.

If J2 = ∅ then Ō will be viewed as the singleton set {∅}.

Denote by HHR the set HHR =
⋃

q∈Q{q} × Xq. Define the maps ΠQ : HHR 3

(q, x) 7→ q ∈ Q and ΠX : HHR 3 (q, x) 7→ x ∈
⋃

q∈Q Xq.

Consider any w ∈ X∗. It is easy to see that w can be represented as w =

x1y1x2y2 · · ·xkykxk+1, for some x1, x2, . . . , xk+1 ∈ X∗
1 , y1, y2, . . . , yk ∈ X2 and k ≥ 0.

It is easy to see that the representation above is unique. Such a representation can

be easily obtained by grouping together those letters of w which belong to X1.

The reader who wishes to see a formal proof, will find one below. The proof goes

by induction. If |w| = 1, then w = w1 and either w1 ∈ X1 or w1 ∈ X2. If w1 ∈ X1

then set k = 0 and x1 = w1. If w1 ∈ X2, then set k = 1, y1 = w1 and x1 = x2 = ε.

In both cases w = x1y1 · · · ykxk+1. Assume that a representation of the above form

exists for all words w ∈ X∗, |w| ≤ n. Assume that w = w1 · · ·wn+1, w1, . . . , wn+1 ∈

X. For each i = 1, . . . , n+1 either wi ∈ X1 or wi ∈ X2. Assume that w1, w2, . . . , wj ∈

X1 and wj+1 ∈ X2. Let x1 = w1 · · ·wj ∈ X∗
1 and y1 = wj+1 ∈ X2. If w1 ∈ X2 then

j = 0 and x1 = ε. Consider the representation of v = wj+2 · · ·wn+1, i.e assume that

v = x2y2 · · · ykxk+1, x2, . . . , xk+1 ∈ X∗
1 , y2, . . . , yk ∈ X2. Such a representation of

v exists by the induction hypothesis. Then w = x1y1v = x1y1x2 · · · ykxk+1, that is,

x1, . . . , xk+1 ∈ X∗
1 , y1, . . . , yk ∈ X2.

For each q ∈ Q, w = x1 · · ·xk ∈ X∗
1 , x1, . . . , xk ∈ X1 denote by Aq,w the compo-

sition of linear maps Aq,xk
Aq,xk−1

· · ·Aq,x1
. If k = 0, i.e. w = ε then let Aq,w = Aq,ε

be the identity map on Xq.

Define the map ξHR : HHR × X∗ → HHR by

ξHR((q, x), z1w1 · · · zkwkzk+1) = (δ(q, w1 · · ·wk), Aqk,zk+1
Mqk,wk,qk−1

Aqk−1,zk

· · · · · ·Aq1,z2
Mq1,w1,q0

Aq0,z1
x)

for all z1, . . . , zk+1 ∈ X∗
1 , w1, . . . , wk ∈ X2, k ≥ 0, where qi = δ(q, w1 · · ·wi) for all

i = 0, . . . , k (i.e. q0 = q ).

For each q ∈ Q, j ∈ J2 define the power series Tq,j ∈ Rp ¿ X∗ À as follows.

Recall that each w ∈ X∗ can be uniquely written as w = x1y1x2 · · · ykxk+1, for some
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y1, . . . , yk ∈ X2, x1, . . . , xk+1 ∈ X∗
1 and k ≥ 0. Then for each w ∈ X∗ define Tq,j(w)

as

Tq,j(w) = Tq,j(x1y1 · · ·xkykxk+1) = Cqk
Aqk,xk+1

Mqk,yk,qk−1
· · ·

· · ·Mql,yl,ql−1
Aql−1,zl

Bql−1,sl,j

where 1 ≤ l ≤ k + 1, x1 = x2 = · · · = xl−1 = ε, xl = slzl, sl ∈ X1, zl ∈ X∗
1 ,

qi = δ(q, y1 · · · yi) for all i = 0, . . . , k.

The tuple (Tq,j)j∈J2
∈ Ō will serve as the output of the hybrid representation

HR. Define the map υHR : HHR × X∗ → Rp × O × Ō as follows

∀w ∈ X∗ : υHR((q, x), w) = (Csz, λ(s), (Ts,j)j∈J2
) where (s, z) = ξHR((q, x), w)

The map ξHR plays the role of state-trajectories and υHR plays the role of output-

trajectories of the automaton associated with the hybrid representation HR

Now we are in position to explain the analogy between hybrid representations

and Moore-automata. A hybrid representation HR can be viewed as an infinite-state

Moore-automata, which is defined as follows. Its state space is the set HHR. Each

state is a pair (q, x), consisting of a discrete component q and a continuous component

x ∈ Xq The input alphabet of a hybrid representation viewed as a Moore-automaton

is X. The output alphabet is the set O × Rp × Ō. The state-space evolution of a

hybrid representation can be viewed as follows. If the hybrid representation receives

a symbol z ∈ X1, then the state changes as follows. If the current state is of the

form (q, x) ∈ {q} × Xq, then the current state changes to (q,Aq,zx). If the hybrid

representation receives a symbol y ∈ X2 then the state of the hybrid representation

changes as follows. If the current state is of the form (q, x) ∈ {q} × Xq, then the

current state changes to (δ(q, y),Mδ(q,y),y,qx) ∈ {δ(q, y)} × Xδ(q,y). If the current

state is of the form (q, x) ∈ {q}×Xq, then the output of the hybrid representation is

(Cqx, λ(q), (Tq,j)j∈J2
). The tuple (Tq,j)j∈J2

can be thought as an analog of impulse

response for linear systems. The map µ can be thought of as a way to define the set

of initial states of the Moore-automaton interpretation of the hybrid representation.

Namely, the set of initial states is made up by the states µ(j) ∈ HHR, j ∈ J2.

We will not use the interpretation of a hybrid power series representation as a

Moore-automaton presented above to prove mathematical properties of hybrid rep-

resentations. However, we will frequently refer to this interpretation in order to give

an intuitive description of results and concepts.

We define the dimension of the hybrid representation HR as the pair

(card(Q),
∑

q∈Q

dimXq)
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and it is denoted by dimHR. We will use the following partial order relation on

N × N. We will say that (p, q) ∈ N is smaller than or equal (r, s) ∈ N if p ≤ r

and q ≤ s. We will denote the fact that (p, q) is smaller than or equal (r, s) by

(p, q) ≤ (r, s). Note the the order relation ≤ in N × N is indeed a partial order, it is

not possible to compare all elements of N × N.

Consider an indexed set of hybrid formal power series Ω = {Xj ∈ Rp ¿ X∗ À

×F (X∗
2 , O) | j ∈ J} with J = J1 ∪ J1 × J2. The hybrid representation HR is said to

be a hybrid representation of Ω if for all w = x1y1 · · ·xkykxk+1 ∈ X∗, xi ∈ X∗
1 , yj ∈

X2, i = 1, 2, . . . , k + 1, j = 1, 2, . . . , k, k ≥ 0 the following holds

∀j ∈ J1 :

(Zj)C(w) = Cqk
Aqk,xk+1

Mqk,yk,qk−1
Aqk−1,xk

· · ·Mq1,y1,q0
Aq0,x1

µC(j)

∀j ∈ J1 :

(Zj)D(y1 · · · yk) = λ(µD(j), y1 · · · yk)

∀(j1, j2) ∈ J1 × J2 :

(Zj1,j2)C(w) = Cqk
Aqk,xk+1

Mqk,yk,qk−1
Aqk−1,xk

· · ·

· · ·Mql,yl,ql−1
Aql−1,zl

Bql−1,sl,j1

where xl ∈ X∗
1 , xl = slzl, sl ∈ X1, zl ∈ X∗

1

and x1 = x2 = · · · = xl−1 = ε, l > 0 and

∀w ∈ X∗
2 : (Zj1,j2)C(w) = 0

(3.3)

where q0 = µD(j), ql = δ(q0, y1 · · · yl), 1 ≤ l ≤ k. Can can think of (Zj)C as continu-

ous output, (Zj)D as discrete-output and (Zk,j)C as continuous output corresponding

to impulse response. This is of course only an analogy, there is no formal correspon-

dence between the objects mentioned above. An indexed set of hybrid formal power

series is called rational if it has a hybrid representation. Note that the framework

above resembles very much the concept of rational representations described in [64].

In fact, when Q = {q} is a singleton set, the notion of hybrid representation and the

notion of rational representation coincides. We say that the hybrid representation

HR is a minimal hybrid representation of Ω if HR is a hybrid representation of Ω

and for any hybrid representation HR
′

of Ω

dimHR ≤ dim HR
′

Recall the interpretation of a hybrid representation as a Moore-automaton. Then

the statement that HR is a hybrid representation of Ω simply says that for each

j1 ∈ J1 the Moore-automaton interpretation of the hybrid representation HR realizes
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the map:

Tj1 : X∗ 3 w 7→ ((Zj1)C(w), (Zj1)D(ΠX2
(w)), ((Zj1,j2)C(w))j2∈J2

from the initial states µ(j1). Here ΠX2
: X∗ → X∗

2 is a map which erases all the

letters not in X2, i.e., ΠX2
(x1y1 · · ·xkykxk+1) = y1 · · · yk for each x1, . . . , xk+1 ∈ X∗

1 ,

y1, . . . , yk ∈ X2, k ≥ 0.

Thus HR is a representation of Ω if and only if

∀j ∈ J1,∀w ∈ X∗ :

((Zj)C(w), (Zj)D(ΠX2
(w)), (Zj,j2(w))j2∈J2

) = υHR(µ(j), w)
(3.4)

Let HR = (A,Y, (Xq, {Aq,z, Bq,z,j2
}j∈J2,z∈X1

, Cq, {Mδ(q,y),y,q}y∈X2
)q∈Q , J, µ) be

a hybrid representation. Let

HR
′

= (A
′

,Y, (X
′

q , {A
′

q,z, B
′

q,z,j2}j∈J2,z∈X1
, C

′

q, {M
′

δ′ (q,y),y,q
}y∈X2

)q∈Q′ , J, µ
′

)

be another hybrid representation. A pair T = (TD, TC) is a HR-morphism from HR

to HR
′

denoted by T : HR → HR
′

if TD : (A, µD) → (A
′

, µ
′

D) is an automaton

realization morphism, TC :
⊕

q∈Q Xq →
⊕

q∈Q′ X
′

q is a linear map such that

TC(Xq) ⊆ X
′

TD(q) for all q ∈ Q,

TCMq1,x,q2
= M

′

TD(q1),x,TD(q2)
TC for all q1, q2 ∈ Q,x ∈ X2 such that δ(q2, x) = q1,

TCAq,z = A
′

TD(q),zC(T ) for all q ∈ Q, z ∈ X1,

For all q ∈ Q, j ∈ J2, z ∈ X1, TCBq,z,j = B
′

TD(q),z,j

Cq = C
′

TD(q)TC for each q ∈ Q,

TCµC(j) = µ
′

C(j) for all j ∈ J1

It is easy to see that the pair T = (TD, TC) defines a map

φ(T ) : HHR 3 (q, x) → (TD(q), TC(x)) ∈ HHR′

The intuition behind the definition of T is the following. Notice that T can be

extended to act on the state-spaces of the Moore-automaton interpretations of HR

and HR
′

by defining T ((q, j)) = (TD(q), j) for all q ∈ Q, j ∈ J2. This extension of T

becomes a Moore-automaton morphism, if T is a hybrid representation morphism.

We will call HR observable if for each h1, h2 ∈ HHR

(∀w ∈ X∗ : υHR(h1, w) = υHR(h2, w)) =⇒ h1 = h2
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Define the set

H0,HR = {(q, x) | (∃j ∈ J1 : µ(j) = (q, x)) or (q = δ(µD(j), v),

x = Bq,z,j , for some v ∈ X∗
2 , z ∈ X1, j ∈ J2)}

Define the set

Reach(HR) = {(q, x) | ∃w1, . . . , wk ∈ X∗, α1, . . . , αk ∈ R,

h1, . . . , hk ∈ H0,HR, k ≥ 0,

x =
k∑

j=1

αjΠX(ξHR(hi, wi))

and q = ΠQ(ξHR(hi, wi)), i = 1, . . . , k}

We will call HR reachable if HHR = Reach(HR).

Below we will give a reformulation of observability and reachability of hybrid

representations. For the HR HR define the following spaces

WHR =Span(

{Aqk,xk+1
Mqk,yk,qk−1

Aqk−1,xk
Mqk−1,yk−1,qk−2

· · ·Mq1,y1,q0
Aq0,x1

µC(j) |

j ∈ J1, x1, . . . , xk+1 ∈ X∗
1 , y1, . . . , yk ∈ X2,

q0 = µD(j), ql = δ(q0, y1 · · · yl), 1 ≤ l ≤ k, k ≥ 0}∪

∪ {Aqk,xk+1
Mqk,yk,qk−1

Aqk−1,xk
Mqk−1,yk−1,qk−2

· · ·

· · ·Mql,yl,ql−1
Aql−1,zl

Bql−1,sl,j |

j ∈ J2, , j ∈ J1, x1, . . . , xk+1 ∈ X∗
1 , xl ∈ X1, x1 = x2 = · · · = xl−1 = ε,

xl = slzl, sl ∈ X1, zl ∈ X∗
1 , 1 ≤ l ≤ k + 1, y1, . . . , yk ∈ X2,

q0 = µD(j), qi = δ(q0, y1 · · · yi), 1 ≤ i ≤ k, k ≥ 0}) ⊆
⊕

q∈Q

Xq

The following statement is an easy consequence of the definition.

Proposition 3. The hybrid representation HR is reachable, if and only if (A, µD)

is reachable and WHR =
⊕

q∈Q Xq.

Again, if we look at the Moore-automaton interpretation of HR, then WHR is

precisely the linear span of the continuous components of the states which belong to⋃
q∈Q{q} × Xq and can be reached from some initial state.

Below we will give a characterisation of observability of hybrid representations.

For each q ∈ Q, define

OHR,q =
⋂

q∈Q,w∈X∗

Oq,w
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where for all w = x1y1 · · · ykxk+1 ∈ X∗, k ≥ 0, x1, · · · , xk+1 ∈ X∗
1 , y1, · · · , yk ∈ X2

Oq,w = kerCqk
Aqk,xk+1

Mqk,yk,qk−1
Aqk−1,xk

Mqk−2,yk−1,qk−1
· · ·Mq1,y1,q0

Aq0,x1

where q = q0 ∈ Q, ql = δ(q, y1 · · · yl), 0 ≤ l ≤ k. The space OHR,q is analogous

to the observability kernel of linear ( bilinear ) systems and plays a very similar

role. Unfortunately, the spaces OHR,q are not sufficient to characterise observability

for hybrid representations. The following proposition characterises observability of

hybrid representations.

Proposition 4. The hybrid representation HR is observable, if and only if the fol-

lowing two conditions hold

(i) For each q1, q2 ∈ Q, if for all w ∈ X∗
2 , j ∈ J2

λ(q1, w) = λ(q2, w) and Tq1,j = Tq2,j

then q1 = q2.

(ii) For each q ∈ Q, OHR,q = {0}

Proof. First we will show that

∀w ∈ X∗
2 : λ(q1, w) = λ(q2, w) and Tq1,j = Tq2,j for all j ∈ J2

is equivalent to

υHR((q1, 0), v) = υHR((q2, 0), v),∀v ∈ X∗

Indeed, let q1, q2 ∈ Q such that for all w ∈ X∗
2 , λ(q1, w) = λ(q2, w) and Tq1,j =

Tq2,j for all j ∈ J2. Then it follows that for all v ∈ X∗, such that s = ΠX2
(v),

υHR((qi, 0), v) = (0, λ(qi, w), (Tδ(qi,s),j)j∈J2
).

It is easy to see from the definition of Tq,j that Tδ(q,w),jw ◦ Tq,j for all q ∈ Q,

j ∈ J2, w ∈ X∗
2 . Indeed,

Tδ(q,w),j(y1 · · · yl−1xzlyl · · · zkykzk+1) = Csk
Ask,zk+1

Msk,yk,sk−1
· · ·

· · ·Msl,yl,sl−1
Asl−1,zl

Bsl−1,x,j = Tq,j(wy1 · · · yl−1xzl−1yl · · · zkykzk+1)

where si = δ(δ(q, w), y1 · · · yi) = δ(q, wy1 · · · yi), i = 0, . . . , k, y1, . . . , yk ∈ X∗
2 ,

zl, . . . , zk+1 ∈ X∗
1 , x ∈ X1, k ≥ 0. 1 ≤ l ≤ k + 1. Thus, we get that

∀q ∈ Q, j ∈ J2, w ∈ X∗
2 : Tδ(q,w),j = w ◦ Tq,j (3.5)

Since we assumed that Tq1,j = Tq2,j , j ∈ J2 and λ(q1, w) = λ(q2, w), ∀w ∈ X∗
2 it

follows that (w ◦ Tq1,j)j∈J2
= (w ◦ Tq2,j)j∈J2

and λ(q1, w) = λ(q2, w) for all w ∈ X∗
2 .

Thus, we get that υHR((q1, 0), v) = υHR((q2, 0), v).
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Next, we show that for all q ∈ Q, x1, x2 ∈ Xq

x1 − x2 ∈ OHR,q

is equivalent to

∀v ∈ X∗ : υHR((q, x1), v)) = υHR((q, x2), v)

Indeed, assume that v = z1w1 · · ·wkzk+1, z1, . . . , zk+1 ∈ X∗
1 , w1, . . . , wk ∈ X2. Then

υHR((q, xi), v) = (Cqk
hi, λ(qk), (Tqk,j)j∈J2

)

where (qk, hi) = ξHR((q, xi), v), i = 1, 2. Thus, υHR((q, x1), v) = υHR((q, x2), v) if

and only if Cqk
h1 = Cqk

h2. From definition of ξHR it follows that for i = 1, 2,

hi = Aqk,zk+1
Mqk,wk,qk−1

Aqk−1,zk
· · ·Mq1,w1,q0

Aq0,z1
xi

Thus, Cqk
h1 = Cqk

h2 if and only if

x1 − x2 ∈ ker Cqk
Aqk,zk+1

Mqk,wk,qk−1
· · ·Mq1,w1,q0

Aq0,z1

Since v runs through all elements of X∗, i.e. through all w1, . . . , wk+1 ∈ X2,

z1, . . . , zk+1 ∈ X∗
1 , k ≥ 0, we get the desired equivalence.

Now we are ready to prove the statement of the proposition. Assume that HR

is observable. Assume there exists q1, q2 ∈ Q such that λ(q1, w) = λ(q2, w), w ∈ X∗
2

and Tq1,j = Tq2,j , j ∈ J2. Then we get that υHR((q1, 0), v) = υHR((q2, 0), v) for

all v ∈ X∗. By observability of HR it implies q1 = q2. Thus, condition (i) of the

proposition holds. Assume there exists x = x − 0 ∈ OHR,q for some q ∈ Q. Then

we get that υHR((q, x), v) = υHR((q, 0), v) for all v ∈ X∗. By observability of HR it

implies x = 0, i.e. OHR,q = {0}, that is, condition (ii) of the proposition holds.

Assume now that condition (i) and (ii) of the proposition hold. We will show

that HR is observable. Assume that there exists (qi, xi) ∈ HHR, i = 1, 2 such

that υHR((q1, x1), v) = υHR((q2, x2), v) for all v ∈ X∗. Assume that q1 6= q2. But

υHR((q1, x1), v) = υHR((q2, x2), v) implies that λ(q1,ΠX2
(v)) = λ(q2,ΠX2

(v)) and

ΠX2
(v) ◦ Tq1,j = ΠX2

(v) ◦ Tq2,j for all j ∈ J2. Since v runs through all elements of

X∗ we get that λ(q1, w) = λ(q2, w) ∀w ∈ X∗
2 and Tq1,j = Tq2,j for all j ∈ J2. Then

by condition (i) we get that q = q1 = q2. But υHR((q, x1), v) = υHR((q, x2), v) for all

v ∈ X∗ is equivalent to x1 − x2 ∈ OHR,q, thus by condition (ii) we get that x1 = x2.

That is (q1, x1) = (q2, x2). Thus,

(∀v ∈ X∗ : υHR(h1, v) = υHR(h2, v)) =⇒ h1 = h2

That is, we get that HR is observable.
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Notice that if J2 = ∅ then the first condition in the definition of observability is

equivalent to A being observable.

If we look at the Moore-automaton interpretation of hybrid representations, then

a hybrid representation is observable if and only if the Moore-automaton interpreta-

tion of the hybrid representation is observable.

Formula (3.5) is worth remembering. It will play an important role in the later

subsections. It essentially says that ΠŌ ◦υHR((q, x), v)) = ((ΠX2
(v)◦Tq,j)j∈J2

for all

v ∈ X∗, that is, the Ō-valued component of the output trajectory induced by (q, x)

is uniquely determined by Tq,j , j ∈ J2 and it is independent of x.

Next we will discuss certain elementary properties of hybrid representation mor-

phisms. Recall that any hybrid representation morphism T : HR → HR
′

induces a

map φ(T ) : HHR → HHR′ .

Proposition 5. A hybrid representation morphism T is a hybrid representation

isomorphism if and only if φ(T ) is a bijective map.

Proof. Indeed, assume that φ(T ) : HHR → HHR′ is bijective. Then for all q ∈ Q
′

there exists uniquely a q ∈ Q such that T ((q, 0)) = (TD(q), TC(0)) = (q
′

, 0), i.e.,

TD(q) = q
′

. Thus, TD is bijective. For any x ∈ X
′

q′ there exists a unique z ∈ Xq such

that T ((q, z)) = (TD(q), TCz) = (q, x), i.e., TCz = x. Thus, TC is surjective. We will

show that TC is injective. Indeed, assume that TCy = x. Then y = yq1
+ · · · + yq|Q|

,

where yqi
∈ Xqi

, i = 1, . . . , |Q|. But TC(yqi
) ∈ X

′

TD(qi)
, thus TC(yqi

) = 0 for

all i = 1, . . . , |Q|, qi 6= q. Thus, y ∈ Xq, and thus y = z. Conversely, assume

that T is a hybrid representation isomorphism. Then for any (q
′

, x) ∈ HHR′ there

exists a unique q ∈ Q, y ∈
⊕

q∈Q Xq, such that TD(q) = q
′

and x = TCy. But

T−1
C (X

′

q′ ) =
⊕

q∈Q,TD(q)=q′ Xq = Xq, thus y ∈ Xq. That is, (q, y) ∈ HHR, i.e., T is

bijective map from H1 to H2.

Proposition 6. Let HR1 and HR2 be two hybrid representations. Assume that

T : HR1 → HR2 is a hybrid representation morphism. Then the following holds.

• If T is injective, then dimHR1 ≤ dim HR2.

• If T is surjective, then dim HR2 ≤ dimHR1.

• If T is either injective or surjective and dimHR1 = dimHR2, then T is an

hybrid representation isomorphism.

Proof. Let HR1 = (A,Y, (Xq, {Aq,z, Bq,z,j2
}j∈J2,z∈X1

, Cq, {Mδ(q,y),y,q}y∈X2
)q∈Q , J, µ)

and HB2 = (A
′

,Y, (X
′

q , {A
′

q,z, B
′

q,z,j2
}j∈J2,z∈X1

, C
′

q, {M
′

δ′ (q,y),y,q
}y∈X2

)q∈Q′ , J, µ
′

).
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Then TC :
⊕

q∈Q Xq →
⊕

q∈Q′ X
′

q is a linear morphism. Assume that T is injec-

tive. Then TC and TD are injective. Then card(Q) = card(TD(Q)) ≤ card(Q
′

)

and

rank TC =
∑

q∈Q

dimXq = dim
⊕

q∈Q

Xq ≤
∑

q∈Q′

dimX
′

q

Thus

dimHR1 = (card(Q),
∑

q∈Q

dimXq) ≤ (card(Q
′

),
∑

q∈Q′

dimX
′

q)

Similarly, if T is surjective, then TC and TD are surjective. Thus,

∑

q∈Q

dimXq ≥ rank TC =
∑

q∈Q′

dimX
′

q

and card(Q) ≥ card(TD(Q)) = card(Q
′

). Thus, dimHR1 ≥ dimHR2. Assume that

T is injective and dimHR1 = dimHR2. Then

rank TC =
∑

q∈Q

dimXq =
∑

q∈Q′

dimX
′

q and card(TD(Q)) = card(Q) = card(Q
′

)

Similarly, if T is surjective and dim HR1 = dimHR2, then

rank TC =
∑

q∈Q′

dimX
′

q =
∑

q∈Q

dimXq and card(TD(Q)) = card(Q
′

) = card(Q)

Thus, if T is injective or surjective and dimHR1 = dimHR2, then TC and TD are

bijections, and thus T is a hybrid representation isomorphism.

The following proposition gives an important system theoretic characterisation of

hybrid representation morphisms.

Proposition 7. Let HRi, i = 1, 2 be two hybrid representations and let T : HR1 →

HR2 be a hybrid representation morphism. Then the following holds.

φ(T )(ξHR1
(h, v)) = ξHR2

(φ(T )(h), v) and υHR1
(h, v) = υHR2

(φ(T )(h), v)

for all h ∈ HHR1
, v ∈ X∗. If T is a hybrid representation isomorphism, then HR1 is

reachable if and only if HR2 is reachable and HR1 is observable if and only if HR2

is observable.

Proof. Let

HR1 = (A,Y, (Xq, {Aq,z, Bq,z,j2}j∈J2,z∈X1
, Cq, {Mδ(q,y),y,q}y∈X2

)q∈Q , J, µ)

HR2 = (A
′

,Y, (X
′

q , {A
′

q,z, B
′

q,z,j2}j∈J2,z∈X1
, C

′

q, {M
′

δ′ (q,y),y,q
}y∈X2

)q∈Q′ , J, µ
′

)
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Let A = (Q,X2, O, δ, λ) and A
′

= (Q
′

,X2, O, δ
′

, λ
′

). It is easy to see that

TD(δ(q, w)) = δ
′

(TD(q), w)

for all q ∈ Q,w ∈ X∗
2 . For all q ∈ Q, x ∈ Xq, TCAq,zx = A

′

TD(q),zTCx, TCMδ(q,y),y,qx =

M
′

δ′ (TD(q),y),y,TD(q)
TCx. Thus, by induction we get that for all z1, . . . , zk+1 ∈ X∗

1 , ,

w1, . . . , wk ∈ X2, k ≥ 0

TC(Aqk,zk+1
Mqk,wk,qk−1

· · ·Mq1,w1,q0
Aq0,z1

x) =

A
′

dk,zk+1
M

′

dk,wk,dk−1
· · ·M

′

d1,w1,d0
A

′

d0,z1
TCx

(3.6)

where qi = δ(q, w1 · · ·wi), TD(qi) = di, i = 0, . . . , k. Thus, we get that

φ(T )(ξHR1
((q, x), z1w1 · · · zkwkzk+1)) =

= (TD(δ(q, w1 · · ·wk)), TCAqk,zk+1
Mqk,wk,qk−1

· · ·Mq1,w1,q0
Aq0,z1

x) =

(δ
′

(TD(q), w1 · · ·wk), A
′

dk,zk+1
M

′

dk,wk,dk−1
· · ·Md1,w1,d0

A
′

d0,z1
TCx) =

= ξHR2
((TD(q), TCx), z1w1 · · ·wkzk+1)

Thus we get that

φ(T )(ξHR1
(h, v)) = ξHR2

(φ(T )(h), v) (3.7)

for all v ∈ X∗.

We will proceed with proving that for all h ∈ HR1, v ∈ X∗,

υHR1
(h, v) = υHR2

(φ(T )(h), v) (3.8)

As the first step we will show that if (qe, xe) = ξHR1
((q, x), v) and (q

′

e, x
′

e) =

ξHR2
(φ(T )((q, x)), v) then C

′

q′
e

x
′

e = Cqe
xe. Notice Cqx = C

′

TD(q)TCx for all q ∈ Q,

z ∈ X1, x ∈ Xq. Since φ(T )((qe, xe)) = (TD(qe), TCxe) = (q
′

e, x
′

e) by formula (3.7)

we get the required equality. Notice that λ(qe) = λ
′

(TD(qe)) = λ
′

(q
′

e). That is, we

get that

ΠRp×O ◦ υHR1
((q, x), v) = ΠRp×O ◦ υHR2

(φ(T )((q, x)), v) (3.9)

Thus, in order to prove (3.8) it is left to show that ΠŌ ◦ υHR1
((q, x), v) =

(Tqe,j)j∈J2
= (Tq′

e,j)j∈J2
= ΠŌ ◦ υHR2

(φ(T )((q, x)), v) where as before (qe, xe) =

ξHR1
((q, x), v) and (q

′

e, x
′

e) = ξHR2
(φ(T )((q, x)), v). Since TD(qe) = q

′

e it is enough

to show that for all j ∈ J2, q ∈ Q, Tq,j = TTD(q),j .

Notice that TCBq,z,j = B
′

TD(q),z,j . j ∈ J2, It is also easy to see that Tq,j(zv) =

ΠRp ◦υHR1
((q,Bq,z,j), v)) for all v ∈ X∗ and z ∈ X1. Recall that w ◦Tq,j = Tδ(q,w),j .

It is easy to see that for all s ∈ X∗, s = wzv for some z ∈ X1,w ∈ X∗
2 , v ∈ X∗.

Thus, we get that

Tq,j(s) = Tq,j(wzv) = Tδ(q,w),j(zv) = ΠRp ◦ υHR1
((δ(q, w), Bδ(q,w),z,j), v)
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Since φ(T )((δ(q, w), Bδ(q,w),z,j)) = (δ
′

(TD(q), w)), B
′

δ′ (TD(q),w),z,j
) by formula (3.9)

we get that

Tq,j(s) = ΠRp ◦ υHR1
((δ(q, w), Bδ(q,w),z,j), v) =

= ΠRp ◦ υHR2
((δ

′

(TD(q), w), B
′

δ′ (TD(q),w),z,j
), v) = TTD(q),j(s)

That is, Tq,j = TTD(q),j for all j ∈ J2. Thus we have shown that for all h ∈ HR1, v ∈

X∗ (3.8) holds.

Assume that T is an hybrid representation isomorphism. Then TC and TD are

bijective maps. It is easy to see that

φ(T )(Reach(HR1)) = {(TD(q), TC(x)) | ∃k ≥ 0, h1, . . . , hk ∈ H0,HR1
,

w1, . . . , wk ∈ X∗, α1, . . . , αk ∈ R :

(q, xi) = ξHR1
(hi, wi), i = 1, . . . , k and x =

k∑

j=1

αixi} =

= {(q
′

, x
′

) | ∃k ≥ 0, h1, . . . , hk ∈ φ(T )(H0,HR1
), w1, . . . , wk ∈ X∗, α1, . . . , αk ∈ R :

(q
′

, x
′

i) = ξHR2
(hi, wi), i = 1, . . . , k and x

′

=

k∑

j=1

αix
′

i}

It is easy to see that φ(T )(H0,HR1
) = H0,HR2

. Indeed, φ(T )(µ(j)) = µ
′

(j) and for all

q
′

= µ
′

D(j), w ∈ X∗
2 , if q = δ(µD(j), w), then φ(T )((q,Bq,z,j)) = (TD(q), B

′

TD(q),z,j) =

(δ
′

(q
′

, w), B
′

δ′ (q,w),z,j
) for all z ∈ X1, j ∈ J2. Thus,

φ(T )(Reach(HR1)) = Reach(HR2)

Notice that HR1 is reachable if and only if Reach(HR1) = HHR1
. Since φ(T ) is a

bijection, the latter condition is equivalent to Reach(HR2) = φ(T )(Reach(HR1)) =

φ(T )(HHR1
) = HHR2

, i.e. it is equivalent to HR2 being reachable.

Similarly, HR1 is observable if and only if for each h1, h2 ∈ HHR1
,

(∀v ∈ X∗ : υHR1
(h1, v) = υHR1

(h2, v)) =⇒ h1 = h2

But this is equivalent to the following. For any h
′

1, h
′

2 ∈ HHR2
,

(∀v ∈ X∗ : υHR1
(φ(T )−1(h

′

1), v) = υHR2
(h

′

1, v) =

υHR2
(h

′

2, v) = υHR1
(φ(T )−1(h

′

2), v))

=⇒ φ(T )−1(h
′

1) = φ(T )−1(h
′

2)

Since φ(T ) is bijective, it implies that φ(T )−1(h
′

1) = φ(T )−1(h
′

2) if and only if h
′

1 =

h
′

2. Thus we get that (∀v ∈ X∗ : υHR1
(h

′

1, .) = υHR2
(h

′

2, .)) =⇒ h1 = h2. That is,

observability of HR1 is equivalent to observability of HR2.
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Corollary 3. Let HR1, HR2 be hybrid representations and let T : HR1 → HR2 be

a hybrid representation morphism. Then HR1 is a representation of an indexed set

of hybrid power series Ω if and only if HR2 is a representation of Ω.

Proof. Assume that

HRi = (Ai,Y, (X i
q , {Ai

q,z, B
i
q,z,j2}j∈J2,z∈X1

, Ci
q, {M

i
δi(q,y),y,q}y∈X2

)q∈Qi , J, µi)

for i = 1, 2. Notice that for any j ∈ J1, φ(T )(µ1(j)) = µ2(j), thus by Proposition 7

for any j ∈ J1

∀v ∈ X∗ : υHR1
(µ1(j), v) = υHR2

(µ2(j))

Recall form (3.4) that HR1 is a representation of Ω = {Zj | j ∈ J} if and only if for

all j ∈ J1, v ∈ X∗

υHR2
(µ2(j), v) = υHR1

(µ1(j), v) = ((Zj)C(w), (Zj)D(ΠX2
(w)), ((Zj,j2)C)j2∈J2

)

By (3.4) the latter equality is equivalent to HR2 being a representation of Ω.

3.3.2 Existence of Hybrid Representation

In this subsection we will give necessary and sufficient conditions for existence of a

hybrid representation for a family of hybrid formal power series. Recall that hybrid

representations can be viewed as an interconnection of Moore-automata and rational

representations. In the light of this remark it should not be surprising that finding

a hybrid representation for an indexed set of hybrid power series can be reduced to

finding a rational representation for a indexed set of formal power series and finding a

finite Moore-automaton realization for an indexed set of discrete input-output maps.

We will proceed as follows. We will associate with each family of hybrid for-

mal power series a family of classical formal power series and a family of discrete

input-output maps. It turns out that there is a correspondence between rational

representations of this family of formal power series and automaton realizations of

the family of discrete input-output maps on the one hand and hybrid representations

of the original family of hybrid formal power series on the other hand.

Let HR = (A,Y, (Xq, {Aq,z, Bq,z,j2
}j∈J2,z∈X1

, Cq, {Mδ(q,y),y,q}y∈X2
)q∈Q , J, µ) be

a hybrid representation. Assume that A = (Q,Γ, O, δ, λ), Q = {q1, . . . , qN} and

card(J2) = m. Fix a basis {eq,j | q ∈ Q, j ∈ J2} in RNm. Define the representation

associated with HR by

RHR = (X , {Mz}z∈X , B̃, C̃)

where
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• X = (
⊕

q∈Q Xq) ⊕ RNm, if m > 0 and X =
⊕

q∈Q Xq if m = 0.

• C̃ : X → Rp, is a linear map such that C̃x = Cqx if x ∈ Xq and C̃eq,j = 0 for

each q ∈ Q,j ∈ J2,

• B̃ = {B̃j ∈ X | j ∈ J} is defined by B̃j = xj ∈ Xqj
and B̃(j,l) = eqj ,l, for each

j ∈ J1, l ∈ J2 such that µ(j) = (qj , xj)

• For each z ∈ X1, Mz : X → X is a linear map, such that for each q ∈ Q,

∀x ∈ Xq : Mzx = Aq,zx and for each q ∈ Q, j ∈ J2, Mzeq,j = Bq,z,j ∈ Xq.

• For each y ∈ X2, My : X → X is a linear map such that ∀x ∈ Xq : Myx =

Mδ(q,y),y,qx and Myeq,j = eδ(q,z),j , for all q ∈ Q, j ∈ J2.

Note that RHR depends on the structure of the finite Moore-automaton A too.

The idea behind the choice of RHR is the following. Consider the Moore-automaton

interpretation of HR. The representation RHR can be also viewed as a Moore-

automaton. We would like RHR to be a realization of the continuous, i.e. Rp valued

part of the input-output behaviour of HR. That is, if HR is a representation of some

family of hybrid formal power series Ω = {Zj | j ∈ J}, then we would like RHR to

be a representation of {(Zj)C ∈ Rp ¿ X∗ À| j ∈ J}. By ”stacking up” the ma-

trices Aq,z,Mq1,y,q2
and taking the ”state-space”

⊕
q∈Q Xq, we encoded most of the

information on the discrete-state dynamics which has effect on the continuous valued

part of the input-output behaviour of the hybrid representation. But we still need to

keep track of the elements Bq,z,j , and for that we need to simulate the discrete-state

transitions. This is done by introducing the vectors eq,j and defining the action of

My on these vectors accordingly. Of course, if J2 = ∅, we have no vectors Bq,z,j and

there is no need to include eq,j into the state-space of the representation RHR.

Recall the definition of the set Ō

Ō =
∏

j∈J2

Rp ¿ X∗ À

Consider a hybrid representation of the form

HR = (A,Y, (Xq, {Aq,z, Bq,z,j2}j∈J2,z∈X1
, Cq, {Mδ(q,y),y,q}y∈X2

)q∈Q , J, µ)

and assume that A = (Q,X2, O, δ, λ). Define

ĀHR = (Q,Γ, O × Ō, δ, λ̄) (3.10)

where λ̄(q) = (λ(q), (Tq,j)j∈J2
) if J2 6= ∅ and λ̄(q) = (λ(q), ∅) if J2 = ∅. The

realization (ĀHR, µD) will be called the finite Moore-automaton realization associated

with HR.
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Let Ω = {Zj ∈ Rp ¿ X∗ À ×F (X∗
2 , O) |∈ j ∈ J} be an indexed set of formal

power series. Then define the indexed set of formal power series ΨΩ associated with

Ω by

ΨΩ = {(Zj)C ∈ Rp ¿ X∗ À| j ∈ J}

Define the Hankel-matrix HΩ of Ω to be the Hankel-matrix HΨΩ
of ΨΩ, i.e. HΩ =

HΨΩ
. Define the indexed set of discrete input-output maps associated with Ω by

DΩ = {κj : X∗
2 → O × Ō | j ∈ J1}

where the maps κj are defined as follows

κj : X∗
2 3 w 7→ ((Zj)D(w), (w ◦ (Zj,l)C)l∈J2

) ∈ O × Ō

The following theorem describes the relationship between rationality of Ω and

rationality of ΨΩ and realisability of DΩ by a finite Moore-automaton.

Theorem 5. The hybrid representation HR is a hybrid representation of the indexed

set of hybrid formal power series Ω if and only if RHR is a representation of the

indexed set of formal power series ΨΩ and (ĀHR, µD) is a finite Moore-automaton

realization of DΩ.

Proof. Notice that for each z1, . . . , zk+1 ∈ X∗
1 , γ1, . . . , γk ∈ X2, k ≥ 0, q0 ∈ Q,

Aqk,zk+1
Mqk,γk,qk−1

Aqk−1,zk
· · ·Mq1,γ1,q0

Aq0,z1
x =

= Mzk+1
Mγk

Mzk
· · ·Mγ1

Mz1
x ∈ Xqk

Cqk
Aqk,zk+1

Mqk,γk,qk−1
Aqk−1,zk

· · ·Mq1,γ1,q0
Aq0,z1

x =

= CMzk+1
Mγk

Mzk
· · ·Mγ1

Mz1
x

Bqi,z,j = Mγi
Mγi−1

· · ·Mγ1
eq0,z,j ∈ Xqk

for all z ∈ X1, j ∈ J2

(3.11)

where qi = δ(q0, γ1 · · · γi), i = 0, . . . , k. From definition we get that HR is a

representation of Ω if and only if the following holds. For all j ∈ J1, w ∈ X∗
2 ,

w = w1, . . . , wk, w1, . . . , wk ∈ X2, z1, . . . , zk+1 ∈ X∗
1 , k ≥ 0 and j2 ∈ J2 it holds that

λ(µD(f), w) = (Zj)D(w), and

(Zj,j1)C(w1w2 · · ·wl−1zlwlzl+1 · · ·wkzk+1) =

= Cqk
Aqk,zk+1

Mqk,wk,qk−1
· · ·Mql,wl,ql−1

Aql−1,vBql−1,s,j1

(Zj)C(z1w1z2 · · ·wkzk+1) =

= Cqk
Aqk,zk+1

Mqk,wk,qk−1
Aqk−1,zk

· · ·Mq1,w1,q0
Aq0,z1

µC(j)

(3.12)

l = 1, . . . k, zl = sv, s ∈ X1, qi = δ(µD(j), w1 · · ·wi), i = 0, . . . , k.
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That is, by (3.11) we get that for all z1, . . . , zk+1 ∈ X∗
2 , zl = sv, s ∈ X1,

w1, . . . , wk ∈ X1, j, j1 ∈ J1, j2 ∈ J2,

(Z(j1,j2))C(w1w2 · · ·wl−1zlwlzl+1 · · ·wkzk+1) =

= CMzk+1
Mwk

Mzk
· · ·Mwl

MvMsMwl−1
· · ·Mw1

eq,s,j2

(3.13)

(Zj1)C(z1w1z2 · · ·wkzk+1) = CMzk+1
Mwk

· · ·Mw1
Mz1

B̃j1 (3.14)

The equations above are equivalent to RHR being a representation of ΨΩ. On the

other hand,

λ(µD(j), w) = (Zj)D(w), w ∈ X∗
2

is equivalent to (A, µD) being a realization of ΩD = {(Zj)D ∈ F (X∗
2 , O) | j ∈ J1}.

Assume now that RHR is a representation of ΨΩ and (ĀHR, µD) is a realization

of DΩ. The fact that RHR is a representation of ΨΩ implies (3.12). If (ĀHR, µD) is

a realization of DΩ, then for each j ∈ J1

ΠO ◦ λ̄(µD(j), w) = ΠO ◦ (κj)(w) = (Zj)D(w), w ∈ X∗
2

Thus, (A, µD) is a realization of ΩD. That is, from the discussion above we get that

HR is a representation of Ω.

Conversely, assume that HR is a representation of Ω. Then (3.12) holds, which

implies that RHR is a representation of ΨΩ. Formula (3.12) also implies that for

all j ∈ J1, q = µD(j) ∈ Q, (Zj,j2)C = Tq,j2 for all j2 ∈ J2. Thus, w ◦ (Zj,j2)C =

w ◦ Tq,j2 = Tδ(q,w),j2 . Since λ(q, w) = (Zj)D(w), we get that

λ̄(q, w) = (λ(q, w), (Tδ(q,w),j2)j2∈J2
) = ((Zj)D(w), (w ◦ (Zj2,j1)C)j2∈J2

)

Thus, (Ā, µD) is a realization of DΦ.

Consider the following set of discrete input-output maps.

ΩD = {(Zj)D : X∗
2 → O | j ∈ J1}

It is easy to see that if (ĀHR, µD) is a realization of DΩ, then (A, µD) is a realization

of ΩD. It is also easy to see that if J2 = ∅ then (ĀHR, µD) is a realization of DΩ

whenever (A, µD) is a realization of ΩD. Thus, we get the following corollary.

Corollary 4. Assume that J2 = ∅. Then HR is a hybrid representation of Ω if and

only if RHR is a representation of ΩΨ and (A, µD) is a realization of ΩD.

Above we associated with each hybrid representation HR a representation and a

finite Moore-automaton realization. Below we will present the converse of it. That
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is, we will associate a hybrid representation with any suitable representation and

suitable finite Moore-automaton realization. The construction goes as follows.

Let R = (X , {Mz}z∈X , B̃, C̃) be an observable representation of ΨΩ and let

(Ā, ζ), Ā = (Q,X2, O × Ō, δ, λ̄) be a reachable Moore-automaton realization of DΩ.

Then define (HRR,Ā,ζ – the hybrid representation associated with R and (Ā, ζ) as

HRR,Ā,ζ = (A,Y, (Xq, {Aq,z, Bq,z,j2}j∈J2,z∈X1
, Cq, {Mδ(q,y),y,q}y∈X2

)q∈Q , J, µ)

where

• A = (Q,X2, O, δ,ΠO ◦ λ̄) ,

• For all q ∈ Q, let Xq = Span{z | z ∈ Wq} where the set Wq is defined as follows

Wq ={Mxk+1
Myk

Mxk
· · ·Myl

Mzl
Msl

Myl−1
· · ·My2

My1
B̃(j1,j2) |

y1, . . . , yk ∈ X2, j1 ∈ J1, j2 ∈ J2, k ≥ 0,

q = δ(ζ(j1), y1 · · · yk), 1 ≤ l ≤ k + 1, xk+1, . . . , xl ∈ X∗
1 ,

xl = slzl, zl ∈ X∗
1 , sl ∈ X1}∪

∪ {Mxk+1
Myk

Mxk
· · ·My1

Mx1
B̃j | y1, . . . , yk ∈ X2,

j ∈ J1, xk+1, . . . , x1 ∈ X∗
1 , k ≥ 0, q = δ(ζ(j), y1 · · · yk)}

(3.15)

• For each q ∈ Q, z ∈ X1, the maps Aq,z : Xq → Xq, z ∈ X1 are defined by

Aq,z = Mz|Xq
. That is, for all x ∈ Xq, z ∈ X1,

Aq,zx = Mzx

• For each q ∈ Q, the map Cq : Xq → R is defined by Cq = C̃|Xq
. That is, for all

x ∈ Xq,

Cqx = C̃x

• For each q ∈ Q, l ∈ J2, z ∈ X1 let Bq,z,l = MzMwB̃j,l ∈ Xq for some w ∈ X∗
2

and j ∈ J2 such that δ(ζ(j), w) = q.

• For all q1, q2 ∈ Q, y ∈ X2 such that q1 = δ(q2, y) define the map Mq1,y,q2
:

Xq2
→ Xq1

as follows. For each x ∈ Xq2
,

Mq1,y,q2
x = Myx, x ∈ Xq2

• Define the map µ : J →
⋃

q∈Q{q} × Xq as follows.

µ(j) = (ζ(j), B̃j) for all j ∈ J1
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Notice that Bq,z,j is indeed well-defined for each q ∈ Q, z ∈ X1, j ∈ J2. If for some

g, j ∈ J1, w, v ∈ X∗
2 , q = δ(ζ(j), w) = δ(ζ(g), v), then κg(v) = κj(w), since Ā is a

realization of DΩ. But then κg(v) = ((Zg)D(v), (v ◦ (Zg,l)C)l∈J2
) = ((Zj)D(w), (w ◦

(Zj,l)C)l∈J2
) = κj(w), i.e, v ◦ (Zg,l)C = w ◦ (Zj,l)C . Since R is a representation of

ΨΩ we get that v ◦ (Zg,l)C(zs) = (Zg,l)C(vzs) = (Zj,l)C(wzs) = C̃MsMzMwB̃j,l =

C̃MsMzMvB̃g,l for each s ∈ X∗, z ∈ X1, l ∈ J2. Then observability of R implies that

MzMwB̃j,l = MzMvB̃g,l, thus, Bq,z,l is indeed well-defined. It should be clear now

why we needed observability of R and reachability of (Ā, ζ). If R was not observable,

we could have several choices for the vectors Bq,z,l. If (Ā, ζ) was not reachable, we

would have trouble defining Xq for the unreachable discrete states q ∈ Q.

Notice that if J2 = ∅, then the construction of HRR,Ā,ζ could be carried out for

a non-observable representation R too. Assume that J2 = ∅ and (A, ζ) is a reachable

realization of ΩD. Assume that A = (Q,X2, O, δ, λ) and define Ā by

Ā = (Q,X2, O × Ō, δ, λ̄), , where λ̄(q) = (λ(q), ∅)

It is easy to see that (Ā, ζ) is a realization of DΩ if J2 = ∅. It is also easy to see

that Ā is uniquely determined by A and the construction of HRR,Ā,ζ can be carried

out based purely on the information present in R and (A, ζ). Then it is justified to

denote HRR,Ā,ζ simply by HRR,A,ζ .

The construction of HRR,Ā,ζ in fact gives us a way to go from representations of

ΨΩ and realizations of DΩ to hybrid representations of Ω.

Theorem 6. Assume that R is an observable representation of ΨΩ and (Ā, ζ) is a

reachable realization of DΩ. Then HRR,Ā,ζ is a reachable hybrid representation of

Ω.

Proof. Let HR = HRR,Ā,ζ . First we will show that HR is a representation of Ω.

Notice that

Mzk+1
Mγk

Mzk
· · ·Mγ1

Mz1
x =

= Aqk,zk+1
Mqk,γk,qk−1

Aqk−1,zk
· · ·Mq1,γ1,q0

Aq0,z1
x ∈ Xqk

C̃Mzk+1
Mγk

Mzk
· · ·Mγ1

Mz1
x =

= Cqk
Aqk,zk+1

Mqk,γk,qk−1
Aqk−1zk

· · ·Mq1,γ1,q0
Aq0,z1

x

(3.16)

for all x ∈ Xq0
, q0 ∈ Q, γ1, . . . , γk ∈ X2, z1, . . . , zk+1 ∈ X∗

1 , k ≥ 0, where qi =

δ(q0, γ1 · · · γi), i = 1, . . . , k. Moreover, for each j ∈ J1, B̃j ∈ Xζ(j) and for each

w ∈ X∗
2 , j2 ∈ J2, j ∈ J , s ∈ X1,

MsMwB̃j,j2 = Bδ(ζ(j),w),s,j2 ∈ Xδ(ζ(j),w)
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Notice that µD(j) = ζ(j) for all j ∈ J1. Since R is a representation of ΨΩ, we get

that for all j ∈ J1, j2 ∈ J2

(Zj,j2)C(w1w2 . . . wl−1szlwl · · ·wkzk+1) =

= C̃Mzk+1
Mwk

· · ·Mwl
Mzl

MsMwl−1
· · ·Mw1

B̃j,j2 =

= C̃Mzk+1
Mwk

· · ·Mwl
Mzl

Bql−1,z,j2 =

= Cqk
Aqk,zk+1

Mqk,wk,qk−1
Aqk−1,zk

· · ·Mql,wl,ql−1
Aql−1,zl

Bql−1,s,j2

(Zj)C(z1w1 · · ·wkzk+1) =

= C̃Mzk+1
Mwk

· · ·Mw1
Mz1

B̃j =

= Cqk
Aqk,zk+1

Mqk,wk,qk−1
· · ·Mq1,w1,q0

Aq0,z1
µ(j)

(3.17)

for each w = w1 · · ·wk, w1, . . . , wk ∈ X2, z1, . . . , zk+1 ∈ X∗
1 , s ∈ X1, k ≥ 0, j2 ∈ J2,

j ∈ J1, 1 ≤ l ≤ k + 1, where qi = δ(q, w1 · · ·wi), i = 0, . . . , k, q = ζ(j).

If (Ā, ζ) is a realization of DΩ, we get that for each j ∈ J1, w ∈ X∗
2

(Zj)D(w) = ΠO ◦ κj(w) = ΠO ◦ λ̄(ζ(j), w) = λ(ζ(j), w) = λ(µD(j), w) (3.18)

From the definition and formulas (3.17) and (3.18) it follows that HR is a represen-

tation of Ω.

It is left to show that HR is reachable. Since (Ā, ζ) is reachable and A coincides

with Ā with the exception of the readout map, we get that (A, ζ) = (AHR, µD) is

reachable. From the definition of HR it follows that for each q ∈ Q

Xq = Span{Mzk+1
Mγk

Mzk
· · ·Mγl

Mzl
MsMγl−1

· · ·Mγ2
Mγ1

B̃j,j2 |

γ1, . . . , γk ∈ X2, j ∈ J1, k ≥ 0, j2 ∈ J2, q = δ(ζ(f), γ1 · · · γk),

1 ≤ l ≤ k + 1, zk+1, . . . . . . zl ∈ X∗
1 , s ∈ X1}∪

∪{Mzk+1
Mγk

Mzk−1
· · ·Mγ1

Mz1
B̃j |

γk, . . . γk ∈ X2, zk+1, . . . , z1 ∈ X∗
1 , k ≥ 0, q = δ(ζ(f), γ1 · · · γk), j ∈ J1}

Using equality (3.16) we get that

Xq = Span({Aqk,zk+1
Mqk,γk,qk−1

· · ·Mql,γl+1,ql−1
Aql−1,zl

Bql−1,s,j2 |

qk = q, q0 = µD(j), j ∈ J1, γ1, . . . , γk ∈ X2, k ≥ 0, zl, . . . , zk+1 ∈ X∗
1 , s ∈ X1,

1 ≤ l ≤ k + 1, j2 ∈ J2, qi = δ(q0, γ1 · · · γi), i = 1, . . . , k}∪

∪{Aqk,zk+1
Mqk,γk,qk−1

· · ·Mq1,γ1,q0
Aq0,z1

xj , |

qk = q, z1, . . . , zk+1 ∈ X∗
1 , γ1, . . . , γk ∈ X2, j ∈ J1,

(q0, xj) = µ(j), qj = δ(q0, γ1 · · · γj), 1 ≤ j ≤ k, k ≥ 0})

Thus, we get that that WHR =
⊕

q∈Q Xq, and thus by definition HR is reachable.
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The remark before Theorem 6 on the construction of HRR,Ā,ζ in the case when

J2 = ∅ yields the following corollary.

Corollary 5. If J2 = ∅, R is a representation of ΨΩ and (A, ζ) is a reachable

realization of ΩD then the hybrid representation HRR,A,ζ is a reachable hybrid rep-

resentation of Ω.

Existence of a finite Moore-automaton realization for DΩ is not easy to check. But

we can give the following characterisation of existence of a finite Moore-automaton

which is a realization of DΩ. Define the sets WO,Ω = {v◦(Zj1,j2)C | v ∈ X∗
2 , (j1, j2) ∈

J1 × J2} and HO,Ω = {(HΩ).,(v,(j1,j2)) | v ∈ X∗
2 , (j1, j2) ∈ J1 × J2}. It is easy

to see that HO,Ω is simply the set of all columns of HΩ indexed by (v, (j1, j2))

for each v ∈ X∗
2 and (j1, j2) ∈ J1 × J2. It is also clear that there is a bijection

(HΩ).,(v,(j1,j2)) 7→ v ◦ (Zj1,j2)C from HO,Ω to WO,Ω. With the notation above using

Theorem 3 we get the following.

Lemma 10. The indexed set DΩ has a finite Moore-automaton realization if and

only if card(WO,Ω) = card(HO,Ω) < +∞ and ΩD has a finite Moore-automaton

realization, that is, card(WΩD
) < +∞.

That is, the lemma above states that existence of a Moore-automaton realization

of DΩ is equivalent to existence of a Moore-automaton realization of ΩD and to

card(HO,Ω) < +∞, i.e. that the number of different columns of the Hankel-matrix

indexed by (v, (j1, j2)), j2 ∈ J2, j1 ∈ J1, v ∈ X∗
2 is finite. The latter in fact means that

the indexed set {ΠŌ ◦ κj ∈ F (X∗
2 , Ō) | j ∈ J1} has a Moore-automaton realization.

Proof of Lemma 10. It is easy to see that DΩ has a Moore-automaton realization if

and only if ΦD and K = {ΠŌ ◦ κj | j ∈ J1} have a realization by a finite Moore-

automaton. Indeed, let (A, ζ), A = (Q,X2, O × Ō, δ, λ) be a realization of DΩ.

Then (A1, ζ) and (A2, ζ) are realizations of K and ΩD respectively, where A1 =

(Q,X2, Ō, δ,ΠŌ◦λ) and A2 = (Q,X2, O, δ,ΠO◦λ). Conversely, assume that (A1, ζ1),

A1 = (Q1,X2, Ō, δ1, λ1) is a realization of K and (A2, ζ2), A2 = (Q2,X2, O, δ2, λ2) is

a realization of ΩD. Then it is easy to see that (A, ζ), A = (Q2 ×Q1,X2, O× Ō, δ2 ×

δ1, λ2 × λ1) is a realization of DΩ, where δ2 × δ1(q2, q1, γ) = (δ2(q2, γ), δ1(q1, γ)), γ ∈

X2, (q2, q1) ∈ Q2 × Q1 and λ2 × λ1((q2, q1)) = (λ2(q2), λ1(q1)) ∈ O × Ō, (q2, q1) ∈

Q2 × Q1.

By Theorem 3 ΩD has a realization by a Moore-automaton if and only if

card(WΩD
) < +∞ and K has a realization by a Moore-automaton if and only if

WK = {w ◦ ΠŌ ◦ κj | w ∈ X∗
2 , j ∈ J2} is a finite set, i.e. card(WK) < +∞. Notice

that w ◦ (ΠŌ ◦ κj)(v) = (wv ◦ (Zj,j2)C)j2∈J2
. It implies that WK is finite if and
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only if S = {w ◦ (Zj,j2)C | w ∈ X∗
2 , j ∈ J1, j2 ∈ J2} is finite. Indeed, notice that

w ◦ (ΠŌ ◦ κj) = v ◦ (ΠŌ ◦ κg) if and only if w ◦ (ΠŌ ◦ κj)(ε) = v ◦ (ΠŌ ◦ κj)(ε), or,

in other words, w ◦ (Zj,j2)C = v ◦ (Zg,j2)C , j2 ∈ J2. The ”only if” part is trivial.

Assume that w ◦ (Zj,j2)C = v ◦ (Zg,j2)C , for all j2 ∈ J2. Then

w ◦ (ΠŌ ◦ κj)(s) = (ws ◦ (Zj,j2)C))j2∈J2
= (s ◦ (w ◦ (Zj,j2)C))j2∈J2

=

= (s ◦ (v ◦ (Zg,j2))C)j2∈J2
= (vs ◦ (Zq,j2)C)j2∈J2

= v ◦ (ΠŌ ◦ κg)(s)

Thus, WK is finite if and only if {w ◦ (ΠŌ ◦ kj)(ε) = (w ◦ (Zj,j2)C)j2∈J2
| j ∈ J2, w ∈

X∗
2} is finite. Since J2 is finite, it means that S is finite. Conversely, if S is finite,

then the set V = {w ◦ (ΠŌ ◦ κj)(ε) = (w ◦ (Zj,j2)C)j2∈J2
| j ∈ J1, w ∈ X∗

2} is finite,

and thus WK is finite. But there is one to one correspondence between w ◦ (Zj,j2)C ,

w ∈ X∗
2 , j ∈ J1, j2 ∈ J2 and elements of HO,Ω. That is, S is finite if and only if HO,Ω

is finite.

Theorem 3, Theorem 1, Theorem 5, Theorem 6 and Lemma 10 imply the following

theorem.

Theorem 7. Let Ω be an indexed set of hybrid formal power series. Then the

following are equivalent.

(i) Ω is rational, that is, Ω has a hybrid representation

(ii) The indexed set of formal power series ΨΩ is rational and DΩ has a finite

Moore-automaton realization.

(iii) rank HΩ < +∞, card(HO,Ω) < +∞,and card(WΩD
) < +∞

Proof. (i) =⇒ (ii)

If HR is a representation of Φ, then from Theorem 5 it follows that RHR is a repre-

sentation of ΨΩ and (ĀHR, µD) is a realization of DΩ. Thus, ΨΩ is rational and DΩ

has a realization by a Moore-automaton.

(ii) =⇒ (i)

Assume that ΨΩ is rational and DΩ has a Moore-automaton realization. Then by

Theorem 4 DΩ has a minimal Moore-automaton realization (A, ζ) and this realization

is reachable and observable. Similarly, by Theorem 2 if ΨΩ has a representation then

there exists a minimal representation R of ΨΩ, and R is reachable and observable.

Thus, HR = HR(R,A,ζ is well defined and by Theorem 6 HR is a reachable realization

of Φ.

(ii) ⇐⇒ (iii)

By Theorem 1, ΨΩ is rational if and only if rank HΨΩ
= rank HΩ < +∞. By
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Lemma 10 DΩ has a Moore-automaton realization if and only if card(WDΩ
) < +∞

and card(HΩ,O) < +∞.

Taking into account the discussion for the case when J2 = ∅ we get the following

corollary of the theorem above.

Corollary 6. Assume that J2 = ∅. Then Ω is rational if and only if ΨΩ is rational

and ΩD has a finite Moore-automaton realization. That is, Ω is rational if and only

if rank HΦ < +∞ and card(WΩD
) < +∞.

3.3.3 Minimal Hybrid Representations

Our next step will be to characterise minimal hybrid representations. We will start

with characterising reachability and observability of hybrid representations. Recall

from Section 3.1 the notion of W -observability for formal power series representations

R, where W is a subspace of the state-space of R. Consider the hybrid representation

HR = (A,Y, (Xq, {Aq,z, Bq,z,j2}j∈J2,z∈X1
, Cq, {Mδ(q,y),y,q}y∈X2

)q∈Q , J, µ)

Notice that for all q ∈ Q the linear space Xq is a subspace of the state-space of RHR.

The following lemma characterises reachability and observability of HR.

Lemma 11. The hybrid representation HR is reachable if and only if RHR is reach-

able and (A, µD) is reachable. The hybrid representation HR is observable if and

only if (ĀHR, µD) is observable and RHR is Xq observable for all q ∈ Q.

Proof. Let HR = (A,Y, (Xq, {Aq,z, Bq,z,j2
}j∈J2,z∈X1

, Cq, {Mδ(q,y),y,q}y∈X2
)q∈Q , J, µ)

and let RHR = (
⊕

q∈Q Xq ⊕ R|Q|·|J2|, {Mz}z∈eΓ, B,C). Recall that each s ∈ X∗ can

be uniquely written as s = z1γ1z2γ2 · · · zkγkzk+1 for some z1, . . . , zk+1 ∈ X∗
1 , k ≥ 0,

γ1, . . . , γk ∈ X2. From (3.11) it follows that

WHR = Span({MsMyMwBj,j2 | s ∈ X∗, j ∈ J1, j2 ∈ J2, y ∈ X1w ∈ X∗
2}∪

∪{MsBj | s ∈ X∗, j ∈ J1})

That is,

WRHR
= WH + Span{MwBj,j2 | j2 ∈ J2, j ∈ J1} =

= WHR ⊕ Span{eq,j2 | j ∈ J2, q = δ(µD(f), w), w ∈ X∗
2 , z ∈ X1}

In other words, WRHR
∩

⊕
q∈Q Xq = WHR. HR is reachable if and only if WHR =⊕

q∈Q Xq and (A, µD) is reachable. Notice that eq,j , q ∈ Q, j ∈ J2, are linearly

independent. Thus {eq,j | q ∈ Q, j ∈ J2} = {eq,j2 | q = δ(µD(j), w), j ∈ J1, w ∈
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X∗
2 , j ∈ J2} is equivalent to R|Q|·|J2| = Span{eq,j | q ∈ Q, j ∈ J2} = Span{eq,j2 | j2 ∈

J2, q = δ(µD(j), w), w ∈ X∗
2 , j ∈ J1}. But (A, µD) is reachable implies that {eq,j | q ∈

Q, j ∈ J2} = {eq,j2 | q = δ(µD(j), w), j ∈ J1, w ∈ X∗
2 , j ∈ J2}. It is straightforward

to see that (ĀHR, µD) is reachable if and only if (AHR, µD) is reachable. Thus, if

HR is reachable, then WRHR
= WHR ⊕ R|Q|·|J2| =

⊕
q∈Q Xq ⊕ R|Q|·|J2| Conversely,

assume that RHR is reachable and (ĀHR, µD) is reachable. Then (A, µD) is reachable

and WHR = WRHR
∩

⊕
q∈Q Xq =

⊕
q∈Q Xq. Thus, HR is reachable.

Next, we will show that HR is observable if and only if ĀHR is observable and

RHR is Xq observable for all q ∈ Q. It is easy to see that part(i) of Proposition 4

is equivalent to (λ(q1, w) = λ(q2, w), w ∈ X∗
2 and Tq1,j = Tq2,j ,∀j ∈ J2) ⇐⇒ q1 =

q2. Notice that Tq1,j = Tq2,j is equivalent to w ◦ Tq1,j = w ◦ Tq2,j , w ∈ X∗
2 , and

w ◦ Tq,j = Tδ(q,w),j for all j ∈ J2, w ∈ X∗
2 . Thus, part (i) is equivalent to (λ(q1, w) =

λ(q2, w), (w ◦ Tq1,j)j∈J2
= (w ◦ Tq2,j)j∈J2

, w ∈ X∗
2 ) ⇐⇒ q1 = q2, or equivalently,

(λ̄(q1, w) = λ̄(q2, w), w ∈ X∗
2 ) ⇐⇒ q1 = q2. But the latter expression is equivalent

to (ĀHR, µD) being observable. That is, part(i) of Proposition 3 is equivalent to

observability of (ĀHR, µD). Consider part (ii) of Theorem Proposition 4. From

formula (3.11) in the proof of Theorem 5 it follows that for each q ∈ Q, γ1, . . . , γk ∈

X2, k ≥ 0, Oq,γ1···γk
=

⋂
z1,...,zk+1∈X∗

1 ,k≥0(ker CMzk+1
Mγk

Mzk
· · ·Mγ1

Mz1
∩ Xq).

Recall that each s ∈ X∗ can be uniquely written as s = z1γ1z2γ2 · · · zkγkzk+1 for

some z1, . . . , zk+1 ∈ X∗
1 , k ≥ 0, γ1, . . . , γk ∈ X2. That is ,

⋂

w∈X∗
2

Oq,w = Xq ∩
⋂

s∈X∗

ker CMs = Xq ∩ ORHR

That is, part (ii) of Proposition 4 is equivalent to Xq ∩ ORHR
= {0} for all q ∈ Q,

that is, RHR is Xq observable for each q ∈ Q.

But HR is observable if and only if part (i) and part (ii) of Proposition 4 holds.

Thus HR is observable if and only if (ĀHR, µD) is observable and RHR is Xq observ-

able for each q ∈ Q.

Notice that if J2 = ∅ then (ĀHR, µD) is observable if and only if (A, µD) is

observable. That is, we get the following corollary.

Corollary 7. If J2 = ∅ then HR is observable if and only if (A, µD) is observable

and RHR is Xq observable for all q ∈ Q.

It is easy to see that the following result holds too.

Lemma 12. If HR is a hybrid representation of some indexed set of hybrid formal

power series Ω, then there exists a hybrid representation HRr of Ω such that HRr is

reachable and dim HRr ≤ dim HR. Equality dimHRr = dim HR holds if and only

if HR is reachable.
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Proof. Assume that

HR = (A,Y, (Xq, {Aq,z, Bq,z,j2}j∈J2,z∈X1
, Cq, {Mδ(q,y),y,q}y∈X2

)q∈Q , J, µ)

Define the hybrid representation HRr by

HRr = (Ar,Y, (X r
q , {Ar

q,z, B
r
q,z,j2}j∈J2,z∈X1

, Cr
q , {Mr

δr(q,y),y,q}y∈X2
)q∈Qr , J, µr)

such that the following holds. The automaton Ar = (Qr,X2, O, δr, λr) is the sub-

automaton of A reachable from ΠQ ◦ Imµ. That is Qr = {q ∈ Q | ∃j ∈ J1, w ∈

X∗
2 , δ(µD(j), w) = q} and δr(q, z) = δ(q, z) ,λr(q) = λ(q) for all q ∈ Qr, z ∈ X2. For

each q ∈ Qr let X r
q = Xq ∩ WHR and let Ar

q,zx = Aq,zx,Mr
δr(q,y),y,qx = Mδ(q,y),y,qx,

Cr
q x = Cqx for all q ∈ Qr, z ∈ X1, y ∈ X2. Since Aq,z(WHR ∩ Xq) ⊆ Xq ∩ WHR an

Mδ(q,y),y,q(WHR∩Xq) ⊆ Xδ(q,y)∩WHR we get that Ar
q,z : X r

q → X r
q and Mδr(q,y),y,q :

X r
q → Xδr(q,y) are well-defined. It is easy to see that Bq,z,j ∈ X r

q = Xq ∩ WHR. Let

µr(j) = µ(j) for all j ∈ J1. It is also easy to see that µD(j) ∈ Qr and µC(j) ∈ X r
µD(r),

and thus µr
D(j) ∈ X r

µr
D

(j). Thus, HRr is a well-defined hybrid representation. Define

the automaton morphism φ : (Ar, (µr)D) → (A, µD) by φ(q) = q for each q ∈ Qr. It

is easy to see that φ is indeed an automaton morphism. Define TC :
⊕

q∈Qr X r
q →⊕

q∈Q Xq by TC(x) = x for each x ∈ X r
q , q ∈ Qr. It is easy to see that (φ, TC) is a

hybrid representation morphism. Thus, by Corollary 3 if HR is a representation of Ω

then HRr will also be a representation of Ω. (φ, TC) is clearly injective, we get that

dimHr ≤ dimH by Proposition 6. It is easy to see that WHRr
= WHR =

⊕
q∈Qr X r

q .

Thus by Proposition 3 HRr is reachable.

Below we will investigate certain properties of hybrid representations of the form

HRR,Ā,ζ .

Lemma 13. Let R be an observable representation of ΨΩ, let (Ā, ζ) be a reach-

able realization of DΩ. Consider the hybrid representation HR = HRR,Ā,ζ and

the associated representation RHR. Then there exists a representation morphism

iR : RHR → R such that iR(x) = x for all x ∈ Xq, q ∈ Q.

Proof. Assume that R = (X , {Fz}z∈X , B,C). Assume that Ā = (Q,X2, O× Ō, δ, λ̄),

HR = (A,Y, (Xq, {Aq,z, Bq,z,j2}j∈J2,z∈X1
, Cq, {Mδ(q,y),y,q}y∈X2

)q∈Q , J, µ)

where A = (Q,X2, O, δ, λ), λ = ΠO ◦ λ̄. Assume that card(Q) = N for some N ∈ N

and Q = {q1, . . . , qN}. Assume that RHR = (
⊕

q∈Q Xq ⊕ RN ·m, {Mz}z∈X , B̃, C̃),

where m = card(J2). Denote by X the vector space
⊕

q∈Q Xq. Recall that Xq ⊆ X ,

thus the map iq : Xq 3 x 7→ x ∈ X is well defined. Define iR :
⊕

q∈Q Xq ⊕RNm → X

as follows. Let iR(x) = iq(x) = x for all x ∈ Xq, q ∈ Q. Let iR(eq,j) = FwBf,j such
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that δ(ζ(f), w) = q for some w ∈ X∗
2 . Since (Ā, ζ) is reachable, such f and w exists.

Assume that δ(ζ(f), w) = δ(ζ(g), v). Then (w ◦ (Zf,j)C)j∈J2
= ΠŌ ◦ λ(ζ(f), w) =

ΠŌ ◦λ(ζ(g), v) = (v ◦ (Zg,j)C)j∈J2
thus w ◦ (Zf,l)C = v ◦ (Zg,l)C , l ∈ J2. But for each

s ∈ X∗, CFsFwBf,j = (w ◦ (Zf,j)C)(s) = (v ◦ (Zg,j)C)(s) = CFsFvBg,j . Since R is

observable, we get that FwBf,j = FvBg,j . That is, iR(eq,j) is well defined. We have to

show that iR is a representation morphism. Notice that iR(B̃f,j) = iR(eζ(f),j) = Bf,j ,

for each f ∈ J1, j ∈ J2. It is easy to see that iR(B̃f ) = µC(f) = Bf , for each

f ∈ J1, since B̃f = µC(f) ∈ Xζ(f). We have to show that CiR = C̃. For each

x ∈ Xq, q ∈ Q, CiR(x) = Cx = Cqx = C̃x. On the other hand, for each q ∈ Q there

exists a f ∈ J1 and w ∈ X∗
2 such that δ(ζ(f), w) = q. Thus, iR(eq,j) = FwBf,j and

CiR(eq,j) = CFwBf,j = (Zf,j)C(w) = 0, since (Zf,j)C(s) = 0 for any s ∈ X∗
2 . Hence

C̃eq,j = 0 = CiR(eq,j), q ∈ Q, j ∈ J2. That is, CiR = C̃. We have to show that

iRMz = FziR holds for all z ∈ X. For each γ ∈ X2, iRMγx = iR(Mδ(q,γ),γ,qx) =

Mδ(q,γ),γ,qx = Fγx if x ∈ Xq for some q ∈ Q. If x = eq,j for some q ∈ Q,j ∈ J2, then

iR(Mγeq,j) = iR(eδ(q,γ),j) = FwBf,j . Assume that δ(ζ(g), v) = q. Then iR(eq,j) =

FvBg,j . But δ(ζ(q), vγ) = δ(q, γ), thus FwBf,j = FvγBg,j = FγFvBg,j . That is,

iR(Mγeq,j) = FγiR(eq,j). That is, iRMγ = FγiR holds for any γ ∈ X2. As the last

step we will prove that iRMz = FziR for all z ∈ X1. Again, if x ∈ Xq for some

q ∈ Q, then iRMzx = Aq,zx = Fzx. If x = eq,j , then iRMzx = iR(Bq,z,j) = Bq,z,j =

FzFwBf,j = FziR(x), where δ(ζ(f), w) = q. That is, iRMz = FziR holds for all

z ∈ X1. Thus, iR is indeed a representation morphism.

The lemma above has the following consequence.

Lemma 14. Assume that R is minimal representation of ΨΩ and (Ā, ζ) is a minimal

realization of DΩ. Then the hybrid representation HR = HRR,Ā,ζ is reachable and

observable.

Proof. Since R is minimal, it is also observable. Since (Ā, ζ) is minimal it is reachable

and observable. Thus, the hybrid representation HR is well-defined. Assume that

HR = (A,Y, (Xq, {Aq,z, Bq,z,j2}j∈J2,z∈X1
, Cq, {Mδ(q,y),y,q}y∈X2

)q∈Q , J, µ)

where A = (Q,X2, O, δ, λ). Assume that R = (X , {Mz}z∈X , B̃, C̃). The hybrid

representation (H,µ) is reachable and (ĀHR, µD) = (Ā, ζ) is observable. Consider

the representation

RHR = (
⊕

q∈Q

Xq ⊕ R|Q|m, {M
′

z}z∈eΓ, B̃
′

, C̃
′

)

where card(J2) = m. Then by Lemma 13 there exists iR : RH,µ → R such that for
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each x ∈ Xq, q ∈ Q: iR(x) = x and thus

C̃
′

M
′

wx = C̃MwiR(x) = C̃Mwx

If x ∈ ORHR
, then x ∈ OR = {0} ∩ Xq. So we get that Xq ∩ ORHR

= {0}, that is

RHR is Xq observable for each q ∈ Q. Thus, by Lemma 11 the hybrid representation

HR is reachable and observable.

As a next step we will investigate the relationship between hybrid representa-

tion morphisms and formal power series representation and Moore-automaton mor-

phisms. The following technical lemmas characterise the relationship between the

two concepts. In fact, any hybrid representation morphism induces a representation

morphism and an automaton morphism.

Lemma 15. Let HR1,HR2 be two hybrid representations and assume that

HRi = (Ai,Y, (X i
q , {Ai

q,z, B
i
q,z,j2}j∈J2,z∈X1

, Ci
q, {M

i
δi(q,y),y,q}y∈X2

)q∈Qi , J, µi)

i = 1, 2. Let T = (TD, TC) : HR1 → HR2 be a hybrid representation morphism.

Then there exists a representation morphism T̃ : RHR1
→ RHR2

such that TC(x) =

T̃ (x) for all x ∈ X 1
q , q ∈ Q1 and T̃ (eq,l) = eTD(q),l for all q ∈ Q1 and l ∈ J2.

The map TD : Q1 → Q2 is in fact an automaton morphism TD : (ĀHR1
, (µ1)D) →

(ĀHR2
, (µ2)D).

Proof. Assume that A2 = (Q2,X2, O, δ2, λ2). Define the linear morphism T̃ x = TCx,

if x ∈ X 1
q for some q ∈ Q1, and T̃ eq,j = eTD(q),j , for each q ∈ Q, j ∈ J2. It

is easy to see that T̃ :
⊕

q∈Q1 X 1
q ⊕ R|Q1|m →

⊕
q∈Q2 X 2

q ⊕ R|Q2|m. where m =

card(J2). Assume that RHi,µi
, i = 1, 2 are of the form RH1,µ1

= (
⊕

q∈Q1 X 1
q ⊕

R|Q1|m, {Mz}z∈X , B1, C1 and RH2,µ2
= (

⊕
q∈Q2 X 2

q ⊕ R|Q2|m, {Fz}z∈X , B2, C2). In

order to show that T̃ is a representation morphism we have to show that. T̃Mzx =

FzT̃ x, z ∈ X,C1 = C2T̃ x and B2
j = T̃ (B1

j ) for each x ∈
⊕

q∈Q1 X 1
q1

⊕
R|Q1|m.

First we assume that x ∈ X 1
q for some q ∈ Q1. Then for all z ∈ X1, T̃Mzx =

T̃A1
q,zx = TCA1

q,zx = A2
TD(q),zTC(x). Since TC(x) ∈ X 2

TD(q) by definition of hybrid

representation morphisms, we get that T̃Mzx = A2
TD(q)TCx = FzT̃ x for all z ∈ X1.

For each γ ∈ X1,

T̃Mγx = T̃M1
δ1(q,γ),γ,qx = TCM1

δ1(q,γ),γ,qx =

M2
δ2(TD(q),γ),γ,TD(q)TC(x) = Fγ T̃ x

It is easy to see that C1x = C1
q x = C2

TD(q)TC(x) = C2T̃ (x).

Assume that x = eq,j for some j ∈ J2, q ∈ Q1. Then T̃Mzx = T̃ (B1
q,z,j) =

TC(B1
q,z,j) = B2

TD(q),z,j = FzeTD(q),j = FzT̃ (eq,j). For each γ ∈ X2, T̃Mγeq,j =

96



3.3. HYBRID FORMAL POWER SERIES

T̃ (eδ1(q,γ),j) = eTD(δ1(q,γ)),j = eδ2(TD(q),γ),j = FγeTD(q),j . It is easy to see that

C1x = 0 = C2eTD(q),j = C2T̃ (x).

Finally, for each f ∈ J1 T̃ (B1
f ) = TC(µ1)C(f)) = (µ2)C(f) = B2

f . For each

f ∈ J1, j ∈ J1, T̃ (B1
f,j) = T̃ (e(µ1)D(f),j) = eTD((µ1)D(f)),j = e(µ2)D(f),j = B2

f,j . Thus,

T̃ is indeed a representation morphism.

Finally, we will show that TD is an automaton morphism from (ĀH1
, (µ1)D) to

(ĀH2
, (µ2)D). From (3.10) it follows that ĀHi

= (Qi,X2, O × Ō, δi, λ̄i), λ̄i(q) =

(λi(q), (Tq,j)j∈J2
). In order to prove that TD is an automaton morphism we have

to show that TD(δ1(q, γ)) = δ2(TD(q), γ), λ̄1(q) = λ̄2(TD(q)) for all q ∈ Q1 and

γ ∈ X2. But from formula (3.6) Proposition 7 we get that (Tq,j)j∈J2
= (TTD(q),j)j∈J2

Notice that by definition of hybrid representation morphism TD : (AHR1
, (µ1)D) →

(AHR2
, (µ2)D) is an automaton morphism. That is, TD(δ1(q, γ) = δ2(TD(q), γ) and

λ1(q) = λ2(TD(q)) for each q ∈ Q1, γ ∈ X2. Hence λ̄1(q) = (λ1(q), (Tq,j)j∈J2
) =

(λ2(TD(q)), (TTD(q),j)j∈J2
).

The following lemma is in some sense the converse of the lemma above. Let

HR = (A,Y, (Xq, {Aq,z, Bq,z,j2
}j∈J2,z∈X1

, Cq, {Mδ(q,y),y,q}y∈X2
)q∈Q , J, µ) be a hy-

brid representation over the index set J of Ω. Then the following lemma holds.

Lemma 16. Assume that HR is a reachable representation of Ω. Assume that

R is an observable representation of ΨΩ and (Ā, ζ) is a reachable realization of DΩ.

Assume that T : RHR → R is a representation morphism and φ : (ĀHR, µD) → (Ā, ζ)

is an automaton morphism. Then there exists a surjective hybrid representation

morphism H(T ) = (φ, TC) : HR → HRR,Ā,ζ such that for all x ∈ Xq, q ∈ Q,

TC(x) = T (x).

Proof. Assume that

HRR,Ā,ζ = (Ã, (X̃q, {Ãq,z, B̃q,z,j}j∈J2,z∈X1
, C̃q, {M̃eδ(q,γ),γ,q}γ∈X2

)q∈Q, J, µ̃)

where Ā = (Q̃,X2, O × Ō, δ̃, λ̃), and Ã = (Q̃,X2, O, δ̃,ΠO ◦ λ̃). Assume that

R = (X̃ , {Fz}z∈X , B̄, C̄)

Assume that AHR = A = (Q,X2, O, δ, λ) and

RHR = (
⊕

q∈Q

Xq ⊕ R|Q|m, {Mz}z∈eΓ, B,C)

where card(J2) = m. It is easy to see that if φ : Q → Q̃ is a automaton morphism

φ : (ĀHR, µD) → (Ā, ζ), then φ can be viewed as an automaton morphism φ :

(AHR, µD) → (Ã, µ̃D) too. Indeed, Π eQ ◦ µR,Ā,ζ = ζ and φ(µD(f)) = ζ(f). For each
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γ ∈ X2, q ∈ Q, φ(δ(q, γ)) = δ̃(φ(q), γ) and λ(q) = ΠO ◦ λ̄(q) = ΠO ◦ λ̃(φ(q). Thus,

φ : (ĀHR, µD) → (Ã, ζ) is indeed an automaton morphism.

We have to show that TC is well defined and TC(x) = Tx ∈ X̃φ(q) for each q ∈

Q,x ∈ Xq. Define the linear map TC :
⊕

q∈Q Xq →
⊕

q∈ eQ X̃q by TC(x) = Tx ∈ X̃φ(q)

for each x ∈ Xq, q ∈ Q. First of all, we have to show that if x ∈ Xq, then Tx ∈ X̃φ(q).

Since HR is reachable , by Lemma 11 we get that RHR is reachable. That is, for

all x ∈ Xq there exists si, zj ∈ X∗, vj ∈ X∗
2 , rj ∈ X1, fi, gj ∈ J1, lj ∈ J2 αi, βj ∈ R,

i = 1, . . . , r, j = 1, . . . d such that

x =

r∑

i=1

αiMsi
Bfi

+

d∑

j=1

βjMzj
Mrj

Mvj
Bgj ,lj

Assume that

si = αi,1γi,1 · · · γi,ki
αi,ki+1

and

zj = βj,1wj,1 · · ·wj,hj
βj,hj+1

where αi,1, . . . , αi,ki+1, βj,1, . . . , βj,hj+1 ∈ X∗
1 , γi,1, . . . , γi,ki

, wj,1, . . . , wj,kj
∈ X2,

ki, hi ≥ 0 for each i = 1, . . . , r, j ∈ J2. Since x ∈ Xq, from definition of RHR we get

that δ(µD(fi), γi,1 · · · γi,ki
) = q and δ(µD(gj), vjwj,1 · · ·wj,hj

) = q. Thus,

δ̃(φ(µD(gj)), γi,1 · · · γi,ki
) = δ̃(ζ(gj), γi,1 · · · γi,ki

) = φ(q)

and φ(q) = δ̃(φ(µD(fi)), γi,1 · · · γi,ki
) = δ̃(ζ(fi)), γi,1 · · · γi,ki

). Notice that

TCx = Tx =

r∑

i=1

αiTMsi
Bfi

+

d∑

j=1

βjTMzj
Mrj

Mvj
Bgj ,lj

=
r∑

i=1

αiFsi
B̃fi

+
d∑

j=1

βjFzj
Frj

Fvj
B̃gj ,lj

Thus, from the definition of HRR,Ā,ζ it follows that TCx ∈ X̃φ(q).

It is easy to see that TCBq,z,j = TMzMwBf,j = FeFwB̃f,j = Bφ(q),z,j , for each

q ∈ Q, j ∈ J2, z ∈ X1, δ(µD(f), w) = q, f ∈ J1. Assume that x ∈ Xq, q ∈ Q. Then

Cqx = Cx = C̃Tx = Cφ(q)TC(x). It is easy to see that TC(Aq,zx) = TC(Mzx) =

T (Mzx) = FzT (x) = Ãq,zTCx for each z ∈ X1. For each γ ∈ X2, we get that

TC(Mδ(q,γ),γ,qx) = TC(Mγx) = T (Mγx) = FγTx = M̃eδ(φ(q),γ),γ,φ(q)TCx. Finally, for

each f ∈ J1, TCµC(f) = TBf = B̃f = (µ̃)C(f). Thus, H(T ) = (φ, TC) is indeed an

hybrid representation morphism. It is left to show that H(T ) is surjective. First, φ is

surjective, since (Ā, ζ) is reachable. Indeed, for any q ∈ Q̃ there exists f ∈ J1, w ∈ X∗
2
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such that q = δ̃(ζ(f), w). That is, φ(δ(µD(f), w)) = δ̃(φ(µD(f)), w) = δ̃(ζ(f), w) =

q. Thus φ is surjective. We have to show that TC is surjective. Consider X̃s for some

s ∈ Q̃. From the definition of X̃s it follows that it is a linear span of elements of

the form Fzk+1
Fγk+1

Fzk
· · ·Fγ1

Fz1
B̃f , Fzk+1

Fγk+1
Fzk

· · ·Fγl
Fzl−1FvFγl−1

· · ·Fγ1
B̃f,j ,

such that z1, . . . , zk+1 ∈ X∗
1 , v ∈ X1, j ∈ J2, 0 ≤ l ≤ k and δ̃(ζ(f), γ1 · · · γk) =

s. It is easy to see that φ(δ(µD(f), γ1 · · · γk) = δ̃(ζ(f), γ1 · · · γk) = s. Let q =

δ(µD(f), γ1 · · · γk). Define x1 = Mzk+1
Mγk+1

Mzk
· · ·Mγ1

Mz1
Bf ,

x2 = Mzk+1
Mγk+1

Mzk
· · ·Mγl

Mzl−1MvMγl−1
· · ·Mγ1

Bf,j . It follows that x1, x2 ∈

Xq. It is also easy to see that TC(x1) = Tx1 = Fzk+1
Fγk+1

Fzk
· · ·Fγ1

Fz1
B̃f and

TC(x2) = Tx2 = Fzk+1
Fγk+1

Fzk
· · ·Fγl

Fzl−1FvFγl−1
· · ·Fγ1

B̃f,j . Thus, TC(
⊕

q∈Q Xq)

contains a generator system of X̃s for each s ∈ Q̃, that is, TC is surjective.

The discussion above for the case when J2 = ∅ yields the following corollary of

Lemma 14.

Corollary 8. Assume that J2 = ∅. Let R be any (not necessarily observable) repre-

sentation of ΨΩ and let (Ã, ζ) any reachable realization ΩD. Assume that T : RHR →

R is a representation morphism and φ : (A, µD) → (Ã, ζ) is an automaton morphism.

Then there exists a hybrid representation morphism H(T ) : HR → HRR, eA,ζ such

that for all x ∈ Xq,q ∈ Q, TC(x) = T (x).

The results of Lemma 11–16 together with Theorem 4 and Theorem 2 character-

ising minimality of representations and automata yield the following Theorem.

Theorem 8. If Ω has a hybrid representation, then it also has a minimal hybrid

representation. Let HR be a hybrid representation of Ω. Then the following are

equivalent.

• HR is minimal

• HR is reachable and observable

• For any reachable hybrid representation HR
′

of Ω there exists a surjective hy-

brid representation morphism T : HR
′

→ HR. In particular, any two minimal

hybrid representation of Ω are isomorphic.

Proof. Notice that any minimal hybrid representation is reachable. Indeed, assume

that HR is a minimal hybrid representation of Ω and HR is not reachable. Then

by Lemma 12 there exists a representation HRr of Ω such that dimHRr < dim HR

and HRr is reachable. Since HR is minimal, this is a contradiction.

First, we will show that if Ω has a hybrid representation, then Ω has a hybrid

representation satisfying (iii). From Theorem 7 it follows that Ω has a hybrid rep-

resentation if and only if ΨΩ has a representation and DΩ has a Moore-automaton
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realization. Let R be a minimal representation of ΨΩ and (Ā, ζ) a minimal realization

of DΩ. By Theorem 2 and Theorem 4 such a minimal representation and a minimal

realization always exist. Then by Lemma 14 HR = HRR,Ā,ζ is an observable and

reachable representation of Ω.

We will show that (iii) holds for HR. Indeed, if HR
′

is a reachable hybrid rep-

resentation of Ω, then RHR′ is reachable and (ĀHR′ , µ
′

D) is reachable. By The-

orem 4 and Theorem 2 there exists surjective morphisms T : RHR′ → R and

φ : (ĀHR′ , µ
′

D) → (Ā, ζ). Then by Lemma 16 there exists a surjective hybrid rep-

resentation morphism (φ, TC) : HR
′

→ HR such that TCx = Tx for all x ∈ Xq,

q ∈ Q.

Below we will show that (iii) implies (i). This will imply that HR is minimal,

since HR satisfies (iii). Since HR exists whenever Ω has a hybrid representation,

we get that if Ω has a hybrid representation, then it has a minimal minimal hybrid

representation.

(iii) =⇒ (i)

Assume that HRm satisfies (iii). Assume now that H̃R) is a hybrid representation

of Ω. Then by Lemma 12 there exists a reachable hybrid representation HRr of Ω,

such that dim HRr ≤ dim H̃R. Since HRm satisfies (iii) we get that there exists

a surjective hybrid representation morphism T : HRr → HRm. It implies that

dimHRm ≤ dimHRr ≤ dim H̃R. Thus, HRm is a minimal hybrid representation of

Ω.

Next we show that (ii) ⇐⇒ (iii), and (i) ⇐⇒ (ii).

(ii) =⇒ (iii)

Consider the realization HR = HRR,Ā,ζ above. Let HR
′

be any reachable realization

and consider the surjective hybrid morphism S = (φ, TC) existence of which was

proved above. If HR
′

is observable, then (ĀHR′ , µ
′

D) is observable and RHR′ is

X
′

q , q ∈ Q
′

observable, which implies that φ is bijective and T |X ′
q

is injective for all

q ∈ Q
′

. Since TC |X ′
q

= T |X ′
q

and TCx ∈ Xq if and only if x ∈ Xφ−1(q) we get that

TC is an isomorphism. That is, S is an hybrid isomorphism, It is easy to see that

S−1 : HR → HR
′

is also a hybrid isomorphism, in particular, S−1 is surjective. For

any reachable H̃R there exists a surjective hybrid morphism T : H̃R → HR. But

then S−1 ◦ T : H̃R → HR
′

is a surjective O-morphism. That is, HR
′

satisfies (iii).

Thus (ii) implies (iii).

(i) =⇒ (ii)

Indeed, let HRm a minimal hybrid representation of Ω. From the discussion above

it follows that HRm has to be reachable. Then there exists a surjective T : HRm →

HR). But HR and HRm are both minimal, thus dimHR = dimHRm. It implies

that T is a hybrid representation isomorphism. Notice that HR is observable. But
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then by HRm has to be observable too. Thus, we get (i) =⇒ (ii) =⇒ (iii) =⇒

(i).

Corollary 9. Assume that R is a minimal representation of ΨΩ and (Ā, ζ) is a

minimal realization of DΩ (ΩD, if J2 = ∅). Then HRR,Ā,ζ is a minimal hybrid

representation of Ω.
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Chapter 4

Realization Theory of

Switched Systems

Switched systems are one of the best studied subclasses of hybrid systems. A vast

literature is available on various issues concerning switched systems, for a comprehen-

sive survey see [44]. The current chapter develops realization theory for the following

two subclasses of switched systems: linear switched systems and bilinear switched

systems.

More specifically, the chapter tries to solve the following problems.

1. Reduction to a minimal realization

Consider a linear (bilinear) switched system Σ, and a subset of its input-output

maps Φ. Find a minimal linear (bilinear) switched system which realizes Φ.

2. Existence of a realization with arbitrary switching

Find necessary and sufficient condition for the existence of a linear (bilinear)

switched system realizing a given set of input-output maps.

3. Existence of a realization with constrained switching

Assume that a set of admissible switching sequences is defined. Assume that

the switching times of the admissible switching sequences are arbitrary. Con-

sider a set of input-output maps Φ defined only for the admissible sequences.

Find sufficient and necessary conditions for the existence of a linear (bilinear)

switched system realizing Φ. Give a characterisation of the minimal realizations

of Φ.

The motivation of the Problem 3 is the following. Assume that the switching is con-

trolled by a finite automaton and the discrete modes are the states of this automaton.
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Assume that the automaton is driven by external events, which can trigger a discrete-

state transition at any time. We impose no restriction as to when an external event

takes place. Then the traces of this automaton combined with the switching times (

which are arbitrary ) give us the admissible switching sequences.

If we can solve Problem 3 for such admissible switching sequences that the set of

admissible sequences of discrete modes is a regular language, then we can solve the

following problem. Construct a realization of a set of input-output maps by a linear

(bilinear) switched system, such that switchings of that system are controlled by an

automaton which is given in advance. Notice that the set of traces of an automaton

is always a regular language.

The following results are proved in the chapter.

• A linear (bilinear) switched system is a minimal realization of a set of input-

output maps if and only if it is observable and semi-reachable from the set of

states which induce the input-output maps of the given set.

• Minimal linear (bilinear) switched systems which realize a given set of input-

output maps are unique up to similarity.

• Each linear (bilinear) switched system Σ can be transformed to a minimal

realization of any set of input-output maps which are realized by Σ.

• A set of input/output maps is realizable by a linear (bilinear) switched system if

and only if it has a generalised kernel representation ( generalised Fliess-series

expansion ) and the rank of its Hankel-matrix is finite. There is a procedure

to construct the realization from the columns of the Hankel-matrix, and this

procedure yields a minimal realization.

• Consider a set of input-output maps Φ defined on some subset of switching

sequences. Assume that the switching sequences of this subset have arbitrary

switching times and that their discrete mode parts form a regular language L.

Then Φ has a realization by a linear (bilinear) switched system if and only if the

Φ has a generalized kernel representation with constraint L ( has a generalized

Fliess-series expansion) and its Hankel-matrix is of finite rank. Again, there

exists a procedure to construct a realization from the columns of the Hankel-

matrix. The procedure yields an observable and semi-reachable realization of Φ.

But this realization is not a realization with the smallest state-space dimension

possible.

There are some earlier work on the realization theory of switched systems, see

[50, 51, 53]. For realization theory for other classes of hybrid systems see [48, 54].
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The brief overview of the results suggests that there is a remarkable analogy

between the realization theories of linear and bilinear switched systems. In fact,

this analogy is by no means a coincidence. Both the realization problem for linear

and the realization problem for bilinear switched systems are equivalent to finding a

(possibly minimal) representation for a set of formal power series. That is, realization

theory of both linear and bilinear switched systems can be reformulated in terms of

the theory of rational formal power series. This enables us to give a very concise

and simple treatment of the realization problem for linear and bilinear switched

systems. In fact, if one views switched systems as nonlinear systems and one is

familiar with the realization theory of nonlinear systems, then the results of the

chapter should not be too surprising. Exactly this similarity between realization

theory of linear and bilinear switched systems in terms of results and mathematical

tools is the motivation to present the realization theory of linear and bilinear switched

systems in one chapter.

The approach to the realization theory taken in this chapter was inspired by works

of M.Fliess, B. Jakubczyk and H. Sussmann, A.Isidori and E.Sontag [72, 36, 20, 22,

64, 84, 33]. The main tool used in the chapter is the theory of rational formal power

series. Rational formal power series were used in systems theory earlier. Realization

theory for bilinear systems is one of the major applications of rational formal power

series, see [32].

4.1 Realization Theory of Linear Switched Sys-

tems

This section deals wit the realization theory of linear switched systems. First, def-

inition and elementary properties of linear switched systems are presented. Linear

switched systems have an extensive literature, for references see [50, 56, 70, 23, 69,

86, 44].

The current section uses the theory of formal power series presented in Section 3.1,

Chapter 3 for developing realization theory of linear switched systems. The section

is the most thorough account on realization theory of linear switched systems. In

particular, all the results of Chapter 6 are implies by the results of this section. The

outline of the section is the following. Subsection 4.1.1 presents the man concepts

and some elementary results related to linear switched systems. Subsection 4.1.2

deals with the structure of input/output maps realizable by linear switched systems.

Subsection 4.1.3 presents realization theory of linear switched systems for the case

when arbitrary switching is allowed. Subsection 4.1.4 deals with the case when there
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is a set of admissible switching sequences, but there is no restriction on the switching

times.

4.1.1 Linear Switched Systems

Recall from Section 2.4 the definition of linear switched systems. That is, a switched

system Σ is called linear, if for each q ∈ Q there exist linear mappings Aq : X → X ,

Bq : U → X and Cq : X → Y such that

• ∀u ∈ U ,∀x ∈ X : fq(x, u) = Aqx + Bqu

• ∀x ∈ X : hq(x) = Cqx

Recall that we adopted the following shorthand notation for linear switched systems

Σ = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q})

Consider the linear switched systems

Σ1 = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q})

and

Σ2 = (Xa,U ,Y, Q, {(Aa
q , Ba

q , Ca
q ) | q ∈ Q})

A linear map S : X → Xa is said to be a linear switched system morphism from Σ1

to Σ2 and it is denoted by S : Σ1 → Σ2 if the the following holds

Aa
qS = SAq, Ba

q = SBq, Ca
q S = Cq ∀q ∈ Q

The map S is called surjective ( injective ) if it is surjective ( injective ) as a linear

map. The map S is said to be a linear switched system isomorphisms, if it is an iso-

morphisms as a linear map. By abuse of terminology, if (Σi, µi), i = 1, 2 are two linear

switched system realizations and S : Σ1 → Σ2 is a linear switched system morphism

such that S ◦ µ1 = µ2 then we will say that S is linear switched system morphism

from realization (Σ1, µ1) to (Σ2, µ2) and we will denote it by S : (Σ1, µ1) → (Σ2, µ2).

The linear switched systems realizations (Σ1, µ1) and (Σ2, µ2) are said to be alge-

braically similar or isomorphic if there exists an linear switched system isomorphism

S : (Σ1, µ1) → (Σ2, µ2).

The results presented below can be found in the literature, for references see

[69, 56].

Proposition 8. For any LSS Σ = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}) the following

holds
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(1) ∀u ∈ PC(T,U), x0 ∈ X , w = (q1, t1)(q2, t2) · · · (qk, tk) ∈ (Q × T )∗

xΣ(x0, u, w) = exp(Aqk
tk) exp(Aqk−1

tk−1) · · · exp(Aq1
t1)x0+

∫ tk

0

exp(Aqk
(tk − s))Bqk

u(
k−1∑

1

ti + s)ds +

exp(Aqk
tk)

∫ tk−1

0

exp(Aqk−1
(tk−1 − s))Bqk−1

u(

k−2∑

1

ti + s)ds +

· · ·

exp(Aqk
tk) exp(Aqk−1

tk−1) · · · exp(Aq2
t2)

∫ t1

0

exp(Aq1
(t1 − s))Bq1

u(s)ds

and yΣ(x, u, w) = Cqk
xΣ(x, u, w).

(2) Reach(Σ, {0}) = {Aq1
Aq2

· · ·Aqk
Bqk+1

u | u ∈ U , q1q2 · · · qk+1 ∈ Q+, k ≥ 0}

(3) Two states x1, x2 ∈ X are indistinguishable if and only if

x1 − x2 ∈
⋂

q1,q2,...,qk+1∈Q,k≥0

ker Cqk+1
Aqk

· · ·Aq1

Σ is observable if and only if
⋂

q1,q2,...,qk+1∈Q,k≥0

ker Cqk+1
Aqk

· · ·Aq1
= {0}

Remark Notice that if a linear switched system is reachable, the linear systems

making up the switched systems need not be reachable . Moreover, the reach-

able set of the switched system may be bigger than the union of the reachable

sets of the linear components. Indeed, consider the following switched system Σ =

(R3, R, R, {q1, q2}, {(Aq, Bq, Cq) | q = q1, q2})

Aq1
=




0 1 0

0 0 0

0 0 0


 , Bq1

=




0

1

0


 , Cq1

=
[
1 1 1

]

Aq2
=




0 0 0

0 0 0

0 1 0


 , Bq2

=




0

0

0


 , Cq2

=
[
1 1 1

]

Since Aq1
Bq1

= [1, 0, 0]T , Aq2
Bq1

= [0, 0, 1]T , we get that

R3 = Span{Bq1
, Aq1

Bq1
, Aq2

Bq1
} ⊆ Reach(Σ)

So Reach(Σ) = R3, i.e. the system is reachable. Yet, neither (Aq1
, Bq1

) nor

(Aq2
, Bq2

) are reachable, moreover Reach(Aq1
, Bq1

) = R2, Reach(Aq2
, Bq2

) = 0,

so Reach(Aq1
, Bq1

) ⊕ Reach(Aq2
, Bq2

) 6= Reach(Σ).
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4.1.2 Input-output Maps of Linear Switched Systems

This section deals with properties of input-output maps of linear switched systems.

We define the notion of generalised kernel representation of a set of input-output

maps, which turns out to be a notion of vital importance for the realization theory

of linear switched systems. In fact, the realization problem is equivalent to finding a

generalised kernel representation of a particular form for the specified set of input-

output maps. The section also contains a number of quite technical statements,

which are used in other parts of the paper.

Recall that for any L ⊆ Q+ the set of admissible switching sequences is defined

by TL = {(w, τ) ∈ (Q × T )+ | w ∈ L}. Let Φ ⊆ F (PC(T,U) × TL,Y) be a set of

maps of the form PC(T,U) × TL → Y. Define the languages suffixL = {u ∈ Q∗ |

∃w ∈ Q∗ : wu ∈ L} and

L̃ = {ui1
1 · · ·uik

k ∈ Q∗ | u1 · · ·uk ∈ suffixL, uj ∈ Q, ij ≥ 0, j = 1, . . . , k, i1, ik > 0}

Definition 10 (Generalised kernel-representation with constraint L). The

set Φ is said to have generalised kernel representation with constraint L if for all

f ∈ Φ and for all w = w1w2 · · ·wk ∈ L̃, w1, . . . , wk ∈ Q, k ≥ 0, there exist functions

Kf,Φ
w : Rk → Rp and GΦ

w : Rk → Rp×m

such that the following holds.

1. ∀w ∈ L̃,∀f ∈ Φ: Kf,Φ
w is analytic and GΦ

w is analytic

2. For each f ∈ Φ and w, v ∈ Q∗ such that wqqv, wqv ∈ L̃, it holds that

Kf,Φ
wqqv(t1, t2, . . . , t|w|, t, t

′

, t|w|+2, . . . t|w|+|v|+1) =

Kf,Φ
wqv(t1, t2, . . . t|w|, t + t

′

, t|w|+2 . . . t|w|+|v|+1)

GΦ
wqqv(t1, t2, . . . , t|w|, t, t

′

, t|w|+2, . . . t|w|+|v|+1) =

GΦ
wqv(t1, t2, . . . t|w|, t + t

′

, t|w|+2 . . . t|w|+|v|+1)

3. ∀vw ∈ L̃, w 6= ε,∀f ∈ Φ :

Kf,Φ
vqw(t1, . . . , t|v|, 0, t|v|+1, . . . , t|wv|) = Kf,Φ

vw (t1, t2, . . . , t|vw|)

∀vw ∈ L̃, v 6= ε, w 6= ε :

GΦ
vqw(t1, . . . , t|v|, 0, t|v|+1, . . . , t|wv|) = GΦ

vw(t1, . . . , t|vw|)
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4. For each f ∈ Φ, (w1, t1)(w2, t2) · · · (wk, tk) ∈ TL , u ∈ PC(T,U)

f(u,w1w2 · · ·wk, t1t2 · · · tk) = Kf,Φ
w1w2···wk

(t1, t2, . . . , tk)+

+

k∑

i=1

∫ ti

0

GΦ
wi···wk

(ti − s, ti+1, . . . , tk)u(s +

i−1∑

j=1

tj)ds

We say that Φ has a generalised kernel representation if it has a generalised kernel

representation with the constraint L = Q+. The reader may view the functions Kf,Φ
w

as the part of the output which depends on the initial condition and the functions

GΦ
w as functions determining the dependence of the output on the continuous inputs.

Define the function yΦ
0 : PC(T,U) × TL → Y by

yΦ
0 (u,w1 · · ·wk, t1 · · · tk) :=

k∑

i=1

∫ ti

0

GΦ
wi···wk

(ti − s, ti+1, . . . , tk)u(s +
i−1∑

j=1

tj)ds

It follows from the fact that Φ has a generalised kernel representation that yΦ
0 can

be expressed by ∀f ∈ Φ : yΦ
0 (u,w, τ) = f(u,w, τ) − f(0, w, τ)

Another straightforward consequence of the definition is that the functions

{Kf,Φ
w , GΦ

w | f ∈ Φ, w ∈ suffixL}

completely determine the functions {Kf,Φ
w , GΦ

w | f ∈ Φ, w ∈ L̃}. Indeed, assume that

L̃ 3 w = zα1
1 · · · zαk

k such that z1, . . . , zk ∈ Q,α ∈ Nk, αk > 0 and z1 · · · zk ∈ L̃. Then

by using Part 2 and Part 3 of Definition 10 one gets

Kf,Φ
w (t1, . . . , t|w|) = Kf,Φ

zl···zk
(Tl, . . . , Tk) = Kf,Φ

z1···zk
(T1, . . . , Tk)

GΦ
w(t1, . . . , t|w|) = GΦ

zl···zk
(Tl, . . . , Tk)

(4.1)

where Ti =
∑αl+···+αi

j=1+αl+···+αi−1
tj , i = l, . . . , k, and Ti = 0, i = 1, . . . , l − 1, f ∈ Φ,

l = min{z | αz > 0} and
∑b

j=a tj is taken to be 0 if a > b. Now, for any w ∈ L̃

there exist d1, . . . , dl ∈ Q and ξ ∈ Nl such that d1 · · · dl ∈ suffixL, w = dξ1

1 · · · dξl

l and

ξ1, ξl > 0. Applying (4.1) to w, d1 · · · dl ∈ suffixL ⊆ L̃ we get that KΦ,f
w and GΦ

w are

uniquely determined by KΦ,f
d1···dl

and GΦ
d1···dl

.

Using formula (4.1), the chain rule and induction it is straightforward to show

that for each w ∈ L̃, w = zα1
1 · · · zαk

k , z1 · · · zk ∈ L̃, αk > 0, l = min{z | αz > 0} the

following holds.

dβ1

dtβ1

1

· · ·
dβ|w|

dt
β|w|

|w|

Kf,Φ
w (t1, . . . , tn) =

dγ1

dτγ1

l

· · ·
dγk−l+1

dτ
γk−l+1

k

Kf,Φ
zl···zk

(τl, . . . , τk)|a

=
dγ1

dτγ1

l

· · ·
dγk−l+1

dτ
γk−l+1

k

Kf,Φ
z1···zk

(τ1, . . . , τk)|b (4.2)

dβ1

dtβ1

1

· · ·
dβ|w|

dt
β|w|

|w|

GΦ
w(t1, . . . , tn) =

dγ1

dτγ1

l

· · ·
dγk−l+1

dτ
γk−l+1

k

GΦ
zl···zk

(τl, . . . , τk)|a
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where β ∈ N|w|, γ ∈ Nk−l+1, a ∈ T k−l+1, b ∈ T k and ai =
∑αl+···αi+l−1

j=1+αl+···+αl+i−2
tj ,

γi =
∑αl+···+αl+i−1

j=1+αl+···+αl+i−2
βj for each i = 1, . . . , k − l + 1, bi = ai−l+1, for i = l, . . . , k

and bi = 0 for i = 1, . . . , l − 1. Substituting 0 for t1, . . . , t|w| we get

DβKf,Φ
w = DγKf,Φ

zl···zk
= D(Ol−1,γ)Kf,Φ

z1···zk
and DβGΦ

w = DγGΦ
zl···zk

(4.3)

where Ol−1 = (0, 0, . . . , 0) ∈ Nl−1. The discussion above yields the following.

Proposition 9. Let z1, z2, . . . , zk, d1, d2, . . . , dl ∈ Q∗. Let α = (α1, . . . , αk) ∈ Nk and

β = (β1, . . . , βl) ∈ Nl Assume that zα1
1 zα2

2 · · · zαk

k = dβ1

1 dβ2

2 · · · dβl

l . If q2z1z2 · · · zkq1 ∈

L̃ and q2d1d2 · · · dlq1 ∈ L̃, then

D(0,α,0)GΦ
q2z1z2···zkq1

= D(0,β,0)GΦ
q2d1d2···dlq1

If z1z2 · · · zkq1 and d1d2 · · · dlq1 ∈ L̃ then

D(α,0)Kf,Φ
z1z2···zkq1

= D(β,0)Kf,Φ
d1d2···dlq1

Proof. Using (4.3) one gets that

D(0,α,0)GΦ
q2zq1

= D(0,I,0)GΦ
q2z

α1
1 ···z

αk
k

q1
= D(0,I,0)GΦ

q2d
β1
1 ···d

βl
l

q1
= D(0,β,0)GΦ

q2dq1

where I = (1, 1, . . . , 1) ∈ N
Pk

1 αi , z = z1 · · · zk, d = d1 · · · dl. Similarly D(α,0)Kf,Φ
z1···zkq1 =

D(α+,0)Kf,Φ
zl···zkq1 = D(I,0)Kf,Φ

z
α1
1 ···z

αk
k

q1
= D(I,0)Kf,Φ

d
β1
1 ···d

βl
l

q1

= D(β,0)Kf,Φ
d1···dlq1

, where

l = min{z | αz > 0} and α+ = (αl, . . . , αk).

If Φ has a realization by a linear switched system, then Φ has a generalised kernel

representation

Proposition 10. For any LSS Σ = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}), (Σ, µ)

is a realization of Φ with constraint L if and only if Φ has a generalised kernel

representation defined by

GΦ
w1w2···wk

(t1, t2, . . . , tk) = Cwk
exp(Awk

tk) exp(Awk−1
tk−1) · · · exp(Aw1

t1)Bw1

and

Kf,Φ
w1w2···wk

(t1, t2, . . . , tk) = Cwk
exp(Awk

tk) exp(Awk−1
tk−1) · · · exp(Aw1

t1)µ(f).

where w1w2 · · ·wk ∈ L̃. Moreover, if (Σ, µ) is a realization of Φ, then

yΦ
0 = yΣ(0, ., .)|PC(T,U)×TL
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Proof. (Σ, µ) is a realization of Φ if and only if for each f ∈ Φ, u ∈ PC(T,U), w ∈ TL

it holds that

f(u,w) = yΣ(µ(f), u, w) = Cqk
xΣ(µ(f), u, w)

where w = w
′

(qk, tk). The statement of proposition follows now directly from from

part (1) of Proposition 8.

If the set Φ has a generalized kernel representation with constraint L, then the

collection of analytic functions {Kf,Φ
w , GΦ

w | w ∈ suffixL, f ∈ Φ} determines Φ. Since

Kf,Φ
w is analytic, we get that it is determined locally by {DαKf,Φ

w | α ∈ N|w|}.

Similarly, GΦ
w is determined locally by {DαGΦ

w | α ∈ N|w|}.

By applying the formula d
dt

∫ t

0
f(t, τ)dτ = f(t, t) +

∫ t

0
d
dtf(t, τ)dτ and Part 4 of

Definition 10 one gets

DαKf,Φ
q1q2···qk

= Dαf(0, q1q2 · · · qk, .) (4.4)

DαGΦ
qlql+1···qk

ez = DβyΦ
0 (ez, q1q2 · · · qk, .) (4.5)

where Nk 3 β = ( 0, 0, . . . , 0︸ ︷︷ ︸
l−1−−times

, α1 +1, α2, . . . , αk−l+1). Here ez is the zth unit vector of

Rm, i.e eT
z ej = δzj . Formulas (4.4) and (4.5) imply that all the high-order derivatives

of the functions Kf,Φ
w , GΦ

w (f ∈ Φ, w ∈ suffixL) at zero can be computed from high-

order derivatives with respect to the switching times of the functions from Φ.

Define the set S = {(α,w) ∈ N∗ × Q∗ | α ∈ N|w|, w ∈ Q∗}. For each w ∈ Q∗,

q1, q2 ∈ Q define the sets

Fq1,q2
(w) = {(v, (α, z)) ∈ Q∗ × S | vz ∈ L,

q2wq1 = z1z
α1
1 · · · zαk

k zk, zj ∈ Q, j = 1, . . . , k, z = z1 · · · zk}

Fq1
(w) = {(v, (α, z)) ∈ Q∗ × S | vz ∈ L,

wq1 = zα1
1 · · · zαk

k zk, zj ∈ Q, j = 1, . . . , k, z = z1 · · · zk}

Define L̃q1,q2
= {w ∈ Q∗ | Fq1,q2

(w) 6= ∅} and L̃q = {w ∈ Q∗ | Fq(w) 6= ∅}.

Denote by Ol the tuple (0, 0, . . . , 0) ∈ Nl, l ≥ 0. For any α ∈ Nk let α+ = (α1 +

1, α2, . . . , αk) ∈ Nk, k ≥ 0.

The intuition behind the definition of the sets Fq1,q2
(w) and Fq1

(w) is the follow-

ing. Let (Σ, µ) be a realization of Φ. Then (v, (α, z)) ∈ Fq1,q2
(w) if Dα+

yΦ
0 (vz, ej , .) =

D(1,1,...,1,0)yΣ(0, q2wq1, ej , .) for each j = 1, . . . ,m. Similarly, (v, (α, z)) ∈ Fq1
(w) if

Dαf(vz, 0, .) = D(1,1,...,1,0)yΣ(µ(f), wq1, 0) for each f ∈ Φ. That is, Fq1,q2
(w) is non-

empty if we can deduce from Φ some information on the output of Σ when the initial

110



4.1. REALIZATION THEORY OF LINEAR SWITCHED SYSTEMS

condition is 0 and the switching sequence is q2wq1. Similarly, Fq1
(w) is non-empty,

if we can derive from Φ some information on the output of Σ, if the initial condition

is µ(f), the switching sequence is wq1 and the continuous input is zero.

With the notation above, using the principle of analytic continuation and formulas

(4.4) and (4.5), one gets the following

Proposition 11. Let Φ ⊆ F (PC(T,U) × TL,Y). For any LSS

Σ = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q})

the pair (Σ, µ) is a realization of Φ with constraint L if and only if Φ has a generalized

kernel representation with constraint L and the following holds

∀w ∈ L, j = 1, 2, . . . ,m, f ∈ Φ, α ∈ N|w| :

DαyΦ
0 (ej , w, .) = DβGΦ

wl···wk
ej = Cwk

Aαk
wk

Aαk−1
wk−1

· · ·Aαl−1
wl

Bwl
ej

Dαf(0, w, .) = DαKf,Φ
w = Cwk

Aαk
wk

Aαk−1
wk−1

· · ·Aαl
wl

µ(f) (4.6)

where l = min{h | αh > 0}, ez is the zth unit vector of U , β = (αl − 1, αl+1, . . . , αk)

and w = w1 · · ·wk, w1, . . . , wk ∈ Q. Formula (4.6) is equivalent to

∀w ∈ L̃, j = 1, 2, . . . ,m, q1, q2 ∈ Q, (v, (α, z)) ∈ Fq1,q2
(w) :

D(O|v|,α
+)yΦ

0 (ej , vz, .) = D(0,α,0)GΦ
q2zq1

ej = Cq1
Aαk

zk
· · ·Aα1

z1
Bq2

ej

∀w ∈ L̃, q ∈ Q, (v, (α, z)) ∈ Fq(w) : (4.7)

D(O|v|,α)f(0, vz, .) = D(α,0)Kf,Φ
zq = CqA

αk
zk

· · ·Aα1
z1

µ(f)

Proof. First we show that Φ is realized by (Σ, µ) if and only if Φ has a generalized

kernel representation and (4.6) holds. By Proposition 10 (Σ, µ) is a realization of Φ

if and only if Φ has a generalized kernel representation of the form

GΦ
w(t1, . . . , tk) = Cwk

exp(Awk
tk) · · · exp(Aw1

t1)Bw1

Kf,Φ
w (t1, . . . , tk) = Cwk

exp(Awk
tk) · · · exp(Aw1

t1)µ(f)
(4.8)

for each w = w1 · · ·wk ∈ L̃, w1, . . . , wk ∈ Q. From (4.1) it follows that it is enough

to consider {Kf,Φ
w , GΦ

w | w ∈ suffixL, f ∈ Φ}. Since Kf,Φ
w , GΦ

w are analytic functions,

their high-order derivatives at zero determine them uniquely. Using (4.4), (4.5) we

get that (4.8) is equivalent to (4.6).

Next we show that (4.6) is equivalent to (4.7). Notice that from (4.3) it follows

that for any z = z1 · · · zk, z1 = q2, zk = q1: DαGΦ
z1···zk

= D(0,α,0)GΦ
z1z1···zkzk

=

D(0,α,0)GΦ
q2zq1

and DαKf,Φ
z = D(α,0)Kf,Φ

zq1
. First, we will show that (4.7) implies

(4.6). For any w ∈ L, α ∈ N|w|, w = w1 · · · , wk, w1, . . . , wk ∈ Q define l = min{z |
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αz > 0}, v = w1 · · ·wl−1, z = wl · · ·w|w| and x = wαl−1
l w

αl+1

l+1 · · ·w
α|w|

|w| . Then

(v, (β, z)) ∈ Fwl,w|w|
(x) where β = (αl − 1, . . . , α|w|). Notice that (O|v|, β

+) = α.

From (4.7) and the remark above we get that D(O|v|,β
+)yΦ

0 (ej , vz, .) =

= D(0,β,0)GΦ
wlzw|w|

ej = DβGΦ
z ej = DαyΦ

0 (ej , w, .) = Cw|w|
A

α|w|
w|w|

· · ·A
αl−1
wl Bwl

ej .

Similarly, let y = wα1
1 · · ·w

α|w|

|w| . Then (ε, (α,w)) ∈ Fw|w|
(y). Again, from the

remark above and (4.7) we get that Dαf(0, w, .) = D(α,0)Kf,Φ
ww|w|

= DαKf,Φ
w =

Dαf(0, w, .) = Cw|w|
A

α|w|
w|w|

· · ·Aα1
w1

µ(f). That is, (4.6) holds.

Conversely, (4.6) =⇒ (4.7). Indeed, for any w ∈ L̃, q1, q2 ∈ Q, (v, (α, z)) ∈

Fq1,q2
(w) it holds that vz ∈ L, z = z1 · · · zk, z1 = q2, zk = q1. Then (4.6) implies

D(O|v|,α
+)yΦ

0 (ej , vz, .) = D(0,α,0)GΦ
q2zq1

ej = Czk
Aαk

zk
· · ·Aα1

z1
Bz1

For any (v, (α, z)) ∈

Fq(w) it holds that z = z1 · · · zk, zk = q and vz ∈ L. Then (4.6) implies

D(O|v|,α)f(0, vz, .) = D(α,0)Kf,Φ
zq1

= CqA
αk
zk

· · ·Aα1
z1

µ(f). That is, (4.6) implies (4.7).

One may wonder whether a generalized kernel representation is unique, if it exists,

and what is the relationship between a generalized kernel representation and such

properties of input/output maps as linearity in continuous inputs, causality and etc.

Below we will try to answer these questions.

Let f ∈ F (PC(T,U) × TL,Y). We will say that f is causal, if for any w =

(q1, t1) · · · (qk, tk) ∈ TL the following holds

∀u, v ∈ PC(T,U) : (∀t ∈ [0,

k∑

1

ti] : u(t) = v(t)) =⇒ f(w, u) = f(w, v)

That is, the value of f(w, u) depends only on u|[0,
P

k
1 ti]

.

Since Y = Rp, for each f ∈ F (PC(T,U) × TL,Y) there exist functions fj :

PC(T,U) × TL → R such that f(u,w) = (f1(u,w), . . . , fp(u,w))T . For each t ∈ T

define the map Pt : PC(T,U) → PC(T,U) by

Pt(u)(s) =

{
u(s) if s ≤ t

0 otherwise

For each w ∈ TL define the map fj(w, .) : PC(T,U) → R by fj(w, .)(u) = fj(u,w).

For each 1 ≤ p ≤ +∞ denote by Lp([0, ti], R
n×m) the vector space of n by m matrices

of functions from Lp([0, ti]). I.e. f : [0, ti] → Rn×m is an element of Lp([0, ti], R
n×m),

if f = (fi,j)i=1,...,n,j=1,...,m and fi,j ∈ Lp([0, ti]), i = 1, . . . , n, j = 1, . . . ,m. With

the notation above we can formulate the following characterisation of input/output

maps admitting a generalized kernel representation.

Theorem 9. Let Φ ⊆ F (PC(T,U) × TL,Y). Then Φ admits a generalized kernel

representation with constraint L if and only if the following conditions hold.
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1. Each f ∈ Φ is causal and there exists a function yΦ ∈ F (PC(T,U) × TL,Y)

such that for each f ∈ Φ

∀w ∈ TL, u ∈ PC(T,U) : f(u,w) = f(0, w) + yΦ(u,w) (4.9)

2. For each f ∈ Φ, w = (q1, t1) · · · (qk, tk) ∈ TL, j = 1, 2, . . . , p the map yΦ
j (w, .) :

PC([0, Tk],U) 3 u 7→ yΦ
j (w, u#Tk

0) ∈ R is a continuous linear functional,

where Tk =
∑k

j=1 tj. Here PC([0, Tk],U) is viewed as a subspace of L1([0, Tk],U)

and the topology considered on PC([0, Tk],U) is the corresponding subspace

topology.

3. For each f ∈ Φ, s ∈ (Q × T )+, w = (w1, 0) · · · (wk, 0), v = (v1, 0) · · · (vl, 0) ∈

(Q × T )∗

ws, vs ∈ TL =⇒ (∀u ∈ PC(T,U) : f(u,ws) = f(u, vs))

4. For each w = (q1, t1) · · · (qk, tk) ∈ TL, 1 ≤ l ≤ k , u ∈ PC(T,U)

yΦ(u,w) = yΦ(ShiftTl
(u), v(ql, tl) · · · (qk, tk)) + yΦ(PTl

(u), w)

where Tl =
∑l−1

1 ti and v = (q1, 0) . . . (ql−1, 0).

5. For each f ∈ Φ, w, v ∈ (Q× T )∗, q ∈ Q, if w(q, t1)(q, t2)v, w(q, t1 + t2)v ∈ TL,

then

∀u ∈ PC(T,U) : f(u,w(q, t1)(q, t2)v) = f(u,w(q, t1 + t2)v)

For each f ∈ Φ, w, v ∈ (Q × T )∗, |v| > 0, q ∈ Q, if w(q, 0)v, wv ∈ TL, then

∀u ∈ PC(T,U) : f(u,w(q, 0)v) = f(u,wv)

6. For each q1 · · · qk ∈ L, u1, . . . uk,∈ U , f ∈ Φ, the maps fq1···qk,u1,...,uk
: T k → Y

defined below, are analytic.

fq1···qk,u1,...,uk
(t1, . . . , tk) = f(u, (q1, t1) · · · (qk, tk)),

where u(t) = ui if t ∈ (
∑i−1

j=1 tj ,
∑i

j=1 tj ].

If Φ admits a generalized kernel representation, then the Φ admits an unique gener-

alized kernel representation.

The proof of the theorem can be found in Subsection 4.1.5.

The theorem above gives an important characterisation of generalized kernel rep-

resentation. It states that existence of a generalized kernel representation amounts
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to i) causality of the input-output maps, ii) switching sequences behaving as discrete

inputs, iii) input-output maps being affine and continuous in the continuous inputs

iv) input-output maps being analytic for constant inputs. In author’s opinion, the

theorem above demonstrates that existence of a generalized kernel representation is

by no means an unnatural or a very restrictive condition. In particular, if the num-

ber of discrete modes is one, then existence of generalized kernel representation is

equivalent to the conditions which are usually imposed on the input-output maps

of linear ( possibly infinite-infinite dimensional ) systems. One may also compare

the conditions of the above theorem with the so called realisability conditions from

[50]. Notice that knowledge of analytic forms of Kf,Φ
w and GΦ

w are not necessary

for constructing a realization of Φ. All that is required is the knowledge that the

functions Kf,Φ
w , GΦ

w exist. Therefore, it hardly makes sense to try to compute the

functions Kf,Φ
w and GΦ

w. Note that existence of an algorithm which computes these

functions on the basis of Φ would imply the existence of a representation of Φ with

finite data. Since elements of Φ are linear maps defined on the infinite-dimensional

space PC(T,U), existence of such a finite representation is quite unlikely.

4.1.3 Realization Theory of Linear Switched Systems: Arbi-

trary Switching

In this section the solution to the realization problem will be presented. That is,

given a set of input-output maps we will formulate necessary and sufficient condi-

tions for the existence of a linear switched system realizing that set. In addition,

characterisation of minimal systems realizing the given set of input-output maps will

be given. In this section we assume that there are no restrictions on the switching

sequences. That is, in this section we study realization with the trivial constraint

L = Q+.

The main tool of this section is the theory of rational formal power series. The

main idea of the solution is the following. We associate a set of formal power series ΨΦ

with the set of input-output maps Φ . Any representation of ΨΦ yields a realization

of Φ and any realization of Φ yields a representation of ΨΦ. Moreover, minimal

representations give rise to minimal realizations and vice versa. Then we can apply

the theory of rational formal power series to characterise minimal realizations.

Let Φ ⊆ F (PC(T,U)× (Q× T )+,Y). Proposition 11 and formula (4.3) yield the

following

Proposition 12. The LSS Σ = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}) is a realization of

Φ if and only if Φ has a generalized kernel representation and there exists µ : Φ → X
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such that

∀w = w1 · · ·wk ∈ Q+, q1, q2 ∈ Q,w1, . . . , wk ∈ Q, z ∈ {1, 2, . . . ,m}, f ∈ Φ :

D(1,Ik,0)yΦ
0 (ez, q2wq1, .) = D(0,Ik,0)GΦ

q2wq1
ez = Cq1

Awk
· · ·Aw1

Bq2
ez

D(Ik,0)f(0, wq1, .) = D(Ik,0)Kf,Φ
wq1

= Cq1
Awk

· · ·Aw1
µ(f)

where Ik = (1, 1, . . . , 1) ∈ Nk.

Proof. Applying (4.3) one gets the following equalities.

DαKf,Φ
w = D(α,0)Kf,Φ

wwk
= D(Im,0)Kf,Φ

w
α1
1 w

α2
2 ···w

αk
k

wk
(4.10)

DαGΦ
w = D(0,α,0)GΦ

w1wwk
= D(0,Im,0)GΦ

w1w
α1
1 w

α2
2 ···w

αk
k

wk
(4.11)

where m =
∑k

1 αk. The statement of the proposition follows now from Proposition

11.

The proposition above allows us to reformulate the realization problem in terms of

rationality of certain power series. Define formal power series Sq1,q2,z, Sf,q1
∈ Rp ¿

Q∗ À, ( q1, q2 ∈ Q, f ∈ Φ, z ∈ {1, 2, . . . ,m} ) by

Sq1,q2,z(w) = D(1,I|w|,0)yΦ
0 (ez, q2wq1, .) , Sf,q1

(w) = D(I|w|,0)f(0, wq1, .)

for each w ∈ Q∗. Notice that the functions GΦ
w,Kf,Φ

w are not involved in the definition

of the series of Sq1,q2,z and Sf,q1
. On the other hand, if Φ has a generalized kernel

representation, then

Sq1,q2,z(w) = D(0,I|w|,0)GΦ
q2wq1

ez and Sf,q1
(w) = D(I|w|,0)Kf,Φ

wq1

For each q ∈ Q, z = 1, 2, . . . ,m, f ∈ Φ define the formal power series Sq,z, Sf ∈

Rp|Q| ¿ Q∗ À by

Sq,z =




Sq1,q,z

Sq2,q,z

...

SqN ,q,z




, Sf =




Sf,q1

Sf,q2

...

Sf,qN




where Q = {q1, q2, . . . , qN}.

Define the set JΦ = Φ ∪ {(q, z) | q ∈ Q, z = 1, 2, . . . ,m}. Define the indexed set

of formal power series associated with Φ by

ΨΦ = {Sj ∈ Rp|Q| ¿ Q∗ À| j ∈ JΦ} (4.12)

Define the Hankel-matrix of Φ HΦ as the Hankel-matrix of the associated set of

formal power series, i.e. HΦ := HΨΦ
.
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Notice that the only information needed to construct the set of formal power

series ΨΦ are the high-order derivatives at zero of the functions belonging to Φ.

The fact that Φ has a generalized kernel representation is needed only to ensure the

correctness of the construction. No knowledge of the analytic forms of the functions

Kf,Φ
w , GΦ

w is required in order to construct ΨΦ.

Let Σ = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}) be a LSS, and assume that (Σ, µ) is

a realization of Φ. Define the representation associated with (Σ, µ) by

RΣ,µ = (X , {Aq}q∈Q, B̃, C̃)

where C̃ : X → Rp|Q|, C̃ =




Cq1

Cq2

...

CqN




and the indexed set B̃ = {Bj ∈ X | j ∈ JΦ} is

defined by B̃f = µ(f), f ∈ Φ, and B̃q,l = Bqel, l = 1, 2, . . . ,m, q ∈ Q, el is the lth

unit vector in U .

Conversely, consider a representation of ΨΦ

R = (X , {Aq}q∈Q, B̃, C̃)

Then define (ΣR, µR) the realization associated with R by

ΣR = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}) , µR(f) = B̃f

where Cq : X → Y, q ∈ Q are such that C̃ =




Cq1

Cq2

...

CqN




, and Bqel = B̃q,l for each

l = 1, . . . ,m. It is easy to see that Cq, q ∈ Q are well defined, since

Cq =




eT
q,1C̃
...

eT
q,pC̃




Here for q = qz ∈ Q for some z = 1, . . . , N , i = 1, . . . , p it holds that eq,i ∈ Rp|Q| and

(eq,i)j =

{
1 if j = p ∗ (z − 1) + i

0 otherwise
. It is easy to see that ΣRΣ,µ

= Σ, µRΣ,µ
= µ

and RΣR,µR
= R. In fact, the following theorem holds.

Theorem 10. Let Φ ⊆ F (PC(T,U)×(Q×T )+,Y). Assume that Φ has a generalized

kernel representation.
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(a) (Σ, µ) is a realization of Φ ⇐⇒ RΣ,µ is a representation of ΨΦ

(b) R = (X , {Aq}q∈Q, B̃, C̃) is a representation of ΨΦ ⇐⇒ (ΣR, µR) is a realization

of Φ

Proof. First we prove part (a) of the theorem. By Proposition 12 (Σ, µ) is a real-

ization of Φ if and only if for each q1, q2, q ∈ Q, w = w1 · · ·wk ∈ Q∗, w1, . . . , wk ∈

Q, k ≥ 0

D(1,Ik,0)y0(ez, q2wq1, .) = Sq1,q2,z(w) = Cq1
AwBq2

ez

D(Ik,0)f(0, wq, .) = Sf,q(w) = CqAwµ(f)

Here, the notation Aw = Awk
· · ·Aw1

introduced in Section 3.1 is used. That is,

Sq2,z(w) =
[
CT

q1
CT

q2
· · · CT

qN

]T

AwBq2
ez = C̃AwB̃q2,z

Sf (w) =
[
CT

q1
CT

q2
· · · CT

qN

]T

Awµ(f) = C̃AwB̃f

That is, RΣ,µ is a representation of Ψ.

Since R = RΣR,µR
, part (b) follows from part (a).

The theorem has the following corollary.

Corollary 10. Let the assumptions of Theorem 10 hold. If (Σ, µ) is a minimal

realization of Φ, then RΣ,µ is a minimal representation of ΨΦ. Conversely, if R is a

minimal representation of ΨΦ, then (ΣR, µR) is a minimal realization of Φ.

Proof. Notice that dim Σ = dimRΣ,µ and dim ΣR = dim R. The statement of the

corollary follows now from Theorem 10.

Theorem 11 (Realization of input/output map). For any set Φ ⊆ F (PC(T,U)×

(Q × T )+,Y) the following holds.

(a) Φ has a realization by a linear switched system if and only if Φ has a generalized

kernel representation and ΨΦ is rational.

(b) Φ has a realization by a linear switched system if and only if Φ has a generalized

kernel representation and rank HΦ < +∞.

Proof. Part (a)

If Φ has a realization, then Φ has a generalized kernel representation, moreover, by

Theorem 10, ΨΦ has a representation, i,e. ΨΦ is rational. If Φ has a generalized kernel

representation and ΨΦ is rational, i.e. it has a representation, then by Theorem 10

Φ has a realization.
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Part (b)

By Theorem 1 dim HΦ < +∞ is equivalent to ΨΦ being rational. The rest of the

statement follows now from Part (a)

The theory of rational power series allows us to formulate necessary and suf-

ficient conditions for a linear switched system to be minimal. Before formulating

a characterisation of minimal realizations, additional work has to be done. Let

Σ = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}) be a linear switched system. Using Proposi-

tion 8 it is easy to see that for any µ : Φ → X

WRΣ,µ
= Span{Awx0 | w ∈ Q∗, x0 ∈ Imµ or x0 = Bqu, q ∈ Q,u ∈ U}

= Span{Aq1
Aq2

· · ·Aqk
x0 | q1, q2, . . . , qk ∈ Q,x0 ∈ Imµ} +

+Reach(Σ, {0})

and

ORΣ,X0
= OΣ =

⋂

q,w1,w2,...,wk∈Q,k≥0

ker CqAwk
Awk−1

· · ·Aw1

Moreover, the following is true

Lemma 17. WRΣ,µ
is the smallest vector space containing Reach(Σ, Imµ).

Proof. Denote by WR the set WRΣ,µ
. Denote by X0 the image of µ.

First, we show that Reach(Σ,X0) is contained in WR. From Proposition 8 it

follows that

Reach(Σ,X0) =

{exp(Aqk
tk) exp(Aqk−1

tk−1) · · · exp(Aq1
t1)x0 + xΣ(0, u, (q1, t1) · · · (qk, tk))

| x0 ∈ X0, (q1, t1)(q2, t2), . . . , (qk, tk) ∈ (Q × T )∗, k ≥ 0, u ∈ PC(T,U)}

But exp(Aqt)x =
∑+∞

0
tk

t! A
k
qx ∈ Span{Aj

qx | j ∈ N}, which implies that

exp(Aqk
tk) · · · exp(Aq1

t1)x0 ∈ Span{Aw1
Aw2

· · ·Awk
x0 | w1, w2, . . . , wk ∈ Q}

Since x(0, u, (q1, t1) · · · (qk, tk)) ∈ Reach(Σ, {0}), we get that Reach(Σ,X0) ⊆ WR.

We will show that WR is the smallest vector space containing

Reach(Σ,X0). Let W be a subspace of X containing Reach(Σ,X0). For any α ∈ N|w|,

for any constant input function u(t) = u ∈ U Dαx(x0, u, w, .) ∈ W must hold.

But x(x0, u, w, t) = x(x0, 0, w, t) + x(0, u, w, t). It is straightforward to show that

Span{Dαx(0, u, w, .) | w ∈ Q+, α ∈ N|w|, u ∈ U} = Reach(Σ, 0). For w ∈ Q+, k :=

|w| define expw : T k → X by

expw(t1, t2, . . . , tk) = exp(Awk
tk) exp(Awk−1

tk−1) · · · exp(Aw1
t1)x0
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It is easy to see that Dαx(x0, 0, w, .) = Dα expw = Aαk
wk

A
αk−1
wk−1 · · ·A

α1
w1

x0, and there-

fore Span{Dαx(x0, 0, w, .) | w ∈ Q+, α ∈ N|w|, x0 ∈ X0} = Span{Awx0 | w ∈ Q+}.

Thus, we get that

Span{Dαx(x0, u, w, .) | w ∈ Q+, α ∈ N|w|, u ∈ U , x0 ∈ X0} = WR

which implies that WR ⊆ W .

The results above imply the following

Corollary 11. Let Σ = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}) and assume that (Σ, µ)

is a realization of Φ. Then Σ is observable if and only if R is observable. Σ is

semi-reachable from Imµ if and only if R is reachable.

It is a natural question to ask what the relationship is between linear switched

system morphisms and representation morphisms. The following lemma answers this

question.

Lemma 18. T : (Σ, µ) → (Σ
′

, µ
′

) is a linear switched system morphism if and only

if T : RΣ,µ → RΣ′ ,µ′ is a representation morphism.

Recall that T : (Σ, µ) → (Σ
′

, µ
′

) is a linear switched system morphism if T is

a linear map from the state-space of Σ to the state-space of Σ
′

satisfying certain

properties. Recall that a representation morphism between two representations is

a linear map between the state-spaces of the representations which satisfies certain

properties. Since the state spaces of RΣ,µ and RΣ′ ,µ′ coincide with the state-space

of Σ and Σ
′

respectively, it is justified to denote both the linear switched system

morphism and the representation morphism by the same symbol, indicating that the

underlying linear map is the same.

Proof of Lemma 18. Assume that the linear switched systems Σ and Σ
′

are of the

form

Σ = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}) and Σ
′

= (X′ ,U ,Y, Q, {(A
′

q, B
′

q, C
′

q) | q ∈ Q})

Then T is a switched linear system morphism if and only if TAq = A
′

qT , Cq = C
′

qT ,

TBq = B
′

q and Tµ(f) = µ
′

(f) for each q ∈ Q, f ∈ Φ. But this is equivalent to TAq =

A
′

qT, q ∈ Q, TB̃j = B̃
′

j and C̃ =
[
CT

q1
· · · CT

qN

]T

=
[
(C

′

q1
T )T · · · (C

′

qN
T )T

]T

=

C̃
′

T , that is, to T being a representation morphism.

Now we can state the main result of the section.
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Theorem 12 (Minimal realizations). If (Σ, µ) is a realization of Φ, then the

following are equivalent.

(i) (Σ, µ) is minimal

(ii) Σ is semi-reachable from Imµ and it is observable

(iii) dim Σ = dim HΦ

(iv) If (Σ
′

, µ
′

) realizes Φ and Σ
′

is semi-reachable from Imµ
′

, then there exists a

surjective linear switched system morphism T : (Σ
′

, µ
′

) → (Σ, µ). In particular,

all minimal realizations of Φ are algebraically similar.

Proof. (i) ⇐⇒ (ii)

By Corollary 10 system (Σ, µ) is minimal if and only if R := RΣ,µ is minimal. By

Theorem 2 R is minimal if and only if R is reachable and observable. By Corollary

11 the latter is equivalent to Σ being semi-reachable from Imµ and observable.

(i) ⇐⇒ (iii)

By Corollary 10 (Σ, µ) is minimal ⇐⇒ RΣ,µ is minimal. By Theorem 2 RΣ,µ is

minimal ⇐⇒ dim RΣ,µ = dim Σ = rank HΨΦ
= rank HΦ.

(i) ⇐⇒ (iv)

Again we are using the fact that (Σ, µ) is minimal if and only if RΣ,µ is minimal. By

Theorem 2 Rmin is minimal if and only if for any reachable representation R there

exists a surjective representation morphism T : R → Rmin. It means that (Σ, µ)

is minimal if and only if for any reachable representation R of ΨΦ there exists a

surjective representation morphism T : R → RΣ,µ. But any reachable representation

R gives rise to a semi-reachable realization of Φ and vice versa. That is, we get that

(Σ, µ) is minimal if and only if for any semi-reachable realization (Σ
′

, µ
′

) of Φ there

exists a surjective representation morphism T : RΣ′ ,µ′ → RΣ,µ. By Lemma 18 we

get that the latter is equivalent to T : (Σ
′

, µ
′

) → (Σ, µ) being a surjective linear

switched system morphism. From Corollary 1 it follows that if (Σ
′

, µ
′

) is a minimal

realization of Φ, then there exists a representation isomorphism T : RΣ′ ,µ′ → RΣ,µ

which means that (Σ, µ) is gives rise to the linear switched system isomorphism

T : (Σ
′

, µ
′

) → (Σ, µ), that is, Σ
′

and Σ are algebraically similar.

4.1.4 Realization Theory of Linear Switched Systems: Con-

strained Switching

In this section the solution of the realization problem with constraints will be pre-

sented. That is, given a set of constraints L ⊆ Q+ and a set of input-output maps

with domain PC(T,U)× TL we will study linear switched systems realizing this set
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with constraint L. As in the previous section, the theory of formal power series will

be our main tool in solving the realization problem.

Let Φ ⊆ F (PC(T,U)× TL,Y). Recall that (Σ, µ) realizes Φ with constraint L if

for all f ∈ Φ it holds that f = yΣ(µ(f), ., .)|PC(T,U)×TL. In the sequel, unless stated

otherwise, we assume that Φ has a generalised kernel representation with constraint

L.

The solution of the realization problem for Φ goes as follows. As in the previous

section, we associate a set of formal power series ΨΦ with the set of maps Φ. We will

show that any representation of ΨΦ gives rise to a realization of Φ with constraint

L. If L is regular, then any realization of Φ with constraint L gives rise to a repre-

sentation of ΨΦ. Unfortunately minimal representations of ΨΦ do not yield minimal

realizations of Φ. However, any minimal representation of ΨΦ yields an observable

and semi-reachable realization of Φ.

Recall from Section 7.1.2 the definition of the languages L̃, L̃q1,q2
, L̃q and the

sets Fq1,q2
(w), Fq(w). Let E = (1, 1, . . . , 1) ∈ R1×p. Define the power series Zq1,q2

∈

Rp ¿ Q∗ À by

Zq1,q2
(w) =

{
ET if w ∈ L̃q1,q2

0 otherwise

Define the power series Γq ∈ Rp|Q| ¿ Q∗ À by

Γq =




Zq1,q

Zq2,q

...

ZqN ,q




and Γ ∈ Rp|Q| ¿ Q∗ À by

Γ =




Zq1

Zq2

...

ZqN




where Zq(w) =

{
ET if w ∈ L̃q

0 otherwise
and Q = {q1, . . . , qN}. It is a straightforward

exercise in automata theory to show that if L is regular, then the languages L̃q and

L̃q1,q2
are regular.

Lemma 19. With the notation above, if L ⊆ Q+ is a regular language, then L̃,

L̃q1,q2
and L̃q are regular languages for each q, q1, q2 ∈ Q.
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Proof. Notice that L̃q1,q2
= {w ∈ Q∗ | q1wq2 ∈ L̃} and L̃q = {w ∈ Q∗ | wq ∈ L̃}. It

is easy to see that if L̃ is regular, then so are L̃q1,q2
and L̃q. It is also easy to see

that if L is regular then suffixL is regular. Let A = (S,Q, δ, F, s0) be a deterministic

automaton accepting suffixL. Here S is the state-space, F is the set of accepting

states, δ is the state-transition function, s0 is the set of initial states. Recall, that

the extended state-transition function is defined as follows. For each s0 ∈ S,w ∈ Q∗,

δ(s0, w) = s if there exists s1, . . . , sk = s ∈ Q such that w = w1 · · ·wk ∈ Qk and

si = δ(si−1, wi) for each i = 1, . . . , k.

Define the non-deterministic automaton B = ((S × Q) ∪ {s
′

0}, Q, δB , F × Q, s
′

0)

in the following way. Let δB(s
′

0, x) 3 (s, x) if δ(s0, wx) = s for some w ∈ Q∗. Let

(s
′

, u) ∈ δB((s, x), u) if either

(i) u = x and s
′

= s, or

(ii) there exists wu ∈ Q∗, such that δ(s, wu) = s
′

.

We will prove that B accepts L̃. Denote s ∈ δB(z, x), s, z ∈ (S × Q) ∪ {s
′

0} by

z
x
→ s. Then B accepts z = z1 · · · zk if and only if

s
′

0
z1→ (s1, z1)

z2→ · · ·
zk→ (sk, zk)

where sk ∈ F . This is equivalent to the existence of 0 < α1, . . . , αl ∈ N and

w0, . . . , wl ∈ Q∗ such that
∑l

j=1 αj = k, δ(s0, w0z1) = s1 and (si, zi) = (si+1, zi+1)

for each 1 +
∑d

1 αj ≤ i <
∑d+1

1 αj and δ(sP
d
1 αj

, wdzP
d
1 αj

) = s1+
P

d
1 αj

for all

0 ≤ d ≤ l − 1. Define ud = z1+
P

d
1 αj

. Then it is clear that in the original automaton

A it holds that δ(s0, w0u0w1u1 · · ·wlul) = sk ∈ F . That is, w0u0 · · ·wlul ∈ suffixL

and

z = w0
0,1 · · ·w

0
0,m0

uα1
1 w0

1,1 · · ·w
0
m1,1u

α2
2 · · ·w0

l,1 · · ·w
0
l,ml

uαl

l

where wi = wi,1 · · ·wi,mi
, wi,1, . . . , wi,m(i) ∈ Q. We get that B accepts exactly the

elements of L̃.

Corollary 12. Define the indexed set of formal power series Ω = {Λj ∈ RpN ¿

Q∗ À| j ∈ Q × {∅}}, where Λq = Γq and Λ∅ = Γ. If L regular then the indexed set

of formal power series Ω is rational.

Proof. Indeed, if L is regular, then L̃q1,q2
and L̃q are regular languages. Then

it is easy to see that for each l = 1, . . . , pN , such that l = p ∗ (z − 1) + i for

some z = 1, . . . , N , i = 1, . . . p, (Γ)l(w) =

{
1 if w ∈ Lqz

0 otherwise
and (Γq)l(w) =

{
1 if w ∈ Lqz,q

0 otherwise
. That is, (Γq)l,Γl ∈ R ¿ Q∗ À are rational formal power
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series for each l = 1, . . . , pN . Consider the indexed set Θ = {(Λ(l,j) | (l, j) ∈

{1, . . . , pN}× (Q∪ {∅})}, where Λ(l,q) = (Λq)l = (Γq)l, Λ(l,∅) = (Λ∅)l = Γl. Then by

Corollary 2 from Section 3.1, Θ is rational. By Lemma 5 from Section 3.1, it implies

that Ω is rational.

Consider a set of input-output maps Φ ⊆ F (PC(T,U) × TL,Y) with a L ⊆ Q∗.

Assume that Φ has a generalised kernel representation.

Recall that for any α ∈ Nk, α+ denotes α+ = (α1 + 1, α2, . . . , αk). We define the

following formal power series. For j = 1, 2, . . . ,m and f ∈ Φ, q1, q2 ∈ Q,

Sq1,q2,j(w) =





D(O|v|,α
+)yΦ

0 (ej , vz, .) if w ∈ L̃q1,q2
and

(v, (α, z)) ∈ Fq1,q2
(w)

0 otherwise

Sq,f (w) =

{
D(O|v|,α)f(0, vz, .) if w ∈ L̃q and (v, (α, z)) ∈ Fq(w)

0 otherwise

We will show that the series Sq1,q2,z and Sq,f are well-defined. Using formulas (4.4),

(4.5) and (4.3) from Subsection 7.1.2 and the fact that (v, (α, z)) ∈ Fq1,q2
(w) =⇒

z1 = q2, z|z| = q1 and (v, (α, z)) ∈ Fq(w) =⇒ z|z| = q we get the following

Sq1,q2,j(w) =





DαGΦ
z = D(0,α,0)GΦ

q2zq1
ej if w ∈ L̃q1,q2

and

(v, (α, z)) ∈ Fq1,q2
(w)

0 otherwise

Sq,f (w) =





D(O|v|,α)Kf,Φ
vz = DαKf,Φ

z = D(α,0)Kf,Φ
zq if w ∈ L̃q and

(v, (α, z)) ∈ Fq(w)

0 otherwise

That is, Sq1,q2,j(w) and Sq,f (w) do not depend on the choice of v in (v, (α, z)) ∈

Fq1,q2
(w) or (v, (α, z)) ∈ Fq(w) respectively. We will argue that the value of Sq1,q2,z(w)

and Sq,f (w) do not depend on the choice of (α, z). If (v, (α, z)), (u, (β, x)) ∈ Fq1,q2
(w)

then xβ1

1 · · ·x
β|x|

|x| = zα1
1 · · · z

α|z|

|z| = w, z1 = x1 = q2, z|z| = x|x| = q1 and q2zq1, q2xq1 ∈

L̃, so by Proposition 9, D(0,α,0)GΦ
q2zq1

= D(0,β,0)GΦ
q2xq1

. Similarly, if

(v, (α, z)), (u, (β, x)) ∈ Fq(w), then xβ1

1 · · ·x
β|x|

|x| = zα1
1 · · · z

α|z|

|z| = w and zq, xq ∈ L̃,

so by Proposition 9, D(α,0)Kf,Φ
zq = D(β,0)Kf,Φ

q2xq1
.

Define the formal power series Sq,j , Sf ∈ Rp|Q| ¿ Q∗ À, j ∈ {1, 2, . . . ,m}, q ∈ Q

and f ∈ Φ by

Sq,j =




Sq1,q,j

Sq2,q,j

...

SqN ,q,j




, Sf =




Sq1,f

Sq2,f

...

SqN ,f
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Define the indexed set of formal power series associated with Φ as ΨΦ = {Sz ∈

Rp|Q| ¿ Q∗ À| z ∈ JΦ} where JΦ = Φ ∪ (Q × {1, 2, . . . ,m})}. Define the Hankel-

matrix HΦ as the Hankel-matrix of ΨΦ.

Consider the map g : Φ∪ (Q×{1, 2, . . . ,m}) → Q×{∅}, where g(f) = ∅,∀f ∈ Φ

and g((q, z)) = q for all q ∈ Q, z = 1, . . . ,m. Recall the indexed set of formal

power series Ω from Corollary 12. Define the indexed set of formal power series

ΩΦ = {Ξj ∈ RpN ¿ Q∗ À| j ∈ JΦ} by Ξj = Λg(j), where Ω = {Λj | j ∈ Q ∪ {∅}}.

From Lemma 8 of Section 3.1 and Corollary 12 it follows that if L is regular, then ΩΦ

is rational. Let (Σ, µ) be a realization of Φ. Define ΘΣ,µ = {yΣ(µ(f), ., .) | f ∈ Φ} ⊆

F (PC(T,U) × (Q × T )+,Y). Define U(µ) : ΘΣ,µ → Φ by U(µ)(yΣ(µ(f), ., )) = f .

The map U(µ) is well defined. Indeed, if yΣ(µ(f1), ., .) = yΣ(µ(f2), ., .), then f1 =

yΣ(µ(f1), ., .)|PC(T,U)×TL = yΣ(µ(f2), ., .)|PC(T,U)×TL = f2. It is easy to see that

(Σ, µ ◦ U(µ)) is a realization of ΘΣ,µ. Assume that the set of formal power series

associated to ΘΣ,µ as defined in Section 4.1.3, (4.12), is of the form

ΨΘΣ,µ
= {Tz ∈ Rp|Q| ¿ Q∗ À| z ∈ ΘΣ,µ ∪ (Q × {1, 2, . . . ,m})}

From Theorem 11 it follows that ΨΘΣ,µ
is rational. Define the map ψ : JΦ →

ΘΣ,µ ∪ (Q × {1, 2, . . . ,m}) by ψ(f) = yΣ(µ(f), ., .), f ∈ Φ and ψ((q, z)) = (q, z), q ∈

Q, z = 1, . . . ,m. Define KΣ,µ = {Vj ∈ Rp|Q| ¿ Q∗ À| j ∈ JΦ}, Vj = Tψ(j), j ∈ JΦ.

From Lemma 8 of Section 3.1 it follows that KΣ,µ is rational.

Let R = (X , {Az}z∈Q, B,C) be a representation of ΨΦ. Define (ΣR, µR) the

linear switched system realization associated with R as in Section 4.1.3. That is,

ΣR = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}) and µR(f) = Bf

where Cq : X → Y, q ∈ Q are such that C =




Cq1

...

CqN


 and Bqej = B(q,j) for all

q ∈ Q, j = 1, . . . ,m. Assume that the resulting (ΣR, µR) is a realization of Φ ( in

fact, this will be shown later ). Let (Σ, µ) = (ΣR, µR ◦ U(µR)). Then (Σ, µ) is a

realization of ΘΣR,µR
. Let R̃ = RΣ,µ – the representation associated to (Σ, µ) as

defined in Section 4.1.3. Then it is easy to see that R̃ = (X , {Aq}q∈Q, B̃, C), where

B̃yΣR
(µR(f),.,.) = µ(yΣR

(µR(f), ., .)) = µR(f) = Bf , f ∈ Φ and B̃(q,j) = Bqej =

B(q,j), q ∈ Q, j = 1, . . . ,m. That is, R is observable if and only if R̃ is observable.

R is reachable if and only if R̃ is reachable. It is also straightforward to see that

ImµR = ImµR ◦ U(µR) = Imµ. Thus, by Corollary 11, the following holds. ΣR is

observable if and only if R is observable. (ΣR, µR) is semi-reachable if and only if R

is reachable.
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Using the notation above and combining Proposition 11 and the definition of

rational sets of power series one gets the following theorems.

Theorem 13. Let Φ ⊆ F (PC(T,U) × TL,Y). Then (Σ, µ) is realization of Φ with

constraint L if and only if Φ has a general kernel representation with constraint L

and

ΨΦ = ΩΦ ¯ KΣ,µ

or, in other words

∀f ∈ Φ, q ∈ Q, z = 1, 2, . . . ,m

Sf = TyΣ(µ(f),.,.) ¯ Γ and Sq,z = Tq,z ¯ Γq

Proof. By Proposition 11 (Σ, µ) is a realization of Φ with constraint L, if and only

if Φ has a generalised kernel representation with constraint L and

∀w ∈ L̃q1,q2
, (v, (α, z)) ∈ Fq1,q2

(w) :

D(0,α,0)GΦ
q2zq1

= Cq1
Aαk

zk
· · ·Aα1

z1
Bq2

= Cq1
AwBq2

∀w ∈ L̃q, (v, (α, z)) ∈ Fq(w) :

D(α,0)Kf,Φ
zq1

= Cq1
Aαk

zk
· · ·Aα1

z1
µ(f) = Cq1

Awµ(f)

But (Σ, µ ◦U(µ)) is also a realization of Θ = ΘΣ,µ with constraint Q+, so by Propo-

sition 12 we get that

Cq1
AwBq2

= D(0,I|w|,0)GΘ
q2wq1

and CqAwµ(f) = CqAwµ(U(µ)(yΣ(µ(f), ., .))) =

= D(I|w|,0)KyΣ(µ(f),.,.),Θ
wq

That is, for each w ∈ L̃q1,q2
, (v, (α, z)) ∈ Fq1,q2

(w), q1, q2 ∈ Q, j = 1, . . . ,m

Tq1,q2,j(w) = D(0,I|w|,0)GΘ
q2wq1

ej = D(0,α,0)GΦ
q2zq1

ej = Sq1,q2,j(w)

and for each w ∈ L̃q, (v, (α, z)) ∈ Fq(w)

Tq,yΣ(µ(f),.,.)(w) = D(I|w|,0)KyΣ(µ(f),.,.),Θ
wq = D(α,0)Kf,Φ

zq = Sq,f (w)

We get that

Tq1,yΣ(µ(f),.,.)(w) = Sq1,f (w) if w ∈ L̃q1

Tq1,z2,z(w) = Sq1,q2,z(w) if w ∈ L̃q1,q2

Notice that if w /∈ L̃q1,q2
, then Sq1,q2,z(w) = 0 and Zq1,q2

(w) = 0. Similarly, If

w /∈ L̃q1
, then Sq1,f (w) = 0 = Zq1

(w). That is,

Tq,z ¯ Γq = Sq,z and TyΣ(µ(f),.,.) ¯ Γ = Sf
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Define the language

comp(L) = {w1 · · ·wk ∈ Q∗ | L̃wk
= ∅}

Intuitively, the language comp(L) contains those sequences which can never be ob-

served if the switching system is run with constraint L.

Theorem 14. Assume that Φ has a generalised kernel representation with constraint

L. If

R = ({Aq}q∈Q, B,C)

is a representation of ΨΦ, then (ΣR, µR) realizes Φ. Moreover,

∀f ∈ Φ,∀u ∈ PC(T,U), w ∈ T (comp(L)) : yΣR
(µR(f), u, w) = 0

Proof. Let (Σ, µ) = (ΣR, µR). If R is a representation of Φ, then

∀w ∈ L̃q1,q2
, (v, (α, z)) ∈ Fq1,q2

(w)

D(0,α,0)GΦ
q2zq1

ej = Sq1,q2,j(w) = Cq1
AwBq2,j

= Cq1
Aαk

zk
· · ·Aα1

z1
Bq2

ej

∀w ∈ L̃q, (v, (α, z)) ∈ Fq(w)

D(α,0)Kf,Φ
zq = Sq,f (w) = CqAwBf

= CqA
α1
z1

· · ·Aαk
zk

µ(f)

(4.13)

Since Φ has a generalised kernel representation, Proposition 11 and (4.13) yield that

(Σ, µ) is a realization of Φ with constraint L.

Let Φ
′

= ΘΣ,µ. Then (Σ, µ ◦U(µ)) is a realization of Φ
′

. It is easy to see that for

all f ∈ Φ, q1, q2 ∈ Q, z = 1, . . . ,m,

Sq,f (w) = CqAwµ(f) = 0 if w /∈ L̃q

Sq1,q2,z(w) = Cq1
AwBq2

ez = 0 if w /∈ L̃q1
⊇ L̃q1,q2

As the second step we are going to show that for each w ∈ comp(L), yΣ(µ(f), ., .) ∈

Φ
′

,

GΦ
′

w = 0 and KyΣ(µ(f),.,.),Φ
′

w = 0 (4.14)

Because of analyticity of these function it is enough to prove that for each α ∈ N|w|:

DαGΦ
′

w = 0 , DαK
yΣ(µ(f),.,.),Φ

′

w = 0. But from formulas (4.4), (4.5) and Proposition

11 we get that

DαGΦ
′

w = Cwk
AvBw1

and DαKyΣ(µ(f),.,),Φ
′

w = Cwk
Av(µ ◦ U(µ))(yΣ(µ(f), ., .)) =

= Cwk
Avµ(f)
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w = w1, · · ·wk, w1, . . . , wk ∈ Q, v = wα1
1 · · ·wαk

k . But w ∈ comp(L) implies L̃wk
=

∅, that is u /∈ L̃wk,wl
and v /∈ L̃wk

. Then it follows that Cwk
AvBw1

= 0 and

Cwk
Avµ(f) = 0. It implies that DαGΦ

′

w = 0 and DαKf,Φ
′

w = 0.

It is easy to see that if w1 · · ·wk ∈ comp(L), then for any l ≤ k, wl · · ·wk ∈

comp(L). Then from Definition 10, part 4 it follows that (4.14) implies yΣ(µ(f), u, w) =

0 for all u ∈ PC(T,U) and w ∈ T (comp(L)).

If L regular then the power series Γ, Γq, (q ∈ Q) are rational. Then using Theorem

13 and Lemma 6 from Section 3.1 one gets the following.

Theorem 15. Consider a language L ⊆ Q+ and a set Φ ⊆ F (PC(T,U)×TL,Y) of

input-output maps. Assume that L is regular. Then the following holds.

(i) Φ has a realization by a linear switched system with constraint L if and only if

Φ has a generalised kernel representation with constraint L and ΨΦ is rational,

or equivalently dimHΦ < +∞.

(ii) Φ has a realization by a linear switched system with constraint L if and only if

there exists a linear switched system realization (Σ, µ) of Φ with constraint L,

such that (Σ, µ) is semi-reachable, it is observable, and

∀f ∈ Φ : yΣ(µ(f), ., .)|PC(T,U)×T (comp(L)) = 0 (4.15)

Proof. Part (i)

If Φ has a generalised kernel representation with constraint L and ΨΦ is rational, then

there exists a representation R of ΨΦ and by Theorem 14 (ΣR, µR) is a realization

of Φ. Conversely, assume that Φ is realized by (Σ, µ). Then by Theorem 13 Φ has a

generalised kernel representation and with the notation of Theorem 13 it holds that

ΨΦ = ΩΦ ¯ KΣ,µ. Since (Σ, µ ◦ U(µ)) is a realization of ΘΣ,µ without constraint,

by Theorem 11 ΨΘΣ,µ
is rational. Then by Lemma 8 KΣ,µ is rational too. If L is

regular, then by Corollary 12 Ω is rational. Then by Lemma 8 ΩΦ is rational. By

Lemma 6 we get that ΨΦ = ΩΦ ¯ KΣ,µ is rational. From Theorem 1 it follows that

ΨΦ is rational if and only if rank HΨΦ
< +∞. By definition HΦ = HΨΦ

, so we get

that ΨΦ is rational if and only if rank HΦ < +∞.

Part(ii)

Φ has a realization with constraint L if and only if Φ has a generalised kernel represen-

tation with constraint L and ΨΦ is rational. Let R = ({Aq}q∈Q, B,C) be a minimal

representation of ΨΦ. Consider (Σ, µ) = (ΣR, µR) – the linear switched system re-

alization associated with R. Then by Theorem 14 (Σ, µ) is a realization of Φ with

constraint L such that ∀f ∈ Φ,∀u ∈ PC(T,U), w ∈ T (comp(L)) : yΣ(µ(f), u, w) = 0.
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Since R is reachable and observable, we get that (Σ, µ) is semi-reachableand observ-

able.

Lemma 6 also yields the following result.

Theorem 16. Consider a language L ⊆ Q+ and a set Φ ⊆ F (PC(T,U)×TL,Y) of

input-output maps. Assume L that is regular and that Φ has a realization by a linear

switched system. Let (Σ, µ) be the realization of Φ from part (ii) of Theorem 15. If

(Σ̃, µ̃) is an arbitrary linear switched system realizing Φ with constraint L, then

dim Σ ≤ M · dim Σ̃ (4.16)

where M depends only on L.

Proof. By Theorem 13 it holds that ΨΦ = KΣ,µ ¯ ΩΦ. Since RΣ,µ is a minimal

representation of ΨΦ it holds that dim Σ = dimRΣ,µ = rank HΨΦ
. But from Lemma

6 one gets that

rank HΨΦ
= rank HKΣ,µ¯ΩΦ

≤ rank HKΣ,µ
· rank HΩΦ

Since rank HKΣ,µ
= rank HΨΘ

≤ dim Σ̃ and M := rank HΩ depends only on L, we

get the statement of the theorem.

Notice that if L is finite then L is regular. It means that the results of this

section in principle allow us to construct a realization of a set of input-output map

by examining a finite number of sequences of discrete modes.

Remark

In fact, the result of the Theorem 16 is sharp in the following sense. One can construct

an input-output y map and language L and realizations Σ1 and Σ2 such that the

following holds. Both Σ1 and Σ2 realize y from the initial state zero with constraint L

and they are both reachable from zero and observable, but dim Σ1 = 1 and dim Σ2 =

2. The construction goes as follows. Let Q = {1, 2}, L = {qk
1q2 | k > 0}, Y = U = R.

Define y : PC(T,U) × TL → Y by

y(u(.), q1 · · · q1︸ ︷︷ ︸
m−times

q2, t1 · · · tmtm+1) =

∫ tm+1

0

e2(tm+1−s)u(s +

m∑

1

ti)ds +

∫ Pm
1 ti

0

e2tm+1e
Pm

1 ti−su(s)ds

Define Σ1 = (R, R, R, Q, {(A1,q, B1,qC1,q) | q ∈ {q1, q2}}) by

A1,q1
= 1 B1,q1

= 1 C1,q1
= 1

A1,q2
= 2 B1,q2

= 1 C1,q2
= 1
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Define Σ2 = (R2, R, R, Q{(A2,q, B2,q, C2,q) | q ∈ Q}) by

A2,q1
=

[
1 0

0 0

]
B2,q1

=

[
1

0

]
C2,q1

=
[
0 0

]

A2,q2
=

[
0 0

2 2

]
B2,q2

=

[
0

1

]
C2,q2

=
[
1 1

]

Both Σ1 and Σ2 are reachable and observable as linear switched systems, therefore

they are the minimal realizations of yΣ1
(0, ., .) and yΣ2

(0, ., .). Moreover, it is easy

to see that

yΣ1
(0, ., .)|PC(T,U)×TL = y = yΣ2

(0, ., .)|PC(T,U)×TL

In fact, Σ2 can be obtained by constructing the minimal representation of Ψ{y}, i.e.,

Σ2 is a minimal realization of y satisfying part (iii) of Theorem 15.

4.1.5 Proof of Theorem 9

Proof of Theorem 9. only if part

Assume that Φ has a generalized kernel representation. Then it is clear that for

each f ∈ Φ, f is causal, since for each w = (q1, t1) · · · (qk, tk) ∈ TL we get that

fi(w, u) = eT
i Kf,Φ

q1···qk
(t1, . . . , tk)+

∑k
i=1

∫ ti

0
eT
i Gf,Φ

qi,...,qk
(ti −s, . . . , tk)u(s+

∑i−1
j=1 tj)ds

i = 1, . . . , p, that is, fi(w, u) depends only on u|[0,
P

k
1 ti]

. It is also clear that the func-

tion yΦ = yΦ
0 defined by yΦ

0 (u,w) =
∑k

i=1

∫ ti

0
Gf,Φ

qi,...,qk
(ti − s, . . . , tk)u(s+

∑i−1
j=1 tj)ds

satisfies (4.9). Moreover, it is easy to see that yΦ
j (w, .),j = 1, . . . , p is a continuous

linear map from PC([0,
∑k

j=1 tj ],U) to Rp, since it is the sum of maps of the form

φj : u 7→
∫ ti

0
eT
j GΦ

qi···qk
(ti − s, . . . , tk)ShiftPi−1

j=1 tj
(u)(s)ds j = 1, . . . , p and ShiftT is

a continuous linear map on PC(T,U), and gj(s) = eT
j GΦ

qi···qk
(s, ti+1, . . . , tk) is an-

alytic, and thus the function g̃j(s) = gj(ti − s)χ({s ∈ [0, ti]}) is in L∞(T ). But

then φj(u) =
∫ ti

0
g̃j(s)ShiftPi−1

1 ti
(u)(s)ds and by [58] if follows that φj , j = 1, . . . , p

is a a continuous linear map from PC([0,
∑k

1 ti],U) to Rp for Thus conditions 2

is satisfied. Let z = (q1, t1) · · · (qh, th) ∈ (Q × T )+, w = (w1, 0) · · · (wk, 0), v =

(v1, 0) · · · (vl, 0) ∈ (Q × T )∗. Let x1 = q1 · · · qh, x2 = w1 · · ·wk and x3 = v1 · · · vl.

Assume that wz, vz ∈ TL. Then it is easy to see that x1 ∈ suffixL. Then f(0, wz) =

Kf,Φ
x2x1

(0, . . . , 0, t1, . . . , th) = Kf,Φ
x1

(t1, . . . , th) = Kf,Φ
x3x1

(0, . . . , 0, t1, . . . , th). Notice
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that

yΦ
0 (u,wz) =

k∑

i=1

∫ 0

0

GΦ
wi···wkx1

(Ol−i+1, τ)u(s)ds+

+
h∑

i=1

∫ ti

0

GΦ
qi···qh

(ti − s, . . . , th)ui(s)ds =

=
h∑

i=1

∫ ti

0

GΦ
qi···qh

(ti − s, . . . , th)ui(s)ds =

=

l∑

i=1

∫ 0

0

GΦ
vi···vlx1

(Ol−i+1, τ)u(s)ds +

+

h∑

i=1

∫ ti

0

GΦ
qi···qh

(ti − s, . . . , th)ui(s)ds =

= yΦ
0 (u, vz)

where τ = (t1, . . . , th), Oj = (0, 0, . . . , 0) ∈ Nj , j = 1, . . . , l, ui = ShiftPi−1
j=1 ti

(u). We

get that f(u,wz) = f(0, wz) + yΦ
0 (u,wz) = f(0, vz) + yΦ(u, vz) = f(u, vz). That is,

condition 3 is satisfied.

Let w = (q1, t1) · · · (qk, tk) ∈ TL. It is also clear that if z = (ql, tl) · · · (qk, tk) and

1 ≤ l ≤ k, then

yΦ
0 (u,w) =

k∑

i=l

∫ ti

0

Gf,Φ
qi···qk

(ti − s, . . . , tk)ShiftTi−1,l
(ul)(s)ds+

+
l−1∑

i=1

∫ ti

0

Gf,Φ
qi,...,qk

(ti − s, . . . , tk)ui−1(s)ds = yΦ
0 (ul, (q1, 0) · · · (ql−1, 0)z) +

+
k∑

i=1

∫ ti

0

Gf,Φ
qi,...,qk

(ti − s, . . . , tk)ShiftTi
(v)(s)ds = yΦ

0 (ul, z) + yΦ(v, w)

where Ti =
∑i−1

j=1 tj , ui = ShiftTi
(u), i = 1, . . . , k, v = PTl

u, Ti,l =
∑i

j=l tj . That

is, yΦ satisfies condition 4. Let w, v ∈ (Q × T )∗, and assume that w(q, τ1)(q, τ2)v,

w(q, τ1+τ2)v ∈ TL. Assume that w = (w1, t1) · · · (wl, tl) and v = (vl+1, tl+1) · · · (vk, tk)

where vi, wj ∈ Q, i = l + 1, . . . , k, j = 1, . . . , l. Let Ti =
∑i

j=1 ti. Then using the
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properties of the functions Kf,Φ
z , Gf,Φ

z , z ∈ suffixL one gets.

f(u,w(q, τ1)(q, τ2)v) = Kf,Φ
wqqv(t1, . . . , tl, τ1, τ2, . . . , tk)+

l∑

i=1

∫ ti

0

GΦ
wi···wlqqv(ti − s, . . . , τ1, τ2, . . . , tk)ui(s)ds +

+

∫ τ1

0

GΦ
qqv(τ1 − s, τ2, . . . , tk)ul+1(s)ds + yΦ

0 (ShiftTl+τ1+τ2
(u), v) +

+

∫ τ2

0

GΦ
qv(τ2 − s, . . . , tk)ul+1(s + τ1)ds = Kf,Φ

wqv(t1, . . . , tl, τ1 + τ2, . . . , tk) +

l∑

i=1

∫ ti

0

GΦ
wi···wlqv(ti − s, . . . , τ1 + τ2, . . . , tk)ui(s)ds +

+

∫ τ1+τ2

0

GΦ
qv(τ1 + τ2 − s, . . . , tk)ul+1(s)ds + yΦ

0 (ShiftTl+τ1+τ2
(u), v) =

= f(u,w(q, τ1 + τ2)v)

That is, Φ satisfies condition 5. If |v| > 0, w(q, 0)v, wv ∈ TL and w = (q1, t1) · · · (ql, tl),

v = (ql+1, tl+1) · · · (qk, tk), then we get that

f(u,w(q, 0)v) = Kf,Φ
wv (t1, . . . , tl, . . . , tk)+

l∑

i=1

∫ ti

0

GΦ
wi···wlqv(ti − s, . . . , tl, 0, . . . , tk)Shifti(u)(s)ds

+

∫ 0

0

GΦ
qv(0 − s, . . . , tk)Shiftl(u)(s)ds + yΦ

0 (ShiftTl+0(u), v) =

= Kf,Φ
wv (t1, . . . , tl, . . . , tk) +

l∑

i=1

∫ ti

0

GΦ
wi···wlv

(ti − s, . . . , tk)Shifti(u)(s)ds + yΦ
0 (ShiftTl

(u), v) =

f(u,wv)

where Ti =
∑i−1

j=1 tj and Shifti = ShiftTi
, i = 1, . . . , k. That is, Φ satisfies condition 5.

Finally, it is easy to see that Φ satisfies condition 6. Indeed, fq1···qk,u1···uk
(t1, . . . , tk) =

Kf,Φ
q1···qk

(t1, . . . , tk) +
∑k

i=1(
∫ ti

0
GΦ

qi···qk
(ti − s, . . . , tk)ds)ui. But by definition Kf,Φ

q1···gk

and GΦ
qi···qk

are analytic, and thus
∫ ti

0
GΦ

qi···qk
(ti − s, . . . , tk)ds are analytic. That is,

fq1···qk,u1···uk
has to be analytic too.

if part

Assume that the set of maps Φ satisfies the conditions 1 – 6. First notice that

condition 3 implies that each f ∈ Φ can be uniquely extended to a function in

F (PC(T,U)× T (suffixL),Y). From now on we will assume that Φ ⊆ F (PC(T,U)×

T (suffixL),Y). Also notice that all the conditions 1-6 still hold for the extensions

131



CHAPTER 4. REALIZATION THEORY OF SWITCHED SYSTEMS

of elements of Φ to F (PC(T,U) × T (suffixL),Y). Let w = (q1, t1) · · · (qk, tk) ∈

T (suffixL). We will construct function Kf,Φ
ql···qk

and Gf,Φ
ql···qk

for each 1 ≤ l ≤ k. From

condition 6 we get that for each f ∈ Φ it holds that fq1···qk,0···0 : T k → Y is an analytic

function. Let Kf,Φ
ql···qk

(tl · · · , tk) = fq1···qk,0···0(0, 0, . . . , 0, tl, tl+1, . . . , tk). Then it is

clear that Kf,Φ
ql···qk

, l = 1, . . . , k are analytic. Since f satisfies the condition 4 and 5

and Kf,Φ
ql···qk

(tl, . . . , tk = f((q1, 0) · · · (ql−1, 0)(ql, tl) · · · (qk, tk), 0) we get that Kf,Φ
ql···qk

,

l = 1, . . . , k satisfies conditions 3 and 4 of Definition 10.

The definition of Gf,Φ
ql···qk

is a bit more involved. For each l = 1, . . . , k j = 1, . . . , p

define the maps

y(ql,tl)···(qk,tk),j : PC([0, tl],U) 3 u 7→ yΦ
j ((q1, t1) · · · (qk, tk), ũ)

where ũ(s) =

{
u(s − Tl−1) if s ∈ [Tl−1, Tl]

0 otherwise
where Ti =

∑i
j=1 tj . From condition

2 it follows that y(ql,tl)···(qk,tk),j is a continuous linear functional on PC([0, tl],U).

Since PC([0, tl],U) is dense in L1([0, tl],U), we can extend it a unique way to a

continuous linear functional on L1([0, tl],U). By abuse of notation we will denote

this functional by y(ql,tl)···(qk,tk),j too. By Theorem 6.16 from [58] we get that there

exists an a.s unique g(ql,tl)···(qk,tk),j ∈ L∞([0, tl], R
1×m) such that

y(ql,tl)···(qk,tk),j(u) =

∫ tl

0

g(ql,tl)···(qk,tk),j(s)u(s)ds

Let yw : u 7→
[
yw,1(u) · · · yw,p(u)

]T

∈ Rp and define the map

gw : s 7→
[
(gw,1(s))

T · · · (qw,p(s))
T
]T

∈ Rp×m. Then

y(ql,tl)···(qk,tk)(u) =

∫ tl

0

g(ql,tl)···(qk,tk)(s)u(s)ds

Note that if Φ satisfies conditions 1 – 6, then yΦ satisfies conditions 3 - 6. We will

use this fact to prove certain properties of g(q1,t1)···(qk,tk).

For any w, v ∈ (Q × T )∗,|v| > 0 one gets that if v(q, τ1)(q, τ2)w, v(q, τ1 + τ2)w ∈

T (suffixL), then it holds that yv(q,τ1)(q,τ2)w(u) = yΦ(ũ, v(q, τ1)(q, τ2)w)

= yΦ(ũ, v(q, τ1 + τ2)w) = yv(q,τ1+τ2)w(u). This implies that

gv(q,τ1)(q,τ2)w = gv(q,τ1+τ2)w a.s. (4.17)

Similarly, if v(q, 0)w, vw ∈ T (suffixL), |w| > 0, |v| > 0, then

yv(q,0)w(u) = yΦ(ũ, v(q, 0)w) = yΦ(ũ, vw) = yvw(u)
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which implies

gv(q,0)w = gvw a.s (4.18)

Moreover, if (q, t1)(q, t2)w ∈ T (suffixL) and (q, t1 + t2)w ∈ T (suffixL), then for each

u ∈ PC([0, t2],U) it holds that

y(q,t1)(q,t2)w(u) = yΦ(ũ, (q, t1)(q, t2)w) = yΦ(ũ, (q, t1 + t2)w) =

y(q,t1+t2)w(u#t10) =

∫ t1

0

g(q,t1+t2)w(s)u(s)ds

By uniqueness of g(q,t1)(q,t2)w we get that

g(q,t1)(q,t2)w(s) = g(q,t1+t2)w(s) a.s. on [0, t1] (4.19)

In addition, from condition 4 one gets for each (q, t + s)w ∈ T (suffixL) that for each

u ∈ PC([0, s],U), v ∈ PC([0, t + s],U), v = 0#tu,

y(q,t+s)w(v) = yΦ(ṽ, (q, t + s)w) = yΦ(ṽ, (q, t)(q, s)w) =

yΦ(Shifttṽ, (q, s)w) + yΦ(Ptṽ, (q, t)(q, s)w)

But Ptṽ = 0 so yΦ(Ptṽ, (q, t)(q, s)w) = 0, and in addition Shifttṽ = ũ, therefore we

get y(q,t+s)w(v) = yΦ(Shiftt(ṽ), (q, s)w) = y(q,s)w(u). That is,

y(q,s)w(u) =

∫ t+s

0

g(q,t+s)w(z)v(z)dz =

∫ s

0

g(q,t+s)w(z + t)u(z)dz

From uniqueness of g(q,s)w we get

g(q,s)w(τ) = g(q,s+t)(τ + t) a.s (4.20)

From the equalities above we also get that we are free to change each of the maps

gs, s ∈ T (suffixL) on some set of measure zero, so in fact we can choose the maps

gs, s ∈ T (suffixL) is such a way that the formulas (4.17),(4.18), (4.19) and (4.20)

holds not only almost surely, but exactly on the whole domain. If these equalities

hold exactly, then g(q,t)w(s) = g(q,t−s)(0). Let ql · · · qk ∈ suffixL. Define Gql···qk
:

T k → Rp×m by

Gql···qk
(tl, . . . , tk) = g(ql,tl)···(qk,tk)(0)

Formula (4.20) implies that Gql···qk
(tl − s, · · · , tk) = g(ql,tl−s)···(qk,tk)(0) =

g(ql,tl−s+s)···(qk,tk)(s) = g(ql,tl)···(qk,tk)(s). We immediately get that

y(ql,tl)···(qk,tk)(u) =

∫ tl

0

Gql···qk
(tl − s, tl+1, . . . , tk)u(s)ds
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Now, notice that for each (q1, t1) · · · (qk, tk) ∈ T (suffixL), by using condition 4

repeatedly, one can derive

yΦ(u, (q1, t1) · · · (qk, tk)) =

k∑

i=1

yΦ(ui, (qi, ti) · · · (qk, tk))

where ui = Pti
(ShiftPi−1

j=1 tj
u). That is, ui(s) =

{
u(s +

∑i−1
j=1 tj) if s ∈ [0, ti]

0 otherwise

That is, ui = ṽi, vi = ui|[0,ti] = (ShiftPi−1
j=1 tj

u)|[0,ti]. Thus we get that for each

w = (q1, t1) · · · (qk, tk) ∈ T (suffixL) and u ∈ PC(T,U)

yΦ(u,w) =

k∑

i=1

y(qi,ti)···(qk,tk)(vi) =

k∑

i=1

∫ ti

0

GΦ
qi···qk

(ti − s, · · · tk)ui(s)ds

and

f(u, , w) = Kf,Φ
q1···qk

(t1, . . . , tk) +
k∑

i=1

∫ ti

0

GΦ
qi···qk

(ti − s, · · · tk)ui(s)ds (4.21)

where ui = ShiftPi−1
j=1 tj

(u). We already showed that Kf,Φ
w w ∈ suffixL satisfies the

conditions 1, 2 and 3 of Definition 10. Equalities (4.17),(4.18), (4.19) and (4.20)

imply that GΦ
w satisfies the conditions 2 and 3 too. Equation (4.21) implies that part

4 of Definition 10 is satisfied too. It is left to show that GΦ
w can be chosen to be

analytic for each f ∈ Φ and w ∈ suffixL. Assume that w = q1 · · · qk. Then condition

6 implies that the function hu1···uk
= fq1···qk,u1···uk

− fq1···qk,0···0 is analytic for each

u1, · · ·uk ∈ PC(T,U) constant functions. But

hu1···uk
(t1, . . . , tk) = f(u,w) − f(0, w) = yΦ(u,w)

where u(t) = ui if t ∈ (Ti−1, Ti], i = 1, . . . , k, Ti =
∑i

j=1 tj . But then we get that

hu1···uk
(t1, . . . , tk) =

k∑

i=1

(

∫ ti

0

GΦ
qi···qk

(ti − s, ti+1, . . . , tk)ds)ui

For each i = 1 . . . , k taking ul = 0, j 6= l and uj = ez = (0, 0, . . . , 1, 0, . . . , 0)T we get

that hz,qj ···qk
(tj , . . . , tk) :=

∫ tj

0
GΦ

qj ···qk
(tj − s, tj+1, . . . , tk)ezds is an analytic map.

But hz,qj ···qk
(0, tj+1, . . . , tk) = 0, thus

hz,qj ···qk
(tj , . . . , tk) =

∫ tj

0

d

ds
hz,qj ···qk

(tj − s, . . . , tk)ds

Let w(s) = Gqj ···qk
(s, tj+1, . . . , tk)ez − d

dshz,qj ···qk
(s, tj+1, . . . , tk). That is, for each

t ∈ T we get that
∫ t

0
w(t − s)ds = 0, or equivalently

∫ t

0
w(s)ds = 0. It implies that
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∫
E

w(s)ds = 0 for each Borel-set E ⊆ [0, N ], N ∈ N. Then we get that w=0 a.s.,

that is, Gqj ···qk
(t, tj+1, . . . tk)ez = d

dtj
hz,qj ···qk

(s, tj+1, . . . , tk) for almost all s. For

each w ∈ suffixL let hw = (h1,w, . . . , hm,w). It is easy to see that hw are analytic and

GΦ
w(t1, . . . , t|w|) = hw(t1, . . . , t|w|) a.s. in t1. That is, the set

Aw(t2, . . . , t|w|) = {t ∈ T | GΦ
w(t, t2, . . . , t|w|) 6= hw(t, t2, . . . , t|w|)}

is of measure zero. Thus, for any a ∈ Aw(t2, . . . , t|w|) there exists xn /∈ Aw(t2, . . . , t|w|),

lim xn = a. Since hw is continuous, it implies that hw satisfies the conditions 2, 3,

4 of Definition 10, if GΦ
w does. That is, we can take GΦ

w := hw and the resulting

functions will satisfy the requirements for generalized kernel representation. We de-

fine the functions GΦ
w and Kf,Φ

v only for w ∈ suffixL, v ∈ L. But it is easy to see

that {GΦ
w,Kf,Φ

w | f ∈ Φ, w ∈ L̃} is uniquely determined by {GΦ
w,Kf,Φ

v | f ∈ Φ, w ∈

suffixL, v ∈ L}.

It is left to show that generalized kernel representations are unique. Assume

that {Kf,Φ
w , GΦ

w} and {K̃f,Φ
w , G̃Φ

w} are two different generalised kernel representa-

tions of Φ. By the remark above it is enough to show that Kf,Φ
w = K̃f,Φ

w for

each w ∈ L, f ∈ Φ and GΦ
w = G̃Φ

w w ∈ suffixL. There are two ways to pro-

ceed. One can use formula 4.4 to conclude that ∀w ∈ L,α ∈ N|w| : DαKf,Φ
w =

DαK̃f,Φ
w = Dαf(0, w, .), and ∀w ∈ suffixL,α ∈ N|w|, j = 1, . . . ,m, v ∈ Q∗, vw ∈ L :

DαGΦ
wej = DαG̃Φ

wej = D(O|v|,α
+)yf,Φ

0 (ej , vw, .), where Ol = (0, 0, . . . , 0) ∈ Nl, l ≥ 0,

α+ = (α1 +1, α2, . . . , αk) for each α ∈ Nk, k ≥ 0. That is, we get that the high-order

derivatives at zero of Kf,Φ
w and Gf,Φ

w equal the respective high-order derivatives at

zero of K̃f,Φ
w and G̃Φ

w respectively. Since Kf,Φ
w , GΦ

w, K̃f,Φ
w , G̃Φ

w are analytic, we get the

required equalities.

Alternatively, we could use the proof of existence of a generalized kernel represen-

tation. Notice that f(0, (q1, t1) · · · (qk, tk)) = Kf,Φ
q1···qk

(t1, . . . , tk) = K̃f,Φ
q1···qk

(t1, . . . , tk)

for all

(q1, t1) . . . (qk, tk) ∈ T (suffixL) and f ∈ Φ. On the other hand, from the proof above

we can easily deduce that for each w ∈ suffixL. GΦ
w = G̃Φ

w almost everywhere, that

is, rw = GΦ
w − G̃Φ

w = 0 a.s. But rw is analytic, and if rw 6= 0, then there exists an

open set V such that ∀v ∈ V : rw(v) 6= 0. But no non-empty open set is of measure

zero, so we get that rw is the constant zero function. But then GΦ
w = G̃Φ

w.
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4.2 Realization Theory of Bilinear Switched Sys-

tems

This section deals with the realization theory of bilinear switched systems. First, in

Subsection 4.2.1 definition and certain elementary properties of bilinear switched sys-

tems will be presented. Then, in Subsection 4.2.2 the structure of the input/output

maps of bilinear switched systems will be discussed. Subsection 4.2.3 presents the

realization theory for bilinear switched systems for the case of arbitrary switching.

Subsection 4.2.4 deals with realization theory for the case of switching with con-

straints.

4.2.1 Bilinear Switched Systems

Recall from Section 2.4 the definition of bilinear switched systems. That is, a switched

system Σ = (X,U ,Y, Q, {fq | q ∈ Q,u ∈ U}, {hq | q ∈ Q}) is called bilinear if for

each q ∈ Q there exist linear mappings Aq : X → X , Bq,j : X → X , j = 1, 2, . . . ,m ,

Cq : X → Y such that

• ∀x ∈ X , u = (u1, . . . , um)T ∈ U = Rm : fq(x, u) = Aqx +
∑m

j=1 ujBq,jx

• ∀x ∈ X : hq = Cqx.

Recall that we agreed on using the following shorthand notation

Σ = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) | q ∈ Q})

to denote bilinear switched systems. Recall from [32, 33] that the state- and output-

trajectory of a bilinear system can be expressed as infinite series of iterated integrals.

A similar representation exists for switched bilinear systems. In order to formulate

such a representation some notation has to be set up. Recall from Subsection 2.6

the notion of iterated integral Vw1,...,wk
[u](t1, . . . , tk) of u ∈ PC(T,U) with respect

to w1, . . . , wk.

For each q ∈ Q and w = j1 · · · jk, k ≥ 0, j1, · · · jk ∈ Zm let us introduce the

following notation

Bq,0 := Aq, Bq,ε := IdX , , Bq,w := Bq,jk
Bq,jk−1

· · ·Bq,j1

where IdX denotes the identity map on X . With the notation above we can formulate

the following result.
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Proposition 13. Using the notation above, for each x0 ∈ X , u ∈ PC(T,U) and

s = (q1, t1) · · · (qk, tk) ∈ (Q × T )∗ the state xΣ(x0, u, s) and the output yΣ(x0, u, s)

can be expressed by the following absolutely convergent series.

xΣ(x0, u, s) =
∑

w1,...,wk∈Z∗
m

(Bqk,wk
· · ·Bq1,w1

x0)Vw1,...,wk
[u](t1, . . . , tk) (4.22)

yΣ(x0, u, s) =
∑

w1,...,wk∈Z∗
m

(Cqk
Bqk,wk

· · ·Bq1,w1
x0)Vw1,...,wk

[u](t1, . . . , tk)

Proof. To show absolute convergence of the series we will use the notion of a conver-

gent generating series defined in Section 4.2.2. Using the notation of Section 4.2.2

define the series cx0
: Γ̃∗ → X by cx0

((q1, w1) · · · (qk, wk)) = Bqk,wk
· · ·Bq1,w1

x0.

Then ||cx0
|| ≤ ||x0||M

Pk
i=1 |wi|, where M = max{||Bq,j || | q ∈ Q, j ∈ Zm}. That is,

cx0
is a convergent generating series and by Lemma 20 the series

Fcx0
(u, s) =

∑

w1,...,wk

∈ (Bqk,wk
· · ·Bq1,w1

x0)Vw1,...,wk
[u](t1, . . . , tk)

is absolutely convergent, which also implies the absolute convergence of
∑

w1,...,wk∈Z∗
m

(Cqk
Bqk,wk

· · · · · ·Bq1,w1
x0)Vw1,...,wk

[u](t1, . . . , tk)

It is left to show that the right-hand sides of (4.22 ) equal the respective left-

hand sides. We will proceed by induction on k. If k = 1, then xΣ(x0, u, (q1, t))

is the state under input u at time t with initial state x0 of the bilinear system
d
dtx(t) = Aq1

x(t) +
∑m

j=1(Bq1,jx)uj . By classical results [32] on bilinear systems

xΣ(x0, u, (q1, t)) =
∑

w∈Z∗
m

Bq,wx0Vw[u](t)

and the series
∑

w∈Z∗
m

Bq,wx0Vw[u](t) is absolutely convergent. Assume that the

statement of the proposition is true for all k ≤ N . Notice that for each s =

(q1, t1) · · · (qN , tN ) ∈ (Q × T )∗ it holds that

xΣ(x0, u, s(qN+1, tN+1)) = xΣ(xΣ(x0,ShiftP
N
1 ti

(u), s), (qN+1, tN+1))

Using the induction hypothesis one gets

xΣ(x0, u, s(qN+1, tN+1) =
∑

wN+1∈Z∗
m

BqN+1,wN+1
xΣ(x0, u, s)VwN+1

[uN ](tN+1)

=
∑

wN+1∈Z∗
m

BqN+1,wN+1
VwN+1

[uN ](tN+1) ×

×[
∑

w1,...,wN∈Z∗
m

BqN ,wN
· · ·Bq1,w1

x0Vw1,...,wN
[u](t1, . . . , tN ) ] =

=
∑

w1,...,wN+1∈Z∗
m

BqN+1,wN+1
· · ·Bq1,w1

x0Vw1,...,wN+1
[u](t1, . . . , tN+1)

137



CHAPTER 4. REALIZATION THEORY OF SWITCHED SYSTEMS

where uN = ShiftP
N
i=1 ti

(u). The rest of the statement of the proposition follows

easily from the fact that

yΣ(x0, u, (q1, t1) · · · (qk, tk)) = Cqk
xΣ(x0, u, (q1, t1) · · · (qk, tk))

Reachability and observability properties of bilinear switched systems can be eas-

ily derived from the formulas above.

Proposition 14. Let Σ = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) | q ∈ Q}) be a

bilinear switched system. Then the following holds.

(i) The linear span W (X0) = Span{z ∈ X | x ∈ Reach(X0,Σ)} of the states

reachable from X0 ⊆ X is of the following form

W (X0) =

Span{Bqk,wk
· · ·Bq1,w1

x0 | qk, . . . q1 ∈ Q, k ≥ 0, wk, . . . , w1 ∈ Z∗
m, x0 ∈ X0}

(ii) Define the observability kernel OΣ of Σ by

OΣ =
⋂

q1,...,qk∈Q,k≥0,w1,...,wk∈Z∗
m

Cqk
Bqk,wk

· · ·Bq1,w1

x1, x2 ∈ X are indistinguishable if and only if

x1 − x2 ∈ OΣ

Σ is observable if and only if

OΣ = {0}

Proof. Part (i)

For each X0 ⊆ X , q1, . . . , qk ∈ Q define the set Wq1···qk
(X0) ⊆ X as

Span{xΣ(x0, u, (q1, t1) · · · (qk, tk)) | u ∈ PC(T,U), t1, . . . , tk ∈ T, x0 ∈ X0}

Notice that xΣ(x0, u, (q1, t1) · · · (qk, tk)) = xΣ(xΣ(x0, u, s),ShiftTs
(u), (qk, tk)) where

s = (q1, t1) · · · (qk−1, tk−1), Ts =
∑k−1

i=1 ti. Using the fact that in the discrete mode qk

the system Σ behaves like a bilinear system and using the results from [32, 33] one gets

that for each fixed s = (q1, t1) · · · (qk−1, tk−1) ∈ (Q×T )∗ and u ∈ PC([0,
∑k−1

1 tj ],U)

it holds that

Wqk
({xΣ(x0, u, s)}) = Span{Bqk,wxΣ(x0, u, s) | w ∈ Z∗

m}
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That is,

Wq1,...,qk
(X0) = Span{Bqk,wx | x ∈ Wq1,...,qk−1

(X0), w ∈ Z∗
m}

Taking into account that by [33] Wq(X0) = Span{Bq,wx0 | x0 ∈ X0} and Span{x | x ∈

Reach(Σ,X0) = Span{x | x ∈ Wq1,...,qk
(X0), q1, . . . , qk ∈ Q, k ≥ 0}, the statement of

the proposition follows.

Part (ii)

It is easy to deduce from (4.22) of Proposition 13 that yΣ(x, ., .) is linear in x, that

is, yΣ(αx1 + βx2, ., .) = α1yΣ(x1, ., ) + βyΣ(x2, ., .) That is, yΣ(x1, ., .) = yΣ(x2, ., .) is

equivalent to yΣ(x1 − x2, ., .) = 0. Thus, it is enough to show that

x ∈ OΣ ⇐⇒ yΣ(x, ., .) = 0

It is clear from Proposition 13 that x1 − x2 ∈ OΣ =⇒ yΣ(x1 − x2, ., .) = 0. It is

left to show that yΣ(x, ., .) = 0 =⇒ x ∈ OΣ. Assume that yΣ(x, ., .) = 0. Then

for each fixed w = (q1, t1) · · · (qk, tk) ∈ (Q × T )∗, u ∈ PC(T,U), q ∈ Q it holds

that yΣ(xΣ(x, u, w), v, (q, t)) = yΣ(x, u#Tw
v, w(q, t)) = 0 for any v ∈ PC(T,U),

where Tw =
∑k

1 ti. Notice that for any x0 ∈ X the map PC(T,U) × T 3 (v, t) 7→

yΣ(x0, v, (q, t)) is the input-output map of the classical bilinear system d
dtx(t) =

Aqx +
∑m

j=1 uj(t)(Bq,jx(t)), y(t) = Cqx(t) induced by the initial condition x0. Thus

by the classical result for bilinear systems, see [32], yΣ(xΣ(x, u, w), v, (q, t)) = 0,∀v ∈

PC(T,U) implies

xΣ(x, u, w) ∈
⋂

v∈Z∗
m

ker CqBq,v

Recall from the proof of part (i) the definition of Wq1,...,qk
({x}). Since the choice

of u and t1, . . . , tk are arbitrary, we get that Wq1,...,qk
({x}) ⊆

⋂
v∈Z∗

m
ker CqBq,v.

Using the proof of part (i) we get that Wq1,...,qk
({x}) = Span{Bqk,wk

· · ·Bq1,w1
x |

w1, . . . , wk ∈ Z∗
m} which implies that

x ∈
⋂

w,w1,...,wk∈Z∗
m

ker CqBq,wBqk,wk
· · ·Bq1,w1

Since the choice of q and q1, . . . , qk ∈ Q is arbitrary, we get that x ∈ OΣ. This

completes the proof of the proposition.

Let

Σ1 = (X1,U ,Y, Q, {(A1
q , {B

1
q,j}j=1,2,...,m, C1

q ) | q ∈ Q})

and

Σ2 = (X2,U ,Y, Q, {(A2
q , {B

2
q,j}j=1,2,...,m, C2

q ) | q ∈ Q})
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be two bilinear switched systems. A linear map T : X1 → X2 is called a bilinear

switched system morphism from Σ1 to Σ2, denoted by T : Σ1 → Σ2, if the following

holds

TA1
q = A2

qT C1
q = C2

q T TB1
q,j = B2

q,j

By abuse of terminology T is said to be a bilinear switched system morphism from

(Σ, µ) to (Σ
′

, µ
′

), denoted by T : (Σ, µ) → (Σ
′

, µ
′

), if T : Σ → Σ
′

is a bilinear

switched system morphism in the above sense and T ◦ µ = µ
′

. If T is a linear

isomorphisms then (Σ1, µ1) and (Σ2, µ2) are said to be isomorphic or algebraically

similar .

Note that switched systems defined above can be viewed as general non-linear

systems with discrete inputs. In particular, bilinear switched systems can be viewed

as ordinary bilinear systems with particular inputs. Indeed, let Q = {q1, . . . , qN}

and let Ũ = RN ⊕ (U ⊗ RN ). Denote the standard basis of RN by ej , j = 1, . . . N .

We will denote ej by eqj
. Let bj , j = 1, . . . ,m the standard basis of U . Any ũ ∈ Ũ

has a unique representation ũ =
∑

q∈Q ũqeq +
∑

j=1,...,m,q∈Q ũj,qbj ⊗ eq,

Consider the bilinear switched system Σ = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) |

q ∈ Q}). Define the following bilinear system with input space Ũ and output space

Y

d

dt
x(t) =

∑

q∈Q

ũq(t)(Aqx) +
∑

q∈Q,j=1,...,m

ũq,j(t)(Bq,jx)

y(t) =
∑

q∈Q

ũq(t)(Cqx)

Here ũ(t) ∈ Ũ denoted the continuous input. The bilinear system above simulates Σ

in the following sense. Let w = (q1, t1) · · · (qk, tk) ∈ (Q× T )+, u ∈ PC(T,U). Define

Uu,w := ũ ∈ PC(T, Ũ) such that for each i = 0, . . . , k − 1 ∀τ ∈ [
∑i

j=1 tj ,
∑i+1

j=1 tj ] :

ũqi+1
(τ) = 1, ũqi+1,j(τ) = uj(τ) and ũq(τ) = 0, ũj,q(τ) = 0, q 6= qi+1. Then

yΣ(x, u, w) equals the output of the bilinear system above induced by ũ and ini-

tial state x. Using the correspondence above, one could try to reduce the realization

problem for bilinear switched systems to the realization problem for classical bilinear

systems and use the existing results on the realization theory of bilinear systems. In

this paper we will not pursue this approach. The reason for that is the following.

First, dealing with restricted switching would require dealing with the realization

problem of bilinear systems with input constraints. The author is not aware of any

work on this topic. Second, the author thinks that using bilinear realization the-

ory would not substantially simplify the solution to realization problem for bilinear

switched systems. Notice however, that the equivalence of realization problems men-
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tioned above does explain the role of rational formal power series in realization theory

of bilinear switched systems.

4.2.2 Input-output Maps of Bilinear Switched Systems

Let Φ ⊆ F (PC(T,U) × TL,Y) be a set of input-output maps defined for sequences

of discrete modes belonging to L ⊆ Q+. Let Γ̃ = Q × Z∗
m. Define the set

JL = {(q1, w1) · · · (qk, wk) ∈ Γ̃∗ | (q1, w1), . . . , (qk, wk) ∈ Γ̃, k ≥ 0, q1 · · · qk ∈ L}

Define the relation R ⊆ Γ̃∗ × Γ̃∗ by requiring that (q, w1)(q, w2)R(q, w1w2), and

(q, ε)(q
′

, w)R(q
′

, w) hold for any q ∈ Q, (q
′

, w) ∈ Γ̃ and (q, w1), (q, w2) ∈ Γ̃. Let R∗

be smallest congruence relation containing R. That is, R∗ is the smallest relation

such that R ⊆ R∗, R∗ is symmetric, reflexive, transitive and (v, v
′

) ∈ R∗ implies

(wvu,wv
′

u) ∈ R∗, for each w, u ∈ Γ̃∗.

Definition 11 (Generating convergent series on JL). A c : JL → Y is called

a generating convergent series on JL if the following conditions hold.

(1) (w, v) ∈ R∗, w, v ∈ JL =⇒ c(w) = c(v)

(2) There exists K,M > 0 such that for each (q1, w1) · · · (qk, wk) ∈ JL and

(q1, w1) . . . (qk, wk) ∈ Γ̃

||c((q1, w1) · · · (qk, wk))|| < KM |w1| · · ·M |wk|

The notion of generating convergent series is an extension of the notion of con-

vergent power series from [67, 32]. If |Q| = 1 then a generating convergent series in

the sense of Definition 11 can be viewed as a convergent formal power series in the

sense of [67, 32].

Let c : JL → Y be a generating convergent series. For each u ∈ PC(T,U) and

s = (q1, t1) · · · (qk, tk) ∈ TL define the series Fc(u, s) by

Fc(u, s) =
∑

w1,...,wk∈Z∗
m

c((q1, w1) · · · (qk, wk))Vw1,...,wk
[u](t1, . . . , tk)

Notice that each generalised converge generating series c : JL → Y determines a

abstract globally convergent generating series cabs : I → Y, where Ik = Qk∩L, k ≥ 0

, I =
⋃∞

k=1 Ik × (Z∗
m)k and cabs(((q1, . . . , qk), (w1, . . . , wk))) = c((q1, w1) · · · (qk, wk))

It is easy to see that cabs is indeed an abstract globally convergent generating

series. Indeed, for any i = q1 · · · qk ∈ Ik, k ≥ 1 let Ki = K and let M be the same as
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in Definition 11. Then for any w1, . . . , wk ∈ Z∗
m

||cabs(i, (w1, . . . , wk))|| = ||c((q1, w1) · · · (qk, wk))|| < KM |w1| · · ·M |wk| =

= KiM
|w1| · · ·M |wk|

Thus, cabs is indeed an abstract globally convergent generating series.

Moreover, it follows that Fc(u, s) = Fcabs
(u, ((q1, . . . , qk), (t1, . . . , tk). Thus, Lemma

1 implies the following.

Lemma 20. If c : JL → Y is a convergent generating series, then for each u ∈

PC(T,U), s = (q1, t1) · · · (qk, tk) ∈ TL the series Fc(u, s) is absolutely convergent.

In fact we can define a function Fc ∈ F (PC(T,U) × TL,Y) by

Fc : PC(T,U) × TL 3 (u,w) 7→ Fc(u,w) ∈ Y

The map Fc has some remarkable properties, listed below.

Lemma 21. Let c : JL → Y be a generating convergent series. Then the following

holds.

(i) For each s = (q1, t1) · · · (qk, tk) ∈ TL, u, v ∈ PC(T,U)

(∀t ∈ [0,

k∑

1

ti] : u(t) = v(t)) =⇒ Fc(u, s) = Fc(v, s)

(ii) ∀u ∈ PC(T,U), w, s ∈ (Q × T )∗, |s| > 0 :

w(q, 0)s, ws ∈ TL =⇒ Fc(u,w(q, 0)s) = Fc(u,ws)

(iii) ∀u ∈ PC(T,U), w, v ∈ (Q × T )∗ :

r = w(q, t1)(q, t2)v, p = w(q, t1 + t2)v ∈ TL =⇒ Fc(u, r) = Fc(u, p)

(iv) Let w = (w1, 0) · · · (wk, 0), v = (v1, 0) · · · (vl, 0) ∈ (Q × T )∗ and

s = (q1, t1) · · · (qh, th) ∈ (Q × T )+

ws, vs ∈ TL =⇒ (∀u ∈ PC(T,U) : Fc(u,ws) = Fc(u, vs))

Proof. Part (i) and (ii) follow from the obvious facts that Vw[u](t) depends only on

u|[0,t] and Vw[u](0) = 0 for |w| > 0. Part (iv) follows from the fact that Vw[u](0) = 0

for |w| > 0 and thus Vw1,...,wk+h
[u](0, . . . , 0, t1, . . . , th) = 0 if ∃j ∈ {1, . . . , k} : |wj | ≥

0, and

Vw1,...,wk+h
[u](0, . . . , 0, t1, . . . , th) = Vwk+1,...,wk+h

[u](t1, . . . , th)
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if wk+1 = · · · = wk+h = ε. The proof of Part (iii) is more involved. Recall

Lemma 4. Using the lemma above and assuming that w = (q1, τ1) · · · (qi, τi), s =

(qi+1, τi+1) · · · (qk, τk), k ≥ 0, Tz =
∑z−1

j=1 tj if z ≤ i, T̂i =
∑i

j=1 ti and Tl+i =

T̂i + t1 + t2 +
∑l+i−1

j=i+1 τj we get

Fc(u, r) =
∑

w1,...,wk,s,z∈Z∗
m

c((q1, w1) · · · (qi, wi)(q, s)(q, z)(qi+1, wi+1) · · · (qk, wk))×

×Vs[ShiftT̂i
(u)](t1)Vz[Shiftt+T̂i

(u)](t2)Π
k
j=1Vwj

[ShiftTj
(u)](τj) =

=
∑

w1...,wk∈Z∗
m

∑

w∈Z∗
m

[c((q1, w1) · · · (qi, wi)(q, w)(qi+1, wi+1) · · · (qk, wk)) ×

×Πk
j=1Vwj

[ShiftTj
(u)](τj)]

∑

sz=w

Vs[ShiftT̂i
(u)](t1)Vz[ShiftT̂i+t1

(u)](t2)

=
∑

w1,...,wk,w∈Z∗
m

{c((q1, w1) · · · (qi, wi)(q, w)(qi+1, wi+1) · · · (qk, wk)) ×

Πk
j=1Vwi

[ShiftTj
(u)](τj)}Vw[ShiftT̂i

(u)](t1 + t2) = Fc(u, p)

It is a natural to ask whether c determines Fc uniquely. It is easy to see that the

function Fc correspond to the function Fcabs
by

Fc(u, (q1, t1) · · · (qk, tk)) = Fcabs
(u, (q1 · · · qk, (t1, . . . , tk)))

It implies that if c, d are two generalised generating convergent series, then Fc = Fd

if and only if Fcabs
= Fdabs

. Thus, Lemma 3 implies the following

Lemma 22. Let L ⊆ Q∗ and let d, c : JL → Y be two convergent generating series.

If Fc = Fd, then c = d.

Now we are ready to define the concept of generalised Fliess-series representation

of a set of input/output maps.

Definition 12 (Generalised Fliess-series expansion). The set of input-output

maps Φ ⊆ F (PC(T,U)×TL,Y) is said to admit a generalised Fliess-series expansion

if for each f ∈ Φ there exist a generating convergent series cf : JL → Y such that

Fcf
= f .

Notice that if Φ has a generalised kernel representation with constraint L, then
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Φ has a generalised Fliess-series expansion given as follows. For each f ∈ Φ, let

cf ((q1, w1) · · · (qk, wk)) =




D|wk|,...,|w1|Kf,Φ
q1···qk

if w1, . . . , wk ∈ {0}∗

D|wk|,...,|wl|−1Gf,Φ
qk···ql

ej if l = min{z | |wz| > 0}, wk, . . . , wl+1 ∈ {0}∗,

wl = vj, v ∈ {0}∗, j ∈ Zm \ {0}

0 otherwise

From Lemma 22 we immediately get the following corollary.

Corollary 13. Any Φ ⊆ F (PC(T,U)×TL,Y) admits at most one generalised kernel

representation with constraint L.

The following proposition gives a description of the Fliess-series expansion of Φ

in the case when Φ is realized by a bilinear switched system.

Proposition 15. (Σ, µ) is a bilinear switched system realization of Φ with constraint

L if and only if Φ has a generalised Fliess-series expansion such that for each f ∈

Φ, (q1, w1) · · · (qk, wk) ∈ JL

cf ((q1, w1) · · · (qk, wk)) = Cqk
Bqk,wk

· · ·Bq1,w1
µ(f) (4.23)

Proof. If (Σ, µ) is a realization of Φ, then by Proposition 13 for each f ∈ Φ, w =

(q1, t1) · · · (qk, tk) ∈ TL, u ∈ PC(T,U)

f(u,w) = yΣ(µ(f), u, w) =

=
∑

w1,...,wk∈Z∗
m

Cqk
Bqk,wk

· · ·Bq1,w1
Vw1,...,wk

[u](t1, . . . , tk)

That is, Φ admits a generalised Fliess-series expansion of the form given in (4.23).

Conversely, if Φ admits a generalised Fliess-series expansion of the form (4.23), then

using Proposition 13 one gets

f(u, (q1, t1) · · · (qk, tk)) =

=
∑

w1,...,wk∈Z∗
m

cf ((q1, w1) · · · (qk, wk))Vw1,...,wk
[u](t1, . . . , tk) =

=
∑

w1,...,wk∈Z∗
m

Cqk
Bqk,wk

· · ·Bq1,w1
µ(f)Vw1,...,wk

[u](t1, . . . , tk) =

= yΣ(µ(f), u, (q1, t1) · · · (qk, tk))

That is, (Σ, µ) is a realization of Φ with constraint L.
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4.2.3 Realization Theory of Bilinear Switched Systems: Ar-

bitrary Switching

In this section realization theory for bilinear switched systems will be developed.

We start with the case when the input/output maps are defined for all switching

sequences. Let Φ ⊆ F (PC(T,U) × (Q × T )+,Y) be a set of input/output maps and

assume that Φ has a generalised Fliess-series expansion. As in the case of linear

switched systems, we will associate with Φ an indexed set of formal power series ΨΦ.

It turns out that every representation of ΨΦ determines a realization of Φ and vice

versa. We will be able to use the theory of formal power series to derive the results

on realization theory.

Recall that Γ̃ = Q × Z∗
m. Let Γ = {(q, j) | q ∈ Q, j ∈ Zm}. Define φ : Γ̃ → Γ by

φ((q, w)) = (q, j1) · · · (q, jk), φ((q, ε)) = ε

where w = j1 · · · jk ∈ Z∗
m, j1, . . . , jk ∈ Zm, k ≥ 0. The map φ determines a monoid

morphisms φ : Γ̃∗ → Γ∗ given by

φ((q1, w1) · · · (qk, wk)) = φ((q1, w1)) · · ·φ((qk, wk))

for each (q1, w1), . . . , (qk, wk) ∈ Γ̃, k ≥ 0. It is also clear that any element of Γ can be

thought of as an element of Γ̃, i.e. we can define the monoid morphism i : Γ∗ → Γ̃∗ by

i(ε) = ε and i((q1, j1) · · · (qk, jk)) = (q1, j1) · · · (qk, jk), (q1, j1), . . . , (qk, jk) ∈ Γ ⊆ Γ̃.

It is also easy to see that φ(i(w)) = w,∀w ∈ Γ∗ and w(q, ε)R∗i(φ(w))(q, ε), q ∈ Q.

For each f ∈ Φ, q ∈ Q define the formal power series Sf,q ∈ Rp ¿ Γ∗ À as follows

Sf,q(s) = cf (i(s)(q, ε)) , ∀s ∈ Γ∗

It is easy to see that in fact cf (v(q, ε)) = Sf,q(φ(v)) = cf (i(φ(v))(q, ε)), since

(v(q, ε), i(φ(v))(q, ε)) ∈ R∗. Assume that Q = {q1, . . . , qN}. Define the formal power

series Sf ∈ RNp ¿ Γ∗ À by

Sf =




Sf,q1

Sf,q2

...

Sf,qN




Define the set of formal power series ΨΦ associated with Φ as follows

ΨΦ = {Sf ∈ RNp ¿ Γ∗ À| f ∈ Φ}

Define the Hankel-matrix HΦ of Φ as the Hankel-matrix of ΨΦ. i.e. HΦ = HΨΦ
.
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Let Σ = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) | q ∈ Q}) be a bilinear switched

system. Define the representation RΣ,µ associated with the realization (Σ, µ) of Φ by

RΣ,µ = (X , {B(q,j)}(q,j)∈Γ, I, C̃)

where B(q,j) = Bq,j : X → X , q ∈ Q, j = 1, . . . ,m, Bq,0 = Aq : X → X , q ∈ Q,

C̃ =




Cq1

Cq2

...

CqN




: X → RpN and If = µ(f) ∈ X , f ∈ Φ.

Let R = (X , {M(q,j)}(q,j)∈Γ, I, C̃) be a representation of ΨΦ. Define the realiza-

tion (ΣR, µR) associated with R by

ΣR = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) | q ∈ Q})

where µR(f) = If ∈ X , f ∈ Φ, Bq,j = M(q,j) : X → X , q ∈ Q, j = 1, . . . ,m,

Aq = M(q,0) : X → X ,q ∈ Q and the maps Cq : X → Y, q ∈ Q are such that

C̃ =




Cq1

...

CqN


. It is easy to see that RΣR,µR

= R. It turns out that there is a close

connection between realizations of Φ and representations of ΨΦ.

Proposition 16. Assume that Φ admits a generalised Fliess-series expansion. Then,

(a) (Σ, µ) realization of Φ if and only if RΣ,µ is a representation of ΨΦ, (b) Con-

versely, R is a representation of ΨΦ if and only if (ΣR, µR) is a realization of Φ.

Proof. It is enough prove Part (a). Part (b) follows from Part (a) by using the equality

RΣR,µR
= R. Assume that Σ = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) | q ∈ Q}).

Notice that the map φ : Γ̃∗ → Γ∗ is surjective and for each w1, . . . , wk ∈ Zm it holds

that

Bq,w1···wk
= Bq,wk

Bq,wk−1
· · ·Bq,w1

= B(q,wk) · · ·B(q,w1) = Bφ(q,w1···wk)

Then it is easy to see that RΣ,µ is a representation of ΨΦ if and only if for all

(q1, w1), . . . , (qk, wk) ∈ Γ̃

cf ((q1, w1) · · · (qk, wk)) = cf ((q1, w1) · · · (qk, wk)(qk, ε)) =

= Sf,qk
(φ((q1, w1)) · · ·φ((qk, wk))) = Cqk

Bφ((q1,w1)) · · ·Bφ((q1,w1))If =

= Cqk
Bqk,wk

· · ·Bq1,w1
µ(f)

But by Proposition 15 this is exactly equivalent to (Σ, µ) being a realization of Φ.
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From the discussion above using Theorem 1 one gets the following characterisation

of realizability.

Theorem 17. Let Φ ⊆ F (PC(T,U) × (Q × T )+,Y). The following are equivalent

(i) Φ has a realization by a bilinear switched system

(ii) Φ has a generalised Fliess-series expansion and ΨΦ is rational

(iii) Φ has a generalised Fliess-series expansion and rank HΦ < +∞

Proof. First we show that (i) ⇐⇒ (ii). By Proposition 15 if (Σ, µ) a bilinear switched

system realization of Φ, then Φ has a generalised Fliess-series expansion. From

Proposition 16 we also get that RΣ,µ is a representation of ΨΦ, i.e. ΨΦ is rational.

Conversely, if Φ has a generalised Fliess-series expansion and R is a representation

of ΨΦ, then from Proposition 16 it follows that (ΣR, µR) is a realization of Φ. Since

by Theorem 1 ΨΦ is rational if and only if rank HΨΦ
= rank HΦ < +∞, we get that

(ii) and (iii) are equivalent.

The next step will be to characterise bilinear switched systems which are min-

imal realizations of Φ. In order to accomplish this task, we need to the following

characterisation of observability and semi-reachability of bilinear switched systems.

Lemma 23. Let Σ be a bilinear switched system. Assume that (Σ, µ) is a realization

of Φ. Let R = RΣ,µ. (Σ, µ) is observable if and only if R is observable. (Σ, µ) is

semi-reachable from Im µ if and only if R is reachable.

Proof. Notice that Bq,w = Bφ((q,w)) and for each (q1, w1), . . . , (qk, wk) ∈ Γ̃

ker C̃Bφ((q1,w1)) · · ·Bφ((qk,wk)) =
⋂

q∈Q

ker CqBq1,w1
· · ·Bqk,wk

Notice that Imµ = {µ(f) | f ∈ Φ} = {If | f ∈ Φ}. Then it follows from Proposition

14 that OΣ = OR and WR = Span{x | x ∈ Reach(Σ, Imµ)}. Then the lemma

follows from Proposition 14 and the definition of observability and reachability for

representations.

It is also easy to see that dim Σ = dim RΣ,µ and dimR = dim ΣR. In fact,

Proposition 16 implies the following.

Lemma 24. If R is a minimal representation of ΨΦ then (ΣR, µR) is a minimal

realization of Φ. Conversely, if (Σ, µ) is a minimal realization of Φ, then RΣ,µ is a

minimal representation of ΨΦ.

147



CHAPTER 4. REALIZATION THEORY OF SWITCHED SYSTEMS

The following lemma clarifies the relationship between representation morphisms

and bilinear switched system morphisms.

Lemma 25. T : (Σ, µ) → (Σ
′

, µ
′

) is a bilinear switched system morphism if and

only if T : RΣ,µ → (Σ
′

, µ
′

) is a representation morphism. Moreover, T is injective,

surjective, an isomorphism as a bilinear switched system morphism if and only if T

is injective, surjective, an isomorphism as a representation morphism.

Proof. T is a bilinear switched system morphism if and only if

TAq = A
′

qT Cq = C
′

qT TBq,j = B
′

q,jT Tµ(f) = µ
′

(f)

for each q ∈ Q, j = 1, 2 . . . ,m and f ∈ Φ. This is equivalent to TB(q,j) = B
′

(q,j)T for

each j ∈ Zm, TIf = Tµ(f) = µ
′

(f) = I
′

f and

C̃ =




Cq1

...

CqN


 =




(C
′

q1
T )

...

(C
′

qN
T )


 = C̃

′

T

That is, T is a representation morphism.

Using the theory of rational formal power series presented in Section 3.1 we get

the following.

Theorem 18. Let Φ ⊆ F (PC(T,U) × (Q × T )+,Y). The following are equivalent

(i) (Σmin, µmin) is a minimal realization of Φ by a bilinear switched system

(ii) (Σmin, µmin) is semi-reachable from Imµ and it is observable

(iii) dim Σmin = rank HΦ

(iv) For any bilinear switched system realization (Σ, µ) of Φ, such that (Σ, µ) is

semi-reachable from Imµ, there exist a surjective homomorphism T : (Σ, µ) →

(Σmin, µmin). In particular, all minimal realizations of Φ by bilinear switched

systems are algebraically similar.

Proof. (Σmin, µmin) is a minimal realization if and only if that Rmin = RΣmin,µmin
is

minimal representation, that is, by Theorem 2 Rmin is reachable and observable. By

Lemma 23 the latter is equivalent to (Σmin, µmin) being semi-reachable from Im µ

and observable. That is, we get that (i) ⇐⇒ (ii). By Theorem 2 a representa-

tion Rmin is minimal if and only if dim Σmin = dimRmin = rank HΦΨ
= rank HΦ.

That is, we showed that (i) ⇐⇒ (iii). To show that (i) ⇐⇒ (iv), notice that
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(Σmin, µmin) is a minimal realization if and only if RΣmin,µmin
is a minimal represen-

tation. By Theorem 2 Rmin is minimal if and only if for any reachable representation

R there exists a surjective representation morphism T : R → Rmin. It means that

(Σmin, µmin) is minimal if and only if for any reachable representation R of ΨΦ there

exists a surjective representation morphism T : R → RΣmin,µmin
. But any reachable

representation R gives rise to a semi-reachable realization of Φ and vice versa. That

is, we get that (Σmin, µmin) is minimal if and only if for any realization (Σ
′

, µ
′

) of

Φ such that (Σ
′

, µ
′

) is semi-reachable from Imµ there exists a surjective represen-

tation morphism T : RΣ′ ,µ′ → RΣmin,µmin
. By Lemma 25 we get that the latter is

equivalent to T : (Σ
′

, µ
′

) → (Σmin, µmin) being a surjective bilinear switched system

morphism. From Corollary 1 it follows that if (Σ
′

, µ
′

) is a minimal realization of

Φ, then there exists a representation isomorphism T : RΣ′ ,µ′ → RΣmin,µmin
which

means that (Σmin, µmin) is gives rise to the bilinear switched system isomorphism

T : (Σ
′

, µ
′

) → (Σmin, µmin), that is, (Σ
′

, µ
′

) and (Σmin, µmin) are algebraically

similar.

4.2.4 Realization Theory of Bilinear Switched Systems: Con-

strained switching

The case of restricted switching is slightly more involved. As in the case of arbitrary

switching, we will associate a set ΨΦ of formal power series over Γ with the set of

input-output maps Φ ⊆ F (PC(T,U) × TL,Y). Every representation of ΨΦ gives

rise to a realization of Φ. If L is a regular language, then existence of a realization

of Φ implies existence of a representation of ΨΦ. However, the dimension of the

minimal representation of ΨΦ might be bigger than the dimension of a realization of

Φ. Any minimal representation of ΨΦ gives rise to an observable and semi-reachable

realization of Φ. But this observable and semi-reachable realization need not be a

minimal one. Extraction of the right information from Φ and the construction of ΨΦ

is much more involved in the case of restricted switching than in the case of arbitrary

switching.

Recall the definition of the relation R∗ ⊆ Γ̃∗ × Γ̃∗ from Subsection 4.2.2. Define

the set J̃L ⊆ Γ̃∗ by

J̃L = {s ∈ Γ̃∗ | ∃w ∈ JL : (w, s) ∈ R∗}

In fact, J̃L contains all those sequences in Γ̃∗ for which we can derive some infor-

mation based on the values of a convergent generating series for sequences from JL.

More precisely, if c : JL → Y is a generating convergent sequence, then c can be

extended to a generating convergent series c̃ : J̃L → Y by defining c̃(s) = c(w)
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for each s ∈ J̃L, w ∈ JL, (s, w) ∈ R∗. It is clear that for any s ∈ J̃L there ex-

ists a w ∈ JL such that (s, w) ∈ R∗ and if (s, w), (s, v) ∈ R∗, w, v ∈ JL, then

c(w) = c(v) = c̃(s), since c was assumed to be a generating convergent series. If

(s, x) ∈ R∗, then c̃(s) = c̃(x). Moreover, if (s, w) ∈ R∗ and s = (z1, x1) · · · (zl, xl) and

w = (q1, v1) · · · (qk, vk), then from the definition of R it follows that
∑k

1 |vi| =
∑l

1 |xi|,

that is, ||c̃(s)|| = ||c(w)|| ≤ KM |v1| · · ·M |vk| = KM
Pk

1 |vi| = KM
Pl

1 |xl|. That is,

c̃ : J̃L → Y is indeed a generating convergent series. Moreover, on JL the sequence

c̃ coincides with c, that is, if w ∈ JL, then c̃(w) = c(w). By abuse of notation, we

will denote c̃ simply by c in the sequel.

For each q ∈ Q define JLq = {v(q, w) ∈ J̃L | v ∈ Γ̃∗, (q, w) ∈ Γ̃}. Let Lq = {w ∈

Γ∗ | ∃v ∈ JLq : φ(v) = w}. Notice that

w ∈ Lq ⇐⇒ i(w)(q, ε) ∈ JLq

Indeed, if i(w)(q, ε) ∈ JLq, then φ(i(w)(q, ε)) = φ(i(w)) = w ∈ Lq. Conversely, if w ∈

Lq, then w = φ(v) for some v ∈ JLq. But then v = u(q, z) and (u(q, z)(q, ε), u(q, zε) =

v) ∈ R∗ and (v(q, ε), i(w)(q, ε)) ∈ R∗ which implies (v, i(w)(q, ε)) ∈ R∗. Since v ∈ J̃L,

we know that i(w)(q, ε) ∈ J̃L, that is, i(w)(q, ε) ∈ JLq.

Let Φ ⊆ F (PC(T,U)×TL,Y) be a set of input/output maps defined on sequences

of discrete modes belonging to L. Assume Φ admits a generalised Fliess-series ex-

pansion. For each q ∈ Q, f ∈ Φ define the formal power series Tf,q ∈ Rp ¿ Γ∗ À

by

Tf,q(s) =

{
cf (i(s)(q, ε)) if s ∈ Lq

0 otherwise

Notice that for each s ∈ Lq there exists a w = u(q, v) ∈ JL such hat Tf,q(s) = cf (w).

Indeed, s ∈ Lq implies that there exists a w = (q1, x1) · · · (ql, xl)(q, xl+1) ∈ JL

such that (w, i(s)(q, ε)) ∈ R∗. Thus Tf,q(s) = cf (i(s)(q, ε)) = cf (w). The intuition

behind the definition of Tf,q is the following. We store in Tf,q the values of all those

cf (s) which show up in the generalised Fliess-series expansion of f(u,w), for some

switching sequence w ∈ TL such that w ends with discrete mode q. For all the other

sequences from Γ∗ we set the value of Tf,q to zero.

Assume that Q = {q1, . . . , qN}. Define the formal power series Tf ∈ RNp ¿ Γ∗ À

by

Tf =




Tf,q1

Tf,q2

...

Tf,qN
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Define the set of formal power series ΨΦ associated with Φ as follows

ΨΦ = {Tf ∈ RNp ¿ Γ∗ À| f ∈ Φ}

Define the Hankel-matrix HΦ of Φ as the Hankel-matrix of ΨΦ, that is, HΦ = HΨΦ
.

For each q ∈ Q define the formal power series Zq ∈ Rp ¿ Γ∗ À by Zq(w) ={
(1, 1, . . . , 1)T if w ∈ Lq

0 otherwise
. Let Z ∈ RNp ¿ Γ À be

Z =




Zq1

...

ZqN




and let Ω be the indexed set {Z | f ∈ Φ}, i.e Ω : Φ → RNp ¿ Γ∗ À and Ω(f) =

Z, f ∈ Φ. With the notation above, the following holds.

Lemma 26. Let Σ = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) | q ∈ Q}) be a bilinear

switched system. Assume that (Σ, µ) is a realization of Φ and Φ admits a generalised

Fliess-series expansion. Let Φ
′

= {yΣ(µ(f), ., .) ∈ F (PC(T,U) × (Q × T )+,Y) | f ∈

Φ} and let Ψ
′

Φ be the set of formal power series associated with Φ
′

as defined in

Subsection 4.2.3. That is, ΨΦ′ = {Sg ∈ RNp ¿ Γ À| g ∈ Φ
′

}. Let Sf = SyΣ(µ(f),.,.)

and let Θ = {Sf | f ∈ Φ}. Then the following holds

ΨΦ = Θ ¯ Ω

Proof. Define µ
′

: Φ
′

→ X by µ
′

(yΣ(µ(f), ., .)) = µ(f). Since (Σ, µ) is a realiza-

tion of Φ, if for some f1, f2 ∈ Φ it holds that yΣ(µ(f1), ., .) = yΣ(µ(f2), ., .), then

f1 = yΣ(µ(f1), ., .)|PC(T,U)×TL = yΣ(µ(f2), ., .)|PC(T,U)×TL = f2. That is, f1 = f2

and thus µ
′

is well-defined. It is also easy to see that (Σ, µ
′

) realizes Φ
′

, therefore Φ
′

has a generalised Fliess-series expansion. For each f ∈ Φ, denote by cf : J̃L → Y the

generating convergent series corresponding to f , i.e. Fcf
= f . Denote by df : Γ̃∗ → Y

the series corresponding to yΣ(µ(f), ., .), i.e. Fdf
= yΣ(µ(f), ., .). By Proposition

15 (Σ, µ) is a realization of Φ with constraint L, if and only if ∀w(q, v) ∈ JL :

cf (w(q, v)) = CqBq,vBφ(w)µ(f). Here we used the fact that if w = (q1, z1) · · · (qk, zk),

then Bqk,zk
· · ·Bq1,z1

= Bφ(w). But (Σ, µ
′

) realizes Φ
′

, so by Proposition 15 it

holds that ∀s(q, x) ∈ J̃L : df (s(q, x)) = CqBq,xBφ(s)µ
′

(yΣ(µ(f), ., .)). Notice that

if (s(q, x), w(q, v)) ∈ R∗, then φ(s(q, x)) = φ(w(q, v)), and therefore Bq,vBφ(w) =

Bφ(w(q,v)) = Bφ(s(q,x)) = Bq,xBφ(s). Notice that µ(f) = µ
′

(yΣ(µ(f), ., .)). Thus for

each s(q, x) ∈ J̃L, w(q, v) ∈ JL we get that cf (s(q, x)) = cf (w(q, v)) = df (s(q, x)).

Thus, for each q ∈ Q, f ∈ Φ, s ∈ Lq we get that Tf,q(s) = cf (i(s)(q, ε)) =

df (i(s)(q, ε)) = Sf,q(s). Notice that for each s /∈ Lq, Tf,q(s) = 0 and Zq(s) = 0.

That is, Tf,q = Sf,q ¯ Zq and therefore Tf = Sf ¯ Z.
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If L is regular, then Ω turns out to be a rational indexed set.

Lemma 27. If L is regular, then Lq, q ∈ Q are regular languages and Ω is a rational

indexed set of formal power series.

Proof. It is enough to show that if L is a regular language, then Lq, q ∈ Q are regu-

lar languages. Indeed, if Lq, q ∈ Q are regular, then {eT
j Zq}, q ∈ Q, j = 1, . . . , p are

rational sets of formal powers series, since eT
j Zq(w) = 1 ⇐⇒ w ∈ Lq. Therefore,

{Z =
[
ZT

q1
· · · ZT

qN

]T

} is a rational set, therefore Ω is a rational indexed set of

formal power series by Lemma 5. Define prQ : Γ∗ → Q∗ by prQ((q1, j1) · · · (qk, jk)) =

q1 · · · qk. Recall from Subsection 7.1.2 the definition of the sets Fq(w) and L̃q. Lemma

19 says that if L is regular, then L̃q is regular. We shall prove that Lq = pr−1
Q (L̃q).

From this equality it follows that if L̃q is regular, then Lq is regular. Indeed, prQ is

a monoid morphism, and therefore can be realized by a regular transducer see [17].

Then the regularity of Lq follows from the classical result on regular transducers.

Alternatively, if A = (S,Q, δ, F ) is a finite automaton accepting L̃q, then the deter-

ministic finite automaton A
′

= (S,Γ, δ
′

, F ) defined by δ
′

(s, (q, j)) = δ(s, q), (q, j) ∈

Γ, s ∈ S accepts Lq.

We now proceed with the proof of the equality Lq = pr−1
Q (L̃q). First we show

that Lq ⊆ pr−1
Q (L̃q). If v = (q1, j1) · · · (qt, jt) ∈ Lq, then there exists w(q, z) ∈ JLq,

such that φ(w(q, p)) = v. Let w = (z1,m1) · · · (zk,mk). Then z1 · · · zkq ∈ L. Let l =

min{j | |mj | > 0}. Let s = z1 · · · zl−1, x = zl · · · zk. From φ(w(q, z)) = v it follows

that zl = q1 = · · · = q|ml|, zi+1 = q|mi|+1 = · · · = q|mi+1|, for i = l, l + 1, . . . , k − 1,

q|mk|+1 = · · · qt = q, and |p| +
∑k

i=1 |mi| = t. That is, we get that q1 · · · qtq =

z
|ml|
l · · · z

|mk|
k q|p|q and sxq = z1 · · · zkq ∈ L, that is, (s, ((|m1|, . . . , |mk|, |p|), x) ∈

Fq(q1 · · · qt), i.e. q1 · · · qt = prQ((q1, j1) · · · (qt, jt)) ∈ L̃q. That is, Lq ⊆ pr−1
Q (L̃q).

Let w ∈ L̃q and let (u, (α, h)) ∈ Fq(w). Assume that u = q1 . . . q|u| and h = z1 · · · zk,

q1, . . . , q|u|, z1, . . . zk ∈ Q. Since w = zα1
1 · · · zαk

k , we get that v ∈ pr−1
Q (w) if and only

if v = v1 · · · vk, vi = (zi, j1,i) · · · (zi, jαi,i) ∈ Γ∗, |vi| = αi, ji,j ∈ Zm, i = 1, . . . , αj , j =

1, . . . , k. Let ji = j1,ij2,i . . . jαi,i, s = (q1, ε) · · · (q|u|, ε)(z1, j1) · · · · · · (zk, jk). Since

uv ∈ L, we have that s ∈ JL and zk = q implies that s ∈ JLq. But φ(s) =

φ((z1, j1) · · · (φ(zk, jk)) = v1 · · · vk ∈ Lq. That is, pr−1
Q (L̃q) ⊆ Lq, and consequently

Lq = pr−1
Q (L̃q).

Let R = (X , {Mz}z∈Γ, I, C) be a representation of ΨΦ. Define the bilinear

switched system realization (ΣR, µR) associated with R as in Section 4.2.3. That

is,

ΣR = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) | q ∈ Q}) and µR(f) = If
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where Cq : X → Y, q ∈ Q are such that C =




Cq1

...

CqN


, Bq,j = M(q,j), Aq = M(q,0),

q ∈ Q, j = 1, . . . ,m. It is easy to see that (ΣR, µR) is semi-reachable (observable) if

and only if R is reachable (observable).

Recall from Subsection 4.1.4 the definition of comp(L):

comp(L) = {w1 · · ·wk ∈ Q∗ | L̃wk
= ∅, w1, . . . , wk ∈ Q}

The following statement is an easy consequence of Proposition 15.

Theorem 19. If Φ has a generalised Fliess-series expansion with constraint L and

R = (X , {Bz}z∈Γ, I, C̃) is a representation of ΨΦ, then (ΣR, µR) is a realization of

Φ. That is, if ΨΦ is rational, then Φ has a realization by a bilinear switched system.

Moreover, for each f ∈ Φ, w ∈ T (comp(L))

∀u ∈ PC(T,U) : yΣ(µ(f), u, w) = 0

Proof. Let (ΣR, µR) the realization associated with R. Assume that

ΣR = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) | q ∈ Q})

Since R is a representation of ΨΦ, we get that for each (q1, w1) · · · (qk, wk) ∈ JL,

f ∈ Φ

cf ((q1, w1) · · · (qk, wk)) = Tf,qk
(φ((q1, w1) · · · (qk, wk))) =

= Cqk
Bφ((qk,wk)) · · ·Bφ((q1,w1))If = Cqk

Bqk,wk
· · ·Bq1,w1

µ(f) (4.24)

We used the definition of (ΣR, µR) and the fact that B(q,j1)···(q,jl) = Bφ((q,j1···jl)) for

each q ∈ Q, j1, . . . , jl ∈ Zm. From Proposition 15 we get that (4.24) implies that

(ΣR, µR) is a realization of Φ.

Let w = (q1, t1) · · · (qk, tk) ∈ T (comp(L)), that is, L̃qk
= ∅. Then for each

s = (q1, w1) · · · (qk, wk) ∈ Γ̃∗ we get that Tf,qk
(φ(s)) = 0, since φ(s) /∈ Lqk

. Indeed,

L̃qk
= ∅ and from the proof of Lemma 27 we know that Lq = pr−1

Q (L̃q). If φ(s) ∈ Lqk
,

then we get that prQ(φ(s)) ∈ L̃qk
= ∅, a contradiction. But g = yΣ(µ(f), ., .)

has a generalised Fliess-series expansion, and from Proposition 15 it follows that

cg((q1, w1) · · · (qk, wk)) = Cqk
Bqk,wk

· · ·Bq1,w1
µ(f). Since R is a representation of

ΨΦ, we also get that Cqk
Bqk,wk

· · ·Bq1,w1
µ(f) = Cqk

Bφ((qk,wk)) · · ·Bφ((q1,w1))If =

Tf,qk
(φ((q1, w1) · · ·φ(qk, wk)) = 0. That is, if q1 · · · qk ∈ comp(L), then for each

w1, . . . , wk ∈ Z∗
m it holds that

cg((q1, w1) · · · (qk, wk)) = 0
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Then the definition of Fcg
implies that Fcg

= g = 0 for each q1 · · · qk ∈ T (comp(L)).

We see that rationality of ΨΦ, i.e. the condition that rank HΦ < +∞, is a

sufficient condition for realisability of Φ. It turns out that if L is regular, this is also

a necessary condition. From the discussion above, Lemma 26 and Lemma 6 one gets

the following.

Theorem 20. Assume that L is regular. Then the following are equivalent.

(i) Φ has a realization by a bilinear switched system

(ii) Φ has a generalised Fliess-series expansion and rank HΦ < +∞

(iii) There exists a realization of Φ by a bilinear switched system (Σ, µ) such that Σ

is observable and semi-reachable from Imµ and

∀f ∈ Φ : yΣ(µ(f), ., .)|PC(T,U)×T (compl(L)) = 0 (4.25)

and for any (Σ
′

, µ
′

) bilinear switched system realization of Φ

dim Σ ≤ rank HΩ · dim Σ
′

(4.26)

Proof. (i) ⇐⇒ (ii)

By Lemma 26, if (Σ, µ) is a realization of Φ, then Φ has a generalised Fliess-series

expansion and ΨΦ = Θ ¯ Ω. Since (Σ, µ) is a realization of Φ
′

= {yΣ(µ(f), ., .) | f ∈

Φ} we get that ΨΦ′ is rational. Define the map Φ 3 f 7→ i(f) = yΣ(µ(f), ., ) ∈ Φ
′

.

Since Θ = {Si(f) | f ∈ Φ}, Lemma 8 implies that Θ is rational. Since L is regular,

by Lemma 27 Ω is rational, therefore by Lemma 6 ΨΦ = Θ ¯ Ω is rational, that is,

rank HΦ < +∞. Conversely, if Φ admits a generalised Fliess-series expansion and

rank HΦ < +∞, i.e. ΨΦ is rational, then there exists a representation R of ΨΦ and

by Theorem 19 (ΣR, µR) is a realization of Φ

(ii) ⇐⇒ (iii)

It is clear that (iii) implies (i), which implies (ii). We will show that (ii) implies (iii).

Assume that Φ admits a generalised Fliess-series expansion and ΨΦ is rational. Let R

be the minimal representation of ΨΦ. Then (ΣR, µR) is a realization of Φ, moreover

ΣR is observable and semi-reachable from Imµ. From Theorem 19 it follows that

yΣ(µR(f), ., .)|PC(T,U)×T (comp(L)) = 0

Let (Σ
′

, µ
′

) be a realization of Φ. Then R
′

= RΣ′ ,µ′ is a representation of ΨΦ′ ,

where Φ
′

= {yΣ′ (µ
′

(f), ., .) | f ∈ Φ}. From Lemma 26 we know that ΨΦ = Θ ¯ Ω,
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where Θ = {Sy
Σ
′ (µ

′ (f),.,.) | f ∈ Φ}. Assume that R
′

= (X
′

, {B
′

z}z∈Γ, I
′

, C
′

). Then

R̃ = (X
′

, {B
′

z}z∈Γ, Ĩ , C
′

), where Ĩf = Iy
Σ
′ (µ

′ (f),.,.), f ∈ Φ, is a representation of Θ.

But R is a minimal representation of ΨΦ, therefore dim R = dim ΣR = rank HΨΦ
.

From Lemma 6 it follows that rank HΨΦ
= rank HΘ¯Ω ≤ (rank HΩ)(rank HΘ).

Since dim Σ = dim R
′

= dim R̃ ≥ rank HΘ, we get that

dim ΣR ≤ rank HΩ · dim Σ
′

Taking (ΣR, µR) for (Σ, µ) completes the proof.

The following example demonstrates existence of a semi-reachable and observable

realization of Φ, which is non-minimal.

Example

Let Q = {1, 2}, L = {qk
1q2 | k > 0}, Y = U = R. Define the generating series

c : J̃L → R by c((q1, w1)(q2, w2)) = 2k, where w2 = 0j0z1 · · · zl0
jl , k =

∑l
i=0 jl, zi ∈

{1}∗, i = 1, . . . , l. Let Φ = {Fc}. Define the system Σ1 = (R, R, R, Q, {(Aq, Bq,1Cq) |

q ∈ {q1, q2}}) by Aq1
= 1, Bq1,1 = 1, Cq1

= 1 and Aq2
= 2, Bq2,1 = 1, Cq2

= 1 . Define

the system Σ2 = (R2, R, R, Q, {(Ãq, B̃q,1,

C̃q) | q ∈ Q}) by

Ãq1
=

[
1 0

0 0

]
B̃q1,1 =

[
1 0

0 0

]
C̃q1

=
[
0 0

]

Ãq2
=

[
0 0

2 2

]
B̃q2,1 =

[
0 0

1 1

]
C̃q2

=
[
1 1

]

Let µ1 : Fc 7→ 1 and µ2 : Fc 7→ (1, 0)T ∈ R2. Both (Σ1, µ1) and (Σ2, µ2) are

semi-reachable from Imµ1 and Imµ2 respectively and they are observable, therefore

they are the minimal realizations of yΣ1
(1, ., .) and yΣ2

((1, 0)T , ., .). Moreover, it is

easy to see that (Σi, µi), i = 1, 2 are both realizations of Φ with constraint L. Yet,

dim Σ1 = 1 and dim Σ2 = 2. In fact, Σ2 can be obtained by constructing the minimal

representation of ΨΦ, i.e., Σ2 is a realization of Fc satisfying part (iii) of Theorem

20.
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Chapter 5

Reachability of Linear

Switched Systems

This chapter deals with the reachability and the structure of the reachable set of

linear switched systems. The issue of reachability for linear switched systems has

been addressed in a number of papers, see [69, 86]. An exhaustive study of the

reachability of linear switched systems is presented in [69]. On the level of results

the current chapter doesn’t offer anything more than [69]. The novelty lies in the

methods which are used to prove these results. Namely, the current chapter uses

techniques from differential geometric theory of nonlinear systems theory to derive the

structure of the reachable set. The main tool is the theory of orbits, developed by H.

Sussmann in [71], and realization theory for nonlinear systems by B. Jakubczyk [34].

The theory of orbits allows one to compute the structure of the set of states which

are weakly reachable, i.e. reachable in positive or negative time from zero. This, in

turn, allows the application of the classical nonlinear conditions for accessibility to

the system restricted to the set of the weakly reachable states. Accessibility of the

restricted system and the linear structure of the weakly reachable set makes it easy

to determine the structure of the reachable set.

In the author’s opinion, the proof presented in this chapter is more conceptual

and it makes the connection between the classical systems theory and the theory of

hybrid systems more transparent. The author also hopes that the methods employed

in the chapter can be extended to more general classes of hybrid systems.

The outline of the chapter is the following. Section 5.1 gives the precise mathe-

matical formulation of concepts and problems which are dealt with in this chapter.

Some elementary properties of switched systems are also presented in Section 5.1.
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This section also contains the statement of the main result. Section 5.2 contains the

results from classical nonlinear systems theory, which are needed for the proof of the

main result. Section 5.3 contains the proof main result of the chapter, the structure

of the reachable set of linear switched systems. The chapter contains most of the

results on nonlinear systems theory and differential geometry needed to derive the

main results. Nevertheless some basic knowledge of these subjects is necessary to

follow all the details. Good references on these topics are [78, 5].

Note that using the results of [60] could also be a potentially useful approach to

determining the structure of the reachable set of linear switched systems. In fact,

using those results might even lead to a less involved proof. In this chapter we will

not pursue this approach. Note, however, that our discussion on the role of second

countability in application of Jakubczyk’s realization theorem was inspired by similar

results in [60]

5.1 Preliminaries

This sections some elementary properties of switched systems. At the end of the

section the main theorem of the chapter is formulated. Recall from Chapter 4, Section

4.1 the definition and basic properties of linear switched systems. Throughout this

chapter we will study linear switched systems with the the fixed initial state 0. In

particular, we will be interested in the set of reachable states from the initial state 0.

In order to simplify notation, we will denote by Reach(Σ) the set of states reachable

from 0, i.e. Reach(Σ) = Reach(Σ, {0}). As a further simplification, we will denote

the state-trajectory map xΣ simply by x whenever it doesn’t create confusion. That

is, the expression x(x0, u, w) simply denotes xΣ(x0, u, w).

Denote by PCconst(T,U) the set of piecewise-constant input functions. A function

u(.) : T → U is called piecewise-constant if for each [t0, tk] ⊆ T there exist t0 < t1 <

· · · < tk−1 < tk such that u|[ti,ti+1] is constant for all i = 0 . . . k − 1. It is well-known

that for each u(.) ∈ PC(T,U) there exists a sequence un(.) ∈ PCconst(T,U), n ∈ N

such that limn→+∞ un(.) = u(.) in ||.||1 norm. More precisely, for each S ∈ T , S > 0,

limn→+∞ un|[0,S] = u|[0,S] if both un|[0,S] and u[0,S] are viewed as elements of the

space L1([0, S],U) of integrable measurable functions and the limit is taken in the

usual topology ( the topology induced by the norm ||.||1 ) of this space. Given a

switched system Σ, by continuity of solutions of differential equations on inputs, see

[26], we get that

∀x ∈ X : ∀w ∈ (Q × T )∗,∀u(.) ∈ PC(T,U),∀un(.) ∈ PCconst(T,U) :

lim
n→∞

un(.) = u(.) in ||.||1 =⇒ lim
n→∞

x(x, un(.), w) = x(x, u(.), w) point-wise (5.1)
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The set of states reachable by piecewise-constant input is defined as

Reachconst(Σ) = {x(0, u, w) ∈ X | w ∈ (Q × T )∗, u(.) ∈ PCconst(T,U)}

From (5.1) one gets immediately following proposition

Proposition 17. Given a switched system Σ, the set of states reachable by piecewise-

constant input is dense in the set Reach(Σ), i.e.

Cl(Reachconst(Σ)) = Reach(Σ)

For any u ∈ PC(T,U), w, v ∈ (Q × T )∗ it holds that x(0, u, w(q, t)(q, t
′

)v) =

x(0, u, w(q, t + t
′

)v). Define R ⊆ (Q× T )∗ × (Q× T )∗ by w(q, t)(q, t
′

)vRw(q, t + t
′

)v

and let R∗ be the smallest equivalence relation containing R.

Proposition 18. For any u ∈ PCconst(T,U) and w ∈ (Q × T )∗ there exists w
′

=

(q1, t1) · · · (qk, tk), w
′

R∗w such that ∀i = 1, 2, . . . , k the function u|[
Pi−1

1 tj ,
P

i
1 tj ]

is a

constant.

It is clear that for any w = (q1, t1)(q2, t2) · · · (qk, tk) ∈ (Q × T )∗ the value

x(x0, u(.), w) depends on u(.)|[0,
P

k
1 ti)

. Proposition 17 and Proposition 18 imply

that without loss of generality it is enough to consider pairs (w, u) where w =

(q1, t1) · · · (qk, tk) ∈ (Q×T )∗ and u ∈ PC([0,
∑k

1 ti],U), u|[
Pi−1

1 tj ,
P

i
1 tj)

= ui ∈ U for

i = 1, 2, . . . k.

In the sequel we will use the following abuse of notation. For each x ∈ X , u ∈ U∗,

w ∈ Q∗ and τ ∈ T ∗ such that |t| = |w| = |u| we define

x(x, u, w, τ) := x(x, ũ, (w1, t1)(w2, t2) · · · (wk, tk))

where ũ|[
Pj−1

1 ti,
Pj

1 ti)
= uj for j = 1, 2, . . . , k, and ũ|[

P
k
1 ti,+∞) is arbitrary. x(x0, ., ., .)

will be considered as function with its domain in (U × Q × T )∗ or equivalently in

{(u,w, τ) ∈ U∗ × Q∗ × T ∗ | |u| = |w| = |τ |}. It is easy to see that

Reachconst(Σ) = {x(x0, u, w, τ) | (u,w, τ) ∈ (U × Q × T )∗}

The main result of the chapter is the following.

Theorem 21. Consider a switched linear system

Σ = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}).

(a)

Reach(Σ) = {Aj1
q1

Aj2
q2
· · ·Ajk

qk
Bzu | q1, q2, . . . qk, z ∈ Q, j1, j2, . . . jk ≥ 0, u ∈ U}

(b) There exists a switching sequence w ∈ (Q × T )+ such that

Reach(Σ) = {x(0, u, w) | u ∈ PC(T,U)}
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5.2 Preliminaries on Nonlinear Systems Theory

Below the results of [71, 34, 78] will be reviewed. Basic knowledge of differential

geometry is assumed. For references see [5]. In the sequel, unless stated other-

wise, by manifold we mean a smooth finite-dimensional manifold, i.e. a topological

space,which is a Hausdorff space, second countable and locally homeomorphic to open

subsets of Rn, and is endowed with a smooth (analytic) differentiable structure. Let

M be a manifold. Then for each x ∈ M the tangent space of M at x will be denoted

by TxM , the tangent bundle of M will be denoted by TM =
⋃

TxM . Let X be a

vector field of M . Then Xt(x) denotes the flow of X passing through the point x

at time t. The mapping D : M → 2TM is called a distribution if for each x ∈ M

, D(x) is a subspace of TxM . A sub-manifold N of M is an integral sub-manifold

of the distribution D if for each x ∈ N it holds that D(x) = TxN . A sub-manifold

N of M is called the maximal integral sub-manifold of D if N is connected, it is an

integral sub-manifold of D and for each N
′

connected integral sub-manifold of D it

holds that (N
′

∩ N 6= ∅ =⇒ N
′

⊆ N and N
′

is open in N). If N is a maximal

integral sub-manifold of D and x ∈ N then N is said to be the maximal integral sub-

manifold of D passing through x. If for each x ∈ M there exists a maximal integral

sub-manifold of D passing through x then D is said to have the maximal integral

sub-manifold property. There exists at most one maximal integral sub-manifold of

D passing through x ∈ M .

Let F = {Xγ |γ ∈ Γ} be a family of vector fields. The orbit of F through a point

x ∈ M is the set

MF
x = {Xt1

1 ◦ Xt2
2 ◦ · · ·Xtk

k (x)|Xi ∈ F , ti ∈ R, i = 1, · · · , k}

Let F be a family of vector fields over M . Define the distribution DF as DF (x) =

span{X(x)|X ∈ F}. The distribution D is called F-invariant if

(1) ∀x ∈ M : DF (x) ⊆ D(x)

(2) ∀v ∈ D(x), ∀g : M → M

g(x) = Xt1
1 ◦ Xt2

2 ◦ · · · ◦ Xtk

k (x) =⇒
dg

dx
(x)v ∈ D(g(x))

where Xi ∈ F , ti ∈ R, i = 1, · · · k

Denote by PF the smallest F-invariant distribution containing DF . The main result

of [71] is the following.

Theorem 22 (Existence of maximal integral manifold). For each x ∈ M the

set MF
x with a suitable topology and differentiable structure is a maximal integral
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sub-manifold of PF . DF has maximal integral sub-manifold property if and only if

DF = PF .

Everything stated above also holds for analytic manifolds. For analytic manifolds

the following, stronger result holds.

Proposition 19. Let M be an analytic manifold, let F be a family of analytic vector

fields. Denote the smallest involutive distribution containing DF by D∗
F . Then D∗

F

has the maximal integral sub-manifold property. The maximal integral manifold of

the distribution D∗
F passing through a point x is the orbit of F passing through x, i.e

MF
x .

Let M be a manifold, and let F be a family of vector fields over M . Let x be an

element of M . The reachable set of F from x is defined as

Reach(F , x) = {Xt1
1 ◦ Xt2

2 ◦ · · · ◦ Xtk

k (x)|Xi ∈ F , ti ≥ 0, i = 1, . . . , k}

Below the main results of [34] will briefly be recalled. Let (G, ·) be a group,

p : G → Rn be a function. Let · : G × R → G be a surjective mapping. The

triple Γ = (G, p, Rn) is called an abstract system. Let a = (a1, a2, . . . , ap) ∈ Gp,

b = (b1, b2, . . . bk) ∈ Gk and define ψ
b
a : Rp → Rkn by

ψb
a(t) :=

[
p((t1 · a1)(t2 · a2) · · · (tp · ap)b1), · · · , p((t1 · a1)(t2 · a2) · · · (tp · ap)bk)

]

The abstract system Γ is called smooth if ψ
b
a is a smooth map for all a ∈ Gp, b ∈ Gk.

Denote by Dψ
b
a(t) the Jacobian of ψ

b
a at t ∈ Rp. Then the rank of p is defined

to be n = supa,b,t Dψ
b
a(t) A smooth representation of Γ is a tuple Θ = (M, {φa |

a ∈ G}, h, x0) where M is a smooth Hausdorff manifold, not necessarily second-

countable, φa : M → M are diffeomorphisms for which φab = φb ◦ φa and φ1 = idM

holds, h : M → Rn is a smooth map, x0 ∈ M is the initial state. Further, for all

a = (a1, a2, · · · , ap) ∈ Gp define ψa : Rp → M by ψa(t) = φ(t1a1)(t2a2)···(tpap)(x0).

We require that ψa is smooth for all a ∈ Gp and that p(a) = h(ψa(x0)). If

Θ = (M, {φa | a ∈ G}, h, x0) is a representation of the abstract system Γ, then

ψ
b
a =

[
h ◦ φb1 ◦ ψa, · · · , h ◦ φbp

◦ ψa

]
. A representation is called reachable if

M = {ψa(x0) | a ∈ G} holds. A representation is called transitive, if ∀x, y ∈ M(∃g ∈

G : y = φg(x)) holds. If x = φg1
(x0) and y = φg2

(x0) then y = φg−1
1 g2

(x). It means

that a representation is transitive if and only if it is reachable. A representation is

called distinguishable if for all x1 6= x2 ∈ M it holds that h(φa(x1)) 6= h(φa(x2))

for all a ∈ G. A transitive and distinguishable representation is called minimal. Let

Θ1 = (M1, {φ
1
a | a ∈ G}, h1, x1

0) and Θ2 = (M2, {φ
2
a | a ∈ G}, h2, x2

0) be two smooth
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representations. A smooth map χ : M1 → M2 is a homomorphism from the repre-

sentation Θ1 to the representation Θ2 if the following conditions hold: χ(x1
0) = x2

0,

h2 ◦ χ = h1 and φ2
a ◦ χ = χ ◦ φ1

a. In [34] the following theorem is proved.

Theorem 23. Every smooth abstract system (G, p, Rn) with finite rank has a mini-

mal smooth representation Θ = (M, {φa | a ∈ G}, h, x0) with dimM = rank p. If Θ
′

is a minimal smooth representation of (G, p, Rn), then there exists a homomorphism

χ 1 from Θ to Θ
′

such that χ is a bijective map and rank χ = rank p.

5.3 Structure of the Reachable Set

Below we are going to apply the results from the previous section to determine the

structure of the reachable set. The outline of the procedure is the following

• Given a linear switched system Σ, we associate a family of vector fields F over

Rn with it.

• Determine the smallest distribution D = PF invariant w.r.t the family of vector

fields constructed above. Find another family of vector fields F
′

which spans

the distribution.

• Consider the orbit MF
0 of F passing through 0. By Theorem 22 it is the maxi-

mal integral sub-manifold of PF . But again by Theorem 22 and by uniqueness

of maximal integral sub-manifold MF
0 = MF

′

0 .

• By direct computation we find the structure of MF
′

0 which turns out to be a

subspace of Rn in the case of linear switched systems. Moreover, computation

shows that MF
′

0 = D(0). Therefore, by taking MF
′

0 with subspace topology,

and proper differentiable structure, it will be a regular sub-manifold of Rn

and for each x ∈ MF
′

0 it holds that D(x) = TxMF
′

0 . Moreover, dimMF
′

0 =

dim D(0).

• Consider the restriction Σ
′

of our switched system Σ to MF
0 . Clearly,

Reach(Σ) = Reach(Σ
′

) ⊆ MF
′

0 . Using the structure of MF
0 = MF

′

0 , Theorem

21 can be proved, either by using the results of [34] or by applying an elementary

construction.

1In [34] χ is claimed to be a diffeomorphism. However, the author of the current paper failed

to see how this stronger statement follows from the proof presented in [34], unless M is second-

countable.

161



CHAPTER 5. REACHABILITY OF LINEAR SWITCHED SYSTEMS

The rest of the subsection is devoted to carrying out the steps described above in a

more formal way.

Consider a linear switched system Σ. Assume that for each q ∈ Q and u ∈ U

the dynamics is given by
·
x= fq(x, u) = Aqx + Bqu. The family of vector fields F

associated with Σ is defined as

F = {Aqx + Bqu|q ∈ Q,u ∈ U}

The proof of the lemma below is given in the Appendix 5.4

Lemma 28. Consider a linear switched system Σ and the associated family of vector

fields F . The smallest involutive distribution containing F is of the following form

D∗
F (x) = Span{Aj1

i1
Aj2

i2
· · ·Ajk

ik
Bzu | i1, i2, · · · ik, z ∈ Q, j1, j2, · · · jk ≥ 0, u ∈ U}

∪{[Ai1 , [Ai2 , · · · [Aik−1
, Aik

] · · · ]x|i1, i2, · · · ik ∈ Q} (5.2)

Lemma 29. Consider a linear switched system Σ and the family of associated vector

fields F .

(a) The distribution D∗
F has the maximal integral manifold property. The maximal

integral manifold of D∗
F passing through 0 is MF

0 .

(b) MF
0 is of the form

W := Span{Aj1
i1

Aj2
i2
· · ·Ajk

ik
Bzu | i1, . . . , ik, z ∈ Q, j1, . . . , jk ≥ 0, u ∈ U} (5.3)

Proof. Part (a)

Notice that Rn is an analytic vector field. Besides, each member of F is an analytic

vector field. By Proposition 19 D∗
F has the integral manifold property and its maxi-

mal integral manifold passing through 0 is equal to MF
0 . An alternative way to prove

part (a) is to show that D∗
F = W is F–invariant.

Part (b) Consider the following family of vector fields:

F
′

= {Aj1
i1

Aj2
i2
· · ·Ajk

ik
Bzu | i1, · · · ik, z ∈ Q,u ∈ U , j1, · · · jk ≥ 0}

∪{[Ai1 , [Ai2 , · · · [Aik−1
, Aik

] · · · ]|i1, · · · ik ∈ Q}

Then for all x ∈ Rn, D∗
F (x) = Span{X(x)|X ∈ F

′

} = DF ′ (x). Since D∗
F has the

maximal integral manifold property, part (ii) of Theorem 22 implies that PF ′ = D∗
F .

By part (i) of Theorem 22 the maximal integral manifold of D∗
F = PF ′ passing

through 0 is the orbit of F
′

passing through 0 i.e. MF
′

0 . But by the part (a) of this

lemma we get that the maximal integral manifold of D∗
F passing through 0 is MF

0 .

So we get that MF
0 = MF

′

0 .
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On the other hand, we shall show that MF
′

0 indeed has the structure given by

(5.3).

Assume X = Aj1
i1

Aj2
i2
· · ·Ajk

ik
Bqu. Then Xt(z)) = z + tAj1

i1
Aj2

i2
· · ·Ajk

ik
Bqu. So,

if we identify each element of X ∈ W with a constant vector field, then we get

that X1(0) = X, F
′

= W ∪ {[Ai1 , [Ai2 , · · · [Aik−1
, Aik

] · · · ]|i1, . . . ik ∈ Q} and W =

{X1(0) | X ∈ W} ⊆ MF
′

0 . We need to prove that MF
′

0 ⊆ W . Since 0 ∈ MF
′

0 ∩ W

and

MF
′

0 = {Xt1
1 ◦ Xt2

2 ◦ . . . Xtk

k (0) | Xi ∈ F
′

, ti ∈ R, i = 1, . . . , k}

it is sufficient to prove that W is invariant under F
′

, i.e.

∀X ∈ F
′

,∀t ∈ R,∀z ∈ W : Xt(z) ∈ W

If X = Aj1
i1

Aj2
i2
· · ·Ajk

ik
Bqu then Xt(z) = z + tX(0) ∈ W . Assume that X =

[Ai1 , [Ai2 , · · · [Aik−1
, Aik

] · · · ]x. Assume that z ∈ W . By definition of Xt and the

Cayley-Hamilton theorem we get

Xt(z) = exp([Ai1 , · · · [Aik−1
, Aik

] · · · ]t)z

=

n−1∑

j=0

gj(t)[Ai1 , [Ai2 , · · · [Aik−1
, Aik

] · · · ]jz

It is easy to see that [Ai1 , [Ai2 , · · · [Aik−1
, Aik

] · · · ] ∈ Span{Az1
Az2

· · ·Azk
| z1, . . . , zk ∈

Q}, which implies

z ∈ W =⇒ [Ai1 , [Ai2 , · · · [Aik−1
, Aik

] · · · ]z ∈ W

Then it follows easily that z ∈ W =⇒ Xt(z) ∈ W .

Proof. Proof of Theorem 21 It is sufficient to prove that Reachconst(Σ) = W . Indeed,

since W is a subspace of Rn, it is closed in Rn, so, in this case we get W = Cl(W ) =

Cl(Reachconst(Σ)) = Reach(Σ). Let F be the family of vector fields associated to

Σ. For Xi = Aqi
x + Bqi

ui ∈ F , ti ∈ R, i = 1, 2, . . . , k, k ≥ 0 denote

Xt1
1 ◦ Xt2

2 ◦ · · · ◦ Xtk

k (x0) = x(x0, u1u2 · · ·uk, q1q2 · · · qk, t1t2 · · · tk)

It follows that Reach(F , 0) = Reachconst(Σ). On the other hand Reach(F , 0) ⊆ MF
0 .

From Lemma 29 we get that MF
0 = W . Let n = dim W and let b1, . . . , bn be

a basis of W . Let T : W → Rn be a linear isomorphism. It follows that for

each bi, i = 1, . . . , n there exists vector fields Xi,1, . . . Xi,ni
∈ F , ni ≥ 0 such that

bi = X
ti,ni

i,ni
◦ X

ti,ni−1

i,ni−1 · · ·X
ti,1

i,1 (0) for some ti,1, . . . , ti,ni
∈ R. Assume that Xi,j =

Aqi,j
x + Bqi,j

ui,j . Define ui = ui,1 · · ·ui,ni
, wi = qi,1 · · · qi,ni

τi = τi,1 · · · τi,ni
. With
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the notation above we get that x(0, ui, wi, τi) = bi. For any sequence s = s1 · · · sk

let
←
s= sksk−1 · · · s1, and −s = (−s1)(−s2) · · · (−sk). Then define the sequences

w =
←
w1 w1 · · ·

←
wn−1 wn−1

←
wn wn, τ = (−

←
τ 1)τ1(−

←
τ 2)τ2 · · · (−

←
τ n−1)τn−1(−

←
τ n)τn.

Let vi = O1O1 · · ·Oi−1Oi−1OiuiOi+1Oi+1 · · ·OnOn, where Oi = 00 · · · 0 ∈ U |wi|, i =

1, . . . , n. Then it is easy to see that

x(0, vi, w, τ) = bi, i = 1, . . . , n

Indeed, x(0, vi, w, τ) = x(yi, s
′

i, β
′

i , γ
′

i), where yi = x(x(0, si, βi, γi), ui, wi, τi), si =

O1O1 · · ·Oi−1Oi−1Oi, γi = (−
←
τ 1)τ1 · · · (−

←
τ i−1)τi−1(−

←
τ i), βi =

←
w1 w1 · · ·

←
wi−1

wi−1
←
wi, s

′

i = Oi+1Oi+1 · · ·OnOn, γ
′

i = (−
←
τ i+1)τi+1 · · · (−

←
τ n)τn, β

′

i =
←
wi+1

wi+1 · · ·
←
wn wn. It is easy to see that for any (s, d) ∈ (Q × R)∗, x(0, O|s|, s, v) = 0,

O|s| = 0 · · · 0 ∈ U |s|. Thus, x(0, si, vi, γi) = 0 and yi = x(0, ui, wi, τi) = bi. It is easy

to see that for all (u, s, d) ∈ (U×Q×R)∗, x(y,
←
u u,

←
s s, (−

←

d )d) = y, y ∈ W . That is,

by noticing that
←
Oi= Oi, we get that x(y, s

′

i, β
′

i , γ
′

i) = y, y ∈ W , thus x(0, vi, w, τ) =

x(bi, s
′

i, β
′

i , γ
′

i) = bi. Let N = 2n and define the function M : RN → Rn×n by

M(η) =
[
Tx(0, v1, w, η), . . . , Tx(0, vn, w, η)

]

Then η 7→ det M(η) is an analytic function and detM(τ) 6= 0. By the well-known

property of analytic functions there exists a ψ = (ψ1, . . . , ψN ) ∈ RN , ψ1, . . . , ψN ≥ 0

such that detM(ψ) 6= 0, that is, rank M(ψ) = n. It implies that W = T−1(Rn) =

Span{x(0, vi, w, ψ) | i = 1, . . . , n} = {x(0,
∑n

i=1 αivi, w, ψ) | α1, . . . , αn ∈ R} ⊆

Reach(Σ), therefore

{x(0, u, w, ψ) | u ∈ PCconst(T,U)} = W = Reach(Σ)

That is, we get part (b) of the theorem, which implies part (a).

An alternative approach will be presented below. This approach uses the results

from [34]. We proceed by proving part (b) of theorem, which already implies part

(a). Define G = (U × Q × R)∗/ ∼, where ∼ is the smallest congruence relation such

that (u, q, 0) ∼ 1 and (u, q, t1)(u, q, t2) ∼ (u, q, t1 + t2). Denote by [(u,w, τ)] ∈ G

the equivalence class represented by (u,w, τ) ∈ (U × Q × R)∗. The definition of G

is essentially identical to the definition of the group of piecewise-constant inputs in

[34]. Define the map Z : X × (U ×Q×T )∗ → X by Z(z, u, w, τ) := x(z, u, w, τ). It is

clear that the dependence of Z on the switching times is analytic, i.e. ∀u ∈ U∗, w ∈

Q∗, x ∈ X : Z(x, u, w, .) : T |w| → X is analytic . From Proposition 8 it is clear that

by the principle of analytic continuation Z(x, u, w, .) can be extended to R|w|. From

now on we will identify Z with this extension. Then it is easy to see that Z is in fact

a function on G, since (u,w, τ) ∼ (u
′

, w
′

, τ
′

) =⇒ Z(x, u, w, τ) = Z(x, u
′

, w
′

, τ
′

) for
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all x ∈ X . Define

Θ = (W, {φ | A ∈ G}, 0, id)

where W = MF
0 as above and φ[(u,w,τ)](x) = Z(x, u, w, τ). Now, define · : G×R → G

by [(u,w, τ)] · α = [(αu,w, τ)]. It is easy to see that Θ is a smooth representation of

R with respect to ·, Θ is transitive and distinguishable, thus minimal. Recall the def-

inition of the function ψ
b
a from Section 5.2. Let d = rank R = supa,b,µ rank Dψ

b
a(µ).

We want to show that d = dimW = n. Let Θm = (Mm, {φm
a | a ∈ G}, hm, xm

0 ) be a

minimal smooth representation of R w.r.t ·, such that dimMm = d as described in

Theorem 23. Let χ : Mm → W the representation homomorphism described in The-

orem 23. We shall prove that χ is a diffeomorphism. Since W is a second-countable

Hausdorff-manifold, we get that W has a positive-definite Riemannian structure.

Since χ is an immersion, Proposition 9.4.2 of [18] implies that Mm has a positive-

definite Riemannian structure. We shall show that Mm is connected. If Mm is con-

nected and has a positive-definite Riemanian structure, then Mm is a second count-

able Hausdorff manifold by Proposition 10.6.4 of [18]. But then bijectivity of χ implies

that dimMm = dimW = d = n. To see that Mm is connected, notice that for any

g = [(u,w, τ)] ∈ G it holds that R((0 · g)[(s, v, t)]) = x(0, 0s, wv, τt) = R([(s, v, t)]).

That is, hm ◦ φm
[(s,v,t)] ◦ ψm

g (0) = R([(s, v, t)]) = hm ◦ φm
[(s,v,t)](x0). Since Θm is indis-

tinguishable, it implies that ψm
g (0) = x0. For any x ∈ Mm there exists a g

′

such that

φm
g′ (x0) = x, by transitivity of Θp. But then there exists g, α such that α · g = g

′

.

Since Θm is a smooth representation, the map ψm
g is smooth, therefore continuous,

which implies that ψm
g (R) is connected. That is, x0 = φm

g (0) and x = φm
g (α) are in

the same connected component of Mm. Since x is an arbitrary element of Mm, we

get that Mm is connected.

Now, let a = (a1, a2, . . . , ak) ∈ Gk, b = (b1, b2, . . . , bp) ∈ Gp, µ ∈ Rk such that

rank Dψ
b
a(µ) = n. Assume that aj = [(sj , rj , γj)] ∈ G and bi = [(vi, wi, σi)] ∈ G.

For all z = z1z2 · · · zk ∈ Q∗ and τ = τ1τ2 · · · τk denote by exp(Azτ) the expres-

sion exp(Azk
τk) exp(Azk−1

τk−1) · · · exp(Az1
τ1). For each t = (t1, . . . , tk) ∈ Rk, let

Mj(t) = x(0, sj 00 · · · 0︸ ︷︷ ︸
k−j−times

, rjrj+1 · · · rk, tjtj+1 · · · tk). We get that

Dψbi
a (µ) = Dµ1,µ2,··· ,µk

φbi(a1·µ1)(a2·µ2)···(ak·µk)(0) = Dµ1,µ2,...,µk
[x(0, vi, wi, σi)+

+exp(Awi
σi)x(0, (µ1s1)(µ2s2) · · · (µksk), r1 · · · rk, γ1 · · · γk)] =

= Dµ1,µ2,...,µk
exp(Awi

σi)

k∑

j=1

µjx(0, sj 00 · · · 0︸ ︷︷ ︸
k−jtimes

, rjrj+1 · · · rk, γjγj+1 · · · γk)

= exp(Awi
σi)M(γ)

165



CHAPTER 5. REACHABILITY OF LINEAR SWITCHED SYSTEMS

where γ = (γ1, . . . , γk) and M(γ) =
[
M1(γ), M2(γ), . . . , Mk(γ)

]
. Thus,

Dψb
a(µ) =




exp(Aw1
σ1) 0 · · · 0

0 exp(Aw2
σ2) · · · 0

...
...

...
...

0 0 · · · exp(Awk
σk)







M(γ)

M(γ)

· · ·

M(γ)




It follows that n = rank Dψ
b
a(µ) = rank M(γ). Notice that the dependence of M(t)

on t is analytic. Then it follows that we can choose t ∈ T k such that rank M(t) =

n. Since
∑k

j=1 αjMj(t) = x(0, (α1s1) · · · (αksk), r1 · · · rk, t1 · · · tk) and dim ImM =

dimReach(Σ), it follows that

Reach(Σ) = Im M = {x(0, u(.), (r1, t1)(r2, t2) · · · (rk, tk)) | u(.) ∈ PC(T,U)}

5.4 Appendix

Proof. Proof of Lemma 28 The following two facts will be used in the proof.

• Let X,Y be vector fields over Rn of the form X(x) = Ax, Y (x) = y for some

A ∈ Rn×n and y ∈ Rn. Then in the usual coordinates [X,Y ](x) = −Ay.

• For i = 1, 2, . . . , k let Xi be vector fields of the form Xi(x) = Aix. Then

[X1, [X2, · · · [Xk−1,Xk] · · · ](x) ∈

Span{Aπ(1)Aπ(2) · · ·Aπ(k) | π(1), π(2), . . . , π(k) ∈ {1, 2, . . . , k}

Clearly, D∗
F = Span{[f1, [f2, [· · · [fk−1, fk] · · · ] | fi ∈ Fi = 1, 2, · · · k}. Denote the

right-hand side of (5.2) by D. First D ⊆ D∗
F will be proved. Since Aqx + Bq0 =

Aqx ∈ F then we get that [Ai1 , [Ai2 , · · · [Aik−1
, Aik

] · · · ]x ∈ D∗
F for all i1, · · · ik ∈ Q.

Clearly [Ai1 , [Ai2 , · · · [Aik−1
, Aik

x+Bik
uk] · · · ](x) belongs to D∗

F . But by linearity of

the Lie-brackets we get

[Ai1 , [Ai2 , · · · [Aik−1
, Aik

x + Bik
uk] · · · ](x) =

[Ai1 , [Ai2 , · · · [Aik−1
, Aik

] · · · ](x) − Ai1Ai2 · · ·Aik−1
Bik

uk

From this and the fact that

[Ai1 , [Ai2 , · · · [Aik−1
, Aik

] · · · ]x ∈ D∗
F
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we get that Ai1Ai2 · · ·Aik−1
Bik

uk ∈ D∗
F for all i1, · · · ik ∈ Q and uk ∈ U . So

we get that D ⊆ D∗
F . The reverse inclusion D∗

F ⊆ D will be shown by proving

that for all f1, · · · fk ∈ F the vector field [f1, [f2, · · · [fk−1, fk] · · · ] belongs to D.

This is done by induction on the length of expression. For k = 1 it is true, since

F ⊆ D. Assume it is true for all expression of length ≤ k. Consider the expression

[f1, [f2, · · · [fk, fk+1] · · · ]. The vector field [f2, [f3, · · · [fk, fk+1] · · · ] belongs to D. By

linearity of Lie-brackets it is enough to prove that for all f = Aqx + Bqu and for all

Y = Ai1Ai2 · · ·Ail
Bzw or Y = [Ai1 , [Ai2 , · · · [Ail−1

, Ail−1
] · · · ] it holds that [f, Y ] ∈

D. For the first case we get

[Aqx + Bqu, Y ] = [Aqx, Y ] + [Bqu, Y ] = [Aqx,Ai1Ai2 · · ·Ail
Bzw]+

+[Bqu,Ai1Ai2 · · ·Ail
Bzw] = −AqAi1Ai2 · · ·Ail

Bqw

For the second case we get that

[Aqx + Bqu, Y ] = [Aqx, Y ] + [Bqu, Y ] = [Aqx, [Ai1 , [Ai2 , · · · [Ail
, Ail−1] · · · ]x]

+[Bqu, [Ai1 , [Ai2 , · · · [Ail
, Ail−1

] · · · ]x] = [Aqx, [Ai1 , [Ai2 , · · · [Ail
, Ail−1] · · · ]x]

+[Ai1 , [Ai2 , · · · [Ail
, Ail−1

] · · · ]Bqu ∈ D
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Chapter 6

Realization Theory of Linear

Switched Systems: an

elementary construction

In this chapter an alternative approach to realization theory of linear switched sys-

tems will be presented. In contrast to the solution presented in Section 4.1, the

solution formulated in this chapter does not require any use of formal power series.

Instead, a direct construction of a linear switched system realization will be formu-

lated. The issue of minimality will be approached using abstract systems theory.

Although the main results of the current chapter are special cases of the results

proven in Section 4.1, the current chapter still contains interesting and useful ideas,

which give an extra insight to realization theory of linear switched systems.

Unlike in Section 4.1, in this chapter we will consider the realization problem of a

one single input-output map. We will look for linear switched systems which realize

that input-output map from zero initial state . We could already see before that the

zero initial state plays a special role for linear switched systems, similar to the zero

initial state for linear systems. In particular, the set of states reachable from zero

forms a vector space. Thus, semi-reachability and reachability coincide for linear

switched systems with zero initial state.

More specifically, the chapter tries to answer the following two questions.

• Does there exist an algorithm, which, given a linear switched system Σ, con-

structs a minimal linear switched system Σ
′

such that Σ and Σ
′

are input-

output equivalent.
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• Given an input-output map y, what are the necessary and sufficient conditions

for the existence of a linear switched system realizing the map y. Does there

exist a procedure to construct a minimal linear switched system which realizes

y.

The chapter presents a procedure for constructing a minimal (with the state-space of

the smallest possible dimension, observable and controllable) linear switched system

from a given linear switched system. The minimal linear switched system constructed

by the procedure is equivalent as a realization to the original system. The procedure

also gives a Kalman-like decomposition of the matrices of the original system. It is

also proven that all minimal systems are algebraically similar, meaning that they are

defined on vector spaces of the same dimension and their matrices can be transformed

to each other by a basis transformation.

The chapter also deals with the inverse problem i.e., consider an input-output

function and formulate necessary and sufficient conditions for the existence of a linear

switched system which is a realization of the given input-output map. The chapter

presents a set of conditions which are necessary and sufficient for the existence of such

a realization. The proof of the sufficiency of these conditions also gives a procedure

for constructing a minimal realization of the given input-output map. The necessary

and sufficient conditions include a finite-rank condition which is reminiscent of the

Hankel-matrix rank condition for linear systems. In fact, the classical conditions

for the realisability of an input-output map by a linear system and the classical

construction of the minimal linear system realizing the given input-output map are

a special case of the results presented in the chapter.

In order to develop realization theory for linear switched systems, abstract real-

ization theory for initialised systems ( see [61] ) has been used. In fact, even the

definition of minimality for linear switched systems isn’t that obvious. The approach

taken in this chapter is to treat switched systems as a subclass of abstract initialised

systems and use the concepts developed for abstract initialised systems.

Although the results on the realization theory of linear switched systems bear a

certain resemblance to those of finite-dimensional linear systems, the former is by no

means a straightforward extension of the latter. As the results of this and other pa-

pers demonstrate, the approach ”apply the well-known linear system theory to each

continuous system and combine the results in a smart way” doesn’t always work.

Reachability, observability and the realization theory of linear switched systems be-

long to the class of problems, for which classical linear system theory can’t be applied.

This also shows up on the results. For example, if a linear switched system is reach-

able, it doesn’t mean that any of the linear systems constituting the switched system
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has to be reachable, nor does it imply that any point of the continuous state space

can be reached by some continuous component. The same holds for the observability

( in sense of indistinguishability ) of linear switched systems. The reader who wishes

to verify these statements is encouraged to consult [69]. In the light of these remarks

it is not that surprising that a minimal linear switched system may have non-minimal

continuous components. That is, if a linear switched system is minimal, it does not

imply that any of its continuous components is minimal. On the other hand, the

approach to the realization theory taken in the chapter bears a certain resemblance

with the works on realization theory for nonlinear systems presented in [34, 35, 6].

In some sense linear switched systems have more in common with non-linear than

with linear systems.

The outline of the chapter is the following. Section 6.1 describes some properties

and concepts related to linear switched systems which are used in the rest of the chap-

ter. Section 6.2 presents the minimisation procedure and the Kalman-decomposition

for linear switched systems. The construction of the minimal linear switched system

realizing a given input-output map can be found in Section 7.1.2

6.1 Linear Switched Systems: Basic Definition and

Properties

The section is divided into several subsections. Subsection 6.1.1 contains the neces-

sary definitions and results of switched systems. It also contains a reformulation of

switched systems with fixed initial state as initialised systems. Due to this reformula-

tion, some fundamental system theoretic concepts for switched systems, which were

already defined in Section 2.4, need a slight reformulation too. This subsection also

describes some basic properties of the input-output behaviour induced by switched

systems. Subsection 6.1.1 deals with the definition and basic properties of minimal

switched systems. Subsection 6.1.2 introduces linear switched systems and gives a

brief overview of those properties of linear switched systems which are relevant for

the realization theory.

6.1.1 Switched systems as initialised systems

Recall the notion of switched systems from Section 2.4 and the notion of linear

switched systems from Section 4.1. As it was already indicated in the introduction,

in this chapters we are mainly concerned with switched systems with fixed initial

state and for linear switched systems this initial state is going to be the zero state.
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PROPERTIES

Recall the notion of initialised system from [61]. In the sequel, we will identify

switched systems with initialised systems. More precisely, with a given switched

system Σ = (X,U ,Y, Q, {fq | q ∈ Q,u ∈ U}, {hq | q ∈ Q}) with a fixed initial

state x0. We will denote such a switched system with fixed initial state x0 by Σ =

(X,U ,Y, Q, {fq | q ∈ Q,u ∈ U}, {hq | q ∈ Q}, x0). With each such switched system

we associate the initialised system Σinit = (T,X ,Y,U×Q,φ, h, x0) where φ and h are

defined in the following way. The domain Dφ of the state-transition map is defined

as the set of tuples (τ, σ, x, ω) ∈ T ×T ×X ×(U ×Q)[σ,τ) such that πQ ◦ω is piecewise

constant. The mapping φ : Dφ → X is defined as φ(τ, σ, xi, ω) = xΣ(xi,Shift−σ(πU ◦

ω), w)(τ − σ) where w = (q1, t1)(q2, t2) · · · (qk, tk) ∈ (Q × T )+ is any sequence such

that w̃ = πQ ◦ ω holds. Since xΣ(x0, u(.), w) depends on w̃ rather than on w, the

mapping φ above is well defined. The readout map h : U ×Q×T ×X → Y is defined

as h(u, q, t, x) = hq(x). It is easy to see that the initialised system corresponding to

a switched system is time-invariant and complete. In the sequel whenever the term

”initialised system” is used, we will mean time-invariant complete initialised system.

Note that in the definition of initialised systems in [61] the readout map depends

on the time and state only. However it is easy to see that the whole theory also holds

if one allows readout maps which depend on the input. For more on this see Chapter

2, Section 2.12 of [61].

The identification of switched systems with the initialised systems allows us to

use the terminology and results of [61]. In particular, notions such as input-output

behaviour, system morphism, response (input-output) map of a system from a state,

the reachable set, reachability, observability ( indistinguishability), canonical sys-

tems, system equivalence, minimal system, minimal representation, of an input-

output map are well defined for initialised systems. Since switched systems form

a subclass of initialised systems, these definitions can be directly applied to switched

systems. However, for the sake of completeness these relevant notions will be repeated

specifically for switched systems.

the reader is asked to consult [61]. With the abuse of terminology and notation,

when referring to the input/output map and the trajectory of a switched system,

we shall mean the mappings yΣ(x0, ., .) and xΣ. For a given switched system Σ, the

reachable set, i.e the set of states reachable from the initial state x0, will be denoted

by Reach(Σ), i.e. with the notation of Section 2.4, Reach(Σ) = Reach(Σ, {x0})

Let Σ = (X,U ,Y, Q, {fq | q ∈ Q,u ∈ U}, {hq | q ∈ Q}, x0) be a switched system.

The map

yΣ : PC(T,U) × (Q × T )+ → YT

defined by yΣ(u(.), w) = yΣ(x0, u(.), w) (u(.) ∈ PC(T,U), w ∈ (Q×T )+) is called the

input-output map (or the input-output behaviour) induced by Σ. The switched system

171



CHAPTER 6. LIN. SWITCH. SYSTEMS: AN ELEM. APPROACH

Σ is said to be a realization of an input-output map ψ : PC(T,U)× (Q×T )+ → YT

if yΣ = ψ, i.e. the input-output behaviour induced by Σ is identical to ψ. In the

terminology of Section 2.4, Σ is a realization of ψ if (Σ̃, µ) is a realization of the

singleton set of input-output maps {ψ}, where Σ̃ = (X,U ,Y, Q, {fq | q ∈ Q,u ∈

U}, {hq | q ∈ Q}) and µ(ψ) = x0, i.e. Σ̃ is the same switched system as Σ, except

that it has no fixed initial state.

A system morphism φ : Σ1 → Σ2 between switched systems

Σ1 = (T,X1,U ,Y, Q, {f1
q (., u) | u ∈ U , q ∈ Q}, {h1

q |q ∈ Q}, x1
0)

and

Σ2 = (T,X2,U ,Y, Q, {f2
q (., u) | u ∈ U , q ∈ Q}, {h2

q |q ∈ Q}, x2
0)

is a mapping φ : X1 → X2 such that

• φ(x1
0) = x2

0

• for each x ∈ X1, u(.) ∈ PC(T,U), w ∈ (Q × T )+ and t ∈ dom(w̃) it holds that

φ(xΣ1
(x, u(.), w)(t)) = xΣ2

(φ(x), u(.), w)(t)

• for each q ∈ Q and x ∈ X1 it holds that h1
q(x) = h2

q(φ(x))

An immediate consequence of the characterisation above is that whenever φ : Σ1 →

Σ2 is a system morphism then it holds that yΣ1
(x, u(.), w) =

= yΣ2
(φ(x), u(.), w) for each x ∈ X1, u(.) ∈ PC(T,U) and w ∈ (Q × T )+. Thus the

switched systems Σ1 and Σ2 above induce the same input-output behaviour. Two

switched systems

Σ1 = (T,X1,U ,Y, Q, {f1
q (., u) | u ∈ U , q ∈ Q}, {h1

q |q ∈ Q}, x1
0)

and

Σ2 = (T,X2,U ,Y, Q, {f2
q (., u) | u ∈ U , q ∈ Q}, {h2

q |q ∈ Q}, x2
0)

are called (input-output) equivalent if they induce the same input-output behaviour,

i.e. yΣ1
= yΣ2

holds.

Consequently, if two switched systems are related by a system morphism, then

they are input-output equivalent. A system morphism is called isomorphism when-

ever it is bijective as a mapping between the state spaces. Two systems are called

an isomorphic if there exists an isomorphism between them.

A switched system Σ is called minimal, if for each reachable switched system

Σ
′

such that Σ
′

and Σ are input-output equivalent, there exists a unique surjective

system morphism φ : Σ
′

→ Σ.
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A switched system Σ = (X,U ,Y, Q, {fq | q ∈ Q,u ∈ U}, {hq | q ∈ Q}, x0) is

reachable if

Reach(Σ) = {xΣ(x0, u(.), w)(t) | u(.) ∈ PC(T,U),

w ∈ (Q × T )+, t ∈ dom(w̃)} = X

A switched system Σ = (X,U ,Y, Q, {fq | q ∈ Q,u ∈ U}, {hq | q ∈ Q}, x0) is called

observable if for each x1, x2 ∈ X the equality ∀w ∈ (Q × T )+, u(.) ∈ PC(T,U) :

yΣ(x1, u(.), w) = yΣ(x2, u(.), w) implies x1 = x2. That is, Σ is observable if and only

if Σ̃ = (X,U ,Y, Q, {fq | q ∈ Q,u ∈ U}, {hq | q ∈ Q}) is observable according to

the definition of Section 2.4. A reachable and observable switched system is called

canonical.

Consider a switched system Σ = (X,U ,Y, Q, {fq | q ∈ Q,u ∈ U}, {hq | q ∈

Q}, x0). The input-output behaviour induced by Σ is a map y : PC(T,U) × (Q ×

T )+ → YT . For each map y : PC(T,U) × (Q × T )+ → YT we shall define a map

ỹ : (U ×Q×T )+ → Y such that Σ is a realization of y if and only if Σ is a realization

of ỹ in the sense defined below.

Denote by PCconst(T,U) the set of piecewise-constant input functions. It is well-

known that for each u(.) ∈ PC(T,U) there exists a sequence un(.) ∈ PCconst(T,U), n ∈

N such that limn→+∞ un(.) = u(.) in ||.||1 norm. Given a switched system Σ, by the

continuity of the solutions of differential equations we get that

lim
n→+∞

xΣ(x, un(.), w)(t) = xΣ(x, u(.), w)(t)

and

lim
n→+∞

yΣ(x, un(.), w)(t) = yΣ(x, u(.), w)(t)

It is also easy to see that for any u(.) ∈ PCconst(T,U) and for any w ∈ (Q × T )+

there exists a sequence z = (q1, t1)(q2, t2) · · · (qk, tk) ∈ (Q × T )+ such that w̃ = z̃

and u|[
P

i
1 ti,

Pi+1
1 ti)

is constant for i = 0, . . . , k − 1. This, of course, implies that

xΣ(x, u(.), w) = xΣ(x, u(.), z) and yΣ(x, u(.), w) = yΣ(x, u(.), z). This simple fact

lies in the heart of the proof of Proposition 20.

Let φ : PC(T,U) × (Q × T )+ → YT . Define φ̃ : (U × Q × T )+ → Y as

φ̃((u1, q1, t1)(u2, q2, t2) · · · (uk, qk, tk)) = φ(ṽ, (q1, t1)(q2, t2) · · · (qk, tk),

k∑

1

ti)

where v = (u1, t1)(u2, t2) · · · (uk, tk) ∈ (U × T )+. Define the realization of a map

ψ : (U × Q × T )+ → Y in the following way
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Definition 13. Consider a function ψ : (U × Q × T )+ → Y and a switched system

Σ = (X,U ,Y, Q, {fq | q ∈ Q,u ∈ U}, {hq | q ∈ Q}, x0)

The switched system Σ is a realization of ψ if ỹΣ = ψ.

The following proposition, proof of which is straightforward, gives the justification

of the concept introduced in Definition 13

Proposition 20. Consider a function y : PC(T,U)× (Q×T )+ → YT . If the input-

output map y has a realization by a switched system then the following conditions

hold

1. For each w, z ∈ (Q×T )+, u ∈ PC(T,U) it holds that dom(y(u(.), w)) = dom(w̃)

and z̃ = w̃ =⇒ y(u(.), w) = y(u(.), z).

2. For each w ∈ (Q × T )+ and un, u(.) ∈ PC(T,U):

lim
n→∞

un(.) = u(.) =⇒ lim
n→∞

y(un(.), w)(t) = y(u(.), w)(t), (∀t ∈ dom(w̃)).

If y is an arbitrary map which satisfies conditions 1 and 2, then a switched system Σ

is a realization of y if and only if it is a realization of ỹ in the sense of Definition 13

Definition of minimal switched systems

For linear systems the definition of minimality is clear, but for more general systems

there is no standard definition of minimality. The definition of minimality used in

this paper is analogous to that of abstract system theory, see [46, 16]. We first

define minimality for initialised systems. In the sequel we will use the terminology

of [61]. Let Θ be any subclass of initialised systems. An initialised system Σ ∈ Θ is

called Θ–minimal, if for each reachable initialised system Σ
′

∈ Θ such that Σ
′

and

Σ induce the same input-output behaviour, there exists a unique surjective system

morphism φ : Σ
′

→ Σ. It is an easy consequence of the definition that all Θ–minimal

systems realizing the same input-output behaviour are isomorphic. Denote by Ω the

whole class of initial systems. It follows from Section 6.8, Theorem 30 of [61] that each

canonical initialised system is Ω–minimal. It also follows from Section 6.8 of [61] that

for each input-output map realizable by initialised systems there exists a canonical

realization of that input-output map. Thus we get that for each input-output map

realizable by initialised systems there exist a Ω–minimal initialised system realizing

it. Since all minimal systems are isomorphic and reachability and observability are

preserved by isomorphisms, we get that an initial system is Ω–minimal if and only if it

is canonical, i.e. reachable and observable. Notice that existence of a minimal system
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realizing an input-output map is a property of the input-output map. Moreover, if

an input-output map has a realization by an initialised system belonging to a certain

class Θ ( for example it has a realization by a switched system), then the input-output

map need not have a Θ–minimal realization. It is easy to see that if Θ
′

⊆ Θ then

each Θ–minimal system belonging to Θ
′

is Θ
′

–minimal. In particular, each canonical

system Σ ∈ Θ is Θ–minimal.

Let Ωsw be the class of switched systems, let Ω
′

⊆ Ωsw be a subclass of switched

systems. The subclass Ω
′

can be considered as a subclass of initialised systems. A

switched system Σ ∈ Ω
′

is called minimal if Σ is Ω
′

–minimal when considered as an

initialised system. As a consequence any canonical switched system Σ ∈ Ω
′

is Ω
′

–

minimal. Later we will show that for linear switched systems (to be defined later)

each minimal linear switched system has a state space of the smallest dimension

among all linear switched systems realizing the same behaviour.

Notice that at the first glance the definition of minimality presented above differs

from the definition of minimality formulated in Section 2.4. However, it will be shown

in this chapter that for linear switched systems the two definitions of minimality are

equivalent. More precisely, a linear switched system Σ with fixed initial state 0 is

a minimal in the above sense if and only if the linear switched system realization

(Σ, µ), µ : yΣ(0, .) 7→ 0 is a minimal realization of {yΣ(0, .)} in the sense of Section

2.4.

6.1.2 Linear switched systems

A switched system Σ = (X,U ,Y, Q, {fq | q ∈ Q,u ∈ U}, {hq | q ∈ Q}, x0) is called

linear switched system if

• x0 = 0

• For each q ∈ Q there exist linear mappings

Aq : X → X Bq : U → X Cq : X → Y

such that

fq(x, u) = Aqx + Bqu and hq(x) = Cqx.

That is, in this chapter by linear switched systems we will understand the same

linear switched systems as defined Section 4.1, except that implicitly we will assume

that the initial state of the system is fixed to be 0. Thus, by reachability we will

mean reachability from 0, the set Reach(Σ) will stand for Reach(Σ, {0}), etc. In

particular, we will use the same shorthand notation for denoting linear switched
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systems as defined in Section 4.1 and the notion of algebraic similarity will also be

the same.

6.2 Minimisation of Linear Switched Systems

This section gives a procedure to construct a minimal linear switched system equiv-

alent to a given linear switched system. Also a Kalman-like decomposition for linear

switched systems will be presented. It will also be shown that two equivalent minimal

linear switched systems are algebraically similar, and that a minimal linear switched

system has a state space of smaller dimension than any other linear switched system

realizing the same input-output map.

For a given linear switched system we will construct an equivalent canonical

system. The steps of the construction are similar to the construction of the canonical

initialised system equivalent to a given one. In its full generality the procedure is

described in Section 6.8 of [61]. The challenge is to show that at each step of the

general procedure we get a linear switched system. This will be done below.

Theorem 24. Let Σ̃ be an arbitrary linear switched system. Then there exists a

canonical linear switched system Σ̃can equivalent to Σ̃.

Proof. First, given a linear switched system Σ = (X ,U ,Y, Q, {(Aq, Bq, Cq)|q ∈ Q}),

we take the restriction of Σ to its reachable set by defining the system

Σr = (Reach(Σ),U ,Y, Q, {(Ar
q, B

r
q , Cr

q ) | q ∈ Q})

where for each q ∈ Q the map Ar
q = Aq|Reach(Σ) : Reach(Σ) → Reach(Σ) is the

restriction of Aq to Reach(Σ), Br
q = Bq : U → Reach(Σ) and Cr

q = Cq|Reach(Σ) :

Reach(Σ) → Y is the restriction of Cq to Reach(Σ). It is easy to see that Σr is a

well-defined linear switched system, it is reachable and it is equivalent to Σ. Indeed,

by Proposition 8 for each q ∈ Q it holds that Im(Bq) ⊆ Reach(Σ). So Br
q is well

defined for each q ∈ Q. Again from Proposition 8 it follows that to see that Ar
q

is well defined it is enough to show that Ar
q(A

j1
q1

Aj2
q2
· · ·Ajk

qk
Bzu) ∈ Reach(Σ) for all

q1, q2, . . . qk, z ∈ Q,u ∈ U , j1, j2, . . . , jk ≥ 0. But Ar
qx = Aqx for all x ∈ Reach(Σ),

so we get

Ar
q(A

j1
q1

Aj2
q2
· · ·Ajk

qk
Bzu) = AqA

j1
q1

Aj2
q2
· · ·Ajk

qk
Bzu ∈ Reach(Σ)

So, for each q ∈ Q the map Ar
q is well defined. The map Cr

q is trivially well defined.

Notice that the construction of Σr goes along the same lines as the construction of

the reachable initialised system equivalent to a given one, as it is described in [61].
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The next step is to construct an observable linear switched system from a reach-

able linear switched system in such a way that the new reachable and observable

system is equivalent to the original one.

Let Σ = (X ,U ,Y, , Q, {(Aq, Bq, Cq) | q ∈ Q}) be a linear switched system. De-

fine OΣ =
⋂

q1,q2,...,qk,z∈Q,j1,j2,...,jk≥0 ker CzA
j1
q1

Aj2
q2
· · ·Ajk

qk
. Let W = O⊥

Σ be the

orthogonal complement of OΣ. Assume that Σ is reachable. Consider the system

Σo = (W,U ,Y, Q, {(Ao
q, B

o
q , Co

q ) | q ∈ Q}) where Ao
q = Ãq|W : W → W , and Ãq is

defined by z = Ãqx ⇐⇒ Aqx = z + z
′

, z ∈ W, z
′

∈ OΣ.

Co
q = Cq|W : W → Y, and Bo

q : U → W is given by the rule Bo
qu = z ⇔ Bqu =

z + z
′

such that z ∈ W, z
′

∈ OΣ. Then the system Σo is well-defined, it is reach-

able and observable (i.e. canonical) and equivalent to Σ. The construction of Σo

is a slight modification of the construction of the canonical initialised system pre-

sented in Section 6.8 of [61]. Note that W is isomorphic to X/OΣ. In fact, a linear

switched system can be defined on X/OΣ in such a way, that it will be isomorphic

to Σo. This linear switched system defined on X/OΣ corresponds to the canonical

initialised system described in Section 6.8 of [61].

Using the notation above define Σ̃can to be (Σ̃r)
o. Then Σ̃can is indeed canonical

and equivalent to Σ̃.

Denote by Ωlin the class of linear switched systems considered as a subclass

of initialised systems. From Subsection 6.1.1 it follows that any canonical linear

switched system is Ωlin-minimal. We will show that any linear switched system Σ

which is Ωlin–minimal has state-space of the smallest dimension among all linear

switched systems equivalent to it.

Lemma 30. Consider two linear switched systems

Σ1 = (X1,U ,Y, Q, {(A1
q , B

1
q , C1

q ) | q ∈ Q})

Σ2 = (X2,U ,Y, Q, {(A2
q , B

2
q , C2

q ) | q ∈ Q})

Assume that Σ1 is reachable. Then for any system morphism φ : Σ1 → Σ2 the

corresponding map φ : X1 → X2 is linear.

Proof. The fact that φ is a system morphism means that the following holds.

∀u ∈ PC(T,U),∀w ∈ (Q × T )∗,∀t ∈ dom(w̃),∀x ∈ X1 :

φ(xΣ1
(x, u(.), w)(t)) = xΣ2

(φ(x), u(.), w)(t)

and, φ(0) = 0, and C1
q x = C2

q φ(x). Now, we shall prove that φ is a linear map.

Notice that by [69] there exists a w = (q1, t1)(q2, t2) · · · (qk, tk) ∈ (Q× T )+ such that
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Rw = {xΣ1
(0, u(.), w)(tk) | u(.) ∈ PC(T,U)} = Reach(Σ1)

= X1. Then for each x1, x2 ∈ X1 we have that

φ(αx1 + βx2) = φ(xΣ1
(0, αu1(.) + βu2(.), w)(tk)) = xΣ2

(0, αu1(.)+

βu2(.), w)(tk) = αxΣ2
(0, u1(.), w)(tk) + βxΣ2

(0, u2(.), w)(tk)

So, φ is indeed a linear map.

An important consequence of this lemma is the following theorem

Theorem 25. Let Σmin = (Xmin,U ,Y, Q, {(Amin
q , Bmin

q , Cmin
q ) | q ∈ Q}) be a linear

switched system. Then Σmin is a minimal linear switched system if and only if for

any linear switched system Σ = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}) such that Σ is

equivalent to Σmin the following holds

dimXmin ≤ dimX (6.1)

Proof. "only if" part

Consider the linear switched system Σr, i.e. the restriction of Σ to Reach(Σ). Clearly

dimReach(Σ) ≤ dimX . The system Σr is reachable and equivalent to Σ, hence it is

equivalent to Σmin. By definition of Ωlin–minimality there exists a subjective system

morphism φ : Σr → Σmin. By Lemma 30 the map φ : Reach(Σ) → Xmin is linear,

and by the surjectivity of the system morphism it is surjective. That is,

dimXmin = dim Im(φ) ≤ dim Reach(Σ) ≤ dimX

"if" part

Assume Σmin has the property (6.1). Then Σmin must be reachable. Assume the

opposite. The restriction of Σmin to its reachable set would give a system equivalent

to Σmin with state space Reach(Σmin). But dimReach(Σmin) < dimXmin, which

contradicts to (6.1). Let Σcan = (Xcan,U ,Y, Q, {(Acan
q , Bcan

q , Ccan
q ) | q ∈ Q}) be a

canonical linear switched system equivalent to Σmin. Such a system always exists

by Theorem 24. The system Σcan is minimal, so there exists a surjective system

morphism φ : Σmin → Σcan. Then φ is a surjective linear map, so we get that

dimXcan ≤ dimXmin. But by (6.1) we have that dimXcan ≥ dimXmin. It implies

that dimXcan = dimXmin, that is, φ is an isomorphism. Since Σcan is minimal and

Σmin is isomorphic to it, we get that Σmin is minimal too.

For reachable linear switched systems, isomorphism of systems is equivalent to

algebraic similarity.
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Theorem 26. Two reachable linear switched systems

Σ1 = (X1,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q})

Σ2 = (X2,U ,Y, Q, {(A
′

q, B
′

q, C
′

q) | q ∈ Q})

are isomorphic if and only if they are algebraically similar

Proof. It is clear that if Σ1 and Σ2 are algebraically similar then Σ1 and Σ2 are

isomorphic. Assume that φ : Σ1 → Σ2 is an isomorphism of systems. From Lemma

30 it follows that φ : X1 → X2 is a linear map. Since φ is isomorphism, we have that

the linear map φ : X1 → X2 is bijective. We get that φ−1 is a linear bijective map

too.

What we need to show is that for each q ∈ Q the following holds.

A
′

q = φAqφ
−1, B

′

q = φBq , C
′

q = Cqφ
−1

It follows immediately from the fact that φ is a bijective system morphism that

C
′

qφ = Cq, which implies C
′

q = Cqφ
−1.

We show that A
′

q = φAqφ
−1 for all q ∈ Q. For each q ∈ Q,

xΣ1
(x, 0, (q, t))(t) = exp(Aqt)x and xΣ2

(φ(x), 0, (q, t))(t) = exp(A
′

qt)φ(x). So we get

that φ(exp(Aqt)x) = exp(A
′

qt)φ(x) for all t > 0. Taking the derivative of t at 0 we

get that for all x ∈ X1 it holds that φ(Aqx) = A
′

qφ(x), which implies A
′

q = φAqφ
−1

for all q ∈ Q.

It is left to show that B
′

q = φBq. Denote the constant function taking the value

u ∈ U by constu. Then φ(xΣ1
(0, constu, (q, t)))(t) = φ(

∫ t

0
exp(Aq(t − s))Bqu ds) =

xΣ2
(0, constu, (q, t))(t) =

∫ t

0
exp(A

′

q(t − s))B
′

qu ds for all t > 0, u ∈ U . Again, after

taking derivatives by t at t = 0 we get φBqu = B
′

qu. That is, we get B
′

q = φBq. So,

Σ1 and Σ2 are indeed algebraically similar.

Since all equivalent minimal linear switched systems are isomorphic, one gets the

following result.

Corollary 14. All minimal equivalent linear switched systems are algebraically sim-

ilar.

The following theorem sums up the results of the discussion above.

Theorem 27 (Existence and uniqueness of minimal realization ). For linear

switched systems the following statements hold.

1. Given a linear switched system Σ = (X ,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}) there

exists a system Σmin = (Z,U ,Y, {(Amin
q , Bmin

q , Cmin
q ) | q ∈ Q}) such that

Σmin is minimal and equivalent to Σ. Such a minimal system is unique up to

algebraic similarity.
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2. A linear switched system is minimal if and only if it is canonical.

3. A linear switched system Σmin is minimal if and only if for each equivalent

linear switched system Σ the dimension of the state-space of Σ is not smaller

than the dimension of the state-space of Σmin

Proof. The statement of part 1 follows from Theorem 24, the fact that each canonical

linear switched system is minimal ( see Subsection 6.1.1) and Corollary 14.

Let Σ be a minimal linear switched system. By Theorem 24 there exists a canon-

ical system Σcan equivalent to Σ. But by Section 6.1.1 Σcan is minimal, therefore

Σcan and Σ are isomorphic. Since any isomorphism preserves reachability and ob-

servability we get that Σmin is reachable and observable, hence canonical. So the

statement of part 2 is proven.

The statement of part 3 follows directly from Theorem 25.

The construction of the minimal representation described above yields the follow-

ing Kalman-decomposition of a linear switched system.

Theorem 28. Given a linear switched system Σ = (X ,U ,Y, Q, {(Aq, Bq, Cq) | q ∈

Q}) there exists a basis transformation on X compatible with decomposition X =

Wor ⊕ Wrno ⊕ Wonr ⊕ Wnonr where Wor ⊕ Wrno = Reach(Σ), Wonr ⊕ Wnonr = OΣ

such that in the new basis the matrix representation of maps Aq, Bq, Cq has the

following form

Aq =




A1
q 0 A2

q 0

A3
q A4

q A5
q A6

q

0 0 A7
q 0

0 0 A8
q A9

q


 , Bq =




B1
q

B2
q

0

0


 , Cq =

[
C1

q 0 C2
q 0

]

where

• Σor = (Wor,U ,Y, Q, {(A1
q , B

1
q , C1

q ) | q ∈ Q}) is minimal and equivalent to Σ.

• Σrno = (Reach(Σ),U ,Y, Q, {(

[
A1

q 0

A3
q A4

q

]
,

[
B1

q

B2
q

]
,
[
C1

q 0
]
) | q ∈ Q}) is a reach-

able system equivalent to Σ.

• Σrno = (O⊥
Σ ,U ,Y, Q, {(

[
A1

q A2
q

0 A7
q

]
,

[
B1

q

0

]
,
[
C1

q C2
q

]
) | q ∈ Q}) is an observ-

able system equivalent to Σ.
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INPUT-OUTPUT MAPS

6.3 Constructing a Minimal Representation for Input-

output Maps

Below necessary and sufficient conditions for the existence of realization by a linear

switched system will be presented. Also a procedure will be described to construct a

minimal representation for a realizable input-output map. The well-known condition

for existence of realization by a linear system is a special case of the condition given

here. The construction of a minimal linear representation of an input-output map

is also a particular case of the procedure presented below. By Proposition 20 it is

enough to determine conditions for realisability of input-output maps of the form

y : (U × Q × T )+ → Y.

Below conditions on y : (U × Q × T )+ → Y will be given, which will be proven

necessary and sufficient for realisability of y in the sense of Definition 13. Before

proceeding further some notation has to be introduced. Let u1 = u11u12 · · ·u1k, u2 =

u21u22 · · ·u2k ∈ U+, then αu1+βu2 = (αu11+βu21)(αu12+βu22) · · · (αu1k +βu2k) ∈

U+ for α, β ∈ R. Let u = u1u2 · · ·uk ∈ U+, w = w1w2 · · ·wk ∈ Q+, τ = τ1τ2 · · · tk ∈

T+, then y(u,w, τ) is defined as

y(u,w, τ) = y((u1, w1, τ1)(u2, w2, τ2) · · · (uk, wk, τk))

Let φ : Rk+r → Rp. Whenever we want to refer to the arguments of φ explicitly we

will use the notation φ(t1, t2, . . . , tk, s1, s2, . . . , sr), or in vector notation φ(t, s), where

t = (t1, t2, . . . , tk) and s = (s1, s2, . . . , sr) are formal k and r-tuples respectively. If

a ∈ Rk then we use the notation φ(t, s)|t=a for the function Rr 3 b 7→ φ(a, b). For

any α = (αk, αk−1, · · · , α1) ∈ Nk denote by dα

dtα φ the partial derivative

dα

dtα
φ =

d

dtαk

k dt
αk−1

k−1 · · · dtα1
1

φ(tk, tk−1, . . . , t1, sr, sr−1, . . . , s1) : Rk+r → Rp

If we want to refer to the components of α ∈ Nk explicitly, we will use the no-

tation d(αk,αk−1,··· ,α1)

dt(αk,αk−1,··· ,α1) φ = dα

dtα φ. If t = (t1, t2, . . . , tk) then denote by tl the tuple

(tl, tl+1, . . . , tk) and by lt the tuple (t1, t2, . . . , tl) for l < k.

For any u ∈ U+, w ∈ Q+ the function y(u,w, τ) : T+ → Y will be identified with

the function T |w| 3 (t1, t2, . . . , tk) 7→ y(u,w, t1t2 · · · tk)

Consider the matrices Aq1
, Aq2

, · · ·Aqk
∈ Rn×n and define the function

expq1q2···qk
: T k → Rn×n by

expqkqk−1···q1
(t1, t2, . . . , tk) = exp(Aqk

tk) exp(Aqk−1
tk−1) · · · exp(Aq1

t1)

Definition 14 (Realisability conditions). Consider a map y : (U×Q×T )+ → Y.

The map y is said to satisfy the realisability conditions if the following properties hold
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1. Linearity of the input-output function

For all u1, u2 ∈ U+, w ∈ Q+, τ ∈ T+ such that |u1| = |u2| = |w| = |τ | and for

all α, β ∈ R it holds that

y(αu1 + βu2, w, τ) = αy(u1, w, τ) + βy(u2, w, τ)

2. Zero-time behaviour

y(u,w, 00 · · · 0︸ ︷︷ ︸
|w|−times

) = 0

3. Analyticity in switching times

For all w ∈ Q+, u ∈ U+ such that |w| = |u| the function y(u,w, .) : T |w| → Y

defined by (t1, t2, . . . , t|w|) 7→ y(u,w, t1t2 · · · tk) is analytic.

4. Repetition of the same input

For all w1, w2 ∈ Q+, u1, u2 ∈ U+, τ1, τ2 ∈ T ∗ such that |wi| = |ui| = |τi|, (i =

1, 2) and for all q ∈ Q,u ∈ U , t1, t2 ∈ T it holds that

y(u1uuu2, w1qqw2, τ1t1t2τ2) = y(u1uu2, w1qw2, τ1(t1 + t2)τ2)

The condition is equivalent to stating that for each z, l ∈ (U × Q × T )+

z̃ = l̃ =⇒ y(z) = y(l)

5. Decomposition of concatenation of inputs

For each w1, w2 ∈ Q+, u1, u2 ∈ U+, τ1, τ2 ∈ T+ such that |wi| = |ui| = |τi|,

(i = 1, 2) it holds that

y(u1u2, w1w2, τ1τ2) = y(u2, w2, τ2) + y(u1 00 · · · 0︸ ︷︷ ︸
|u2|−times

, w1w2, τ1τ2)

6. Elimination of zero duration

For all w1, w2, v ∈ Q+, τ1, τ2 ∈ T+, u1, u2, u ∈ U+ such that

|ui| = |wi| = |τi| and |v| = |u| it holds that

y(u1uu2, w1vw2, τ1 00 · · · 0︸ ︷︷ ︸
|u|−times

τ2) = y(u1u2, w1w2, τ1τ2)

Proposition 21. If a map y : (U × Q × T )+ → Y is realizable by a linear switched

system, then it satisfies the realisability conditions.
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Analyticity of the input-output maps allows to rephrase the property that a linear

switched system realizes an input-output map in terms of the high-order derivatives

of the input-output map.

Let Aq, Bq, Cq, (q ∈ Q) be linear maps over suitable spaces and let

j1, j2, . . . , jk ≥ 0. If l = inf{z ∈ N|jz > 0} = −∞, i.e. j1 = j2 = · · · = jk = 0, then

by Cqk
Ajk

qk
A

jk−1
qk−1 · · ·A

jl−1
ql

Bql
we mean simply the identically zero map.

Proposition 22. Consider the linear switched system

Σ = (X ,U ,Y, Q, {(Aq, Bq, Cq)|q ∈ Q})

Then for each w = q1q2 · · · qk ∈ Q+, u = u1u2 · · ·uk ∈ U , α = (α1, α2, . . . , αk) ∈ Nk

the following holds

dα

dtα
ỹΣ(u,w, t)|t=0 = Cqk

Aαk
qk

Aαk−1
qk−1

· · ·Aαl−1
ql

Bql
ul

where l = min{z|αz > 0}.

Proof. Define the function x̃Σ : (U × Q × T )+ → X in the following way. For

w = w1w2 · · ·wk ∈ Q+, τ = t1t2 · · · tk ∈ T+ and u = u1u2 · · ·uk ∈ U+ define

x̃Σ(u,w, τ) by x̃Σ(u,w, τ) = xΣ(0, ṽ, z)(
∑k

1 ti) where v = (u1, t1)(u2, t2)

· · · (uk, tk) and z = (w1, t1)(w2, t2) · · · (wk, tk). It is easy to see that x̃Σ satisfies the

realisability conditions. We shall use this, the fact that ỹΣ satisfies the realisability

properties and the following basic property of linear switched systems (see [69])

ỹΣ(u1u2 · · ·ul 0 · · · 000︸ ︷︷ ︸
k−l−times

, q1q2 · · · qk, t1t2 · · · tk) = Cqk
exp(Aqk

tk)×

exp(Aqk−1
tk−1) · · · exp(Aql+1

tl+1)x̃Σ(u1u2 · · ·ul, q1q2 · · · ql, t1t2 · · · tl)

= Cqk
expqkqk−1···ql+1

(tk, tk−1, . . . , , tl+1)x̃Σ(u1u2 · · ·ul, q1q2 · · · ql, t1t2 · · · tl)

From condition 5 of the realisability conditions one gets

ỹΣ(u1u2 · · ·ulul+1 · · ·uk, q1q2 · · · qlql+1 · · · qk, t1t2 · · · tltl+1 · · · tk) =

ỹΣ(ul+1 · · ·uk, ql+1 · · · qk, tl+1 · · · tk) + ỹΣ(u1 · · ·ul00 · · · 0, w, t1t2 · · · tk)
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where w = q1q2 · · · qk. Combining the two expressions above one gets

dα

dtα
ỹΣ(u,w, t)|t=0 =

dα

dtα
ỹΣ(u1u2 · · ·ul00 · · · 0, w, t)|t=0

=
dα

dtα
(Cqk

expqkqk−1···ql+1
(tl+1)x̃Σ(u1u2 · · ·ul, qlq2 · · · q1,

lt))|t=0

=
dα

dtα
Cqk

expqkqk−1···ql+1
(tl+1) ×

(x̃Σ(ul, ql, tl) + x̃Σ(u1u2 · · ·ul−10, q1q2 · · · ql−1ql,
lt))|t=0

=
d(αk,αk−1,··· ,αl)

dt(αk,αk−1,··· ,αl)
Cqk

expqk,qk−1,···ql+1
(tl+1) ×

(x̃Σ(ul, ql, tl) + exp(Aql
tl)x̃Σ(u1u2 · · ·ul−1, q1q2 · · · ql−1,

lt))|t=0

where l = min{z | αz > 0}. In the derivation above the condition 5 of the realisability

conditions was applied to x̃Σ. Since

x̃Σ(u1u2 · · ·ul−1, q1q2 · · · ql−1, 00 · · · 0) = 0 we get that

dα

dtα
ỹΣ(u,w, t)t=0 =

d(αk,αk−1,...,αl)

dt(αk,αk−1,...,αl)
(Cqk

expqk,qk−1,...,ql+1
(tl+1)x̃Σ(ul, ql, tl)|t=0

=
d(αk,αk−1,...,αl)

dt(αk,αk−1,...,αl)
(Cqk

expqk,qk−1,...,ql+1
(tl+1)

∫ tl

0

exp(Aql
(tl − s))Bql

ul ds)|t=0

= (
d(αk,αk−1,...,αl+1)

dt(αk,αk−1,...,αl+1)
Cqk

expqk,qk−1,...,ql+1
(tl+1) ×

(
d

dtαl−1
l

(exp(Aql
tl)Bql

ul) +

∫ tl

0

d

dtαl

l

exp(Aql
(tl − s))Bql

ul ds)|t=0

=
d(αk,αk−1,...,αl+1)

dt(αk,αk−1,...,αl+1)
(Cqk

exp(Aqk
tk) ×

× exp(Aqk−1
tk−1) · · · exp(Aql+1

tl+1)A
αl−1
ql

Bql
ul)|t=0

= Cqk
Aαk

qk
Aαk−1

qk−1
· · ·Aαl−1

ql
Bql

ul.

In the last equation the fact was used that d
dtj Z exp(At)L|t=0 = ZAjL holds for any

A,L,Z matrices of compatible dimensions.

Proposition 22 , and the fact that ỹΣ(u,w, , t1t2 · · · tl) is analytic in

(t1, t2, · · · , tl) implies the following corollary.

Corollary 15. Let Σ = (X ,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}) be a linear switched

system. Consider a map y : (U × Q × T )+ → Y and assume that for each w ∈ Q+,

u ∈ U+, |u| = |w| the map (t1, t2, . . . , t|w|) 7→ y(u,w, t1t2 · · · t|w|) is analytic. Then
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Σ is a realization of y if and only if

∀u = u1u2 · · ·uk ∈ U+,∀w = q1q2 · · · qk ∈ Q+,∀α ∈ Nk

dα

dtα
y(u,w, t)|t=0 = Cqk

Aαk
qk

Aαk−1
qk−1

· · ·Aαl−1
ql

Bql
ul (6.2)

where l = min{z|αz > 0}

The corollary above says that the matrices of the form

Cqk
Aαk

qk
A

αk−1
qk−1 · · ·Aα1

q1
Bz (q1, q2, . . . , qk, z ∈ Q, α ∈ Nk) determine the input-output

behaviour of linear switched systems. In fact, for the case of one discrete mode these

matrices are the Markov-parameters of the system. The matrices (6.2) can be viewed

as a generalisation of the concept of Markov parameters.

Now we shall introduce a few concepts, which are needed to formulate the gen-

eralisation of the Hankel-matrix for linear switched systems. Let Y = Rp, T = R+

and Q be an arbitrary finite set. Define the following set

Z = {φ : Q+ → Y T+

| ∀w ∈ Q+ : dom(φ(w)) = T |w|

and φ(w) : T |w| → Y is analytic }

Then Z is a vector space with respect to point-wise addition and multiplication by

scalar, i.e. ∀φ1, φ2 ∈ Z,∀w ∈ Q+, t ∈ T |w| :

(αφ1 + βφ2)(w, t) := αφ1(w, t) + βφ2(w, t) , α, β ∈ R

Define the set D as follows

D = {f : (Q × N)+ → Y}

It is easy to see that D is a vector space with respect to point-wise addition and

multiplication by real numbers, i.e.

∀f1, f2 ∈ D,∀w ∈ (Q × N)+ : (αf1 + βf2)(w) := αf1(w) + βf2(w) , α, β ∈ R

Define the mapping F : Z → D in the following way

F (φ)((q1, α1)(q2, α2) · · · (qk, αk)) =
dα

dtα
φ(q1q2 · · · qk)(t)|t=0 (6.3)

That is, the function F stores the germs of functions from Z in sequences of the form

(Q × N)+ → Y.

For each f ∈ Z and for each sequence w ∈ Q+ the value of F (f) at (w,α1α2 · · ·α|w|)

equals the partial derivative dα

dtα at (0, 0, . . . , 0) ∈ T |w| of the analytic function

f(w) : T |w| → Y. Thus, the proof of the following theorem is straightforward.
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Proposition 23. The mapping F : Z → D defined above is an injective vector space

homomorphism.

Now we are ready to define the generalised Hankel-matrix. Consider a mapping

y : (U × Q × T )+ → Y and assume that it satisfies the realisability conditions. For

each (w, u) = (w1, u1)(w2, u2) · · · (wk, uk) ∈ (Q×U)+ and α ∈ Nk define the mapping
dα

dtα y(w,u) : Q+ → Y T+

in the following way. For all v ∈ Q+ let dom( dα

dtα y(w,u)(v)) =

T |v|. For each fixed τ ∈ T |v|

dα

dtα
y(w,u)(v)(τ) =

dα

dtα
y(u 00 · · · 0︸ ︷︷ ︸

|v|−times

, wv, tτ)|t=0

Then by analyticity of y(u00 · · · 0, wv, .) the mapping dα

dtα y(w,u) belongs to Z. Con-

sider the following subspace of Z

Xy = Span{
dα

dtα
y(w,u) | (w, u) ∈ (Q × U)+, α ∈ N|w|} (6.4)

The Hankel-matrix of y can be defined in the following way

Definition 15 (Hankel-matrix ). Consider a mapping y : (U ×Q×T )+ → Y such

that y satisfies the realisability condition. Using the notation above define the map

Hy = F |Xy
: Xy → D. The map Hy will be called the Hankel-map (or Hankel-matrix)

of the mapping y.

It is easy to see that Hy is a linear mapping, therefore it makes sense to speak

about its rank, rank Hy := dim ImHy ∈ N ∪ {∞}.

Lemma 31. Consider the mapping y : (U × Q × T )+ → Y and assume that y has

a realization by a linear switched system. Then y satisfies the realisability conditions

and rank Hy < +∞.

Proof. Assume that the linear switched system

Σ = (X ,U ,Y, Q, {(Aq, Bq, Cq)|q ∈ Q}) is a realization of y. Then by Corollary 15

Hy(
dα

dtα
y(w,u))((q1, β1)(q2, β2) · · · (ql, βl)) =

=
dβ

dτβ

dα

dtα
y(u00 · · · 0, wq1q2 · · · ql, tτ)|t=0,τ=0

= Cql
Aβl

ql
Aβl−1

ql−1
· · ·Aβ1

q1
Aαk

wk
· · ·Aαb−1

wb
Bwb

ub

where b = min{z|αz > 0}.

Let r = dimReach(Σ) < +∞. Choose a basis e1, e2, . . . , er of Reach(Σ). Assume

that ei = A
α(i,k(i))
q(i)k(i)

A
α(i,k(i)−1)
q(i)k(i)−1

· · ·A
α(i,1)−1
q(i)1

Bq(i)1u(i). For each i = 1, 2, . . . , r define

fi =
d(α(i,k(i)),α(i,k(i)−1),...α(i,1))

dt(α(i,k(i)),α(i,k(i)−1),...α(i,1))
y(q(i)1q(i)2···q(i)k(i),u(i) 00 · · · 0| {z }

k(i)−1−times

)
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Then we claim that Hy(fi) generates ImHy. Indeed, take an arbitrary f = dα

dtα y(w,u)

Define f̃ = Aαk
wk

A
αk−1
wk−1 · · ·A

αl−1
wl

Bwl
ul where l = min{z|αz > 0}. Then there exist

scalars γi ∈ R such that f̃ =
∑r

z=1 γiei. But for each x = (q1, d1)(q2, d2) · · · (qe, de) ∈

(Q×N)+ it holds that Hy(f)(x) = Cqe
Ade

qe
· · ·Ad1

q1
f̃ . Then Hy(fi)(x) = Cqe

Ade
qe

· · ·Ad1
q1

ei,

so we get that

(

r∑

j=1

γjHy(fj))(x) =

r∑

j=1

γjCqe
Ade

qe
· · ·Ad1

q1
ej = Cqe

Ade
qe

· · ·Ad1
q1

f̃ = Hy(f)(x)

so that we get that

Hy(f) =

r∑

j=1

γjHy(fj)

That is, the set {Hy(fi) | i = 1, 2, . . . , r} is a finite generator of ImHy.

Now we are ready to state the main theorem of the section.

Theorem 29. Consider a map y : (U × Q × T )+ → Y. The map y is realizable

by a linear switched system if and only if it satisfies the realisability conditions and

its Hankel-map is of finite rank, i.e. n = rank Hy < +∞. If y is realizable, and

rank Hy < +∞ then there exists a minimal linear switched system

Σ = (X ,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q})

which realizes it and dimX = n = rank Hy. This minimal representation is unique

up to algebraic similarity.

Proof. Lemma 31 and Proposition 21 imply the necessity of the condition. The last

statement of the theorem follows from Corollary 14 In order to prove sufficiency, a

minimal linear switched system will be constructed that realizes y. The proof will

be divided into several steps.

(1) Consider H = ImHy. For each q ∈ Q define the following linear maps Aq :

H → H, Cq : H → Y and Bq : U → H as follows

∀(q1, j1)(q2, j2) · · · (qk, jk) :

(Aqφ)((q1, j1)(q2, j2) · · · (qk, jk)) := φ((q, 1)(q1, j1)(q2, j2) · · · (qk, jk))

Bqu := Hy(
d

dt
y(q,u)), Cqφ := φ((q, 0))

It is clear that Bq and Cq are well defined linear mappings. It is left to show that

Aq is well defined. It is clear that Aq : H → D is linear. We need to show that

Aq(H) ⊆ H. In fact, the following is true: for all f = dα

dtα y(w,u) ∈ Xy it holds that

Aq(Hy(f)) = Hy(
d(1,α)

dt(1,α)
y(wq,u0)) (6.5)
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Indeed, denote by φ the right-hand side of (6.5). Then

φ((q1, β1)(q2, β2) · · · (qz, βz)) =

=
dβ

dτβ

d(1,α)

dt(1,α)
y(u0 00 · · · 0︸ ︷︷ ︸

z−times

, wqq1q2 · · · qz, t1t2 · · · tktk+1τ1τ2 · · · τz)|t=0,τ=0

=
d(β,1)

dτ (β,1)

dα

dtα
y(u000 · · · 0, wqq1q2 · · · qz, t1t2 · · · tkτ1τ2τ2 · · · τz+1)|t=0,τ=0

= Hy(f)((q, 1)(q1, β1)(q2, β2) · · · (qz, βz))

(2) For each q1q2 · · · qk, z ∈ Q+, α ∈ Nk and u ∈ U the following holds

Aαk
qk

· · · Aα1
q1
Bzu = Hy(

d(α,1)

dt(α,1)
y(zq1q2···qk,u 00 · · · 0| {z }

k−times

)) (6.6)

It is easy to see that d(1,α)

dt(1,α) y(wqq,vu0) = d(αm+1,αm−1,...,α1)

dt(αm+1,αm−1,...,α1) y(wq,vu), m = |wq|. The

correctness of (6.6) follows now from the repeated application of (6.5). We also get

the following equalities.

Aαk
qk

Aαk−1
qk−1

· · · Aα1−1
q1

Bq1
u1 = Hy(

dα

dtα
y(q1q2···qk,u1 00 · · · 0| {z }

k−1−times

)) (6.7)

CqA
αk
qk

Aαk−1
qk−1

· · · Aα1−1
q1

Bq1
u1 =

dα

dtα
y(q1q2 · · · qkq, u1 00 · · · 0︸ ︷︷ ︸

k−times

, ts)|t=0,s=0 (6.8)

where α1 > 0.
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(3) Using condition 5 of realizability conditions one gets for any k ≥ l ∈ N

dα

dtα
y(q1q2···qk,u1u2···uk)(v)(τ) =

=
dα

dtα
y(q1q2 · · · qkv, u1u2 · · ·uk 0 · · · 00︸ ︷︷ ︸

|v|−times

, tτ)|t=0

=
dα

dtα
(y(ql+1ql+2 · · · qkv, ul+1 · · ·uk 0 · · · 00︸ ︷︷ ︸

|v|−times

, tl+1τ) +

+y(qlql+1 · · · qkv, ul 00 · · · 0︸ ︷︷ ︸
|v|+k−l−times

, tlτ))

+y(q1q2 · · · qkv, u1u2 · · ·ul−10 0 · · · 00︸ ︷︷ ︸
|v|+k−l−times

, tτ))|t=0

=
dα

dtα
y(ql+1ql+2 · · · qkv, ul+1 · · ·uk 0 · · · 00︸ ︷︷ ︸

|v|−times

, tl+1τ)

+
d(αk,αk−1,...,αl)

dt(αk,αk−1,...,αl)
y(qlql+1···qk,ul 00 · · · 0| {z }

k−l−times

)(v)(τ)

+
dα

dtα
y(q1q2···qk,u1u2···ul−10 00 · · · 0| {z }

k−l−times

)(v)(τ)

Assume that l = min{z|αz > 0}. Now, since the function

y(ql+1ql+2 · · · qkv, ul+1ul+2 · · ·uk 0 · · · 00︸ ︷︷ ︸
|v|−times

, tl+1tl+2 · · · tkτ)

doesn’t depend on tl, we get that

dα

dtα
(y(ql+1ql+2 · · · qkv, ul+1 · · ·uk 0 · · · 00︸ ︷︷ ︸

|v|−times

, tτ)|t=0 = 0

For the third term of the sum

∀w = w1w2 · · ·wz ∈ Q+, τ = τ1τ2 · · · τz ∈ T z :

dα

dtα
y(q1q2···qk,u1u2···ul−10 00 · · · 0| {z }

k−l−times

)(w)(τ)

=
dα

dtα
y(u1u2 · · ·ul−10 00 · · · 0︸ ︷︷ ︸

k−l−times

00 · · · 0︸ ︷︷ ︸
z−times

, q1q2 · · · qkw1w2 · · ·wz, tτ)|t=0

=
d(αk,αk−1,...,αl)

dt(αk,αk−1,...,αl)
y(0 00 · · · 0︸ ︷︷ ︸

k−l−times

00 · · · 0︸ ︷︷ ︸
z−times

, ql · · · qkw1w2 · · ·wz, tτ)|t=0 = 0
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In the last two steps the condition 6 of the realizability conditions and the equality

y(00 · · · 0, w, τ) = 0 were applied. So, we get that the following holds:

dα

dtα
y(q1q2···qk,u1u2···uk) =

d(αk,αk−1,...,αl)

dt(αk,αk−1,...,αl)
y(qlql+1···qk,ul 00 · · · 0| {z }

k−l−times

)

Taking into account equalities (6.7) and (6.8) one immediately gets

Hy(
dα

dtα
y(q1q2···qk,u1u2···uk)) = Aαk

qk
Aαk−1

qk−1
· · · Aαl−1

ql
Bql

ul (6.9)

and

dα

dtα
y(q1q2 · · · qk, u1u2 · · ·uk, t)|t=0 = Cqk

Aαk
qk

Aαk−1
qk−1

· · · Aαl−1
ql

Bql
ul (6.10)

(4) Consider vector spaces

W = Span{Aαk
qk

Aαk−1
qk−1

· · · Aα1
q1
Bzu | u ∈ U , q1, q2, . . . qk, z ∈ Q,α ∈ Nk}

and

O =
⋂

q1,q2,...,qk,z∈Q,α∈Nk

ker CzA
αk
qk

Aαk−1
qk−1

· · · Aα1
q1

From (6.6) and (6.9) it follows that H = Hy(Xy) = W . We will show that O = {0}.

Let f = dα

dtα y(x,v) ∈ Xy. Then

Cwz
Aβz

wz
Aβz−1

wz−1
· · · Aβ1

w1
Hyf = Cwz

Hy(
dβ

dτβ

dα

dtα
y(xw,v 0 · · · 0| {z }

z−times

))

= Hy(f)((w1, β1)(w2, β2) · · · (wz, βz))

For each z ∈ O there exist f1, f2, . . . fr and αi ∈ R, i = 1, 2, . . . r such that fi =
d(α(i,k(i)),α(i,k(i)−1),...,α(i,1))

dt(α(i,k(i)),α(i,k(i)−1),...,α(i,1)) y(wi,ui) and z =
∑r

i=1 γiHy(fi). For each

(w, β) = (w1, β1)(w2, β2) · · · (wk, βk) ∈ (Q × N)+

it holds that

Cwk
Aβk

wk
A

βk−1
wk−1 · · · A

β1
z1

z = 0. But

Cwk
Aβk

wk
Aβk−1

wk−1
· · · Aβ1

z1

r∑

i=1

γiHyfi =

r∑

i=1

γiCwk
Aβk

wk
Aβk−1

wk−1
· · · Aβ1

z1
Hy(fi)

=
r∑

i=1

γiHy(fi)((w, β)) = z(w, h)

So for each (w, β) ∈ (Q × N)+ we get that z((w, β)) = 0, that is, z = 0.
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6.3. CONSTRUCTING A MINIMAL REPRESENTATION FOR
INPUT-OUTPUT MAPS

(5) Since n = dimH there is a T : H → Rn vector space isomorphism. Define

on Rn the following linear switched system Σ = (Rn,U ,Y, Q, {(Aq, Bq, Cq)|q ∈ Q})

where

Aq = TAqT
−1, Bq = TBq, Cq = CqT

−1

Then for each q1, q2, . . . qk ∈ Q, u ∈ U , α ∈ Nk we get that

Cqk
Aαk

qk
· · ·Aα1−1

q1
Bq1

u = Cqk
Aαk

qk
· · · Aα1−1

q1
Bq1

u

This and (6.10) together with Corollary 15 imply that Σ is indeed a realization of

y. Also, we get that Reach(Σ) = TW = TH = Rn, so Σ is reachable. Again,

TO = OΣ = {0}, so Σ is observable. That is, Σ is a minimal linear switched system

that realizes y and its state space is of dimension n.

As a consequence of the theorem we get the following corollary

Corollary 16. Let Σ = (X ,U ,Y, Q, {(Aq, Bq, Cq)|q ∈ Q}) be a linear switched sys-

tem. Let y := ỹΣ. Then rank Hy ≤ dimX . The system Σ is minimal if and only it

holds that rank Hy = n = dimX .
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Chapter 7

Realization Theory of Linear

and Bilinear Hybrid Systems

In this chapter we will present realization theory for linear and bilinear hybrid sys-

tems. The material of this chapter is partly based on [48, 54]. Let us first recall the

realization problem for linear and bilinear hybrid systems.

1. Reduction to a minimal realization Consider a linear (bilinear) hybrid system

H, and a subset of its input-output maps Φ. Find a minimal linear (bilinear)

hybrid system which realizes Φ.

2. Existence of a realization Find necessary and sufficient condition for existence

of a linear (bilinear) hybrid system realizing a specified set of input-output

maps.

3. Partial realization Find a procedure for constructing a linear (bilinear) hybrid

system realization of a set of input-output maps from finite data.

Except the partial realization problem, which we be treated in Section 10.5, all the

problems listed above will be discussed in this chapter. More precisely, we will present

the following results.

• A linear (bilinear) hybrid system is a minimal realization of a set of input-

output maps if and only if it is observable and semi-reachable. Minimal linear

(bilinear) hybrid systems which realize a given set of input-output maps are

unique up to isomorphism. Each linear (bilinear) hybrid system H realizing a

set of input-output maps Φ can be transformed to a minimal realization of Φ.
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• A set of input/output maps is realizable by a linear hybrid system if and only

if it has a hybrid kernel representation, the rank of its Hankel-matrix is finite,

the discrete parts of the input/output maps are realizable by a finite Moore-

automaton and certain other finiteness conditions hold. A set of input/output

maps is realizable by a bilinear hybrid system if and only if it has a hybrid Fliess-

series expansion, the rank of its Hankel-matrix is finite and the discrete parts of

the input/output maps are realizable by a finite Moore-automaton. There is a

procedure to construct the linear (bilinear) hybrid system realization from the

columns of the Hankel-matrix, and this procedure yields a minimal realization.

Notice that the results above are very similar to those for hybrid formal power series.

This is not a coincidence, in fact, the results announced above will be proven by

using theory of hybrid formal power series. It turns out that there is one-to-one cor-

respondence between linear and bilinear hybrid systems and hybrid representations of

certain families of hybrid formal power series. This correspondence will enable us to

reduce the realization problem for linear and bilinear hybrid systems to the problem

of existence and minimality of hybrid representations for a certain family of hybrid

formal power series. Moreover, such system theoretic properties of hybrid systems

as observability, semi-reachability and minimality have their counterparts in hybrid

representations. That is, there is one-to-one correspondence between reachable, ob-

servable, minimal hybrid representations and semi-reachable, observable, minimal

linear and bilinear hybrid systems. Thus, theory of hybrid formal power series can

be used to characterise minimality of linear and bilinear hybrid systems. It can be

also used to derive partial realization theory of linear and bilinear hybrid systems,

see Section 10.5.

It is also possible to develop realization theory for linear and bilinear hybrid

system without using hybrid formal power series. It was done in [48, 54]. Compared

to the direct approach the use of hybrid formal power series helps to avoid unnecessary

repetition of proofs and concepts. It also results in a much more elegant and concise

treatment of realization theory for linear and bilinear hybrid systems.

In fact, the main motivation for discussing realization theory for both linear and

bilinear hybrid systems in one chapter is that in both cases the same framework of

hybrid formal power series can be used.

The outline of the chapter is the following. Section 7.1 describes realization theory

of linear hybrid systems. Section 7.2 presents realization theory of bilinear hybrid

systems.
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CHAPTER 7. LINEAR AND BILINEAR HYBRID SYSTEMS

7.1 Realization Theory for Linear Hybrid Systems

In this section realization theory of linear hybrid systems will be discussed. As it

was mentioned in the introduction to the chapter, the theory of hybrid formal series

will be the main tool for developing realization theory of linear hybrid systems.

In fact, one can pursue a direct approach for realization theory of linear hybrid

systems, without resorting to theory of hybrid formal power series. This was done

in [54]. A quick comparison of the direct approach and the one with hybrid formal

power series reveals that in the former one in fact repeats the proofs of Section 3.3

on hybrid formal power series. Thus, the direct approach does not seem to yield a

construction simpler than the current one.

The outline of the section is the following. Subsection 7.1.1 presents certain

concepts and elementary results related to linear hybrid systems. Subsection 7.1.2

describes the structure of input-output maps of linear hybrid systems. Finally, Sub-

section 7.1.3 develops realization theory for linear hybrid systems.

7.1.1 Linear Hybrid Systems

Recall from Chapter 2, Section 2.3 the definition of linear hybrid systems. In this

section we will introduce some additional notation and terminology, which will be

used specifically for linear hybrid systems. Let

H = (A,U ,Y, (Xq, Aq, Bq, Cq)q∈Q , {Mq1,γ,q2
| q1, q2 ∈ Q, γ ∈ Γ, q1 = δ(q2, γ)})

be a linear hybrid systems. With abuse of notation denote by X the set X =⊕
q∈Q Xq. Recall from Section 2.3 that AH refers to the Moore automaton A of

H.

Recall the definition of the continuous state-trajectory xH : H×PC(T,U)× (Γ×

T )∗×T →
⋃

q∈Q Xq. Notice that
⋃

q∈Q Xq can be viewed as a subset of X =
⊕

q∈Q Xq.

Thus, xH can be viewed as a map which takes its values in X . In the sequel we will

view xH as a map taking its values in X . We can derive an explicit expression for

the continuous state trajectory xH using the well-known expression for trajectories

of linear systems

Proposition 24. For all h0 ∈ H, h0 = (q0, x0), u ∈ PC(T,U), w ∈ (Γ ∈ T )∗,
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7.1. REALIZATION THEORY FOR LINEAR HYBRID SYSTEMS

w = (γ1, t1) · · · (γk, tk), γ1, . . . , γk ∈ Γ, k ≥ 0, tk+1 ∈ T ,

xH(h0, u, w, tk+1) = eAqk
tk+1Mqk,γk,qk−1

eAqk−1
tk · · ·Mq1,γ1,q0

eAq0
t1x0+

+

k∑

i=0

eAqk
tk+1Mqk,γk,qk−1

eAqk−1
tk · · ·

· · · eAqi+1
ti+2Mqi+1,γi,qi

∫ ti+1

0

eAqi
(ti+1−s)Bqi

ui(s)ds

(7.1)

where qi+1 = δ(qi, γi+1), ui(s) = u(
∑i

j=1 tj + s), 0 ≤ i ≤ k.

Proof. We proceed by induction. If k = 0, then xH(h0, u, ε, t1) is a state-trajectory

of the linear system d
dtx(t) = Aq0

x(t) + Bq0
u(t) and thus

xH(h0, u, ε, t1) = eAq0
t1x0 +

∫ t1

0

eAq0
(t1−s)Bq0

u(s)ds

Assume that the statement of the proposition is true for k ≤ N . That is,

xH(h0, u, (γ1, t1) · · · (γN , tN ), tN+1) = eAqN
tN+1MqN ,γN ,qN−1

· · ·Mq1,γ1,q0
eAq0

t1x0+

N+1∑

l=l

eAqN
tN+1MqN ,γN ,qN−1

· · ·Mql,γl,ql−1

∫ tl

0

eAql−1
tl−sBql−1

u(s +

l−1∑

j=1

tj)ds

Consider any γN+1 ∈ Γ, tN+2 ∈ T . Recall that

xH(h0, u, (γ1, t1) · · · (γN+1, tN+1), tN+2) = x(tN+2)

where x(t) is the state trajectory of the linear system d
dtx(t) = AqN+1

x(t)+BqN+1
u(t+∑N+1

j=1 tj) and x(0) = MqN+1,γN+1,qN
xH(h0, u, (γ1, t1) · · · (γN , tN ), tN+1). Thus, x(t) =

eAqN+1
txH(h0, u, (γ1, t1) · · · (γN , tN ), tN+1) +

∫ t

0
eAqN+1

(t−s)BqN+1
u(s +

∑N+1
j=1 tj)ds.

Combining the expression for x(t) with the induction hypothesis we get that

x(t) = eAqN+1
tMqN+1,γN+1,qN

(eAqN
tN+1MqN ,γN ,qN−1

· · ·Mq1,γ1,q0
eAq0

t1x0+

N∑

l=0

eAqN
tN+1MqN ,γN ,qN−1

· · ·

· · · eAql+1
tl+2Mql+1,γl+1,ql

∫ tl+1

0

eAql
(tl−s)Bql

u(s +

l∑

j=1

tj)ds)+

+

∫ tN+2

0

eAqN+1
(tN+2−s)BqN+1

u(s +

N+1∑

j=1

tj)ds

It is easy to see that the expression above is equivalent to the formula in the statement

of the proposition.
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Let H0 be a subset of H. Recall the definition of the set Reach(H,H0). The

linear hybrid system H is said to be semi-reachable from H0 if X is the vector

space of the smallest dimension containing Reach(H,H0) and the automaton AH is

reachable from ΠQ(H0). That is, H is semi-reachable from H0 if AH is reachable

from ΠQ(H0) and X = Span{z | z ∈ Reach(H,H0)}. Recall the notion of a hybrid

system realization. Hybrid system realizations of the form (H,µ) where H is a linear

hybrid system will be called linear hybrid system realizations. We say that a linear

hybrid system realization (H,µ) is semi-reachable if H is semi-reachable from Imµ.

Recall the definition of hybrid morphisms. For linear hybrid systems we will

use a related but slightly different notion of system morphism, which we will call

linear hybrid morphisms. The goal of this new definition is to capture the linear

structure of linear hybrid systems. Let (H,µ) and (H
′

, µ
′

) be two realizations such

that dom(µ) = dom(µ
′

), i.e. the domain of definition of µ and µ
′

coincide and

H = (A,U ,Y, (Xq, Aq, Bq, Cq)q∈Q , {Mq1,γ,q2
| q1, q2 ∈ Q, γ ∈ Γ, q1 = δ(q2, γ)})

H
′

= (A
′

,U ,Y, (X
′

q , A
′

q, B
′

q, C
′

q)q∈Q′ , {M
′

q1,γ,q2
| q1, q2 ∈ Q

′

, γ ∈ Γ, q1 = δ
′

(q2, γ)})

where A = (Q,Γ, O, δ, λ) and A
′

= (Q
′

,Γ, O, δ
′

, λ
′

). A pair T = (TD, TC) is called

a linear hybrid morphism from (H,µ) to (H
′

, µ
′

), denoted by T : (H,µ) → (H
′

, µ
′

),

if the the following holds. The map TD : (A, µD) → (A
′

, µ
′

D), where µD(f) =

ΠQ(µD(f)), µ
′

D(f) = ΠQ′ (µ
′

D(f)), is an automaton morphism and TC :
⊕

q∈Q Xq →⊕
q∈Q′ X

′

q is a linear morphism, such that

• ∀q ∈ Q : TC(Xq) ⊆ X
′

TD(q),

• TCAq = A
′

TD(q)TC TCBq = B
′

TD(q) Cq = C
′

TD(q)TC for each q ∈ Q,

• TCMq1,γ,q2
= M

′

TD(q1),γ,TD(q2)
TC , ∀q1, q2 ∈ Q, γ ∈ Γ, δ(q2, γ) = q1,

• TC(ΠXq
(µ(f))) = ΠX

′

TD(q)
(µ

′

(f)) for each q = µD(f), f ∈ dom(µ).

The linear hybrid morphism T is said to be injective, surjective or bijective if both

TD and TC are respectively injective, surjective and bijective. Bijective linear hybrid

morphisms are called linear hybrid isomorphisms. Two linear hybrid system real-

izations are isomorphic if there exists a linear hybrid isomorphism between them.

Notice that linear hybrid morphisms can be defined between realizations (H,µ) and

(H
′

, µ
′

) only if µ and µ
′

have the same domain of definition.

Notice that the linear map TC :
⊕

q∈Q Xq →
⊕

q∈Q′ X
′

q is uniquely determined

by its restriction to
⋃

q∈Q Xq, which we will denote by M(TC). It is easy to see that

in fact M(TC) takes it values in
⋃

q∈Q′ X
′

q . The following proposition is an easy

consequence of the remarks above.
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Proposition 25. With the notation above, if T = (TD, TC) is a linear hybrid mor-

phism, then ψ(T ) = (TD,M(T )) is a hybrid morphism. Moreover, T is a linear

hybrid isomorphism if and only if ψ(T ) is a hybrid isomorphism.

Recall that with any hybrid morphism S : (H1, µ1) → (H2, µ2) one can associate

a map φ(S) : H1 → H2. If T : (H1, µ1) → (H2, µ2) is an linear hybrid morphism

between linear hybrid system realizations, then by the proposition above we can

associate with it a hybrid morphism ψ(T ), with which, in turn, we can associate the

map φ(ψ(T )). Whenever it doesn’t create confusion we will denote φ(ψ(T )) simply

by φ(T ) or T . Then the following holds.

Proposition 26. The map T is a linear hybrid isomorphism if and only if φ(T ) is

bijective as a map from H1 to H2.

Proof. Indeed, assume that φ(T ) : H1 → H2 is bijective. Then for all q ∈ Q
′

there exists uniquely a q ∈ Q such that T ((q, 0)) = (TD(q), TC(0)) = (q
′

, 0), i.e.,

TD(q) = q
′

. Thus, TD is bijective. For any x ∈ X
′

q′ there exists a unique z ∈ Xq such

that T ((q, z)) = (TD(q), TCz) = (q, x), i.e., TCz = x. Thus, TC is surjective. We will

show that TC is injective. Indeed, assume that TCy = x. Then y = yq1
+ · · · + yq|Q|

,

where yqi
∈ Xqi

, i = 1, . . . , |Q|. But TC(yqi
) ∈ X

′

TD(qi)
, thus TC(yqi

) = 0 for all

i = 1, . . . , |Q|, qi 6= q. Thus, y ∈ Xq, and thus y = z.

If T is a linear hybrid isomorphism, then by Proposition 25 ψ(T ) is a hybrid

isomorphism, thus by Proposition 1, φ(T ) = φ(ψ(T )) is a bijection.

Proposition 27. Let (H1, µ1) and (H2, µ2) be two linear hybrid systems. Assume

that T : (H1, µ1) → (H2, µ2) is a linear hybrid morphism. Then the following holds.

• If T is injective, then dimH1 ≤ dimH2.

• If T is surjective, then dim H2 ≤ dimH1.

• If T is either injective or surjective and dim H1 = dimH2, then T is a linear

hybrid isomorphism

Proof. Let

H1 = (A,U ,Y, (Xq, Aq, Bq, Cq)q∈Q , {Mq1,γ,q2
| q1, q2 ∈ Q, γ ∈ Γ, q1 = δ(q2, γ)})

and

H2 = (A
′

,U ,Y, (X
′

q , A
′

q, B
′

q, C
′

q)q∈Q′ , {M
′

q1,γ,q2
| q1, q2 ∈ Q

′

, γ ∈ Γ, q1 = δ
′

(q2, γ)})

197



CHAPTER 7. LINEAR AND BILINEAR HYBRID SYSTEMS

Then TC :
⊕

q∈Q Xq →
⊕

q∈Q′ X
′

q is a linear morphism. Assume that T is injective.

Then TC and TD are injective. Then card(Q) = card(TD(Q)) ≤ card(Q
′

) and

rank TC =
∑

q∈Q

dimXq = dim
⊕

q∈Q

Xq ≤
∑

q∈Q′

dimX
′

q

Thus

dimH1 = (card(Q),
∑

q∈Q

dimXq) ≤ (card(Q
′

),
∑

q∈Q′

dimX
′

q)

Similarly, if T is surjective, then TC and TD are surjective. Thus,

∑

q∈Q

dimXq ≥ rank TC =
∑

q∈Q′

dimX
′

q

and card(Q) ≥ card(TD(Q)) = card(Q
′

). Thus, dim H1 ≥ dim H2. Assume that T

is injective and dimH1 = dimH2. Then

rank TC =
∑

q∈Q

dimXq =
∑

q∈Q′

dimX
′

q and card(TD(Q)) = card(Q) = card(Q
′

)

Similarly, if T is surjective and dim H1 = dimH2, then

rank TC =
∑

q∈Q′

dimX
′

q =
∑

q∈Q

dimXq and card(TD(Q)) = card(Q
′

) = card(Q)

Thus, if T is injective or surjective and dimH1 = dimH2, then TC and TD are

bijections, and thus T is a linear hybrid isomorphism.

The following proposition gives an important system theoretic characterisation of

linear hybrid morphisms.

Proposition 28. Let (Hi, µi), i = 1, 2 be two linear hybrid systems and let T :

(H1, µ1) → (H2, µ2) be a linear hybrid morphism. Then the following holds.

φ(T ) ◦ ξH1
(h, .) = ξH2

(φ(T )(h), .) and υH1
(h, .) = υH2

(φ(T )(h), .),∀h ∈ H1

If T is a linear hybrid isomorphism, then (H1, µ1) is semi-reachable if and only

if (H2, µ2) is semi-reachable and (H1, µ1) is observable if and only if (H2, µ2) is

observable.

Proof. All the statements of the proposition is a straightforward consequence of

Proposition 2, except the one about semi-reachability. Assume that T is a linear

hybrid isomorphism. Then TC and TD are bijective maps. Let ψ(T ) = (TD,M(T )).
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7.1. REALIZATION THEORY FOR LINEAR HYBRID SYSTEMS

Notice that TC(x) = M(T )(x) for each x ∈ Xq, q ∈ Q. Thus, from the proof of Propo-

sition 2, equation (2.2) it follows that TCxH1
(h, u, s, t) = M(T )(xH1

(h, u, s, t)) =

xH2
(ψ(T )(h), u, s, t) = xH2

(φ(T )(h), u, s, t) It is easy to see that φ(T )((µ1(f)) =

µ2(f) and thus φ(T )(Imµ1) = Imµ2. Then by linearity of TC it follows that

TC(Span{z | z ∈ Reach(H1, Imµ1)}) = Span{TCxH1
(h, u, s, t) |

h ∈ Imµ1, u ∈ PC(T,U), s ∈ (Γ × T )∗, t ∈ T} =

= Span{xH2
(h, u, s, t) | h ∈ φ(T )(Imµ1), u ∈ PC(T,U), s ∈ (Γ × T )∗, t ∈ T}) =

= Span{z | z ∈ Reach(H2, Imµ2)}

On the other hand, (H1, µ1) is semi-reachable if and only if

dim Span{z | z ∈ Reach(H1, Imµ1)} = dim
⊕

q∈Q

Xq

Since TC is a linear isomorphism, we get that the latter equality is equivalent to

dim
⊕

q∈Q′

X
′

q = dim TC(
⊕

q∈Q

Xq) = dimTC(Span{z | z ∈ Reach(H1, Imµ1)}) =

= dim Span{z | z ∈ Reach(H2, Imµ2)}

That is, it is equivalent to (H2, µ2) being semi-reachable.

7.1.2 Input-output Maps of Linear Hybrid Systems

This section deals with properties of input-output maps of linear hybrid systems. Let

f ∈ F (PC(T,U)×(Γ×T )∗×T,Y×O) be an input-output map. Define fC = ΠY ◦f :

PC(T,U)×(Γ×T )∗×T → Y and fD = ΠO ◦f : PC(T,U)×(Γ×T )∗×T → O. That

is, f(u,w, t) = (fC(u,w, t), fD(u,w, t)) for all u ∈ PC(T,U), w ∈ (Γ × T )∗, t ∈ T .

Below we will define the notion of hybrid kernel representations, existence of which

is an important necessary condition for existence of a linear hybrid realization.

Definition 16 (hybrid kernel representation). A set Φ ⊆ F (PC(T,U) × (Γ ×

T )∗×T,Y×O) is said to admit a hybrid kernel representation if there exist functions

Kf
w : Rk+1 → Rp and Gf

w,j : Rj → Rp×m for each f ∈ Φ, w ∈ Γ∗, |w| = k, j =

1, 2, . . . , k + 1, such that

1. ∀w ∈ Γ∗,∀f ∈ Φ, j = 1, 2, . . . , |w| + 1: Kf
w is analytic and Gf

w,j is analytic

2. For each f ∈ Φ, the function fD depends only on Γ∗, i.e.

∀u1, u2 ∈ PC(T,U), w ∈ Γ∗, τ1, τ2 ∈ T |w|, t1, t2 ∈ T :

fD(u1, (w, τ1), t1) = fD(u2, (w, τ2), t2)

199



CHAPTER 7. LINEAR AND BILINEAR HYBRID SYSTEMS

The function fD will be regarded as a function fD : Γ∗ → O.

3. For each f ∈ Φ, w = γ1γ2 · · · γk ∈ Γ∗, tk+1 ∈ T , γ1, . . . , γk ∈ Γ, t =

(t1, . . . , tk) ∈ T k:

fC(u, (w, t), tk+1)) = Kf
w(t1, . . . , tk, tk+1)+

+
k∑

i=0

∫ ti+1

0

Gf
w,k+1−i(ti+1 − s, ti+2, . . . , tk+1)σiu(s)ds

where σju(s) = u(s +
∑j

i=1 ti).

Using the notation above, define for each f ∈ Φ the function yf
0 : PC(T,U) ×

(Γ × T )∗ × T → Y by

yf
0 (u, (w, t), tk+1) =

=

k∑

i=0

∫ ti+1

0

Gf
w,k+1−i(ti+1 − s, ti+2, . . . , tk+1)σiu(s)ds

where t = (t1, . . . , tk). It follows that yf
0 (u, (w, τ), t) = fC(u, (w, τ), t)−fC(0, (w, τ), t).

The intuition behind the definition fo yf
0 is the following. If (H,µ) is a realization

of Φ, then for each f ∈ Φ, yf
0 = ΠY ◦ υH((ΠQ(µ(f)), 0), .). In fact, the following

holds.

Lemma 32. Consider a linear hybrid system realization (H,µ)

H = (A,U ,Y, (Xq, Aq, Bq, Cq)q∈Q , {Mq1,γ,q2
| q1, q2 ∈ Q, γ ∈ Γ, q1 = δ(q2, γ)})

Then (H,µ) is a realization of Φ if and only if Φ has a hybrid kernel representation

of the form

Kf
w(t1, . . . , tk+1) = Cqk

eAqk
tk+1Mqk,γk,qk+1

· · · eAq0
t0µC(f)

Gf
w,k+2−j(tj , . . . , tk+1) = Cqk

eAqk
tk+1Mqk,γk,qk−1

· · ·

· · · eAqj
tj+1Mqj ,γj ,qj−1

eAqj−1
tj Bqj−1

fD(u, (w, τ), t) = λ(µD(f), w) for each u ∈ PC(T,U), τ ∈ T k, t ∈ T

(7.2)

for each w = γ1 · · · γk, γ1, . . . , γk ∈ Γ, k ≥ 0, j = 1, . . . , k + 1, f ∈ Φ. If (H,µ) is a

realization of Φ, then yf
0 = ΠY ◦ υH((µD(f), 0), .).

Proof. (H,µ) is a realization of Φ if and only if

f = υH(µ(f), .) (7.3)
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Let yH(h, .) = ΠY ◦ υH(h, .) for all h ∈ H. Thus, (7.3) is equivalent to fC =

yH(µ(f), .) and fD = ΠO ◦ υH(µ(f), .). But for each u ∈ PC(T,U), w ∈ Γ∗, τ ∈

T |w|, t ∈ T

ΠO ◦ υH((µD(f), 0), u, (w, τ), t) = λ(µD(f), w)

Thus, (7.3) implies fD(u, (w, τ), t) = λ(µD(f), w). It is easy to see that

yH((q, x), u, (w, t), tk+1) = Cqk
eAqk

tk+1Mqk,γk,qk+1
· · · eAq0

t0x+

k∑

j=1

∫ tj

0

Cqk
eAqk

tk+1Mqk,γk,qk−1
· · · eAqj

tj+1Mqj ,γj ,qj−1
eAqj−1

tj−sBqj−1
u(s +

j−1∑

i=1

ti)ds

where w = γ1 · · · γk, γ1, . . . , γk ∈ Γ, k ≥ 0, t = t1 · · · tk, qi = δ(q, γ1 · · · γk), i =

0, . . . , k, q0 = q, (q, x) ∈ H.

Thus, we get that (7.3) is equivalent to

∀w ∈ Γ∗, t = t1 . . . tk+1 ∈ T k+1, tk+1 ∈ T, |w| = k, u ∈ PC(T,U) :

fC(u, (w, t), tk+1) = yH(µf , u, (w, t), tk+1) =

= Kf
w(t1, t2, . . . , tk+1)+

+

k+1∑

j=1

∫ tj

0

Gf
w,j(tj − s, tj+1, . . . , tk+1)u(s +

j−1∑

i=1

ti)ds

fD(u, (w, t), tk+1) = λ(µD(f), w)

(7.4)

Thus, Φ has a hybrid kernel representation of the form (7.2). The last statement of

the lemma follows from the fact that

yH((µD(f), 0), u, (w, t), tk+1) =

=

k+1∑

j=1

∫ tj

0

Cqk
eAqk

tk+1Mqk,γk,qk−1
· · ·Mqj ,γj ,qj−1

eAqj−1
tj−sBqj−1

u(s +

j−1∑

i=1

ti)ds =

k+1∑

j=1

∫ tj

0

Gf
w,j(tj − s, tj+1, . . . , tk+1)u(s +

j−1∑

i=1

ti)ds = yf
0 (u, (w, t), tk+1)

for all u ∈ PC(T,U), w = γ1 · · · γk, γ1, . . . , γk ∈ Γ, k ≥ 0, t = t1 · · · tk ∈ T k, tk+1 ∈

T .

If the set Φ has a hybrid kernel representation, then the collection of analytic

functions {Kf
w, Gf

w,j | w ∈ Γ∗, j = 1, 2, . . . , |w| + 1, f ∈ Φ} determines {fC | f ∈ Φ}.

Since Kf
w is analytic, we get that the collection {DαKf

w,DβGf
w,j | α ∈ N|w|, β ∈ Nj}

determines Kf
w and Gf

w,j locally.
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For each f ∈ Φ, u ∈ PC(T,U), w ∈ Γ∗ define the maps

fC(u,w, .) : T |w|+1 3 (t1, . . . , t|w|+1) 7→ fC(u, (w, t1 · · · t|w|), t|w|+1)

yf
0 (u,w, .) : T |w|+1 3 (t1, . . . , t|w|+1) 7→ yf

0 (u, (w, t1 · · · t|w|), t|w|+1)

By applying the formula d
dt

∫ t

0
f(t, τ)dτ = f(t, t) +

∫ t

0
d
dtf(t, τ)dτ and Definition 16

one gets

DαKf
w = DαfC(0, w, .) , DξGf

w,lez = Dβyf
0 (ez, w, .) (7.5)

where w = γ1 · · · γk, l ≤ k + 1, Nk+1 3 β = ( 0, 0, . . . , 0︸ ︷︷ ︸
k−l+1−times

, ξ1 + 1, ξ2, . . . , ξl), and ez

is the zth unit vector of Rm, i.e eT
z ej = δzj . The formula above implies that all the

high-order derivatives of the functions Kf
w, Gf

w,j (f ∈ Φ, w ∈ Γ∗, j = 1, 2, . . . |w|+ 1)

at zero can be computed from high-order derivatives of the functions from Φ with

respect to the relative arrival times of discrete events.

The discussion above yields the following result.

Lemma 33. If Φ has a hybrid kernel representation, then the functions Kf
w, Gf

w,j,

f ∈ Φ, w ∈ Γ∗, j = 1, . . . , |w| + 1 are uniquely defined. That is, if K̃f
w, G̃f

w,j are

analytic functions such that condition 3 holds, then

K̃f
w = Kf

w and G̃f
w,j = Gf

w,j

f ∈ Φ, w ∈ Γ∗, j = 1, . . . , |w| + 1.

Proof. Indeed, assume that both Kf
w, Gf

w,j and K̃f
w, G̃f

w,j are analytic functions which

satisfy condition 3. Then by (7.5) for each α ∈ N|w|+1, β ∈ N|w|+2−j , j = 1, . . . , |w|+1

DαKf
w = DαfC(0, w, .) = DαK̃f

w

DβGf
w,|w|+2−jez = Dηyf

0 (ez, w, .) = DβG̃f
w,|w|+2−jez

where ez ∈ U is the zth unit vector, z = 1, . . . ,m,

η = (0, 0, . . . , 0︸ ︷︷ ︸
j

, β1 +1, β2, . . . , β|w|+2−j) ∈ N|w|+1. Thus we get that DαKf
w = DαK̃f

w

and DβGf
w,j = DβG̃f

w,j holds for each α ∈ N|w|+1, β ∈ N|w|+2−j . Since the functions

Kf
w, Gf

w,j , K̃f
w and G̃f

w,j are analytic we get that Kf
w = K̃f

w and Gf
w,j = G̃f

w,j .

From the discussion above one gets the following.

Proposition 29. Let Φ ⊆ F (PC(T,U)×(Γ×T )∗×T,Y×O). Let (H,µ) be a linear

hybrid system realization

H = (A,U ,Y, (Xq, Aq, Bq, Cq)q∈Q , {Mq1,γ,q2
| q1, q2 ∈ Q, γ ∈ Γ, q1 = δ(q2, γ)})
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where A = (Q,Γ, O, δ, λ). The pair (H,µ) is a realization of Φ if and only if Φ

has a hybrid kernel representation and for each w ∈ Γ∗, f ∈ Φ, j = 1, 2, . . . ,m and

α ∈ N|w|+1 the following holds

Dαyf
0 (ej , w, .) = DβGf

w,k+2−lej = Cqk
Aαk+1

qk
Mqk,γk,qk−1

· · ·Mql,γl,ql−1
Aαl−1

ql−1
Bql−1

ej

DαfC(0, w, .) = DαKf
w = Cqk

Aαk+1
qk

Mqk,γk,qk−1
· · ·Mq1,γ1,q0

Aα1
q0

x0

fD(w) = λ(q0, w)

where l = min{h | αh > 0}, ez is the zth unit vector of U , β = (αl − 1, . . . , α|w|+1)

and w = γ1 · · · γk, γ1, . . . , γk ∈ Γ, qj = δ(q0, γ1 · · · γj) and µ(f) = (q0, x0).

Proof. By Lemma 32 (H,µ) is a realization of Φ if and only if Φ admits a hybrid kernel

representation of the form (7.2). By (7.5) we get that Dαyf
0 (ej , w, .) = DβGf

w,lej and

Dαf(0, w, .) = DαKf
w. Using the notation of Lemma 32 define the functions

φf,w : (t1, . . . , tk+1) 7→ Cqk
eAqk

tk+1Mqk,γk,qk−1
· · ·Mq1,γ1,q0

eAq0
t1µC(f)

ψf,w,l,j : (tl, . . . , tk+1) 7→ Cqk
eAqk

tk+1Mqk,γk,qk−1
· · ·Mql,γl,ql−1

eAql−1
tlBql−1

ej

for each f ∈ Φ, w ∈ Γ∗, |w| = k, j = 1, . . . ,m, l = 1, . . . , k + 1, w = γ1 · · · γk. It is

easy to see that ψf,w,l,j , φf,w are analytic.

D(αl−1,...,αk+1)ψf,w,l,j = Cqk
Aαk+1

qk
Mqk,γk,qk−1

· · ·Mql,γl,ql−1
Aαl−1

ql−1
Bql−1

ej

D(α1,...,αk+1)φf,w = Cqk
Aαk+1

qk
Mqk,γk,qk−1

· · ·Mq1,γ1,q0
Aα1

q0
µC(f)

It is easy to see that Kf
w = φf,w and Gf

w,lej = ψf,w,l,j are equivalent to DαKf
w =

Dαφf,w and DβGf
w,lej = Dβψf,w,l,j for all α ∈ N|w|+1 and β ∈ N|w|+2−l. Thus, using

the notation of the statement of the proposition we get that (7.2) is equivalent to

∀f ∈ Φ, w ∈ Γ∗, |w| = k, j = 1, . . . ,m, α ∈ Nk+1 :

Dαyf
0 (ej , w, .) = DβGf

w,k+2−lej = Dβψf,w,l,j =

= Cqk
Aαk+1

qk
Mqk,γk,qk−1

· · ·Mql,γl,ql−1
Aαl−1

ql−1
Bql−1

ej

DαfC(0, w, .) = DαKf
w =

= Dαφf,w = Cqk
Aαk+1

qk
Mqk,γk,qk−1

· · ·Mq1,γ1,q0
Aα1

q0
µC(f)

fD(w) = λ(qk) = λ(q0, w)

Below we will present sufficient and necessary conditions for existence of hybrid

kernel representation for a set of input-output maps Φ ⊆ F (PC(T,U) × (Γ × T )∗ ×

T,Y × O). Before formulating the conditions some notation has to be introduced.

203



CHAPTER 7. LINEAR AND BILINEAR HYBRID SYSTEMS

Recall from [58] the definition of Lp([a, b]) spaces for intervals [a, b] ⊆ R, and

1 ≤ p ≤ +∞. For each 1 ≤ p ≤ +∞, t ∈ T denote by Lp([0, t], Rn×m) the vector

space of n by m matrices of functions from Lp([0, ti]). I.e. f : [0, t] → Rn×m is

an element of Lp([0, t], Rn×m), if f = (fi,j)i=1,...,n,j=1,...,m and fi,j ∈ Lp([0, ti]), i =

1, . . . , n, j = 1, . . . ,m. Notice that PC([0, t],U) ⊆ Lp([0, t],U) for all t ∈ T . Denote

by ||.||p the usual norm on Lp([0, t], R). If f ∈ Lp([0, t], Rn×m), then denote by Mf

the n×m matrix defined by (Mf )i,j = ||fi,j ||p for all i = 1, . . . , n, j = 1, . . . ,m. Let

s be any norm on Rn×m. Then it is easy to see that ||.||p,s : Lp([0, t], Rn×m) → R+,

||f ||p,s = s(Mf ) is a norm on Lp([0, t], Rn×m). Recall that on Rn×m all norms are

equivalent, that is, if s1, s2 are two norms on Rn×m, then there exists m,M > 0

such that ms1(T ) ≤ s2(T ) ≤ Ms1(T ) for all T ∈ Rn×m. But then it implies that

m||f ||p,s1
≤ ||f ||p,s2

≤ M ||f ||p,s1
for all f ∈ Lp([0, t], Rn×m). Thus, all the norms

||.||p,s for a fixed p induce the same topology. In the sequel we will assume that some

norm s is fixed on Rn×m and by abuse of notation we will denote ||.||p,s simply by

||.||p. It is an easy consequence of the classical theory that PC([0, t],U) is dense in

Lp([0, t],U), 1 ≤ p < +∞ in the topology induced by the norm ||.||p.

For f, g ∈ PC(T,U) define for any τ ∈ T the concatenation f#τg ∈ PC(T,U) of

f and g by

f#τg(t) =

{
f(t) if t ≤ τ

g(t) if t > τ

Assume that Φ ⊆ F (PC(T,U)× (Γ× T )∗ × T,Y ×O). For each f ∈ Φ denote by

yf
0 the map yf

0 : (u,w, t) 7→ fC(u,w, t) − fC(0, w, t).

Let f ∈ Φ, w ∈ Γ∗, k = |w|, t = (t1, . . . , tk), tk+1 ∈ T , j = 1, . . . , p. Define the

map

yf
(w,t),tk+1

: PC([0, Sk],U) 3 u 7→ yf (u#Sk
0, (w, t), t) ∈ Rp

where Sk =
∑k+1

j=1 tj . For each l = 1, . . . , k + 1 define the following map

yf
l,(w,t),tk+1

: PC([0, tl],U) 3 u 7→ yf
0 (ũl, (w, t), t) ∈ Rp

where ej is the jth unit vector of Rp and

ũl(t) =

{
u(t −

∑l−1
j=1 tj) if t ∈ (

∑l−1
j=1 tj ,

∑l
j=1 tj ]

0 otherwise

Define the map

ψf
w : T k+1 3 (t1, . . . , tk+1) 7→ fC(0, (γ1, t1)(γ2, t2) . . . (γk, tk), tk+1) ∈ Rp

where w is assumed to be of the form w = γ1 · · · γk, γ1, . . . , γk ∈ Γ. For each u ∈ U

identify u with the constant map [0, tl] 3 s 7→ u and define the map

ψf
l,u,w : T |w|+1 3 (t1, . . . , tk, tk+1) 7→ yf

l,(w,(t1,...,tk),tk+1
(u) ∈ Rp
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Now we are ready to formulate sufficient and necessary conditions for existence of a

hybrid kernel representation.

Theorem 30. Φ has a hybrid kernel representation if and only if the following holds

1. For all f ∈ Φ the map fD depends only on Γ∗, that is, for all u, u
′

∈ PC(T,U),

w ∈ Γ∗, τ, τ
′

∈ T |w|, t, t
′

∈ T

fD(u, (w, τ), t) = fD(u
′

, (w, τ
′

), t)

That is, fD can be viewed as a map fD : Γ∗ → O.

2. For each f ∈ Φ, for each w ∈ Γ∗, |w| = k, k ≥ 0, t = (t1, . . . , tk) ∈ T k,

tk+1 ∈ T

∀u, v ∈ PC(T,U) : (u(τ) = v(τ) for all τ ∈ [0,

k+1∑

j=1

tj ]) =⇒

fC(u, (w, t), tk+1) = fC(v, (w, t), tk+1)

3. For each f ∈ Φ, w ∈ Γ∗, k = |w|, k ≥ 0, t = t1 · · · tk, tk+1 ∈ T , the maps

yf
(w,t),tk+1

: PC([0,

k+1∑

j=1

tj ],U) → Rp

are linear and contnious in ||.||1 norm.

4. For each f ∈ Φ, w ∈ Γ∗, k = |w|, l = 1, . . . , k + 1, u ∈ U the maps ψf
l,w,u :

T k+1 → Rp and ψf
w : T k+1 → Rp are analytic

5. For each f ∈ Φ, u ∈ PC(T,U), v, w ∈ Γ∗, |w| = l, |v| = k t = t1 · · · tk ∈ T k,

s = s1 · · · sl ∈ T l, tk+1 ∈ T , S ∈ [
∑l

j=1 sj ,
∑l

j=1 sj + t1]

yf
0 (0#Su, (wv, st), tk+1) = yf

0 (u, (wv, 0τ), τk+1)

where 0 = 00 · · · 0 ∈ T l and τ1 = t1 − (S −
∑l

j=1 sj), τi+1 = ti+1 for all

i = 1, . . . , k and τ = (τ1, . . . , τk).

Proof. only if

Assume that Φ has a hybrid kernel representation.

Condition 1

It is easy to see that condition 1 is the same as the condition 2 of Definition 16.
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Condition 2

Condition 2 follows from condition 3 of Definition 16. Indeed,

fC(u, (w, t), tk+1) = Kf
w(t1, . . . , tk+1)+

+

k+1∑

l=1

∫ tl

0

Gf
w,k+2−l(tl − s, tl+1, . . . , tk+1)u(s + Tl)ds =

= Kf
w(t1, . . . , tk+1)+

+

k+1∑

l=1

∫ tl

0

Gf
w,k+2−l(tl − s, tl+1, . . . , tk+1)v(s + Tl)ds =

= fC(v, (w, t), tk+1)

where Tl =
∑l−1

z=1 tz, l = 1, . . . , k + 1.

Condition 3

Notice that for all u ∈ PC([0,
∑k+1

j=1 tj ],U)

yf
0 (u#Tk+2

0, (w, t), tk+1) = yf
0 (u#Tk+2

0, (w, t), tk+1) = yf
(w,t),tk+1

(u) =

k+1∑

l=1

∫ tl

0

Gf
w,k+2−l(tl − s, tl+1, . . . , tk+1)u(s + Tl)ds

(7.6)

where Tk+2 =
∑k+1

j=1 tj . Thus, yf
(w,t),tk+1

is indeed linear map for each w ∈ Γ∗,

|w| = k, t = (t1, . . . , tk) ∈ T k, tk+1 ∈ T . Since Gf
w,k+2−l is analytic, the map

ψ : [0, Tk+2] 3 s 7→ Gf
w,k+2−l(s −

l−1∑

j=1

tj , tl+1, . . . , tk+1) if s ∈ [

l−1∑

j=1

tj ,

l∑

j=1

tj ]

is in L∞([0, Tk+2], R
1×m). Notice that by the formula above

yf
(w,t),tk+1

(u) =

∫ Tk+2

0

ψ(s)u(s)ds

Thus, using a slight reformulation of the well-known result from functional analysis

( [58]) we get that yf
(w,t),tk+1

is indeed linear and continuous in ||.||1 norm. That is,

condition 3 holds.

Condition 4

Formula (7.6) implies that for each u ∈ U ,

ψf
l,w,u(t1, . . . , tk+1) = (

∫ tl

0

Gf
w,k+2−l(tl − s, tl+1, . . . , tk+1)ds)u

By analyticity of Gf
w,k+2−l it implies that ψf

l,w,u is analytic. Similarly, notice that

ψf
w(t1, . . . , tk+1) = fC(0, (w, t), tk+1) = Kf

w(t1, . . . , tk+1)
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Since Kf
w is analytic, we get that ψf

w is analytic. Thus, we have shown that condition

4 holds.

Condition 5

Notice that

yf
0 (0#Su, (wv, st), tk+1) =

l∑

j=1

∫ si

0

Gf
wv,k+l+2−j(si − s, si+1, . . . , sl, t1, . . . , tk+1)(0#Su)(s + Sj)ds+

+
k+1∑

j=1

∫ ti

0

Gf
wv,k+2−j(tj − s, tj+1, . . . , tk+1)(0#Su)(s + Tj)ds =

k+1∑

j=1

∫ ti

0

Gwv,k+2−j(tj − s, tj+1, . . . , tk+1)(0#Su(s + Tj)ds =

∫ t1

S−
P

l
j=1 sj

Gf
wv,k+2−j(t1 − s, t2, . . . , tk+1)u(s)ds+

+

k+1∑

j=2

Gf
wv,k+2−j(tj − s, tj+1, . . . , tk+1)u(s + Tj)ds =

l∑

j=1

∫ 0

0

Gf
wv,k+l+2−j(0 − s, 0, . . . , 0, t1, . . . , tk+1)u(s)ds+

k+1∑

j=1

∫ τi

0

Gwv,k+2−j(τj − s, τj+1, . . . , τk+1)u(s + Zj)ds =

yf
0 (u, (wv, 0τ), τk+1)

where Sj =
∑j−1

i=1 sj , j = 1, . . . , l, Tj =
∑l

j=1 sj +
∑j−1

i=1 tj , j = 1, . . . , k + 1 and

Zj =
∑j−1

i=1 τj for j = 1, . . . , k + 1.

if part

Assume that conditions 1–5 hold. We will show that Φ admits a hybrid kernel

representation. Notice that 1 is equivalent to condition 2 of Definition 16. Thus, it is

enough to show that there exist analytic functions Kf
w and Gf

w,l for each f ∈ Φ, w ∈

Γ∗, l = 1, . . . , |w| + 1 such that condition 3 of Definition 16 holds. For each f ∈ Φ,

w ∈ Γ∗, w = |k| let

Kf
w = ψf

w

and for each l = 1, . . . , k + 1 define the maps Gf
w,l : T l → Rp×m as follows. For each

fixed t2, . . . , tl ∈ T define the maps

gl,w,i,t2,...,tl
: T ∈ s 7→ ψf

k+2−l,w,ei
( 0, 0, . . . , 0︸ ︷︷ ︸
k+1−l–times

, s, t2, . . . , tl)
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for each i = 1, . . . ,m. Denote by g
′

l,w,i,t2,...,tl
the derivative of gl,w,i,t2,...,tl

and for

each t1, . . . , tl ∈ T define

Gf
w,l(t1, t2, . . . , tl) =

[
g

′

l,w,1,t2,...,tl
(t1) g

′

l,w,2,t2,...,tl
(t1) · · · g

′

l,w,m,t2,...,tl
(t1)

]T

It is easy to see that both Kf
w and Gf

w,l are analytic maps.

For each τ = (τ1, . . . , τk) ∈ T k, τk+1 ∈ T define the map

Zf
w,τ,τk+1

: PC([0,

k+1∑

j=1

τj ],U) → Rp

by

Zw,τ,τk+1
(u) =

k+1∑

j=1

∫ τj

0

Gf
w,k+2−j(τj − s, τj+1, . . . , τk+1)u(s +

j−1∑

i=1

τi)ds

If we can show that for each w ∈ Γ∗, |w| = k, k ≥ 0, τ ∈ T k, τk+1 ∈ T

Zf
w,τ,τk+1

= yf
(w,τ),τk+1

, (7.7)

then existence of a hybrid kernel representation follows easily. Indeed, notice that

f(u, (w, τ), τk+1) = f(0, (w, τ), τk+1) + yf (u, (w, τ), τk+1)

and f(0, (w, τ), τk+1) = ψf
w(τ1, . . . , τk+1). By condition 3

yf (u, (w, τ), τk+1) = yf (u#Pk+1
j=1 τj

0, (w, τ), τk+1) = yf
(w,τ),τk+1

(ũ)

where ũ(s) = u(s),∀s ∈ [0,
∑k+1

j=1 τj ]. Thus, if (7.7) is true, then

f(u, (w, τ), τk+1) = Kf
w(τ1, . . . , τk+1)+

+

k+1∑

j=1

∫ τj

0

Gf
w,k+2−j(τj − s, τj+1, . . . , τk+1)u(s +

j−1∑

i=1

τj)ds

i.e., condition 3 of Definition 16 holds.

Notice that for each z = 1, . . . ,m

ψf
k+2−l,w,ez

(0, 0, . . . , 0, 0, tl+1, tl+2, . . . , tk+1) =

yf (0#0(ez#00), (w, 00 · · · 00tl+1 · · · tk), tk+1)

But 0#0(ez#0)0 = 0 thus by linearity of yf
(w,00···00tl+1···tk),tk+1

we get that

yf (0#0(ez#00), (w, 00 · · · 00tl+1 · · · tk), tk+1) = yf
(w,00···00tl+1···tk),tk+1

(0) = 0
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thus ψf
k+2−l,w,ez

(0, 0, . . . , 0, 0, tl+1, . . . , tk+1) = 0. Thus,

ψf
k+2−l,w,ez

(0, 0, . . . , 0, τl, . . . , τk+1) =

=

∫ τl

0

−
d

ds
ψf

k+2−l,w,ez
(τl − s, τl+1, . . . , τk+1)ds =

=

∫ τl

0

g
′

k+2−l,w,z,tl+1,...,tk+1
(τl − s)ds =

=

∫ τl

0

Gf
k+2−l,w(τl − s, τl+1, . . . , τk+1)ezds

(7.8)

It is also easy to see that that for any u = (u1, . . . , um)T ∈ U , τ = (τ1, . . . , τk) ∈

T k, τk+1 ∈ T , l = 1, . . . , k + 1, s ∈ [0, τl]

yf
(w,τ),τk+1

(0#Tl+s(u#τl−s#0)) =

=
m∑

i=1

uiψ
f
l,w,ei

(0, . . . , 0, τl − s, τl+1, . . . , τk+1)
(7.9)

where Tl =
∑l−1

j=1 τj . Indeed, by condition 5 we get that

yf
(w,τ),τk+1

(0#Tl+s(u#τl−s0)) = yf
(w,00···0(τl−s)···τk),τk+1

(u#τl−s0)

and by linearity of yf
(w,00···0(τl−s)τl+1···τk),τk+1

we get that

yf
(w,00···0(τl−s)taul+1···τk),τk+1

(u#τl−s0) =

m∑

i=1

uiy
f
(w,00···0(τl−s)τl+1···τk),τk+1

(ei#τl−s0) =

=

m∑

i=1

uiψ
f
k+2−l,w,ei

(0, 0, . . . , 0, τl − s, . . . , τk+1)

Thus, using (7.8)

yf
(w,τ),τk+1

(0#Tl+s(u#τl−s#0)) =

=

∫ τl−s

0

Gk+2−l,w(τl − s − τ, τl+1, . . . , τk+1)udτ =

=

∫ τl

0

Gk+2−l,w(τl − τ, τl+1, . . . , τk+1)(0#Tl+s(u#τl−s0))(Tl + τ)dτ =

= Zf
(w,τ),τk+1

(0#Tl+s(u#τl−s0))

Notice that for each s1, s2 ∈ [0, τl], s1 < s2,

0#Tl+s1
(u#s2−s1

0) = 0#Tl+s1
((u#s2−s1

0)#τl−s2
0) =

0#Tl+s1
(u#tl−s1

0) − 0#Tl+s1
(0#s2−s1

(u#τl−s2
0)) =

= 0#Tl+s1
(u#tl−s1

0) − 0#Tl+s2
(u#tl−s2

0)
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Thus, by condition 5 and 3 we get that

yf (0#Tl+s1
(u#s2−s1

0), (w, τ), τk+1) =

=yf (0#Tl+s1
(u#τl−s1

0), (w, τ), τk+1) − yf (0#Tl+s2
(u#τl−s2

0), (w, τ), τk+1) =

=

∫ τl−s1

0

Gf
w,k+2−l(τl − s1 − τ, τl+1, . . . , τk+1)udτ−

−

∫ τl−s2

0

Gf
w,k+2−l(τl − s2 − τ, τl+1, . . . , τk+1)udτ =

=

∫ s2−s1

0

Gf
w,k+2−l(τl − s1 − τ, τl+1, . . . , τk+1)udτ =

=

∫ τl

0

Gf
w,k+2−l(τl − τ, τl+1, . . . , τk+1)(0#s1

(u#s2−s1
0)(τ)dτ

Therefore, we get that for each s1, s2 ∈ [0, τl], s1 < s2

yf (0#Tl+s1
(u#s2−s1

0), (w, τ), τk+1) = Zf
(w,τ),τk+1

(0#s1+Tl
(u#s2−s1

0)) (7.10)

Let Tk+1 =
∑k+1

j=1 τj . For any piecewise-constant function u : T → U there exist

n(1), . . . , n(k + 1) ∈ N, si,j ∈ T, i = 1, . . . , k + 1, j = 1, . . . , k(i), such that u(s) =

ui,j ∈ U if s ∈ [si,j , si,j+1) or s ∈ [sn(i), ti] where 0 = si,1 < si,2 < · · · < si,n(i) < ti

and i = 1, . . . , k + 1. Then it follows that

u =

k+1∑

j=1

n(i)∑

j=1

0#Ti
(0#Si,j

#(ui,j#si,j+1
0)) =

where Si,j =
∑j

z=1 si,z, i = 1, . . . , k +1, j = 1, . . . , n(i). Thus, by linearity of yf and

Zf and by formula (7.10)

yf (u, (w, τ), τk+1) =

k+1∑

j=1

n(i)∑

i=1

yf (0#Ti+Si,j
(ui,j#si,j+1

0), (w, τ), τk+1) =

=

k+1∑

j=1

n(i)∑

i=1

Zf
(w,τ),τk+1

(0#Ti+Si,j
(ui,j#si,j+1

0) = Zf
(w,τ),τk+1

(u)

That is,

yf
(w,τ),τk+1

(u) = Zf
(w,τ),τk+1

(u) for all piecewise-constant u

Since both yf
(w,τ),τk+1

and Zf
(w,τ),τk+1

are continuous linear maps and any element of

PC(T,U) can be represented as a limit in ||.||1 of a sequence of piecewise-constant

maps, we get that yf
(w,τ),τk+1

= Zf
(w,τ),τk+1

. By the remark above it implies the ”if”

part of the theorem.
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7.1.3 Realization of Input-output Maps by Linear Hybrid

Systems

In this section the solution to the realization problem will be presented. That is, given

a set of input-output maps we will formulate necessary and sufficient conditions for

the existence of a linear hybrid system realizing that set. In addition, characterisation

of minimal systems realizing the specified set of input-output maps will be given. We

will use the theory of hybrid formal power series developed in Section 3.3.

The main idea behind the realization construction is the following. We associate

a family of hybrid formal power series with the specified set of input-output maps. It

turns out that if the set of input-output maps admits a hybrid kernel representation,

then there is a one-to-one correspondence between the linear hybrid systems realiza-

tion of the set of input-output maps and the hybrid representations of the hybrid

formal power series. Moreover, minimal linear hybrid realizations correspond to min-

imal hybrid representations. Thus, we can use the theory of hybrid representations

developed in Section 3.3 to develop realization theory for linear hybrid systems.

The outline of the subsection is the following. We start with presenting neces-

sary and sufficient conditions for observability and semi-reachability of linear hybrid

systems. Then we will proceed with defining the family of hybrid formal power se-

ries associated with the set of input-output maps and the correspondence between

linear hybrid realizations and hybrid representations. As it was explained before,

this correspondence will be used to formulate necessary and sufficient conditions for

existence of a linear hybrid realization and to characterise minimality.

Observability and semi-reachability of linear hybrid systems

The following two theorems characterise observability and semi-reachability of linear

hybrid systems. Observability of related classes of hybrid systems was investigated

in [81, 8, 11]. Let

H = (A,U ,Y, (Xq, Aq, Bq, Cq)q∈Q , {Mq1,γ,q2
| q1, q2 ∈ Q, γ ∈ Γ, q1 = δ(q2, γ)})

be a linear hybrid system. The following theorem characterises observability of linear

hybrid systems.

Theorem 31. H is observable if and only if

(i) For each s1, s2 ∈ Q, s1 = s2 if and only if for all γ1, . . . γk ∈ Γ, j1, . . . , jk+1 ≥
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0, 0 ≤ l ≤ k, k ≥ 0 :

λ(s1, γ1 · · · γk) = λ(s2, γ1 · · · γk) and

Cqk
Ajk+1

qk
Mqk,γk,qk−1

· · ·Mql+1,γl+1,ql
Ajl+1

ql
Bql

=

=Cvk
Ajk+1

vk
Mvk,γk,vk−1

· · ·Mvl+1,γl+1,vl
Ajl+1

ql
Bvl

where qj = δ(s1, γ1 · · · γj) and vj = δ(s2, γ1 · · · γj), j = 0, 1, . . . , k.

(ii) For each q ∈ Q it holds that OH,q :=
⋂

w∈Γ∗ Oq,w = {0} ⊆ Xq where ∀w =

γ1 · · · γk ∈ Γ∗, γ1, . . . , γk ∈ Γ, k ≥ 0:

Oq,w =
⋂

j1,...,jk≥0

ker Cqk
Ajk+1

qk
Mqk,γk,qk−1

· · ·Mq1,γ1,q0
Aj1

q0

where q ∈ Q, ql = δ(q0, γ1 · · · γl), 0 ≤ l ≤ k, k ≥ 0.

A quick look at Proposition 4 from Chapter 3 reveals that the conditions for ob-

servability of linear hybrid systems described in the theorem above are very similar

to the conditions for observability of hybrid representations. It is by no means a

coincidence and it is related to the correspondence between linear hybrid realiza-

tions and hybrid representations. More precisely, there is a direct correspondence

between observability of linear hybrid systems and observability of certain hybrid

representations. We will present this correspondence later on in this section.

Proof. For any (q, x) ∈ H, define yH((q, x), .) = ΠY ◦ υH((q, x), .). For each u ∈

PC(T,U), w ∈ Γ∗ define the function yH((q, x), u, w, .) : (t1, . . . , tk+1) 3 T k+1 7→

yH((q, x), u, (w, t), tk+1), where k = |w|, t = (t1, . . . , tk+1). It is easy to see that

yH((q, x), 0, w, .) is linear in x, that is, yH((q, ax1+bx2), 0, w, .) = ayH((q, x1), 0, w, .)+

byH(((q, x2), 0, w, .) for all a, b ∈ R. On the other hand, yH((q, 0), u, w, .) is linear is

u, that is, yH((q, 0), αu2 + βu2, w, .) = αyH((q, 0), u1, w, .) + βyH((q, 0), u2, w, .) for

all α, β ∈ R. Moreover, yH((q, x), u, w, .) = yH((q, x), 0, w, .) + yH((q, 0), u, w, .).

First we show that υH((s1, 0), .) = υH((s2, 0), .) if and only if for each γ1, . . . , γk ∈

Γ, k ≥ 0, l = 0, . . . , k, j1, . . . , jk+1 ≥ 0,

λ(s1, γ1 · · · γk) = λ(s2, γ1 · · · γk) and

Cqk
Ajk+1

qk
Mqk,γk,qk−1

· · ·Mql+1,γl+1,ql
Ajl+1

ql
Bql

=

= Cvk
Ajk+1

vk
Mvk,γk,vk−1

· · ·Mvl+1,γl+1,vl
Ajl+1

ql
Bvl

where qj = δ(s1, γ1 · · · γj) and vj = δ(s2, γ1 · · · γj), j = 0, 1, . . . , k. Indeed,

υH((s1, 0), .) = υH((s2, 0), .)
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is equivalent to the fact that

(λ(s1, w), yH((s1, 0), u, (w, τ), tk+1)) = υH((s1, 0), u, (w, t), tk+1) =

= υH((s2, 0), u, (w, t), tk+1) =

= (λ(s2, w), yH((s2, 0), u, (w, t), tk+1)

holds for all u ∈ PC(T,U), w ∈ Γ∗, t ∈ T k, k = |w|, tk+1 ∈ T . That is, it is equivalent

to λ(s1, w) = λ(s2, w) for all w ∈ Γ∗ and yH((s1, 0), .) = yH((s2, 0), ). For each

si, i = 1, 2, let fi = υH((si, 0), .) and consider the following singleton set consisting of

one single input-output map Φsi
= {fi}. Define the map µsi

: Φsi
3 f 7→ (si, 0) ∈ H.

It is easy to see that (H,µsi
) is a realization of Φsi

. Thus, by Lemma 32 Φs1
,Φs2

admit a hybrid kernel representation and yH((si, 0), .) = y
fi,Φsi

0 for i = 1, 2. From

the definition of y
fi,Φsi

0 it is clear that y
fi,Φs1
0 = y

fi,Φs2
0 is equivalent to requiring

that G
f1,Φs1

w,|w|−l+2 = G
f2,Φs2

w,|w|−l+2 holds for each w ∈ Γ∗, l = 1, . . . , |w| + 1. Then by

analyticity of G
fi,Φsi

w,|w|−l+2, i = 1, 2 that the latter is equivalent to DαG
f1,Φs1

w,|w|−l+2ej =

DαG
f2,Φs2

w,|w|−l+2ej for all α ∈ N|w|−l+2, w ∈ Γ∗, l = 1, . . . |w| + 1, j = 1, . . . ,m. From

Lemma 32 by uniqueness of hybrid kernel representation ( Lemma 33) we get that

the last equality is equivalent to

Cqk
Aαk+1

qk
Mqk,γk,qk−1

· · ·Mql,γl,ql−1
Aαl

ql−1
Bql−1

ej =

= DαyH((s1, 0), ej , w, .) = DαyH((s2, 0), ej , w, .) =

= Cvk
Aαk+1

vk
Mvk,γk,vk−1

· · ·Mvl,γl,vl−1
Aαl

vl−1
Bvl−1

ej

where qj = δ(s1, γ1 · · · γj) and vj = δ(s2, γ1 · · · γj), j = 0, 1, . . . , k., ej is the jth unit

vector of Rm, α ∈ Nk+1, w ∈ Γ∗, k = |w|, l = 1, . . . , k + 1. That is, part (i) of the

theorem is equivalent to

∀s1, s2 ∈ QυH((s1, 0), .) = υH((s2, 0), .) ⇐⇒ s1 = s2

Next, we will show that υH((q, x1), .) = υH((q, x2), .) is equivalent to

∀w ∈ Γ∗ : x1 − x2 ∈ Oq,w =
⋂

j1,...,jk≥0

ker Cqk
Ajk+1

qk
Mqk,γk,qk−1

· · ·Mq1,γ1,q0
Aj1

q0

where q0 ∈ Q, ql = δ(q, γ1 · · · γl), 1 ≤ l ≤ k, k ≥ 0, w = γ1 · · · γk, γ1, . . . , γk ∈ Γ.

Indeed, υH((q, x1), .) = υ((q, x2), .) if and only if yH((q, x1), .) = yH((q, x2), .).

The equality yH((q, x), u, w, .) = yH((q, 0), 0, w, .) + yH((q, 0), u, w, .) implies that

yH((q, x1), .) = yH((q, x2), .) if and only if yH((q, x1), 0, w, .) = yH((q, x2), 0, w, .)

holds for all w ∈ Γ∗, or, equivalently, yH((q, x1 − x2), 0, w, .) = 0.

Consider the set Φs,x1−x2
= {f}, f = υH((s, x1 − x2), .). Define µs,x1−x2

: f 7→

(s, x1−x2). It is easy to see that (H,µs,x1−x2
) is a realization of Φs,x1−x2

. By Lemma
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32 Φs,x1−x2
admits a hybrid kernel representation. By the definition of hybrid ker-

nel representation, fC(0, (w, τ), t) = yH((s, x1 − x2), 0, (w, τ), t) = K
f,Φs,x1−x2
w (τ, t).

Thus, yH((s, x1 − x2, 0, w, .) = 0 is equivalent to K
f,Φs,x1−x2
w = 0 for each w ∈ Γ∗.

The latter, by analyticity of K
f,Φs,x1−x2
w , Lemma 32 and formula (7.5) is equivalent

to

DαK
f,Φs,x1−x2
w = DαyH((q, x1 − x2), 0, w, .) =

= Cqk
Aαk+1

qk
Mqk,γk,qk−1

· · ·Mq1,γ1,q0
Aα1

q0
(x1 − x2) = 0

for all α ∈ N|w|, w ∈ Γ∗, where q0 ∈ Q, ql = δ(q, γ1 · · · γl), 1 ≤ l ≤ k, k ≥ 0,

w = γ1 · · · γk, γ1, . . . , γk ∈ Γ. That is, x1 − x2 ∈ Oq,w for all w ∈ Γ∗.

That is, Part (ii) of the theorem is equivalent to

∀q ∈ Q : υH((q, x1), .) = υH((q, x2), .) ⇐⇒ x1 = x2,

for each x1, x2 ∈ Xq

We will show that the conditions of the theorem imply observability. Assume

that the conditions (i) and (ii) hold. We will show that then H is observable.

Assume that (s1, x1) and (s2, x2) are indistinguishable, that is, υH((s1, x2), .) =

υH((s2, x2), .). The latter equality is implies that υH((s1, 0), .) = υH((s2, 0), .). In-

deed, υH((s1, x1), .) = υH((s2, x2), .) implies that yH((s1, x1), .) = yH((s2, x2), .).

The latter equality implies that yH((s1, x1), 0, w, .) = yH((s1, x1), 0, w, .) for all w ∈

Γ∗. But

yH((s1, x1), u, w, .) = yH((s1, x1, 0, w, .) + yH((s1, 0), u, w, .) =

= yH(s2, x2), u, w, .) = yH((s2, x2, 0, w, .) + yH((s2, 0), u, w, .)

which implies that yH((s1, 0), .) = yH((s2, 0), .). Since ΠO ◦ υH((s1, 0), .) = ΠO ◦

υH((s1, x1), .) = ΠO ◦υH((s2, x2), .) = ΠO ◦υH((s2, 0), .), we get that υH((s1, 0), .) =

υH((s2, 0), .). But then s1 = s2 = s by part (i) of the theorem. From υH((s1, x1), .) =

υH((s2, x2), .) we get that υH((s, x1), .) = υH((s, x2), .), but by part (ii) of the theo-

rem it implies that x1 = x2. That is, (s1, x1) = (s2, x2). That is, H is observable.

Assume H is observable. Then for any s1, s2 ∈ Q, υH((s1, 0), .) = υH((s2, 0), .)

is equivalent to s1 = s2. But this is equivalent to part (i) of the theorem. Similarly,

υH((s, x1), .) = υH((s, x2), .) is equivalent to s1 = s2. But this is equivalent to part

(ii) of the theorem. That is, if H is observable, then part (i) and part(ii) of the

theorem hold.

The following theorem characterises semi-reachability of (H,µ).
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Theorem 32. (H,µ) is semi-reachable if and only if (AH , µD), µD = ΠQ ◦ µ, is

reachable and dimWH =
∑

q∈Q dimXq, where

WH = Span{Ajk+1
qk

Mqk,γk,qk−1
· · ·Mql+1,γl+1,ql

Ajl+1
ql

Bql
u,

Ajk+1
qk

Mqk,γk,qk−1
· · ·Mq1,γ1,q0

Aj1
q0

xf |

j1, . . . , jk+1 ≥ 0, u ∈ U , γ1, . . . , γk ∈ Γ, (qf , xf ) = µ(f), f ∈ Φ,

qj = δ(q0, γ1 · · · γj), 0 ≤ l, j ≤ k, k ≥ 0}

⊆
⊕

q∈Q

Xq

Proof. Let X =
⊕

q∈Q Xq. We will show that

WH = Span{xH(h0, u, s, t) | h0 ∈ Imµ, u ∈ PC(T,U), s ∈ (Γ × T )∗, t ∈ T} ⊆ X

Denote the right-hand side of the equality above by V . Define the map xH(h0, u, w, .) :

T 3 (t1, . . . , tk+1) 7→ xH(h0, u, (w, t1t2 · · · tk), tk+1) ∈ X , for each u ∈ PC(T,U), w ∈

Γ∗, |w| = k, h0 ∈ Imµ. Thus we get that xH(h0, ej , w, .)(T k+1) ⊆ V , for each

w ∈ Γ∗, |w| = k. Since V is a finite-dimensional vectors pace, we get that

DαxH(h0, ej , w, .) ∈ V

and

DαxH(h0, 0, w, .) ∈ V

for each α ∈ N|w|+1, w ∈ Γ∗, j = 1, . . . ,m. Assume that h0 = (q, x0) It is easy to see

that xH(h0, ej , w, .) = xH(h0, 0, w, .) + xH((q, 0), ej , w, .). That is xH((q, 0), ej , w) =

xH(h0, ej , w, .)− xH(h0, 0, w, .) ∈ V . That is, we get that DαxH(h0, 0, w, .) ∈ V and

DαxH((q, 0), ej , w, .) ∈ V holds for each w ∈ Γ∗, j = 1, . . . ,m, α ∈ N|w|+1. It is easy

to see from (7.1) in Section 7.1 that

DαxH(h0, 0, w, .) = Aαk+1
qk

Mqk,γk,qk−1
Aαk

qk−1
· · ·Mq1,γ1,q0

Aα1
q0

x0

DαxH(0, ej , w, .) = Aαk+1
qk

Mqk,γk,qk−1
Aαk

qk−1
· · ·Mql,γl,ql−1

Aαl−1
ql−1

Bql−1
ej

where qi = δ(q, γ1 · · · γi), w = γ1 · · · γk. h0 = (q, x0), αl > 0 and αl−1 = αl−2 =

· · · = α1 = 0. That is, WH = Span{DαxH(h0, 0, w, .),Dα((q, 0), ej , w, .) | j =

1, . . . ,m, h0 = (q, x0), h0 ∈ Imµ}. Thus, we get that WH ⊆ V .

On the other hand, it is easy to see that

exp(Aqk
tk+1)Mqk,γk,qk−1

exp(Aqk−1tk
) · · · exp(Aq0

t1)x0 ∈ WH
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and

exp(Aqk
tk)Mqk,γk,qk−1

· · ·Mql,γ1,ql−1
exp(Aql−1

tl)Bjej ∈ WH

for each γ1 · · · γk ∈ Γ∗, k ≤ 0, (q, x0) ∈ Imµ, 1 ≤ l ≤ k, j = 1, . . . ,m, where

qi = δ(q, γ1 · · · γi). Thus, we get that xH(h0, u, s, t) ∈ WH , for all h0 ∈ Imµ, u ∈

PC(T,U), s ∈ (Q × T )∗, t ∈ T . That is, WH = V . The rest of the theorem follows

from the definition of semi-reachability.

Later we will show that observability and semi-reachability of linear hybrid sys-

tems can be checked algorithmically. Using the results above, we can give a procedure,

which transforms any realization (H,µ) of Φ to a semi-reachable realization (Hr, µr)

such that dim Hr ≤ dimH. The procedure goes as follows.

Lemma 34. Assume (H,µ) is a realization of Φ,

H = (A,U ,Y, (Xq, Aq, Bq, Cq)q∈Q , {Mq1,γ,q2
| q1, q2 ∈ Q, γ ∈ Γ, q1 = δ(q2, γ)})

Let Ar = (Qr,Γ, O, δr, λr) be the sub automaton of AH reachable from ΠQ(Imµ) and

for each q ∈ Qr let

X r
q = WH ∩ Xq , Ar

q = Aq|X r
q

, Cr
q = Cq|X r

q
, Br

q = Bq , Mr
q1,γ,qe

= Mq1,γ,qe
|X r

q

Let (Hr, µr) = (Ar,U ,Y, (X r
q , Ar

q, B
r
q , Cr

q )q∈Qr , {Mr
q1,γ,q2

| q1, q2 ∈ Qr, γ ∈ Γ, q1 =

δr(q2, γ)}). Then (Hr, µr) is semi-reachableand it is a realization of Φ too. Moreover

dimHr ≤ dimH.

Just as it was the case with Theorem 31 the lemma above can be proven using

the correspondence between linear hybrid systems and hybrid representations. We

will not present that approach here and below we will discuss a direct proof instead.

But we will come back to it later in the next section.

Proof. Define the automaton morphism φ : (Ar, (µr)D) → (A, µD) by φ(q) = q for

each q ∈ Qr. It is easy to see that φ is indeed an automaton morphism. Define

TC :
⊕

q∈Qr X r
q →

⊕
q∈Q Xq by TC(x) = x for each x ∈ X r

q , q ∈ Qr. It is easy to see

that (φ, TC) is a O-morphism. Thus, for all f ∈ Φ, υHr (µr(f), .) = υH(T (µr(f), .) =

υH(µ(f), .) by Proposition 2. Thus, if (H,µ) is a realization of Φ, then (Hr, µr) is a

realization of Φ too. Since (φ, TC) is clearly injective, we get that dimHr ≤ dim H

by Proposition 27. It is easy to see that WHr
= WH =

⊕
q∈Qr X r

q . Thus by Theorem

32 (Hr, µr) is semi-reachable.

216



7.1. REALIZATION THEORY FOR LINEAR HYBRID SYSTEMS

Realization theory of linear hybrid systems

Let Φ ⊆ F (PC(T,U)× (Γ×T )∗ ×T,Y ×O) be a set of input-output maps. Assume

that Φ has a hybrid kernel representation. Then Proposition 29 allows us to refor-

mulate the realization problem in terms of rationality of certain hybrid formal power

series. The construction of these hybrid formal power series goes as follows.

Let Γ̃ = Γ∪{e}, e /∈ Γ. Every w ∈ Γ̃ can be written as w = eα1γ1e
α2γ2 · · · γkeαk+1

for some γ1, . . . , γk ∈ Γ, α1, . . . , αk+1 ≥ 0. For each f ∈ Φ define the formal power

series (Zf )C , (Zf,j)C ∈ Rp ¿ Γ̃∗ À, j = 1, . . . ,m as follows.

(Zf )C(eα1γ1e
α2 · · · γkeαk+1) = DαfC(0, w, .)

(Zf,j)C(eα1γ1e
α2 · · · γkeαk+1) = Dαyf

0 (ej , w, .)

where w = γ1 · · · γk and α = (α1, . . . , αk+1) ∈ Nk. Notice that (Zf,j)C(v) = 0 for

all v ∈ Γ∗. Notice that the complete knowledge of the functions Kf,Φ
w and Gf,Φ

w,l is

not needed in order to construct the formal power series (Zf )C , (Zf,j)C . In fact, one

can think of (Zf )C as an object containing all the information on the behaviour of

f with the zero continuous input. The series (Zf,j)C , j = 1, . . . ,m, contains all the

information on the behaviour of the pair (q, 0), where q is the discrete part of the

hybrid state inducing f in some realization of Φ (if there is any ).

Let J = IΦ = Φ ∪ (Φ × {1, 2, . . . ,m}). That is, J can be interpreted as a

hybrid power series index set, where J1 = Φ and J2 = {1, . . . ,m}. The alphabet Γ̃

decomposes into two disjoint subsets Γ and {e}. With the notation of Section 3.3,

let X = Γ̃, X1 = {e}, X2 = Γ. Define the hybrid formal power series Zf and Zf,j ,

j = 1, . . . ,m by

Zf = (ZC , fD) and Zf,j = ((Zf,j)C , fD)

That is, the discrete-valued part of the hybrid formal power series Zf and Zf,j , j ∈

{1, . . . ,m} is the map fD, i.e. the discrete-valued part of f ∈ Φ. Notice that Φ

has to have a hybrid kernel representation for fD to be a map from Γ∗ to O. The

continuous valued parts of Zf and Zf,j are the formal power series (Zf )C and (Zf,j)C

respectively. Thus, the continuous valued parts store the high-order derivatives at

zero of fC(0, .) and yf
0 (ej , .), j = 1, . . . ,m. By analyticity of fC(0, .) and yf

0 (ej , .)

these high-order derivatives determine the functions uniquely. Thus, by the particular

structure of f imposed by existence of a hybrid kernel representation we get that

(Zf )C and (Zf,j)C , j = 1, . . . ,m determine fC completely, thus the hybrid formal

power series Zf together with Zf,j determine f completely.

Note that we used heavily the assumption that Φ has a hybrid kernel representa-

tion while construction the hybrid formal power series Zf and Zf,j , j = 1, . . . ,m. In

particular, if Φ does not have a hybrid kernel representation, then the derivatives of
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f(0, .) or yf
0 (ej , .) need not exist or fD might depend on switching times or continuous

inputs instead of sequences of discrete inputs only.

We will use the hybrid formal power series above to associate with Φ a suitable

family of hybrid formal power series. Define the set of hybrid formal power series

associated with Φ by

ΨΦ = {Zj ∈ Rp ¿ Γ̃∗ À ×F (Γ∗, O) | j ∈ IΦ}

It is easy to see that ΨΦ is a well-posed indexed set of hybrid formal power series.

Define the Hankel-matrix HΦ of Φ as HΦ = HΨΦ
. Notice that if Φ is finite, then ΨΦ

has finitely many elements.

Let (H,µ) be a hybrid system realization with µ : Φ →
⋃

q∈Q{q} × Xq. Define

the hybrid representation HRH,µ associated with (H,µ) by

HRH,µ = (A,Y, (Xq, {Aq,z, Bq,z,j2}j∈J2,z∈X1
, Cq, {Mδ(q,y),y,q}y∈X2

)q∈Q , J, µ)

where J = IΦ, J1 = Φ, J2 = {1, . . . ,m}, X1 = {e}, X2 = Γ and for each q ∈ Q,

j = 1, . . . ,m

Aq,e = Aq and Bq,e,j = Bqej

where ej is the jth unit vector of U .

Conversely, let

HR = (A,Y, (Xq, {Aq,z, Bq,z,j2}j∈J2,z∈X1
, Cq, {Mδ(q,y),y,q}y∈X2

)q∈Q , J, µ)

be a hybrid representation with index set IΦ such that X1 = {e}, X2 = Γ, J1 = Φ,

J2 = {1, . . . ,m}. Define the linear hybrid realization (HHR, µHR) associated with

HR as follows

HHR = (A,U ,Y, (Xq, Aq, Bq, Cq)q∈Q , {Mq1,γ,q2
| q1, q2 ∈ Q, γ ∈ Γ, q1 = δ(q2, γ)})

and

µHR = µ

where for each q ∈ Q

Aq = Aq,e and Bq =
[
Bq,e,1 Bq,e,2 · · ·Bq,e,m

]

It is easy to see that (HHRH,µ
, µHRH,µ

) = (H,µ) and HRHHR,µHR
= HR for any

hybrid representation HR and linear hybrid realization (H,µ). It is also easy to see

that dim H = dimHRH,µ.

The following theorem follows easily from Proposition 29 and plays a crucial role

in realization theory of linear hybrid system.
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Theorem 33. A linear hybrid system (H,µ) is a realization of Φ if and only if

Φ has a hybrid kernel representation and HRH,µ is a hybrid representation of ΨΦ.

Conversely, if Φ has a hybrid kernel representation and HR is a hybrid representation

of ΨΦ then (HHR, µHR) is a linear hybrid system realization of Φ.

Proof. Assume that (H,µ) is a hybrid realization and let

H = (A,U ,Y, (Xq, Aq, Bq, Cq)q∈Q , {Mq1,γ,q2
| q1, q2 ∈ Q, γ ∈ Γ, q1 = δ(q2, γ)})

By Proposition 29, (H,µ) is a realization of Φ if and only if Φ has a hybrid kernel

representation and for all α = (α1, . . . , αk+1) ∈ Nk+1, w = γ1 · · · γk, γ1, . . . , γk ∈ Γ∗,

k ≥ 0, j = 1, . . . ,m, f ∈ Φ,

Dαyf
0 (ej , w, .) = DβGf,Φ

w,k+2−lej = Cqk
Aαk+1

qk
Mqk,γk,qk−1

· · ·Mql,γl,ql−1
Aαl−1

ql−1
Bql−1

ej

DαfC(0, w, .) = DαKf,Φ
w = Cqk

Aαk+1
qk

Mqk,γk,qk−1
· · ·Mq1,γ1,q0

Aα1
q0

x0

fD(w) = λ(q0, w)

where β = (αl − 1, αl+1, . . . , αk+1), l = min{z | αz > 0}. Taking into account the

definition of Zf,j , Zf for all f ∈ Φ, j = 1, . . . ,m we get that the formula above is

equivalent to f ∈ Φ,

(Zf,j)C(γ1 · · · γl−1e
αlγle

αl+1 · · · γkeαk+1) = Cqk
Aαk+1

qk
Mqk,γk,qk−1

· · ·

· · ·Mql,γl,ql−1
Aαl−1

ql−1
Bql−1

ej

(Zf )C)(eα1γ1e
α2 · · · γkeαk+1) = Cqk

Aαk+1
qk

Mqk,γk,qk−1
· · ·Mq1,γ1,q0

Aα1
q0

x0

(Zf )D(w) = λ(q0, w)

(7.11)

Consider the hybrid representation

HRH,µ = (A,Y, (Xq, {Aq,z, Bq,z,j2}j∈J2,z∈X1
, Cq, {Mδ(q,y),y,q}y∈X2

)q∈Q , J, µ)

Taking into account that Aq = Aq,e, Bq,e,j = Bqej we get that (7.11) is equivalent

to HRH,µ being a representation of ΨΦ. That is, (H,µ) satisfies the conditions of

Proposition 29 if and only if Φ has a hybrid kernel representation and HRH,µ is a

representation of ΨΦ.

Thus, if (H,µ) is a realization of Φ, then Φ has hybrid kernel representation and

HRH,µ is a representation of ΨΦ. Conversely, assume that HR is a representation of

ΨΦ and Φ admits a hybrid kernel representation. Since HR = HRHHR,µHR
we get

that (H,µ) satisfies the condition of Proposition 29 and thus (H,µ) is a realization

of Φ.

The theorem above allows us to reduce the realization problem for linear hybrid

systems to existence of a hybrid representation of a indexed set of hybrid formal
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power series. Moreover, Theorem 31 and Theorem 32 allow us to relate observability

and semi-reachability of linear hybrid systems to observability and reachability of

hybrid representations.

Theorem 34. A linear hybrid system realization (H,µ) is observable if and only if

HRH,µ is observable. A linear hybrid system realization (H,µ) is semi-reachable if

and only if HRH,µ is reachable.

Proof. Let (H,µ) be a linear hybrid system realization, assume that

H = (A,U ,Y, (Xq, Aq, Bq, Cq)q∈Q , {Mq1,γ,q2
| q1, q2 ∈ Q, γ ∈ Γ, q1 = δ(q2, γ)})

Let HR = HRH,µ, which by definition will be of the form

HR = (A,Y, (Xq, {Aq,z, Bq,z,j2}j∈J2,z∈X1
, Cq, {Mδ(q,y),y,q}y∈X2

)q∈Q , J, µ)

with X2 = Γ, X1 = {e}, J1 = Φ, J2 = {1, . . . ,m} and Aq,e = Aq, Bq,e,j = Bqej .

Recall from Theorem 32 the vector space WH and recall from Proposition 3 the

vector space WHR. It is easy to see that WH = WHR. By Theorem 32 (H,µ) is

semi-reachable if and only if (A, µD) is reachable and WHR = WH =
⊕

q∈Q Xq, but

by Proposition 3 the latter is equivalent to HR being reachable.

Recall from Theorem 31 the conditions for observability of H. Notice that for

each q ∈ Q, for all γ1, . . . γk ∈ Γ, j1, . . . , jk+1 ≥ 0, 0 ≤ l ≤ k, k ≥ 0, z = 1, . . . ,m,

Cqk
Ajk+1

qk
Mqk,γk,qk−1

· · ·Mql+1,γl+1,ql
Ajl+1

ql
Bql

ez =

= Cqk
Aqk,ejk+1 Mqk,γk,qk−1

· · ·Mql+1,γl+1,ql
Aql,e

jl+1 Bql,e,z =

= Ts1,z(γ1 · · · γle
jl+1+1γl+1 · · · γkejk+1)

where qi = δ(q, γ1 · · · γi), i = 0, . . . , k. From this it follows that condition (i) of

Theorem 31 is equivalent to

([∀w ∈ Γ∗ : λ(s1, w) = λ(s2, w)] and Ts1,j = Ts2,j , j ∈ {1, . . . ,m})

⇐⇒ s1 = s2

That is, condition (i) of Theorem 31 is equivalent to condition (i) of Proposition 4.

Similarly, it is easy to see that OH,q = OHR,q for all q ∈ Q and thus condition (ii) of

Theorem 31 is equivalent to condition (ii) of Proposition 4. That is, H is observable

if and only if HR is observable.

Notice that Theorem 34 above implies Lemma 34. Indeed, let (H,µ) be a hybrid

realization of Φ and consider the associated hybrid representation HR = HRH,µ. By

Theorem 33 HR is a representation of ΨΦ. By Lemma 12 there exists a reachable
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hybrid representation HRr of ΨΦ such that dim HRr ≤ dimHR, the equality being

equivalent to reachability of HR. Then (Hr, µr) = (HHRr
, µHRr

) is a realization

of Φ by Theorem 33 and it is semi-reachable by Theorem 34. Moreover, dim Hr =

dimHRr ≤ dimHR = dimH and equality holds only if HR is reachable and thus

H is semi-reachable .

Notice that both H and HRH,µ have the same state-space. It is easy to see that

the following holds.

Lemma 35. Let (Hi, µi),i = 1, 2 be a two linear hybrid system realizations, The map

T : (H1, µ1) → (H2, µ2) is a linear hybrid morphism, then T is also a T : HRH1,µ1
→

HRH2,µ2
hybrid representation morphism. Conversely, if T : HR1 → HR2 is a a

hybrid representation morphism then T can be viewed as a T : (HHR1
, µHR1

) →

(HR2, µHR2
) linear hybrid morphism. The map T is a surjective, injective , isomor-

phism as a linear hybrid morphism if and only if T is surjective, injective, isomor-

phism as a hybrid representation morphism.

Proof. Indeed, assume that

H1 = (A,U ,Y, (Xq, Aq, Bq, Cq)q∈Q , {Mq1,γ,q2
| q1, q2 ∈ Q, γ ∈ Γ, q1 = δ(q2, γ)})

Then

HRH,µ = (A,Y, (Xq, {Aq,z, Bq,z,j2}j∈J2,z∈X1
, Cq, {Mδ(q,y),y,q}y∈X2

)q∈Q , J, µ)

with X1 = {e}, X2 = Γ, J1 = Φ, J2 = Γ and Aq,e = Aq, q ∈ Q. Assume that

H2 = (A
′

,U ,Y, (X
′

q , A
′

q, B
′

q, C
′

q)q∈Q′ , {M
′

q1,γ,q2
| q1, q2 ∈ Q

′

, γ ∈ Γ, q1 = δ
′

(q2, γ)})

and consequently

HRH2,µ2
= (A

′

,Y, (X
′

q , {A
′

q,z, B
′

q,z,j2}j∈J2,z∈X1
, C

′

q, {M
′

δ′ (q,y),y,q
}y∈X2

)q∈Q′ , J, µ
′

)

with X1 = {e}, X2 = Γ, J1 = Φ, J2 = Γ, A
′

q,e = A
′

q, q ∈ Q. Then a pair of

maps T = (TD, TC), TD : Q → Q
′

and TC :
⊕

q∈Q Xq → X
′

q defines a linear hybrid

morphism if and only if TD : (A, (µ1)D) → (A
′

, (µ2)D) is an automaton morphism

and the following conditions are satisfied for TC : TC(Xq) ⊆ X
′

TD(q), Cq = C
′

TD(q)TC ,

TCAq = A
′

TD(q)TC , TCMδ(q,γ),γ,q = M
′

δ′ (TD(q),γ),γ,TD(q)
TC and TC ◦ (µ1)C = (µ2)C

for all q ∈ Q, γ ∈ Γ. But Aq = Aq,e and A
′

TD(q) = A
′

TD(q),e, therefore the conditions

above are precisely the conditions for T = (TD, TC) to be a hybrid representation

morphism T : HRH1,µ1
→ HRH2,µ2

. That is, T is a linear hybrid morphism if and

only if it is a hybrid representation morphism.

In particular, if T is a linear hybrid morphism, it is also a hybrid representation

morphism. The second part of the lemma follows from the observation above by

noticing that HRi = HRHHRi
,µHRi

, i = 1, 2.
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Notice that the lemma above implies Proposition 27. Indeed, if T : (H1, µ1) →

(H2, µ2) is a linear hybrid morphism, then T : HRH1,µ1
→ HRH2,µ2

is a hybrid

representation morphism. Moreover, T is injective, surjective or isomorphism as a

linear hybrid morphism if and only if it is injective, surjective or isomorphism as

a hybrid representation morphism, and dimHRHi,µi
= dim Hi, i = 1, 2. Thus,

applying Proposition 6 we easily get the statement of Proposition 27.

Recall from Section 3.3 the definitions of HO,Ω, DΩ and ΩD for an indexed set of

hybrid formal power series Ω. Let HO,Φ = HO,ΨΦ
, ΦD = (ΨΦ)D. From the discussion

above, using the results on theory of hybrid formal power series, namely Theorem 7

and Theorem 8, we can derive the following result.

Theorem 35 (Realization of input/output map). Let Φ ⊆ F (PC(T,U)× (Γ×

T )∗ × T,Y × O). The following are equivalent.

(i) Φ has a realization by a linear hybrid system,

(ii) Φ has a hybrid kernel representation, ΨΦ is rational

(iii) Φ has a hybrid kernel representation, rank HΦ < +∞, card(WΦD
) < +∞ and

card(HΦ,O) < +∞.

Proof. Assume that (H,µ) is a linear hybrid system realization of Φ. Then by The-

orem 33 Φ has a hybrid kernel representation and HRH,µ is a representation of ΨΦ,

thus ΨΦ is rational. Conversely, if Φ has hybrid kernel representation and ΨΦ is

rational, i.e., there exists a hybrid representation HR of ΨΦ, then by Theorem 33

(HHR, µHR) is a realization of Φ. Thus, (i) ⇐⇒ (ii). The second part, (ii) ⇐⇒

(iii) follows from Theorem 7

We can also characterise minimal linear hybrid realizations.

Theorem 36 (Minimal realization). If Φ has a linear hybrid system realization,

then it has a minimal linear hybrid system realization. If (H,µ) is a realization of

Φ, then the following are equivalent.

(i) (H,µ) is minimal,

(ii) (H,µ) is semi-reachable and it is observable,

(iii) For each (H
′

, µ
′

) semi-reachable linear hybrid system realization of Φ there

exists a surjective linear hybrid morphism T : (H
′

, µ
′

) → (H,µ). In particular,

all minimal hybrid linear systems realizing Φ are isomorphic.
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Proof. If Φ has a linear hybrid realization, then it has a hybrid kernel representation.

First of all, (H,µ) is a minimal realization of Φ if and only if HRH,µ is a minimal

representation of ΨΦ. Indeed, assume that (H,µ) is a minimal linear hybrid realiza-

tion of Φ. Then by Theorem 33 for any hybrid representation HR
′

, (HHR′ , µHR′ )

is a realization of Φ, thus dimHRH,µ = dimH ≤ dimHHR′ = dim HR
′

, i.e.,

HRH,µ is a minimal hybrid representation of Φ. Conversely, assume that HRH,µ

is a minimal representation of Φ. Then for any linear hybrid system realization

of (H
′

, µ
′

) of Φ, HRH′ ,µ′ is a hybrid representation of ΨΦ by Theorem 33, thus

dimH = dimHRH,µ ≤ dimHRH′ ,µ′ = dim H
′

. That is, (H,µ) is indeed a minimal

realization of Φ.

Assume that Φ has a linear hybrid realization. Then by Theorem 12 Φ has a

hybrid kernel representation and ΨΦ is rational. Thus, by Theorem 8 ΨΦ admits

a minimal hybrid representation HRm. Then by discussion above, (Hm, µm) =

(HHRm
, µHRm

) is a minimal realization of Φ, since HRHm,µm
= HRm. Thus, if Φ

has a realization by a linear hybrid system, then it also has a minimal linear hybrid

system realization.

The linear hybrid system realization (H,µ) is minimal if and only if HRH,µ is a

minimal hybrid representation of Φ. By Theorem 8, HRH,µ is minimal if and only

if it is reachable and observable, which by Theorem 34 is equivalent to (H,µ) being

semi-reachable and observable. Thus, (i) is equivalent to (ii). Similarly, by Theorem

8, HRH,µ is a minimal hybrid representation of ΨΦ if and only if for any reachable

representation HR
′

of ΨΦ there exists a surjective hybrid representation morphism

T : HR
′

→ HRH,µ. The latter is equivalent to part (iii) of the current theorem.

Indeed, assume that for any reachable hybrid representation HR
′

of ΨΦ there

exists a surjective morphism T : HR
′

→ HRH,µ. Then for any semi-reachable lin-

ear hybrid realization (H
′

, µ
′

)of Φ the hybrid representation HRH′ ,µ′ is a reachable

representation of ΨΦ and thus there exists a surjective hybrid representation mor-

phism T : HRH′ ,µ′ → HRH,µ. By Lemma 35 T : (H
′

, µ
′

) → (H,µ) is surjective

linear hybrid morphism too. Conversely, assume that for any semi-reachable lin-

ear hybrid realization (H
′

, µ
′

) of Φ there exists a surjective linear hybrid morphism

T : (H
′

, µ
′

) → (H,µ). Then for any reachable hybrid representation HR
′

, the linear

hybrid realization (HHR′ , µHR′ ) is a reachable realization of Φ. Thus, there exists

a surjective linear hybrid morphism T : (HHR′ , µHR′ ) → (H,µ). But by Lemma 35

we get that T : HR
′

→ HRH,µ is a surjective hybrid representation morphism too.

Thus, we just have shown that (H,µ) is minimal if and only if condition (iii) of the

current theorem holds. The last statement of the theorem, that is that all minimal

linear hybrid realizations are isomorphic can be proven as follows. By Theorem 8

all minimal hybrid representations of the same family of hybrid formal power series
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are isomorphic. But (H,µ) is a minimal linear hybrid system realization of Φ if and

only if HRH,µ is a minimal hybrid representations of ΨΦ. Consequently, if (Hi, µi),

i = 1, 2 are two minimal linear hybrid system realizations of Φ, then there exists a

hybrid representation isomorphism T : HRH1,µ1
→ HRH2,µ2

, which yields a linear

hybrid isomorphism T : (H1, µ1) → (H2, µ2).

7.2 Realization Theory for Bilinear Hybrid Sys-

tems

In this section realization theory of bilinear hybrid systems will be presented. As it

was mentioned in the introduction to this chapter, the main tool will be the theory

of hybrid formal power series from Section 3.3.

Realization theory of bilinear hybrid systems can be developed without the use of

hybrid formal power series, as it was done in [48]. However, such a direct construction

has very little additional value, in fact it mimics the constructions from theory of

hybrid formal power series.

The structure of the section is the following. Subsection 7.2.1 presents the nec-

essary definitions and some basic properties of bilinear hybrid systems. Subsection

7.2.2 discusses the structure of input-output maps of bilinear hybrid systems and it

introduces the notion of hybrid Fliess-series expansion. Finally, in Subsection 7.2.3

we develop realization theory for bilinear hybrid systems.

7.2.1 Definition and Basic Properties

Recall from Section 2.3 the definition of bilinear hybrid systems. Similarly to ordinary

bilinear systems, the trajectory of a hybrid bilinear system admits a representation

by an absolutely convergent series of iterated integrals.

Before giving the precise formulation of such a representation some additional

notation has to be introduced.

Let H = (A,U ,Y, (Xq, Aq, {Bq,j}j=1,...,m, Cq)q∈Q , {Mδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}) a

bilinear hybrid system. For each q ∈ Q and w = j1 · · · jk, k ≥ 0, j1, · · · jk ∈ Zm let us

introduce the following notation Bq,0 := Aq, Bq,ε := IdXq
, ,

Bq,w := Bq,jk
Bq,jk−1

· · ·Bq,j1 . Recall from Section 2.6 the notion of iterated integral

Vw1,...,wk
[u](t1, . . . , tk)

of u at t1, . . . , tk with respect to w1, . . . , wk. With the notation above the following

holds.
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Proposition 30. For each h0 ∈ H, u ∈ PC(T,U), s = (γ1, t1)(γ2, tk) · · · (γk, tk) ∈

(Γ×T )∗, t ∈ T , xH(h0, u, s, t) and yH(h0, u, s, t) = ΠY ◦υH(h, u, s, t) are equal to the

following absolutely convergent series

xH(h0, u, s, t) =
∑

w1,...,wk+1∈Z∗
m

(Bqk,wk+1
Mqk,γk,qk−1

Bqk−1,wk
· · ·

· · ·Mq1,γ1,q0
Bq0,w1

x0)Vw1,...,wk+1
[u](t1, . . . , tk+1)

(7.12)

yH(h0, u, s, t) =
∑

w1,...,wk+1∈Z∗
m

(Cqk
Bqk,wk+1

Mqk,γk,qk−1
Bqk−1,wk

· · ·

· · ·Mq1,γ1,q0
Bq0,w1

x0)Vw1,...,wk+1
[u](t1, . . . , tk+1)

(7.13)

where tk+1 = t, qi+1 = δ(qi, γi+1), h0 = (q0, x0) and 0 ≤ i ≤ k.

Proof. First we have to show that the series in the right hand side of (7.12) and

(7.13) are absolutely convergent. Consider the notion of hybrid convergent generating

series described in Section 7.2.2. It is easy to see that the vector space
⊕

q∈Q Xq can

be identified with the space R
P

q∈Q nq . For each h = (q, x) ∈ H define the series

dq,x : Γ̃∗ →
⊕

q∈q Xq and cq,x : Γ̃∗ → Y as follows. For each w1, . . . , wk+1 ∈ Z∗
m,

γ1, . . . , γk ∈ Γ, k ≥ 0 let

dq,x(w1γ1w2 · · · γkwk+1) =

Bqk,wk+1
Mqk,γk,qk−1

Bqk−1,wk
· · ·Mq1,γ1,q0

Bq0,w1
x

cq,x(w1γ1w2 · · · γkwk+1) =

Cqk
Bqk,wk+1

Mqk,γk,qk−1
Bqk−1,wk

· · ·Mq1,γ1,q0
Bq0,w1

x

where qi = δ(q, γ1 · · · γi), i = 0, . . . , k. It is easy to see that the maps cq,x and dq,x are

hybrid convergent generating series. Indeed, let M = max{||Bq,j ||, ||Mδ(q,γ),γ,q|| | q ∈

Q, γ ∈ Γ, j = 0, 1, . . . ,m}. Notice that for all w ∈ Z∗
m, w = j1 · · · jk, j1, . . . , jk ∈ Zm,

k ≥ 0, q ∈ Q,

||Bq,w|| = ||Bq,jk
Bq,jk−1

· · ·Bq,j1 || ≤

≤ ||Bq,jk
|| · ||Bq,jk−1

|| · · · ||Bq,j1 || ≤ M |w|

Let K2 = ||x|| · max{||Cq|| | q ∈ Q} and let K1 = ||x||. Then it is immediate from

the definition that

||dq,x(w1γ1w2 · · · γkwk+1)|| =

= ||Bqk,wk
Mqk,γk,qk−1

· · ·Mq1,γ1,q0
Bq0,w1

x|| ≤

≤ ||Bqk,wk
|| · ||Mqk,γk,qk−1

|| · · · ||Mq1,γ1,q0
|| · ||x|| ≤ K2M

k+
Pk+1

j=1 |wj |

||cq,x(w1γ1w2 · · · γkwk+1)|| =

= ||Cqk
Bqk,wk

Mqk,γk,qk−1
· · ·Mq1,γ1,q0

Bq0,w1
x|| ≤

≤ ||Cqk
|| · ||Bqk,wk

|| · ||Mqk,γk,qk−1
|| · · · ||Mq1,γ1,q0

|| · ||x|| ≤ K1M
k+

Pk+1
j=1 |wj |
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Thus, cq,x and dq,x are indeed hybrid convergent generating series and thus the series

Fdq,x
(u, s, t) =

=
∑

w1,...,wk+1Z∗
m

dq,x(w1γ1 · · · γkwk+1)Vw1,...,wk+1
[u](t1, . . . , tk+1) =

=
∑

w1,...,wk+1∈Z∗
m

(Bqk,wk+1
Mqk,γk,qk−1

· · ·Mq1,γ1,q0
x)Vw1,...,wk+1

[u](t1, . . . , tk+1)

and

Fcq,x
(u, s, t) =

=
∑

w1,...,wk+1Z∗
m

cq,x(w1γ1 · · · γkwk+1)Vw1,...,wk+1
[u](t1, . . . , tk+1) =

=
∑

w1,...,wk+1∈Z∗
m

(CqBqk,wk+1
Mqk,γk,qk−1

· · ·Mq1,γ1,q0
x)Vw1,...,wk+1

[u](t1, . . . , tk+1)

are absolutely convergent for all u ∈ PC(T,U), s = (γ1, t1)(γ2, t2) · · · (γk, tk) ∈ (Γ ×

T )∗, t ∈ T .

Next, we will proceed with the proof of equalities (7.12) and (7.13). We will

proceed by induction on k. If k = 0, then xH(h, ε, t) and yH(h, ε, t) is the state-

respectively the output-trajectory of the bilinear control system d
dtx(t) = Aqx(t) +∑m

j=1(Bq,jx(t))uj(t), y(t) = Cqx(t) induced by the initial state x. Thus, by the

classical result on trajectories of bilinear control systems ([32, 33]) we get that

xH(h, ε, t) =
∑

w∈Z∗
m

(Bq,wx)Vw[u](t)

and

yH(h, ε, t) =
∑

w∈Z∗
m

(CqBq,wx)Vw[u](t)

Assume that the statement of the proposition is true for all k ≤ n. Let s =

(γ1, t1) · · · (γn+1, tn+1) ∈ (Γ × T )∗ and tn+2 ∈ T . Consider xH(h, u, s, tn+2). From

definition of xH(h, u, s, tn+2) it follows that xH(h, u, s, tn+2) = x(tn+2), where x(0) =

Mqn+1,γn+1,qn
xH(h, u, (γ1, t1)(γ2, t2) · · · (γn, tn), tn+1) and

d

dt
x(t) = Aqn+1

x(t) +

m∑

j=1

uj(t +

n+1∑

j=1

tj)(Bqn+1,jx(t)

qi = δ(q, γ1 · · · γi), i = 0, . . . , n + 1. Then from the induction hypothesis it follows

that

x(0) =
∑

w1,...,wn+1∈Z∗
m

Mqn+1,γn+1,qn
Bqn,wn+1

Mqn,γn,qn−1
· · ·

· · ·Mq1,γ1,q0
Bq0,w1

xVw1,...,wn+1
[u](t1, . . . , tn+1)
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On the other hand, x(t) is a state-trajectory of the bilinear control system d
dtx(t) =

Aqn+1
x(t) +

∑m
j=1 uj(t +

∑n+1
j=1 tj)(Bqn+1,jx(t), y(t) = Cqn+1

x(t). Thus, by the

classical result on state trajectories of bilinear control systems we get that x(t) =∑
wn+2∈Z∗

m
(Bqn+1,wn+2

x(0))Vwn+2
[ShiftTn+1

u](t) where Tn+1 =
∑n+1

j=1 tj . Taking into

account the expression for x(0) and that all the series involved are absolutely con-

vergent, we get after substitution

xH(h, s, tn+2) = x(tn+2) =
∑

wn+2∈Z∗
m

∑

w1,...,wn+1∈Z∗
m

(Bqn+1,wn+2
Mqn+1,γn+1,qn

×

× Bqn,wn+1
· · ·Mq1,γ1,q0

Bq0,w1
x)Vw1,...,wn+1

[u](t1, . . . , tn+1)Vwn+2
[ShiftTn+1

u](tn+2) =

=
∑

w1,...,wn+2∈Z∗
m

(Bqn+1,wn+2
Mqn+1,γn+1,qn

· · ·

· · ·Mq1,γ1,q0
Bq0,w1

xVw1,...,wn+2
[u](t1, . . . , tn+2)

In the last step we used the equality

Vw1,...,wn+1
[u](t1, . . . , tn+1)Vwn+2

[ShiftTn+1
u](tn+2) = Vw1,...,wn+2

[u](t1, . . . , tn+2)

Thus, (7.12) holds for k = n + 2. Taking into account that yH(h, u, s, tn+2) =

Cqn+1
xH(h, u, s, tn+2) we get that (7.13) holds too.

Let H = (A,U ,Y, (Xq, Aq, {Bq,j}j=1,...,m, Cq)q∈Q , {Mδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ})

be a bilinear hybrid system. Notice that
⋃

q∈Q Xq can be naturally viewed as a subset

of
⊕

q∈Q Xq. Let H0 ⊆ H be a set of states. Recall that Reach(H,H0) ⊆
⋃

q∈Q Xq

and thus Reach(H,H0) can be viewed as a subspace of
⊕

q∈Q Xq. We will say that H

is semi-reachable from H0 if
⊕

q∈Q Xq contains no proper vector subspace containing

Reach(H,H0) and the automaton AH is reachable from ΠQ(H0). In other words,

(H,µ) is semi-reachablefrom H0 if AH is reachable from H0 and Span{x | x ∈

Reach(H,H0)} =
⊕

q∈Q Xq.

Consider two hybrid bilinear system realizations (H,µ) and (H
′

, µ
′

), where

H = (A,U ,Y, (Xq, Aq, {Bq,j}j=1,...,m, Cq)q∈Q , {Mδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ})

H
′

= (A
′

,U ,Y, (X
′

q , A
′

q, {B
′

q,j}j=1,...,m, C
′

q)q∈Q′ , {M
′

δ′ (q,γ),γ,q
| q ∈ Q

′

, γ ∈ Γ})

A = (Q,Γ, O, δ, λ) and A
′

= (Q
′

,Γ, O, δ
′

, λ
′

). A pair T = (TD, TC) is called a

bilinear hybrid morphism from (H,µ) to (H
′

, µ
′

), denoted by T : (H,µ) → (H
′

, µ
′

)

if the the following holds.

TD : (A, µD) → (A
′

, µ
′

D)

227



CHAPTER 7. LINEAR AND BILINEAR HYBRID SYSTEMS

where µD(f) = ΠQ(µD(f)), µ
′

D(f) = ΠQ′ (µ
′

D(f)), is an automaton morphism and

TC :
⊕

q∈Q

Xq →
⊕

q∈Q′

X
′

q

is a linear morphism, such that

(a) ∀q ∈ Q : TC(Xq) ⊆ X
′

TD(q),

(b) TCAq = A
′

TD(q)TC , TCBq,j = B
′

TD(q)TC , Cq = C
′

TD(q)TC , for all q ∈ Q, j =

1, . . . ,m,

(c) TCMq1,γ,q2
= M

′

TD(q1),γ,TD(q2)
TC , ∀q1, q2 ∈ Q, γ ∈ Γ, δ(q2, γ) = q1,

(d) TC(ΠXq
(µ(f))) = ΠX

′

TD(q)
(µ

′

(f)) for each q = µD(f), f ∈ Φ.

The bilinear hybrid morphism T is said to be injective, surjective, or bijective if both

TD and TC are respectively injective, surjective, or bijective. Bijective bilinear hybrid

morphisms are called bilinear hybrid isomorphisms. Two bilinear hybrid system

realizations are isomorphic if there exists a bilinear hybrid isomorphism between

them.

It is easy to see that the map TC :
⊕

q∈Q Xq →
⊕

q∈Q′ X
′

q is completely deter-

mined by its restriction to
⋃

q∈Q Xq. We will denote this restriction by M(T ). Notice

that M(T ) :
⋃

q∈Q Xq →
⋃

q∈Q′ X
′

q .

Recall the concept of hybrid system morphism from Section 2.3. The following

proposition clarifies the relationship between morphisms of bilinear hybrid systems

and hybrid system morphisms.

Proposition 31. If the pair T = (TD, TC) defines a bilinear hybrid morphism T :

(H1, µ1) → (H2, µ2), then ψ(T ) = (TD,M(T )) defines a hybrid system morphism

H(T ) : (H1, µ1) → (H2, µ2) in sense of Section 2.3. Moreover, H(T ) is a hybrid

isomorphism if and only if T is a bilinear hybrid isomorphism.

7.2.2 Input-output Maps of Bilinear Hybrid Systems

This subsection reviews the notion of hybrid Fliess-series expansion and its connection

to input-output maps of bilinear hybrid systems.

Let Γ̃ = Γ ∪ Zm. Then any w ∈ Γ̃ is of the form w = w1γ1 · · ·wkγkwk+1,

γ1, . . . , γk ∈ Γ, w1, . . . , wk+1 ∈ Z∗
m, k ≥ 0. A map c : Γ̃∗ → Y is called a hybrid

generating convergent series on Γ̃∗ if there exists K,M > 0, K,M ∈ R such that for

each w ∈ Γ̃∗,

||c(w)|| < KM |w|
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where ||.|| is some norm in Y = Rp. The notion of generating convergent series is

related to the notion of convergent power series from [32]. Let c : Γ̃∗ → Y be a hybrid

generating convergent series. For each u ∈ PC(T,U) and s = (γ1, t1) · · · (γk, tk) ∈

(Γ × T )∗, tk+1 ∈ T define the series

Fc(u, s, tk+1) =
∑

w1,...,wk+1∈Z∗
m

c(w1γ1 · · · γkwk+1)Vw1,...,wk+1
[u](t1, . . . , tk+1)

Later in this section we will show that Fc(u, s, t) is an absolutely convergent series

and thus we can define the function Fc ∈ F (PC(T,U)×(Γ×T )∗,Y) as Fc : (u,w, t) 7→

Fc(u,w, t).

It is easy to see that there is a one-to-one correspondence between hybrid gen-

erating convergent series and abstract globally convergent generating series on I =⋃∞
k=1 Ik × (Zm)∗)k, where Ik = Γk−1 for all k ≥ 1. The correspondence cab be

defined as follows. Define the map φ : I → Γ̃∗ by φ((γ1, . . . , γk), (w1, . . . , wk+1)) =

w1γ1w2 · · · γkwk+1. It is easy to see that this map is a bijection.

If c : Γ̃∗ → Y is a hybrid generating convergent series, then it is easy to see that

the map

cabs : I 3 s 7→ c(φ(s)) ∈ Y

is an abstract globally convergent generating series. Indeed, for any i = (γ1, . . . , γk) ∈

Ik+1, k ≥ 0 let Ki = KMk. Then for any w1, . . . , wk+1 ∈ Zm we get that

||cabs(i, (w1, . . . , wk+1))|| = ||c(w1γ1w2 · · · γkwk+1)|| < KMk+
Pk+1

j=1 |wj | =

= KMkM |w1|M |w2| · · ·M |wk+1| = KiM
|w1|M |w2| · · ·M |wk+1|

thus, cabs is indeed an abstract globally convergent generating series. It is also

clear that the correspondence c 7→ cabs is one-to-one. If d, c are hybrid convergent

generating series such that cabs = dabs, then it is easy to see that c = d.

Define the map φT : (Γ×T )∗×T → IT by φT ((γ1, t1)(γ2, t2) · · · (γk, tk)), tk+1) =

(γ1, . . . , γk, (t1, . . . , tk+1)) Then it is easy to see that φT is a bijection and

Fc(u,w, t) = Fcabs
(u, φT (w, t))

Thus, from Lemma 1 and Lemma 3 we get the following

Lemma 36. Let c : Γ̃ → Y be a hybrid generating convergent series. Then for each

u ∈ PC(T,U), w ∈ (Γ × T )∗, t ∈ T , the series Fc(u,w, t) is absolutely convergent.

Thus, the map

Fc : PC(T,U) × (Γ × T )∗ × T 3 (u,w, t) 7→ Fc(u,w, t) ∈ Y
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is well-defined. The hybrid convergent generating series c determines the map Fc

uniquely, that is, if for some hybrid convergent generating series d Fc = Fd, then

c = d.

Now we are ready to define the concept of hybrid Fliess-series representation of a

set of input/output maps, which is related to the concept of Fliess-series expansion

in [32]. For any map f ∈ F (PC(T,U) × (Γ × T )∗ × T,Y × O), define fC = ΠY ◦ f ,

fD = ΠO ◦ f . Let Φ ⊆ F (PC(T,U) × (Γ × T )∗ × T,Y × O).

Definition 17 (Hybrid Fliess-series expansion). Φ is said to admit a hybrid

Fliess-series expansion if

(1) For each f ∈ Φ there exists a generating convergent series cf : Γ̃∗ → Y such

that Fcf
= fC

(2) For each f ∈ Φ the map fD depends only on Γ∗, that is, for each w ∈ Γ∗,

∀u1, u2 ∈ PC(T,U), τ1, τ2 ∈ T |w|, t1, t2 ∈ T :

fD(u1, (w, τ1), t1) = fD(u2, (w, τ2), t2)

We will regard fD as a function fD : Γ∗ → O.

The notion of hybrid Fliess-series representation is an extension of the notion

of Fliess-series for input-output maps of non-linear systems, see [32]. The following

proposition gives a description of the hybrid Fliess-series expansion of Φ in the case

when Φ is realized by a bilinear hybrid system.

Proposition 32. (H,µ) is a bilinear hybrid system realization of Φ if and only if Φ

has a hybrid Fliess-series expansion such that for each f ∈ Φ, w1γ1 · · · γkwk+1 ∈ Γ̃∗,

γ1, . . . , γk ∈ Γ, w1, . . . , wk+1 ∈ Z∗
m, k ≥ 0

cf (w1γ1 · · · γkwk+1) = Cqk
Bqk,wk+1

Mqk,γk,qk−1
Bqk−1,wk

· · ·

· · ·Mq1,γ1,q0
Bq0,w1

µC(f)

fD(γ1 · · · γk) = λ(q0, γ1 · · · γk)

(7.14)

where µ(f) = (q0, µC(f)) and qi = δ(q0, γ1 · · · γi), i = 0, . . . , k.

Proof. Assume that (H,µ) is a realization of Φ. Then for each f ∈ Φ, u ∈ PC(T,U),

w = (γ1, t1)(γ2, t2) · · · (γk, tk) ∈ (Γ × T )∗, k ≥ 0, tk+1 ∈ T ,

f(u,w, tk+1) = υH(µ(f), u, w, tk+1)

That is,

fD(u,w, tk+1) = λ(µD(f), γ1 · · · γk) (7.15)
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and

fC(u,w, tk+1) = yH(µ(f), u, w, tk+1)

Assume that µ(f) = (qf , xf ) ∈ H. Recall from the proof Proposition 30 the definition

of cqf ,xf
. It follows from the proof of Proposition 30 that cqf ,xf

is a hybrid convergent

generating series and yH(µ(f), .) = Fcqf ,xf
.

Thus, we get that fD(u,w, tk+1) depends only on γ1 · · · γk, i.e. fD : Γ∗ → O and

fC = Fcqf ,xf
. Thus, Φ indeed admits a hybrid Fliess-series expansion. By Lemma

36, if fC = Fcf
= Fcqf ,xf

for some hybrid convergent generating series cf , then

cf = cqf ,xf
. From the definition of cqf ,xf

it follows that cf = cqf ,xf
is equivalent to

the first equation in (7.14). The second equation in (7.14) is the same as (7.15).

Conversely, assume that Φ has a hybrid Fliess-series expansion and (7.14) holds.

The first equation of (7.14) implies that cf = cqf ,xf
and thus f = Fcf

= Fcf ,xf
=

yH(µ(f), .) for all f ∈ Φ. The second equation of (7.14) is equivalent to

∀s ∈ Γ∗ : fD(s) = λ(qf , s)

Thus, we get that for each f ∈ Φ, µ(f) = (qf , xf ),

f(u,w, t) = (fD(γ1 · · · γk), fC(u,w, t)) = (λ(qf , γ1 · · · γk), yH((qf , xf ), u, w, t)) =

υH((qf , xf ), u, w, t)

for all u ∈ PC(T,U), w = (γ1, t1) · · · (γk, tk) ∈ (Γ × T )∗, k ≥ 0, t ∈ T . The last

equation means that (H,µ) is a realization of Φ.

7.2.3 Realization of Input-output Maps by Bilinear Hybrid

Systems

In this section the solution to the realization problem for bilinear hybrid systems

will be presented. In addition, characterisation of minimal bilinear hybrid systems

realizing the specified set of input-output maps will be given. We will use the theory

of hybrid formal power series developed in Section 3.3.

Let us recall the characterisation of semi-reachability and observability for bilinear

hybrid systems presented in [48, 54]. Using the notation of Definition 4, the following

holds.

Theorem 37. The bilinear hybrid system H is observable if and only if

(i)

AH = A is observable, and
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(ii) For each q ∈ Q,

OH,q =
⋂

γ1,...,γk∈Γ,k≥0

⋂

w1,...,wk+1∈Z∗
m

ker Cqk
Bqk,wk+1

Mqk,γk,qk−1
· · ·Mq1,γ1,q0

Bq0,w1
=

= {0}

where ql = δ(q, γ1 · · · γl), 0 ≤ l ≤ k, k ≥ 0, q = q0.

Notice that part (i) of the theorem above is equivalent to

υH((q1, 0), .) = υH(q2, 0), .) ⇐⇒ q1 = q1, ∀q1, q2 ∈ Q

Part (ii) of the theorem says that for each q ∈ Q:

υH((q, x1), .) = υH((q, x2), .) ⇐⇒ x1 = x2, , ∀x1, x2 ∈ Xq

Proof of Theorem 37. We will start with stating a number of relatively simple obser-

vations.

Observation 1

Assume that q1, q2 ∈ Q. Then

υH((q1, 0), .) = υH((q2, 0), .) ⇐⇒ (∀w ∈ Γ∗ : λ(q1, w) = λ(q2, w))

Indeed, υH((q, 0), u, (w, τ), t) = (λ(q, w), 0), and thus

υH((q1, 0), u, (w, τ), t) = υH((q2, 0), u, (w, τ), t) ⇐⇒ λ(q1, w) = λ(q2, w)

Observation 2

Let (q1, x1), (q2, x2) ∈ H.

υH((q1, x1), .) = υH((q2, x2), .) =⇒ (∀w ∈ Γ∗ : λ(q1, w) = λ(q2, w))

Indeed, for i = 1, 2, ΠO ◦ υH((qi, xi), 0, (w, 00 · · · 0︸ ︷︷ ︸
|w|−−times

), 0) = λ(qi, w), and thus the

implication above follows.

Observation 3

Let q ∈ Q, x1, x2 ∈ Xq. Then

υH((q, x1), .) = υH((q, x2), .) ⇐⇒ x1 − x2 ∈ OH,q

Indeed, υH((q, xi), u, (w, τ), t) = (λ(q, w), yH((q, xi), u, (w, τ), t)), thus υH((q, x1), .) =

υH((q, x2), .) is equivalent to yH((q, x1), .) = yH((q, x2), .). Recall from the proof of

Proposition 30 the definition of the series cq,xi
, i = 1, 2 and recall that yH((q, xi), .) =
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Fcq,xi
, i = 1, 2. Thus, υH((q, x1), .) = υH((q, x2), .) is equivalent to Fcq,x1

= Fcq,x2
.

By Lemma 36 the latter is equivalent to cq,x1
= cq,x2

, or, in other words, for all

γ1, . . . , γk ∈ Γ, w1, . . . , wk+1 ∈ Z∗
m, k ≥ 0,

Cqk
Bqk,wk+1

Mqk,γk,qk−1
· · ·Mq1,γ1,q0

Bq0,w1
(x1 − x2) = 0

where qi = δ(q, γ1 · · · γi), i = 0, . . . , k. Thus,

x1 − x2 ∈ ker Cqk
Bqk,wk

Mqk,γk,qk−1
· · ·Mq1,γ1,q0

Bq0,w1

for all w1, . . . , wk+1 ∈ Z∗
m, γ1, . . . , γk ∈ Γ, k ≥ 0. That is, cq,x1

= cq,x2
is equivalent

to x1 − x2 ∈ OH,q.

Now we will prove the statement of the theorem. Assume that (H,µ) is observable.

Suppose AH is not observable. Then there exists q1, q2 ∈ Q, q1 6= q2 such that

∀w ∈ Γ∗ : λ(q1, w) = λ(q2, w). By Observation 1 it is equivalent to υH((q1, 0), .) =

υH((q2, 0), .), which by observability of H implies q1 = q2, a contradiction. Thus, AH

is indeed observable. Assume now that OH,q 6= {0}, for some q ∈ Q, that is, there

exists 0 6= x ∈ OH,q. Then by Observation 3 we get that υH((q, x), .) = υH((q, 0), .)

which by observability of H implies x = 0, a contradiction. Thus, OH,q = {0} for all

q ∈ Q. That is, we showed that conditions (i) and (ii) of the theorem are necessary.

Assume that condition (i) and (ii) of the theorem holds. Assume that (q1, x1) and

(q2, x2) are indistinguishable, that is, υH((q1, x1), .) = υH((q2, x2), .) Then by Obser-

vation 2 we get that q1 and q2 are indistinguishable in AH . Thus, by observability of

AH it follows that q1 = q2 = q. By Observation 3, υH((q, x1), .) = υH((q, x2), .) im-

plies that x1 − x2 ∈ OH,q. But condition (ii) implies that OH,q = {0}, thus x1 = x2.

That is, we get that (q1, x1) = (q2, x2)). Thus, it follows that H is observable.

Theorem 38. (H,µ) is semi-reachable if and only if (AH , µD), µD = ΠQ ◦ µ, is

reachable and dimWH =
∑

q∈Q dimXq, where

WH = Span{Bqk,wk+1
Mqk,γk,qk−1

· · ·Mq1,γ1,q0
Bq0,w1

xf , | (qf , xf ) = µ(f),

f ∈ Φ, w1, . . . , wk+1 ∈ Z∗
m, qj = δ(qf , γ1 · · · γj), 0 ≤ j ≤ k, k ≥ 0}

Proof. We will prove that WH is the smallest vector space containing Reach(H, Imµ) =

{xH(µ(f), u, s, t) | u ∈ PC(T,U), s ∈ (Γ × T )∗, t ∈ T}.

Recall the definition of the hybrid generating series dq,x from the proof of Propo-

sition 30. Notice that WH = Span{d(q,x)(s) | s ∈ Γ̃∗, (q, x) ∈ Imµ}

First we will show that Reach(H, Imµ) ⊆ WH . Indeed,

xH(µ(f), u, (γ1, t1) · · · (γk, tk), t) =
∑

w1,...,wk+1∈Z∗
m

dµ(f)(w1γ1 · · · γkwk+1)×

×Vw1,...,wk+1
[u](t1, . . . , tk, t)
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Since WH is a finite-dimensional vector space and thus closed and every element

dµ(f)(w1γ1 · · · γkwk+1)Vw1,...,wk+1
[u](t1, . . . , tk, t) ∈ WH

we get that xH(µ(f), (γ1, t1) · · · (γk, tk), t) ∈ WH . Thus, Reach(H, Imµ) ⊆ WH .

Let U be any subspace of
⊕

q∈q Xq containing Reach(H, Imµ). Recall that we can

associate with dµ(f) an abstract absolutely convergent generating series dabs,µ(f) =

(dµ(f))abs defined on I =
⋃∞

k=1 Ik × (Z∗
m)k, where Ik = Γk−1, k ≥ 1, as follows

dabs,µ(f)((γ1, . . . , γk), (w1, . . . , wk+1)) = dµ(f)(w1γ1 · · · γkwk+1)

Recall that

Fdabs,µ(f)
(u, ((γ1, . . . , γk), (t1, . . . , tk+1))) = Fdµ(f)

(u, (γ1, t1) · · · (γk, tk), tk+1)

Recall from the proof of Lemma 3 that for all η = (γ1, . . . , γk) ∈ Ik+1, w1, . . . , wk+1 ∈

Zm there exists an analytic map gη : W×V →
⊕

q∈Q Xq such that W ⊆ UN , V ⊆ TN ,

N =
∑k+1

j=1 |wj |, Imgη ⊆ ImFdabs,µ(f)
= ImFdµ(f)

. Moreover, for suitable high-order

differential operators, which were denoted by Dwi
, i = 1, . . . , k + 1 it holds

Dw1
Dw2

· · ·Dwk+1
gη(u)|u=0 = dabs,µ(f)(η, (w1, . . . , wk+1))

Since Fdµ(f)
= xH(µ(f), .), we get that ImFdµ(f)

⊆ Reach(H, Imµ) ⊆ U and thus

gη : W × V → U . Since U is a finite dimensional vector space, we get that

Dw1
Dw2

· · ·Dwk+1
gη(u)|u=0 ∈ U and thus

dabs,µ(f)(η, (w1, . . . , wk+1)) = dµ(f)(w1γ1 · · · γkwk+1) ∈ U

That is, dµ(f)(s) ∈ U for all f ∈ Φ and s ∈ Γ̃∗. Thus, WH ⊆ U . That is, WH is

indeed the smallest vector subspace of
⊕

q∈Q Xq containing Reach(H, Imµ).

We will proceed with the proof of the statement of the theorem. (H,µ) is semi-

reachable if and only if (AH , µD) is reachable and
⊕

q∈Q Xq contains no proper sub-

space containing Reach(H, Im mu). But WH is the smallest vector space containing

Reach(H, Imµ). Thus,
⊕

q∈Q Xq has no proper subspaces containing Reach(H, Imµ)

if and only if WH =
⊕

q∈Q Xq, or, in other words, dimWH = dim
⊕

q∈Q Xq =∑
q∈Q dimXq.

Let Φ ⊆ F (PC(T,U) × (Γ × T )∗ × T,Y × O) be a set of input-output maps.

Assume that Φ has a hybrid Fliess-series expansion. Then Proposition 32 allows us

to reformulate the realization problem in terms of rationality of certain hybrid formal
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power series. Recall that Γ̃ = Γ ∪ Zm. Let J = Φ and for each f ∈ Φ define the

hybrid formal power series Tf ∈ Rp ¿ Γ̃∗ À ×F (Γ, O) by

(Tf )C = cf and (Tf )D = fD

It is easy to see that J is a hybrid power series index set with J1 = J = Φ and J2 = ∅.

Define the indexed set of hybrid formal power series associated with Φ by

ΨΦ = {Tf ∈ Rp ¿ Γ̃∗ À ×F (Γ∗, O) | f ∈ Φ}

It is easy to see that ΨΦ is a well-posed indexed set of hybrid formal power series

with the index set J . Define the Hankel-matrix HΦ of Φ as HΦ = HΨΦ
. Notice that

if Φ is finite, then ΨΦ is a finite set. Let

H = (A,U ,Y, (Xq, Aq, {Bq,j}j=1,...,m, Cq)q∈Q , {Mδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ})

(H,µ) be a bilinear hybrid system realization with µ : Φ →
⋃

q∈Q{q} × Xq. Define

the hybrid representation HRH,µ associated with (H,µ) by

HRH,µ = (A, (Xq, {Aq,z}z∈X1
, Cq)q∈Q , {Mδ(q,y),y,q | q ∈ Q, y ∈ X2}, J, µ)

where J = J1 = Φ,J2 = ∅, X = Γ̃, X1 = Zm, X2 = Γ and for each q ∈ Q, j = 1, . . . ,m

Aq,0 = Aq and Aq,j = Bq,j

Conversely, let HR = (A, (Xq, {Aq,z}z∈X1
, Cq)q∈Q , {Mδ(q,y),y,q | q ∈ Q, y ∈

X2}, J, µ) be a hybrid representation with index set J = Φ such that X1 = Zm,

X2 = Γ, J1 = Φ, J2 = ∅, X = Γ̃. Define the bilinear hybrid realization (HHR, µHR)

associated with HR as follows

HHR = (A,U ,Y, (Xq, Aq, {Bq,j}j=1,...,m, Cq)q∈Q , {Mδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ})

and µHR = µ, where for each q ∈ Q, j = 1, . . . ,m,

Aq = Aq,0 and Bq,j = Aq,j

It is easy to see that (HHRH,µ
, µHRH,µ

) = (H,µ) and HRHHR,µHR
= HR for any

hybrid representation HR and bilinear hybrid realization (H,µ). It is also easy to

see that dim H = dim HRH,µ.

The following theorem follows easily from Proposition 32 and plays a crucial role

in realization theory of bilinear hybrid system.

Theorem 39. A bilinear hybrid system (H,µ) is a realization of Φ if and only if

Φ has a hybrid Fliess-series expansion and HRH,µ is a hybrid representation of ΨΦ.

Conversely, if Φ has a hybrid Fliess-series expansion and HR is a hybrid represen-

tation of ΨΦ then (HHR, µHR) is a bilinear hybrid system realization of Φ.
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Proof. Assume that (H,µ) is a bilinear hybrid system. Let

HRH,µ = (A,Y, (Xq, {Aq,z, Bq,z,j2}j∈J2,z∈X1
, Cq, {Mδ(q,y),y,q}y∈X2

)q∈Q , J, µ)

Then by Proposition 32 (H,µ) is a realization of Φ if and only if it admits a hybrid

Fliess-series expansion and

(Tf )C)(w1γ1 · · · γkwk+1) = cf (w1γ1 · · · γkwk+1) = Cqk
Bqk,wk+1

Mqk,γk,qk−1
Bqk−1,wk

· · ·Mq1,γ1,q0
Bq0,w1

µC(f) = Cqk
Aqk,wk+1

Mqk,γk,qk−1
· · ·Mq1,γ1,q0

Aq0,w1
µC(f)

(Tf )D(γ1 · · · γk) = fD(γ1 · · · γk) = λ(q0, γ1 · · · γk)

holds for all γ1, . . . , γk ∈ Γ, w1, . . . , wk+1 ∈ Z∗
m, k ≥ 0, f ∈ Φ. It is easy to see

that the equation above is equivalent to HRH,µ being a hybrid representation of ΨΦ.

Thus, we get that (H,µ) is a realization of Φ if and only if Φ has a hybrid Fliess-series

expansion and HRH,µ is a representation of ΨΦ. The second part of the theorem

follows from the first part and the observation that HRHHR,µHR
= HR.

The theorem above allows us to reduce the realization problem for bilinear hybrid

systems to existence of a hybrid representation of a indexed set of hybrid formal

power series. Moreover, Theorem 37 and Theorem 38 allow us to relate observability

and semi-reachability of bilinear hybrid systems to observability and reachability of

hybrid representations.

Theorem 40. A bilinear hybrid system realization (H,µ) is observable if and only

if HRH,µ is observable. A bilinear hybrid system realization (H,µ) is semi-reachable

if and only if HRH,µ is reachable.

Proof. Let (H,µ) = (A,U ,Y, (Xq, Aq, {Bq,j}j=1,...,m, Cq)q∈Q , {Mδ(q,γ),γ,q | q ∈ Q, γ ∈

Γ}) and let

HR = HRH,µ = (A,Y, (Xq, {Aq,z, Bq,z,j2}j∈J2,z∈X1
, Cq, {Mδ(q,y),y,q}y∈X2

)q∈Q , J, µ)

Notice that

Aqk,wk+1
Mqk,γk,qk−1

Aqk−1,wk
· · ·Mq1,γ1,q0

Aq0,w1
x =

Bqk,wk+1
Mqk,γk,qk−1

Bqk−1,wk
· · ·Mq1,γ1,q0

Bq0,w1
x

for all γ1, . . . , γk ∈ Γ, k ≥ 0, w1, . . . , wk+1 ∈ Z∗
m, k ≥ 0, q ∈ Q, qi = δ(q, γ1 · · · γi),

i = 0, . . . , k. Thus, it follows that WH = WHR and OH,q = OHR,q for all q ∈ Q.

By Theorem 37 H is observable, if and only if A is observable and for all q ∈ Q,

OH,q = {0}. By Proposition 4, taking into account that J2 = ∅ and OH,q = OHR,q,

this is equivalent to HR being observable.
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By Theorem 38 (H,µ) is semi-reachable if and only if (A, ζ) is reachable and

WHR = WH =
⊕

q∈Q Xq. By Proposition 3 that is equivalent to HR being reachable.

Notice that both H and HRH,µ have the same state-space. It is easy to see that

the following holds.

Lemma 37. Let (Hi, µi),i = 1, 2 be two bilinear hybrid systems. If T : (H1, µ1) →

(H2, µ2) is a bilinear hybrid morphism, then T is also a T : HRH1,µ1
→ HRH2,µ2

hy-

brid representation morphism. Conversely, if HRi, i = 1, 2 are two hybrid representa-

tions with hybrid power series index set J = Φ and T : HR1 → HR2 is a a hybrid rep-

resentation morphism then T can be viewed as a T : (HHR1
, µHR1

) → (HR2, µHR2
)

bilinear hybrid morphism. The map T is a surjective, injective , isomorphism as a

hybrid bilinear morphism if and only if T is surjective, injective, isomorphism as a

hybrid representation morphism.

Proof. Assume that

Hi = (Ai,U ,Y, (X i
q , Ai

q, {B
i
q,j}j=1,...,m, Ci

q)q∈Qi , {M i
δi(q,γ),γ,q | q ∈ Qi, γ ∈ Γ})

i = 1, 2. We will show that a pair of maps T = (TD, TC), where TD : Q1 →

Q2, TC :
⊕

q∈Q1 X 1
q →

⊕
q∈Q2 X 2

q is a linear map, defines a bilinear morphism

T : (H1, µ1) → (H2, µ2) if and only if it defines a hybrid representation morphism

T : HRH1,µ1
→ HRH2,µ2

.

The pair T is a bilinear morphism if and only if TD : (A1, (µ1)D) → (A2, (µ2)D)

is an automaton morphism and for the linear map TC the following holds:

1. TC(X 1
q ) ⊆ X 2

TD(q),

2. TCB1
q,j = B2

TD(q),jTC ,

3. TCM1
q2,γ,q1

= M2
TD(q2),γ,TD(q1)

TC and

4. TC(µ1)C(f) = (µ2)C(f), where f ∈ Φ, q, q1, q2 ∈ Q1, j ∈ Zm, γ ∈ Γ.

Notice that

HRHi,µi
= (Ai,Y, (X i

q , {Ai
q,z, B

i
q,z,j2}j∈J2,z∈X1

, Ci
q, {M

i
δi(q,y),y,q}y∈X2

)q∈Qi , J, µi)

for i = 1, 2, where Ai
q,j = Bi

q,j for all q ∈ Qi, j ∈ Zm and thus the conditions above

are exactly equivalent to T = (TD, TC) being a hybrid representation morphism

T : HRH1,µ1
→ HRH2,µ2

. The bilinear hybrid morphism T is injective, surjective,

bijective if both the maps TD and TC are injective, surjective, bijective respectively,
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which is equivalent to T being respectively a injective, surjective, bijective hybrid

representation morphism.

If HRi,i = 1, 2 are two hybrid representations, then HRHHRi
,µHRi

= HRi. Thus

by the first part of the lemma T is a bilinear hybrid morphism T : (HHR1
, µHR1

) →

(HHR2
, µHR2

) if and only if T is a hybrid representation morphism T : HR1 →

HR2.

Let ΦD = (ΨΦ)D. From the discussion above, using the results on theory of

hybrid formal power series ( Theorem 7 and Theorem 8 and Corollary 5) we can

derive the following theorem, which was already published in [48].

Theorem 41 (Realization of input/output map). Let Φ ⊆ F (PC(T,U)× (Γ×

T )∗ × T,Y × O) be a set of input-output maps. The following are equivalent.

(i) Φ has a realization by a bilinear hybrid system,

(ii) Φ has a hybrid Fliess-series expansion, ΨΦ is rational indexed set of hybrid

formal power series

(iii) Φ has a hybrid Fliess-series expansion, rank HΦ < +∞ and ΦD has a realiza-

tion by a finite Moore-automaton, i.e. card(WΦD
) < +∞.

Proof. (i) =⇒ (ii)

Assume that (H,µ) is a realization of Φ. By Theorem 39 it implies that Φ has a

hybrid Fliess-series expansion and HRH,µ is a representation of ΨΦ, thus ΨΦ is a

rational family of hybrid formal power series.

(ii) =⇒ (i)

Assume that Φ has a hybrid Fliess-series expansion and HR is a hybrid representation

of ΨΦ. Then by Theorem 39 we get that (HHR, µHR) is a realization of Φ.

(ii) ⇐⇒ (iii) follows from Corollary 6.

Below we will give a characterisation of minimal bilinear hybrid systems.

Theorem 42 (Minimal realization). If Φ has a bilinear hybrid system realization,

then Φ has a minimal bilinear hybrid system realization. If (H,µ) is a bilinear hybrid

system realization of Φ, then the following are equivalent.

(i) (H,µ) is minimal,

(ii) (H,µ) is semi-reachable and it is observable,

(iii) For each (H
′

, µ
′

) semi-reachable bilinear hybrid realization of Φ there exists a

surjective bilinear hybrid morphism T : (H
′

, µ
′

) → (H,µ). In particular, all

minimal hybrid bilinear systems realizing Φ are isomorphic.
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Proof. By Theorem 41, if Φ has a realization by a bilinear hybrid system, then ΨΦ

has a hybrid representation and Φ admits a hybrid Fliess-series expansion. But

the by Theorem 8 ΨΦ admits a minimal hybrid representation HRm. From The-

orem 39 it follows that (Hm, µm) = (HHRm
, µHRm

) is a bilinear hybrid realiza-

tion of Φ. We will argue that (Hm, µm) is a minimal bilinear hybrid realization

of Φ. Indeed, let (H,µ) be a bilinear hybrid realization of Φ. Then by Theo-

rem 39 HRH,µ is a hybrid representation of ΨΦ. Thus by minimality of HRm,

dimHm = dim HRm ≤ dim HRH,µ = dim H. That is, (Hm, µm) is indeed a minimal

bilinear hybrid realization of Φ. Thus, if Φ has a realization by a bilinear hybrid

system it also has a minimal bilinear hybrid system realization. The argument above

also demonstrates that (H,µ) is a minimal bilinear hybrid realization of Φ if and

only if HRH,µ is a minimal hybrid representation of ΨΦ.

We proceed with the proof of (i) ⇐⇒ (ii) ⇐⇒ (iii). A bilinear hybrid

realization (H,µ) of Φ is minimal if and only if HRH,µ is a minimal hybrid repre-

sentation of ΨΦ. By Theorem 8 the latter is equivalent to HRH,µ being reachable

and observable. But by Theorem 40 the latter is equivalent to (H,µ) being semi-

reachable and observable. Thus, (i) ⇐⇒ (ii). From Theorem 8 it also follows

that HRH,µ is minimal if and only if for any reachable hybrid representation HR

of ΨΦ there exists a surjective hybrid representation morphism T : HR → HRH,µ,

which by Lemma 37 is equivalent to (iii), i.e. that for each bilinear hybrid realization

(H
′

, µ
′

) there exists a surjective bilinear morphism T : (H
′

, µ
′

) → (H,µ). Indeed,

assume that (iii) holds. Then by Theorem 40 for any reachable representation HR
′

of

ΨΦ, (HHR′ , µHR′ ) is a semi-reachable bilinear hybrid realization of Φ and thus there

exists a surjective bilinear morphism T : (HHR′ , µHR′ ) → (H,µ). But by Lemma

37 the latter implies that T : HR
′

→ HRH,µ is a surjective hybrid representation

morphism. Conversely, assume that for any reachable hybrid representation HR
′

of

ΨΦ there exists a surjective hybrid morphism T : HR
′

→ HRH,µ. For any semi-

reachable bilinear hybrid realization (H
′

, µ
′

) of Φ, Theorem 40 implies that HRH′ ,µ′

is a reachable hybrid representation of ΨΦ, thus by the assumption there exists a sur-

jective hybrid representation morphism T : HRH′ ,µ′ → HRH,µ. But from Lemma

37 we get that T : (H
′

, µ
′

) → (H,µ) is a surjective morphism. Thus, we showed that

(i) ⇐⇒ (iii).

Finally, isomorphism of minimal bilinear hybrid system realizations follows from

isomorphism of minimal hybrid power series representations. Indeed, if (Hi, µi),i =

1, 2 are two minimal bilinear hybrid system realizations of Φ, then HRi = HRHi,µi
,

i = 1, 2 are two minimal hybrid representations of ΨΦ. Thus, there exists a hybrid

representation isomorphism S : HR1 → HR2, which implies that S : (H1, µ1) →

(H2, µ2) is a bilinear hybrid isomorphism.
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Chapter 8

Realization Theory of

Nonlinear Hybrid Systems

Without Guards

8.1 Introduction

In this chapter we will address the following question. Consider an input-output map

and formulate conditions for existence of a realization the class of nonlinear hybrid

system without guards.

The problem as it is stated above is quite difficult, therefore we will adopt a

number of simplifications. First of all we will restrict ourselves to analytic hybrid

systems , i.e. hybrid systems such that the underlying continuous control systems are

analytic and the reset maps are analytic. To simplify the problem further, we will

look only at local and formal realization. That is, we will try to find conditions with

respect to which the input-output map coincides with the input-output map of a

hybrid system locally, i.e. for small times. To facilitate the transition from global to

the local problem we will introduce the concept of the hybrid Fliess-series expansion.

Roughly speaking, an input-output map admits a hybrid Fliess-series expansion if its

continuous-valued part can be represented as infinite series of iterated integrals of the

continuous inputs. The coefficients of these iterated integrals form a sequence which

completely determines the input-output map locally. We will refer to this sequence

as the hybrid generating series associated with the input-output map. Existence

of a hybrid Fliess-series expansion is a necessary condition for existence of a local
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realization by an analytic hybrid system. The associated hybrid generating series can

be thought of as a collection of high-order derivatives of the input-output map. It

turns out that a necessary condition for existence of a hybrid system realization for an

input-output map is that the corresponding generating series admits a representation

of the following form. There exists a finite collection of rings of formal power series

in finitely many commuting variables and a finite collection of continuous derivations

and algebra homomorphisms on these rings such that the following holds. Each

value of the generating series can be represented as evaluation at zero of a formal

power series, obtained by applying consecutively the specified derivations and algebra

homomorphisms to a formal power series from a finite collection of formal power series

belonging to the specified rings.

To be more precise, since the hybrid systems considered are analytic, we can as-

sociate with each underlying continuous system a formal power series ring, a finite

family of continuous derivations and a formal power series. The formal power se-

ries ring corresponds to the ring of germs of analytic functions around a point, the

derivations are just the Taylor-series expansion of the vector fields of the system and

the formal power series is just the Taylor series expansion of the readout map of

the system. In the context of the transformation described above the analytic reset

maps become continuous homomorphisms on formal power series rings, by taking the

Taylor series expansion of each reset map around a suitably chosen point.

In this manner we get a construct which we will call a formal hybrid system. A

formal hybrid system consists of a Moore-automaton and a family of rings of formal

power series in finitely many commuting variables. With each discrete state of the

automaton we associate a ring of formal power series from the family. On each

ring we define a finite family of continuous derivations on that ring. The elements

of these families of formal vector fields are indexed by the same set of inputs. We

define formal power series ring homomorphism for each discrete state transition, such

that the homomorphism acts between the rings belonging to the old and to the new

discrete states respectively. We will call these maps reset maps. With each discrete

state we associate an element of the ring associated with that discrete state. This

element will be called the readout map associated with the discrete state.

The concept of formal hybrid system allows us to reformulate the necessary con-

dition for existence of a hybrid system realization mentioned above. Namely, it turns

out that existence of a realization by an analytic hybrid system implies that the gen-

erating series associated with the hybrid Fliess-series expansion of the input-output

map has a realization by a formal hybrid system. Conversely, if we have a formal

hybrid system such that the vector fields, reset maps and readout maps are in fact

convergent formal power series, it will immediately yield us a hybrid system. This
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hybrid system is obtained from the formal hybrid system as follows. The automaton

of the hybrid system is the same as the automaton of the formal hybrid system. The

continuous state space of the hybrid system which is associated with the discrete

state q is Rnq , where nq is the number of variables in the formal power series ring

associated with the same discrete state q in the formal hybrid system. Each vector

field of the hybrid system has the property, that its Taylor-series expansion coincides

with the corresponding formal vector field of the formal hybrid system. The Taylor-

series expansions of the readout and reset maps of the hybrid system coincide with

the corresponding formal power series in the formal system.

In fact, most of the chapter is devoted to the realization problem for formal hybrid

systems. That is, consider a map mapping sequences of discrete and continuous

inputs symbols to discrete and continuous outputs. We would like to find necessary

and sufficient conditions for existence of a formal hybrid system realizing this map.

We will be able to present some necessary conditions and some results which indicate

that these necessary conditions are very close to being sufficient ones.

The approach to realization theory of analytic hybrid systems sketched above is

very similar to the classical approach to local realization theory of analytic nonlinear

systems, [36, 21]. The classical solution to local nonlinear realization problem starts

with associating with each nonlinear system a formal system defined as a follows.

We associate with each vector field of the nonlinear systems a derivation on the

ring of formal power series. The derivations are obtained by taking the Taylor-

series expansion of each vector field around the initial point. The solution to the

local realization problem is reduced to finding a formal system realization for a map,

which maps sequences of input symbols to continuous outputs. There are many ways

to solve the problem of existence of a formal realization. One of them is to use the

theory of Sweedler-type coalgebras and bialgebras [29, 27]. The other one gives a

direct construction of a realization, using theory of Lie-algebras [36, 21].

In this chapter we will use the theory of Sweedler-type coalgebras. Note that

Sweedler-type coalgebras are not identical to coalgebras used by Jan Rutten ([59]).

Although Sweedler-type coalgebra are a special case of the category theoretical coal-

gebras, they have much more structure. Roughly speaking a Sweedler-type coalgebra

is a vector space on which a so called comultiplication and counit are defined. We will

show that existence of a formal hybrid system realization is equivalent to existence

of a realization by an abstract system of a certain type, which we will call CCPI

hybrid coalgebra systems. Roughly speaking such a system is a system, state space

of which is a coalgebra satisfying certain properties. Our efforts will be directed

towards finding conditions for existence of such a hybrid coalgebra realization.

This chapter is not the first attempt to use coalgebras for hybrid system. Already
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the paper by [28] advocated an approach based on coalgebras, and this chapter

uses similar ideas. Although the stated goal of the paper by Grossman and Larson

was to use coalgebra theory for developing realization theory for hybrid systems,

it just presented some reformulation of the already known results for finite-state

automata and nonlinear control systems. It did not contain any new results for

hybrid systems. The main contribution of the current chapter when compared to the

paper by Grossman and Larson is that it does present conditions for existence of a

realization by hybrid systems. Moreover, the class of hybrid systems studied in this

chapter is more general and closer to what is generally understood as hybrid systems

than the one in Grossman’s and Larson’s paper.

The approach to realization theory adopted in this chapter bears more resem-

blance to [29]. In particular, the general theory of coalgebra systems, as it is pre-

sented in Subsection 8.6.1 of this chapter is very similar to what was presented in

[29], except that there the input space was assumed to be a Hopf-algebra, as op-

posed to our framework where the inputs are simply bialgebras (the latter is more

general). The latter difference is not a very important one, most of the constructions

can be done in a similar way. Note however that [29] dealt only with abstract systems

corresponding to nonlinear systems.

Note that linear and bilinear hybrid systems are special cases of analytic hybrid

systems studied in this chapter. The conditions for existence of a (bi)linear hybrid

system realization presented in Chapter 7 imply the conditions derived in this chap-

ter, thus the results of the current chapter are consistent with the previous ones.

Let us present an informal summary of the main results of the chapter.

• An input-output map has a realization by a hybrid system if and only if it has

a hybrid Fliess-series expansion and the corresponding convergent generating

series has a realization by a formal hybrid system such that all the readout

maps and vector fields are convergent.

• A convergent generating series is a map, which maps sequences of discrete

events and input symbols to continuous and discrete outputs. Such a map

has a realization by a formal hybrid system, if it has a realization by a hybrid

coalgebra system of a certain type ( CCPI hybrid coalgebra system ).

• We define the Lie-rank and strong Lie-rank of a map mapping input sequences

to outputs. We will prove that if a map has a CCPI hybrid coalgebra system

realization ( equivalently it has a formal hybrid system realization ), then its

Lie-rank is finite. If its strong Lie-rank is finite, then it has a hybrid coalgebra

realization which is very similar to a CCPI hybrid coalgebra realization We
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will prove that an input-output map cannot have a CCPI hybrid coalgebra

realization ( formal hybrid system realization ), dimension of which is smaller

than the Lie-rank of the map. We will also present a hybrid system, which

can not be realized by a system, dimension of which equals the Lie-rank of the

input-output map.

The outline of the chapter is the following. Section 8.2 settles the notation and

terminology used in the chapter. Section 8.3 presents the necessary results and

terminology on formal power series and coalgebras. The reader might postpone

reading this section until Section 8.5. Section 8.4 discusses the notion of hybrid

Fliess-series expansion and characterises the input-output maps of hybrid systems in

terms of Fliess-series expansion. Section 8.5 presents the relationship between local

realization and formal realization problem. Section 8.6 presents the conditions for

existence of a formal hybrid system realization.

The material of this chapter is based on [57] and it is a joint work of the author

and Jean-Baptiste Pomet.

8.2 Notation and Terminology

For a finite set Σ denote by R < Σ∗ > the set of all finite formal linear combinations

of words over Σ. That is, a typical element of R < Σ∗ > is of the form α1w1 +

α2w2 + · · · + αkwk, where α1, . . . , αk ∈ R and w1, . . . , wk ∈ Σ∗. It is easy to see

that R < Σ∗ > is a vector space. Moreover, we can define a linear associative

multiplication on R < Σ∗ >, by (
∑N

i=1 αiwi)(
∑M

j=1 βjvj) =
∑N

i=1

∑M
j=1 αiβjwivj .

The element ε which we will identify with 1 is the neutral element with respect to

multiplication. It is easy to see that R < Σ∗ > is an algebra with the multiplication

defined above.

In this chapter we will deal only with realizations of one single input-output

map. Therefore, we will use a special notation to denote Moore-automata and hybrid

system realizations of a family of input-output maps consisting of one single input-

output map.

Let Γ be a finite set, O be the set of discrete outputs. Let f : Γ∗ → O be

an input-output map. Assume that A = (Q,Γ, O, δ, λ) is a Moore-automaton and

q0 ∈ Q. By abuse of terminology we will denote by (A, q0) the Moore-automaton

realization (A, ζq0
) such that ζq0

: f 7→ q0 and dom(ζq0
) = {f}. A map S : (A, q0) →

(A
′

, q
′

0) will denote the Moore-automaton morphism S : (A, ζq0
) → (A

′

, ζq
′
0
) where

dom(ζq0
) = dom(ζq

′
0
) = {f} for some f : Γ∗ → O.

Similarly, if H = (A,U ,Y, (Xq, fq, hq)q∈Q , {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}) is a hybrid
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system without guards, f ∈ F (PC(T,U)×(Γ×T )∗×T,Y×O) and h0 ∈ H, then the

pair (H,h0) will denote the hybrid system realization (H,µh0
) such that µh0

: f 7→ h0

and dom(h0) = {f}. We will denote by T : (H,h0) → (H
′

, h
′

0) the hybrid system

morphism T : (H,µh0
) → (H

′

, µh
′
0
) where dom(µh0

) = dom(µh
′
0
) = {f} for some

f ∈ F (PC(T,U) × (Γ × T )∗ × T,Y × O).

In this paper we will be primarily concerned with the local realization problem of

analytic hybrid systems without guards. As a further simplification we will restrict

attention to the following class of analytic hybrid systems.

Definition 18. We will call an analytic hybrid system

H = (A,U ,Y, (Xq, fq, hq)q∈Q , {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ})

nicely analytic input-affine hybrid system (abbreviated as NHS) if the following holds.

• U = Rm for some m ≥ 0

• Y = Rp for some p ≥ 0

• For each q ∈ Q, the vector field fq(x, u) is of the form

fq(x, u) = gq,0(x) +

m∑

j=1

gq,j(x)uj

where gq,j, j = 0, . . . ,m are analytic maps.

• There exists a collection {xq ∈ Xq | q ∈ Q} of continuous states, such that for

each q ∈ Q

∀γ ∈ Γ : Rδ(q,γ),γ,q(xq) = xδ(q,γ)

We will use the following short-hand notation for such systems

H = (A, (Xq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}, {xq}q∈Q)

where for each q ∈ Q, i = 1, . . . , p the maps hq,i : Xq → R are the coordinate maps

of hq(x) = (hq,1(x), . . . , hq,p(x))T .

Let

Hi = (Ai, (X i
q , gi

q,j , h
i
q,i)q∈Qi,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Qi, γ ∈ Γ}, {xi

q}q∈Q)

(i = 1, 2) be two NHS’s. A NHS morphism from T = (TD, TC) : H1 → H2 is a

hybrid morphism T : (H1, µ1) → (H2, µ2) such that µi = (qi, xqi
) and for all q ∈ Q1,

TC(x1
q) = x2

TD
(q).

Even for the case of NHS systems, the realization problem is still too difficult to

solve. That is why we will be interested in the local realization problem. That is,
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we will be interested in finding a NHS which realizes the restriction of the specified

input-output map to small enough times and small enough inputs.

Consider the set PC(T,U) × (Γ × T )∗ × T and define the topology generated

by the following collection of open sets {VK | K ∈ R,K > 0}, where VK =

{(u, (γ1, t1) · · · (γk, tk), tk+1) | (
∑k+1

j=1 tj) · ||u||Pk+1
j=1 tj ,∞ < K}. Notice that for any

open subset U in this topology it holds that (u, (γ1, 0) · · · (γk, 0), 0) ∈ U for all

γ1, . . . , γk ∈ Γ, k ≥ 0. In the rest of the chapter we will tacitly assume that all

topological statements about the set PC(T,U) × (Γ × T )∗ × T refer to the topology

defined above.

We will say that an NHS

H = (A, (Xq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}, {xq}q∈Q)

is a local realization of an input-output map f ∈ F (PC(T,U)×(Γ×T )∗×T,Y×O) if

there exist an open set U ⊆ PC(T,U)× (Γ×T )∗×T such that for some (q, xq) ∈ H,

∀(u,w, t) ∈ U : f(u,w, t) = υH((q, xq), u, w, t)

8.3 Algebraic Preliminaries

The goal of this section is to give a brief overview of the algebraic notions used in

this chapter and to fix the notation and terminology. The material presented in

this section is standard. The reader is strongly encouraged to consult the references

provided in the text for further details. Subsection 8.3.1 presents a summary on

formal power series in finitely many commuting variables. Subsection 8.3.2 presents

the necessary preliminaries on Sweedler-type coalgebras. In this chapter in general,

and throughout this section in particular we will assume that the reader is familiar

with such basic algebraic notions as ring, algebra, ideal, module etc. The reader is

referred to any textbook in this subject, for example [85].

8.3.1 Preliminaries on Formal Power Series

The goal of this subsection is to present a very short overview of the main properties

of formal power series in commuting variables. For a more detailed exposition the

reader should consult [85].

Consider the set Nn and define addition on this set as follows. If α = (α1, . . . , αn)

and β = (β1, . . . , βn), then let α + β = (α1 + β1, α2 + β2, . . . , αn + βn). The

ring of formal power series R[[X1, . . . ,Xn]] in commuting variables X1,X2, . . . ,Xn

is defined as the R vector space of formal infinite sums S =
∑

α∈Nn SαXα, where

Xα = Xα1
1 Xα2

2 · · ·Xαn
n for α = (α1, . . . , αn). Addition, multiplication are defined by

246



8.3. ALGEBRAIC PRELIMINARIES

(
∑

α∈Nn

SαXα) + (
∑

α∈Nn

TαXα) =
∑

γ∈Nn

(Sγ + Tγ)Xγ

and

(
∑

α∈Nn

SαXα) · (
∑

α∈Nn

TαXα) =
∑

γ∈Nn

(
∑

α+β=γ

SαTβ)Xγ

Multiplication by scalar is defined as a(
∑

α∈Nn SαXα) =
∑

α∈Nn aSαXα. The neutral

element for addition is
∑

α∈Nn SαXα, with Sα = 0 for all α ∈ Nn. The neutral

element for multiplication is
∑

α∈Nn SαXα with S(0,0,...,0) = 1 and Sα = 0 for all

other α ∈ N. The latter element will be denoted simply by 1. It is easy to see that

R[[X1, . . . ,Xn]] forms an algebra with the operations above. For each α ∈ Nn let

deg(α) =
∑n

j=1 αi. For each n ∈ N define the ideal In = {
∑

α∈Nn SαXα | Sα =

0 for all α ∈ Nn, deg(α) ≤ n}. We define the Zariski topology on R[[X1, . . . ,Xn]]

as the topology generated by the open sets f + In for f ∈ R[[X1, . . . ,Xn]] and

n ∈ N. A map D : R[[X1, . . . ,Xn]] → R[[Y1, . . . , Ym]] is said to be continuous if it it

continuous with respect to the Zariski topology. A map D : R[[X1, . . . ,Xn]] → R is

said to be continuous, if it is continuous as a map between topological spaces, where

R[[X1, . . . ,Xn]] is considered with the Zariski topology and R is considered with the

discrete topology Recall that if A,B are two R algebras, then a linear map f : A → B

is called a derivation, if the Leibniz-rule holds. That is, f(ab) = af(b) + bf(a). If

f(ab) = f(a)f(b), then we will call f an algebra morphism.

Denote by A the ring A = R[[X1, . . . ,Xn]]. Denote by Di, i = 1, . . . , n the

continuous derivations Di : A → R such that Di(Xj) =

{
1 if i = j

0 if i 6= j
. Denote

by 1∗A the map 1∗ : A → R such that 1∗A(
∑

α∈Nn aαXα) = a(0,0,...,0). It is well-

known ([85]) that 1∗A is a continuous algebra morphism. Denote by d
dXi

, i = 1, . . . , n

the ith partial derivative of the ring A = R[[X1, . . . ,Xn]]. That is, d
dXi

: A → A

is a continuous derivation such that d
dXi

(Xj) =

{
1 i = j

0 otherwise
The set of all

continuous derivations A → A forms an A module and any continuous derivation

D : A → A can be written as D =
∑n

j=1 Si
d

dXi
, where Si ∈ A. Notice that for

any continuous derivation D : A → A the map 1∗A ◦ D : A → A defines a continuous

derivation to R. It is also well-known that Di = 1∗A◦ d
dXi

for all i = 1, . . . , n. For each

k ∈ N denote by dk

dXk
i

the maps
d

dXi
◦ · · · ◦

d

dXi︸ ︷︷ ︸
k−times

: A → A, If k = 0 the we assume

that d
dXi

0
(h) = h, i.e., d

dXi

0
is the identity map. For each α = (α1, . . . , αn) ∈ Nn

define the map d
dX

α
as d

dX1

α1
◦ d

dX2

α2
◦ · · · ◦ d

dXn

αn
: A → A.
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8.3.2 Preliminaries on Sweedler-type Coalgebras

The goal of this subsection is to give a very short introduction to the field of coal-

gebras, bialgebras. Readers for whom this is the first encounter with the field are

strongly encouraged to consult the book [74].

Let k be a field of characteristic 0, for our purposes the reader can assume that

k = R. Recall the notion of a tensor product of two vector spaces and recall that

the tensor product of A and B is denoted by A ⊗ B. A tuple (C, δ, ε) is called a

coalgebra if C is a k-vector space, δ : C → C ⊗ C and ε : C → k are k-linear

maps such that a number of properties hold. Before describing these properties

we will have to introduce some additional notation. Notice that for each c ∈ C,

δ(c) =
∑m

i=1 ci,1 ⊗ ci,2 such that ci,1, ci,2 ∈ C , i = 1, . . . ,m. We will use the

following notation δ(c) =
∑

c(1) ⊗ c(2) to denote the situation above. If we refer to

c(1) or to c(2) we will always mean c1,i or c2,i respectively. Although this notation

is definitively confusing at the first sight, this is the convention widely adopted in

the field of coalgebras and in fact it does help to write and read formal statements

concerning coalgebras. We require the following conditions to hold for coalgebras.

For each c ∈ C, if δ(c) =
∑m

i=1 ci,1 ⊗ ci,2, then

m∑

i=1

ci,1 ⊗ δ(ci,2) =

m∑

i=1

δ(ci,1) ⊗ ci,2 ∈ C ⊗ C ⊗ C

and

c =

m∑

i=1

ε(ci,1)ci,2 =

m∑

i=1

ε(ci,2)ci,1

The first condition is referred to as coasscociativity. The second condition says that

ε has the counit property. If in addition, for each c ∈ C,

δ(c) =

m∑

i=1

ci,1 ⊗ ci,2 =

m∑

i=1

ci,2 ⊗ ci,1

then we will say that (C, δ, ε) is cocommutative. The map δ will be referred to as the

comultiplication and the map ε will be referred to as the counit.

A map T is said to be a coalgebra map from coalgebra (C, δ, ε) to coalgebra

(B, δ
′

, ε
′

) if T : C → B is a linear map such that ε
′

= ε ◦ T and (T ⊗ T ) ◦ δ = δ
′

◦ T ,

where T ⊗ T : C ⊗ C 3 c1 ⊗ c2 7→ T (c1) ⊗ T (c2).

In the sequel we will denote a coalgebra (C, δ, ε) simply by C and if T is a coalgebra

map from (C, δ, ε) to (B, δ, ε) we will write T : C → B and we will state that T is a

coalgebra map.

Recall that a k-vector space A with k-linear maps M : A⊗A → A and u : k → A

is called an algebra if M defines an associative multiplication and u(1) defines
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the unit element. That is, for each a, b, c ∈ A, M(a,M(b, c)) = M(M(a, b), c) and

M(a, u(1)) = M(u(1), a) = a. If in addition M defines a commutative multiplication,

that is, M(a, b) = M(b, a) for all a, b ∈ A, then we will say that A is a commutative

algebra. As usual in mathematics, we will write ab instead of M(a, b) and 1 instead

of u(1) if the maps M and u are clear from the context. All the notions we are going

to use for algebras such as ideals, maximal ideals, etc. are the standard ones, the

reader can consult [85].

For any k-vector space V denote by V ∗ the linear dual of it, that is, V ∗ = {f :

V → k | f is a linear map}.

It is easy to see that if C is a coalgebra, then the vector space C∗ is an algebra

with the multiplication and unit defined as follows. For each c∗1, c
∗
2 ∈ C∗ let

M(c∗1, c
∗
2)(c) =

m∑

i=1

c∗1(ci,1)c
∗
2(ci,2)

where δ(c) =
∑m

i=1 ci,1 ⊗ ci,2. Just to let the reader appreciate the usefulness of

the notation for the result of comultiplication the expression for the multiplication

above can be written as M(c∗1, c
∗
2)(c) =

∑
c∗1(c1)c

∗
2(c2). Going back to defining

the algebra structure on C∗, we will define the unit u as follows. For each s ∈ k

let u(s)(c) = sε(c). It is not difficult to see that u can be identified with ε∗ and

M = δ∗ ◦ i, where i : C∗ ⊗ C∗ → (C ⊗ C)∗ is the natural inclusion defined by

i(c∗1 ⊗ c∗2)(c) = c∗1(c)c
∗
2(c) for all c∗1, c

∗
2 ∈ C∗, c ∈ C. If C is a cocommutative

coalgebra, then C∗ is a commutative algebra. If f : C → D is a coalgebra map,

then f∗ : D∗ → C∗ is an algebra map, where f∗(d∗)(c) = d∗(f(c)) for all d∗ ∈ D∗

and c ∈ C. That is, f∗ is the usual dual map of f , as it is usually defined in linear

algebra.

Notice that if (C, δC , εD) and (D, δD, εD) are coalgebras, then C⊗D has a natural

coalgebra structure (C ⊗D, δ
′

, ε
′

), where δ
′

(c⊗ d) =
∑m

i=1

∑n
j=1(ci,1 ⊗ dj,1)⊗ (ci,2 ⊗

dj,2) ∈ (C ⊗ D) ⊗ (C ⊗ D) and ε
′

(c ⊗ d) = εC(c)εD(d). with the assumption that

c, d ∈ C, δC(c) =
∑m

i=1 ci,1 ⊗ ci,2 and δD(d) =
∑n

j=1 dj,1 ⊗ dj,2.

Similarly, if A is an algebra, then A ⊗ A has a natural algebra structure (A ⊗

A,M
′

, u
′

) where M
′

((a⊗ b), (a
′

⊗ b
′

) = (aa
′

⊗ bb
′

) and u
′

(1) = u(1)⊗u(1). It is easy

to see that the ground field k has a natural algebra and coalgebra structure.

We will say that (C, δ, ε,M, u) is a bialgebra if (C, δ, ε) is a coalgebra, (C,M, u) is

an algebra, δ, ε are algebra morphisms and M,u are coalgebra morphisms. Here, we

assumed that C ⊗ C has the natural algebra and coalgebra structure inherited from

C, see the discussion above.

If C is a coalgebra, then a subspace J ⊆ C is called coideal if δ(J) = J⊗C+C⊗J

and J ⊆ ker ε. A subspace D ⊆ C is called subcoalgebra if δ(D) ⊆ D ⊗ D. If J is a
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coideal of C, the the quotient space C/J admits a natural coalgebra structure, such

that the canonical projection π : C 3 c 7→ [c] ∈ C/J is a coalgebra map. Conversely,

if f : C → D is a coalgebra map, then ker f is a coideal and C/ ker f is isomorphic

to Imf as a coalgebra.

Recall the duality between algebras and coalgebras. For any coalgebra C and any

subspace D ⊆ C, denote by D⊥ the annihilator D⊥ = {c∗ ∈ C∗ | ∀d ∈ D : c∗(d) =

0} ⊆ C∗. Conversely, for any subspace A ⊆ C∗ denote by A⊥ = {c ∈ C | ∀a ∈ A :

a(c) = 0}. Then it follows that for any subspace D ⊆ C , (D⊥)⊥ = D. If D is a

subcoalgebra of C, then D⊥ is an ideal in C∗. If A ⊆ C∗, then A⊥ is a coideal in C.

It is also easy to see that (C/A⊥)∗ is isomorphic to A ⊆ (A⊥)⊥.

For a coalgebra C an element g ∈ C such that δ(g) = g ⊗ g and ε(g) = 1 will

be called of group-like element of C. The set of all group-like elements of C will be

denoted by G(C). An element p ∈ C will be called primitive if δ(p) = g⊗p+p⊗g for

some group-like element g ∈ G(C) and ε(p) = 0. The set of all primitive elements will

be denoted by P (C). A subcoalgebra D ⊆ C is called simple if D does not contain

any proper subcoalgebra, i.e. if S ⊆ D is a subcoalgebra, then either S = {0} or

S = D. The coalgebra C is called pointed if every simple coalgebra D of C is

of dimension one. That is, C is pointed if every simple subcoalgebra D of C is of

the form D = {αg | α ∈ k} for some group-like element g ∈ G(C). A coalgebra

C is called irreducible, if for every pair of subcoalgebras S,D ⊆ C, S ∩ D 6= {0},

unless either S = {0} or D = {0}. If C is pointed irreducible, then it follows that

C has a unique group-like element g, i.e. G(C) = {g} and for any subcoalgebra

{0} 6= D ⊆ C, g ∈ D. If C is cocommutative, then C =
⊕

i∈I Ci such that Ci

is an irreducible subcoalgebra of C and there is no irreducible subcoalgebra of C

properly containing Ci. Such Cis will be called irreducible components of C. Thus,

an irreducible component of a coalgebra C is a subcoalgebra D ⊆ C such that for

each irreducible subcoalgebra S ⊆ C, if D ⊆ S, then S = D. If f : C → D is a

algebra morphism, then f(G(C)) ⊆ G(D) and f(P (C)) ⊆ P (D). Moreover, if f is

surjective, then f(G(C)) = G(D). It also holds that if C is pointed irreducible, then

f(C) is pointed irreducible too.

Let A,B be algebras and let C be a coalgebra and consider a linear map ψ :

C ⊗ A → B. We will say that ψ is a measuring , if for all c ∈ C, a, b ∈ A,

ψ(c ⊗ ab) =
∑n

i=1 ψ(ci,1 ⊗ a)ψ(ci,2 ⊗ b) where δ(c) =
∑n

i=1 ci,1 ⊗ ci,2.

Let V be a k-vector space and define the cofree commutative pointed irreducible

coalgebra B(V ) as the cocommutative pointed irreducible coalgebra for which the

following holds.

• There exists a linear map π : B(V ) → V

250



8.4. INPUT-OUTPUT MAPS OF NICELY NONLINEAR HYBRID SYSTEMS

• If C is a cocommutative pointed irreducible coalgebra, C+ = ker ε and f :

C+ → V is a linear map, then there exists a unique coalgebra map F : C →

B(V ) such that π ◦ F |C+ = f .

It is known that B(V ) exists for each vector space V and P (B(V )) = V . More-

over, for each cocommutative pointed irreducible coalgebra C there exists a unique

injective coalgebra π : C → B(P (C)) such that π|P (C) : P (C) → P (C) is the iden-

tity map. It is also known that if k = R and dimV = n < +∞ then the dual

B(V )∗ of V is isomorphic to the algebra of formal power series R[[X1, . . . ,Xn]] in

n commuting variables ( in fact, it holds for any field k of characteristic zero that

B(V )∗ ∼= k[[X1, . . . ,Xn]]).

8.4 Input-output Maps of Nicely Nonlinear Hybrid

Systems

Recall from classical nonlinear systems theory [32, 83] that state and output tra-

jectories of nonlinear analytic input-affine control systems admit a representation in

terms of iterated integrals. A similar statement remains true for hybrid systems too.

In order to state the the existence of such a representation formally, we will need to

introduce some additional notation and terminology.

We will start with defining the concept of hybrid convergent generating series

and hybrid Fliess-series expansions. Notice, that we already defined a concept called

hybrid convergent series and a concept called hybrid Fliess-series expansion in Section

7.2. The concepts which were defined in Section 7.2 are special cases of the concepts

which we will define below. In the rest of the chapter, unless stated otherwise, if we

speak of hybrid convergent generating series and hybrid Fliess-series expansion, then

we will always mean the objects defined below, not the objects defined in Section 7.2.

8.4.1 Hybrid Convergent Generating Series

Recall from Section 2.6 the notions of abstract generating series and iterated integrals.

That is, for each u = (u1, . . . , uk) ∈ U denote

dζj [u] = uj , j = 1, 2, . . . ,m, dζ0[u] = 1

Denote the set {0, 1, . . . ,m} by Zm. For each j1 · · · jk ∈ Z∗
m, j1, · · · , jk ∈ Zm, k ≥

0, t ∈ T , u ∈ PC(T,U) define

Vj1···jk
[u](t) = 1 if k = 0
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For all k > 1, let

Vj1···jk
[u](t) =

∫ t

0

dζjk
[u(τ)]Vj1,...,jk−1

[u](τ)dτ

For each w1, . . . , wk ∈ Z∗
m, (t1, · · · , tk) ∈ T k, u ∈ PC(T,U) define

Vw1,...,wk
[u](t1, . . . , tk) = Vw1

(t1)[u]

Vw2
(t2)[Shift1(u)] · · ·Vwk

[Shiftk−1(u)](tk)

where Shifti(u) = ShiftP
i
1 ti

(u), i = 1, 2, . . . , k − 1.

Assume that Zm and Γ are disjoint sets. Denote by Γ̃ the set Γ ∪ Zm. Then any

w ∈ Γ̃∗ is of the form w = w1γ1 · · ·wkγkwk+1, where γ1, . . . , γk ∈ Γ, w1, . . . , wk+1 ∈

Z∗
m, k ≥ 0.

Definition 19. A map c : Γ̃∗ → Y is called a hybrid generating convergent series

on Γ̃∗ if there exists K,M > 0, K,M ∈ R such that for each w ∈ Γ̃∗,

||c(w)|| < |w|!KM |w|

where ||.|| is some norm in Y = Rp.

The notion of generating convergent series is related to the notion of convergent

power series from [32, 83].

Let c : Γ̃∗ → Y be a generating convergent series. For each u ∈ PC(T,U) and

s = (γ1, t1) · · · (γk, tk) ∈ (Γ × T )∗, tk+1 ∈ T define the series

Fc(u, s, tk+1) =
∑

w1,...,wk+1∈Z∗
m

c(w1γ1 · · · γkwk+1)×

×Vw1,...,wk+1
[u](t1, . . . , tk+1)

It is easy to see that for small enough t1, . . . , tk+1 ∈ T , u the series above is absolutely

convergent. More precisely, let Ts =
∑k+1

j=1 tj and ||u||S,∞ = sup{||u(t)|| | t ∈ [0, S]}

Lemma 38. If Ts · ||u||Ts,∞ < (2M(1 + m))−1, then Fc(u, s, tk+1) is absolutely

convergent.

Define the set

dom(Fc) = {(u, s, t) ∈ PC(T,U) × (Γ × T )∗ × T |

s = (γ1, t1) · · · (γk, tk) ∈ (Γ × T )∗, k ≥ 0,

(t +
k∑

j=1

tj) · ||u||t+
P

k
j=1 tj ,∞ < (2M(1 + m))−1}
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Then for each (u, s, t) ∈ dom(Fc) the series Fc(u, s, t) is absolutely convergent and

thus we can define the map

Fc : dom(Fc) 3 (u, s, t) 7→ Fc(u, s, t)

By an argument similar to the classical one, one could show that c defines Fc

locally uniquely. Recall the definition of the topology of PC(T,U) × (Γ × T )∗ × T

from Section 8.2. It is easy to see that for any hybrid convergent generating series c

the set dom(Fc) is open in that topology.

Lemma 39. If there exists a non-empty open subset of U ⊆ domFc ∩ domFd, such

that ∀s ∈ U : Fc(s) = Fd(s), i.e. Fc = Fd on the open set U , then c = d.

It is also easy to see that Fc is a causal map that is, if u, v ∈ PC(T,U) and

u(s) = v(s) for all s ∈ [0, S], then Fc(u,w, tk+1) = Fc(v, w, tk+1) for all w =

(γ1, t1) · · · (γk, tk) ∈ (Γ × T )∗, tk+1 ∈ T , k ≥ 0 such that
∑k+1

j=1 tj ≤ S.

8.4.2 Input-output Maps of Nonlinear Hybrid Systems

Consider a NHS

H = (A, (Xq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}, {xq}q∈Q).

For each q ∈ Q denote by Aq the algebra of real-valued real analytic functions of Xq,

i.e.

Aq = Cω(Xq) = {f : Xq → R | f is real analytic }

It is well-known that each vector field X ∈ TXq induces a map X : Aq → Aq,

defined by X(f)(x) =
∑nq

j=1 Xj(x) df
dxji (x), where X is assume to be of the form

X =
∑n

j=1 Xj
d

dxi
. In particular, each vector field gq,j , j ∈ Zm induces a map

gq,j : Aq → Aq

Assume that w = j1 · · · jk ∈ Z∗
m, j1, . . . , jk ∈ Zm, k ≥ 0. Then define the map

gq,w : Aq → Aq by

gq,w = gq,j1 ◦ gq,j2 ◦ · · · ◦ gq,jk

Notice that each reset map Rδ(q,γ),γ,q induces a map R∗
δ(q,γ),γ,q : Aδ(q,γ) → Aq

defined by

R∗
δ(q,γ),γ,q(f)(x) = f(Rδ(q,γ),γ,q(x))

Thus, for any s = w1γ1 · · · γkwk+1 ∈ Γ̃∗, such that w1, . . . , wk ∈ Z∗
m, γ1, . . . , γk ∈

Γ, we get that the map

GH,q,s = gq0,w1
◦ R∗

q1,γ1,q0
gq1,w2

◦ · · ·

· · · ◦ R∗
qk+1,γk,qk

◦ gqk,wk+1
: Aqk

→ Aq

(8.1)

253



CHAPTER 8. NONLINEAR HYBRID SYSTEMS

is well-defined, where qi = δ(q, γ1 · · · γi), i = 0, . . . , k, q0 = q. In particular, if

h ∈ Aqk
, and x ∈ Xq, then GH,q,s(h)(x) ∈ R.

More precisely, define for any (q, x) ∈ H define the generating series cq,x : Γ̃∗ → Y,

as follows

cq,x(s) = GH,q,s(hqk
)(x) =

gq0,w1
◦ R∗

q0,γ1,q0
gq1,w2

◦ · · ·

· · · ◦ R∗
qk+1,γk,qk

◦ gqk,wk+1
(hqk

)(x)

(8.2)

where s = w1γ1 · · ·wkγkwk+1, w1, . . . , wk+1 ∈ Z∗
m, γ1, . . . , γk ∈ Γ, δ(q, γ1 · · · γi) = qi,

i = 0, . . . , k. It is easy to see that cq,x is a generating convergent power series. Using

arguments similar to the standard ones for nonlinear state affine systems, one gets

that

Lemma 40. Using the notation above, for each (q, x) ∈ H, and for each

(u, (γ1, t1) · · · (γk, tk), tk+1) ∈ dom(Fcq,x
),

yH((q, x), u, (γ1, t1) · · · (γk, tk), tk+1) =
∑

w1,...,wk+1∈Z∗
m

cq,x(w1z1 · · ·wkzkwk+1)×

× Vw1,...wk
[u](t1, . . . , tk+1) =

= Fcq,x
(u, (γ1, t1) · · · (γk, tk), tk+1)

(8.3)

Let f ∈ F (PC(T,U)× (Γ× T )∗ × T,Y ×O) be an input-output map. Denote by

fD the map ΠO ◦ f and denote by fC the map ΠY ◦ f .

Definition 20. We will say that f admits a local hybrid Fliess-series expansion, if

and only if

• The map fD depends only on Γ∗, that is,

fD(u, (s, t), t) = fD(v, (s, τ), τ)

for all u, v ∈ PC(T,U), τ, t ∈ T , τ , t ∈ T , s ∈ Γ∗. Thus, the map fD can be

viewed as a map fD : Γ∗ → O.

• There exists a generating convergent series cf : Γ̃∗ → Y and an open subset

U ⊆ dom(Fcf
) such that

∀(u,w, t) ∈ U : fC(u,w, t) = Fcf
(u,w, t)
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It is clear that if f ∈ F (PC(T,U)× (Γ×T )∗×T,Y×O) has a local realization by

a NHS, then f admits a local hybrid Fliess-series expansion. Notice that the values

of the corresponding convergent generating series can be directly obtained from f

by feeding in piecewise-constant inputs and taking derivatives with respect to inputs

and switching times of the input function.

Since a hybrid convergent generating series determines Fc uniquely, we get the

following.

Theorem 43. Let H = (A, (Xq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈

Γ}, {xq}q∈Q) be a NHS and let f ∈ F (PC(T,U) × (Γ × T )∗ × T,Y × O) be an

input-output map. Then H is a local realization of f if and only if f has a hybrid

Fliess-series expansion and there exists q ∈ Q such that

• ∀w ∈ Γ∗ : fD(w) = λ(q, w)

• For all s = w1γ1 · · · γkwk+1 ∈ Γ̃∗, γ1, . . . , γk ∈ Γ, w1, . . . , wk+1 ∈ Z∗
m, k ≥ 0

cf (w1γ1w2 · · · γkwk+1) =

gq0,w1
◦ R∗

q1,γ1,q0
◦ gq1,w2

· · ·

· · · ◦ R∗
qk,γk,qk−1

◦ gqk,wk+1
(hqk

)(xq)

(8.4)

where qi = δ(q, γ1 · · · γi), i = 0, . . . , k.

8.5 Formal Realization Problem For Hybrid Sys-

tems

As it was seen in the previous section, the local realization problem for nonlinear

hybrid systems is equivalent to finding a particular representation for the hybrid

convergent generating series corresponding to the input-output map. Notice that

this representation was formulated completely in terms of reset maps and vector

fields around a point and it is completely determined by the formal power series

expansion of the analytic maps and vector fields involved.

More precisely, consider a hybrid system

H = (A, (Xq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}, {xq}q∈Q)

For each q ∈ Q, j ∈ Zm consider the formal power series expansion of Rδ(q,γ),γ,q,

gq,j and hq,i. That is for each q ∈ Q consider the ring of formal power series Af
q =

R[[X1, . . . ,Xnq
]] in commuting variables X1, . . . ,Xnq

. Then the formal power series

expansion of

hq,i(x) =
∑

α∈N
nq

hq,i,α(x − xq)
α
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i = 1, . . . , p around xq results in a formal power series hf
q,i ∈ R[[X1, . . . ,Xnq

]], defined

by hf
q,i =

∑
α∈N

nq hq,i,αXα1
1 Xα2

2 · · ·X
αnq
nq . Similarly, if gq,j =

∑nq

i=1 gq,j,i
d

dxi
, then

take the Taylor-series expansion of each gq,j,i around xq, i.e.

gq,j,i(x) =
∑

α∈N

gq,j,i,α(x − xq)
α

and define the following continuous derivation on R[[X1, . . . ,Xnq
]],

gf
q,j =

nq∑

i=1

gq,j,i
d

dXi

where

gq,j,i =
∑

α∈N
nq

gq,j,i,αXα

Finally, assume that Rδ(q,γ),γ,q − xδ(q,γ) is of the form

Rδ(q,γ),γ,q − xδ(q,γ) = (Rδ(q,γ),γ,q,1, . . . , Rδ(q,γ),γ,q,nδ(q,γ)
)T

Each map Rδ(q,γ),γ,q,i, i = 1, . . . , nδ(q,n) is an analytic map with values in R and thus

around xq it admits a Taylor series expansion of the form

Rδ(q,γ),γ,q,i(x) =
∑

α∈N
nq

rδ(q,γ),γ,q,i,α(x − xq)
α

Notice that Rδ(q,γ),γ,q(xq)−xδ(q,γ) = 0 and thus rδ(q,γ),γ,q,i,(0,0,...,0) = Rδ(q,γ),γ,q,i(xq) =

0.

Define the formal power series

Rf
δ(q,γ),γ,q,i =

∑

α∈N
nq

rδ(q,γ),γ,q,i,αXα

Let r = δ(q, γ) and Ar = R[[X1, . . . ,Xnr
]] and define the continuous algebraic

map

Rf,∗
r,γ,q : Af

r → Af
q

by Rf,∗
r,γ,q(Xi) = Rf

r,γ,q,i for all i = 1, . . . , nr, and for all

S =
∑

α∈Nnr

SαXα ∈ Af
r = R[[X1, . . . ,Xnr

]]

let

Rf,∗
r,γ,q(S) =

∑

α∈Nnr

Sα(Rf
r,γ,q,1)

α1(Rf
r,γ,q,2)

α2 · · · · · · (Rf
r,γ,q,nr

)αnr ∈ R[[X1, . . . ,Xnq
]]
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It is easy to see that Rf,∗
r,γ,q is indeed an algebra morphism.

It is easy to see that with the notation above, the following holds

gq0,w1
◦ R∗

q0,γ1,q0
gq1,w2

◦ · · · · · · ◦ R∗
qk+1,γk,qk

◦ gqk,wk+1
(hqk

)(xq0
) =

gf
q0,w1

◦ Rf,∗
q0,γ1,q0

gf
q1,w2

◦ · · · · · · ◦ Rf,∗
qk+1,γk,qk

◦ gf
qk,wk+1

(hf
qk

)(0)

for all γ1, . . . , γk ∈ Γ, w1, . . . , wk+1 ∈ Z∗
m, k ≥ 0, q ∈ Q. Here the following notation

was used, qi = δ(q0, γ1 · · · γi), i = 0, . . . , k, and for all w = j1 · · · jl, j1, . . . , jl ∈ Z∗
m,

gf
q,w = gf

q,j1
◦ gf

q,j2
◦ · · · ◦ gf

q,jl
: Af

q → Af
q

That is, a necessary condition for existence of a realization of an input-output

map by hybrid systems is that the corresponding hybrid convergent generating series

can be represented as composition of derivations and algebra maps on finitely many

formal power series rings.

This observation, which will be discussed more formally on a later stage, motivates

the introduction of the formal realization problem.

Definition 21 (Formal Hybrid System). A tuple

F = (A, (Aq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}, q0)

is called a formal hybrid system, where

• A = (Q,Γ, O, δ, λ) is a Moore-automaton

• For each q ∈ Q, Aq = R[[X1, . . . ,Xnq
]] is the ring of formal power series in

commuting variable Xq, . . . ,Xnq

• For each q ∈ Q, j ∈ Zm,

gq,j : Aq → Aq

defines a continuous derivation on Aq, i.e. gq,j =
∑nq

i=1 gq,j,i
d

dXi
, where gq,j,i ∈

Aq, i = 1, . . . nq.

• For each q ∈ Q, i = 1, . . . , p, hq,i ∈ Aq

• For each q ∈ Q, γ ∈ Γ,

Rδ(q,γ),γ,q : Aδ(q,γ) → Aq

is a continuous algebra morphism, i.e. it is uniquely defined by its values

Rδ(q,γ),γ,q(Xi) ∈ Aq

and the free coefficient of Rδ(q,γ),γ,q(Xi) is zero, i.e.

1∗
R[[X1,...,Xnq ]](Rδ(q,γ),γ,q(Xi,δ(q,γ))) = 0
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• q0 ∈ Q – the initial state

The dimension of the formal hybrid system F is defined as

dim F = (card(Q),
∑

q∈Q

nq)

It is easy to see that φq is a continuous algebra morphism and φq(T ) = T (0).

A morphism between two formal hybrid systems

F1 = (A1, (A1
q , g

1
q,j , h

1
q,i)q∈Q1,j=0,...,m,i=1,...,p, {R

1
δ(q,γ),γ,q | q ∈ Q1, γ ∈ Γ}, q0)

and

F2 = (A2, (A2
q , g

2
q,j , h

2
q,i)q∈Q2,j=0,...,m,i=1,...,p, {R

2
δ(q,γ),γ,q | q ∈ Q2, γ ∈ Γ}, q0)

is a pair T = (TD, (TC,q)q∈Q), where TD : A1 → A2 is an automaton morphism such

that TD(q1
0) = q2

0 and for each q ∈ Q1, TC,q : A2
TD(q) → A1

q such that

• For all q ∈ Q1, j ∈ Zm,

TC,q ◦ g2
TD(q),j = g1

TD(q),j ◦ TC,q

• For all q ∈ Q1, i = 1, . . . , p,

h1
q,i ◦ TC,q = h2

TD(q),i

• For all q ∈ Q1, γ ∈ Γ,

TC,q ◦ R2
δ2(TD(q),γ),γ,TD(q) = R2

δ1(q,γ),γ,q ◦ TC,δ(q,γ)

The pair T is said to be an formal hybrid system isomorphism, if TD is an automaton

isomorphism and for all q ∈ Q1 TC,q is an algebra isomorphism. The fact that T is

a formal hybrid system morphism from F1 to F2 will be denoted by T : F1 → F2.

Let F = (A, (Aq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}, q0) be

a formal hybrid system. For each q ∈ Q, w = j1j2 · · · jl, j1, . . . , jl ∈ Zm,l ≥ 0, denote

by gq,w the following map

gq,w = gq,j1 ◦ gq,j2 ◦ · · · ◦ gq,jk
: Aq → Aq

For each q ∈ Q, v = w1γ1w2 · · · γkwk+1 ∈ Γ̃∗, k ≥ 0, γ1, . . . , γk ∈ Γ, w1, . . . , wk+1 ∈

Z∗
m, denote by GH,q,v the map

GH,q,v = gq0,w1
◦ Rq1,γ,q0

◦ gq1,w2
◦ · · ·

· · · ◦ Rqk,γk,qk−1
◦ gqk,wk+1

: Aqk
→ Aq

where qi = δ(q, γ1 · · · γi), i = 0, . . . , k.
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Consider the maps fc : Γ̃∗ → Rp and fd : Γ∗ → O. We will say the the formal

hybrid system F = (A, (Aq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈

Γ}, q0) is a realization of (fd, fc) , if for all s ∈ Γ̃∗:

∀w ∈ Γ∗ : fd(w) = λ(q0, w)

∀v ∈ Γ̃∗ : fc(v) = φq0
◦ GH,q0,v(hqe

)
(8.5)

where qe = δ(q0, γ1 · · · γk) such that v = w1γ1 · · · γkwk+1, γ1, . . . , γk ∈ Γ, w1, . . . , wk+1 ∈

Z∗
m, k ≥ 0.

Consider the hybrid system H = (A, (Xq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q |

q ∈ Q, γ ∈ Γ}, {xq}q∈Q). Let q0 ∈ Q. Recall the discussion at the beginning of this

section. Using the notation there, we define the formal hybrid system associated

with (H, (q0, xq0
)) as follows

FH = (A, (Af
q , gf

q,j , h
f
q,i)q∈Q,j∈Zm,i=1,...,p, {R

f,∗
δ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}, q0)

It is easy to see that FH is indeed a formal hybrid system. Theorem 43 has the

following easy consequence

Lemma 41. Let f ∈ F (PC(T,U) × (Γ × T )∗ × T,Y × O) and assume that f has a

hybrid Fliess-series expansion. Then (H, (q0, x0)) is a realization of f if and only if

the formal hybrid system FH is a realization of (fD, cf ).

8.6 Solution of the Formal Realization Problem

This section presents the conditions for existence of a hybrid formal power series

realization. The outline of the section is the following. Recall from Section 8.3 the

notion of coalgebra. Recall that there exists a natural duality between algebras and

coalgebras. We will exploit this duality by looking at formal hybrid systems defined

on algebras instead of coalgebras. Recall from Section 8.3 that rings of formal power

series in commuting variables have a natural characterisation as duals of certain coal-

gebras with very special property. This observation will enable us to use coalgebra

theory for finding necessary and sufficient conditions for existence of a formal hybrid

system realization. It will also enable us to place our results in the wider context of

nonlinear realization theory. The outline of the section is the following. Subsection

8.6.1 presents the notion of algebra and coalgebra systems, discusses duality between

the two concepts and presents the basic results on realization theory of such systems.

Subsection 8.6.2 presents the concept of hybrid coalgebra and algebra systems and
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presents the basic results on realization theory of hybrid coalgebra system. Subsec-

tion 8.6.4 discusses the relationship between hybrid coalgebra systems and formal

hybrid systems. It states the equivalence between formal hybrid systems and the so

called CCPI hybrid coalgebra systems. Finally, Subsection 8.6.5 discusses criteria

for existence of a CCPI hybrid coalgebra realization. Because of the equivalence be-

tween formal hybrid systems and CCPI hybrid coalgebra systems these criteria are

also criteria for existence of a formal hybrid system realization.

8.6.1 Algebra and Coalgebra Systems

In this subsection we will present the definition of a control system on algebra and

coalgebra, and we will show that there exists a duality between the two concepts.

The idea of such an abstract definition is not really new, it appeared earlier in other

works [29, 64]. For example, Sontag’s definition of a k-system is very closely related to

what will be presented below. This abstract representation will enable us to present

the results in a clear and conceptual way. First we will present the definition of

algebra and coalgebra systems and discuss the duality between them. After that we

will present some basic results on realization theory of coalgebra systems. The latter

is very similar to the results presented in [29].

Definition of Algebra and Coalgebra Systems

Let H be a bialgebra, which will be referred to as the bialgebra of inputs.

Definition 22. A tuple Σa = (A,H,ψ, φ, J, µ) is called a control system on an

algebra if

• A is a commutative algebra.

• J is an arbitrary set.

• ψ : A ⊗ H → A is a measuring such that ψ(a ⊗ h1h2) = ψ(ψ(a ⊗ h2) ⊗ h1) for

all h1, h2 ∈ H. The map ψ will be called the dynamics of Σa.

• φ : A → R is a an algebra map, called the readout map.

• µ : J → A specifies the initial state.

We will say that a family of maps Ψ = {yj : H → R | j ∈ J} is realized by an

algebra system Σa if

∀h ∈ H,∀j ∈ J : yj(h) = φ ◦ ψ(µ(j) ⊗ h)
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That is, one can think of Σa as an automaton, inputs of which are elements of

H (which itself is a monoid) and the state-space A has an algebra structure. This

point of view leads to the quite natural question of what if we took a coalgebra as a

state-space instead of an algebra. Below we will do exactly that.

Definition 23. A tuple Σc = (C,H,ψ, φ, J, µ) is called a control system on a

coalgebra if

• C is a cocommutative coalgebra.

• J is an arbitrary set.

• ψ : C ⊗ H → C is a coalgebra map ψ(a ⊗ h1h2) = ψ(ψ(a ⊗ h1) ⊗ h2) for all

h1, h2 ∈ H. The map ψ will be called the dynamics of Σa.

• φ ∈ G(C), i.e. φ is a group-like element of C

• µ : J → C∗ is the family of readout maps.

We say that Σc realizes a family of maps Ψ = {yj : H → R | j ∈ J} if

∀h ∈ H,∀j ∈ J : yj(h) = µj ◦ ψ(φ ⊗ h)

Consider the tuple

Σ∗
c = (C∗, ψ∗, φ∗, µ∗)

where ψ∗ : C∗ ⊗ H → C∗, φ∗ : C∗ → R and µ∗ : J → C∗ are defined as follows. The

map ψ∗ is defined as

ψ∗(c∗ ⊗ h)(c) = c∗(ψ(c ⊗ h))

For all j ∈ J , µ∗(j) = µ(j) and φ∗(c∗) = c∗(φ) for all c∗ ∈ C∗. It is easy to see that

Σ∗
c is a control system defined on an algebra, moreover, for all j ∈ J , h ∈ H,

φ∗ ◦ ψ∗(µ∗(j) ⊗ h) = µ(j) ◦ ψ(φ ⊗ h)

Thus, Σ∗
c is a realization of Φ if and only if Σc is a realization of Φ.

Realization Theory for Algebra and Coalgebra Systems

Let Σ = (C,H,ψ, φ, J, µ) be a coalgebra system. Define the maps RΣ : H → C by

RΣ(h) = ψ(h ⊗ φ) for all h ∈ H

It is easy to see that RΣ is a coalgebra map. We will call C reachable if RΣ is

surjective.
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For each h ∈ H, j ∈ J consider the map Oh,j : C 3 c 7→ µj ◦ ψ(c ⊗ h) ∈ R.

Notice that Oh,j ∈ C∗. Define the set LΣ = {Oh,j | j ∈ J, h ∈ H} ⊆ C∗ and let

AΣ = Alg(LΣ) be the subalgebra of C∗ generated by LΣ (i.e., AΣ is the smallest

subalgebra of C∗ which contains LΣ). We will call LΣ the set of observables of Σ

and AΣ the algebra of observables of Σ. Let A⊥
Σ = {c ∈ C | ∀f ∈ AΣ : f(c) = 0}. It

follows that A⊥
Σ is a coideal. We will call Σ observable if A⊥

Σ = {0}.

Consider a coalgebra system Σ = (C,H,ψ, φ, J, µ). Define the system Σr =

(ImRΣ, ψr, φr, J, µr) as follows. Let ψr = ψ|ImRΣ⊗H ,i.e. ψr is the restriction of ψ to

ImRΣ⊗H, φr = φ = ψ(φ⊗1) ∈ ImRΣ, µr(j) = µ(j)|ImRΣ
, i.e. µr(j) is the restriction

of the map µ(j) : C → R to ImRΣ. It is easy to see that Σr is a well-defined coalgebra

system, and it is reachable. Moreover, if Σ is a realization of Ψ = {fj | j ∈ J}, then

Σr is a realization of Ψ too.

Consider again a coalgebra system

Σ = (C,H,ψ, φ, J, µ)

Notice that if c ∈ A⊥
Σ , then ψ(h ⊗ c) ∈ A⊥

Σ . Indeed, for all d ∈ C,

Oh1,j1Oh2,j2 · · ·Ohk,jk
(d) =

∑
Oh1,j1(d(1)) · · ·Ohk,jk

(d(k))

where δk(d) =
∑

d(1) ⊗ · · · ⊗ d(k). Taking into account that ψ is a coalgebra map

and thus

ψ ⊗ · · ·ψ︸ ︷︷ ︸
k−times

(δk(c ⊗ h)) = δk(ψ(c ⊗ h))

we can derive the following

δk(ψ(h ⊗ c) =
∑

ψ(x(1) ⊗ h(1)) ⊗ · · · ⊗ ψ(c(k) ⊗ h(k)).

Hence we get that

Oh1,j1 · · ·Ohk,jk
(ψ(c ⊗ h) =

∑
Oh1h(1),j1(c(1)) · · ·Ohkh(k),jk

(c(k)).

Notice that A⊥
Σ is a coideal, thus for each

δk(c) =
∑

c(1) ⊗ c(2) ⊗ · · · ⊗ ⊗c(k) ∈

∈
k∑

j=1

C ⊗ · · · ⊗ C︸ ︷︷ ︸
j − 1–times

⊗A⊥
Σ ⊗ C ⊗ · · · ⊗ C︸ ︷︷ ︸

k − j + 1–times

Thus, it follows that for each term of the form c(1)⊗· · ·⊗c(k) there exists a i = 1, . . . , k,

such that c(i) ∈ A⊥
Σ . Then it follows that Oh1,j1 · · ·Ohk,jk

(ψ(h ⊗ c)) = 0 for all

h1, . . . , hk ∈ H, j1, . . . , jk ∈ J . Thus, it follows that ψ(h ⊗ c) ∈ A⊥
Σ .
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Define the coalgebra system ΣO = (CO,H, ψO, φO, J, µO) as follows. Let CO =

C/A⊥
Σ , and for each c ∈ C denote by [c] the equivalence class generated by taking

the quotient, i.e. [c] = [d] ⇐⇒ c − d ∈ A⊥
Σ . Define the map ψO : H ⊗ CO → CO by

ψO([c]⊗h) = [ψO(c⊗h)]. If c−d ∈ A⊥
Σ , then ψ(h⊗(c−d)) = ψ(c⊗h)−ψ(d⊗h) ∈ A⊥

Σ .

Thus, ψO is well-defined. For each j ∈ J let µO(j)([c]) = µ(j)(c). Notice that for

each j ∈ J , µj = O1,j and thus A⊥
Σ ⊆ ker µj . Hence, µO : J → C∗

O is well-defined.

Finally, let φO = [φ]. It is easy to see that ΣO is a well-defined coalgebra system,and

it is observable. Moreover, if Σ is a realization of Ψ = {fj ∈ H∗ | j ∈ J}, then ΣO is

a realization of Ψ too. If Σ is reachable, then ΣO is a reachable too.

We will call a coalgebra system Σm realizing Ψ a minimal realization if for any

reachable coalgebra system Σ realizing Ψ there exists a surjective coalgebra system

morphism T : Σ → Σm.

Let Σa = (A,H, ψ, φ, J, µ) be an algebra system. Define the map OΣa
: A → H∗

as follows. For each h ∈ H let OΣa
(a)(h) = (φ ◦ψ(a⊗h)). It is easy to see that OΣa

is an algebra map. We will say that Σa is observable, if OΣa
is injective.

Define the algebra RΣa
as the subalgebra of A generated by the set LΣa

= {ψ(h⊗

µ(j)) | h ∈ H, j ∈ J}. We will call Σa reachable if RΣa
= A.

Consider a coalgebra system Σc. It is easy to see that the dual R∗
Σc

: C∗ → H∗

of RΣc
equals OΣ∗

c
. It is also easy to see that AΣc

= R∗
Σc

. It follows that if Σc is

reachable then Σ∗
c is observable, and if Σ∗

c is reachable, then Σc is observable.

Denote by M the multiplication map on H. That is, M : H⊗H → H, M(s⊗v) =

sv. Since H is a bialgebra, the map M is a coalgebra map, moreover, M(v,M(s, x)) =

M(v, sx). Let Ψ = {fj ∈ H∗ | j ∈ J} be an indexed set of elements of H∗. Define

the map µΨ : J → H∗ by µΨ(j) = fj . Define the coalgebra control system

ΣΨ = (H,H,M, 1, J, µΨ)

It is easy to see that ΣΨ is indeed a coalgebra system, moreover, ΣΨ is a realization

of Ψ, since fj(h) = fj(M(1 ⊗ h)) = µΨ(j) ◦ M(1 ⊗ h) for all j ∈ J . We will call

ΣΨ the cofree realization of Ψ. We will denote the algebra of observables of ΣΨ by

AΨ. That is, AΣΨ
= AΨ. Notice that AΨ ⊆ H∗. It is easy to see that for ΣΨ the

maps Oh,j are of the form Oh,j(v) = fj(vh) = Rhfj . If Σ = (C,H,ψ, φ, J, µ) is a

realization of Ψ, then it is easy to see that TΣ : H → C, TΣ(h) = ψ(φ ⊗ h) defines a

coalgebra system morphism TΣ : Σ → ΣΨ. Notice that TΣ = RΣ, i.e., TΣ equals the

reachability map.

Dually, the algebra system Σ∗
Ψ will be called the free realization of f , and if

Σ = Σ∗
c where Σc is a coalgebra system realizing Φ, then T ∗

Σ∗
c

= T ∗
Σ defines an

algebra system morphism T ∗
Σ : Σ → Σ∗

Ψ. Notice that the realization ΣΨ is reachable

and thus Σ∗
Ψ is observable.
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The results discussed below will play an important role in the construction of a

minimal coalgebra system realization. Let Σi = (Ci,H, ψi, φi, J, µi), i = 1, 2 be two

coalgebra systems and assume that T : Σ1 → Σ2 is a coalgebra map. Define the

system ΣT = (C1/ ker T,H,ψT , φT , J, µT ), where, ψT ([x] ⊗ h) = [hx], φT = [φ1] and

µT (j)([x]) = µ1(j)(x) for all x ∈ C1, where [x] denotes the equivalence class generated

by taking the quotient by kerT , i.e., [x] = [y] ⇐⇒ x − y ∈ ker T . It is easy to see

that ker T ⊆ ker µ1(j), for all j ∈ J and ker T ⊆ ker ψ1(h, .) for each h ∈ H, where

ψ1(h, .) : C1 3 x 7→ ψ1(x ⊗ h). Thus, ΣT is well defined. Moreover, Tm : ΣT → Σ2

and Ts : Σ1 → ΣT are injective and surjective coalgebra system morphisms, where

Tm : C1/ ker T 3 [x] 7→ Tx ∈ C2 and Ts : C1 3 x 7→ [x] ∈ C1/ ker T . If T is

surjective, then Tm is an isomorphism and thus T−1
m : Σ2 → ΣT is a well-defined

coalgebra system isomorphism.

Below we will state and prove that any set of input/output maps Ψ admits a

minimal coalgebra realization.

Theorem 44. Let Ψ = {fj ∈ H∗ | j ∈ J}. Then there always exists a minimal

coalgebra system realization of Ψ. A coalgebra system realizing Ψ is minimal if and

only if it is reachable and observable.

Proof. We will sketch the (easy) proof in order to present some constructions, which

will be very useful later on. Take the cofree realization ΣΨ of Ψ. It is easy to

see that ΣΨ is reachable. Consider the system Σm = (ΣΨ)O. That is, Σm =

(H/A⊥
Ψ,H, M̃ , [1], J, µ̃Ψ) where M̃(h× [k]) = [hk] and µ̃Ψ(j)([h]) = fj(h), and [h] de-

note the equivalence class generated by h with respect to the relation [h] = [d] ⇐⇒

h − d ∈ A⊥
Ψ. In fact, A⊥

Ψ is also an ideal of H. Indeed, if h ∈ A⊥
Ψ, then for all

k ∈ H, M(k ⊗ h) ∈ A⊥
Ψ, since M is the state-transition map of ΣΨ. But is means

precisely that A⊥
Ψ is an ideal. Thus, H/A⊥

Ψ is a bialgebra. Let Σ = (C,H,ψ, φ, J, µ)

be a reachable coalgebra system realization of Ψ. Recall that there exists a coalgebra

system morphism TΣ : ΣΨ → Σ, defined as TΣ = RΣ : H → C, i.e., TΣ(h) = RΣ(h) =

ψ(φ ⊗ h). It is easy to see that ker TΣ ⊆ A⊥
Ψ. Indeed, TΣ(h) = ψ(φ ⊗ h) = 0 implies

that for all k ∈ H, µ(j) ◦ TΣ(kh) = µ(j) ◦ ψ(φ⊗ kh) = fj(kh) = Rhfj(k) = 0. Thus,

Rhfj = 0, which implies that Ok,j(h) = 0 for all k ∈ H, j ∈ J . Since ker TΣ is a

coideal and thus

δm(h) =
∑

h(1) ⊗ · · · ⊗ h(m) ⊆
m∑

j=1

H ⊗ · · · ⊗ ker RΣ ⊗ · · · ⊗ H

, it follows that Ok1,j1 · · ·Okm,jm
(h) = 0 for all k1, . . . , km ∈ H, j1, . . . , jm ∈ J .

Thus, H/A⊥
Ψ = (H/ ker TΣ)/(A⊥

Ψ/ ker TΣ). Thus there exists a surjective coal-

gebra map S : H/ ker TΣ 7→ H/A⊥
Ψ defined by S(h + TΣ) = h + A⊥

Ψ. Recall that
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there exists a coalgebra system ΣTΣ
= (H/ ker TΣ,H, ψTΣ

, φTΣ
, J, µTΣ

) such that

Tm : ΣTΣ
→ Σ and Ts : ΣΨ → ΣTΣ

are injective and surjective coalgebra system

morphisms respectively and TΣ = Tm ◦ Ts. If Σ is reachable, then TΣ = RΣ is

surjective and thus Tm is a coalgebra system isomorphism.

It is easy to see that S defines a surjective coalgebra system morphism S : ΣTΣ
→

Σm. In fact, Σm is the result of observability reduction of ΣTΣ
. Thus we get that

S ◦T−1
m defines a surjective coalgebra system morphism S ◦T−1

m : Σ → Σm. It is easy

to see that Σm is reachable and observable.

Assume that the coalgebra system Σ is minimal. Then it has to be reachable.

Indeed, Σm above is reachable and since Σ is minimal, then there exists a surjective

T : Σm → Σ. But then RΣ = T ◦ RΣm
and since both T and RΣm

are surjective

it follows that RΣ is surjective, which implies that Σ is reachable. We will argue

that T is an isomorphism and thus Σ is also observable. Indeed, notice that kerT ⊆

A⊥
Σm

= {0}, that is, T is an isomorphism. It implies that Σ is observable, since Σm

is observable. Thus, we have shown that any minimal realization is reachable and

observable and it is isomorphic to Σm. Hence, any two minimal coalgebra realizations

of Φ are isomorphic. It is left to show that any reachable and observable coalgebra

system is minimal. Let Σ be a reachable and observable coalgebra system realizing

Ψ. Then there exists a surjective coalgebra system morphism Z : Σ → Σm. Since

ker Z ⊆ A⊥
Σ = {0} we get that Z is a coalgebra system isomorphism and thus Σ is

minimal.

We will call the minimal realization Σm from the above proof canonical minimal

realization and we will denote it by ΣΨ,m.

8.6.2 Hybrid Algebra and Coalgebra Systems

The goal of this subsection is to present the notion of hybrid coalgebra and algebra

systems. We will start with defining the concept of hybrid (co)algebra systems. After

that we will proceed with presenting realization theory for hybrid coalgebra systems.

Definition of Hybrid Algebra Systems and Hybrid Coalgebra Systems

Recall the notation from Section 8.2. Consider the set Γ̃ = Γ ∪ Zm. The set H =

R < Γ̃∗ > of all formal linear combinations words over Γ̃ has a natural bialgebra

structure defined by

δ(γ) = γ ⊗ γ for all γ ∈ Γ ∪ {1}

δ(x) = 1 ⊗ x + x ⊗ 1 for all x ∈ Zm

(8.6)
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δ(w1w2 · · ·wk) = δ(w1)δ(w2) · · · δ(wk)

for all w1, . . . , wk ∈ Γ̃

ε(x) =

{
1 if x ∈ Γ ∪ {1}

0 if x ∈ Zm

ε(w1w2 · · ·wk) = ε(w1)ε(w2) · · · ε(wk)

for all w1, . . . , wk ∈ Γ̃, k ≥ 0

(8.7)

Although H is a bialgebra, it is not a Hopf-algebra. H as a coalgebra is cocom-

mutative pointed coalgebra, but it is not irreducible. It is also easy to see that

G(H) = γ ∈ Γ ∪ {1} is the set of group-like elements, and in fact

H =
⊕

w∈Γ∗

Hw

where for all w = w1 · · ·wk, k ≥ 0, w1, . . . , wk ∈ Γ,

Hw = Span{s1w1s2 · · ·wksk+1 | s1, . . . , sk+1 ∈ Z∗
m}

It is easy to see that for each w ∈ Γ∗ the linear space Hw is in fact a subcoalgebra of

H, moreover, Hw is pointed irreducible and cocommutative. It is also easy to see that

the map ψ : Hw⊗R < Z∗
m >→ Hw, ψ(v⊗s) = vs, s ∈ Z∗

m, v ∈ Hw is well-defined and

it is a coalgebra map. Similarly, for each γ ∈ Γ the map ψγ : Hw 3 s 7→ sγ ∈ Hwγ is

a well-defined coalgebra map.

Consider the pair of maps f = (fD, fC), where fD : Γ∗ → O and fC : Γ̃∗ → Rp.

Consider the maps fC,i : Γ̃∗ → R, where f(w) = (fC,1(w), fC,2(w), . . . , fC,p(w))T for

each w ∈ Γ̃∗. Notice that each map fC,i can be uniquely extended to a linear map

f̃C,i : H → R. In the sequel we will identify maps fC,i and linear maps f̃C,i and we

will denote both of them by fC,i. Define the family of input-output maps associated

with f as the following indexed set of maps Ψf = {fC,i : H → R | i = 1, . . . , p}.

A hybrid coalgebra system is a tuple HC = (A,Σ, q0), where

• A = (Q,Γ, O, δ, λ) is a Moore-automata

• q0 ∈ Q,

• Σ = (C,H,ψ, φ, µ) is a coalgebra system, such that

– C =
⊕

q∈Q Cq, where Cq is a subcoalgebra of C for each q ∈ Q and Cq is

pointed irreducible.

– φ ∈ Cq0

– For each q ∈ Q, ∀w ∈ Z∗
m,∀z ∈ Cq : ψ(z ⊗ w) ∈ Cq and ∀γ ∈ Γ,∀z ∈ Cq :

ψ(z ⊗ γ) ∈ Cδ(q,γ)
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Since for each q ∈ Q, the coalgebra Cq is pointed irreducible, it has a unique group

like element which we will denote by φq. It follows that φ = φq0
and for each w ∈ Γ,

q ∈ Q, φ(w ⊗ φq) = φδ(q,w). It also follows that Cq precisely coincides with the

irreducible component of φq in C. We know that C is a direct sum of its irreducible

components and it follows that C is pointed. Thus, it follows that there is a bijection

between irreducible components of C and the coalgebras Cq, q ∈ Q.

A pair of maps T = (TD, TC) : HC1 → HC2 with HCi = (Ai,Σi, q0,i) is called

a hybrid coalgebra system morphism if TD : A1 → A2 is a automata morphism,

TD(q0,1) = q0,2, TC : Σ1 → Σ2 is a coalgebra system morphism such that TC(C1
q ) ⊆

C2
TD(q) for all q ∈ Q1.

A pair of maps f = (fD, fC), where fD : Γ∗ → O and fC : Γ̃∗ → Rp is said to be

realized by a hybrid coalgebra system HC = (A,Σ, q0) if (A, q0) is a realization of fD

and Σ is a realization of Ψf .

We will call the hybrid coalgebra system HC = (A,Σ, q0) reachable if (A, q0) is

reachable and Σ is reachable.

We will say that a hybrid coalgebra system HC which realizes f is a minimal

realization of f if for any reachable hybrid coalgebra system HCr such that HCr

realizes f , there exists a surjective T = (TD, TC) hybrid coalgebra map T : HCr →

HC.

A hybrid algebra system is a tuple HA = (A,Σ, q0) where

• A = (Q,Γ, O, δ, λ) is a Moore automaton

• Σ = (A,H,ψ, φ, µ) is an algebra system such that

– A = Πq∈QAq and for each q ∈ Q, Aq is a commutative algebra.

– There exists ψq,h,q ∈ Q, h ∈ Γ̃ such that ∀γ ∈ Γ : ψq,γ : Aδ(q,γ) → Aq is

an algebra map, ∀j ∈ Zm : ψq,j : Aq → Aq is a derivation, and for each

γ ∈ Γ,

ψ((aq)q∈Q ⊗ γ) = (ψq(aδ(q,γ))q∈Q)

for each j ∈ Zm

ψ((aq)q∈Q ⊗ j) = (ψq,j(aq))q∈Q

A pair of maps T = (TD, TC) is said to be a hybrid algebra system morphism T :

HA1 → HA2, where HAi = (Ai,Σi, q0,i),i = 1, 2, if TD : (A1, q0,1) → (A2, q0,2) is an

automaton morphism, TC : Σ2 → Σ1 is an algebra system morphism such that there

exists algebra morphisms TC,q : A2
TD(q) → A1

q, q ∈ Q1 such that TC((aq)q∈Q2) =

(TC,q(aTD(q)))q∈Q1 .
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A pair of map f = (fD, fC), where fD : Γ∗ → O and fC : Γ̃∗ → Rp is said to be

realized by a a hybrid algebra system HA = (A,Σ, q0) if A realizes fD from initial

state q0 and Σ is a realization of Ψf .

It is easy to see that if HC = (A,Σc, q0) is a hybrid coalgebra system, then

the dual system HC∗ = (A,Σ∗
c , q0) is a hybrid algebra system. Moreover, HC is a

realization of f if and only if HC∗ is a realization of f . Moreover, if T : HC1 → HC2

is a hybrid coalgebra system morphism, then T ∗ : HC∗
1 → HC∗

2 is a hybrid algebra

system morphism.

Notice that a formal hybrid system

HF = (A, (Aq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}, q0)

can be viewed as a hybrid algebra system HAHF = (A,ΣHF , q0) such that

ΣHF = (Πq∈QAq,H, ψ, φ, {1, . . . , p}, µ)

where for all x ∈ Zm, ψx((aq)q∈Q) = (fq,x(aq))q∈Q), for all γ ∈ Γ, ψγ((aq)q∈Q) =

(bq)q∈Q, with Rδ(q,γ),γ,q)(aδ(q,γ)) = bq, q ∈ Q and ψ : (aq)q∈Q 7→ 1∗Aq0
(aq0

), µ(i) =

(hq,i)q∈Q, i = 1, . . . p. It is easy to see that the correspondence HF 7→ HAHR is one

to one. Moreover, T : HF1 → HF2 is a formal hybrid system morphism if and only

if T : HAHF1
→ HAHF2

is a hybrid algebra morphism.

8.6.3 Realization of hybrid coalgebra systems

The aim of this subsection is to present conditions on existence of a realization by

hybrid coalgebra systems. We will look at the realization by a fairly general class

of hybrid coalgebra systems. This more abstract approach will enable us to disre-

gard certain irrelevant details. We will also characterise minimal hybrid coalgebra

realizations in terms of reachability and observability. We will use the results of this

subsection to give necessary and sufficient conditions for existence of a realization by

a CCPI hybrid coalgebra system.

Consider a pair of maps f = (fD, fC), with fD : Γ∗ → O and fC : Γ̃∗ → Rp.

Recall the definition of the set Ψf = {fC,i : H → R | i = 1, . . . , p} such that

fC = (fC,1, . . . , fC,p)
T . Recall that the maps fC,i are linear and thus belong to the

dual H∗ of H. Since Γ ⊆ H, we can define the map Lwg for all g ∈ H∗ by

Lwg(h) = g(wh)

Define the map df : Γ∗ → O × (H∗)p as follows

∀w ∈ Γ∗ : df (w) = (fD(w), (LwfC,i)i=1,...p)

Denote by Ō the set

Ō = O × (H∗)p
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Assume that HC = (A,Σ, q0) is a hybrid coalgebra system and assume that

Σ = (C,H,ψ, φ, {1, . . . , p}, µ) and A = (Q,Γ, O, δ, λ). Define the automaton ĀHC =

(Q,Γ, Ō, δ, λ̄) as follows. Let λ̄(q) = (λ(q), (Tq,j)j=1,...p), where Tq,j ∈ H∗ and

Tq,j(h) = µ(j) ◦ ψ(φq ⊗ h). Here φq denotes the unique group like element of Cq.

We get the following theorem, which gives a necessary and sufficient condition for

HC to be a realization of f .

Theorem 45. The hybrid coalgebra system HC = (A,Σ, q0) is a realization of f if

and only if (ĀHC , q0) is a realization of df and Σ is a realization of Ψf .

Sketch of the proof. Assume that HC is a realization of f . Then Σf is a realization

of Ψf and for all w ∈ Γ∗, λ(q, w) = fD(w). Notice that ψ(φq ⊗w) ∈ Cδ(q,w) and that

ψ(φq ⊗ w) has to be a group-like element, since ψ is a coalgebra morphism. Since

Cδ(q,w) has only one group-like element, and that is φδ(q,w), we get that ψ(φq ⊗w) =

φδ(q,w). Then it follows that for all w ∈ Γ∗, i = 1, . . . , p, LwfC,i(h) = fC,i(wh) =

µ(i) ◦ ψ(φq0
⊗ wh) = ψ(φδ(q,w) ⊗ h) = Tq,i, where φq denotes the unique group-like

element of Cq. Thus, (ĀHR, q0) is a realization of df .

Assume that Σ is a realization of Ψf and (ĀHC , q0) is a realization of df . But

then it is easy to see that (A, q0) is a realization of fD and thus HC is a realization

of f .

Above we associated with each hybrid coalgebra system a Moore-automaton and

a coalgebra system and we showed that the hybrid coalgebra system is a realization

of f if and only if the associated Moore-automaton is a realization of df and the

associated coalgebra system is a realization of Ψf . Below we will show that the

converse is also true. Namely, if we have a coalgebra system of a certain type which

realizes Ψf and a reachable Moore-automaton realization of df we will construct a

hybrid coalgebra system realizing f . The construction goes as follows.

Let Σ = (C,H,ψ, φ, {1, . . . , p}, µ) be a coalgebra system such that C is pointed.

We will say that Σ is point-observable, if A⊥
Σ ∩ C0 = {0}, that is, if for some

g, h ∈ G(C), g − h ∈ A⊥
Σ , then g = h. That is, the states belonging to G(C)

are distinguishable (observable). In particular, if Σ is observable, then it is point-

observable.

Let Σ = (C,H,ψ, φ, {1, . . . , p}, µ) be a point-observable coalgebra realization of

Ψf , such that C is pointed. Let Ā = (Q,Γ, Ō, δ, λ̄) be a Moore-automaton such that

(Ā, q0) is a reachable realization of df . Define the hybrid coalgebra system HCĀ,Σ,q0

associated with Σ, (Ā, q0) as follows.

HCĀ,Σ,q0
= (A, Σ̃, q0)

where
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• A = (Q,Γ, O, δ, λ) where λ(q) = o if λ̄(q) = (o, ō).

• Σ̃ = (C̃,H, ψ̃, φ̃, {1, . . . , p}, µ̃) where

– C̃ =
⊕

q∈Q C̃q, where for each q ∈ Q, C̃q is defined as follows. Let

HA,q =
⊕

w∈Γ∗,δ(q0,w)=q Hw and let C̃q = Cq ∩ RΣ(HA,q) where Cq is

the (isomorphic copy of the) irreducible component of C with the unique

group-like element φq defined by φq = ψ(φ ⊗ w), where w ∈ Γ∗ such that

δ(q0, w) = q. That is, for each q ∈ Q, C̃q is a subcoalgebra of Cq.

– With the notation above φ̃ = φq0

– The map ψ̃ : H ⊗ C̃ → C̃ is defined as follows. For each q ∈ Q,c ∈ C̃q,

x ∈ Zm, ψ̃(c ⊗ x) = ψ(c ⊗ x) ∈ C̃q. For each q ∈ Q, c ∈ C̃q, γ ∈ Γ,

ψ̃(c ⊗ γ) = ψ(c ⊗ γ) ∈ C̃δ(q,γ).

– For all j ∈ J , the map µ̃(j) ∈ C̃∗ is such that for all q ∈ Q, c ∈ C̃q,

µ̃(j)(cq) = µ(j)(cq).

Below we will argue that the construction above indeed yields a hybrid coalgebra

system.

Lemma 42. With the notation and assumptions above HC = HCĀ,Σ,q0
is a well-

defined reachable hybrid coalgebra system which realizes f .

It is easy to see that with the notation above there exists a coalgebra system

morphism T : Σ̃ → Σ such that T | eCq
(c) = c for all c ∈ C̃q, q ∈ Q. Assume that (Ā, q0)

is a reachable realization of df and Σ is a point-observable realization of Ψf . Assume

that HC
′

= (A
′

,Σ
′

, q
′

0) is a reachable hybrid coalgebra system realization of f and

there exists an automaton morphism φ : (Ā
′

HC′ , q
′

0) → (Ā, q0) and a coalgebra system

morphism T : Σ
′

→ Σ. Then it follows that there exists a surjective hybrid coalgebra

morphism (φ, S) : HC
′

→ HCĀ,Σ,q0
. such that if Σ

′

= (C
′

,H, ψ
′

, φ
′

, {1, . . . , p}, µ
′

)

and A
′

= (Q
′

,Γ, O, δ
′

, λ
′

) then S|C′
q
(c) = T (c) ∈ Cφ(q) for all q ∈ Q

′

, c ∈ C
′

q.

Here we assumed that C
′

=
⊕

q∈Q′ C
′

q, each C
′

q is the coalgebra belonging to the

discrete state q ∈ Q
′

and Cφ(q) is the coalgebra belonging to the discrete state φ(q)

in HCĀ,Σ,q0
.

Let Σ be a minimal coalgebra system realization of Ψf and let (Ā, q0) be a min-

imal realization of df . Assume that Σ = (C,H,ψ, φ, {1, . . . , p}, µ) is such that C is

pointed. Then it follows that Σ is observable and (Ā, q0) is reachable, thus HCĀ,Σ,q0

is well defined. Moreover, if HC
′

= (A
′

,Σ
′

, q
′

0) is a reachable hybrid coalgebra real-

ization of f , then there exists surjective maps φ : (ĀHC′ , q
′

0) → (Ā, q0) and T : Σ
′

→

Σ and thus there exists a surjective hybrid coalgebra map S : HC
′

→ HCĀ,Σ,q0
.

Thus, we get the following
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Lemma 43. If (Ā, q0) is a minimal realization of df and Σ is a minimal realization

of Ψf , then HCĀ,Σ,q0
is a minimal realization of f .

It follows from the standard theory of Moore-automata that df had a Moore-

automaton realization if and only if Wdf
= {w ◦ df | w ∈ Γ∗} is a finite set. Define

the sets Df = {w ◦ fD | w ∈ Γ∗} and Kf = {(LwfC,j)j=1,...,p ∈ (H∗)p | w ∈ Γ∗}.

Lemma 44. With the notation above Wdf
is finite if and only if Kf is finite and

Df is finite. That is, df has a realization by a Moore-automaton if and only if fD

has a realization by a Moore-automaton and Kf is finite.

Assume that Kf is finite, more precisely, let Kf = {qi = (Lwi
fC,j)j=1,...,p | i =

1, . . . N}. For each qi ∈ Kf define the set Hqi
=

⊕
w∈Γ∗,(LwfC,j)j=1,...,p=qi

Hw. It is

easy to see that H =
⊕N

i=1 Hqi
. Consider the cofree realization ΣΨf

and the minimal

coalgebra realization ΣΨf ,m = (D,H,ψ, φ, {1, . . . , p}, µ) of Ψf where D = H/A⊥
Ψf

.

There exists a canonical morphism π : H → D which defines a coalgebra system

morphism π : ΣΨf
→ ΣΨf ,m. Since π is surjective and H is pointed, it follows that

D is pointed. Moreover, it follows that ΣΨf ,m is observable. In fact, the following

holds.

Lemma 45. With the notation above D =
⊕N

i=1 π(Hqi
) and π(Hqi

) is pointed irre-

ducible.

That is, if (Ā, q0) is a minimal realization df and ΣΨf ,m is the canonical mini-

mal realization of Ψf , then HCĀ,ΣΨf ,m,q0
is a well-defined hybrid coalgebra system

realization. Moreover, HCĀ,ΣΨf ,m,q0
is a minimal realization of f .

That is, we can formulate the following theorem.

Theorem 46. The pair f = (fC , fD), fC : Γ̃∗ → Rp and fD : Γ∗ → O has

a realization by a hybrid coalgebra system, if and only if card(Kf ) < +∞ and

card(Df ) < +∞. If f has a realization by a hybrid coalgebra system, it also has a

minimal hybrid coalgebra system realization. If (Ā, q0) is a minimal Moore-automaton

realization of df and ΣΨ,m is the canonical minimal coalgebra system realization of

Ψf , then HCf,m = HCĀ,ΣΨf ,m,q0
is a minimal hybrid coalgebra system realization of

f .

We will call the hybrid coalgebra system HCf,m the canonical minimal hybrid

coalgebra realization of f . Strictly speaking HCf,m is not uniquely defined, since it

depends on the choice of a minimal Moore-automaton realization (Ā, q0) of df . But

all minimal Moore-automaton realizations are isomorphic, thus we will identify all

hybrid systems obtained by choosing some minimal Moore-automaton realization.

We will call the hybrid coalgebra system HC = (A,Σ, q0) observable , if
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(i) ĀHC is observable

(ii) For each q ∈ Q, A⊥
Σ ∩ Cq = {0}

It is also easy to see that if (Ā, q0) is reachable and observable and Σ is observable,

then HCĀ,Σ,q0
is observable.

The discussion above can be summed up in the following theorem.

Theorem 47. Let f = (fC , fD), fC : Γ̃∗ → Rp and fD : Γ∗ → O. A hybrid coalgebra

system is a minimal realization of f if and only if it is reachable and observable.

Minimal hybrid coalgebra system realizations of the same map f are isomorphic.

8.6.4 Formal Hybrid Systems as Duals of Hybrid Coalgebra

Systems

Recall from Subsection 8.3.2 that the ring of formal power series R[[X1, . . . ,Xn]] is

isomorphic to the dual of of the cofree pointed irreducible cocommutative coalgebra

B(V ), where V is any n-dimensional vector space. That is, B(V )∗ ∼= R[[X1, . . . ,Xn]].

Below we will choose a particular V . Denote by A the ring A = R[[X1, . . . ,Xn]].

Recall from Subsection 8.3.1 the definition and properties of continuous derivations

on formal power series rings. Define the map Dα = 1A ◦ d
dX

α
for all α ∈ Nn.

Define the set D∞
A = Span{Dα | α ∈ Nn}. Notice that φ = D(0,0,...,0) = 1∗A ∈ D∞

A .

Let DA = Span{Di | i = 1, . . . , n}. Define the linear maps ε : D∞
A → R and

δ : D∞
A → D∞

A ⊗D∞
A by

ε(φ) = 1 and ε(Dα) = 0 if α ∈ Nn, α 6= (0, 0, . . . , 0)

For each α = (α1, . . . , αn) ∈ Nn let

δ(Dα) =
∑

β,γ∈Nn,β+γ=α

Dβ ⊗ Dγ

where β + γ = (β1 + γ1, β2 + γ2, . . . , βn + γn), β = (β1, . . . , βn), γ = (γ1, . . . , γn).

Define the multiplication M : D∞
A ⊗ D∞

A → D∞
A by M(Dα ⊗ Dβ) = Dα+β . Define

the map u : R → D∞
A by u(x) = xφ.

With the notation above the following holds.

Lemma 46. The tuple (D∞
A , δ, ε,M, u) is a bialgebra, moreover D∞

A is isomorphic as

a bialgebra to the cofree pointed irreducible cocommutative coalgebra B(DA) generated

by DA.
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The lemma above implies that (D∞
A )∗ is isomorphic to A. This algebra isomor-

phism is defined by

ψA : (D∞
A )∗ 3 S 7→

∑

α∈Nn

S(
1

α1!

1

α2!
· · ·

1

αn!
Dα)Xα

The following lemma relates measuring of A and coalgebra maps of D∞
A .

Lemma 47. Let C be an coalgebra, let A = R[[X1, . . . ,Xn]] and B = R[[X1, . . . ,Xn]].

Assume that ψ : C ⊗ A → B is a measuring such that for each c ∈ C, the map

ψc : A 3 a 7→ ψ(c ⊗ a) ∈ B is a continuous map. Then ηψ : C ⊗ D∞
B → D∞

A is a

coalgebra map, where ηψ(c ⊗ Dα)(a) = Dα ◦ ψc(a) for all a ∈ A.

Conversely, assume that η : C ⊗ D∞
B → D∞

A is a coalgebra map. Consider the

map ψη : C ⊗A → B, defined by ψ−1
B ◦ψη(c× a)(D) = η(c⊗D)(ψ−1

A (a)), for all a ∈

A, c ∈ C, D ∈ D∞
B .Here ψ−1

A and ψ−1
B are the inverses of the algebra isomorphisms

ψA : (DA)∗ → A and ψB : (DB)∗ → B respectively. Then ψη is a measuring such

that for each c ∈ C the map ψη,c : A 3 a 7→ ψη(c ⊗ a) ∈ B is a continuous map.

In the sequel we will identify D∞
A and B(DA) and we will identify their re-

spective duals (D∞
A )∗, B(DA)∗ with A. We will also identify (B(V ))∗ with AV =

R[[X1, . . . ,Xn]] if dimV = n.

Using Lemma 46 and Lemma 47 we can associate with each formal hybrid system

a hybrid coalgebra system of a certain type and conversely, with each hybrid coalgebra

system of a suitable type we can associate a formal hybrid system. Let HF be formal

hybrid system of the form

HF = (A, (Aq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}, q0)

and consider the associated hybrid algebra system HAHF = (A,ΣHF , q0), where

Σ = (A,H,ψ, φ, J, µ). Define the hybrid coalgebra system HCHF associated with

HF as follows. HCHF = (A,ΣHC , q0), where ΣHC = (C,H, ψ̃, φ̃, {1, . . . , p}, µ̃) such

that

• For all q ∈ Q, Cq = B(DAq
).

• ψ̃ = ηψ

• φ̃ = 1q0
where 1q0

is the unique group-like element of Cq. Notice that 1q0
= 1∗Aq0

viewed as a map Aq → R.

• µ̃(j)(D) = D(µ(j)) for all j = 1, . . . p.
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It is an easy consequence of Lemma 46 and Lemma 47 that HCHF is well-defined

and HC∗
HF = HAHF .

Conversely, let HC = (A,Σ, q0) be a hybrid coalgebra system such that Σ =

(C,H,ψ, φ, {1, . . . , p}, µ), C =
⊕

q∈Q Cq, A = (Q,Γ, O, δ, λ) and Cq = B(Vq),

dimVq = nq for all q ∈ Q. We will call such hybrid coalgebra systems CCPI hybrid

coalgebra systems ( CCPI stands for cofree cocommutative pointed irreducible ).

Then using Lemma 46 and Lemma 47 and the conventions discussed after Lemma

47 we get that

HFHC = (A, (Aq, gq,j , hq,i)q∈Q,j=0,...,m,i=1,...,p, {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}, q0)

is a well-defined formal hybrid system, where for all q ∈ Q, Aq = C∗
q , for all j ∈

Zm, gq,j = ψ(1q ⊗ j), 1q being the unique group-like element of Cq, hq,i ∈ Aq

are such that (hq,i)q∈Q = µ(i) for all i = 1, . . . , p, and Rδ(q,y),y,q, y ∈ Γ are such

that Rδ(q,y),y,q(h)(D) = ψ(D ⊗ y)(h) for all D ∈ Cq. It is also easy to see that

HC∗ = HAHFHC
.

Combining the results above we arrive to the following important characterisation

of existence of a formal hybrid system realization of a pair of maps f = (fD, fC),

where fD : Γ∗ → O and fC : Γ̃∗ → Rp.

Theorem 48. A pair of maps f = (fD, fC), fD : Γ∗ → O, fC : Γ̃∗ → Rp has a

realization by a formal hybrid system if and only if it has a CCPI hybrid coalgebra

system realization.

8.6.5 Realization by CCPI Hybrid Coalgebra Systems

In this section we will discuss criteria for existence of a realization by a hybrid

coalgebra system, such that the coalgebras associated with each discrete state of

the automaton are cofree cocommutative pointed irreducible with finite dimensional

space of primitive elements. We will give a necessary condition and a condition

which is an ”almost” sufficient one. More precisely, the ”almost” sufficient condition

implies existence of a hybrid coalgebra system realization such that each coalgebra

associated with some discrete state is pointed cocommutative irreducible with finite

dimensional space of primitive elements. Such a hybrid coalgebra system is indeed

very close to a CCPI hybrid coalgebra system. In fact, we conjecture that any such

hybrid coalgebra system gives rise to a CCPI hybrid coalgebra system.

From Theorem 48 it follows that these criteria will give necessary and sufficient

conditions for existence of a formal hybrid realization.

Let us recall the results of Subsection 8.6.3. We will call a coalgebra system

Σ = (C,H,ψ, φ, {1, . . . , p}, µ) a CCPI coalgebra system if C =
⊕

i∈I Ci such that
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I is finite, and for all i ∈ I, Ci
∼= B(Vi), dimVi < +∞. Consequently, C is pointed

and G(C) = {gi | i ∈ I}, where gi is the unique group-like element of Ci.

It is easy to see that Theorem 45 implies the following.

Theorem 49. The pair f = (fD, fC) admits a CCPI hybrid coalgebra system re-

alization, only if df admits a Moore-automaton realization and Ψf admits a CCPI

coalgebra system realization.

We can also prove a result which is in some sense the converse of the theorem

above.

Let Σ = (C,H,ψ, φ, {1, . . . , p}, µ) be a point-observable coalgebra realization of

Ψf , such that C is pointed. Let Ā = (Q,Γ, Ō, δ, λ̄) be a Moore-automaton such that

(Ā, q0) is a reachable realization of df . Recall the definition of the hybrid coalgebra

system HCĀ,Σ,q0
associated with (Ā, q0) and Σ. Recall that the hybrid coalgebra

system HCĀ,Σ,q0
is reachable. We can associate a hybrid coalgebra system HCn

Ā,Σ,q0

with (Ā, q0) and Σ in alternative way, so that HCn
Ā,Σ,q0

is not reachable but preserves

more of the structure of Σ. The construction goes as follows.

HCn
Ā,Σ,q0

= (A, Σ̃, q0)

where

• A = (Q,Γ, O, δ, λ) where λ(q) = o if λ̄(q) = (o, ō).

• Σ̃ = (C̃,H, ψ̃, φ̃, {1, . . . , p}, µ̃) where

– C̃ =
⊕

q∈Q Cq, where for each q ∈ Q, Cq is the irreducible component of

C with the unique group-like element φq defined by φq = ψ(w⊗φ), where

w ∈ Γ∗ such that δ(q0, w) = q.

– With the notation above φ̃ = φq0

– The map ψ̃ : C̃ ⊗ H → C̃ is defined as follows. For each q ∈ Q,c ∈ Cq,

x ∈ Zm, ψ̃(c ⊗ x) = ψ(c ⊗ x) ∈ Cq. For each q ∈ Q, c ∈ Cq, γ ∈ Γ,

ψ̃(c ⊗ γ) = ψ(c ⊗ γ) ∈ Cδ(q,γ).

– For all j ∈ J , the map µ̃(j) ∈ C̃∗ is such that for all q ∈ Q, c ∈ Cq,

µ̃(j)(cq) = µ(j)(cq).

Lemma 48. With the notation and assumptions above HC = HCĀ,Σ,q0
is a well-

defined hybrid coalgebra system which realizes f . If Σ is a CCPI coalgebra system

then HC is a CCPI hybrid coalgebra system.

Thus, we get the following characterisation of existence of a realization by a CCPI

hybrid coalgebra system
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Theorem 50. The pair f = (fD, fC) admits a CCPI hybrid coalgebra system realiza-

tion, if df admits a Moore-automaton realization and Ψf admits a point-observable

CCPI coalgebra system realization.

Below we will formulate necessary conditions for existence of a realization by

a hybrid coalgebra systems. These conditions will involve finiteness requirements.

That is, they will require that a certain infinite matrix has a finite rank and that

certain sets are finite. Although such conditions are difficult to check, yet they are

more informative than requiring that there exists a realization by a coalgebra system

of a certain class. The obtained rank condition is similar to the classical Lie-rank

condition for existence of a realization by a nonlinear system [32, 21, 36].

Define the set P (H) ⊆ H by P (H) = Span{wPv | w, v ∈ Γ∗, P ∈ Lie < Z∗
m >},

where Lie < Z∗
m > denotes the set of all Lie-polynomials over Zm. That is, Lie <

Z∗
m > is the smallest subset of the set of all polynomials R < Z∗

m > such that

• For all x ∈ Zm, x ∈ Lie < Z∗
m >

• If P1, P2 ∈ Lie < Z∗
m >, then P1P2 − P2P1 ∈ Lie < Z∗

m >.

Let Σ = (C,H,ψ, φ, {1, . . . , p}, µ) be a CCPI coalgebra realization of Ψf . Assume

that C =
⊕

i∈I B(Vi), where I is finite. Define the set P (C) =
⊕

i∈I Vi. It is easy

to see that P (C) is finite dimensional. Consider the coalgebra map TΣ : H → C. It

is easy to see that TΣ(P (H)) ⊆ P (C) and P (H)/P (H) ∩ ker TΣ
∼= TΣ(P (H)).

Recall that kerTΣ ⊆ A⊥
Ψf

, where AΨf
is the algebra generated by Rhf , h ∈ H

and A⊥
Ψf

= {h ∈ H | ∀g ∈ AΨf
, g(h) = 0}. Since P (H) ∩ ker TΣ ⊆ A⊥

Ψf
∩ P (H) we

get that +∞ > dim P (C) ≥ dim P (H)/P (H) ∩ ker TΣ ≥ dimP (H)/P (H) ∩ A⊥
Ψf

.

Define the Lie-rank of f as

rank Lf = dimP (H)/A⊥
Ψf

∩ P (H)

Let HC = (A,Σ, q0) be a CCPI hybrid coalgebra system, Assume that A =

(Q,Γ, O, δ, λ), Σ = (C,H,ψ, φ, {1, . . . , p}, µ) and C =
⊕

q∈Q Cq. Define the dimen-

sion of HC as dim HC = (card(Q),
∑

q∈Q dim P (Cq)). It is easy to see that if HF is

a formal hybrid system realization of f , then dim HCHF = dimHF . Conversely, if

HFHC is the formal hybrid system associated with HC, then dim HFHC = dim HC.

From the discussion above we get the following necessary condition for existence

of a CCPI hybrid coalgebra system realization

Theorem 51. The pair f = (fD, fC), fD : Γ∗ → O, fC : Γ̃∗ → Rp has a realiza-

tion by a CCPI hybrid coalgebra system only if rank Lf < +∞, card(Kf ) < +∞

and card(Df ) < +∞. For any CCPI hybrid coalgebra system realization HC of f ,
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(card(Wdf
, rank Lf) ≤ dimHC. That is, if dimHC = (p, q), then card(Wdf

) ≤ p

and rank Lf ≤ q.

Taking into account that f has a realization by a CCPI hybrid coalgebra system

if and only if it has a realization by a formal hybrid system we get the main result

of the chapter.

Theorem 52. The pair f = (fD, fC), fD : Γ∗ → O, fC : Γ̃∗ → Rp has a realization

by a formal hybrid system only if rank Lf < +∞, card(Kf ) < +∞ and card(Df ) <

+∞. For any formal hybrid system realization HF of f , (card(Wdf
), rank Lf) ≤

dimHF .

That is, rank Lf gives a lower bound on the dimension of the continuous state

space ( number of variables ) for each formal hybrid realization of f .

The conditions above are almost sufficient. That is, if the conditions above hold,

then we can prove existence of a hybrid coalgebra system which is very close to a

CCPI hybrid coalgebra system.

Consider the canonical minimal hybrid coalgebra system realization HCf,m of f .

Recall that HCf,m = HCĀ,ΣΨf ,m,q0
where (Ā, q0) is some minimal Moore-automaton

realization of df and ΣΨf ,m is the canonical minimal realization of f . Recall from

Subsection 8.6.1 that ΣΨf
= (D,H,ψ, φ, {1, . . . ,m}, µ) where D = H/A⊥

Ψf
. Recall

from Lemma 45 that D =
⊕N

i=1 π(Hqi
) where Hqi

=
⊕

(LwfC,j)j=1,...,p=qi
Hw, Kf =

{q1, . . . , qN} and π is the canonical projection map π : H → D = H/A⊥
Ψf

. That

each, each irreducible component of D is of the form π(Hqi
) for some qi ∈ K. It is

easy to see that P (D) =
∑N

i=1 P (π(Hqi
)). It is also easy to see that

P (H)/P (H) ∩ Af
Ψ
∼= π(P (H)) ⊆ P (D)

Thus,

dimP (D) < +∞ =⇒ rank Lf < +∞

Recall the construction of HCf,m = HCĀ,ΣΨ,m,q0
Recall HCf,m = (A, Σ̃, q0),

such that Ā = (Q,Γ, Ō, δ, λ̄), A = (Q,Γ, O, δ, λ),

Σ̃ = (C̃,H, ψ̃, φ̃, {1, . . . , p}, µ̃)

such that C̃ =
⊕

q∈Q C̃q and C̃q is a subcoalgebra of π(Hqi
) such that qi = Π(H∗)p(λ̄(q)).

That is, if dimP (π(Hqi
)) < +∞, then dim P (C̃q) ≤ dim P (π(Hqi

< +∞. Thus,

if dimP (D) < +∞, then for each q ∈ Q, dimP (C̃q) < +∞.

From the discussion above we get the following results.

Theorem 53. With the notation above the following holds.
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(a) If card(Kf ) < +∞, card(Df ) < +∞ and rank Lf < +∞, then there ex-

ists a hybrid coalgebra system realization HC of f such that HC = (A,Σ, q0),

Σ = (C,H,ψ, φ, J, µ), C =
⊕

q∈Q Cq and for each q ∈ Q, Cq is pointed irre-

ducible and dimTΣ(P (H))∩P (Cq) = T (Σ)(Hqi
) < +∞,where qi = Lwi

f ∈ Kf ,

δ(q0, wi) = q and TΣ : H 3 h 7→ ψ(φq0
⊗h) is the canonical map TΣ : ΣΨf

→ Σ.

(b) If dimP (H/A⊥
Ψf

) < +∞, then f has a realization by a hybrid coalgebra system

HC = (A,Σ, q0) such that Σ = (C,H,ψ, φ, J, µ), C =
⊕

q∈Q Cq and for each

q ∈ Q Cq is pointed irreducible and dim P (Cq) < +∞.

Sketch of the proof. In both cases let HC = HCA,ΣΨf
,q0

where (A, q0) is a minimal

Moore-automaton realization of df and ΣΨf ,m is the canonical minimal coalgebra

system realization of Ψf .

Let us try to find interpretation of the results of the theorem above. Part (a)

of the theorem above says that the subspace of each Cq spanned by the elements of

Lie < Z∗
m > and their translates by ψ(. ⊗ γ) : C 3 c 7→ ψ(c ⊗ γ), γ ∈ Γ is finite

dimensional.

Part (b) implies that for each q ∈ Q, Cq is pointed, irreducible and nq =

dimP (Cq) < +∞. But this implies that for each q, there exists an injective Sq :

Cq → B(Vq), where Vq = P (Cq). That is, there exists an algebra map

S∗
q : R[[X1, . . . ,Xnq

]] → C∗
q

such that (ImS∗
q )⊥ = {0}, i.e. for all c ∈ Cq and g ∈ C∗

q there exists some Z ∈

R[[X1, . . . ,Xnq
]] such that S∗

q (Z)(c) = g(c). That is, S∗
q is ”almost” surjective. Thus,

dimP (D) < +∞ implies existence of an ”almost” formal hybrid system realization.

This observation prompts us to define the strong Lie-rank of f as

rank L,Sf = dimP (H/A⊥
Ψf

) = dimP (D)

As we have already remarked,

rank Lf ≤ rank L,Sf

Thus, finiteness of rank L,Sf is a stronger requirement than finiteness of rank Lf .

As we have seen, if rank L,Sf < +∞, then there exists an ”almost CCPI” realization

of f , i.e. f can be realized by a hybrid system with finite state space of some sort.

In fact, we can give the following sufficient condition for finiteness of rank Lf .

Define the following space

HL,f = {(LP fC,i)i=1,...,p | P ∈ P (H)}
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Consider the map T : P (H) 3 P 7→ (LP fC,i)i=1,...,p. Then P (H) ∩ A⊥
Ψf

⊆ ker T and

thus

rank Lf = dim(P (H)/kerT )/(kerT/P (H) ∩ A⊥
Ψf

) ≤

≤ dim P (H)/KerT

That is, the following holds.

Lemma 49. With the notation above, the following relationship holds

dim HL,f < +∞ =⇒ rank Lf < +∞

and

rank L,Sf < +∞ =⇒ rank Lf < +∞

Below we will present an example, which demonstrates that the Lie-rank might

simply be not enough to capture all the necessary dimensions. Consider the following

hybrid system H = (A,U ,Y, (Xq, fq, hq)q∈Q , {Rδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ}) such that

• Γ = {γ}, A = ({q1, q2}, {γ}, {o}, δ, λ), where δ(q1, γ) = q2, δ(q2, γ) = q2,

λ(qi) = o, i = 1, 2.

• U = R, Y = R,

• Xq1
= Xq2

= R,

• fq1
(x, u) = u, hq1

(x) = 0 and Rq2,γ,q2
(x) = x2, for all x ∈ Xq1

, u ∈ U ,

• hq2
(x) = 0, fq2

(x, u) = 0 and Rq2,γ,q2
(x) = x for all x ∈ Xq2

, u ∈ U .

Consider the input-output map f = υH((q1, 0), .). It is easy to see that H is a NHS

system, thus f has a hybrid Fliess-series expansion. Consider the pair f̃ = (fD, cf ),

where cf is a generating convergent series such that Fcf
= fC . It is easy to see that

rank Lf̃ = 1. But card(K ef ) = 2 = card(Wd ef
), thus one needs at least two discrete

states to realize f thus no realization can be of dimension smaller than (2, 2). Notice

that the discrete input-output map fD is constant, i.e. fD(w) = o for all w ∈ Γ∗.

Thus, the problem above is inherent to the continuous dynamics.
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Chapter 9

Piecewise-affine Hybrid

Systems in Discrete-time

In this chapter realization theory for discrete-time autonomous piecewise affine hybrid

systems will be investigated. A piecewise-affine hybrid system is a discrete-time

system such that the state-transition and the readout maps are piecewise-affine. By

a piecewise-affine function we mean a function the domain of which is covered by

polyhedral sets and on each such polyhedral set the function is affine. The class

of discrete-time piecewise-affine hybrid systems was studied in several papers, see

[9, 80, 45, 3].

In this chapter we will investigate the following problem. For a specified output

trajectory, i.e., for a specified sequence of output values, find a discrete-time au-

tonomous piecewise-affine hybrid system realizing it. We will not address the issue

of minimality in this chapter.

We will present the following results.

• An output trajectory has a realization by an autonomous discrete-time piecewise-

affine hybrid system if and only if it has a realization by a discrete-time lin-

ear switched system. That is, any switching sequence can be generated by a

piecewise-affine hybrid system.

• An output trajectory has a realization by an autonomous discrete-time piecewise-

affine hybrid system with almost-periodic dynamics if and only if it has a

realization by a discrete-time linear system. By almost-periodic dynamics we

will mean that the shift invariant set generated by the sequence of polyhedral

regions visited by the state-trajectory starting from the initial state is finite.
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• An output trajectory has a realization by a discrete-time piecewise-affine system

such that

– The polyhedrons of the system are indexed by elements of a set specified

in advance

– The system has almost-periodic dynamics

– The sequence of indexes of polyhedrons visited by the state-trajectory

coincides with an infinite sequence specified in advance

if and only if the Hankel-matrix of y has finite rank. Here by Hankel-matrix we

mean an infinite matrix constructed from the values of y in a special way. Note

that in the preceding paragraph we were looking for a realization by a system

with arbitrary indexing of polyhedral regions and with the restriction that the

symbolic dynamics is almost-periodical.

• An output trajectory has a realization by an autonomous discrete-time piecewise-

affine hybrid system if and only if the shifts invariant space generated by the

output trajectory is contained in a finitely generated module over a certain

algebra. This condition is a counterpart of the usual finite-rank Hankel-matrix

condition for the linear case.

One of the most important observations of the current chapter is that a discrete-

time piecewise-affine hybrid system can generate arbitrary symbolic dynamics. That

is, if one specifies a finite alphabet and an infinite sequence of symbols over this

alphabet, then it is always possible to construct a discrete-time piecewise-affine hy-

brid system such that the following holds. The polyhedral regions of the system are

indexed by the elements of the alphabet. The sequence of indexes of the polyhedral

regions visited by the state-trajectory which starts from the initial state coincides

the specified infinite sequence. In fact, such a system can be constructed on the

state-space [0, 1]. That is, the switching mechanism of a piecewise-affine hybrid sys-

tem is as general as any other switching mechanism. Thus, any switching sequence

can be generated by a discrete-time piecewise-affine hybrid system. Moreover, if the

switching is nice, more precisely, if the switching sequence is a trace of a finite au-

tomaton, then the expressive power of a piecewise-affine hybrid system is not greater

than the expressive power of a linear system. The observation above has the following

important consequence. Any piecewise-affine hybrid system is output equivalent to

a piecewise-affine hybrid system which is a composition of a linear switched system

and a piecewise-affine system on [0, 1]. The linear switched system generates the ob-

servable output, the piecewise-affine system on [0, 1] generates the required switching
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sequence, but does not contribute to the output. The conclusions above might be an

indication that discrete-time piecewise-affine hybrid systems might be a too general

class of hybrid systems.

In [80] identifiability and realisability of the so called jump-linear systems was in-

vestigated. Discrete-time linear switched systems and jump-linear systems are closely

related. In [80] only identifiability and realisability of finite output trajectories were

treated. That is, in [80] the authors aimed at finding a state-space realization, such

that this state-space realization generates the specified output trajectory up to some

time step T . Whether the computed state-space realization generates the specified

output trajectory after time T was not investigated. In contrast, the current chap-

ter investigates existence of a realization of an infinite output trajectory. Studying

infinite trajectories might seem unreasonable, as it can not yield algorithms for com-

puting a realization. But as development of realization theory for other classes of

systems has demonstrated, realization theory for infinite trajectories may yield partial

realization theory. That is, it can lead to an algorithm which computes a realization

of the whole infinite trajectory from a finite part of this trajectory. In fact, partial

realization theory for other classes of hybrid systems exists, see [52, 53, 54]. The

hope is that the results of the current chapter will eventually lead to a similar partial

realization theory for piecewise-affine hybrid systems.

The solution of the realization problem presented in this chapter uses methods

related to time-varying linear systems and linear systems over rings.

The chapter is organised as follows. Section 9.1 presents the necessary nota-

tion and terminology. It also presents the definition and some elementary properties

of discrete-time piecewise-affine and discrete-time linear switched systems. Section

9.2 discusses the relationship between discrete-time piecewise-affine hybrid systems

and discrete-time linear switched systems. It also introduces a canonical representa-

tion for discrete-time piecewise-affine hybrid systems as a interconnection of a linear

switched system and a piecewise-affine hybrid system. The former generates the

output, the latter generates the switching signal. Section 9.3 deals with realization

theory of piecewise-affine hybrid systems with almost periodic dynamics. Section

9.3.2 investigates the realization problem for piecewise-affine hybrid systems with

arbitrary symbolic dynamics.

9.1 Discrete-time Linear Switched Systems

Below we will introduce a class of discrete-time switched systems which will play an

important role in realization theory of DTAPA systems. A discrete-time autonomous

linear switched system (DTALS) is a tuple H = (X ,Y, Q, {Aq, Cq}q∈Q, x0). Again,

282



9.1. DISCRETE-TIME LINEAR SWITCHED SYSTEMS

X = Rn will be called the state-space, Y = Rp will be called the output space of H.

The vector x0 will be called the initial state of H. The inputs of a linear switched

system are finite sequences of elements of Q. The state-trajectory of such a system

can be described as a map xH : X × Q∗ → X defined as follows

xH(x,wq) = AqxH(x,w), xH(x, ε) = x

for each w ∈ Q∗, q ∈ Q. The output trajectory can be thought of as a map yH :

X × Q+ → Y defined as follows

yH(x,w) = Cwk
xH(x,w1w2 · · ·wk−1)

where w = w1 · · ·wk, w1, . . . , wk ∈ Q, k > 0. A map y : Q+ → Y is said to be

realized by a DTALS system H if

∀w ∈ Q+ : yH(x0, w) = y(w)

Similarly, if L ⊆ Q+ and y : L → Y then y is said to be realized by a DTALS system

H if

∀w ∈ L : yH(x0, w) = y(w)

Let y : N → Y be an output trajectory. For each w = w0w1 · · ·wk · · · ∈ Qω,

w1, w2, . . . ∈ Q define the set Lw = {w0 · · ·wk ∈ Q+ | k > 0}. It is easy to see that

s ∈ Lw ⇐⇒ s = w0 · · ·w|s|−1. Define the map yw : Lw 3 s 7→ y(|s| − 1). It is easy

to see that the map yw is well defined. We will define types of realization problems

for DTALS systems

Classical realization problem For a specified y : L → Y, L ⊆ Q+ find a DTALS

system which realizes y.

Weak realization problem for DTALS systems For a specified y : N → Y and w ∈ Qω

find a DTALS system H = (X ,Y, Q, (Aq, Cq)q∈Q, x0) such that H realizes yw.

Strong realization problem for DTALS systems For a specified y : N → Y find a

set of discrete modes Q, an infinite sequence w ∈ Qω and a DTALS system

H = (X ,Y, Q, (Aq, Cq)q∈Q, x0) such that H realizes yw.

We can associate with each DTAPA system Σ a DTALS system HΣ defined as follows.

Let Σl = (X ,Y, Q, (Xq, Aq, Cq)q∈Q , (q0, x0)) be the linearised DTAPA associated

with Σ and define HΣ by

HΣ = (X ,Y, Q, (Aq, Cq)q∈Q, x0)

where X ⊆ Rn was assumed. We will call HΣ the DTALS system associated with Σ.

Notice that if φ(x0) = w ∈ Qω and Σ is a realization of a map y : N → Y, then HΣ

is a realization of the map yw : Lw → Y.
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9.2 Canonical Form of DTAPA Systems

In the section a canonical form for state-space realization of DTAPA systems will

be discussed. It will be shown that any DTAPA system can be transformed into a

equivalent DTAPA system in canonical form.

Recall from [9] the following encoding of any infinite sequence w ∈ Qω into a

real number in [0, 1]. Assume card(Q) = d and Q = {q1, . . . , qd}. Identify each qi

with the natural number η(qi) = i − 1 for each i = 1, . . . , d. Thus, we get a map

η : Q → {0, . . . , d − 1}.

Assume that w = w1w2 . . . wk . . . ∈ Qω. Define the following series

ψ(w) =
∞∑

k=1

η(wk)

(2d)k

It is easy to see that η(wk)
2dk ≤ 1

2k , thus the series above is absolutely convergent

and 0 ≤ ψ(w) ≤ 1. Recall that from [9] that piecewise-affine operations on [0, 1]

can be used to retrieve the first element of the sequence w and to compute ψ(S(w)),

where S is the shift operator on sequences. That is, S : Qω → Qω and for each

w = w0w1w2 · · · , S(w) = w1w2 · · · . These operations can be described as follows.

Define the map H : [0, 1] → R as follows. For each z ∈ [0, 1],

H(z) =





0 if 0 ≤ 2dz < 1

1 if 1 ≤ 2dz < 2

· · · · · ·

i if i ≤ 2dz < i + 1

· · · · · ·

d − 1 if d − 1 ≤ 2dz < d

d otherwise

It is easy to see that H(ψ(w)) = i − 1 if w0 = qi. Define the map M : [0, 1] → [0, 1]

by

M(z) =





2dz if 0 ≤ 2dz < 1

2dz − 1 if 1 ≤ 2dz < 2

· · · · · ·

2dz − i if i ≤ 2dz < i + 1

· · · · · ·

2dz − (d − 1) if d − 1 ≤ 2dz < d

z otherwise

It is easy to see that H and M are well defined maps and M(ψ(w)) = ψ(S(w)).

Consider a DTAPA Σ = (X ,Y, Q, (Xq, Aq, aq, Cq, cq)q∈Q, (q0, x0)). We say that

Σ is in canonical form if the following holds.
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• Q = F ∪ {s}, s /∈ F ,

• X ⊆ Rn ⊕ R, X =
⋃

q∈Q Xq.

• For each q ∈ F , Xq = Rn × Zq, where

Zq = {z ∈ [0, 1] | H(z) = η(q)} ⊆ [0, 1]

That is, Zq = {z ∈ [0, 1] | η(q) ≤ 2dz < η(q) + 1}. It is easy to see that Zq and

thus Xq are polyhedral sets. Let Xs = Rn × ([0, 1] \ (
⋃

q∈F Zq)).

• For each q ∈ F the maps Cqx + cq and Aqx + aq are of the following form

Aq =

[
Ãq 0

0 2d

]
∈ R(n+1)×(n+1) and aq =

[
0

−η(q)

]
∈ Rn+1

Cq =
[
C̃q 0

]
∈ Rp×(n+1) and cq = 0

The maps Csx + cs and Asx + as are of the following form

As =




1 0 · · · 0

0 1 · · · 0
...

... · · ·
...

0 0 · · · 1



∈ R(n+1)×(n+1), as = 0, cs = 0, and Cs = 0

That is, the map x 7→ Asx + as is the identity map and the map x 7→ Csx + cs

is the constant zero map.

• The initial state is of the form x0 = (x̃0, z0)
T .

Notice that a DTAPA in canonical form can be viewed as a discrete-time linear

switched system

x̃(k + 1) = Ãqk
x̃(k), y(k) = C̃qk

x̃(k), x̃(0) = x̃0

such that the switching sequence w = q1 · · · qk · · · is generated by the following system

z(k + 1) = M(z(k)), z(0) = z0, qk = η−1(H(zk))

We can state the following theorem.

Theorem 54 (Existence of a canonical form). Let Σ be an arbitrary DTAPA

system. Then there exists a DTAPA system Σcan in canonical form and an injective

DTAPA morphism T : Σ → Σcan. In particular, Σcan and Σ are equivalent DTAPA

systems.
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Sketch of the proof. By the discussion in Section 9.1 we can assume that Σ is a lin-

earised DTAPA. If not, then we can take the linearised DTAPA Σl associated with Σ.

Notice that there exists Σl such that S : Σ → Σl is a DTAPA isomorphism. If we show

existence of a canonical form (Σl)can and an injective morphism T̃ : Σl → (Σl)can,

then by taking Σcan = (Σl)can and T = T̃ ◦ S the statement of the theorem follows.

Thus, let Σ = (X ,Y, Q, (Xq, Aq, Cq)q∈Q , (q0, x0)). Assume that X ⊆ Rn. Define

Σ̃ = (X ⊕ R, Q̃,Y, (X̃q, Ãq, ãq, C̃q, 0)q∈ eQ, (q0, x0))

as follows. Let Q̃ = Q ∪ {qe}, qe /∈ Q. Let X̃q = X × Zq for each q ∈ Q, where

Zq = {z ∈ [0, 1] | H(z) = η(q)}. Let X̃qe
= X

⊕
(R \

⋃
q∈Q Zq). For each q ∈ Q

define Ãq, ãq, C̃q by

Ãq =

[
Aq 0

0 2d

]
∈ R(n+1)×(n+1), ãq =

[
0

−η(q)

]
∈ Rn+1, C̃q =

[
Cq 0

]
∈ Rp×(n+1)

Define Ãqe
, ãqe

, C̃qe
by

Ãqe
=




1 0 0 . . . 0

0 1 0 . . . 0
...

...
... . . .

...

0 0 0 . . . 1



∈ R(n+1)×(n+1), ãqe

= 0, C̃qe
= 0

It is easy to see that Σ̃ is well defined and

feΣ((xT , z)T ) =





[
Aqx

M(z)

]
if H(z) = η(q) for some q ∈ Q

(xT , zT )T otherwise

heΣ((xT , z)T ) =

{
Cqx if H(z) = η(q) for some q ∈ Q

0 otherwise

It is easy to see that Σ̃ is in canonical form. Define the map T : X → X̃ by

T (x) =

[
x

φ(x)

]
. It is clear that for each q ∈ Q, T (Xq) ⊆ X × Zq. Moreover, for

all x ∈ Xq, feΣ(T (x)) = ((Aqx)T ,M(z))T = (fΣ(x)T , φ(fΣ(x)))T )T = T (fΣ(x)) and

heΣ(T (x)) = Cqx = hΣ(x). Thus, T is a DTAPA morphism. It is easy to see that T

is injective too.

The theorem above has the following important consequence. The realization

problem for DTAPA systems is equivalent to the realization problem for discrete-

time autonomous linear switched systems. More precisely, both the strong and weak
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realization problems for DTAPA are equivalent to respectively the strong and weak

realization problems for DTALS systems. Consider a map y : N → Y and let Q

be a finite set. Let w ∈ Qω be an infinite word over Q. Recall the definition of

yw : Lw 3 w 7→ y(|w| − 1) ∈ Y, Lw = {w0 · · ·wk ∈ Q+ | k ≥ 0}. With this notation

the following theorem holds.

Theorem 55 ( Equivalence of DTAPA and DTALS systems ). Consider a

map y : N → Y.

(i) The map y has a realization by a DTAPA system if and only if there exists a

set of discrete modes Q, an infinite word w ∈ Qω such that the map yw has a

realization by a DTALS system.

(ii) The map y has a realization by a DTAPA system

Σ = (X ,Y, Q, (Xq, Aq, aq, Cq, cq)q∈Q, (q0, x0))

with set of discrete modes Q such that φ(x0) = w ∈ Qω if and only if yw has a

realization by a DTALS system.

(iii) The strong realization problem for DTAPA systems is equivalent to the strong

realization problem for DTALS systems. The weak realization problem for

DTAPA systems is equivalent to the weak realization problem for DTALS sys-

tems.

Sketch of the proof. Notice that if H = (X ,Y, Q, (Aq, Cq)q∈Q, x0) and w = w0w1w2 · · · ∈

Qω then we can construct a DTAPA system ΣH,w associated with H and w such

that ΣH,w is a realization of the map y : N → Y, y(k) = yH(x0, w0w1 · · ·wk). Define

ΣH,w as follows.

ΣH = (X̃,Y, Q̃, (X̃q, Ãq, ãq, C̃q, 0)q∈ eQ, (w0, x̃0))

such that

• Q̃ = Q ∪ {qe}, qe /∈ Q.

• Assume that X = Rn. For each q ∈ Q, X̃q = Rn × Zq, where Zq = {z ∈ [0, 1] |

H(z) = η(q)}

• X̃qe
= Rn × ([0, 1] \ (

⋃
q∈Q Zq))

• X̃ =
⋃

q∈ eQ X̃q
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• For each q ∈ Q,

Ãq =

[
Aq 0

0 2d

]
, ãq =

[
0

−η(q)

]
and C̃q =

[
Cq 0

]

•

Ãqe
=




1 0 · · · 0

0 1 · · · 0
...

... · · ·
...

0 0 · · · 1




, ãqe
= 0, C̃qe

= 0 and c̃qe
= 0

• The initial state is of the form x̃0 = (xT
0 , φ(w))T

Notice that

C̃wk
Ãwk−1

· · · Ãw0
x̃0 = Cwk

Awk−1
· · ·Aw0

x0

and Ãwk
· · · Ãw0

x̃0 ∈ X̃wk
for all k ≥ 0. Thus yH,w is realized by ΣH,w. Moreover, it

is also easy to see that ΣH,w is in canonical form and for any DTAPA system Σ the

canonical form Σcan coincides with ΣHΣl
,φ(x0).

Conversely, assume that the DTAPA Σ realizes a map y : N → Y. Then the

DTAPA Σl = (X ,Y, Q, (Xq, Aq, Cq)q∈Q , (q0, x0)) realizes y too. Let w = φ(x0) ∈ Qω.

Then it is easy to see that the DTALS HΣ = (X ,Y, Q, (Aq, Cq)q∈Q, x0) realizes yw.

From the discussion above the statements of the theorem follow easily.

9.3 Realization Theory of DTAPA Systems with

Almost-periodical Dynamics

In this section realization theory for DTAPA systems with almost-periodical dy-

namics will be discussed. By Theorem 55 existence of a realization by a DTAPA

system is equivalent to existence of a realization by a DTALS system. If Σ is a

DTAPA system with almost-periodical dynamics and w = φ(x0) = w0w1w2 · · · , then

Lw = {w0w1 · · ·wk | k ≥ 0} is a regular language. Recall that y : N → Y is realized

by Σ if yw : Lw → Y is realized by HΣ. That is why we will first study realization

of maps of the form y : L → Y, L is a regular language, by a DTALS system. In

order to study realization by DTALS systems of the maps described above we will

use theory of rational formal power series. We will then apply the obtained results

to DTAPA systems with almost-periodic dynamics. The outline of the section is the

following. Subsection 9.3.1 presents results on realization theory of DTALS systems.

Subsection 9.3.2 presents the solution of the realization problem for DTAPA systems

with almost-periodic dynamics.
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9.3.1 Realization of DTALS Systems: Regular Case

Recall from Section 3.1 the results on theory of formal power series. In this section

we will be interested in rational families of formal power series consisting of one single

series. In the rest of the section we will tacitly use the notation and terminology of

Section 3.1.

Let Q be a finite set and consider a subset L ⊆ Q+. In this subsection we will

investigate the problem of finding a realization for a map y : L → Y, Y = Rp by a

DTALS system. We proceed as follows. Define the languages Lq = {w ∈ Q∗ | wq ∈

L} for all q ∈ Q. Assume that Q = {q1, . . . , qN}. For each q ∈ Q define the formal

power series Sy,q ∈ Rp ¿ Q∗ À by

∀w ∈ Q∗ : Sy,q(w) =

{
y(wq) if w ∈ Lq

0 otherwise

Define the formal power series Sy ∈ RNp ¿ Q∗ À associated with y by

∀w ∈ Q∗ : Sy(w) =




Sy,q1
(w)

Sy,q2
(w)

...

Sy,qN
(w)




Define the Hankel-matrix of y by Hy = HSy
. Notice that Hy is an infinite matrix

which can be constructed from the values of y. Let H = (X ,Y, Q, (Aq, Cq)q∈Q, x0)

be a DTALS system such that Y = Rp. Define the representation RH associated with

H by

RH = (X , {Aq}q∈Q, x0, C̃)

where C̃x =




Cq1
x

Cq2
x

...

CqN
x




for each x ∈ X . Conversely, let R = (X , {Aq}q∈Q, x0C̃) be a

representation with C̃ : X → RpN . Define the DTALS system HR associated with R

by

HR = (X ,Y, Q, (Aq, Cq)q∈Q, x0)

where Y = Rp and C̃x =




Cq1
x

Cq2
x

...

CqN
x




for each x ∈ X .
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It is easy to see that RHR
= R. The following theorem is an easy consequence of

the definition of realization by a DTALS and the definition of a representation.

Theorem 56. Let y : N → Y. If R is a representation of Sy, then HR is a DTALS

realization of y. If L = Q+, then H is a DTALS realization of y if and only if HR is

a representation of Sy.

Corollary 17. A map y : Q+ → Y has a realization by a DTALS system if and only

if Sy is rational.

Consider the following formal power series Zq ∈ Rp ¿ Q∗ À

∀w ∈ Q∗ : Zq =

{
(1, 1, . . . , 1)T ∈ Rp if w ∈ Lq

0 otherwise

Define Z =




Zq1

Zq2

...

ZqN




∈ Rp ¿ Q∗ À. That is, Z(w) =




Zq1
(w)

Zq2
(w)
...

ZqN
(w)




. Notice that Z is

rational if L is regular. Let H = (X ,Y, Q, (Aq, Cq)q∈Q, x0) be a DTALS and define

yH : Q∗ 3 w 7→ yH(x0, w). It is easy to see that the following theorem holds

Theorem 57. With the notation above, H is a DTALS realization of y : L → Y if

and only if

Sy = SyH
¯ Z

Notice that SyH
is a rational formal power series, by Theorem 56. We arrive to

the following important theorem.

Theorem 58. Assume that L is regular. Then an input-output map y : L → Y

has a realization by a DTALS system if and only if Sy is rational, or equivalently

rank Hy < +∞.

Sketch of the proof. If H is a DTALS realization of y then Sy = SyH
¯ Z. If L

is regular then Z is rational. By Corollary 17 above SyH
is rational, thus Sy =

SyH
¯ Z is rational too. Conversely, assume that Sy is rational. Then there exists a

representation R of Sy and thus HR is a DTALS realization of y.

Thus, if L is regular, then the theorem above allows to construct a realization

of y by using the theory of rational formal power series Recall the results on partial

realization of rational formal power series from [54, 53]. If L is regular and the

number of states of the minimal automaton recognising L is nL, then rank HZ ≤ nL.
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If it is known that y has DTALS realization of state-space dimension at most M , then

a representation R of Sy can be constructed from the |Q|M ·n·p × |Q|M ·n left upper

block of Hy and the construction can be implemented by a numerical algorithm. It is

easy to see that the construction of HR from R can be implemented by a numerical

algorithm and HR is a realization of y.

Let ỹ : N → Rp. Let Q be a a set of discrete modes, let w ∈ Qω be an infinite word

. Recall the definitions of Lw = {w0 · · ·wk | k ≥ 0} and y = ỹw : Lw 3 w0 · · ·wk 7→

ỹ(k) Assume that Lw is regular. The following theorem holds.

Theorem 59. The map ỹw : Lw → Rp has a realization by a DTALS system if and

only if y has a realization by a linear discrete-time system, i.e., by a system of the

form

x(k + 1) = Ax(k) and y(k) = Cx(k), k ∈ N (9.1)

where A ∈ Rn×n, C ∈ Rp×n, x(k) ∈ Rn.

Sketch of the proof . If y has a realization by a system of the form (9.1), then define

the DTALS H = (X ,Y, Q, (Aq, Cq)q∈Q, x0) by X = Rn, Aq = A,Cq = C, x0 = x(0).

It is then clear that

Cwk
Awk−1

Awk−2
· · ·Aw0

x0 = CAkx(0) = Cx(k) = y(k) = ỹ(w0 · · ·wk)

and thus H is a realization of ỹw. Conversely, assume that

H = (X ,Y, Q, (Aq, Cq)q∈Q, x0)

is a realization of ỹw. Let A = (S,Q, δ, F, s0) be a minimal finite-state automaton

accepting Lw with the set of accepting states F ⊆ S. Here we used the notation of

[17, 24]. Due to the very special structure of Lw the automaton A has a number

of remarkable properties. Let F̃ = F ∪ {s0}. The automaton A can be chosen

such that S \ F̃ = {sf} and for each s ∈ F̃ there exists a unique q ∈ Q for which

s
′

= δ(s, q) ∈ F . For each s ∈ F̃ define Xs = X and let X̃ =
⊕

s∈ eF Xs. Define

the map Ã : X̃ → X̃ as follows. For each s ∈ F̃ , z ∈ Xs let Ãz = Aqz ∈ Xδ(s,q)

where q ∈ Q is the unique element of Q such that δ(s, q) ∈ F . Define the map

C̃ : X̃ → Rp as follows. For each s ∈ F̃ , z ∈ Xs define C̃z = Cqz where q ∈ Q is such

that δ(s, q) ∈ F . Define the initial state x(0) = x0 ∈ Xs0
. Then it is easy to see that

C̃Ãkx(0) = Cwk
Awk−1

· · ·Aw0
x0. and thus

x(k + 1) = Ãx(k), y(k) = C̃x(k), x(0) = x0

is indeed a linear system realizing y.

291



CHAPTER 9. PA HYBRID SYSTEMS

9.3.2 Realization of DTAPA Systems: Almost-periodical Dy-

namics

Consider a DTAPA system Σ. Assume that Σ has an almost periodical dynam-

ics, i.e., card({Sk(φ(x0)) | k ≥ 0}) < +∞, where S0 = id, Sk+1 = Sk ◦ S,

k ≥ 0 and S(w0w1 · · · ) = w1w2 · · · , that is, S is the shift operator on infinite se-

quences. It is easy to see that Σ has an almost periodic dynamics if and only if

Σl = (X ,Y, Q, (Xq, Aq, Cq)q∈Q , (q0, x0)) has an almost-periodic dynamics. It is easy

to see that card({Sk(φ(x0)) | k ≥ 0}) < +∞ holds if and only if Lφ(x0) is a regular

language. That is, Σ is almost-periodic if and only if Lφ(x0) is a regular language.

Using the results from the previous subsection and recalling Theorem 55 we get the

following result

Theorem 60. Consider an input-output map y : N → Rp.

(i) The map y has a realization by a DTAPA system with almost-periodic dynamics

if and only if y has a realization by autonomous discrete-time linear system of

the form

x(k + 1) = Ax(k) and y(k) = Cx(k), k ∈ N (9.2)

(ii) Let Q̃ be a finite set and let w ∈ Q̃ω. The map y has a realization by a DTAPA

system

Σ = (X ,Y, Q, (Xq, Aq, aq, Cq, cq)q∈Q, (q0, x0))

such that φ(x0) = w ∈ Q̃ω, Q̃ ⊆ Q and Σ has almost periodic dynamics if and

only if rank Hyw
< +∞.

9.4 Realization of General DTAPA Systems

In this section we will study the realization problem for DTAPA systems with not

necessarily almost-periodic dynamics. By Theorem 55 the realization problem for

DTAPA systems is equivalent to the realization problem for DTALS systems. Thus,

we will study the weak and strong realization problems for DTALS systems. More

precisely, we will start with solving the following problem

Weak realization problem for DTALS For a specified map y : N → Y, for a

specified set of discrete modes Q and infinite word w ∈ Qω find a DTALS

system H such that H is a realization of yw : Lw → Y.

Strong realization problem for DTALS For a specified map y : N → Y find a

set of discrete modes Q, an infinite word w ∈ Qω and a DTALS system H such

that H realizes yw : Lw → Y.
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Unlike in the previous section, in the current section we do not assume that Lw

is regular. We will use the solution of the problem above to solve the weak and

strong realization problems for DTAPA systems. The outline of the section is the

following. Subsection 9.4.1 discusses the weak and strong realization problems for

DTALS systems. Subsection 9.4.2 presents results on the weak and strong realization

problem for DTAPA systems.

9.4.1 Realization of DTALS Systems

We will study the weak and the strong realization problems of DTALS systems. We

will adopt an abstract approach, similar to realization theory of linear systems over

rings and realization theory of time-varying systems, see [63, 42].

For any function h : C → D denote the range of the function by R(h) = {h(c) |

c ∈ C} ⊆ D Define the following sets.

A = {g : N → R}

Af = {g : N → R | R(g)is finite, i.e., card(R(g)) < +∞}

For each finite set Q and each infinite word w ∈ Qω define the set

Aw = {g : N → R | ∀i, j ∈ N : wi = wj =⇒ g(i) = g(j)}

Define the shift map σ : A → A by σ(f)(n) = f(n + 1). It is easy to see that

Aw ⊆ Af ⊆ A

It is also easy to see that A is an algebra with point-wise multiplication, point-wise

addition and point-wise multiplication by a scalar. That is, (g+f)(n) = f(n)+g(n),

(gf)(n) = g(n)f(n), (αg)(n) = αg(n). With the operations above Af is a sub-

algebra of A and Aw is a sub-algebra of Af . Notice that σ becomes an algebra

homomorphism. It is also easy to see that σ(Af ) ⊆ Af and σ(Aw) ⊆ AS(w), where

S : Qω → Qω is the shift map on infinite sequences. Let AS,w be the smallest sub-

algebra of Af generated by algebras ASk(w) ,k ≥ 0. Define the kth iterate of the

shift by σ0 = id,i.e. σ0(g) = g and σk+1 = σ ◦ σk+1 for all k ∈ N.

Let y : N → Rp be a input-output map. Define the maps yi : N → R, i = 1, . . . , p

by y(k) = (y1(k), . . . , yp(k))T , i.e., yi are the coordinate functions of y. Define the

set Wy = {σk(yi) | k ∈ N, i = 1, . . . , p}. We will call Wy the Hankel-matrix of y. The

following theorem holds.
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Theorem 61. Consider a map y : N → Y. Let Q be a finite set and let w =

w0w1 · · · ∈ Qω be an infinite word. There exists a DTALS

H = (X ,Y, Q, (Aq, Cq)q∈Q, x0)

such that yH(x0, w0 · · ·wk) = yw(w0 · · ·wk) = y(k), k ∈ N, i.e. Σ is a realization of

yw if and only if there exists a finitely generated AS,w submodule Z ⊆ A such that

• Wy ⊆ Z

• σ(Z) ⊆ Z

• There exists elements z1, . . . , zd ∈ Z such that

y1, . . . , yp, σ(z1), σ(z2), . . . , σ(zd) ∈ {
d∑

j=1

αjzj | αj ∈ Aw, j = 1, . . . , d}

Sketch of the proof. "only if part"

Let Σ = (X ,Y, Q, (Aq, Cq)q∈Q, x0) such that yΣ(x0, w0 · · ·wk) = y(k) for all k ∈ N.

Without loss of generality we can assume that X = Rn. Define the maps zi : N → R

by zi(k) = eT
i Awk−1

· · ·Aw0
x0 for all i = 1, . . . , n, k ≥ 0, where ei is the ith unit

vector of Rn. Define the maps A : N → Rn×n and C : N → Rp×n by A(k) = Awk

and C(k) = Cwk
. Then it is easy to see that zi(k + 1) =

∑n
j=1(A(k))i,jzj(k) and

yi(k) =
∑n

j=1(C(k))i,jzj(k). That is, σ(zi) =
∑n

j=1 Ai,jzj and yi =
∑n

j=1 Cizi,

where Ai,j(k) = (A(k))i,j and Ci(k) = (C(k))i. Define Z = SpanAS,w
{z1, . . . , zn}.

and V = SpanAw
{z1, . . . , zn}. Then it is easy to see that Z is a finite AS,w module,

Wy ⊆ Z, y1, . . . , yp, σ(z1), . . . , σ(zn) ∈ V .

"if part"

Assume that σ(zi) =
∑d

j=1 ai,jzi and yi =
∑d

j=1 ci,jzj . Let Aq = (ai,j(k))i,j=1,d if

wk = q for some k ∈ N and Aq arbitrary otherwise. Let Cq = (ci,j(k))i,j=1,d if wk = q

for some k ∈ N and arbitrary otherwise. Let X = Rd and x0 = (z1(0), . . . , zd(0))T .

Then Σ = (X ,Y, Q, (Aq, Cq)q∈Q, x0) is a DTALS realization of yw.

The following is an easy corollary of the theorem above.

Corollary 18. Withe the assumptions of the theorem above the following holds. If

AS,w is a Noethierian ring, then yw has a realization by a DTALS if and only if

Z = SpanAS,w
{z ∈ A | z ∈ Wy} is a finitely generated AS,w module and there exists

z1, . . . , zd ∈ Z such that yi, σ(zj) ∈ SpanAw
{z1, . . . , zd} for each i = 1, . . . , p, j =

1, . . . , d.
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Next we turn to the strong realization problem. We get the following theorem.

Denote by ImWy = SpanAf
{z ∈ Wy} = {

∑N
j=1 αjzj | N ≥ 0, αj ∈ Af , zj ∈ Wy, j =

1, . . . , N}.

Theorem 62. Let y : N → Rp. There exists a set of discrete modes Q, an infinite

word w ∈ Qω and a DTALS H such that H is a realization of yw if and only if there

exists a finitely generated Af submodule Z ⊆ A of A such that

• σ(Z) ⊆ Z

• Wy ⊆ Z

Sketch of the proof. The only if part is clear from Theorem 61 by noticing that if Z

is a finitely generated AS,w module, then Z̃ = SpanAf
{z ∈ Z} = {

∑K
j=1 αjzj | K ≥

0, αj ∈ Af , zj ∈ Z, j = 1, . . . ,K} is a finitely generated Af module.

Assume that Z is a finitely generated Af submodule of A satisfying the condi-

tion of the theorem. Assume that z1, . . . , zn is a basis of Z. Assume that σ(zi) =∑n
j=1 ai,jzj and yi =

∑n
j=1 ci,jzj . Let A(k) = (ai,j(k))i,j=1,...,n and

C(k) = (ci,j(k))i=1,...,p,j=1,...,n for all k ≥ 0. Define Q = {(A(k), C(k)) ∈ Rn×n ×

Rp×n | k ≥ 0}. Since ai,j , cl,j ∈ Af for all i, j = 1, . . . , n, l = 1, . . . , p we get that

Q is finite. Define w = w0 · · ·wk · · · ∈ Qω such that wi = (A(i), C(i)) for all i ∈ N.

Let X = Rn and for each q = (A(k), C(k)) ∈ Q let Aq = A(k) and Cq = C(k). Let

x0 = (z1(0), . . . , zn(0))T . Then it is easy to see that H = (X ,Y, Q, (Aq, Cq)q∈Q, x0)

is a realization of yw.

Corollary 19. Let y : N → Rp. If ImWy is a finitely generated Af module, then

there exists a finite set Q, an infinite word w ∈ Qω and DTALS H realizing yw.

Corollary 20. Assume that there exists a finite collection of real number {αi,j ∈ R |

i = 1, . . . ,M, j = 1, . . . ,K} such that for each l ∈ N there exists a il ∈ {1, . . . ,M}

such that

y(K + l) =

K∑

j=1

αil,jy(l + j)

Then y can be realized by a DTALS system in the strong sense, that is, there exists

a finite set Q, an infinite word w ∈ Qω and a DTALS Σ such that Σ realizes yw.

9.4.2 Realization of DTAPA Systems

By Theorem 55 the strong and weak realization problems for DTAPA systems and

DTALS systems are equivalent. That is, if y is realized by a DTALS H with an

infinite word w ∈ Qω, i.e., H is a realization of yw, then the DTAPA system ΣH,w
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associated with Σ (see proof of Theorem 55), is a realization of y. Conversely, if Σ

is a DTAPA system realizing y, then HΣ is a DTALS system realizing yw, where

w = φ(x0). Combining these results with Theorem 61 and Theorem 62 we get the

following results, which in some sense are the main results of the paper.

Theorem 63 (Main result). Let y : N → Rp. The following holds.

• There exists a DTAPA system realizing y if and only if Wy is contained in a

finitely generated shift-invariant Af submodule of A, i.e. there exists a finitely

generated Af submodule Z ⊆ A such that

Wy ⊆ Z and σ(Z) ⊆ Z

• Let Q̃ be a set of discrete modes and let w ∈ Q̃∞ be an infinite word. There ex-

ists a DTAPA Σ = (X ,Y, Q, (Xq, Aq, aq, Cq, cq)q∈Q, (q0, x0)) such that φ(x0) =

w, Q̃ ⊆ Q, if and only if there exists a finitely generated AS,w submodule Z of

A such that

– Wy ⊆ Z

– σ(Z) ⊆ Z

– There exists elements z1, . . . , zd ∈ Z such that

y1, . . . , yp, σ(z1), σ(z2), . . . , σ(zd) ∈ {
d∑

j=1

αjzj | αj ∈ Aw, j = 1, . . . , d}

We can easily restate the corollaries from the end of the previous section in terms

of DTAPA realizations. Note that the DTAPA realizations existence of which is

stated in the theorem above can be constructed as follows. Using the proofs of

Theorem 61 or Theorem 62 ( depending on which theorem can be applied) construct

the DTALS H system realizing yw and then construct the DTAPA system ΣH,w

associated with H.

Corollary 21. Let y : N → Rp. If ImWy is a finitely generated Af module, then

there exists a DTAPA system realizing y.

Corollary 22. Assume that there exists a finite collection of real number {αi,j ∈ R |

i = 1, . . . ,M, j = 1, . . . ,K} such that for each l ∈ N there exists a il ∈ {1, . . . ,M}

such that

y(K + l) =

K∑

j=1

αil,jy(l + j)

Then y can be realized by a DTAPA system,
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Chapter 10

Computational Issues and

Partial Realization

The goal of the present chapter is to present partial realization theory for a number of

classes of hybrid systems and to discuss the algorithmic aspects of realization theory

for these classes of hybrid systems. The classes of hybrid systems discussed in this

chapter are the following: linear and bilinear switched systems and linear and bilinear

hybrid systems. We will discuss the following issues concerning hybrid systems

Partial realization theory

Computation of a minimal realization

Checking observability, semi-reachability and minimality

In the previous chapters we gave necessary and sufficient conditions for exis-

tence of a realization by a hybrid system belonging to one of the classes mentioned

above.The common feature of the proof of these conditions is that they all involve

a procedure for construction of a hybrid system realization of suitable class from

data which can be directly extracted from the input-output maps. Unfortunately

the procedures described in the proofs use infinite number of data and thus can not

be implemented. Partial realization theory aims at solving this problem. Its goal is

to formulate algorithms which compute a realization of a set of input-output maps

from finite data. Of course, the available data has to be rich enough to contain all

the necessary information about the input-output maps. Therefore, formulating a

partial realization theory for a class of systems also involves specifying conditions

under which the data is rich enough to construct a realization for the whole set of
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input-output maps. Partial realization theory also serves as a theoretical basis for

system identification. If an algorithm is available for (re)constructing a realization

of the input-output behaviour from finite data, then it is enough to concentrate on

obtaining the necessary data in order to reconstruct the state-space representation

of the system.

Another issue which will be addressed in this chapter is computation of mini-

mal realizations. That is, we will present algorithms for computing a minimal hybrid

system realization of a set of input-output maps from arbitrary hybrid system realiza-

tions. We will also present algorithms for checking observability and semi-reachability

for a number of classes of hybrid systems. In the previous chapters we already pre-

sented linear algebraic conditions for observability and semi-reachability. In this

chapter we will show that these conditions can be checked by numerical algorithms

involving standard linear algebraic operations.

Recall that realization theory of linear and bilinear hybrid and switched systems

relies on theory of hybrid formal power series and classical formal power series re-

spectively. More precisely, existence of a realization by a hybrid system belonging

to one of the classes mentioned above is equivalent to existence of a rational for-

mal power series representation or a hybrid representation of a family of classical or

hybrid formal power series. Minimality, observability or semi-reachability of hybrid

systems of the above type can also be reformulated as minimality, observability and

reachability of certain classical rational or hybrid representations. Thus, it is enough

to formulate a partial realization theory and algorithms for hybrid and classical for-

mal power series representations. The obtained theory and algorithms can be then

directly applied to hybrid systems of the above type.

As we already mentioned several times in previous chapters, the theory of formal

power series and their representations is a classical one, see [64, 65, 32, 4, 43, 20,

22]. In this chapter we will use the extension of this theory developed in Section

3.1. That is, instead of dealing with a single formal power series we work with

families of formal power series and their representations. Many of the algorithms

for formal power series representations which are presented in this paper have already

been formulated for the classical case of a single formal power series. In particular,

results on partial realization theory can be found in [25], where partial realization

theory for bilinear discrete-time systems was discussed. In view of the well-known

correspondence between bilinear systems and representations of rational formal power

series ([64, 65, 32], for instance), the theory formulated in [25] can be easily adapted

to the case of rational formal power series. Unfortunately the results of [25] can not

be directly used for the general framework adopted in this paper. Besides, the author

failed to find a paper containing the proofs of the results from [25]. There are works
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on subspace identification for discrete-time bilinear systems [19, 7]. The paper [19, 7]

also contains a SVD decomposition algorithm for computing discrete-time bilinear

system realizations. Again, the results presented in [19, 7] can not be applied directly

to the framework adopted in this paper. Therefore we felt compelled to present all

the results in detail again. However, the presented algorithms for formal power series

are indeed very similar to the already known ones.

The partial realization theory and the presented algorithms for hybrid formal

power series are, to our best knowledge, new. Recall that the problem of finding

a hybrid representation for a family of hybrid formal power series can be decom-

posed into two subproblems. One subproblem is finding a rational representation for

a family of formal power series, the other subproblem is finding a realization by a

Moore-automaton for a family of discrete-valued input-output maps. Thus, partial re-

alization theory of hybrid formal power series can be based on partial realization the-

ory for formal power series and partial realization theory for Moore-automata. Both

theories are to large extend classical, although in the current context we will have

to extend the classical theories to accommodate the use of families of formal power

series and input-output maps. But the necessary extension of the classical theory is

quite straightforward. Recall that deciding minimality, observability and reachability

of a hybrid representation can be reduced to deciding observability, reachability of

a certain formal power series representation and a certain Moore-automaton. Thus,

we can use the almost classical algorithms available for Moore-automata and formal

power series representations to decide minimality, observability and reachability of

hybrid representations.

The outline of the chapter is the following. Section 10.1 deals with partial real-

ization theory of formal power series representations. It also presents algorithms for

computing a minimal rational representation, for checking observability, reachability

and minimality of rational representations. Section 10.2 presents partial realization

theory for Moore-automata along with algorithms for computing a minimal Moore-

automaton realization and checking reachability, observability and minimality. The

material of Section 10.2 is a simple extension of the classical results. Section 10.3

presents partial realization theory and algorithms for hybrid formal power series and

rational hybrid representations. It also presents algorithms for computing a minimal

hybrid representation and for checking reachability, observability and minimality of

hybrid representations. Section 10.4 presents partial realization and the algorithms

for minimality reduction and deciding reachability, observability and minimality for

linear and bilinear switched systems. Section 10.5 presents realization theory and

and the corresponding algorithms for linear and bilinear hybrid systems.
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10.1 Formal Power Series

The current section discusses partial realization theory and the corresponding algo-

rithms for rational formal power series representations. The outline of the section is

the following.

Subsection 10.1.1 presents partial realization theory for formal power series. Sub-

section 10.1.2 presents an algorithm for computing a minimal rational representation

of a family of formal power series from a finite sub-matrix of the Hankel-matrix of

the family. The algorithm employs a matrix factorization step, and it is very similar

to classical subspace indetification like algorithms. Subsection 10.1.3 contains algo-

rithms for computing a representation for a family of formal power series, for checking

observability, reachability of a representation and for transforming a representation

to a reachable (observable) one. Subsection 10.1.3 is in fact the backbone of the

paper, the results from this section will be heavily used in the rest of the chapter.

10.1.1 Partial Realization Theory

Consider the Hankel matrix of HΨ of Ψ. Assume that Ψ = {Sj ∈ Rp ¿ X∗ À| j ∈

J}. Denote by R∞ the set of infinite sequences of real numbers, that is, R∞ = {(αn) |

αn ∈ R, n ∈ N}. It is easy to see that R∞ is a vector space with respect to element-

wise addition and element-wise multiplication by scalar. That is, (αn) + (βn) =

(αn + βn) and b(αn) = (bαn), b ∈ R. It is easy to see that if J is countable, then

K = X∗ × J is countable. The set L = X∗ × {1, . . . , p} is always countable. That

is, there exists maps ψ1 : L → N and ψ2 : K → N such that ψ1 and ψ2 are bijections

and the following holds. For each (u, i), (v, j) ∈ L, if |u| < |v| , or u = v and

i < j then ψ1((u, i)) ≤ ψ((v, j)). For each (u, j1), (v, j2) ∈ K, if |u| < |v|, then

ψ2((u, j1)) < ψ2((v, j2)). Then the Hankel-matrix HΨ can be viewed as a matrix

HΨ ∈ R∞×∞ such that

(HΨ)k,l = (Sj(uv))i if ψ1((v, i)) = k and ψ2((u, j)) = l

It is clear that the column space ImHΨ is a subspace of R∞. Define the map φ :

Rp ¿ X∗ À→ R∞ by

φ(T )k = (T (u))i if ψ1((u, i)) = k

It is clear that φ is a linear isomorphism. Moreover, it is also easy to see that

φ(WΨ) = ImHΨ.

Below we will present conditions, under which a representation of Ψ can be con-

structed from finite data. The approach is similar to [25]. For each S ∈ Rp ¿ X∗ À
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let SN denote the restriction of S to the set X<N = {w ∈ X∗ | |w| < N}, that is

SN (w) = S|X<N (w) = S(w)for all w ∈ X∗, |w| < N

Denote by Rp ¿ X<N À the set of functions S : X<N → Rp. It is clear that Rp ¿

X<N À forms a vector space with point-wise addition and point-wise multiplication

by scalar. Moreover, for any S ∈ Rp ¿ X<N À there exists a T ∈ Rp ¿ X∗ À such

that S = TN . One can also define the map ηN : Rp ¿ X∗ À→ Rp ¿ X<N À by

ηN (T ) = TN , for all T ∈ Rp ¿ X∗ À

It is easy to see that ηN is a surjective linear map.

Let Ψ = {Sj ∈ Rp ¿ X∗ À| j ∈ J} be an indexed set of formal power series.

A representation R = (X , {Ax}x∈X , C,B), B = {Bj ∈ X | j ∈ J} is said to be an

N -partial representation of Ψ if for each j ∈ J and w ∈ X∗, |w| < N

Sj(w) = CAwBj

Define the vector space WΨ,N,M by

WΨ,M,N = {(w ◦ Sj)M | w ∈ X∗, |w| < N, j ∈ J}

Define the sets IM = {(v, i) | v ∈ X∗, |v| < M, i = 1, . . . , p} and JN = {(u, j) | j ∈

J, u ∈ X∗, |u| < N}. Define the maps ψ1,M : IM → N and ψ2,N : JM → N} such that

ψ1,M ((u, i)) = ψ1((u, i)), (u, i) ∈ IM and ψ2,N ((v, j)) = ψ2((v, j)), (v, j) ∈ JN . It is

easy to see that the following holds. For any (u, i), (v, j) ∈ IM , if |u| < |v| or u = v

and i < j, then ψ1,M ((u, i)) < ψ1,M ((v, j)). For any (u, j1), (v, j2) ∈ JN , if |u| < |v|,

then ψ2,N ((u, j1)) < ψ2,N ((v, j2)). It is also easy to see that ψ1,M (IM ) = ψ1(IM ) =

{1, . . . , |I|M}. Indeed, since IM is finite and ψ1 is a bijection, ψ1(IM ) is finite and

has |IM | elements. Let G be the maximal element of ψ1(IM ). Let j ∈ {1, 2, . . . , G}

such that j /∈ ψ1(IM ). Assume that j = ψ1((u, i)) and G = ψ1((v, l)). Since

(v, l) ∈ IM , we get that |v| ≤ M . If (u, i) /∈ IM , then |u|leM > |v|. But then

G = ψ1((v, l)) < ψ1((u, i)), which is a contradiction. Thus, (u, i) ∈ IM , and thus

j ∈ ψ1(IM ). That is, ψ1(IM ) = {1, 2, . . . , G}. Since ψ1(IM ) is of cardinality |IM | we

get that G = |IM |. Similarly, we can show that ψ2(JN ) = {1, . . . , |JN |} if J is finite.

From now one we assume that J is a finite. Define HΨ,M,N ∈ R|IM |×|JN | by

(HΨ,M,N )k,l = (HΨ)k,l = (Sj(uv))i if ψ1,M ((v, i)) = k, ψ2,N ((u, j)) = l

That is, HΨ,N,M is the left upper corner |IN |× |JN | block matrix of HΨ. Notice that

if J is finite, then |JN | < +∞, that is, HΨ,N,M is a finite matrix. Define the map

ψN : Rp ¿ X<N À→ RIN by

(ψN (T ))k = (T (u))i if ψ1,N ((u, i)) = k
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It is easy to see that ψN is a linear isomorphism. Moreover, ImHΨ,M,N = ψM (WΨ,M,N ).

That is, dimWΨ,M,N = rank HΨ,M,N .

It turns out that under certain circumstances partial representations not only

exist but they also yield a minimal representation of the whole indexed set of formal

power series. Moreover, such partial representations can be constructed from finite

data.

Theorem 64 (Partial representation). With the notation above the following

holds.

(i) If R is a representation of Ψ, dimR ≤ N , then

rank HΨ = rank HΨ,N,N = rank HΨ,N+1,N = rank HΨ,N,N+1

(ii) If

rank HΨ,N,N = rank HΨ,N,N+1 = rank HΨ,N+1,N

then there exists an N -partial representation RN = (WΨ,N,N , {Ax}x∈X , B,C)

of Ψ, such that Ax((w ◦ Sj)N ) = (wx ◦ Sj)N , C(T ) = T (ε), Bj = (Sj)N , j ∈ J ,

(iii) If

rank HΨ,N,N = rank HΨ

then

rank HΨ,N+1,N = rank HΨ,N,N = rank HΨ,N,N+1

and RN is a minimal representation of Ψ.

(iv) If Ψ has a representation R such that N ≥ dimR, then the representation RN

is a minimal representation of Ψ.

Proof. The proof of the theorem relies on a number of lemmas, which will be stated

and proven after the proof of the theorem. Below we will proceed with the proof of

the theorem.

Part (i)

Define WΨ,.,N = Span{(w ◦ Sj) | j ∈ J, |w| < N}. Then Lemma 50 implies

that WΨ,.,N = WΨ. Notice that ηN (WΨ,N,.) = WΨ,N,N and Lemma 53 implies

that ηN is a linear isomorphism, that is dimWΨ = dimWΨ,.,N = dimWΨ,N,N .

That is, rank HΨ = dim WΨ = dim WΨ,N,N = rank HΨ,N,N , since WΨ,N,N and

the column space of HΨ,N,N are isomorphic. Since WΨ,.,N ⊆ WΨ,.,N+1 we get

that WΨ,.,N+1 = WΨ,.,N . From Lemma 53 it follows that ηN+1|WΨ
is an isomor-

phism. Thus, dimWΨ = dim ηN+1(WΨ,.,N ) = dim WΨ,N+1,N . Since ηN |WΨ
is an

isomorphism too, we get that dimWΨ = dim ηN (WΨ,.,N+1) = dim WΨ,N+1,N Thus,
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we get that rank HΨ,N+1,N = dimWΨ,N+1,N = rank HΨ and rank HΨ,N,N+1 =

dimWΨ,N,N+1 = rank HΨ.

Part (ii)

rank HΨ,N,N = rank HΨ,N+1,N = rank HΨ,N,N+1 implies that dimWΨ,N,N =

dimWΨ,N+1,N = dimWΨ,N,N+1. Since WΨ,N,N ⊂ WΨ,N,N+1 we get that WΨ,N,N =

WΨ,N,N+1. Define the map η̃N : WΨ,N+1,N 3 S 7→ SN , where SN = S|{w∈X∗||w|<N}.

It is easy to see that η̃N is linear, and since (w ◦ Sj)N = η̃N ((w ◦ Sj)N+1) for all

|w| < N , j ∈ J we get that η̃N is surjective. Since dimWΨ,N+1,N = dim WΨ,N,N

we get that η̃N is a linear isomorphism. For each x ∈ X, consider the map Tx :

WΨ,N+1,N → WΨ,N,N defined by Tx(S)(w) = S(xw), w ∈ X∗, |w| < N . It is easy to

see that Tx is a linear map. Let Ax = Tx ◦ η̃−1
N , i.e. Ax(Z) = Tx(η̃−1

N (Z)). It is easy

to see that Ax is linear and for all w ∈ X∗, |w| < N , Ax((w ◦ Sj)N )(v) = Sj(wxv)

for all v ∈ X∗, |v| < N . That is, Ax((w ◦ Sj)N ) = (wx ◦ Sj)N is satisfied for each

|w| ≤ N,w ∈ X∗. Define C : WΨ,N,N 3 T 7→ T (ε) and Bj = (Sj)N . It is easy

to see that C is a linear map. That is, RN = (WΨ,N,N , {Ax}x∈X , B,C) is indeed

a well-defined representation. It is easy to see that w ∈ X∗, |w| < N it holds that

AwBj = Aw(Sj)N ) = (w ◦ Sj)N , which implies that CAwBj = (w ◦ Sj)N (ε) = Sj(w)

for each |w| < N,w ∈ X∗. That is, RN is an N -representation of Ψ.

Part(iii)

It is easy to see that rank HΨ,N,N ≤ rank HΨ,N+1,N ≤ rank HΨ and rank HΨ,N,N ≤

rank HΨ,N,N+1 ≤ HΨ. Thus, if rank HΨ,N,N = rank HΨ then rank HΨ,N,N =

rank HΨ,N+1,N = rank HΨ,N,N+1. We also get that dim WΨ,N,N = dim WΨ,N+1,N =

dimWΨ,N,N+1 = dimWΨ. Consider the map ηN : WΨ → WΨ,N,., where WΨ,N,. =

Span{(w ◦ Sj)N | j ∈ J,w ∈ X∗}. The map ηN is clearly surjective. It is easy that

WΨ,N,M ⊆ WΨ,N,. for all M ≤ 0 and dimWΨ,N,. = dim ηN (WΨ) ≤ dimWΨ. Since

dimWΨ,N,N = dimWΨ we get that dim WΨ,N,. = dimWΨ. Thus, ηN is injective

too, i.e., ηN is a linear isomorphism. Since ηN (WΨ,.,N ) = WΨ,N,N , we get that

dimWΨ,.,N = dimWΨ,N,N = dimWΨ, thus WΨ,.,N = WΨ. That is, for each w ∈ X∗,

|w| ≥ N, j ∈ J there exists K > 0 vi ∈ X<N , ji ∈ J, αi, i = 1, . . . ,K, such that

w ◦ Sj =
∑K

i=1 αi(vi ◦ Sji
).

If we could show that RN is a representation of Ψ, then Theorem 2 would yield

that RN is a minimal representation of Ψ. We will show that AwBj = (w ◦ Sj)N

holds for each |w| ≥ N . In Part (ii) we showed that AwBj = (w ◦ Sj)N for |w| < N .

We also know that if |w| < N , then Ax((w ◦ Sj)N ) = (wx ◦ Sj)N . We proceed by

induction on |w|−N . Assume that AwBj = (w ◦Sj)N holds for all |w| < N +n. Let

z = wx, |w| = n + N − 1. Then there exist αi ∈ R, vi ∈ X<N , ji ∈ J i = 1, . . . ,K

such that w ◦ Sj =
∑K

i=1 αivi ◦ Sji
. It implies that z ◦ Sj =

∑K
i=1 αivix ◦ Sji

, thus

(z ◦ Sj)N =
∑K

i=1 αi(vix ◦ Sji
)N =

∑K
i=1 αiAx((vi ◦ Sji

)N ) = Ax((w ◦ Sj)N ). We

303



CHAPTER 10. COMPUTATIONAL ISSUES AND PARTIAL REALIZATION

used the fact that (w ◦ Sj) =
∑K

i=1 αi(vi ◦ Sji
)N and the induction hypothesis for

n = 0 and the linearity of Ax. By induction hypothesis (w ◦ Sj)N = AwBj , thus

we get (z ◦ Sj)N = AxAwBj = AzBj . That is, we get that for any j ∈ J,w ∈ X∗,

AwBj = (w◦Sj)N , which implies that CAwBj = Sj(w),that is, RN is a representation

of Ψ.

Part (iv)

If dim R ≤ N , then rank HΨ ≤ N , thus rank HΨ,N,N = dimWΨ,N,N = rank HΨ.

That is, we can apply Part (iii) of the Theorem.

The proof of the above theorem relies on the following lemmas

Lemma 50. Assume that rank HΨ ≤ N . For any T ∈ WΨ, w ∈ X∗ it holds that

there exists αw,v ∈ R, v ∈ X∗, |v| < N such that w ◦ T =
∑

v∈X∗,|v|<N αw,v(v ◦ T ).

Proof. We will use the fact that dimWΨ = rank HΨ ≤ N . Consider the free rep-

resentation R = (WΨ, {Ax}x∈X , B,C) of Ψ defined in Theorem 1. Apply Lemma

51 to WΨ and Ax : WΨ → WΨ, x ∈ X. We get that for each w ∈ X∗ there exist

αT,w,v ∈ R, ∈ X∗, |v| < N such that AwT = w ◦ T =
∑

v∈X∗,|v|<N αw,vAvT =∑
v∈X∗,|v|<N αw,vv ◦ T .

Lemma 51. Let X be finite-dimensional vector space, dimX ≤ N . Let Ax : X → X ,

x ∈ X be a family of linear maps. Then for each y ∈ X , for each w ∈ X∗ there exists

αy,w,v ∈ R, v ∈ X∗, |v| < N such that

Awy =
∑

v∈X∗,|v|<N

αy,w,vAvy

Proof. If |w| < N , then choose αy,w,w = 1 and αy,w,v = 0, v 6= w, |v| < N . First we

prove the lemma for |w| = N . Assume that w = w1 · · ·wN , w1, . . . , wN ∈ X. Con-

sider the elements Aw1···wi
y, i = 0, . . . , N . Since every N+1 elements of X are linearly

dependent, we get that there exist βi ∈ R, i = 0, . . . , N such that
∑N

i=0 αiAw1···wi
y =

0. Let l = max{j | αj 6= 0}. Then Aw1···wl
y =

∑l−1
i=0 βiAw1···wi

y, where βi =

αi/αl. Then we get that Awy = Awl+1···wN
(Aw1···wl

y) =
∑l−1

i=0 βiAvi
y, where vi =

w1 · · ·wiwl+1 · · ·wN , i = 0, . . . , l − 1. It is clear that |vi| < N , i = 0, . . . , l − 1. To

prove the lemma for arbitrary |w| ≥ N we proceed by induction on |w|−N . The case

of |w| = N we proved above. Assume that the statement of the lemma holds for |w| ≤

n+N . Let be z = wx, |w| = n+N , x ∈ X. Then there exist αy,w,v ∈ R, |v| < N, v ∈

X∗ such that Awy =
∑

v∈X∗,|v|<N αy,w,vAvy. Since Azx = Ax(Awy) we get that

Azy =
∑

v∈X∗,|v|<N−1 αy,w,vAvxy +
∑

v∈X∗,|v|=N−1 αy,w,vAvxy By the statement

of the lemma for words of length N , we get that Avxy =
∑

s∈X∗,|s|<N αy,vx,sAsy.
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for each |v| = N − 1, v ∈ X∗. For each s ∈ X∗, |s| < N define αy,z,s = αy,w,s′ +∑
v∈X∗,|v|=N−1 αy,vx,s if s = s

′

x and αy,z,s =
∑

v∈X∗,|v|=N−1 αy,vx,s otherwise. Then

it is easy to see that Azy =
∑

v∈X∗,|v|<N αy,z,vAvy.

Lemma 52. Let R = (X , {Ax}x∈X , B,C) be a representation of Ψ and assume that

dimR < N . Then for each w ∈ X∗ there exists αw,,v,j ∈ R, v ∈ X∗, |v| < N ,

j = 1, . . . , p such that

∀x ∈ X : CjAwx =
∑

v∈X∗,|v|<N

αw,v,jCjAvx

where Cj = eT
j C, ej is the jth unit vector of Rp.

Proof. Part (i) Consider the set of all linear homomorphisms X ∗ = Hom(X , R).

It is well known that dimX ∗ = dimX ≤ N . It is easy to see that for each x ∈

X the linear map Ax : X → X induces a dual map A∗
x : X ∗ → X ∗ defined by

A∗
x(f)(y) = f(Axy) for each f ∈ X ∗, y ∈ X . Let w = w1 · · ·wk, w1, . . . , wk ∈ X and

let
←
w= wkwk−1 · · ·w1 be the mirror image of w. It is easy to see that CjAw = A∗

←
w

Cj .

Applying Lemma 51 to X ∗ and A∗
x we get that there exist αj,w,v ∈ R, v ∈ X∗, |v| < N

such that CjAw = A∗
←
w

Cj =
∑

v∈X∗,|v|<N αj,w,vA∗
←
v
Cj =

∑
v∈X∗,|v|<N αj,w,vCjAv.

Corollary 23. Consider a representation R = (X , {Ax}x∈X , B,C). Assume that

dimR ≤ N . Then OR =
⋃

v∈X∗,|v|<N CAv and WR = Span{AvBj | j ∈ J, v ∈

X∗, |v| < N}.

Proof. It is clear that OR ⊆
⋂

v∈X∗,|v|<N CAv If CjAvx = 0 for all v ∈ X∗, |v| < N ,

j = 1, . . . , p, then by Lemma 52 for each w ∈ X∗,

CjAwx =
∑

v∈X∗,|v|<N

αw,v,jCjAvx = 0

so x ∈ OR. Similarly, by Lemma 51, for each w ∈ X∗,

AwBj =
∑

v∈X∗,|v|<N

αBj ,w,vAvBj ∈ Span{AvBj | j ∈ J, v ∈ X∗, |v| < N}

which implies the statement of the corollary.

Recall the definition of the space WΨ,N,. = {SN ∈ Rp ¿ X<N À| S ∈ WΨ}. It

is easy to see that WΨ,N,. is a linear subspace of Rp ¿ X<N À.

Lemma 53. Consider the the mapping ηN : Rp ¿ X∗ À3 T 7→ TN ∈ Rp ¿

X<N À. Assume that rank HΨ ≤ N . Then ηN |WΨ
: WΨ → WΨ,.,N is a linear

isomorphism.
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Proof. It is easy to see that ηN is a surjective linear map. Consider the free realization

Rf = (WΨ, {Ax}x∈X , B,C) of Ψ as defined in Theorem 1 [55]. From Theorem 2 we

know that Rf is minimal and therefore it is reachable and observable, i.e. ORf
= {0}.

From Corollary 23 we also know that if dimRf = dimHΨ = rank HΨ ≤ N , then

ORf
=

⋂
v∈X∗,|v|<N ker CAv. Consider the kernel of ηN . ηN (T ) = 0 if and only if

T (w) = 0 for all |w| < N . That is, CAwT = 0 for each |w| < N , i.e. T ∈ ORf
= {0}.

Thus, ηN is injective. That is, ηN is a linear isomorphism.

The theorem above implies that if J is finite and we know that Ψ has a represen-

tation of dimension at most N , then a minimal representation of Ψ can be computed

from finite data.

10.1.2 Construction of a Minimal Representation

The technique of Hankel-matrix factorization has been used in realization theory and

systems identification for several decades. It forms the theoretical basis of algorithms

for subspace identification, see for example [19, 7].

ComputePartialRepresentation(HΨ,N+1,N)

1. Compute a decomposition of HΨ,N+1,N

HΨ,N+1,N = OR

O ∈ RIN+1×r, R ∈ Rr×JN , rank R = rank O = r

2. Let C̃ =




Oψ1((ε,1)),.

Oψ1((ε,2)),.

· · ·

Oψ1((ε,p)),.


 where Ok,. denotes the kth row of O.

3. Let B̃j = R.,ψ2((ε,j)), where R.,ψ2((ε)) stands for the ψ2((ε, j))th column of R.

Let B̃ = {B̃j | j ∈ J}.

4. For each x ∈ X let Ãx be the solution of

Γ̄Ãx = Γ̄x (10.1)

where Γ̄, Γ̄x ∈ R|IN |×r,

Γ̄i,j = O, i = 1, . . . , |I|N , j = 1, . . . , r

and

(Γ̄x)i,j = Ok,j

where i = 1, . . . , |I|N , ψ1((u, l)) = i, k = ψ1((xu, l)), u ∈ X∗, j = 1, . . . , r
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5. If there no solution to (10.1) then return NoRepresentation.

6. Return R̃N = (Rr, {Ãx}x∈X , C̃, B̃).

Notice that the algorithm above requires the existence of a solution to the linear

equation (10.1) at step 4. The algorithm above may return two different types of

data. It returns a formal power series representation if (10.1) has a solution and the

symbol NoRepresentation otherwise.

Remark In step 1 of the algorithm above one can use any algorithm for com-

puting a decomposition. For example, one could use SVD decomposition, in which

case HΨ,N+1,N = UΣV T , and O = U(Σ1/2), R = (Σ1/2)V T is a valid choice for

decomposition. Perhaps the algorithm above may give rise to model reduction and

identification methods similar to those for linear systems.

The following theorem characterises the outcome R̃N of the algorithm above.

Theorem 65. With the notation above the following holds.

(i) If ComputePartialRepresentation returns a formal power series representa-

tion R̃N , then the representation R̃N is an N + 1 partial representation of Ψ.

The representation R̃N is reachable and observable.

(ii) Assume that rank HΨ,N,N+1 = rank HΨ,N+1,N = rank HΨ,N,N . Then the

algorithm ComputePartialRepresentation always returns a formal power se-

ries representation. Consider the representation RN from Theorem 64. Then

ξ : Rr → WΨ,N,N , ξ = ηN+1 ◦ ψ−1
N+1 ◦ O, is a linear isomorphism such that

ξ : R̃N → RN is a representation morphism, where ηN+1, ψN+1 are the linear

maps defined in Subsection 10.1.1.

(iii) If rank HΨ,N,N = rank HΨ then

rank HΨ,N,N = rank HΨ,N+1,N = rank HΨ,N,N+1

and R̃N is a minimal representation of Ψ.

(iv) Assume rank HΨ ≤ N , or , equivalently, there exists a representation R of Ψ,

such that dimR ≤ N . Then the representation R̃N is a minimal representation

of Ψ.

Proof. Part (i)

First we will show that R̃N is indeed a N + 1-partial representation of Ψ. From the

definition of Ãx, x ∈ X it follows that Γ̄k,.Ãw = Ok,.Ãw = Ol,., where k = ψ1(ε, i)
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and l = ψ1(w, i), i = 1, . . . , p, w ∈ X<N+1. Thus, we get that

C̃Ãw =
[
(O)T

ψ1(ε,1),.
, (O)T

ψ1(ε,2),.
, · · · (O)T

ψ1(ε,p),.

]T

Ãw =

[
(Oψ1(w,1),.)

T , (Oψ1(w,2),.)
T , · · · (Oψ1(w,p),.)

T
]T

Thus, we get that for each i = 1, . . . , p,

eT
i C̃ÃwB̃j = Oψ1(w,i),.(R).,ψ2(ε,j) =

= (HΨ,N+1,N )ψ1(w,i),ψ2(ε,j) = eT
i Sj(w)

That is, C̃ÃwB̃j = Sj(w). Thus, R̃N is indeed an N + 1-partial representation.

Next we will show that R̃N is observable. Assume that there exists x ∈ Rr

such that C̃Ãwx = 0 for all w ∈ X∗. Assume that x = Ry for some y ∈ R|JN |.

Since rank R = r, such a y always exists. Thus, we get that for each w ∈ X<N+1,

i = 1, . . . , p

0 = eT
i C̃Ãwx = Oψ1(w,i),.Ry = (HΨ,N+1,Ny)ψ1(w,i)

That is, HΨ,N+1,Ny = 0. That is, Ox = ORy = 0, i.e. x ∈ ker O. But rank O = r,

thus ker O = {0}, that is x = 0. We will show that R̃N is reachable. Indeed,

Rr = ImR = Span{R.,ψ2(w,j) | j ∈ J,w ∈ X<N} (10.2)

But

eT
i C̃ÃvR.,ψ2(w,j) = Oψ1(v,i),.R.,ψ2(w,j) =

(HΨ,N+1,N )ψ1(v,i),ψ2(w,j) = (HΨ,N+1,N )ψ1(wv,1),ψ2(ε,j) =

eT
i C̃ÃvwB̃j = eT

i C̃Ãv(ÃwB̃j)

for each i = 1, . . . , p, v ∈ X<N+1. Since R̃N is observable we get that ÃwB̃j =

(R).,ψ2(w,j). Thus,

Rr = Span{ÃwB̃j | j ∈ J,w ∈ X<N}

that is R̃N is observable.

Part (ii)

It is clear that ξ is well defined. Indeed, ImO = ImHΨ,N+1,N by definition of matrix

factorization. Moreover, O : Rr → R|IN+1| is a injective and

ψN+1 : WΨ,N+1,N → ImHΨ,N+1,N

is a linear isomorphism. Moreover, since

rank HΨ,N+1,N = dim WΨ,N+1,N = rank HΨ,N,N = WΨ,N,N
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we get that ηN+1 : WΨ,N+1,N → WΨ,N,N is a linear isomorphism. Thus, ξ =

ηN+1 ◦ ψ−1
N+1 ◦ O : Rr → WΨ,N,N is a well defined linear isomorphism. It is left

to show that ξ is a representation morphism. Consider the representation RN =

(WΨ,N,N , {Az}z∈X , C,B).

It is easy to see that for each x ∈ Rr there exists y ∈ R|JN | such that x = Ry.

Then it is easy to see that

ξ(x) = ηN+1 ◦ ψ−1
N+1(ORy) = ηN+1 ◦ ψ−1

N+1(HΨ,N+1,Ny) = TN+1 (10.3)

where TN+1 ∈ Rp ¿ X<N+1 À and for each i = 1, . . . , p, w ∈ X<N it holds that

eT
i TN+1(w) = (HΨ,N+1,Ny)ψ1(w,i). Thus

eT
i TN+1(ε) = eT

i C(TN+1) = eT
i C(ξ(x)) =

(HΨ,N+1,Ny)ψ1(i,ε) = (O)ψ1(ε,i),.(Ry) = eT
i C̃x

Thus, Cξ = C̃. It is also easy to see that ξ(B̃j) = ξ(Reψ2(ε,j)) = TN+1, such that

eT
i TN+1(w) = (HΨ,N+1,Neψ2(ε,j))ψ1(i,w) =

= (HΨ,N+1,N )ψ1(i,w),ψ2(ε,j) = eT
i Sj(w)

Thus, ξ(B̃j) = (Sj)N = Bj . It is left to show that a solution to equation (10.1)

exists and Axξ = ξÃx, for all x ∈ X. First, notice that Γ̄R = HΨ,N,N . Thus,

rank Γ̄R = rank HΨ,N,N = r. Thus, rank Γ̄ = r. That is, if solution (10.1) exists,

then this solution is unique. Thus, if we show that Āx = ξ−1Axξ is a solution to

(10.1) then it follows that Ãx = Āx = ξ−1Axξ, x ∈ X and thus ξ is a representation

morphism. From (10.2) it is enough to prove that

Γ̄ĀxR.,ψ2(w,j) = Γ̃xR.,ψ2(w,j) (10.4)

for each w ∈ X<N , j ∈ J . Using (10.3) we get

Γ̄ĀxR.,ψ2(w,j) = Γ̄ξ−1(Axξ(R).,ψ2(w,j)) =

Γ̄ξ−1(Ax(w ◦ Sj)N ) = Γ̄ξ−1((wx ◦ Sj)N ) =

= Γ̄Ry = HΨ,N,Ny

where y ∈ R|JN | is such that HΨ,N,Ny = (HΨ,N+1,N ).,ψ2(wx,j). On the other hand,

notice that

eT
ψ1(v,i)Γ̃xR.,ψ2(w,j) =

(O)ψ1(vx,i),.R.,ψ2(w,j) =

(HΨ,N+1,N )ψ1(vx,i),ψ2(w,j) = eT
i Sj(wxv) = (HΨ,N+1,N )ψ1(v,i),ψ2(wx,j)
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Thus, we get that (10.4) holds.

Part(iii)

From Theorem 64 it follows that if rank HΨ,N,N = rank HΨ then rank HΨ,N+1,N =

rank HΨ,N,N+1 = rank HΨ,N,N and RN is a minimal representation of Ψ By Part

(ii) of the theorem ξ : R̃N → RN is a representation isomorphism and thus R̃N is a

minimal representation too.

Part(iv)

Again, from Theorem 64 it follows that RN is a minimal representation. Since R̃N

is isomorphic to RN we get that R̃N is a minimal representation of Ψ too.

10.1.3 Algorithmic Aspects

It was already mentioned that it is possible to transform a representation to an

equivalent observable or reachable realization. Below we will give algorithms for

carrying out these transformations.

Let R be a representation of some family of formal power series Ψ with finite

index set J . Assume that R = (Rn, {Az}z∈X , C,B), where B = {Bj | j ∈ J} and

J = {j1, . . . jN}. Assume that X = {z1, . . . , zM}.

RR =ComputeReachabilityMatrix(R)

1. R0 =
[
Bj1 · · · BjN

]
Rn×N

2. Rk+1 =
[
Rk Az1

Rk Az2
Rk · · · AzM

Rk

]
∈ Rn×(M+1)k+1N

3. If rank Rk+1 = rank Rk then RR = Rk else goto step 2

Proposition 33. The algorithm ComputeReachabilityMatrix above always termi-

nates and the matrix RR computed by the algorithm is such that ImRR = WR

Proof. Notice that ImRk ⊆ ImRk+1 for all k ∈ N ∪ {0}. Notice that rank Rk =

rank Rk+1 is equivalent to ImRk = ImRk+1. Assume that ImRk = ImRk+1 holds

for some k ≥ 0. Then ImRk+1 = ImRk+2 holds too. Indeed, let x ∈ ImRk+2.

Then x = y0 +
∑M

i=1 Azi
yi, where yi ∈ ImRk+1 = ImRk, i = 0, . . . ,M . Thus

Azi
yi ∈ ImRk+1, i = 1, . . . ,M and therefore x ∈ ImRk+1. That is, rank Rk+1 =

rank Rk implies that ImRk = ImRk+1 = ImRk+2 = · · · = ImRk+l for all l ∈ N.

It is easy to see that ImRk = Span{AwBj | j ∈ J,w ∈ X<k+1}. It implies that

WR =
∑k

1 ImRk. If ImRk = ImRk+1 then it follows that WR = ImRk. That is, if

the algorithm ComputeReachabilityMatrix stops, then it returns a matrix Rk such

that ImRk = WR. From Corollary 23 we get that ImRn = WR = ImRn−1. That is,

the algorithm stops after at most n steps.
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It is easy to see that the time complexity of the algorithm above is O(n) but the

storage complexity is O((M +1)n). The amount of required memory can be reduced

by replacing at each step Rk with a matrix columns of which form a basis of ImRk.

The algorithm ComputeReachabilityMatrix allows us to give an algorithm for

deciding the reachability of a representation R.

IsReachable(R)

1. RR = ComputeReachabilityMatrix(R).

2. If rank RR = n then return True else return False

Now we can formulate an algorithm for computing a reachable representation Rr of

Ψ from R.

ReachableTransform(R)

1. RR = ComputeReachabilityMatrix(R)

2. Compute U ∈ Rn×r, r = rank RR such that ImU = ImRR and UT U = Ir.

3. Define Ar
z = UT AzU , ∀z ∈ X Br

j = UT Bj ,∀j ∈ J , Cr = CU

4. Return Rr = (Rr, {Ar
z}z∈X , {Br

j | j ∈ J}, C)

Proposition 34. Rr is a reachable representation of Ψ

Proof. From Proposition 33 ImRR = WR. Then Bj ∈ ImU = ImRR and AwImU ⊆

ImU for each w ∈ X∗. That is, for all y ∈ Rr there exists z ∈ Rr such that

AwUy = Uz for some z ∈ Rr. Notice that UUT Uz = Uz, thus, UUT AwUy =

UUT Uz = Uz = AwUy. That is, UUT AwU = AwU . Notice that for each j ∈ J

there exists y ∈ Rr such that Uy = Bj , thus UUT Bj = UUT Uy = Uy = Bj . Then

it follows that Ar
w = UT AwU , Ar

wBr
j = UT AwBj and CrAr

wBr
j = CAwBj = Sj(w)

for each w ∈ X∗, j ∈ J . Thus, Rr is a representation of Ψ. We will show that Rr

is reachable. Indeed, WRr
= Span{Ar

wBr
j | w ∈ X∗, j ∈ J} = Span{UT AwBj | w ∈

X∗, j ∈ J} = UT WR = ImUT RR. Since rank UT = rank RR = r, it follows that

dimWRr
= rank UT RR = r = dimRr.

Observability of representations can be treated in an algorithmic way too. Con-

sider the following algorithm

ComputeObservabilityMatrix(R)

1. O0 = C.
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2. Ok+1 =
[
OT

k , (OkAz1
)T , (OkAz2

)T , · · · (OkAzM
)T

]T

∈ Rp(M+1)k×n

3. If rank Ok+1 = rank Ok then return Ok else goto step 2

Proposition 35. The algorithm ComputeObservabilityMatrix(R) always termi-

nates in at most n steps and its return value OBR has the property that ker OBR =

OR.

Proof. Notice that ker OR ⊆ ker Ok+1 ⊆ ker Ok for all k ≥ 0. Moreover, rank Ok =

n − dim kerOk, thus rank Ok+1 ≤ rank Ok. Assume that rank Ok = rank Ok+1.

Then this is equivalent to dim kerOk = dim kerOk+1 which is equivalent to kerOk =

ker Ok+1. We will show that kerOk+1 = ker Ok+2 holds and thus rank Ok+2 = n −

dim ker Ok+2 = n− dim kerOk+1 = rank Ok+1. Indeed, assume that x ∈ ker Ok+1 =

ker Ok. Then for each z ∈ X, OkAzx = 0, that is, Azx ∈ ker Ok = kerOk+1. But it

means that for each z ∈ X, Ok+1Azx = 0, that is, x ∈ ker Ok+2. Thus, kerOk+2 =

ker Ok. That is, rank Ok = rank Ok+1 implies that ker Ok = kerOk+l for all l > 0.

Notice that ker Ok =
⋂

w∈X<k+1 ker CAw. It follows that kerOR =
⋂

k≥0 ker Ok.

Thus, if rank Ok = rank Ok+1 then ker Ok = OR. On the other hand, by Corollary

23 we get that ker On−1 = kerOn = ker OR. Thus, rank On = rank On and therefore

the algorithm stops after at most n steps.

The algorithm above can be used to decide whether R is observable or not.

IsObservable

1. OBR = ComputeObservabilityMatrix(R)

2. If rank OBR = n then return True else False

We can also give an algorithm for computing an observable representation Ro of Φ.

ComputeObservableRepresentation(R)

1. OBR = ComputeObservabilityMatrix(R)

2. Compute U ∈ Rn×r, r = rank OBR such that ImU = ImOBT
R and UT U = Ir.

3. Define Ao
z = UT AzU , ∀z ∈ X, Bo

j = UT Bj , ∀j ∈ J , Co = CU .

4. Return Ro = (Rr, {Ao
z}z∈X , {Bo

j | j ∈ J}, Co)

Proposition 36. Ro is an observable representation of Ψ. Moreover, if R is reach-

able, then Ro is reachable too.

312



10.2. MOORE-AUTOMATA

Proof. From Proposition 35 it follows that kerOBR = OR. From standard linear al-

gebra it follows that ImOBT
R

⊕
ker OBR = Rn and thus rank OBR = n−dim OBR =

n − dimOR = r. Notice that Aw ker OR ⊆ ker OR for each w ∈ X∗. It is easy to

see that UT (ker OR) = {0}. Indeed, if x ∈ OR, then for each ej , j = 1, . . . , r,

eT
j UT x = xT Uej = xT OBT

Rs = sT OBRx = 0, since Uej = OBT
Rs for some

s and x ∈ ker OR = kerOBR. We will show that UT AwUUT = UT Aw. In-

deed, let x ∈ Rn such that x = x1 + x2 = Uy + x2 such that x1 ∈ ImOBR =

ImU and x2 ∈ ker OR. Then UT AwUUT x = UT AwUUT Uy = UT Awx1 and

UT Awx = UT Awx1 + UT Awx2 = UT Awx1, since Awx2 ∈ ker OR. Also notice

that CUUT x = Cx1 = Cx1 + Cx2 = Cx, since ker OR ⊆ ker C. Then it fol-

lows that Ao
w = UT AwU , Ao

wBo
j = UT AwBj and CoAo

wBo
j = CAwBj = Sj . That

is, Ro is indeed a representation of Ψ. We will show that Ro is observable. In-

deed, for each x ∈ Rr, w ∈ X∗, CoAo
wx = CAwUx. Thus x ∈ ORo

if and only if

Ux ∈ OR = ker OBR. But ImU ∩ker OBR = {0}, thus Ux = 0 and since rank U = r

it follows that x = 0. That is, ORo
= {0}.

It is easy to see that WRo
= UT (WR). Thus, WR = Rn implies that WRo

=

ImUT = Rr, since rank UT = r. That is, if R is reachable then WRo
is reachable

too.

Using the algorithm above it is straightforward to formulate an algorithm for com-

puting a minimal representation of Ψ.

ComputeMinimalRepresentation(R)

1. Rr = ComputeReachableRepresentation(R)

2. Rmin = ComputeObservableRepresentation(Rr)

3. Return Rmin

It is easy to see that the algorithm above computes a minimal representation of Ψ.

Note that if we first compute an observable representation and then we transform it

to a reachable one, then the outcome is still a minimal representation, thus step 1

and step 2 of the algorithm above can be interchanged.

10.2 Moore-automata

The current section presents partial realization theory for Moore-automata. It also

formulates algorithms for constructing a minimal Moore-automaton realization and

for checking reachability, observability and minimality. The material of the section is

an easy extension of already known results, although many of these results seem to be
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a folklore and it is difficult to trace the original publication. In any case, the results

below are quite straightforward and are presented for the sake of completeness. The

author does not claim that the results are original or new.

For φ : Γ∗ → O define φN = φ|{w∈Γ∗||w|<N}. That is, φN : {w ∈ Γ∗ | |w| < N} →

O, φN (w) = φ(w) for all w ∈ Γ∗, |w| < N .

Let D = {φj ∈ F (Γ∗, O) | j ∈ J}. Let A = (Q,Γ, O, δ, λ), ζ : J → Q. The pair

(A, ζ) is said to be N -partial realization of D if ∀w ∈ Γ∗, |w| < N : λ(ζ(j), w) =

φj(w). For each N,M > 0 define

WD,N,M = {(w ◦ φj)M | j ∈ J,w ∈ Γ∗, |w| < N}

Define the sets WD,.,N = {ψN | ψ ∈ WD} and WD,N,. = {w ◦φj | j ∈ J,w ∈ Γ∗, |w| <

N}. Define the map ηN : WD → WD,.,N by ηN (ψ) = ψN . The following holds.

Theorem 66 (Partial realization by automata). (i) If (A, ζ) is a realization

of Φ and card(A) ≤ N , then

card(WD,N,N ) = card(WD,N,N+1) = card(WD,N+1,N ) = card(WD)

(ii) If card(WD,N,N+1) = card(WD,N+1,N ) = card(WD,N,N ), then (AN , ζN ) is an

N-partial realization of D where AN = (WD,N,N ,Γ, O, δ, λ) such that for each

w ∈ Γ∗, |w| < N, j ∈ J , δ((w ◦ φj)N , x) = (wx ◦ φj)N , ∀f ∈ WD,N,N : λ(f) =

f(ε), ∀j ∈ J, ζ(j) = (φj)N ,

(iii) If card(WD,N,N ) = card(WD), then card(WD,N,N+1) = card(WD,N+1,N ) =

card(WD,N,N ) and (AN , ζN ) is a minimal realization of D. In particular, if D

has a realization (A, ζ) such that N ≥ card(A), then (AN , ζN ) is a minimal

realization of D.

Proof. Part (i)

From Lemma 54 it follows that WD,N,. = WD. Notice that

WD,N,N = ηN (WD,N,.) = ηN (WD)

From Lemma 55 it follows that card(ηN (WD)) = card(WD), thus card(WD,N,N ) =

card(WD).

Part (ii) It is easy to see that both ζN and λ are well defined. We will

show that δ is well defined. Notice that WD,N,N ⊆ WD,N+1,N and thus WD,N,N =

WD,N+1,N . That is, for each (w◦φj)N ∈ WD,N,N , |w| < N, j ∈ J , the map (wx◦φj)N

is an element of WD,N,N+1 = WD,N,N . Assume that (v ◦ φj)N = (w ◦ φl) for some

j, l ∈ J,w, v ∈ Γ∗, |w|, |v| < N . Define the map η : WD,N,N+1 → WD,N,N by
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η(T ) 7→ T |{w∈Γ∗,|w|<N}. That is, η(T )(w) = T (w) for all w ∈ Γ∗, |w| < N . It is easy

to see that η is surjective. Since card(WD,N,N ) = card(WD,N,N+1), we get that η is

a bijection. Notice that η((v ◦ φj)N+1) = (v ◦ φj)N = (w ◦ φk)N = η((v ◦ φl)N+1).

Thus, by bijectivity of η, (v◦φj)N+1) = (w◦φl)N+1. Thus, (v◦φj)(xs) = (w◦φl)(xs)

for all x ∈ Γ, s ∈ Γ∗, |s| < N . That is, (vx ◦ φj)N = (wx ◦ φl)N . Thus, δ is well

defined. It is easy to see that δ((φj)N , w) = (w ◦φj)N for all w ∈ Γ∗, |w| < N . Thus,

λ(ζN (j), w) = (w ◦ φj)N (ε) = φj(w) for all w ∈ Γ∗, |w| < N . That is, (AN , ζN ) is a

N -partial realization of D.

Part (iii)

Assume that card(WD,N,N ) = card(WD). Notice that WD,N,N ⊆ WD,N+1,N and

η(WD,N,N+1) = WD,N,N . Moreover, WD,M,L = ηL(WD,M,.) ⊆ ηL(WD), hence

card(WD) ≥ card(WD,M,L) for each M,L ∈ N. Thus card(WD) ≥ card(WD,N,N+1) ≥

card(WD,N,N ) and card(WD) ≥ card(WD,N+1,N ) ≥ card(WD,N,N ), thus we get that

card(WD,N,N ) = card(WD,N+1,N ) = card(WD,N,N+1) = card(WD). It is easy to

see that ηN (WD,N,.) = WD,N,N . Thus, card(WD) ≥ card(WD,N,.) ≥ card(WD,.,N ).

That is, card(WD) = card(WD,N,.), i.e. WD = WD,N,. and ηN is injective and

ηN (WD) = WD,N,N = WD,.,N . That is, ηN : WD → WD,.,N is a bijective map.

First we show that (AN , ζN ) is isomorphic to (Acan, ζcan). Above it was shown

that ηN is a bijection. It is left to show that ηN is an automaton morphism.

η(ζcan(j)) = ηN (φj) = (φj)N = ζN (j) and λ(ηN (ψ)) = ψN (ε) = ψ(ε) = T (ψ)

for all ψ ∈ WD, j ∈ J . For all ψ ∈ WD there exists w ∈ Γ∗, j ∈ J , |w| < N

such that ψ = w ◦ φj . Then L(ψ, x) = wx ◦ φj , for all x ∈ Γ. But δ(ηN (ψ), x) =

δ((w ◦ φj)N , x) = (wx ◦ φj)N = ηN (L(ψ, x)). That is, ηN is indeed an automaton

morphism. Thus, (AN , ζN ) and (Acan, ζcan) are isomorphic. Since (Acan, ζcan) is a

minimal realization of D, we get that (AN , ζN ) is a minimal realization of D too.

Lemma 54. Assume that card(WD) < N . Then for every ψ ∈ WD the following

holds.

∀w ∈ Γ∗ : ∃vw,ψ ∈ Γ∗, |vw,ψ| < N : w ◦ ψ = vw,ψ ◦ ψ

Proof. If |w| < N , then choose vw,ψ = w. We proceed by induction on |w| − N .

Assume that |w| = N , that is, w = w1 · · ·wN , w1, . . . , wN ∈ Γ. Consider the ele-

ments w1 · · ·wi ◦ ψ ∈ WD, i = 0, . . . , N . Since card(WD) < N , we get that there

exists 0 ≤ i < j ≤ N such that w1 · · ·wi ◦ ψ = w1 · · ·wj ◦ ψ, which implies that

w1 · · ·wiwj+1 · · ·wN ◦ ψ = w ◦ ψ. Choose vw,ψ = w1 · · ·wiwj+1 · · ·wN . Notice that

|vw,ψ| < N . Then w◦ψ = vw,ψ ◦ψ. Assume the statement of the lemma is true for all

|w| ≤ n + N . Let z = wx such that x ∈ Γ, w ∈ Γ∗, |w| = n + N . Then by the induc-

tion hypothesis, w ◦ψ = vw,ψ ◦ψ, thus z ◦ψ = x◦ (w ◦ψ) = x◦ (vw,ψ ◦ψ) = vw,ψx◦ψ.
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Since |vw,ψ| < N , for s = vw,ψx, |s| ≤ N , thus by induction hypothesis it holds that

s ◦ ψ = vs,ψ ◦ ψ. Let vz,ψ = vs,ψ. Then the statement of the lemma holds.

.

Lemma 55. Assume that card(WD) < N . Then the map ηN : WD → WD defined

above is a bijection.

Proof. Define RM ⊆ WD × WD , M = 1, 2, . . ., by

(S, T ) ∈ RM ⇐⇒ SM = TM

It is easy to see that RM is an equivalence relation and RM+1 ⊆ RM . It is also easy

to see that if (S, T ) ∈ RM+1 then for each γ ∈ Γ, (γ◦S, γ◦T ) ∈ RM . Indeed, for each

w ∈ Γ∗, |w| < M it holds that |γw| < M+1 and thus γ◦S(w) = S(γw) = T (γw) = γ◦

T (w). Assume that Rn = Rn+1 for some n > 0. Then it holds that Rn+1 = Rn+2 =

· · · = Rn+k = · · · . Indeed, assume that (S, T ) ∈ Rn+1. Then for each z = γw ∈ Γ∗,

γ ∈ Γ, w ∈ Γ∗, |w| = n + 1 it holds that S(γw) = γ ◦ S(w) and T (γw) = γ ◦ T (w).

But (γ ◦ S, γ ◦ T ) ∈ Rn = Rn+1, thus (γ ◦ S)n = (γ ◦ T )n, which implies that

γ ◦ S(w) = γ ◦ T (w) for all w ∈ Γ∗, |w| < n, that is, S(z) = T (z) for all |z| < n + 2.

That is, (S, T ) ∈ Rn+2. Since Rn+2 ⊆ Rn+1 we get that Rn+1 = Rn+2 = · · · = Rn+k

for any k > 1. Denote by Zi = WD/Ri the set of equivalence classes generated by

Ri. It is easy to see that card(WD/Ri) ≤ card(WD/Ri+1) ≤ N for all i > 0 and

equality holds only if Ri = Ri+1. Assume that the strict inclusion Ri ⊃ Ri+1 holds

for all N ≥ i ≥ 1. Then we get that N ≥ card(ZN+1) > · · · > card(Z2) > card(Z1).

But then card(Z1) ≤ −1, which is a contradiction. That is, there exists N ≥ i ≥ 1

such that Ri = Ri+1 = · · · = RN+k, k > 0. That is, RN =
⋂

i≤1 Ri = id. That is,

SN = TN ⇐⇒ S = T . It implies that ηN is injective. It is straightforward to see

that ηN is surjective.

Theorem 66 above implies that if J is finite and we know that D has a realization

with at most N states, then a minimal realization of D can be computed from finite

data. In fact, the proof of the theorem above yields the following algorithm.

ComputeAutomataRealization(WD,N,N+1)

1. Assume that WD,N,N+1 = {S1, . . . , SK}. Let Q = {1, . . . ,K}

2. Let δ(i, x) = j if Sj(w) = Si(xw) for all w ∈ Γ∗, |w| < N .

3. Let λ(i) = Si(ε), i = 1, 2, . . . ,K.

4. Let A = (Q,Γ, O, δ, λ).

316



10.2. MOORE-AUTOMATA

5. Let ζ(j) = i if ψj(w) = Si(w) for all w ∈ Γ∗, |w| < N + 1.

6. return (A, ζ).

Proposition 37. Assume that it is possible to check algorithmically if o1 = o2 for all

o1, o2 ∈ O. The algorithm ComputeAutomataRealization(WD,N,N+1) above always

terminates if card(WD,N,N ) = card(WD,N+1,N ) = card(WD,N,N+1) and it returns a

N -partial realization (A, ζ) of D. The realization (A, ζ) is isomorphic to (AN , ζN )

from Theorem 66. If card(WD,N,N ) = card(WD) then the realization (A, ζ) is a

minimal realization of D. In particular, if D has a realization (A
′

, ζ
′

) such that

card(A
′

) ≤ N , then (A, ζ) is a minimal realization of D

Proof. Assume that card(WD,N,N ) = card(WD,N+1,N ) = card(WD,N,N+1). Recall

from the proof of Theorem 66 the map η : WD,N,N+1 → WD,N,N , η(T )(w) = T (w)

for all w ∈ Γ∗, |w| < N . Since card(WD,N,N ) = card(WD,N,N+1), we get that η is

bijective. Consider the map φ : WD,N,N+1 → Q, defined by φ(Si) = i, i = 1, . . . ,K.

Define ψ : WD,N,N → Q by ψ = φ◦η−1. It is easy to see that ψ is a bijection. Consider

the realization (AN , ζN ) and denote AN = (WD,N,N ,Γ, O, δN , λN ). Consider the

map f : (i, γ) 7→ ψ(δN (ψ−1(i), γ)). It is easy to see that ψ−1(i) = η(Si). Thus,

δN (ψ−1(i), γ) = δN (η(Si), γ). Assume that Si = (w ◦ φj)N+1 for some |w| < N .

Then δN (η(Si), γ) = (wγ ◦ φj)N = η(Sk) for some k ∈ {1, . . . ,K}, moreover such

a k is unique due to bijectivity of η. That is, ψ(δN (ψ−1(i), γ)) = k such that

Sk(v) = η(Sk)(v) = φj(wγv) = Si(γv) for all v ∈ Γ∗, |v| < N + 1. Thus, by taking

δ = f we get that δ exists and it is well-defined.

It is easy to see that ζ and λ are both well-defined. Notice that ζ(j) = ψ(ζN (j)) =

ψ((φj)N ) and λ(ψ(T )) = T (ε) = λN (T ). Thus, we get that (A, ζ) is well-defined

and ψ : (AN , ζN ) → (A, ζ) is a automaton isomorphism. Since (AN , ζN ) is a N -

realization, we get that (A, ζ) is a N -realization too.

If card(WD,N,N ) = card(WD), then

card(WD,N,N ) = card(WD,N+1,N ) = card(WD,N,N+1)

and (AN , µN ) is a minimal realization of D. Since (A, µ) and (AN , ζN ) are isomorphic

we get that (A, ζ) is a minimal realization of D too.

It is very easy to give an algorithm for transforming an arbitrary Moore-automaton

realization to a reachable and observable one. In fact, such algorithms are well-known

for realization of a single input-output map. The adaptation of those algorithms are

straightforward. We will present these algorithms in order to keep the paper self-

contained.
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Let (A, ζ), A = (Q,Γ, O, δ, λ) be a Moore-automaton realization of D. Assume

that card(Q) = n. Define the set Reach(A, ζ) by Reach(A, ζ) = {q ∈ Q | ∃j ∈ J,w ∈

Γ∗ : δ(ζ(j), w) = q}. Below we present an algorithm for construction Reach(A, ζ), if

J is finite.

ComputeReachableSet((A, ζ))

1. R0 = {ζ(j) | j ∈ J}

2. Ri+1 = Ri ∪ {δ(q, x) | q ∈ Ri, x ∈ Γ}

3. If Ri+1 6= Ri, then goto Step 2 else return Ri.

Proposition 38. The algorithm ComputeReachableSet terminates and it computes

Reach(A, ζ).

Proof. Consider the sets R0, R1, . . .. It is easy to see by induction that Ri = {q ∈

Q | existsj ∈ J,w ∈ Γ∗, |w| ≤ i : δ(ζj , w) = q}. Thus, Reach(A, ζ) =
⋃+∞

i=1 Ri.

On the other hand Ri ⊆ Ri+1 for each i ∈ N. Assume that Ri = Ri+1. Then

Ri+2 = Ri+1 = Ri. Indeed, let q ∈ Ri+2. Then either q ∈ Ri+1 or there exists

q
′

∈ Ri+1, x ∈ Γ such that δ(q
′

, x) = q. But q
′

∈ Ri+1 = Ri, thus δ(q
′

, x) = q ∈ Ri+1.

That is Ri+2 = Ri+1. Thus, if the algorithm stops at Step 3 with Ri = Ri+1 then

Ri = Ri+1 = Ri+2 = . . . = Ri+k for all k ∈ N. But then Reach(A, ζ) = Ri, since

Rj ⊆ Ri for all j < i. It is left to show that the algorithm always terminates. Assume

that the algorithm does not terminate. Then R1 ⊂ R2 ⊂ R3 · · · ⊂ Rn. But then

1 ≤ card(R1) < card(R2) < . . . < card(Rn) ≤ n, which implies that card(Rn) = n

has to hold, that is, Rn = Q. Since Rn ⊆ Rn+1 we get that Rn = Rn+1 and the

algorithm terminates after n + 1 steps.

Based on the algorithm above one can construct a reachable realization of D based

on (A, ζ) as follows.

ComputeReachableAutomata((A, ζ))

1. Qr = ComputeReachableSet(A, ζ)

2. Let δr(q, x) = δ(q, x), for all q ∈ Qr, x ∈ Γ

3. Let λr(q) = λ(q) for all q ∈ Qr

4. Let ζr(j) = ζj

5. Let Ar = (Qr,Γ, O, δ, λ).
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It is easy to see that (Ar, ζr) is a reachable realization of D. It is also easy to see that

the construction above gives an algorithm for computing (Ar, ζr). The algorithm for

constructing the set Reach(A, ζ) can be used for checking reachability. The following

procedure can be used to decide whether (A, ζ) is reachable

IsReachabelAutomata((A, ζ)

1. S = ComputeReachableSet(A, ζ).

2. If card(S) = card(A) then return true else return false.

One can also formulate and algorithm for computing an observable realization of D

based on (A, ζ). In order to do so it must be possible to decide by an algorithm

whether o1 and o2 are identical for any o1, o2 ∈ O. Define the indistinguishability

relation I ⊆ Q × Q by (q1, q2) ∈ I ⇐⇒ (∀w ∈ Γ∗ : λ(q1, w) = λ(q2, w). It is easy to

see that I is an equivalence relation. Moreover, A is observable if and only if I = id

or in other words card(I) = n, where id = {(q, q) ∈ (Q×Q) | q ∈ Q}. The algorithm

below computes the indistinguishability relation.

ComputeIndistingRelation((A, ζ))

1. I0 = {(q1, q2) ∈ (Q × Q) | λ(q1) = λ(q2)}

2. Ik+1 = Ik ∩ {(q1, q2) ∈ (Q × Q) | (δ(q1, x), δ(q2, x)) ∈ Ik,∀x ∈ Γ}

3. If Ik+1 6= Ik the goto Step 2 else return Ik

Proposition 39. The algorithm ComputeIndistingRelation always terminates and

it computes the relation I.

Proof. Notice that Ik = {(q1, q2) ∈ (Q×Q) | ∀w ∈ Γ∗, |w| ≤ k : λ(q1, w) = λ(q2, w)}.

It is also easy to see that Ik+1 ⊆ Ik. Notice that I =
⋂+∞

k=0 Ik. We will show that

if Ik = Ik+1 then Ik+2 = Ik+1. Indeed, assume that (q1, q2) ∈ Ik+1 = Ik. Then

for each x ∈ Γ (δ(q1, x), δ(q2, x) ∈ Ik = Ik+1. Thus (q1, q2) ∈ Ik+2. Hence, if

Ik = Ik+1 then Ik = Ik+1 = . . . = I. It is left to show that the algorithm terminates.

Assume the contrary. Then I0 ⊃ I2 · · · ⊃ In2−n ⊇ Id. Thus, n2 ≥ card(I0) >

card(I1) > · · · > card(In2−n) ≥ n. But this implies that card(In2−n) = n, thus,

I = In2−n = Id = In2−n+1, thus the algorithm must terminate.

The algorithm above can be used to check whether (A, ζ) is observable.

IsObservableAutomata((A, ζ))

1. I = ComputeIndistingRelation((A, ζ)).
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2. If card(I) = card(A) then return true else return false.

Based on the algorithm above one can construct an observable realization as follows.

ComputeObservableAutomata((A, ζ))

1. I = ComputeIndistingRelation((A, ζ))

2. Compute the sets [q] = {s ∈ Q | (q, s) ∈ I} for each q ∈ Q

3. Construct Qo = {[q] | q ∈ Q}. Define λo([q]) = λ(q), δo([q], x) = [δ(q, x)] for

each q ∈ Q,x ∈ Γ. Let ζo(j) = [ζ(j)].

4. return (Ao, ζo) = ((Qo,Γ, O, δo, λo), ζo).

It is easy to see that the algorithm above indeed constructs an observable realization

(Ao, ζo) of D. A minimal realization of D can be computed from (A, ζ) as follows.

ComputeMinimalAutomata((A, ζ))

1. (Ar, ζr) = ComputeReachableAutomata((A, ζ))

2. (Amin, ζmin) = ComputeObservableAutomata((Ar, ζr))

3. return (Amin, ζmin)

10.3 Hybrid Power Series

In this subsection the algorithmic aspects of hybrid formal power series will be dis-

cussed. That is, we will present a procedure for constructing a hybrid representation

of a family of hybrid formal power series from finite data. We will also give algorithms

for checking minimality, observability and reachability of hybrid representations and

for construction of a minimal hybrid representation from a specified hybrid represen-

tation. Throughout the section we will assume that J1 is finite, that is, we will study

only finite families of hybrid formal power series .

Recall the results on partial realization by a Moore automaton from Section 10.2.

Recall the results on partial representation of formal power series from Section 10.1.

Let Ω = {Zj ∈ Rp ¿ X∗ À ×F (X∗
2 , O) | j ∈ J} be an indexed set of hybrid

formal power series with J = J1 ∪ (J1 × J2). Assume that J1 is a finite set.

Recall from Subsection 10.1.1 the definition of the map ηN : Rp ¿ X∗ À→ Rp ¿

X<N À, i.e. ηN (T ) is the restriction of T to the set of words over X of length less

than N . For each N ∈ N define the set

ŌN = {((ηN (Sj))j∈J2
| ∀j ∈ J2 : Sj ∈ Rp ¿ X∗ À}
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Again, if J2 = ∅ then we take ŌN = {∅} = Ō. For each j1 ∈ J1 define the map

κj1,N : X∗
2 3 w 7→ ((Zj1)D, (ηN (w ◦ Zj1,j2)C)j2∈J2

), ) ∈ O × ŌN

Define the indexed set

DΩ,N = {κj,N | j ∈ J1}

Let HΩ,N,M = HΨΩ,N,M for each M,N ∈ N. Recall from Subsection 10.1.1, Lemma

53, that if rank HΩ,N,N = rank HΩ, then the restriction of the map ηN to WΨΩ
is a

linear isomorphism. The discussion above yields the following.

Lemma 56. Assume that (A, ζ) is a reachable realization of DΩ,N , where

A = (Q,X2, O × ŌN , δ, λ)

Assume that rank HΩ,N,N = rank HΩ. Consider the Moore-automaton realization

(Ā, ζ) such that Ā = (Q,X2, O × Ō, δ, λ̄) where

λ̄(q) = (o, (η−1
N (Tj))j∈J2

) ⇐⇒ λ(q) = (o, (Tj)j∈J2
)

if J2 6= ∅, and λ̄(q) = λ(q) if J2 = ∅. Then (Ā, ζ) is a realization of DΩ. Moreover,

(Ā, ζ) is reachable and if (A, ζ) is observable, then (Ā, ζ) is observable too.

Proof. First of all, we have to show that Ā is well-defined. For this, we have to show

that λ̄(q) is well-defined. Notice that (A, ζ) is a reachable realization of DΩ,N . It

means that for all q ∈ Q there exists a j ∈ J1, w ∈ X∗
2 such that q = δ(ζ(j), w). Since

(A, ζ) is a realization of DΩ,N , we get that λ(q) = κj,N (w) = (Zj(D)(w), (ηN ((w ◦

(Zj,j2)C))j2∈J2
). Notice that ηN (w ◦ (Zj,j2)C) ∈ ηN (WΨΩ

) = WΨΩ,.,N . Thus, we get

that for all q ∈ Q, if λ(q) = (o, (Tj)j∈J2
), then Tj ∈ WΨΩ,.,N for all j ∈ J2 and thus

η−1
N (Tj) ∈ WΨΩ

is uniquely defined for all j ∈ J2. Thus, λ̄(q) is well defined.

Consider an arbitrary f ∈ J1 and w ∈ X∗
2 . If (A, ζ) is a realization of DΩ,N

then it holds that λ(δ(ζ(f), w)) = κf,N (w). Let q = δ(ζ(f), w). Thus, λ(q) =

κf,N (w). We will show that λ̄(q) = κf (w). Indeed, κf,N (w) = ((Zf )D(w), (ηN (w ◦

(Zf,j)C))j∈J2
Notice that (η−1

N (ηN (w ◦ (Zf,j)C)))j∈J2
= (w ◦ (Zf,j)C)j∈J2

. Thus,
¯λ(q) = ((Zf )D(w), (w ◦ (Zf,j)C)j∈J2

) = κf (w).

Thus, λ̄(δ(ζ(f), w)) = κf (w) for any w ∈ X∗
2 , f ∈ J1. That is, (Ā, ζ) is a

realization of DΩ. If (A, ζ) is reachable, then it is straightforward to see that (Ā, ζ)

is reachable.

Assume that (A, ζ) is observable. Let q1, q2 ∈ Q and assume that q1 and q2

are indistinguishable in Ā. Fix a w ∈ X∗
2 and let q

′

1 = δ(q1, w) and q
′

2 = δ(q2, w).

Then (o
′

, (η−1
N (S)j)j∈J2

) = λ̄(q
′

1) = λ̄(q
′

2) = (o, (η−1
N (Tj))j∈J2

) such that λ(q
′

1) =

(o
′

, (Sj)j∈J2
) and λ(q

′

2) = (o, (Tj)j∈J2
). Since Tj , Sj ∈ WΨΩ,.,N for all j ∈ J2 and
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ηN is bijective and η−1
N (Tj) = η−1

N (Sj), we get that Sj = Tj for all j ∈ J2 and

o = o
′

. Thus we get that λ(q1, w) = λ(q
′

1) = λ(q
′

2) = λ(q2, w). Thus, we get that

λ(q1, w) = λ(q2, w) for each w ∈ X∗
2 . That is, q1 and q2 are indistinguishable in A.

By observability of A we get that q1 = q2. Hence Ā is observable.

Let R an observable representation of ΨΩ and assume that rank HΩ,N,N =

rank HΩ. Let (A, ζ) be a reachable realization of DΩ,N . Then by the lemma above

(Ā, ζ) is a reachable realization of DΩ. Consider the hybrid representation HRR,Ā,ζ .

Notice A and Ā have the same state-space and state-transition maps. Thus, all the

information we need for the construction of HRR,Ā,ζ is already contained in R and

(A, ζ). In fact, if we know R and (A, ζ), then the construction of HRR,Ā,ζ can be

carried out by a numerical computer algorithm. Thus, denoting HRR,Ā,ζ simply by

HRR,A,ζ is justified in some sense. In the rest of the subsection we will use this abuse

of notation and we will denote HRR,Ā,ζ by HRR,A,ζ

The following theorem is an easy consequence of Theorem 66 and Theorem 64.

Theorem 67. Assume that rank HΨΩ,N,N = rank HΨΩ,N+1,N = rank HΨΩ,N,N+1

and card(WDΩ,N ,D,D) = card(WDΩ,N ,D+1,D) = card(WDΩ,N ,D,D+1). Let RN be the

N -partial representation of ΨΩ from Theorem 64. Let (AD, ζD) be the D-partial

realization of DΩ,N from Theorem 66. If card(WDΩ,N ,D,D) = card(WDΩ,N
) and

rank HΩ,N,N = rank HΩ then the hybrid representation

HRN,D = HRRN ,ĀD,ζD
, µRN ,ĀD,ζD

is a minimal hybrid representation of Ω.

Proof. If rank HΨΩ,N,N = rank HΨΩ,N+1,N = rank HΨΩ,N,N+1, then RN is an N -

partial representation of ΨΩ. If

card(WDΩ,N ,D,D) = card(WDΩ,N ,D+1,D) = card(WDΩ,N ,D,D+1)

then (AD, ζD) is a D-partial realization of DΩ,N . Assume that rank HΩ,N,N =

rank HΩ. Then by Theorem 64 RN is a minimal representation of ΨΩ. If

card(WDΩ,N ,D,D = card(WDΩ,N
)

then by Theorem 66 (AD, ζD) is a minimal realization of DΩ,N . By Lemma 56 the

condition rank HΩ,N,N = rank HΩ implies that (ĀD, ζD) is a minimal realization

of DΩ. But if RN is a minimal representation of ΨΩ and (ĀD, ζD) is a minimal

realization of DΩ, then by Corollary 9 HRN,D = HRRN ,ĀD,ζD
is a minimal hybrid

representation of Ω.
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Notice that RN can be constructed from the columns of the finite matrix HΩ,N,N

and (AD, ζD) can be constructed from the finitely many data points of the (finite)

set WDΩ,N ,D,D. Thus, HRN,D can be constructed from finitely many data and this

data can be directly obtained from Ω. The following lemma is an easy consequence

of Theorem 66 and Theorem 64.

Lemma 57. If Ω has a hybrid representation HR such that dim HR ≤ (q, p),

then rank HΩ,M,M = rank HΩ and card(WDΩ,M ,q,q) = card(WDΩ,M
) where M =

q · card(J2) + p if J2 6= ∅ and M = p otherwise. In particular, if dimHR = (q, p)

and for some N ∈ N

N ≥

{
q · card(J2) + p if J2 6= ∅

max{q, p} if J2 = ∅
(10.5)

then rank HΩ,N,N = rank HΩ and card(WDΩ,N ,N,N ) = card(WDΩ,N
).

Proof. Assume that card(J2) = m. If HR is a hybrid representation of Ω, then RHR

is a representation of ΨΩ and dimRHR ≤ qm+p = M . Thus, rank HΩ ≤ qm+p = M .

Hence, rank HΩ,M,M = rank HΩ.

Assume that ĀHR = (Q,X2, O × Ō, δ, λ̄). Define ÃHR = (Q,X2, O × ŌN , δ, λ̃),

such that λ̃(q) = (o, (ηN (Tj))j∈J2
) if λ̄(q) = (o, (Tj)j∈J2

). It is easy to see that

(ÃHR, µD) is a realization of DΩ,N and card(ÃHR) ≤ q. Thus, card(WDΩ,N ,q,q) =

card(WDΩ,N
).

Assume that N ∈ N is such that (10.5) holds. Notice that N ≥ q and N ≥ p.

Indeed, if J2 6= ∅, then m > 1 and thsu N ≥ qm + p ≥ q + p ≥ max{q, p}. If J2 = ∅

then N ≥ max{q, p} by definition. Thus, dimHR = (q, p) ≤ (N,N) and the second

statement of the lemma follows from the first one.

Corollary 24. If Ω has a hybrid representation HR such that dimHR ≤ (q, p) then

for

M =

{
q · card(J2) + p if J2 6= ∅

p if J2 = ∅

HRM,q is a minimal representation of Ω. If

N ≥

{
q · card(J2) + p if J2 6= ∅

max{q, p} if J2 = ∅

then HRN,N is a minimal hybrid representation of Ω.

In particular, if Ω is a finite collection of hybrid formal power series it is known

that Ω has a realization of dimension at most (p, q), then a minimal hybrid represen-

tation of Ω can be constructed from finite data.
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The results above also allow us to check reachability and observability of hybrid

representations algorithmically and to construct an equivalent minimal hybrid rep-

resentation from a specified representation HR. Consider a hybrid representation.

HR = (A,Y, (Xq, {Aq,z, Bq,z,j2}j∈J2,z∈X1
, Cq, {Mδ(q,y),y,q}y∈X2

)q∈Q , J, µ)

where A = (Q,X2, O, δ, λ). Recall the definition of ĀHR and recall the definition

of the formal power series Tq,j , q ∈ Q, j ∈ J2. For any N ∈ N, N > 0 define the

following Moore-automaton

AHR,N = (Q,X2, O × ŌN , δ, λ̃), and λ̃(q) = (λ(q), (ηN (Tq,j))j∈J2
)

That is, λ̃(q) = (o, (ηN (Sj))j∈J2
if λ̄(q) = (o, (Sj)j∈J2

). Recall that for each q ∈ Q,

j ∈ J2, y1, . . . , yk ∈ X2, k ≥ 0, x1, . . . , xk+1 ∈ X∗
1 , k +

∑k+1
z=1 xz < N

(Tq,j)N (x1y1 · · ·xkykxk+1) = Cqk
Aqk,xk+1

Mqk,yk,qk−1
· · ·Mql,yl,ql−1

Aql−1,sl
Bql−1,zl,j

where l = min{z | |xz| > 0}, sl ∈ X∗
1 , zl ∈ X1, xl = zlsl and qi = δ(q, γ1 · · · γi),

i = 0, . . . , k.

Lemma 58. Assume the notation above. If HR is a representation of Ω, then

(AHR,N , µD) is a realization of DΩ,N . The Moore-automaton (AHR,N , µD) is reach-

able if and only if (A, µD) is reachable. Assume that dim HR = (q, p) and N ≥

q · card(J2)+ p, or, rank HΩ,N,N = rank HΩ and A is reachable. Then (AHR,N , µD)

is observable if and only if (ĀHR, µD) is observable.

Proof. Define the map hN : O×Ō → O×ŌN by hN : (o, (Tj)j∈J2
) 7→ (o, (ηN (Tj))j∈J2

).

Notice that κf,N (w) = hN (κf (w)), f ∈ J1. Recall from Theorem 5 that if HR is a

representation of Ω then (Ā, µD) is a realization of DΩ. Thus, λ̄(µD(f), w) = κf (w).

But for each q ∈ Q, λ̄(q) = (λ(q), (Tq,j)j∈J2
), thus λ̃(q) = hN (λ̄(q)). That is,

λ̃(µD(f), w) = hN (λ̄(µD(f), w) = hN (κf (w)) = κf,N . That is, (AHR,N , µD) is a

realization of DΩ,N . It follows from definition that (AHR,N , µD) is reachable if and

only if (A, µD) is reachable (the state-space and the state-transition maps of the two

automata coincide ).

First we will show that if (A, µD) is reachable and rank HΩ,N,N = rank HΩ, or

N ≥ q · card(J2) + p, then the map ηN : Rp ¿ X∗ À3 T 7→ T |w∈X∗,|w|<N ∈ Rp ¿

X<N À is injective when restricted to Tq,j , q ∈ Q, j ∈ J2.

Assume that (A, µD) is reachable. Then (Ā, µD) is reachable. It means that for

all q ∈ Q there exists w ∈ X∗
2 , j ∈ J1 such that q = δ(µD(j), w). Since (Ā, µD) is also

a realization of DΩ we get that λ̄(q) = κj(w), that is, λ̄(q) = (λ(q), (Tq,j2)j2∈J2
) =

((Zj)D(w), (w ◦ (Zj,j2)C)j2∈J2
). Thus, w ◦ (Zj,j2)C = Tq,j2 for all j2 ∈ J2. That is,

324



10.3. HYBRID POWER SERIES

Tq,j ∈ WΨΩ
for all j ∈ J2. Assume that rank HΩ,N,N = rank HΩ. Then ηN : WΨΩ

→

Rp ¿ X̃<N À is injective. In particular, ηN is injective on {Tq,j | q ∈ Q, j ∈ J2}.

Assume that dim HR = (d, n) and n + dm ≤ N . Let J̃1 = HHR, J̃ = J̃1 ∪

(J̃1 × J2). Define the hybrid formal power series Sh,j and Sh, h ∈ HHR, j ∈ J2

as follows. Let Sh,j2 = ((Sh)D, Tq,j2), where (Sh)D(w) = λ(q, w), if h = (q, x)

and w ∈ X∗
2 . Let Sh = ((Sh)D, (Sh)C), where Sh(w) = ΠY ◦ υHR(h,w). De-

fine the following set of hybrid formal power series Θ = {Sj | j ∈ J̃}. It is

easy to see that for all j1 ∈ J1, Zj1 = Sµ(j1) and Zj1,j2 = Sµ(j1),j2 , j2 ∈ J2.

It is also easy to see that Tq,j = (S(q,0),j)C for all j ∈ J2. Assume that HR =

(A,Y, (Xq, {Aq,z, Bq,z,j2
}j∈J2,z∈X1

, Cq, {Mδ(q,y),y,q}y∈X2
)q∈Q , J, µ). Let

H̃R = (A, (Xq, {Aq,z, Bq,z,j}j∈J2,z∈X1
, Cq, {Mδ(q,y),y,q}y∈X2

)q∈Q, J̃ , µ̃)

where µ̃((q, x)) = (q, x) be a hybrid representation. Notice that H̃R coincides with

HR except µ̃ and HHR = HgHR
, υHR = υgHR

. It is easy to see that H̃R is a hybrid

representation of Θ and thus by Lemma 57 rank HΘ,N,N = rank HΘ, thus ηN is

injective on WΨΘ
. Since Tq,j = (S(q,0),j)C ∈ WΨΘ

for all j ∈ J2, q ∈ Q, we get that

ηN is injective on the set {Tq,j | q ∈ Q, j ∈ J2}.

That is, if either dimHR = (q, p) and qm + p ≤ N or rank HΩ,N,N = rank HΩ

and (A, µD) is reachable, then ηN is injective on the set S = {Tq,j | j ∈ J2, q ∈ Q}.

Thus, the map hN is bijective on the set O × {(Tq,j)j∈J2
| q ∈ Q}. Hence, for each

w ∈ X∗
2 , q1, q2 ∈ Q, hN (λ̄(q1, w)) = λ̃(q1, w) = λ̃(q2, w) = hN (λ̄(q1, w)) is equivalent

to λ̄(q1, w) = λ̄(q2, w). (Ā, µD) is observable if and only if (∀w ∈ X∗
2 : λ̄(q1, w) =

λ̄(q2, w)) =⇒ q1 = q2. But (∀w ∈ X∗
2 : λ̄(q1, w) = λ̄(q2, w)) is equivalent to

(∀w ∈ X∗
2 : λ̃(q1, w) = λ̃(q2, w)). Thus, observability of (Ā, µD) is equivalent to

(∀w ∈ X∗
2 : λ̃(q1, w) = λ̃(q2, w)) =⇒ q1 = q2), which is equivalent to (AHR,N , µD)

being observable.

Consider the following algorithm for computing (AHR,N , µD).

ComputeMooreAutomata(HR,N)

1. For each q ∈ Q, define λ̃(q) = (λ(q), ((Tq,j)N )j∈J2
, (Tq,j)N ∈ Rp ¿ Γ̃<N À,

j ∈ J2.

(Tq,j)N (z1γ1 · · · γkzk+1) = Cqk
Aqk,zk+1

Mqk,γk,qk−1
· · ·Mql,γl,ql−1

Aql−1,vl
Bql−1,s,j

where qi = δ(q, γ1 · · · γi), l = min{h | |zh| > 0},
∑k+1

i=1 |zi|+k < N , i = 0, . . . , k,

γ1, . . . , γk ∈ X2, z1, . . . , zk+1 ∈ X∗
1 , k ≥ 0. zl = svl, s ∈ X1, vl ∈ X∗

1 ,

2. return (Q,X2, O × ŌN , δ, λ̃), µD)
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Since

(Tq,j)N (z1γ1 · · · γkzk+1) = Cqk
Aqk,zk+1

Mqk,γk,qk−1
· · ·Mql,γl,ql−1

Aql−1,vl
Bql−1,s,j =

= Tq,j(z1γ1 · · · γkzk+1)

for all w = z1γ1 · · · γkzk+1 ∈ X∗, k ≥ 0, z1, . . . , zk+1 ∈ X∗
1 , γ1, . . . , γk ∈ X2, z1 =

· · · = zl−1 = ε, zl = svl, s ∈ X1, |w| = k +
∑k+1

j=1 |zj | < N . It follows that

ComputeMooreAutomata(HR,N) always terminates and returns (AHR,N , µD).

The following algorithm constructs RHR from HR. Assume that

HR = (A,Y, (Xq, {Aq,z, Bq,z,j2}j∈J2,z∈X1
, Cq, {Mδ(q,y),y,q}y∈X2

)q∈Q , J, µ)

Assume that Q = {q1, . . . , qd}, card(J2) = m, J2 = {j1, . . . , jm}, Xq = Rnq , q ∈ Q

and n = nq1
+nq2

+ · · ·+nqd
. Denote by Ok,l ∈ Rk×l the matrix, all entries of which

are zero. We will represent the state-space of RHR by Rn+dm ∼= Rn
⊕

Rdm. The first

nq1
coordinates correspond to the space Xq1

, the second nq2
coordinates correspond

to the space Xq2
and so on. Thus, the coordinates from n − nqd

to nd correspond

to the space Xqd
. The first m coordinates after the first n coordinates correspond

the the space spanned by vectors {eq1,j1 , . . . , eq1,jm
} taken in this order. That is,

the first coordinate inside the block of m coordinates correspond to eq1,j1 , the second

coordinate to eq1,j2 and so on. The subsequent block of m coordinates corresponds to

the space spanned by {eq2,j1 . . . , eq2,jm
}, where the first coordinate inside the block

corresponds to eq2,j1 , the second coordinate to eq2,j2 and so on. That is, the lth

coordinate in the ith block of m-coordinates corresponds to the vector eqi,jl
, for all

i = 1, . . . , d, l = 1, . . . ,m. Here we used the notation of the definition of RHR in

Subsection 3.3.2.

ComputeRepresentation(HR)

1. For all z ∈ X1, define

Me,1,z =




Aq1,z 0 0 · · · 0

0 Aq2,z 0 · · · 0
...

...
...

...
...

0 0 0 · · · Aqd,z




Me,2,z =




B̃q1,z 0 0 · · · 0

0 B̃q2,z · · · 0

0 0 · · · B̃qd




where B̃q,z =
[
Bq,z,j1 Bq,z,j2 · · · Bq,z,jm

]
∈ Rnq×m for all q ∈ Q, z ∈ X1.

Let Mz =

[
Me,1,z Me,2,z

Odm,n Odm,dm

]
for all z ∈ X1.
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2. For all γ ∈ Γ, define

Mγ,1 =




Mq1,γ,q1
Mq1,γ,q2

· · · Mq1,γ,qd

Mq2,γ,q1
Mq2,γ,q2

· · · Mq2,γ,qd

...
...

...
...

Mqd,γ,q1
Mqd,γ,q2

· · · Mqd,γ,qd




Mγ,2 =




δq1,γ,q1
δq1,γ,q2

· · · δq1,γ,qd

δq2,γ,q1
δq2,γ,q2

· · · δq2,γ,qd

...
...

...
...

δqd,γ,q1
δqd,γ,q2

· · · δqd,γ,qd




, where Mq1,γ,q2
= 0 if δ(q2, γ) 6= q1 and

δq1,γ,q2
=

{
(1, 1, . . . , 1) ∈ R1×m if δ(q2, γ) = q1

(0, 0, . . . , 0) ∈ R1×m otherwise

Let Mγ =

[
Mγ,1 On,dm

On,dm Mγ,2

]
for all γ ∈ X2.

3. Define

C̃ =
[
Cq1

Cq2
· · · Cqd

0 0 · · · 0
]

4. For all f ∈ J1, jl ∈ J2, l = 1, . . . ,m, define B̃f,jl
= ek, where k = n+(i−1)m+l,

µD(f) = qi and ek ∈ Rn+md.

5. For all f ∈ J1, define B̃f =




Ok,1

µC(f)

On−k−nqi
,1

Odm,1


, where µD(f) = qi and k =

∑i−1
j=1 nqj

.

6. return R = (Rn+dm, {Mz}z∈X , B̃, C̃).

It is easy to see that the algorithm ComputeRepresentation returns a representation

isomorphic to RHR.

Let R = (Rn, {Mz}z∈X , B̃, C̃) be an observable representation of ΨΩ and assume

that (A, ζ) is a reachable realization of DΩ,N . The following algorithm constructs

the linear hybrid representation HR,Ā,ζ , where Ā is constructed from A as described

in Lemma 56.

ComputeHybridRepresentation(R, Ã, ζ)
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1. Assume Ã = (Q,X2, O × ŌN , δ, λ̃).

2. Let A = (Q,X2, O, δ, λ), λ(q) = ΠO(λ(q)), for all q ∈ Q.

3. Assume that Q = {q1, . . . , qd}.

Let
[
Uq1

, Uq2
, · · · , Uqd

]
= ComputeStateSpace(R, Ã, ζ)

where Uq ∈ Rn×nq .

4. For each q ∈ Q, let X̃q = Rnq , and Ãq,z = UT
q MzUq, for all z ∈ X1.

5. For each q1, q2 ∈ Q, γ ∈ X2, δ(q2, γ) = q1 let M̃q1,γ,q2
= UT

q1
MγUq2

6. Let C̃q = CUq, for all q ∈ Q.

7. For each q ∈ Q, let (wq, f) = ComputePath(Ã, ζ, q)

For all j ∈ J2, z ∈ X1 let B̃q,z,j = UT
q MzMwq

Bf,j

8. For each f ∈ J1 let µ̃(f) = (ζ(f), Bf ).

9. Let HR = (A, (X̃q, {Ãq,z, B̃q,z,j}j∈J2,z∈X1
, C̃q, {M̃δ(q,γ),γ,q}γ∈X1

)q∈Q, J, µ̃)

10. return HR

We used the following algorithms

ComputePath(A, ζ, q)

1. S0 = {(ε, q)}

2. Sk+1 = {(q, γw) ∈ (Q × X∗
2 ) | (δ(q, γ), w) ∈ Sk}

3. if there exists (q, w) ∈ Sk such that q = ζ(f), then return (w, f) else goto 2

Proposition 40. If (A, ζ) is reachable, then the algorithm ComputePath(A, ζ, q)

terminates and it returns a pair (w, f) such that δ(ζ(f), w) = q.

Proof. Assume that w = γ1 · · · γk is such that δ(ζ(f), w) = q for some f ∈ J1.

Let qi = δ(ζ(f), γ1 · · · γi). Then (qi, γi+1γi+2 · · · γk) ∈ Sk−i. Indeed, by induction

on k − i, if k = i, then qk = q and S0 = {(ε, q)}. Assume that the statement

holds for k − i ≤ l. Then ql−1 = δ(ζ(f), γ1 · · · γl−1) and (ql, γl+1 · · · γk) ∈ Sk−l.

But then δ(ql−1, γl) = ql and thus (ql−1, γlγl+1 · · · γk) ∈ Sk−l+1. Thus, we get that

(ζ(f), γ1 · · · γk) = Sk. That is, after at most k steps the algorithm terminates

It is also easy to see by induction on k that (s, w) ∈ Sk implies that δ(s, w) = q.

Hence, if the algorithm terminates, it returns (w, f) such that δ(ζ(f), w) = q.
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ComputeStateSpace(R,A, ζ)

1. Assume that A = (Q,X2, O, δ, λ), and Q = {q1, . . . , qd}. Assume that R =

(Rn, {Mz}z∈X , B,C). Assume X1 = {z1, . . . , zp}.

For i = 1, . . . , d,

(wi, fi) = ComputePath(A, ζ, qi)

Fqi
= {finJ1 | ζ(f) = qi}

Assume Fqi
= {fi,1, . . . , fi,hi

} Let

BFqi
=

{ [
Bfi,1

, Bfi,2
, · · · , Bfi,hi

]
if Fqi

6= ∅

0 ∈ Rn if Fqi
= ∅

Rqi,0 =




BFT
qi

(Mz1
Mwi

Bfi,j1

(Mz1
Mwi

Bζ(fi),j2)
T

· · ·

(Mz1
Mwi

Bfi,jm
)T

· · ·

(Mz1
Mwi

Bfi,j1)
T

(Mz1
Mwi

Bfi,j2)
T

· · ·

(Mzp
Mwi

Bfi,jm
)T




T

2. For each i = 1, 2, . . . , d compute the set {qi,1, . . . , qi,ki
} and {γ1,qi

, . . . , γki,qi
}

such that for each q ∈ Q, δ(q, γ) = qi if and only if q = qi,j , γ = γj,qi
for some

j = 1, . . . , ki.

3. For each i = 1, . . . , d

A =
[
Rqi,k, Mz1

Rqi,k, Mz2
Rqi,k, · · · Mzp

Rqi,k

]

B =
[
Mγ1,qi

Rqi,1,k, Mγ2,qi
Rqi,2,k, · · ·Mγki,qi

Rqi,ki
,k

]

Rqi,k+1 =
[
A B

]

4. If for all i = 1, . . . d, rank Ri,k+1 = rank Ri,k then

(a) Compute Uqi
∈ Rn×nqi such that nqi

= rank Ri,k, UT
qi

Uqi
= Id ∈ Rnqi

×nqi

and ImUqi
= Ri,k.

(b) return
[
Uq1

Uq2
· · · Uqd

]
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else repeat step 3

Recall the definition of a hybrid representation

HRR,A,ζ = (A,Y, (Xq, {Aq,z, Bq,z,j2}j∈J2,z∈X1
, Cq, {Mδ(q,y),y,q}y∈X2

)q∈Q , J, µ)

associated with the representation R and automata (A, ζ) from Section 3.3. With

the notation above the following holds.

Proposition 41. The algorithm ComputeStateSpace(R,A, ζ) always terminates

and it returns the matrix
[
Uq1

. . . Uqd

]
such that ImUqi

= Xqi
and UT

qiUqi
= I.

Proof. Recall the formula (3.15) from Section 3.3. Notice that ImRq,k ⊆ ImRq,k+1,

i.e. rank Rq,k ≤ rank Rq,k+1. By induction on k it follows that ImRq,k ⊆ Xq holds

too. First we show that if rank Rq,k+1 = rank Rq,k for all q ∈ Q, then rank Rq,k+2 =

rank Rq,k+1 for all q ∈ Q. Equivalently, we will show that if ImRq,k+1 = ImRq,k

then ImRq,k+2 = ImRq,k+1 holds too. Indeed,

ImRqi,k+2 = ImRqi,k+1 + Mz1
ImRqi,k+1 + · · · + Mzp

ImRqi,k+1+

+ Mγ1,qi
ImRqi,1,k+1 + · · · + Mγki,qi

ImRqi,ki
,k+1 = ImRqi,k+

+ Mz1
ImRqi,k + · · · + Mzk

ImRqi,k + Mγ1,qi
ImRqi,1,k + · · ·Mγki,qi

ImRqi,ki
,k =

= ImRqi,k+1

Assume that the algorithm never terminates, that is, for each k ≥ 0 there exists

qk such that ImRqk,k ( ImRqk,k+1. Let nk =
∑d

i=1 rank Rqi,k. Thus we get that

n0 < n1 < · · · < nk < · · · , which implies that nk ≥ k. But nk ≤
∑d

i=1 dimXqi
≤ dn,

where dim R = n. But ndn+1 ≥ dn + 1 > dn, a contradiction. That is, the algorithm

terminates and it terminates in at most nd steps. It is easy to see by induction on k

that

ImRq,k = Span{Mzr+1
Mγr

Mzr
· · ·Mγl

Mzl
MvMγl−1

· · ·Mγ2
Mγ1

B̃f,j

| j ∈ J2, γ1, . . . , γr ∈ X2, f ∈ J1, 1 ≤ l ≤ r, zr+1, . . . , zl ∈ X∗
1 ,

v ∈ X1, k ≥ 0, q = δ(ζ(f), γ1 · · · γr), r +

r+1∑

i=1

ji ≤ k}+

+ Span{Mzr+1
Mγr

Mzr−1
· · ·Mγ1

Mz1
B̃f | γr, . . . , γ1 ∈ X2,

zr+1, . . . , z1X
∗
1 , r ≥ 0, q = δ(ζ(f), γ1 · · · γr), r +

r+1∑

i=1

ji ≤ k}

Thus, Xq =
∑∞

k=1 ImRq,k. If ImRq,k = ImRq,k+1 for all q ∈ Q then ImRq,k =

ImRq,k+l for all q ∈ Q, l ∈ N. Thus, if ImRq,k = ImRq,k+1 for all q ∈ Q then

Xq =
∑k

i=1 ImRq,i = ImRq,k. Since ImUq = ImRq,k and UT
q Uq = I, we get the

statement of the proposition.
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Now we are ready to show that ComputeHybridRepresentation(R, Ã, ζ) works

correctly.

Proposition 42. Assume that R is an observable representation of ΨΩ and (Ã, ζ)

is a reachable realization of DΩ,N . Then ComputeHybridRepresentation(R, Ã, ζ)

always terminates. If R is a representation of ΨΩ and rank HΩ,N,N = rank HΩ, then

ComputeHybridRepresentation(R, Ã, ζ) returns a hybrid representation isomorphic

to the hybrid representation HRR,Ā,ζ , where Ā is obtained from Ã as described in

Lemma 56. That is, if Ã = (Q,X2, O × ŌN , δ, λ̃) then (Ā, ζ) is a realization of DΩ,

where Ā = (Q,X2, O × Ō, δ, λ̄) and

λ̄(q) = (o, (η−1
N (Tj))j∈J2

) ⇐⇒ λ̃(q) = (o, (Tj)j∈J2
)

Notice that by Lemma 56 (Ā, ζ) is a reachable realization of DΩ.

Proof. From Proposition 41 it follows that

ComputeStateSpace(R, Ã, ζ)

terminates. Proposition 40 implies that

ComputePath(A, ζ, q)

always terminates too. Thus, we get that

ComputeHybridRealization(R, Ã, ζ)

always terminates.

It follows from Proposition 41 that with the notation of

ComputeHybridRepresentation

ImUq = Xq and UT
q Uq = I. Notice that if rank HΩ,N = rank HΩ, then by Lemma

56 (Ā, ζ) is a reachable realization of DΩ, if (Ã, ζ) is a reachable realization of DΩ,N .

Thus, HRR,Ā,ζ is a well-defined realization of Ω. Use the notation of

ComputeHybridRepresentation.

Denote by HR the hybrid representation returned by the algorithm. Define the

following map: TC :
⊕

q∈Q X̃q →
⊕

q∈Q Xq, TC(x) = Uqx for each x ∈ X̃q, q ∈ Q. We

claim that (id, TC) : HR → HRR,Ā,ζ is a hybrid representation morphism, where id

is the identity map on Q. It is clear that id is a Moore-automata map. It is also

clear that TC(X̃q) = ImUq = Xq. It is easy to see that UqU
T
q y = y for each y = Uqz.

Hence, for each q ∈ Q, z ∈ X1, TC(Ãq,zx) = UqU
T
q MzUqx = MzUqx = Aq,zTCx,

since MzTCx ∈ Xq and therefore there exists y ∈ Rnq such that Uqy = MzTCx.
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Similarly, for each q1, q2 ∈ Q, γ ∈ X2, δ(q2, γ) = q1, TCM̃q1,γ,q2
x = Uq1

UT
q1

MγUq2
x =

MγUq2
x = Mq1,γ,q2

TC(x), since Mγx ∈ Xq1
and therefore Mγx = Uq1

y for some y ∈

Rnq1 . For each q ∈ Q, z ∈ X1, j ∈ J2 it holds that TCB̃q,z,j = UqU
T
q MzMwq

Bζ(f),j =

Bq,z,j and C̃qx = CUqx = CqTCx. Finally, TC µ̃(f) = TCUT
q Bf = Bf = µ(f), since

Bf = Uqz ∈ Xq for some z ∈ Rnq , q = ζ(f). That is, (id, TC) is indeed a linear hybrid

system morphism. Moreover, id is a bijection and TC is a linear isomorphism, since∑
q∈Q nq =

∑
q∈Q dimXq. That is, (id, TC) is a linear hybrid system isomorphism.

But it means that HR is a realization of Ω.

The algorithms above enable us to formulate algorithms for minimisation, ob-

servability and reachability reduction of hybrid representations. We will also be able

to present an algorithm for constructing a hybrid representation from finite data.

Recall from Section 10.2 the algorithm ComputeAutomataRealization. Recall from

Section 10.1.3 the algorithm ComputePartialRepresentation. Consider the follow-

ing algorithm

ComputePartialHybRepr(HΩ,N+1,N ,WDΩ,N ,D,D)

1. R = ComputePartialRepresentation(HΩ,N+1,N )

2. (Ã, ζ) = ComputeAutomataRealization(WDΩ,N ,D,D)

3. HR = ComputeHybridRepresentation(R, Ã, ζ)

4. return HR

Proposition 43. Assume that rank HΩ,N,N = rank HΩ,N+1,N = rank HΩ,N,N+1

and card(WDΩ,N ,D,D) = card(WDΩ,N ,D+1,D) = card(WDΩ,N ,D,D+1). The algorithm

ComputePartialHybRepr(HΩ,N+1,N ,WDΩ,N ,D,D)

always terminates. If rank HΩ,N,N = rank HΩ and card(WDΩ,N ,D,D) = card(WDΩ,N
)

then

ComputePartialHybRepr(HΩ,N+1,N ,WDΩ,N ,D,D)

returns a minimal hybrid representation of Ω which is isomorphic to HRN,D from

Theorem 67.

Proof. We will use the notation of the algorithm ComputePartialHybRepr and the

proof of Theorem 67. If rank HΩ,N,N = rank HΩ,N+1,N = rank HΩ,N,N+1 it follows

form Theorem 65 that
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ComputePartialRepresentation terminates and it returns an N -partial represen-

tation of ΨΩ. Similarly, ff

card(WDΩ,N ,D,D) = card(WDΩ,N ,D+1,D) = card(WDΩ,N ,D,D+1)

then it follows from Proposition 37 that ComputeAutomataRealization terminates

and it returns a D partial realization of DΩ,N .

Assume that rank HΩ,N = rank HΩ and card(WDΩ,N ,D,D) = card(WDΩ,N
). It fol-

lows from Proposition 42 that HR is isomorphic to HRR,Ā,ζ . From Theorem 65 it fol-

lows that there exists a representation isomorphism T : R → RN . From Proposition

37 it follows that there exists a Moore-automata isomorphism φ : (Ã, ζ) → (AD, µD).

It is easy to see that φ determines an automaton isomorphism φ : (Ā, ζ) → (ĀD, µD).

Then by Lemma 16 (φ, TC) : HRRĀ,ζ → HRN,D is a surjective hybrid representation

morphism TC(x) = Tx for all x ∈ Xq. Thus, TC is surjective. We will argue that

TC is injective too. Indeed, TCx = TCy implies that TCx = TCy ∈ Xs, where Xs is

the continuous state-space belonging to the discrete state s of HRN,D. Since φ is

bijective, we get that φ−1(s) = q for some q ∈ Q. Here Q is the discrete state-space

of Ã. Thus, x, y ∈ Xq, where Xq is the continuous state-space component belonging

to to discrete-state q of HRRĀ,ζ . Thus, TCx = TCy = Tx = Ty. But T is injective,

therefore x = y. That is TC is injective. It is also surjective hence TC is a linear

isomorphism. Consequently, (φ, TC) is an isomorphism. Thus, we get that HR is iso-

morphic to HRRĀ,ζ and HRRĀ,ζ is isomorphic to HRN,D. Hence HR is isomorphic

to HRN,D.

If rank HΩ,N = rank HΩ and card(WDΩ,N ,D,D) = card(WDΩ,N
) by Theorem 67

HRN,D is a minimal realization of Ω. Since HR and HRN,D are isomorphic, it

follows that HR is a minimal realization of Ω too.

Using the algorithms above we can construct algorithms for minimality reduction of

hybrid representations. It will also enable us to check reachability, observability of

hybrid representations.

Assume that HR is a hybrid representation of Ω. The following algorithm con-

structs a minimal hybrid representation of Ω.

ComputeMinimalHybRepresentation(HR)

1. R = ComputeRepresentation(HR)

2. Assume that dim HR = (q, p). Let N = qm + p.

(Ã, ζ) = ComputeMooreAutomaton(HR,N)
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3. Rmin = ComputeMinimalRepresentation(R)

4. (Amin, ζmin) = ComputeMinimalAutomata(Ã, ζ)

5. HRmin = ComputeHybridRealization(Rmin,Amin, ζmin)

6. return HRmin

Proposition 44. The algorithm ComputeMinimalHybRepresentation(HR) above

computes a minimal realization of Ω.

Proof. Indeed, by Proposition 41 R is a representation of Ω, therefore Rmin is a mini-

mal representation of ΨΩ. Similarly, by Proposition 40 (Ã, ζ) is a realization of DΩ,N .

It follows that (Amin, ζmin) is a minimal realization of DΩ,N . Thus, (Amin, ζmin) is

a reachable and observable realization. By Lemma 56 (Āmin, ζmin) is a reachable

and observable realization of DΩ. Therefore it is a minimal realization of DΩ. Thus,

by Corollary 9 HRRmin,Āmin,ζmin
is a minimal realization of Ω. Since HRmin is iso-

morphic to HRRmin,Āmin,ζmin
, we get that HRmin is a minimal realization of Ω.

Reachability of HR can be checked by the following algorithm

IsHybReprReachable(HR)

1. R = ComputeRepresentation(HR)

2. (A, ζ) = (AHR, µD)

3. if IsReachable(R) and IsReachableAutomata(A, ζ) then return true otherwise

false

It follows easily from Lemma 13 that IsReachable(HR) returns true if and only if HR

is reachable and returns false otherwise. The following algorithm checks observability

of HR.

IsHybReprObservable(HR)

1. R = ComputeRepresentation(HR)

2. Assume dim R = N .

(Ã, µD) = ComputeMooreAutomata(HR,N)

3. O = ComputeObservabilityMatrix(R)

334



10.3. HYBRID POWER SERIES

4. Assume that Q = {q1, . . . , qd} and J2 = {j1, . . . , jm}. For each i = 1, . . . , d

define Iqi
∈ Rn×n, n = nq1

+ · · · + nqd
, where nqi

is the dimension of the

continuous state-space associated with q, i.e. Xq = Rnq , as follows

(Iqk
)i,j =

{
1 if i = j =

∑k−1
z=1 nz + l for some l = 1, . . . , nqk

0 otherwise

Eqk
=

[
Iqk

On,dm

Odm,n Odm,dm

]

5. If IsObservableAutomata(Ã, µD) returns true and for each i = 1, . . . , k, rank O·

Eqi
= nqi

then return true else return false

Proposition 45. The algorithm IsHybReprObservable(HR) always returns true

if HR is observable and false otherwise

Proof. We will use the notation of IsHybReprObservable(HR). From Lemma

13 it follows that HR is observable if and only if RHR is Xq observable for all

q ∈ Q and (Ā, µD) is observable. It follows from 64 that if N = dimRHR then

rank HΩ ≤ N and thus rank HΩ,N,N = rank HΩ. Hence by Lemma 58 it follows

that (Ā, µD) is observable if and only if (Ã, µD) is observable, that is, if and only if

IsObservabelAutomata(Ã, µD) returns true. Notice ComputeRepresentation(HR)

returns a representation R which is isomorphic to RHR. We will use the notation of

Subsection 3.3.2. Fix the isomorphism T : RHR → R. It is easy to see that for all

x ∈ Xqi
, i = 1, . . . , d, (Tx)j = xl if j =

∑i−1
k=1 nqk

+ l and (Tx)j = 0 otherwise. For all

i = 1, . . . , d, z = 1, . . . ,m, (Teqi,jz
)l = 1 if l = (i−1)∗m+z and (Teqi,jz

)l = 0 other-

wise. It is easy to see that for each i = 1, . . . , d, if x = y+z such that y ∈ T (Xqi
) and

z ∈
⊕

j=1,...,d,j 6=i T (Xqj
⊕ Rdm), then Eqi

x = y. Thus, ker O · Eqi
= kerO ∩ T (Xqi

).

Since ComputeObservabilityMatrix(R) returns a matrix O such that kerO = OR

we get that ker O · Eqi
= OR ∩ T (Xq). Notice that rank O · Eqi

= nqi
if and only

if kerO · Eqi
= OR ∩ T (Xq = {0}). Thus, the condition that for each i = 1, . . . , d

rank O · Eqi
= nqi

is equivalent to R being T (Xq) observable for each q ∈ Q. Since

RHR and R are isomorphic, R is T (Xq) observable if and only if RHR is Xq observ-

able. Thus, IsHybReprObservable returns true if and only if RHR is Xq observable

for each q ∈ Q and ĀHR is observable, that is, if and only if HR is observable.

If J2 = ∅ or J2 6= ∅ but we can decide whether Tq1,j(w) = Tq2,j(w) for all q1, q2 ∈ Q,

w ∈ X∗, |w| < N , j ∈ J2, then the procedure ComputeMinimalHybRep and pro-

cedure IsHybReprObservable above can be implemented as a numerical computer

algorithm. In particular, if the matrices Aq,z, Cq, Bq,z,j ,Mq1,y,q2
are rational for all
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z ∈ X1, y ∈ X2, q, q1, q2 ∈ Q, j ∈ J2, or J2 = ∅, then the procedure above yields

a computer algorithm for computing a minimal hybrid representation of family of

hybrid formal power series.

In fact, the procedures presented above imply the following. Assume that Xq =

Rnq , all matrices of Aq,z,Mq1,y,qq
, Cq, Bq,z,j are rational (have only rational elements)

and for all q ∈ Q, j ∈ J2, z ∈ X1, y ∈ X2 and µ(j) is a rational vector (has

only rational entries) for all j ∈ J1. Assume that J1 is finite. Then the procedures

IsHybRepObservable, IsHybRepReachable and ComputeMinimalHybRepresentation

above are algorithms in the sense of classical Turing computability. That is, they

can be implemented by a Turing machine. Thus, observability and reachability of

hybrid representations is algorithmically decidable in this case. Similarly, minimal

representation can be constructed by an algorithm.

10.4 Switched Systems

The section presents results on partial realization theory of switched systems. The fol-

lowing two subclasses of switched systems will be discussed: linear switched systems

and bilinear switched systems. Switched systems with both arbitrary and constrained

switchings will be investigated. The section also deals with the algorithmic aspects

of realization theory for linear and bilinear switched systems. That is, algorithms for

constructing minimal (bi)linear switched system realizations will be presented, along

with algorithms for checking semi-reachability and observability of such systems or

transforming (bi)linear switched systems to equivalent semi-reachable and observable

(bi)linear switched systems.

An algorithm for computing a N partial realization of (bi)linear switched systems

will be presented too, for arbitrary N . The realization computed by the algorithm

will turn out to be a minimal realization, provided that the rank of the finite chunk of

the Hankel-matrix equals the rank of the full Hankel-matrix. An lower bound on the

size of the finite portion of the Hankel-matrix will be formulated, such that any finite

portion of the Hankel-matrix of size greater than this lower bound will be of the same

rank as the infinite Hankel-matrix. The algorithm uses matrix factorization, thus any

matrix factorization algorithm, including SVD decomposition can be used for the

implementation. The algorithm might serve as a basis for subspace identification-

like methods for linear or bilinear switched systems.

A modified version of the algorithm above which computes a N partial (bi)linear

switched system realization with constrained switching will be presented too. If the

finite chunk of the Hankel-matrix if of the same rank as the Hankel-matrix, then the

algorithm gives a realization by a (bi)linear switched system too. A lower bound on
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the size of the Hankel-matrix can be given, such that any finite portion of the Hankel-

matrix, which is of greater size than the lower bound will have the same rank as the

infinite Hankel-matrix. Unfortunately, the computed realization need not be a mini-

mal one, but it will be semi-reachable and observable. As it was already described in

[55, 51, 53], it is difficult to find a minimal realization for (bi)linear switched systems

with constrained switching. Instead, we can find a semi-reachableand observable re-

alization, which need not be of the smallest possible dimension. However, there exists

a constant M , which depends on the set of admissible switching sequence, such that

no other realization can have more than M times smaller dimension. The realiza-

tion algorithm presented in this paper computes precisely such a ”almost minimal”

realization. The algorithm it might serve as a foundation for a method similar to

subspace-identification.

The outline of the section is the following. Subsection 10.4.1 discusses partial real-

ization theory for linear switched systems with arbitrary switchings. It also presents

algorithms for computing a minimal realization and checking observability, reacha-

bility and minimality. Subsection 10.4.3 deals with bilinear switched systems with

arbitrary switchings, it presents partial realization theory and related algorithms for

this class of systems. Subsection 10.4.2 discusses partial realization theory for linear

switched systems with constrained switching and Subsection 10.4.4 discusses partial

realization theory for bilinear switched systems with constrained switching.

10.4.1 Partial Realization Theory for Linear Switched Sys-

tems: Arbitrary Switching

Recall from Section 4.1 the results on realization theory of linear switched systems.

Recall that the realization problem for linear switched system can be reduced to

finding a rational representation for a suitable family of formal power series. Recall

that observability, reachability and minimality of linear switched systems is equivalent

to observability, reachability and minimality respectively of suitable rational formal

power series representations. The theory of rational formal power series allows us

to formulate a partial realization theorem for linear switched systems. Let Φ ⊆

F (PC(T,U) × (Q × T )+,Y). Let HΦ,N,M = HΨΦ,N,M . Notice that

(HΦ,N,M )(v,i),(u,j) =





eT
l D(0,Ik,0yΦ

0 (ez, quvqh) if i = p ∗ (h − 1) + l, k = |uv|

and j = (q, z)

eT
l D(Ik,0)f(0, uvqh) if i = p ∗ (h − 1) + l, k = |uv|

and j = f ∈ Φ

That is, HΦ,N,M can be computed directly from the input-output maps belonging to

Φ. Let (Σ, µ) be a linear switched system realization. We will say that (Σ, µ) is a
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N -partial realization of Φ if RΣ,µ is an N partial representation of ΨΦ. The intuitive

interpretation of the concept is the following. If (Σ, µ) is an N -partial realization of

Φ, then for all f ∈ Φ the Taylor series expansion of yΣ(µ(f), ., .) and f coincide up

to the elements of order N . That is, yΣ(µ(f), ., .) can be thought as a some sort of

approximation of f .

Theorem 11 and Theorem 12 imply the following.

Theorem 68 (Partial realization of linear switched systems). Assume that

rank HΦ,N,N = rank HΦ,N+1,N = rank HΦ,N,N+1 holds. Then there exists an N -

partial realization (ΣN , µN ) of Φ. If rank HΦ,N,N = rank HΦ or there exists a linear

switched system realization (Σ, µ) of Φ such that dim Σ ≤ N , then the realization

(ΣN , µN ) is a minimal realization of Φ.

Proof. The condition rank HΦ,N,N = rank HΦ,N+1,N = rank HΦ,N,N+1 can be rewrit-

ten as rank HΨΦ,N,N = rank HΨΦ,N+1,N = rank HΨΦ,N,N+1. Applying Theorem 64

we get that there exists a representation RN such that the following holds. RN is an

N -partial representation of ΨΦ and if rank HΨΦ,N,N = rank HΦ,N,N = rank HΦ =

rank HΨΦ
or there exists a representation R of ΨΦ such that dim R ≤ N , then RN

is a minimal representation of ΨΦ. Define the linear switched system realization

(ΣN , µN ) = (ΣRN
, µRN

). If RN is a N -representation of ΨΦ, then (ΣN , µN ) is an

N -realization of Φ, since RΣN ,µN
= RN . Similarly, if RN is a minimal representation

of ΨΦ, then (ΣN , µN ) is a minimal realization of Φ. Notice that there exists a repre-

sentation R of ΨΦ such that dimR ≤ N if and only if there exists a linear switched

system realization (Σ, µ) of Φ such that dim Σ ≤ N . Thus we get the second part of

the theorem.

The results of Section 10.1.3 allow us to formulate algorithms for computing a

minimal realization of Ψ, deciding semi-reachable and observability and to transform

a specified linear switched system realization to a minimal one. Below we will present

these algorithms.

ComputeLinSwitchRealization(HΦ,N+1,N)

1. R = ComputePartialRepresentation(HΦ,N+1,N )

2. If R = NoRepresentation then retun NoRealization

3. Return (ΣR, µR).

Proposition 46. (i) The algorithm

ComputeLinSwitchRealization
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returns a linear switched system realization whenever

ComputePartialRepresentation

returns a formal power series representation. The realization (Σ, µ) which is

returned by

ComputeSwitchLinRealization(HΦ,N+1,N)

is an N + 1-partial realization of Φ.

(ii) If rank HΦ,N+1,N = rank HΦ,N,N+1 = rank HΦ,N,N then

ComputeLinSwitchRealization(HΦ,N+1,N)

always returns a linear switched system realization (Σ, µ) and this realization

is isomorphic to the realization (ΣN , µN ) from Theorem 68.

(iii) If rank HΦ,N,N = rank HΦ or Φ has a linear switched system realization (Σ̃, µ̃)

such that dim Σ̃ ≤ N , then the realization (Σ, µ) returned by

ComputeLinSwitchRealization(HΦ,N+1,N) is a minimal realization of Φ.

Proof. We will use the notation of the algorithm

ComputeLinSwitchRealization throughout the proof. Part (i)

It is clear that whenever ComputePartialRepresentation returns a valid representa-

tion, the algorithm ComputeLinSwitchRealization returns a valid linear switched

system realization. By part (i) of Theorem 65 we get that R is a N + 1 partial

representation and thus (ΣR, µR) is a N + 1 partial realization.

Part(ii)

If rank HΦ,N,N = rank HΦ,N+1,N = rank HΦ,N,N+1 holds, then we get that

rank HΨΦ,N,N = rank HΨΦ,N,N+1 = rank HΨ,N+1,N

Thus by part (ii) of Theorem 65 we get that that ComputerPartialRepresentation

returns a valid representation and there exists an isomorphism ξ : R → RN . From

[55] we know ξ : (ΣR, µR) → (ΣRN
, µRN

) = (ΣN , µN ) is a linear switched system

isomorphism.

Part(iii)

If dim Σ̃ ≤ N then dim ReΣ,eµ ≤ N and ReΣ,eµ is a representation of ΨΦ. Then from

Theorem 65 we get that R is a minimal representation of ΨΦ. If rank HΦ,N,N =

rank HΦ then by Theorem 65 it follows that R is a minimal representation of ΨΦ.

Thus, in both cases, (ΣR, µR) is a minimal realization of Φ.
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Let (Σ, µ) be a linear switched system realization of Φ. It is clear from Proposition 11

that reachability of (Σ, µ) can be checked by checking if IsReachable(RΣ,µ returns

true. Similarly, observability of (Σ, µ) can be checked by checking if

IsObservable(RΣ,µ)

returns true or not. Consider the following algorithm.

ComputeReachableRealization((Σ, µ))

1. R = ReachableTransform(RΣ,µ)

2. Return (ΣR, µR).

Proposition 47. The algorithm ComputeReachableRealization((Σ, µ) returns a

semi-reachable realization of Φ.

Proof. Since RΣ,µ is a representation of ΨΦ, we get that

R = ReachableTransform(RΣ,µ)

is a reachable representation of ΨΦ. Then by Theorem 10 (ΣR, µR) is a realization

of Φ. Notice that RΣR,µR
= R is reachable, thus (ΣR, µR) is semi-reachabletoo by

Corollary 11.

Similarly, (Σ, µ) can be transformed to an observable realization of Φ with the fol-

lowing algorithm.

ComputeObservableRealization((Σ, µ))

1. R = ComputeObservableRepresentation(RΣ,µ)

2. Return (Σo, µo) = (ΣR, µR).

Proposition 48. The algorithm ComputeObservableRealization((Σ, µ)) returns

an observable realization (Σo, µo) of Φ. If (Σ, µ) is semi-reachable, then (Σo, µo) is

semi-reachable too.

Proof. Since (Σ, µ) is a realization of Φ, RΣ,µ is a representation of ΨΦ. Thus,

R = ComputeObservableRepresentation(RΣ,µ) is an observable representation of

ΨΦ. Moreover, if (Σ, µ) is semi-reachable, then RΣ,µ is reachable, thus R is reachable.

Thus, (ΣR, µR) is a realization of Φ and it is observable. If (Σ, µ) is semi-reachable,

then RΣR,µR
= R is reachable, and thus (ΣR, µR) is reachable too.

Finally, minimality realization of Φ can be computed as follows.
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ComputeMinimalRealization((Σ, µ))

1. Rmin = ComputeMinimalRepresentation(RΣ,µ)

2. return (ΣRmin
, µRmin

)

It easy to deduce from Proposition 10 that ComputeMinimalRealization((Σ, µ))

indeed returns a minimal realization of Φ.

In [69] reachability and observability of linear switched systems were studied. In

particular, if Imµ = {0}, then Σ is reachable in sense of [69] whenever (Σ, µ) is

semi-reachable. In [69] procedures were presented to compute the reachability and

observability matrices. In fact, these matrices correspond spaces WRΣ,µ
and ORΣ,µ

.

The algorithms in [69] are quite similar to those presented here, but apply to a much

more restricted class of problems.

10.4.2 Partial Realization Theory for Linear Switched Sys-

tems: Constrained Switching

Recall from Subsection 4.1.4 the results on realization theory of linear switched sys-

tems with constrained switching. The results from Subsection 4.1.4 allow us to de-

velop partial realization theory for linear switched systems with constrained switch-

ing. We will use th notation of Subsection 4.1.4 in the sequel. Assume that L is

regular. Then from Lemma 19 it follows that Ω is rational. Notice that Ω depends

only on L. In fact, a representation of Ω can be computed from a finite automa-

ton recognising L. Similarly to the case of arbitrary switching, we say that (Σ, µ)

is an N -partial realization of Φ, if RΣ,µ is an N -partial realization of ΨΦ. Let

HΦ,N,M = HΨΦ,N,M .

Theorem 69. Assume that rank HΦ,N,N = rank HΦ,N+1,N = rank HΦ,N,N+1.

Then there exists a N -partial realization (ΣN , µN ) of Φ. Assume that rank HΩΦ
≤ M

and there exists a realization (Σ, µ) of Φ with constraint L such that dim Σ ≤ N .

Then rank HΦ,NM,NM = rank HΦ,NM+1,N = rank HΦ,NM,NM+1 and (ΣNM , µNM )

is a realization of Φ with constraint L, it is semi-reachable, observable and it satisfies

(4.15) and (4.16). Similarly, if rank HΦ,N,N = rank HΦ then (ΣN , µN ) is realiza-

tion of Φ with constraint L, its is semi-reachable, observable and satisfies (4.15) and

(4.16).

Proof. If rank HΦΨ,N,N = rank HΦΨ,N+1,N = rank HΦΨ,N,N+1 then by Theorem

64 there exists a N representation RN of ΨΦ. Then by Theorem 14 (ΣN , µN ) =

(ΣRN
, µRN

) is an N realization of Φ. Assume that there exists a realization (Σ, µ)
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of Φ such that dim Σ ≤ N . Then from Theorem 13 it follows that ΨΦ = ΩΦ ¯KΣ,µ.

Since RΣ,µ◦U(µ) is a representation of KΣ,µ and dimRΣ,µ◦U(µ) = dim Σ ≤ N , we get

that rank HKΣ,µ
≤ N . Thus, by Lemma 6 rank HΨΦ

≤ rank HΩΦ
· rank HKΣ,µ

≤

NM . Thus, by Theorem 64 RNM is a minimal representation of ΨΦ. Similarly, if

rank HΦ,N,N = rank HΦ, then by Theorem 64 RN is a minimal representation of ΨΦ.

Let (Σp, µp) = (ΣNM , µNM ) = (ΣRNM
, µRNM

) if there exists a realization Σ of Φ

such that dim Σ ≤ N . Let (Σp, µp) = (ΣRN
, µRN

) if rank HΦ,N,N = rank HΦ. Thus

in both cases,by Theorem 14 (Σp, µp) is a realization of Φ with constrained L and

(4.15) holds. Since RNM (RN ) is reachable and observable by Corollary 11 we get that

(Σp, µp) is semi-reachable and observable. Since RNM (RN ) is a minimal realization,

it holds that rank HΦΨ
= dim RNM = dim Σp (or rank HΦΨ

= dimRN = dim Σp).

Assume that (Σ̃, µ̃) is a realization of Φ. Then ΨΦ = ΩΦ ¯ KeΣ,eµ, thus by Lemma

6 dim Σp = rank HΨΦ
≤ M · rank HKeΣ,eµ

≤ M · dim Σ̃. Thus, (Σp, µp) satisfies

(4.16).

Consider the following algorithm.

ComputeLinSwitchConstRealization(HΦ,N+1,N)

1. R = ComputePartialRepresentation(HΦ,N+1,N )

2. If R = NoRepresentation then return NoLinConstRealization

3. Return (ΣR, µR)

Recall the notion of linear switched isomorphism (algebraic similarity) from [55, 51].

Proposition 49. (i) The algorithm

ComputeLinSwitchConstRealization

returns a linear switched system realization whenever

ComputePartialRepresentation

returns a formal power series representation. The realization (Σ, µ) which is

returned by

ComputeLinSwitchConstRealization(HΦ,N+1,N)

is an N + 1-partial realization of Φ.

(ii) If rank HΦ,N+1,N = rank HΦ,N,N+1 = rank HΦ,N,N+1 then
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ComputeLinSwitchConstRealization(HΦ,N+1,N)

always returns a linear switched system realization (Σ, µ) and this realization

is isomorphic to the realization (ΣN , µN ) from Theorem 69.

(iii) If rank HΦ,N,N = rank HΦ then the realization (Σ, µ) returned by

ComputeLinSwitchConstRealization(HΦ,N+1,N)

is semi-reachable and observable and it satisfies (4.15, 4.16).

(iv) If Φ has a linear switched system realization (Σ̃, µ̃) such that dim Σ̃ ≤ N , and

rank HΩΦ
≤ M then the realization (Σ, µ) returned by

ComputeLinSwitchConstRealization(HΦ,NM+1,NM)

is a realization of Φ, it is semi-reachable and observable and it satisfies (4.15,4.16)

Proof. We will use the notation of the algorithm

ComputeLinSwitchConstRealization throughout the proof.

Part (i)

It is clear that whenever ComputePartialRepresentation returns a valid represen-

tation, the algorithm ComputeLinSwitchConstRealization returns a valid linear

switched system realization. By part (i) of Theorem 65 we get that R is a N + 1

partial representation and thus (ΣR, µR) is a N + 1 partial realization.

Part(ii)

If rank HΦ,N,N = rank HΦ,N+1,N = rank HΦ,N,N+1 holds, then we get that

rank HΨΦ,N,N = rank HΨΦ,N,N+1 = rank HΨΦ,N+1,N

Thus by part (ii) of Theorem 65 we get that that ComputePartialRepresentation

returns a valid representation and there exists a isomorphism ξ : R → RN from

Theorem 64. From [55] we know ξ : (ΣR, µR) → (ΣRN
, µRN

) = (ΣN , µN ) is a linear

switched system isomorphism.

Part(iii) If rank HΦ,N,N = rank HΦ, then by Theorem 65 the representation

R returned by ComputePartialRepresentation is a minimal representation thus,

it is reachable and observable. Hence, by Corollary 11 (ΣR, µR) is semi-reachable

and observable and by Theorem 15 part (ii) it satisfies (4.15). Since (ΣR, µR) is

isomorphic to (ΣN , µN ) we get that dim ΣR = dim ΣN and thus (ΣR, µR) satisfies

(4.16).

Part(iv)

If dim Σ̃ ≤ N then by Theorem 69 (ΣNM , µNM ) is a semi-reachable and observable
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realization of Φ and it satisfies (4.15,4.16). Since R is isomorphic to RNM and RNM

is a minimal, that is, it is reachable and observable, we get that R is reachable and

observable too. Thus, (ΣR, µR) is semi-reachable and observable. From Theorem

15 part (ii) it follows that (ΣR, µR) satisfies (4.15). Since (ΣR, µR) is isomorphic to

(ΣN , µN ) we get that dim ΣR = dim ΣN and thus (ΣR, µR) satisfies (4.16).

Below we will give an estimate on M = rank HΩΦ
. At the same time, the proof of

the estimate will also demonstrate that M depends only on L. Recall from Subsection

4.1.4 the definition of the language L̃.

Lemma 59. Assume that L is regular. Denote by neL the cardinality of the state-

space of the minimal automaton recognising L̃. Then

rank HΩΨ
≤ neL

Proof. Notice [55] that L̃q = {w ∈ Q∗ | wq ∈ L̃} and L̃q1,q2
= {w ∈ Q∗ | q1wq2 ∈

L̃}. Let A = (S,Q, δ, s0, F ) be a minimal finite-state automaton recognising L̃.

Here S is the state-space, δ : S × Q → S is the state-transition function, s0 is

the initial state, F is set of accepting states. For more on automata and formal

languages see [17]. For each q ∈ Q, let sq = δ(s0, q) and Hq = {s ∈ S | δ(s, q) ∈

F}. Then it is easy to see that L̃q is accepted by (S,Q, δ, s0,Hq) and L̃q1,q2
is

accepted by (S,Q, δ, sq2
,Hq1

). Assume that S = {s1, . . . , sn}, n = neL. Consider

the representation. R = (Rn, {Az}z∈Q, C,B) such that the following holds. Denote

by ei the ith unit vector of Rn. For each q ∈ Q, Aq(ei) = ek if δ(si, q) = sk,

i = 1, . . . , n. The map C is of the form C =
[
WT

q1
. . . WT

qN

]
, where Wql

ei =
{

(1, . . . , 1)T ∈ Rp if si ∈ Hql

0 otherwise
. For each (q, j) ∈ Q×{1, . . . ,m}, B(q,j) = ek such

that sk = sq and for each f ∈ Φ, Bf = ek such that sk = s0. Then, it is easy to

see that Wql
AwBf = (1, . . . , 1) if and only if w ∈ L̃ql

and Wql
AwBf = 0 otherwise.

Similarly, Wql
AwB(q,j) = (1, . . . , 1) if w ∈ L̃ql,q and it is zero otherwise. That is,

CAwB(q,j) = Γq(w) and CAwBf = Γ(w). Thus, R is a representation of ΩΦ. Thus,

M = rank HΩΦ
≤ dimR = neL.

Corollary 25. With the notation and assumptions of Lemma 59

rank HΩΦ
≤ 2nL·|Q|+1

where nL is the cardinality of the state-space of a minimal automaton accepting L.

Proof. Let (S,Q, δ, s0, F ) be a minimal automaton accepting L. Consider the non-

deterministic automaton B = ((S ×Q) ∪ {s
′

0}, Q, δB , s
′

0, F ×Q) defined in the proof
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of Lemma 8, [55]. Recall that (s
′

, x) ∈ δB(s
′

0, x) if and only if there exists w ∈ Q∗,

such that δ(s0, wx) = s
′

and (s
′

, u) ∈ δB((s, x), u) if and only if either u = x, s
′

= s

or there exists w ∈ Q∗ such that δ(s, wu) = s
′

. Then it follows from the proof of

Lemma 8, [55] that B accepts L̃. We can construct a deterministic automaton from

B which accepts L̃. This automaton will have at most 2|(S×Q)∪{s
′

0}| = 2nL·|Q|+1

states. Thus, neL ≤ 2nL·|Q|+1 and by Lemma 59 rank HΩΦ
≤ 2nL·|Q|+1.

10.4.3 Partial Realization Theory for Bilinear Switched Sys-

tems: Arbitrary Switching

Recall from Section 4.2 the results on realization theory of bilinear switched systems

and the role of formal power series in it. The results of Section 4.2 allow us to

formulate partial realization theory for bilinear switched systems. In the sequel we

will use notation and terminology of Section 4.2. Define HΦ,N,M = HΨΦ,N,M . In

fact, the following holds.

(HΦ,N,M )(v,i),(u,f) = eT
l cf (i(uv)(qh, ε))

for each u, v ∈ Γ∗, |v| ≤ N, |u| ≤ M , i = p ∗ (h − 1) + l, f ∈ Φ. That is, the entries

of HΦ,N,M can be obtained from the generating convergent series which generate the

elements of Φ. We will say that a bilinear switched system realization (Σ, µ) is an

N -partial realization of Φ if RΣ,µ is an N -partial representation of ΨΦ. Intuitively,

(Σ, µ) is an N -partial realization of Φ, if the following holds. For any f ∈ Φ the

values of the generating convergent series of f and yΣ(µ(f), ., .) coincide for all words

of length at most N . That is, yΣ(µ(f), ., .) can be thought of as an approximation of

f . With the notation of Theorem 64 the following holds.

Theorem 70 (Partial realization). Let Φ ⊆ F (PC(T,U) × (Q × T )+,Y). As-

sume that rank HΦ,N,N = rank HΦ,N+1,N = rank HΦ,N,N+1. Then there exists a N

realization (ΣN , µN ) of Φ. If rank HΦ,N,N = rank HΦ or Φ has a realization (Σ, µ)

such that N ≥ dim Σ, then the realization (ΣN , µN ) is a minimal realization of Φ.

Proof. The condition rank HΦ,N,N = rank HΦ,N+1,N = rank HΦ,N,N+1 is equivalent

to rank HΨΦ,N,N = rank HΨΦ,N+1,N = rank HΨΦ,N,N+1. Thus, by Theorem 64,

there exists a representation RN , such that RN is an N -representation of ΨΦ. Define

(ΣN , µN ) = (ΣR, µR). Then RΣN ,µN
= RN , and thus (ΣN , µN ) is an N -realization

of Φ. Notice that Φ has a bilinear switched system realization (Σ, µ) such that

dim Σ ≤ N if and only if ΨΦ has a representation R, such that dimR ≤ N . Thus,

if Φ has a bilinear switched system realization (Σ, µ), such that dim Σ ≤ N , then by

Theorem 64 RN is a minimal representation of ΨΦ. But it means that (ΣN , µN ) is a
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minimal realization of Φ. Similarly, if rank HΦ,N,N = rank HΦ then by Theorem 64

RN is a minimal representation, therefore (ΣN , µN ) is a minimal realization.

The results of Section 10.1.3 allow us to compute a (partial) realization of Φ

using SVD decomposition. It also enables us to formulate algorithms for deciding

semi-reachableand observability of bilinear switched systems.

Consider the following algorithm

ComputeBilinSwitchRealization(HΨ,N+1,N)

1. R = ComputePartialRepresentation(HΦ,N+1,N )

2. If R = NoRepresentation then return NoRealization

3. Return (ΣR, µR).

Proposition 50. (i) The algorithm

ComputeBilinSwitchRealization

returns a bilinear switched system realization whenever

ComputePartialRepresentation

returns a formal power series representation. The realization (Σ, µ) which is

returned by

ComputeSwitchBilinRealization(HΦ,N+1,N)

is an N + 1-partial realization of Φ.

(ii) If

rank HΦ,N+1,N = rank HΦ,N,N+1 = rank HΦ,N,N+1

then

ComputeBilinSwitchRealization(HΦ,N+1,N)

always returns a linear switched system realization (Σ, µ) and this realization

is isomorphic to the realization (ΣN , µN ) from Theorem 70.

(iii) If rank HΦ,N,N = rank HΦ or Φ has a bilinear switched system realization

(Σ̃, µ̃) such that dim Σ̃ ≤ N , then the realization (Σ, µ) returned by

346



10.4. SWITCHED SYSTEMS

ComputeLinSwitchRealization(HΦ,N+1,N)

is a minimal realization of Φ.

Proof. We will use the notation of the algorithm ComputeBilinSwitchRealization

throughout the proof.

Part (i)

It is clear that whenever ComputePartialRepresentation returns a valid repre-

sentation, the algorithm ComputeBilinSwitchRealization returns a valid bilinear

switched system realization. By part (i) of Theorem 65 we get that R is a N + 1

partial representation and thus (ΣR, µR) is a N + 1 partial realization.

Part(ii)

If rank HΦ,N,N = rank HΦ,N+1,N = rank HΦ,N,N+1 holds, then we get that

rank HΨΦ,N,N = rank HΨΦ,N,N+1 = rank HΨ,N+1,N

Thus by part (ii) of Theorem 65 we get that that ComputePartialRepresentation

returns a valid representation and there exists a isomorphism ξ : R → RN from

Theorem 64. From [55] we know ξ : (ΣR, µR) → (ΣRN
, µRN

) = (ΣN , µN ) is a

bilinear switched system isomorphism.

Part(iii)

If dim Σ̃ ≤ N then dim ReΣ,eµ ≤ N and ReΣ,eµ is a representation of ΨΦ. Then from

Theorem 65 we get that R is a minimal representation of ΨΦ. Thus, (ΣR, µR) is a

minimal realization of Φ. Similarly, if rank HΦ,N,N = rank HΦ, then by Theorem 65

R is a minimal representation and thus (ΣR, µR) is a minimal realization.

Let (Σ, µ) be a bilinear switched system realization of Φ. It is clear from Proposi-

tion 23 that reachability of (Σ, µ) can be checked by checking if IsReachable(RΣ,µ

returns true. Similarly, observability of (Σ, µ) can be checked by checking if

IsObservable(RΣ,µ) returns true or not. Consider the following algorithm.

ComputeBilinReachableRealization((Σ, µ))

1. R = ReachableTransform(RΣ,µ)

2. Return (ΣR, µR).

Proposition 51. The algorithm ComputeBilinReachableRealization((Σ, µ)) re-

turns a semi-reachable realization of Φ.

Proof. Since RΣ,µ is a representation of ΨΦ, we get that

R = ReachableTransform(RΣ,µ)
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is a reachable representation of ΨΦ. Then by Proposition 16 (ΣR, µR) is a realization

of Φ. Notice that RΣR,µR
= R is reachable, thus (ΣR, µR) is semi-reachable too by

Lemma 23.

Similarly, (Σ, µ) can be transformed to an observable realization of Φ with the fol-

lowing algorithm.

ComputeBilinObservableRealization((Σ, µ))

1. R = ComputeObservableRepresentation(RΣ,µ)

2. Return (Σo, µo) = (ΣR, µR).

Proposition 52. The algorithm ComputeBilinObservableRealization((Σ, µ)) re-

turns an observable realization (Σo, µo) of Φ. If (Σ, µ) is semi-reachable, then (Σo, µo)

is reachable too.

Proof. Since (Σ, µ) is a realization of Φ, RΣ,µ is a representation of ΨΦ. Thus,

R = ComputeBilinObservableRepresentation(RΣ,µ) is an observable representation

of ΨΦ. Moreover, if (Σ, µ) is semi-reachable, then RΣ,µ is reachable, thus R is

reachable. Thus, (ΣR, µR) is a realization of Φ and it is observable. If (Σ, µ) is semi-

reachable, then RΣR,µR
= R is reachable, and thus (ΣR, µR) is reachable too.

Finally, minimality realization of Φ can be computed as follows.

ComputeBilinMinimalRealization((Σ, µ))

1. Rmin = ComputeMinimalRepresentation(RΣ,µ)

2. return (ΣRmin
, µRmin

)

It easy to deduce from Lemma 24 that ComputeBilinMinimalRealization((Σ, µ))

indeed returns a minimal realization of Φ.

10.4.4 Partial Realization Theory for Bilinear Switched Sys-

tems: Constrained Switching

Recall from Subsection 4.2.4 the results on realization theory of bilinear switched

systems with constrained switching and the role of formal power series in it. Below

we will use those results to develop partial realization theory for bilinear switched

systems with constrained switching. We will use the notation of Subsection 4.2.4

in the sequel. Assume that Φ ⊆ F (PC(T,U) × TL,Y) admits a generalized Fliess-

series expansion. Assume that L is a regular language. Just as for linear switched
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systems, we will say that a bilinear switched system (Σ, µ) is an N partial realization

of Φ, if RΣ,µ is an N partial representation of ΨΦ. We will denote HΨΦ,N,M by

HΦ,N,M . Similarly to Subsection 10.4.3, by a realization of Φ we will always mean a

bilinear switched system realization of Φ with constrained L. If (Σ, µ) is a (bilinear

switched system) realization of Φ, then RΣ,µ denotes the associated representation

as defined in Subsection 10.4.3. Similarly, if R is a suitable representation, then

(ΣR, µR) denotes the bilinear switched system realization associated with R. With

the notation above the results on partial realization theory literally coincide with

those for linear switched system presented in Subsection 10.4.2. Thus the notation

emphasises even further the similarity between the two theories.

Theorem 71. Assume that rank HΦ,N,N = rank HΦ,N+1,N = rank HΦ,N,N+1.

Then there exists a N -partial realization (ΣN , µN ) of Φ. Assume that rank HΩΦ
≤ M

and there exists a realization (Σ, µ) of Φ with constraint L such that dim Σ ≤ N .

Then rank HΦ,NM,NM = rank HΦ.NM+1,N = rank HΦ,NM,NM+1 and (ΣNM , µNM )

is a realization of Φ with constraint L, it is semi-reachable, observable and it satis-

fies (4.25) and (4.26). Similarly, if rank HΦ,N,N = rank HΦ, then rank HΦ,N,N =

rank HΦ,N+1,N = rank HΦ,N,N+1 and (ΣN , µN ) = (ΣRN
, µRN

) is a semi-reachable

and observable realization of Φ and it satisfies (4.25) and (4.26).

Proof. If rank HΦΨ,N,N = rank HΦΨ,N+1,N = rank HΦΨ,N,N+1 then by Theorem

64 there exists a N representation RN of ΨΦ. Then by Theorem 19 (ΣN , µN ) =

(ΣRN
, µRN

) is an N realization of Φ. Assume that there exists a realization (Σ, µ)

of Φ such that dim Σ ≤ N . Then from Lemma 26 it follows that ΨΦ = ΩΦ ¯ ΘΣ,µ.

Consider the map µ
′

: yΣ(µ(f), ., .) 7→ µ(f). It can be shown ( Subsection 4.2.4) that

µ
′

is well defined and (Σ, µ
′

) is a realization of Φ
′

(without constraints). Thus RΣ,µ′ is

a representation of ΘΣ,µ and dimRΣ,µ′ = dim Σ ≤ N , we get that rank HΘΣ,µ
≤ N .

Thus, by Lemma 6 rank HΨΦ
≤ rank HΩ · rank HΘΣ,µ

≤ NM . Thus, by Theorem 64

RNM is a minimal representation of ΨΦ. Similarly, if rank HΦ,N,N = rank HΦ then

by Theorem 64 RN is a minimal representation of ΨΦ. Let (Σp, µp) = (ΣRNM
, µRNM

)

if there exists a realization Σ of Φ such that dim Σ ≤ N . Let (Σp, µp) = (ΣRN
, µRN

)

if rank HΦ,N,N = rank HΦ. Thus, by Theorem 19 (Σp, µp) is a realization of Φ with

constrained L and (4.25) holds. Since RNM (RN ) is reachable and observable by

Lemma: 23 we get that (Σp, µp) is semi-reachable and observable. Since RNM (RN )

is a minimal realization, it holds that rank HΦΨ
= dimRNM = dim Σp (rank HΦΨ

=

dimRN = dim Σp). Assume that (Σ̃, µ̃) is a realization of Φ. Then ΨΦ = Ω ¯ ΘeΣ,eµ,

thus by Lemma 6 dim Σp = rank HΨΦ
≤ M · rank HΘeΣ,eµ

≤ M · dim Σ̃, where M =

rank HΩ. Thus, (Σp, µp) satisfies 4.26.

Consider the following algorithm.
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ComputeBilSwitchConstRealization(HΦ,N+1,N)

1. R = ComputePartialRepresentation(HΦ,N+1,N )

2. If R = NoRepresentation then return NoBilConstRealization

3. Return (ΣR, µR)

Recall the notion of bilinear switched isomorphism (algebraic similarity) from [55, 53].

Proposition 53. (i) The algorithm

ComputeBilSwitchConstRealization

returns a bilinear switched system realization whenever

ComputePartialRepresentation

returns a formal power series representation. The realization (Σ, µ) which is

returned by

ComputeBilSwitchConstRealization(HΦ,N+1,N)

is an N + 1-partial realization of Φ.

(ii) If rank HΦ,N+1,N = rank HΦ,N,N+1 = rank HΦ,N,N+1 then

ComputeBilSwitchConstRealization(HΦ,N+1,N)

always returns a bilinear switched system realization (Σ, µ) and this realization

is isomorphic to the realization (ΣN , µN ) from Theorem 69.

(iii) If rank HΨ,N,N = rank HΨ then the realization (Σ, µ) returned by

ComputeBilSwitchConstRealization(HΦ,N+1,N)

is a realization of Φ, it is semi-reachableand observable and it satisfies (4.25,4.26)

(iv) If Φ has a bilinear switched system realization (Σ̃, µ̃) such that dim Σ̃ ≤ N , and

rank HΩΦ
≤ M then the realization (Σ, µ) returned by

ComputeBilSwitchConstRealization(HΦ,NM+1,NM)

is a realization of Φ, it is semi-reachableand observable and it satisfies (4.25,4.26)
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Proof. We will use the notation of the algorithm

ComputeBilSwitchConstRealization throughout the proof.

Part (i)

It is clear that whenever ComputePartialRepresentation returns a valid represen-

tation, the algorithm ComputeBilSwitchConstRealization returns a valid bilinear

switched system realization. By part (i) of Theorem 65 we get that R is a N + 1

partial representation and thus (ΣR, µR) is a N + 1 partial realization.

Part(ii)

If rank HΦ,N,N = rank HΦ,N+1,N = rank HΦ,N,N+1 holds, then we get that

rank HΨΦ,N,N = rank HΨΦ,N,N+1 = rank HΨ,N+1,N

Thus by part (ii) of Theorem 65 we get that that ComputePartialRepresentation

returns a valid representation and there exists a isomorphism ξ : R → RN from

Theorem 64. From [55, 53] we know ξ : (ΣR, µR) → (ΣRN
, µRN

) = (ΣN , µN ) is a

bilinear switched system isomorphism.

Part(iii) If rank HΦ,N,N = rank HΦ, then by Theorem 65 the representation

R returned by ComputePartialRepresentation is a minimal representation thus,

it is reachable and observable. Hence, by Lemma 23 (ΣR, µR) is semi-reachable

and observable and by Theorem 20 part (ii) it satisfies (4.25). Since (ΣR, µR) is

isomorphic to (ΣN , µN ) we get that dim ΣR = dim ΣN and thus (ΣR, µR) satisfies

(4.26).

Part (iv)

If dim Σ̃ ≤ N then by Theorem 71 (ΣNM , µNM ) is a semi-reachable and observable

realization of Φ and it satisfies (4.25,4.26). Since R is isomorphic to RNM and RNM

is a minimal, that is, it is reachable and observable, we get that R is reachable and

observable too. Thus, (ΣR, µR) is semi-reachable and observable. From Theorem 19

it follows that (ΣR, µR) satisfies (4.25). Since (ΣR, µR) is isomorphic to (ΣNM , µNM )

we get that dim ΣR = dim ΣNM and thus (ΣR, µR) satisfies (4.26).

Below we will give an estimate on M = rank HΩ. At the same time, the proof of

the estimate will also demonstrate that M depends only on L. Recall the definition

of the language L̃ from Subsection 10.4.2.

Lemma 60. Assume that L is regular. Denote by neL the cardinality of the state-

space of the minimal automaton recognising L̃. Then

rank HΩ ≤ neL

Proof. Recall from the proof of Lemma 17, [55] that Lq = pr−1
Q (L̃q). Thus, using

the notation of the proof of Lemma 59, if (S,Q, δ, s0, F, ) is a minimal automaton
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accepting L̃, then (S,Γ, δ̃, s0, Fq) is an automaton accepting Lq, where (̃δ)(s, (r, j)) =

δ(s, r), s ∈ S, (r, j) ∈ Γ and Fq = {s ∈ S | δ(s, q) ∈ F}. Assume that S =

{s1, . . . , sn}. Define the following representation

R = (Rn, {Az}z∈Γ, C,B)

where A(q,j)ei = ek if δ̃(si, (q, j)) = sk, (q, j) ∈ Γ, Bf = s0 and

C =
[
WT

q1
· · · WT

qN

]

such that Wql
ei =

{
(1, 1, . . . , 1)T ∈ Rp if si ∈ Fql

0 otherwise
, l = 1, . . . , N . Thus,

Wql
AwBf = Cql

(w)

and therefore R is a representation of Ω. Thus, rank HΩ ≤ dimR = n = neL.

Corollary 26. With the notation and assumptions of Lemma 59

rank HΩ ≤ 2nL·|Q|+1

where nL is the cardinality of the state-space of a minimal automaton accepting L.

Proof. From the proof of Corollary 25 it follows that neL ≤ 2nL·|Q|+1 and thus by

Lemma 60 we get the required inequality.

10.5 Hybrid Systems Without Guards

The section presents partial realization theory for linear and bilinear systems. Algo-

rithms for computing minimal realizations and checking observability, semi-reachability

and minimality will be discussed too. Numerical examples will be presented too. The

main tool for deriving these results is the partial realization theory of hybrid power

series and the related algorithms presented in Section 10.3. The outline of the section

is the following. Subsection 10.5.1 presents partial realization theory and the related

algorithms for linear hybrid systems. Subsection 10.5.2 presents partial realization

theory for bilinear hybrid systems.

10.5.1 Linear Hybrid Systems

The theory of hybrid formal power series developed in Section 3.3 allows us to for-

mulate a partial realization theorem for linear hybrid systems. It also enables us to
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formulate algorithms for deciding observability and semi-reachability of linear hybrid

systems and to give an algorithm for constructing a minimal linear hybrid system

realization based on a specified linear hybrid system realization.

Let Φ be a set of input-output maps and assume that Φ has a hybrid kernel

representation. Our first objective is to construct a linear hybrid system realization

of Φ from finitely many data points. It is easy to see that all information needed for

constructing the indexed set of hybrid formal power series Ω = ΨΦ can be obtained

(in theory) from the set of input-output maps Φ. In the remaining part of the section

we will tacitly assume that Φ is finite, i.e., Φ consists of finitely many input-output

maps.

Recall the results of Subsection 10.3. If Φ is a finite collection of input-output

maps, then the index set J = Φ ∪ (Φ × {1, . . . ,m}) of ΨΦ is finite. It is easy to see

that if Φ is finite then all the data for constructing WDΨΦ,N ,D,D and HΨΦ,N,N can

be obtained from the input-output maps of Φ and the number of data points needed

for constructing WDΨΦ,N ,D,D and HΨΦ,N,N is finite. Theorem 67 yields that the

finite data from WDΨΦ,N ,D,D and HΨΦ,N,N can be used to compute a minimal hybrid

representation of ΨΦ. But any minimal hybrid representation HR of ΨΦ yields a

minimal linear hybrid realization (HHR, µHR) of Φ. Thus, we get the following

result. Let HΦ,N,M = HΨΦ,N,M , DΦ,N = DΨΦ,N for all N,M ∈ N, N,M > 0.

Theorem 72. Assume that Φ is a finite collection of input-output maps and Φ

has a hybrid kernel representation. Assume that rank HΦ,N,N = rank HΦ and

card(WDΦ,N ,D,D) = card(WDΦ,N
). Let HRN,D be the hybrid representation from

Theorem 67. Then (HN,D, µN,D) = (HHRN,D
, µHRN,D

) is a minimal linear hybrid

system realization of Φ and it can be constructed from finite data which can be ob-

tained directly from Φ. In particular, if Φ has a linear hybrid system realization

(H,µ) such that dimH = (p, q) and qm + p ≤ N , then (HN,N , µN,N ) is a minimal

linear hybrid system realization of Φ and it can be constructed from finitely many

data which is directly obtainable from Φ.

The results of Subsection 10.3 also allow us to check observability and semi-

reachability of linear hybrid systems algorithmically. Indeed, consider a linear hy-

brid system realization (H,µ). It is easy to see that the construction of HRH,µ

can be carried out by a computer algorithm. It follows that HRH,µ is reachable

if and only if (H,µ) is semi-reachable and HRH,µ is observable if and only if H is

observable. Recall the procedures IsHybRepObservable and IsHybRepReachable.

To check semi-reachability of (H,µ) we can use IsHybRepReachable on HRH,µ. To

check observability of (H,µ) we can apply IsHybRepObservable to HRH,µ. Finally,

we can apply ComputeMinimalHybRepresentation to HRH,µ to obtain a minimal
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hybrid representation HR and then we can construct (HHR, µHR) which will be

a minimal linear hybrid system realization of Φ. Notice that the construction of

(HHR, µHR) can be carried out algorithmically. Thus, if all the entries of the system

matrices of H are rational and all the values of µ are rational, then observability and

semi-reachability of (H,µ) is algorithmically decidable and a minimal linear hybrid

realization of Φ can be constructed from (H,µ) by an algorithm in sense of classical

Turing computability.

As an illustration we will present below a numerical example.

Example

Consider the following linear hybrid system. Consider the Moore-automaton A =

(Q,Γ, O, δ, λ), where Q = {q1, q2}, Γ = {a, b} and O = {0}. Define the discrete state

transition map by δ(q1, a) = q1, δ(q1, b) = q2, δ(q2, b) = q2, δ(q2, a) = q2. Define the

readout map λ(q1) = λ(q2) = o. Consider the linear hybrid system

H = (A,U ,Y, (Xq, Aq, Bq, Cq)q∈Q , {Mq1,γ,q2
| q1, q2 ∈ Q, γ ∈ Γ, q1 = δ(q2, γ)})

where Y = U = R, p = m = 1, Xq1
= R3 and Xq2

= R2 and the matrices Aq, Bq, Cq,

q ∈ {q1, q2} are of the following form

Aq1
=




1 0 0

0 3 0

0 0 4


 Bq1

=




1

0

0


 Cq1

=
[
1 1 1

]

Aq2
=

[
2 0

0 1

]
Bq2

=

[
0

1

]
Cq2

=
[
1 1

]

The linear reset maps are the following

Mq1,a,q2
=




0 1

1 0

0 0


 Mq2,b,q1

=

[
0 1 0

1 0 0

]

Mq1,a,q1
=




1 0 0

0 1 0

0 0 1


 Mq2,b,q2

=

[
1 0

0 1

]

The form of the input/output map υH((q2, x0), .) induced by (q2, x0), x0 =
[
1 0

]T

is quite complex, as a demonstration we will present below the output to the discrete

input sequence (b, t1)(a, t2)(a, t3)(b, t4).

υH((q2, x0), u, (b, t1)(a, t2)(a, t3)(b, t4), t5) =

(o, e2t5e3t4e3t3e2t2e2t1 +

∫ t1+···+t5

0

et1+···t5−su(s)ds)
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Consider a linear hybrid system Hm of the following form

(Am,U ,Y, (Xm
q , Am

q , Bm
q , Cm

q )q∈Qm , {Mm
q1,γ,q2

| q1, q2 ∈ Qm, γ ∈ Γ, q1 = δm(q2, γ)})

where Qm = {q}, Xm
q = R3, the automaton Am = (Qm,Γ, O, δm, λm) is given by

δm(q, z) = q, z ∈ {a, b} and λm(q) = o

The matrices Am
q , Bm

q , Cm
q ,Mm

q,z,q, z ∈ {a, b} are specified below

Am
q =




2 0 0

0 3 0

0 0 1


 Bm

q =




0

−1

0


 Cm

q =
[
−1 −1 −1.414214

]

Mm
q,b,q =




0 0 0

1 1 0

0 0 1


 Mm

q,a,q =




1 1 0

0 0 0

0 0 1




Define µm(υH((q2, x0), .)) = (q, z0) by z0 =
[
−0 −0 −0.707107

]T

. Then (Hm, µm)

is a minimal linear hybrid system realization of υH((q2, x0), .). The realization Hm

was computed using a Matlab implementation of the algorithm presented in the

paper. ‘

10.5.2 Bilinear Hybrid Systems

The theory of hybrid formal power series developed in Section 3.3 allows us to for-

mulate a partial realization theorem for bilinear hybrid systems. It also enables us

to formulate algorithms for deciding observability and semi-reachability of bilinear

hybrid systems and to give an algorithm for constructing a minimal bilinear hybrid

system realization based on a specified hybrid system realization. In fact, the results

presented below are more general than the ones described in [48]. Notice that the

algorithmic aspects of realization theory are treated in this paper in a much more

detailed manner than in [48].

Let Φ be a collection of input-output maps and assume that Φ admits a hybrid

Fliess-series expansion. It is easy to see that all information needed for constructing

the indexed set of hybrid formal power series Ω = ΨΦ can be obtained (in theory)

from the set of input-output maps Φ, more precisely, from the generating series cf

and discrete input-output maps fD for all f ∈ Φ. In fact, the values of cf can be

recovered from f by taking high-order derivatives with respect to time and continuous

inputs.
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Assume that Φ is finite collection of input-output maps. Notice that it also implies

that the index set J = Φ of ΨΦ is finite. Unless stated otherwise, we will use this

finiteness assumption in the rest of this section.

Our first goal is to construct a bilinear hybrid realization of Φ from finite number

of data points. Recall the results of Subsection 10.3. It is easy to see that if Φ

is finite then all the data for constructing WDΩ,N ,D,D and HΩ,N,N can be obtained

from the input-output maps of Φ and the number of data points needed for con-

structing WDΩ,N ,D,D and HΩ,N,N is finite. Theorem 67 yields that the finite data

from WDΩ,N ,D,D and HΩ,N,N can be used to compute a minimal hybrid representa-

tion of Ω. But any minimal hybrid representation HR of Ω yields a minimal bilinear

hybrid realization (HHR, µHR) of Φ. Thus, we get the following result. Denote

HΦ,N,M = HΨΦ,N,M , DΦ,N = DΨΦ,N .

Theorem 73. Assume that Φ is a finite collection of input-output maps and Φ ad-

mits a hybrid Fliess-series expansion. Assume that rank HΦ,N,N = rank HΦ and

card(WDΦ,N ,D,D) = card(WDΦ,N
). Let HRN,D be the hybrid representation from

Theorem 67. Then (HN,D, µN,D) = (HHRN,D
, µHRN,D

) is a minimal bilinear hy-

brid system realization of Φ and it can be constructed from finite data which can be

obtained directly from Φ. In particular, if Φ has a linear hybrid system realization

(H,µ) such that dim H = (p, q) and max{p, q} ≤ N , then (HN,N , µN,N ) is a minimal

bilinear hybrid system realization of Φ and it can be constructed from finitely many

data which is directly obtainable from Φ.

The results of Subsection 10.3 also allow us to check observability and semi-

reachability of bilinear hybrid systems algorithmically. Indeed, consider a bilinear

hybrid system realization (H,µ). It is easy to see that the construction of HRH,µ

can be carried out by a computer algorithm. It follows that HRH,µ is reachable

if and only if (H,µ) is semi-reachable and HRH,µ is observable if and only if H is

observable. Recall the procedures IsHybRepObservable and IsHybRepReachable.

To check semi-reachability of (H,µ) we can apply IsHybRepReachable to HRH,µ.

To check observability of (H,µ) we can apply IsHybRepObservable to HRH,µ. Fi-

nally, we can apply ComputeMinimalHybRep to HRH,µ to obtain a minimal hybrid

representation HR and then we can construct (HHR, µHR) which will be a minimal

bilinear hybrid system realization of Φ. Notice that the construction of (HHR, µHR)

can be carried out algorithmically. Thus, if all the entries of the system matri-

ces of H are rational and all the values of µ are rational, then observability and

semi-reachability of (H,µ) is algorithmically decidable and a minimal bilinear hybrid

realization of Φ can be constructed from (H,µ) by an algorithm in sense of classical

Turing computability.
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Below we will present a numerical example

Example

Consider the following bilinear hybrid system. Consider the Moore-automaton A =

(Q,Γ, O, δ, λ), where Q = {q1, q2}, Γ = {a, b} and O = {0}. Define the discrete state

transition map by δ(q1, a) = q1, δ(q1, b) = q2, δ(q2, b) = q2, δ(q2, a) = q2. Define the

readout map λ(q1) = λ(q2) = o. Consider the linear hybrid system

H = (A,U ,Y, (Xq, Aq, {Bq,j}j=1,...,m, Cq)q∈Q , {Mδ(q,γ),γ,q | q ∈ Q, γ ∈ Γ})

where Y = U = R, i.e. p = m = 1, Xq1
= R3 and Xq2

= R2 and the matrices

Aq, Bq,1, Cq, q ∈ {q1, q2} are of the following form

Aq1
=




3 0 0

0 1 0

0 0 4


 Bq1,1 =




1 0 0

0 0 0

0 0 0


 Cq1

=
[
1 1 1

]

Aq2
=

[
2 0

0 1

]
Bq2,1 =

[
0 0

0 1

]
Cq2

=
[
1 1

]

The linear reset maps are of the following form

Mq1,a,q2
=




0 1

1 0

0 0


 Mq2,b,q1

=

[
0 1 0

1 0 0

]

The input/output map υH((q2, x0), .) induced by (q2, x0), x0 =
[
0 1

]T

, is quite

complex, as a demonstration we will present below the output to the discrete input

sequence (b, t1)(a, t2)(a, t3)(b, t4).

υ((q2, x0), u, (b, t1)(a, t2)(a, t3)(b, t4), t5) =

(o,
∑

w1,...,w5∈Z∗
m

3nz(w2)+nz(w3)Vw1,...,w5
[u](t1, . . . , t5))

where nz(w) is the number of occurrences of the symbol 0 in w, Vw1,...,w5
[u](t1, . . . , t5)

– product of iterated integrals.

A minimal realization of υH((q2, x0), ., .) of the following form.

Hm = (Am,U ,Y, (Xm
q , Am

q , {Bm
q,j}j=1,...,m, Cm

q )q∈Qm , {Mm
δm(q,γ),γ,q | q ∈ Qm, γ ∈ Γ})

where U = Y = R, Qm = {q}, Xm
q = R2, the automaton Am = (Qm,Γ, O, δm, λm) is

given by

δm(q, z) = q, z ∈ {a, b} and λm(q) = o
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The matrices Am
q , Bm

q,1, C
m
q ,Mm

q,z,q, z ∈ {a, b}

Am
q =

[
3 0

0 1

]
Bm

q,1 =

[
1 0

0 1

]
Cm

q =
[
1 −1

]

Reset maps:

Mm
q,b,q =

[
0 0

−1 1

]
Mm

q,a,q =

[
1 −1

0 0

]

Define µm(υH((q2, x0), .)) = (q, z0) by z0 =
[
0 −1

]T

. Then (Hm, µm) is a min-

imal bilinear hybrid system realization of υH((q2, x0), .). The realization Hm was

computed using a Matlab implementation of the algorithm presented in the paper.
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Chapter 11

Conclusions

The aim of this chapter is to draw conclusions from and to outline further research

direction based on the work presented in this thesis. We will start by recapitulating

what was achieved in this thesis. Then we will proceed with formulating a number of

claims concerning further research directions in the area of hybrid systems in general

and in the field of realization theory of hybrid systems in particular. We will also

suggest a number of mathematical theories, which, we believe, could be useful in

study of hybrid systems.

11.1 Short Summary of the Thesis

In this thesis we presented realization theory for a number of classes of hybrid sys-

tems. With one exception only hybrid systems without guards, i.e. without au-

tonomous switching were considered. The exception is the class of discrete-time

piecewise-affine hybrid systems. This class is essentially the same as the class of

PL systems introduced by Sontag in [15]. Unfortunately the results obtained for

this class of hybrid systems are incomplete and inconclusive. Much more research is

needed.

In contrast to PL systems, realization theory for continuous-time linear and bi-

linear switched and hybrid systems is rather complete. We were also able to present

numerical algorithms for computing a minimal realization, checking semi-reachability,

observability and minimality and for computing a realization from finite input-output

data. These result have a great potential impact on control and identification meth-

ods for hybrid systems of the above class. The main tool in realization theory of

these systems was the framework of rational formal power series. Precisely this clas-
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sical theory allowed us to prove the presented results. We also managed to make the

first inroad into realization theory of nonlinear hybrid systems without guards. The

obtained results a promising but much further research needs to be done.

Unfortunately, we did not manage to obtain too many results concerning hybrid

systems with guards. This stays entirely a topic of further research.

11.2 Conclusions

The present thesis offers a rather complete and coherent view of realization theory of

hybrid systems without guards. In author’s opinion, the main reason for the relative

ease with which these results were obtained is the realization that hybrid systems in

essence are nonlinear systems.

In fact, this statement is absolutely true for switched systems. Switched sys-

tems can be viewed as a collection of vector fields, which is exactly a point of view

adopted by nonlinear systems theory. Perhaps the only difference between classi-

cal nonlinear systems and switched systems is the choice of admissible inputs. In

case of classical nonlinear systems the admissible input were mostly either smooth

or analytic or piecewise-continuous, or integrable or piecewise-constants. In case of

switched systems the admissible input are such that one input component has to be

piecewise-constant, the other can be smooth, continuous, analytic etc.

Switched systems with constrained switching stand already a bit further from

classical nonlinear systems. In this case the set of admissible inputs is further re-

stricted, in fact, it is not closed under composition. Indeed, if two finite switching

sequences are admissible, then it does not follow that their composition will be ad-

missible too. In some sense a switched system with constrained switching represents

contains more information then its input-output behaviour. Indeed, if we now all

the vector fields and readout maps, then we also know how the system would behave

for non-admissible switching sequences, but of course we cannot measure such a be-

haviour. This basic fact is reflected in the problems we encountered while trying to

obtain minimal switched system realizations under switching constrains.

General hybrid systems without guards are even further from nonlinear systems.

There is no way to view them as classical nonlinear systems. In the author’s opinion,

developing realization theory for such systems was a much more challenging task than

developing realization theory for switched systems. Nevertheless, nonlinear system

theory, in particular, theory of rational formal power series did provide us with the

necessary tools. The results derived for hybrid systems without guards present an

interesting combination of automata theory and theory of formal power series. The

latter has been a well-established tool of nonlinear control theory for a long time.
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Thus, theory of hybrid systems without guards seems to be close to fulfilling the hope

that hybrid systems theory can built by smart combination of automata theory and

classical control systems theory.

Although we just argued that theory of hybrid systems without guards are a

combination of the classical control theory and automata theory, we would like to

note that we did not succeed in using too many off-the-shelf results from either

of fields. That is, the developed theory is not so a much combination of classical

theorem, rather, it is the result of rethinking and extending the classical results.

This is also reflected in the fact that we use only very few classically known results.

It is more the ideas, rather than the known results we used.

An important common feature of hybrid systems without guards and nonlinear

systems is that in the analytic case the long-term behaviour of the system can be

recovered from the local, small-time behaviour. That is, if two systems have the same

behaviour locally, for small times, they will have the same behaviour globally too.

This is a very important feature from the point of view of realization theory. Indeed,

almost all results on realization theory of continuous time systems rely on collecting

this local behaviour, represented in a way or another by high-order time derivatives

at zero, in the Hankel-matrix and requiring different finiteness conditions to hold for

the resulting infinite matrix. Together with the finite rank property it also allows

designing numerical algorithms for computing realization from input-output data.

The property that knowledge of local behaviour is enough for building a realization

was heavily exploited in all the hybrid systems without guards considered in this

thesis.

Unlike nonlinear systems, hybrid systems without guards have dynamics, which is

not necessarily defined by action of a family of (local) diffeomorphism on a manifold.

This is due to the presence of reset maps, which need not be invertible. In this

sense hybrid systems are quite close to discrete-time nonlinear systems with non-

invertible right-hand side. That property of hybrid systems without guards makes

global analysis difficult. In particular, it makes it difficult to study accessibility

and observability properties. For nonlinear systems the main tool for studying such

properties is Sussmann’s orbit theorem. But Sussmann’s orbit theorem does not

seem to work for systems, where the dynamics is not generated by diffeomorphism.

In fact, the orbits of such systems need not be manifolds, they fall into the category

of differentiable spaces.

The current thesis hardly scratches the surface of hybrid systems with guards.

The only class of such hybrid systems which is dealt with in this thesis is the class of

piecewise-affine hybrid systems in discrete-time, i.e. the rather Sontag’s PL systems.

The results which are presented in this thesis are quite elementary. They rely on
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techniques, which are in some sense similar to those for time-varying linear systems.

As for other classes of hybrid systems with guards, the realization problem is still

open for those systems.

11.3 Further Research

In this section we would like to give ideas and suggestions for future research in the

topic. We would also like to draw attention to what we see as potential difficulties

and suggest mathematical techniques, which, in our opinion, could help to solve

those difficulties. We will divide this section into several subsections, each discussing

a specific topic.

11.3.1 Coalgebraic Approach to Realization Theory of Non-

linear and Hybrid Systems

Although, as we have already pointed out, hybrid systems with guards are much

more interesting object to investigate than hybrid systems without guards, we still

think that it is worthwhile to clarify a number of issues for hybrid systems without

guards too. Not the least because hybrid systems without guards can always occur as

extremal versions of hybrid systems with guards. More precisely, if a hybrid system

with guards is such that for any guard there are input values which immediately steer

the system to the guard, then in fact we get a hybrid system without guards, where

the role of external discrete events is taken over by those special input values. That

is, by feeding in a suitable continuous input impulse, we can force an instantaneous

discrete-state transition. Thus, certain continuous inputs will act as discrete inputs

and will trigger discrete state transitions. That is, such hybrid systems with guards

will function as hybrid systems without guards.

Another motivation for studying hybrid systems without guards is that while

hybrid systems without autonomous switching do not seem to occurs too often, hybrid

systems with both autonomous and external switching seem to be quite frequent.

Investigating hybrid systems with external switching only seems to be a logical step

towards exploring hybrid systems with both autonomous and external switching.

As the reader has already seen, theory of Hopf-algebras and bi algebras played

a prominent role in realization theory of hybrid systems without guards. In fact,

relevance of Hopf-algebra in realization theory was noticed much earlier, see [27, 29].

So far, Sweedlet-type coalgebra theory was used only for local realization. In fact, as

the reader could see, even local realization is not yet fully solved for hybrid systems.
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Nevertheless, we are quite confident that it can be solved using the approach and

results of the current paper as a starting point.

In fact, we believe that the theory of Sweedler-like coalgebras could be successfully

used for solving the global realization problem too. Let us outline how, in our opinion,

it could be done.

Consider the duality between manifolds and algebra of smooth functions on man-

ifolds. It is known that the algebra of smooth functions over a manifold has a natural

topology which makes it a Frechet-algebra. The underlying manifold corresponds to

the set of those algebraic homomorphisms from the algebra to reals, which are con-

tinuous in the topology of the algebra. The topology of the manifold itself coincides

with the Zariski topology of it as a real spectrum of the algebra of smooth functions.

We suggest to make a step further, and view a manifold together with the covariant

tensors spaces at each point as a coalgebra. This coalgebra will be a direct sum of

pointed cocommutative irreducible cofree coalgebras. To each point of the manifold

there corresponds a pointed irreducible component, which is the cofree cocommu-

tative irreducible pointed coalgebra generated by the tangent space at that point.

The unique group-like element of this coalgebra is the point of the manifold. The

topology of the manifold induces a topology on this coalgebra. Then the algebra of

smooth functions over the manifold is in fact the topological dual of this coalgebra.

That is, we have duality between topological coalgebras and topological algebras.

This leads as to studying objects which are very similar to those of formal groups.

The ideas above lead us to the following approach to control systems on manifolds.

Let us view the state-space manifold as a coalgebra. Let us view the input-space as a

coalgebra. Notice that regardless of whether the input-space is a manifold or discrete

set, we can always adopt such a point of view. By input-space we mean the index

set of the semi-group of transformations, which define the dynamics of the system.

For instance, if this transformation semi-group is generated by flows of a family

of vector fields, then our input space will be the set of timed sequences of indices

of the vector fields which make up the family. Notice that the input-space has a

natural algebra, moreover a bialgebra structure. If the input space forms a group

with respect to concatenation, then it can be assigned a pointed cocommutative

Hopf-algebra structure.

By adopting the point of view described above, the dynamics is just a coalgebra

map from tensor product of the input- and the state-spaces to state-space, the initial

states just group-like elements of the state-space and the readout maps just elements

of the (topological) dual of the state-space. If we consider the (topological) dual of

the state-space, then the coalgebra map describing the dynamics yields a measuring.

A measuring is a map from a coalgebra and algebra to an algebra, such that the
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map has certain special properties. Thus, we naturally arrive to the framework of

coalgebra and algebra systems, after possibly defining a suitable topology on the

state-space.

The author does not see it inconceivable that realization theory could be carried

out in a way, similar to what was done for local realization of nonlinear and hybrid

systems. Of course, topological arguments should be taken into account too, the

constructions would not be purely algebraic. But one can still hope that the approach

described above could serve as a unifying framework for a number of constructions.

Let us remark that the point of view described above is quite similar to the

concept of k systems described in [64]. Indeed, the spectrum of any algebra can be

identified with a coalgebra formed by the space spanned by algebraic maps from the

algebra to the ground field ( we tacitly assumed that the algebra is reduced ). The

duality between spectrum and algebra is analogous to the duality between algebra

and coalgebra described above.

It would be interesting to explore further the possible use of Hopf-algebra the-

ory in solving the realization problem. It would be also interesting to see how the

already known results could be proven with this approach. However, the suggested

coalgebraic approach might not be suitable for tackling all types of systems. In par-

ticular, in case of polynomial systems it is questionable how useful the coalgebraic

approach is, as the author is not aware of nice characterisation of finitely generated

algebra or algebra with finite transcendence degree as duals of suitable coalgebras.

Hence, what the author suggests is not to use the coalgebraic approach as a universal

tool. It seems more appropriate to use duality and look at algebras and coalgebras,

depending on which point of view seems to be more fruitful.

In fact, Sontag’s ”algebraic approach” ([64]), which is more or less explicitly

present in many of his papers, is dual to the coalgebraic approach. We believe that

our approach is more useful for general nonlinear systems, while his approach is more

useful for systems, algebra of which is finitely generated or has finite transcendence

degree, such as rational or polynomial systems.

We conjecture that even global results on realization theory of nonlinear and

hybrid systems could be successfully dealt with in our framework. In particular

we think that Jakubczyk’s approach to realization theory could be recast in our

framework. As in his case the input-space forms a group, we would get that the

input bialgebra is in fact a Hopf-algebra. Hopf-algebras have nice properties and can

be easily related to enveloping algebras of Lie-algebras. This algebraic relationship

could perhaps be combined with topological arguments to yield the construction of

a state-space manifold.
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11.3.2 Realization Theory of Hybrid Systems with Guards

As we mentioned earlier, this thesis contains very few results on hybrid systems with

guards. The results on discrete-time hybrid systems which were presented in this

thesis are rather elementary. The approach which we used to obtain them is not

likely to be extendable to hybrid systems with inputs. That is because we assumed

the the initial state uniquely determines the switching sequence. This is true for

the autonomous case, but false for non-autonomous case, as the inputs can influence

the switching sequence. In fact, it is easy to construct such an example where any

switching sequence can be obtained by feeding in suitable inputs. On the other hand,

the approach presented in this thesis may still work if the inputs do not influence

the switching sequence. Even if the switching sequence depends only on the initial

state, there are a number of questions which remain unanswered. In particular, it

remains to be explored how the presented conditions can be checked algorithmically

and how the construction of a realization can be carried out by an algorithm. The

issue of minimality remains unexplored too.

Continuous-time hybrid systems with guards, in particular piecewise-affine hybrid

systems with guards were not mentioned at all in this thesis. Realization theory for

this class of hybrid systems remains completely a topic of further research.

A possible line of attack would be extension of the approach presented in this

thesis. That is, we assume that the switching depends only on the initial state and

we translate the realization problem for hybrid systems with guards to realization

problem for time-varying systems of a particular structure. This approach might

also give results and insights to realization theory and identification of PV and LPV

systems.
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De nederlandse vertaling van de titel van dit proefschrift is ‘ Realisatietheorie van

Hybride Systemen ’ .

Het onderwerp van wiskundige regeltheorie is het regelen van systemen die voor-

komen in natuur of techniek. Voorbeelden van zulke systemen zijn vliegtuigen, auto’s,

transportbanden en zelfs apparaten voor de automatische dosering van geneesmid-

delen. Zulke systemen hebben de volgende eigenschapen gemeen. Ten eerste, hun

gedrag verandert in de loop van de tijd. Ten tweede, het doel van het regelen is het

systeem een bepaald gedrag af te dwingen. Zoals de naam suggereert, bestudeert

men in wiskundige regel- en systeemtheorie de wiskundige modellen van systemen

die in het praktijk voorkomen. Door naar de wiskundige modellen van systemen

te kijken wordt het probleem van de regeling van systemen vertaald naar een goed

gedefinieerd wiskundig probleem. Juist het oplossen van wiskundige problemen die

op zulke manier zijn ontstaan is de taak van wiskundige systeem- en regeltheorie.

Om een voorbeeld te geven, differentiaalvergelijkingen worden vaak gebruikt voor

het modelleren van in de praktijk voorkomende systemen. In dit geval worden de

mogelijke regelacties gemodelleerd als een ingangsfunctie in de rechterkant van de dif-

ferentiaalvergelijkingen. Het regelen van het systeem correspondeert met het kiezen

van een functie die bij elk tijdstip een ingangswaarde kiest. Op deze manier verkrijgt

men een differentiaalvergelijking die tijdsafhankelijk is. De wiskundige vertaling van

het regelprobleem wordt het kiezen van zo’n functie, zodanig dat de oplossing van

de resulterende tijd-variabele differentiaalvergelijking aan de vereiste voorwaarden

voldoet.

Wiskundige systeem- en regeltheorie is een multidisciplinair vakgebied, dat wis-

kunde, techniek en informatica combineert.

Een van de kernproblemen van systeem- en regeltheorie is het vinden van realis-

tische wiskundige modellen van in de praktijk voorkomende systemen. In de mees-

te gevallen zijn de wiskundige modellen van in de praktijk voorkomende systemen

slechts gedeeltelijk bekend. Om een volledig wiskundig model te vinden, moet men
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gebruik maken van experimentele gegevens. Op deze manier ontstaat er het volgende

wiskundige probleem. Welke wiskundige modellen van een bepaald type kunnen het

waargenomen gedrag van het systeem beschrijven ? Als het waargenomen gedrag

gewoon uit een eindig aantal experimentele gegevens bestaat, dan spreekt men over

een identificatieprobleem. Als het waargenomen gedrag een abstrakte wiskundige re-

latie is, die de samenhang tussen de waarnemingen (de uitgang) en de regelacties (de

ingang) beschrijft, dan spreekt men over een realisatieprobleem. De abstrakte wis-

kundige relatie tussen ingang en uitgang wordt vaak als het ingangs-uitgangsgedrag

van het systeem genoemd. Het vakgebied van systeemidentificatie bestudeert het

oplossen van het identificatieprobleem voor verschillende klassen van systemen. Het

vakgebied van realisatietheorie bestudeert het oplossen van het realisatieprobleem

voor verschillende klassen van systemen.

Het is duidelijk dat systeemidentificatie enorm belangrijk is voor de praktijk.

Echter men kan zich afvragen waarom realisatietheorie van belang is. De reden voor

het bestuderen van realisatietheorie is de volgende. Realisatietheorie beantwoordt

een heel fundamentele vraag over regelsystemen. Hij legt verband tussen het waarge-

nomen gedrag van het systeem en zijn interne structuur. Deze kennis, die op zichzelf

heel waardevol is, kan heel goed toegepast worden bij het oplossen van een aan-

tal meer praktische problemen, onder andere, voor het systeemidentificatieprobleem.

Realisatietheorie kan beschouwd worden als een gëıdealiseerd systeemidentificatie-

probleem, waarbij heel veel praktische problemen buiten beschouwing zijn gelaten.

Dus, als het realisatieprobleem onvolledig is begrepen, dan is er weinig kans voor het

vinden van een bevredigende oplossing van het identificatieprobleem. In feite, vormt

realisatietheorie de grondslag voor een groot aantal identificatiemethoden.

Realisatietheorie speelt ook een belangrijke rol bij een reeks andere problemen

van de regeltheorie. Een van de belangrijke bijdragen van realisatietheorie is het

bestuderen van de structuur van minimale systemen en het leggen van een verband

tussen de minimaliteit van systemen en zulke belangrijke systeemeigenschapen als

regelbaarheid en als waarneembaarheid. Op hun beurt, zijn de eigenschappen als

waarneembaarheid en regelbaarheid meestal noodzakelijke voorwaarden voor het be-

staan van oplossingen van regelproblemen.

Dit proefschrift behandelt het onderwerp van realisatietheorie van hybride syste-

men. Hybride systemen zijn systemen die zijn opgebouwd uit discrete deelsystemen

en continue deelsystemen. Continue systemen zijn systemen die in een oneindig

aantal toestanden kunnen verkeren. Discrete systemen zijn systemen waarvan de

toestand slechts een eindig of aftelbaar aantal waarden kan aannemen. Een auto met

een versnellingsbak levert een goede analogie op. Als wij de rijdende auto als een

systeem beschouwen, dan zijn de positie en de snelheid van de auto en de versnelling
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waarin hij rijdt componenten van het systeem. Omdat de snelheid en de positie een

oneindig aantal verschillende waarden kunnen aannemen, behoren zij tot de conti-

nue componenten van het systeem. De versnellingsbak kan maar een eindig aantal

verschillende toestanden aannemen (in de meeste auto’s zijn er maar vier versnellin-

gen), dus behoort de versnellingsbak tot de discrete deelsystemen van het systeem.

Om in wiskundige termen te spreken: de continue deelsystemen worden meestal door

differentiaalvergelijkingen beschreven, terwijl de discrete deelsystemen worden be-

schreven door een eindig aantal regels, die de toestand van de discrete componenten

bepalen. Deze regels hebben de vorm: ‘ als de voorwaarde A geldt dan moet de

discrete component X in de toestand Y verkeren ’ . Vaak worden deze regels met

behulp van een automaat met een eindig aantal toestanden beschreven. De motivatie

voor het bestuderen van zulke systemen is de volgende. Ten eerste, een reeks van

verschijnselen in de natuur vertoont een hybrid karakter en kunnen deze verschijn-

selen op natuurlijke wijze met hybride systemen gemodelleerd worden. Ten tweede,

worden heel veel technische systemen met behulp van computers bestuurd. Vaak

is het nuttig om het onderliggende technische systeem en de besturende computer

als één systeem te beschouwen. Terwijl technische systemen meestal goed beschre-

ven kunnen worden door differentiaalvergelijkingen, moet de besturende computer

als een automaat met een eindig aantal toestanden gemodelleerd worden. Op deze

manier krijgen wij systemen waarvan sommige deelsystemen een continu en andere

deelsystemen een discreet gedrag tonen. Door de aanwezigheid van zowel discrete als

continue onderdelen ligt het vakgebied van hybride systemen op het kruispunt van

wiskundige regel- en systeemtheorie en informatica.

Dit proefschrift behandelt bijna uitsluitend hybride systemen, waarvan het ge-

drag van de discrete deelsystemen onafhankelijk is van het gedrag van de continue

deelsystemen. Zulke hybride systemen zijn makkelijker te bestuderen dan hybride

systemen van meer algemene vorm. Toch hoopt men dat het bestuderen van deze,

meer beperkte, klasse van hybride systemen zal helpen in het bestuderen en begrijpen

van hybride systemen van meer algemene aard.

De hoofdstuk 1 bevat een informele inleiding tot de inhoud van dit proefschrift.

Hoofdstuk 2 bevat de belangrijkste wiskundige begrippen en notaties, die verder ge-

bruikt zullen worden in dit proefschrift. Hoofdstuk 3 is een van de belangrijkste

hoofdstukken van dit proefschrift. Dit hoofdstuk formuleert de abstrakte wiskundige

theorie van hybride en klassieke formele machtreeksen. Deze theorie vormt de theo-

retische grondslag van realisatietheorie van een reeks klassen van hybride systemen.

Hoofdstukken 4 en 7 behandelen de realisatiethorie voor de volgende klassen van

hybride systemen: linear switched systems, bilinear switched systems, linear hybrid

systems en bilinear hybrid systems. Hoofdstuk 8 bevat enkele resultaten over rea-
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lisatietheorie van niet-lineaire hybride systemen. Dit hoofdstuk maakt gebruik van

de theorie van zogenaamde coalgebras, in de zin van het beroemde boek van Sweed-

ler. Hoofdstuk 9 bevat enkele voorlopige resultaten over realisatietheorie van de

zogenaamde discrete-time piecewise-affine hybrid systems. Deze klasse van hybride

systemen is de enige klasse van hybride systemen, die in dit proefschrift bestudeerd

wordt en die hybride systemen toelaat, waarvan het gedrag van de discrete compo-

nenten wel afhankelijk is van het gedrag van de continue componenten. Hoofdstuk

10 behandelt de algorithmische aspecten van realisatietheorie van hybride systemen.

Hoofdstuk 5 wijkt een beetje af van het hoofdkader van dit proefschrift. Het onde-

werp van dit hoofdstuk is geen realisatietheorie, maar de structuur van de verzameling

van bereikbare toestanden van linear switched systems. Hoofdstuk 6 beschrijft een

alternatieve methode voor het ontwikkelen van realisatietheorie voor linear switched

systems, waarbij er geen gebruik wordt gemaakt van de theorie van formele macht-

reeksen. Tenslotte, worden er in Hoofdstuk 11 enkele conclusies getrokken en enkele

suggesties gedaan over toekomstige onderzoekthema’s.
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Mathematical control theory is concerned with control of natural and engineering

systems. The range of such systems includes aeroplanes, conveyor belts, cars and

even systems for automated injection of medicines. A common property of such

systems is that their behaviour changes with time and the goal of the control is to

achieve a particular behaviour of the system as time advances. As its name suggests,

mathematical control theory studies the mathematical models of such systems. By

looking at the mathematical models the problem of controlling the system translates

into a well-defined mathematical problem. Solving mathematical problems which

arise in this way is the primary task of mathematical control theory.

For example, differential or difference equations are widely used to model real-life

systems. In this case the possible control actions correspond to input functions in the

right-hand side of the equations. The process of controlling the system is modelled as

a function of time, taking values in the input space. Substitution of such a function

into the right hand side of the equation results in a time-varying differential/difference

equation. The mathematical reformulation of the control problem in this case is to

choose this function in such a way that the solution of the resulting time-varying

differential/difference equation meets the specified control objectives.

Mathematical control theory is inherently a multidisciplinary subject, which com-

bines (applied) mathematics, engineering, and computer science.

One of the core problems of control theory is to find proper models of real-life

systems. Usually the mathematical models of real-life phenomena are only partially

known. In order to obtain a full mathematical model, experimental data of the real-

life system is required. In this way the following mathematical problem arises. Which

mathematical models of a certain type can generate the observed behaviour of the

system ? If the observed behaviour is a finite collection of experimental data, then

the question above is usually referred to as the system identification problem. If the

observed behaviour is an abstract mathematical relation describing the relationship

between controls (inputs) and observable features of the system (outputs), then we
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speak of the realization problem. This abstract relationship between controls and

observed behaviour is often referred to as the input-output behaviour of the system.

The field of system identification studies the solution of the system identification

problem for various classes of systems. The field of realization theory studies the

realization problem for various classes of systems.

Clearly, the field of system identification is of huge practical importance. But

one may wonder why realization theory is important at all. The reason for studying

realization theory is the following. Realization theory answers a very fundamental

question about systems, by establishing a relationship between the observed beha-

viour of the system and its inner structure. This knowledge, which is valuable on

its own, can also be used for solving a number of more practical problems. One of

those problems is system identification. The realization problem can be thought of

as system identification problem under idealised circumstances. Thus, if realization

theory is poorly understood for a class of systems, then there is little hope for finding

a satisfactory solution for the identification problem. In fact, a great deal of system

identification techniques are based on realization theory.

Realization theory plays an important role in other branches of control theory too.

One of the important contributions of realization theory is the study of the structure

of minimal systems and the investigation of the relationship between minimality and

such important properties of systems as controllability and observability. In turn,

these properties and the structure of the minimal system play an important role in

developing control methods.

This thesis deals with realization theory of hybrid systems. Hybrid systems are

control systems which contain both discrete and continuous components. Roughly

speaking, continuous components are components which can take infinitely many

different states. Discrete components are components which can have only finitely

many different states. Perhaps a car with a gear box offers a good analogy. If we

consider the position, speed and the position of the gear of the car as components of

the system describing the motion of the car, then the speed and position can have

infinitely many values, while the gear can only be in four or five different positions.

Thus, the position and the speed of the car are the continuous components and

the position of the gear is the discrete component. In mathematical terms, the

continuous components are described by differential/difference equations, and the

discrete components are described by a finite set of rules, which prescribe the state

of the discrete components. These rules are of the form ı̈f condition A holds, then

discrete component X has to be in state Y”. Very often these rules are specified

by a finite state automaton. The motivation for the study of hybrid systems is the

following. First, a number of natural phenomena can be naturally viewed as hybrid
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systems. Second, many engineering systems are controlled by computers. Very often

it makes sense to model the engineering system and the computers controlling it as

one system. While the underlying engineering system is usually best modelled by

differential/difference equation, the controlling computers have to be modelled by a

finite state automaton. Hence, we get systems some components of which exhibit

continuous behavior and some components exhibit discrete behavior. Due to the

presence of discrete components, hybrid systems lie on the junction of control theory

and computer science.

This thesis deals mostly with hybrid systems without guards. Hybrid systems

without guards are such hybrid systems in which the time evolution of the discrete

components is independent from the time evolution of continuous components. Hy-

brid systems without guards are easier to study than more general hybrid systems.

One can hope that the results obtained for hybrid systems without guards will help

studying more general hybrid systems.

Chapter 1 contains an informal introduction to the thesis, Chapter 2 presents the

main mathematical notions used in the thesis. Chapter 3 describes the abstract ma-

thematical framework of hybrid power series. This framework forms the theoretical

basis for realization theory of hybrid systems. Chapters 4 and 7 present realization

theory of linear and bilinear switched systems and linear and bilinear hybrid systems.

Chapter 8 presents some preliminary results on realization theory of nonlinear hy-

brid systems. This chapter uses the machinery of Sweedler-style coalgebras. Chapter

9 presents preliminary results on realization theory of piecewise-affine discrete-time

hybrid systems. This is the only class of hybrid systems dealt with in this thesis,

which contains hybrid systems with guards. Chapter 10 addresses the algorithmic

aspects of realization theory. Chapter 5 is a bit different from the other parts of the

thesis. It does not address realization theory, rather it deals with a related topic,

the structure of reachable sets of hybrid systems. Chapter 6 discusses an alternative

approach to realization theory of linear switched systems, such that no use of formal

power series theory is required. Finally, Chapter 11 presents some conclusions and

sketches some possible future research directions.
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