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14-3-3 history 

 

For an organism to survive under varying environmental conditions it is crucial to exert 

control over cellular processes like the cell cycle, ion transport, gene expression and 

enzyme activity. Regulation of the activity and function of proteins, and thereby cellular 

processes, is an area of great interest in biochemistry. Understanding the mechanism by 

which organisms regulate protein activity and function potentially allows manipulation of 

these control mechanisms in for example treating diseases/infections or increasing yield. 

In recent years, the family of 14-3-3 proteins has emerged as an important regulator of the 

function and activity of a still rapidly increasing number of proteins.  

 

In 1967, Moore and Perez initially identified 14-3-3 proteins as acidic, abundant proteins 

in a three-dimensional screen for brain specific proteins. In fact, the name “14-3-3” refers 

to the fractions in which the proteins were located following DEAE-cellulose 

chromatography and starch-gel electrophoresis (Moore and Perez, 1967). It took until 

1982 to discover that 14-3-3 proteins are not restricted to brain tissue but present in all 

human tissues, though not in the high concentrations that are found in brain tissue (Boston 

et al., 1982). Further, 14-3-3 proteins were reported to consist of a family of multiple 14-

3-3 isoforms (Boston et al., 1982). Separation of bovine brain 14-3-3 proteins by reverse-

phase HPLC showed the presence of at least seven 14-3-3 isoforms, which were denoted 

with the greek α to η in the eluting order (Ichimura et al., 1988). Another 10 years later, 

14-3-3 proteins were discovered in several plant species (Brandt et al., 1992; De Vetten et 

al., 1992; Hirsch et al., 1992; Lu et al., 1992) and yeast (Van Heusden et al., 1992). 

Nowadays, 14-3-3 proteins are thought to be ubiquitously expressed in all eukaryotic 

tissues.  

 

Genomic sequencing projects show that the number of 14-3-3 isoforms present in an 

organism range from two, in Saccharomyces cerevisiae, to a record of potentially fifteen, 

in Arabidopsis thaliana (Rosenquist et al., 2000; Rosenquist et al., 2001). Twelve of these 

fifteen 14-3-3 coding genes in Arabidopsis were shown to be expressed (Rosenquist et al., 

2001). It is unclear whether the other three genes represent pseudogenes or are expressed 
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in yet untested environmental conditions/tissues. In mammals, seven different isoforms 

were eventually identified, named 14-3-3β, γ, ε, ζ, η, σ and τ. Two of the initially 

identified 14-3-3 isoforms, 14-3-3α and δ (Ichimura et al., 1988), turned out to be post-

translational modifications of 14-3-3β and ζ, respectively (Aitken et al., 1995). In plants, 

there seems to be a divergence in the number of isoforms between dicotyledons and 

monocotyledons. Where twelve functional 14-3-3 isoforms were found in dicots like 

Arabidopsis (Rosenquist et al., 2001) and tomato (Roberts, 2003), only eight 14-3-3 

isoforms were identified by analysing the rice genome (Jin et al., 2005). In barley, which 

was among the first plants in which 14-3-3 proteins were discovered (Brandt et al., 1992), 

only three 14-3-3 isoforms (A, B and C) are described in literature thus far (Brandt et al., 

1992; Testerink et al., 1999). 

 

Structural properties  

 

The amino acid sequence of the 14-3-3 proteins is very well conserved, both between the 

different isoforms within an organism as well as between evolutionary divergent species 

like yeast, human and barley.  Crystal structures of the human 14-3-3τ (Xiao et al., 1995), 

14-3-3ζ (Liu et al., 1995) and 14-3-3σ (Wilker et al., 2005) and the tobacco 14-3-3c 

(Wurtele et al., 2003) have been elucidated and the structures of these isoforms were 

essentially identical.  

 

The 14-3-3 proteins function as homo- and heterodimers (Jones et al., 1995; Chaudhri et 

al., 2003), forming a clamp-like structure (Fig. 1). Each individual monomer consists of 

nine α-helices (A to I), arranged in a “U” shape. Target proteins were found to interact, in 

the central cavity of the “U” shape which is also called the amphipathic groove, with 

surface exposed residues of helices C, E, G and I (Wang et al., 1998; Rittinger et al., 

1999; Wilker et al., 2005). Dimer formation is accomplished by the first four helices from 

the N-terminal part of the protein and involves interactions from residues in helices A and 

B of one monomer with residues in helices C and D of the other monomer (Liu et al., 

1995; Xiao et al., 1995; Wu et al., 1997; Wilker et al., 2005).  These characteristics are 

conserved in most 14-3-3 isoforms, enabling them to form most combinations of homo- 
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and heterodimers. An exception is reported for 14-3-3σ, in which a few residue 

substitutions in the N-terminal part cause a strong favour for homodimerization (Wilker et 

al., 2005).   

 

Figure 1. Cartoon representing the three-

dimensional crystal structure of a 14-3-3 

dimer. Each individual monomer 

consists of nine α-helices (A to I). 

Peptides representing the phosphorylated 

target motif are bound in the central 

cavity of the negatively charged grooves. 

(figure adapted from http://web.mit.edu/ 

biology/www/facultyareas/facresearch/y

affe.shtml) 

 

Structural variations between the 14-3-3 isoforms appear to be located mostly in the more 

divergent C-terminal region of the proteins. These variations in this C-terminal region 

might play an important role in target interaction/recognition, as indicated by the change 

in affinity for target proteins upon progressive removal of the C-terminal tail (Truong et 

al., 2002; Shen et al., 2003). In support of this, three unique residues (Met-202, Asp-204 

and His-206) between helix H and I were recently shown to be responsible for ligand 

discrimination by 14-3-3σ (Wilker et al., 2005). Further, some 14-3-3 isoforms contain a 

distinct 14-3-3 binding motif in their C-terminal tail. This correlates with the observation 

that the C-terminal tail might function as an autoinhibitor within the ligand binding 

groove (Kubala et al., 2004). 

 

The C-terminal region is also subject to regulational modifications. For example, at least 

some plant 14-3-3 isoforms contain a so-called EF hand-like structure between helix H 

and I (Lu et al., 1994). This EF hand-like structure, which is missing in animal 14-3-3 

proteins, was shown to bind divalent cations and consequently induce a conformational 

change in the C-terminal tail (Lu et al., 1994). Mutating amino acid residues in this EF 

hand-like structure affected the cation dependence of 14-3-3 in regulating the target nitrate 

reductase (NR) (Athwal and Huber, 2002). Another example of regulational modification 
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of 14-3-3 proteins is by phosphorylation. Several phosphorylation sites have been reported 

in, mainly mammalian, 14-3-3 isoforms (Aitken, 2002; Giacometti et al., 2004). In most 

cases the consequences of phosphorylation on protein structure/function are not clear yet.  

Some phosphorylations near the N-terminus are suggested to regulate dimer formation 

(Aitken, 2002; Powell et al., 2002; Powell et al., 2003). Further, several reports show 

inhibition of 14-3-3 binding to their target protein upon phosphorylation of the 14-3-3 

(Dubois et al., 1997; Fu et al., 2000; Van der Hoeven et al., 2000; Aitken, 2002; Tzivion 

and Avruch, 2002; Yoshida et al., 2005). The best-studied examples of the effect of 14-3-

3 phosphorylation are found in mammalian signal transduction pathways.  For example, in 

vivo phosphorylation of 14-3-3ζ, on the C-terminal Thr-233, negatively regulates its 

interaction with c-Raf (Dubois et al., 1997). The interaction between 14-3-3 and c-Raf is 

necessary to keep c-Raf in an inactive but activation competent confirmation. The c-Raf 

protein is a component of the MAPK pathway that is involved in processes like cell 

differentiation and apoptosis. For plant 14-3-3 proteins, little is known about the 

phosphorylation status and the possible effects of phosphorylation on the activity of the 

14-3-3 proteins, although an early report already mentioned phosphorylation of 14-3-3 

proteins at Ser residues (Lu et al., 1994). Thus far, the only known effect has been 

described for Tyr-137 phosphorylation of maize 14-3-3 isoform GF14-6, which lowered 

the affinity of GF14-6 for the target plasma membrane H+-ATPase (Giacometti et al., 

2004). For a better understanding of the function and target interaction/recognition of 14-

3-3 proteins, the regulation of 14-3-3 activity should and will be explored in more detail in 

the future. 

 

Functions and targets of 14-3-3 proteins 

 

The regulatory functions ascribed to 14-3-3 proteins are diverse; they include controlling 

metabolic enzymes (Bachmann et al., 1996b; Toroser et al., 1998; Cotelle et al., 2000; 

Huber et al., 2002), ion transport activity (Bunney et al., 2001; Van den Wijngaard et al., 

2001; De Boer, 2002; Plant et al., 2005; Sinnige et al., 2005b; Van den Wijngaard et al., 

2005), protein kinases (Aitken et al., 1992; Irie et al., 1994; Reuther et al., 1994; Camoni 

et al., 1998; Feng et al., 2005; Otterhag et al., 2005), gene transcription (De Vetten et al., 
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1992; Lu et al., 1992; Schultz et al., 1998; Pan et al., 1999), protein assembly (O'Kelly et 

al., 2002; Rajan et al., 2002) and targeting of proteins (Jarvis and Soll, 2002; Rajan et al., 

2002; Van Hemert et al., 2004; Paul et al., 2005). Although the exact function of 14-3-3 

proteins is not completely understood, the mechanism by which 14-3-3 proteins 

accomplish these diverse functions is basically the same. With few exceptions, the 

amphipathic groove of 14-3-3 proteins bind to distinct phosphorylated motifs, 

R/KxxSP/TPxP (mode-1) and R/KxxxSP/TPxP (mode-2) in which SP/TP indicates a 

phosphorylated serine/threonine, in their target proteins (Muslin et al., 1996; Yaffe et al., 

1997). Interactions of 14-3-3 proteins with their target molecules are initiated by the 

phosphorylation of these target molecules and can involve, due to the dimeric nature of 

the 14-3-3 proteins, one or two interactions at the same time. Upon binding of a 14-3-3 

protein, the functionality of the target protein(s) is altered. This can be accomplished by 

either activation/inactivation of the activity of the target, by (prevention of) translocation 

of the target to a different cellular compartment, or by interaction with other molecules 

that are in the same complex. 

 

At first sight there seems to be a difference in 14-3-3 target proteins between animals and 

plants. Most of the well characterised animal 14-3-3 target proteins described in literature 

are involved in signalling, while in plants most target proteins are enzymes of primary 

metabolism. However, with the recent large-scale purifications of 14-3-3 target proteins 

(Milne et al., 2002; Pozuelo Rubio et al., 2004; Benzinger et al., 2005) it became evident 

that this apparent difference between animals and plants might have been a difference in 

focus/research interest between these fields. 

 

In animals 

 

The first proteins identified to interact with 14-3-3 proteins were tryptophan 5-

monooxygenase and tyrosine 3-monooxygenase (Ichimura et al., 1987), rate-limiting 

enzymes in indolamine (e.g. serotonin and melatonin) and catecholamine (e.g. dopamine, 

noradrenaline and adrenaline) biosynthesis, of which the activity was stimulated upon 14-

3-3 binding (Ichimura et al., 1987). The list of known 14-3-3 targets nowadays contains 
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hundreds of proteins and is growing rapidly. Not surprisingly, some of the best-studied 

examples of regulation by 14-3-3 proteins are related to human diseases. 

 

Signal transduction pathways with a potential for oncogenic transformations are 

extensively studied and 14-3-3 proteins are reported to interact with many of the proteins 

involved (Hermeking, 2003; Wilker and Yaffe, 2004). The most intriguing is probably the 

previously mentioned kinase c-Raf, as it contains at least four 14-3-3 binding sites 

(Morrison et al., 1993; Muslin et al., 1996; Clark et al., 1997; Dumaz and Marais, 2003) 

of which some are inhibitory (Roy et al., 1998; Light et al., 2002) and some are 

stimulatory (Thorson et al., 1998) upon 14-3-3 binding. To further complicate the picture, 

proteins directly upstream (Ras and protein kinase C) and downstream (mitogen activated 

protein kinase kinase MEK) of c-Raf also interact with 14-3-3 proteins, which might have 

a scaffolding function.  A more direct involvement in aetiology of cancer is reported for 

14-3-3σ, of which the down-regulation is observed in many tumor types and may be an 

early event in oncogenic transformation (Hermeking, 2003; Wilker and Yaffe, 2004; 

Lodygin and Hermeking, 2005). Although the precise mechanism remains unclear, 14-3-

3σ appears to be an essential component to accomplish G2/M arrest upon DNA damage. 

This is possibly accomplished through interaction with the CDC2-cyclin-B1 complex, 

shown to coimmunoprecipitate with a 14-3-3σ specific antibody (Chan et al., 1999), and 

sequestering this complex in the cytosol. However, the partners in this complex were not 

identified in a recent affinity purification with 14-3-3σ, identifying 117 potential target 

proteins (Benzinger et al., 2005).  

 

The possible involvement of 14-3-3 proteins in various neurological disorders has recently 

attracted a lot of interest (Berg et al., 2003; Teunissen et al., 2005). 14-3-3 proteins are 

detected in the cerebrospinal fluid of patients with for example, severe forms of, multiple 

sclerosis (Teunissen et al., 2005). For the diagnosis of Creutzfeldt-Jakob disease, 

detection of 14-3-3 proteins in the cerebrospinal fluid is even a standard diagnostic 

criterium (Hsich et al., 1996; Zerr et al., 1998; Beaudry et al., 1999). Further, increased 

levels of some 14-3-3 isoforms were shown in several brain regions in patients suffering 

from Alzheimer’s disease (Layfield et al., 1996; Fountoulakis et al., 1999). Various 
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binding partners of 14-3-3 are involved in apoptosis and/or vulnerability for 

neurodegradation (e.g. Bad and Fkhrl1) (Berg et al., 2003). However, so far, it is unclear 

what role 14-3-3 proteins play in these diseases. 

 

The 14-3-3 proteins also serve an interesting function in the development of embryos. One 

of the partition-defective PAR proteins, which are responsible for the establishment of 

anterior-posterior polarity and gastrulation in the embryonic stage of C. elegans (Morton 

et al., 2002), Drosophila (Benton et al., 2002) and Xenopus (Kusakabe and Nishida, 

2004), is identical to a 14-3-3 protein. A similar function of 14-3-3 was shown in 

establishing and maintaining epithelial polarity in mammalian cells (Suzuki et al., 2004). 

Intriguingly, 14-3-3 proteins also function in left-right patterning during embryogenesis 

(Bunney et al., 2003). 14-3-3e is asymmetrically localized in the earliest stages of 

Xenopus development and disruption of this asymmetrical localization leads to severe 

heterotaxia in the developing embryos (Bunney et al., 2003).  

 
In plants 
 

As mentioned above, most of the identified and characterized 14-3-3 targets in plants are 

enzymes involved in the primary metabolism (Huber et al., 2002; Comparot et al., 2003). 

In line with this, manipulation of the 14-3-3 content in potato, using silencing and 

overexpression techniques, resulted in an altered lipid, sugar and starch content (Prescha 

et al., 2001; Szopa et al., 2001). Further, the amino acid and mineral composition of these 

plants were reported to be slightly changed (Swiedrych et al., 2002). An example of the 

potential control 14-3-3 proteins exert on metabolic pathways is found in the carbohydrate 

metabolism (Fig. 2). Sucrose is a major product of photosynthesis in plants and used as a 

long-distance transport compound. The conversion of fructose-6-phosphate and UDP-

glucose to sucrose-6-phosphate is catalysed by sucrose-phosphate synthase (SPS) and, 

among other regulatory effectors, inhibited by binding of 14-3-3 proteins (Toroser et al., 

1998).  Besides the synthesis of sucrose, the hydrolysis of sucrose is also, at least partly, 

under control of 14-3-3 proteins. The degradation of sucrose into hexoses can be catalysed 

by both sucrose synthase and invertases, of which the cytosolic neutral invertase is shown 

to be inhibited by 14-3-3 proteins (Chapter 4). Finally, 14-3-3 proteins were found to 
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interact with several enzymes in pathways that, directly (trehalose-6-phosphate synthase 

and fructose-2,6-biphosphatase) or indirectly (starch synthase III and glyceraldehyde-3-

phosphate dehydrogenase), use the hexose phosphate pool as a substrate (Moorhead et al., 

1999; Sehnke et al., 2001; Bustos and Iglesias, 2003; Kulma et al., 2004; Zuk et al., 2005). 

Possibly, the 14-3-3 proteins are in this way involved in the distribution of the available 

hexoses over the different pathways. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Role of 14-3-3 proteins in part of the carbohydrate metabolism of plants. By binding to several 

proteins in the carbohydrate metabolism, 14-3-3 proteins seem to control the availability and distribution of 

hexoses. Both the synthesis and the hydrolysis of sucrose are, at least partly, inhibited upon binding of 14-3-3 

proteins to sucrose-phosphate synthase and invertase, respectively. Further, several enzymes that, directly or 

indirectly, consume hexoses as a substrate are regulated by interaction with 14-3-3 proteins. The indirect 

consumers, stach synthase III and glyceraldehyde-3-phosphate dehydrogenase, are both inhibited in their activity 

by 14-3-3 interaction. The effect of 14-3-3 binding on the activity of trehalose-6-phosphate synthase and 

fructose-2,6-biphosphatase is yet unclear. 
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Figure 3. Role of 14-3-3 proteins in the regulation of nitrate reductase (NR) activity. Nitrate is taken up by the 

plant cell though nitrate transporters and subsequently reduced to nitrite by NR. In the chloroplast, nitrite 

reductase (NiR) further reduces nitrite to ammonium at the cost of oxidising ferrodoxin. The reduction of 

ferrodoxin requires an electron, which is produced by photosynthetic activity. Upon darkness, the photosynthetic 

activity stops and NiR is unable to reduce nitrite to ammonium. To prevent accumulation of the toxic nitrite, NR 

is rapidly phosphorylated by NR-kinase. The activity of this kinase is inhibited by light and stimulated by 

cytosolic Ca2+. Subsequent binding of 14-3-3 proteins to the phosphorylated NR completely inhibits the activity 

of NR. 

 

The best-studied enzyme in plants concerning 14-3-3 regulation is NR (Fig. 3) (Huber et 

al., 1996; Kaiser and Huber, 2001; Huber et al., 2002; Kaiser et al., 2002; Comparot et al., 

2003). Nitrate, the main nitrogen source for plants, is reduced to nitrite by NR. Nitrite is 

further reduced to ammonium by nitrite reductase (NiR) and ammonium is subsequently 

used in for example the amino acid biosynthesis. For the reduction of nitrite, NiR depends 

on electrons produced by photosynthetic activity that are transferred through ferrodoxin. 

To prevent accumulation of the toxic nitrite in times of darkness, NR is phosphorylated at 

Ser-543 (in spinach) by a Ca2+ stimulated and light inhibited NR-kinase (Douglas et al., 

1995; Mackintosh et al., 1995; Lillo et al., 2004). Subsequent binding of 14-3-3 to the 

phosphorylared NR inactivates the activity of NR (Bachmann et al., 1996b; Moorhead et 

al., 1996). The interaction between NR and 14-3-3 proteins is, at pH 7.5, stimulated by the 
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presence of certain polyamines and/or millimolar concentrations of divalent cations 

(Bachmann et al., 1996b; Athwal et al., 1998; Athwal and Huber, 2002). This stimulation 

seems to be mediated through the previously discussed EF-hand like structure in loop 8 of 

plant 14-3-3 proteins (Lu et al., 1994; Athwal and Huber, 2002). Interestingly, binding of 

14-3-3 to NR was also suggested to induce proteolysis of NR (Weiner and Kaiser, 1999). 

Later work, however, indicated that 14-3-3 proteins are released from target proteins, 

including NR and SPS, prior to proteolysis, which is initiated by reducing sucrose levels 

(sugar starvation) (Cotelle et al., 2000; Kaiser and Huber, 2001). 

 

By studying the effect of the phytotoxin fusicoccin (FC), 14-3-3 proteins emerged as 

regulators of plant ion homeostasis (Bunney et al., 2002; De Boer, 2002). FC was found to 

stimulate the atypical binding of 14-3-3 to the autoinhibiting C-terminal end of the plasma 

membrane H+-ATPase, thereby increasing the activity of the pump (Korthout and de Boer, 

1994; Marra et al., 1994; Oecking et al., 1994). More recently, 14-3-3 proteins were also 

shown to inhibit the mitochondrial and chloroplast FoF1 ATP synthase (Bunney et al., 

2001), which are evolutionary unrelated to the plasma membrane H+-ATPase. Beside the 

effect on proton transport, 14-3-3 proteins were shown, using electrophysiological 

experiments, to affect several potassium channels in the plasma (Saalbach et al., 1997; 

Booij et al., 1999; Van den Wijngaard et al., 2005) and vacuolar membranes (Van den 

Wijngaard et al., 2001; De Boer, 2002; Sinnige et al., 2005b). Interestingly, FC is also 

reported to stimulate K+ uptake (Marre, 1979). Possibly this is accomplished through a 

similar mechanism, involving a stimulation of 14-3-3 binding and subsequent inhibition of 

plasma membrane outward K+ currents, as found for the plasma membrane H+-ATPase 

(Blatt and Clint, 1989; Van den Wijngaard et al., 2005). However, the mechanism through 

which 14-3-3 proteins and/or FC affect the magnitude of K+ currents in plants is still 

poorly understood. In fact, until recently (Sinnige et al., 2005b) there was no report that 

described the molecular basis of interaction between 14-3-3 proteins and an ion channel. 

 

Although hundreds of 14-3-3 target proteins have been described, the potential number of 

14-3-3 targets is much larger. As mentioned before, with few exceptions, 14-3-3 proteins 

interact with distinct motifs in their target proteins. This knowledge was used by Sehnke 

and colleagues (2002a) to screen the predicted protein products of the sequenced 
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Arabidopsis genome for potential 14-3-3 target proteins. More than 10 000 proteins, 

representing approximately half the proteins in Arabidopsis, contained at least one mode-1 

and/or mode-2 motif. Obviously, this does not imply that all these proteins are definite 

targets of 14-3-3 proteins, as the motif needs to be accessible and, in most cases, 

phosphorylated for 14-3-3 interaction. However, the current developments in proteomics 

(Milne et al., 2002; Pozuelo Rubio et al., 2004; Benzinger et al., 2005; Satoh et al., 2005) 

do indicate that the number of 14-3-3 target proteins is very large indeed and comparable 

large scale identification of plant 14-3-3 interacting proteins should provide a better 

insight in the functions 14-3-3 proteins exert in plants.      

  

Isoform specificity 

 

The abundance of regulatory functions and (potential) targets of 14-3-3 proteins, begs the 

question of how 14-3-3 proteins discriminate between their diverse tasks/target proteins. 

Sure, a significant contribution to this discrimination will be in the hands of protein 

kinases, which control the phosphorylation status of 14-3-3 target proteins. Further, the 

presence of multiple 14-3-3 isoforms could contribute to this discrimination, assuming 

that each isoform is specialised in a subset of target proteins. Whether 14-3-3 molecules 

discriminate between target proteins or are functionally redundant is currently one of the 

major issues in 14-3-3 biology. 

 

Analysing the structural properties of 14-3-3 isoforms provides little evidence for isoform 

specific interactions, since residues in the amphipathic groove of 14-3-3 isoforms that are 

involved in ligand binding are highly conserved (Zhang et al., 1997; Petosa et al., 1998; 

Wang et al., 1998). Furthermore, in peptide screens, different 14-3-3 isoforms seem to 

prefer interaction with similar target motifs (mode-1 and mode-2) and bind to these motifs 

with similar affinities (Muslin et al., 1996; Yaffe et al., 1997). Moreover, several 

Arabidopsis 14-3-3 isoforms were able to complement the lethal deletion of the 

corresponding yeast genes (Van Heusden et al., 1996; Kuromori and Yamamoto, 2000). 

Based on these indications for functional redundancy, the existence of multiple 14-3-3 

isoforms was suggested to function in providing each cell/cellular compartment with the 

desired quantity of 14-3-3 proteins (Palmgren et al., 1998). Thus, 14-3-3 isoforms are 
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redundant in their ability to act on target proteins and specificity reflects expression 

patterns and availability of 14-3-3 proteins (Roberts, 2000; Roberts and de Bruxelles, 

2002; Zuk et al., 2005). In support of this theory, differential expression of 14-3-3 proteins 

is indeed observed in specific cell types (Daugherty et al., 1996; Testerink et al., 1999; 

Roberts and de Bruxelles, 2002; Sehnke et al., 2002b; Maraschin et al., 2003b) and 

throughout development (Testerink et al., 1999; Maraschin et al., 2003a). Further, some 

14-3-3 isoforms were found to be subcellular localised (Martin et al., 1994; Sehnke et al., 

2000; Bunney et al., 2001; Van Hemert et al., 2004; Paul et al., 2005), affecting the 

availability of these 14-3-3 isoforms.  

 

On the other hand, evidence is accumulating for isoform specific functional differences of 

14-3-3 proteins. By analysing several 14-3-3 isoforms in the same experimental system, 

Bachmann et al. (1996a) found significant differences in the ability of 14-3-3 isoforms to 

inhibit NR. These functional differences correlate with the affinity of these isoforms 

towards a synthetic peptide, which represented the 14-3-3 binding domain of NR, 

indicating that the observed functional differences are a direct consequence of the ability 

of the 14-3-3 isoforms to bind NR (Bachmann et al., 1996a). Similar functional 

differences between 14-3-3 isoforms are observed in the regulation of the plasma 

membrane H+-ATPase (Rosenquist et al., 2000; Emi et al., 2001; Alsterfjord et al., 2004), 

the slow-activating vacuolar (SV) channel (Sinnige et al., 2005b) and sucrose-phosphate 

synthase (Bornke, 2005). Functional isoform specificity in vivo, might be a consequence 

of small affinity differences between different 14-3-3 isoforms. Therefore, 

complementation experiments prove little redundancy as (over-)expression of 14-3-3 in a 

heterologous system may override (subtle) differences in affinity. Interestingly, the 

observed subcellular localisation of 14-3-3 isoforms was recently shown to be mainly 

target driven and is therefore rather an indication for functional isoform specificity (Paul 

et al., 2005). Further, differential expression of 14-3-3 proteins can hardly be seen as 

evidence against functional isoform specificity, although the availability should obviously 

be taken into account in assigning functions to the different 14-3-3 isoforms. However, 

the molecular basis for isoform specificity has long been missing.  
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Recently, natural varying residues in loop 8 of 14-3-3 proteins were shown to function in 

ligand discrimination (Sinnige et al., 2005a; Wilker et al., 2005). Variations in this region 

might alter the position of helix 9 and the C-terminal tail of 14-3-3 proteins. Possibly, this 

affects the accessibility of the amphipathic groove, as helix 9 is involved in the formation 

of this ligand binding groove (Petosa et al., 1998) and the C-terminal tail functions as an 

auto-inhibitor (Truong et al., 2002; Shen et al., 2003) by occupying the amphipathic 

groove (Kubala et al., 2004; Silhan et al., 2004). Alternatively, the residues in loop 8 

could function directly in ligand recognition (Wilker et al., 2005) as direct contact has 

been observed between residues in loop 8 and part of a co-crystallized ligand (Obsil et al., 

2001).  

 

The observed functional differences between 14-3-3 isoforms in regulating a variety of 

target proteins in combination with the identification of natural varying residues that 

function in ligand discrimination strongly indicates functional isoform specificity in 14-3-

3 regulation. Additional mutagenesis of natural variations between 14-3-3 isoforms and 

analysis of the structural consequences are necessary to fully understand ligand 

discrimination. 

  

Outline thesis 

 

Analysis of the capacity of 14-3-3 isoforms to regulate different target proteins in 

combination with their availability should provide a better insight in the suggested 

functional differences of 14-3-3 isoforms and possibly identify the molecular basis for 

isoforms specificity in 14-3-3 binding. This thesis describes our quest to obtain insight in 

the regulatory functions of 14-3-3 proteins in barley.  

 

The initial focus of this work was on the regulation of K+ channels by 14-3-3 proteins. 

The currents of several K+ conducting channels were shown, using electrophysiological 

techniques, to be affected by addition of 14-3-3 (Saalbach et al., 1997; Booij et al., 1999; 

Van den Wijngaard et al., 2001; De Boer, 2002). However, the molecular mechanism 

behind this effect remained unclear, partly due to the lack of knowledge about which 

proteins/genes were responsible for the observed K+ currents. Our efforts to isolate genes 
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from barley that code for K+ transporters resulted, amongst others, in the isolation of 

HvKCO1, orthologue of the previously described Arabidopsis AtKCO1 (Czempinski et al., 

1997). As described in Chapter 2, a distinct 14-3-3 binding motif is conserved in the N-

terminal region of all KCO1 orthologues from different plant species. While attempting to 

identify the corresponding K+ current, the protein was reported to be a component of the 

SV channel (Schönknecht et al., 2002), which is indeed regulated by 14-3-3 (Van den 

Wijngaard et al., 2001). Upon studying the ability of the 14-3-3 binding motif from 

HvKCO1 to bind the thus far described barley 14-3-3 isoforms (A, B and C), 14-3-3A was 

found to interact with the highest affinity, followed by the B- and C- isoforms. 

Interestingly, the complete opposite order was found when studying the ability of the 14-

3-3 isoforms to reduce the barley SV current (Chapter 2). This inconsistency is in 

agreement with the very recent observation that the SV current is not mediated through 

KCO1, but through TPC1 (Bihler et al., 2005; Peiter et al., 2005).  

 

The apparent differences in affinity for barley 14-3-3 isoforms were further explored 

using one of the model systems for 14-3-3 action in plants, the inhibition of NR (Chapter 

3). Clear differences in both functional capability as in availability of the different 14-3-3 

isoforms were observed, leaving 14-3-3B as the only characterised isoform able to 

regulate NR activity in barley. More importantly, upon comparing the amino acid 

sequences of the 14-3-3 isoforms, an educated guess led to the identification of (part of) 

the molecular basis for isoform specificity. A single amino acid variation in loop 8 of the 

14-3-3 proteins was found to play an important role in ligand discrimination.   

 

Chapter 4 describes an affinity purification approach to identify (new) 14-3-3 target 

proteins. Although promising results were obtained upon testing and optimising the 

method with the purification of NR, the large-scale purification of 14-3-3 target proteins 

as described for mammalian systems (Pozuelo Rubio et al., 2004; Benzinger et al., 2005) 

could not yet be accomplished. Still, a neutral invertase was identified and confirmed as a 

novel 14-3-3 target that functions in the carbohydrate metabolism. Further, in the light of 

ligand discrimination between the 14-3-3 isoforms, parallel affinity purifications were 

performed with the three different isoforms as bait.   
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Besides the functional capability of 14-3-3 isoforms to interact with target proteins, the 

availability of 14-3-3 isoforms was investigated. In Chapter 5 we describe the 

identification of two novel 14-3-3 isoforms (D and E) in barley. The relative expression 

levels of these five 14-3-3 isoforms were determined in several barley tissues during 

different stages of development. Because of the possible involvement of 14-3-3 proteins 

in abscisic acid (ABA) signal transduction (Van den Wijngaard et al., 2005), the hormone 

that plays a key role during seed germination, special attention was paid to the expression 

of the 14-3-3 genes during the earliest hours of development and their response to ABA.   
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Summary 

 

Members of the highly conserved family of 14-3-3 proteins play an important role in 

various cellular processes. Recent studies, using electrophysiological techniques, show 

that the 14-3-3 proteins also regulate plasma membrane and vacuolar K+ conducting 

channels. The molecular mechanism behind the regulatory effect of 14-3-3 proteins on K+ 

channels remains to be shown. One vacuolar channel down-regulated by 14-3-3 proteins 

is the slow-activating vacuolar (SV) channel. In Arabidopsis, the protein coded by the 

KCO1 gene was recently shown to be present in the vacuolar membrane and identified as 

a component of the SV channel. These two observations raised the question whether the 

KCO1 protein does interact with 14-3-3 proteins. Therefore, we isolated the barley 

HvKCO1 gene and the encoded protein indeed contains a canonical 14-3-3 interaction 

motif, which is conserved in all other KCO1 orthologues from other plant species. Using 

surface plasmon resonance (SPR) we determined in real-time the affinity between the 

phospho-peptide derived from the putative KCO1 14-3-3 interaction motif and three 

barley 14-3-3 proteins. The 14-3-3A protein showed the highest affinity, whereas the 

binding of all three isoforms was dependent on the presence of either Ca2+ or Mg2+. 

Interestingly, the barley SV current was strongly reduced by 14-3-3B and C protein, but 

not by 14-3-3A. This difference between the SPR and patch-clamp data will be discussed, 

along with the role for Ca2+ in activation of the SV channel by direct interaction and 

inactivation of the channel by facilitating the binding of 14-3-3 to the channel. 
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Introduction 

 

First described in 1967 as a brain specific protein (Moore and Perez, 1967), the family of 

14-3-3 proteins has evolved into a group of abundant regulatory proteins present in all 

eukaryotic tissues. These 14-3-3 proteins act as dimers and in most cases bind to distinct 

phosphorylated motifs, R/KxxSp/TpxP and R/KxxxSp/TpxP in which Sp indicates a 

phosphorylated serine, in their target proteins (Yaffe et al., 1997; Yaffe and Elia, 2001). 

Furthermore, the presence of divalent cations, like Mg2+ and Ca2+, seems to increase the 

affinity for some of those targets (Athwal et al., 1998; Toroser et al., 1998). The highest 

number of family members, twelve expressed isoforms, has been found in Arabidopsis 

(Rosenquist et al., 2001). Monocots seem to contain fewer isoforms; three (A, B and C) 

have been described in barley so far (Brandt et al., 1992; Testerink et al., 1999) although 

our data suggest that at least five isoforms are present (Sinnige et al., unpublished results). 

The regulatory functions ascribed to 14-3-3 proteins are diverse; they include controlling 

metabolic enzymes (Huber et al., 2002), protein kinases (Camoni et al., 1998), chloroplast 

import (Jarvis and Soll, 2002), transcription factors (Eckardt, 2001), the activity of ion 

transporters (Bunney et al., 2002) and the correct assembling and targeting of ion channels 

(Rajan et al., 2002).  

 

In recent years 14-3-3 proteins have emerged as novel regulators of plant ion homeostasis 

(Bunney et al., 2002; De Boer, 2002). Besides modulating the P-type H+-ATPase (Jahn et 

al., 1997; Baunsgaard et al., 1998) and the mitochondrial and chloroplast F-type ATP 

synthases (Bunney et al., 2001), 14-3-3 proteins were shown to affect K+ channels in the 

plasma and vacuolar membranes. Over-expression of Vf14-3-3a or Vf14-3-3b in tobacco 

enhanced outward K+ currents (Saalbach et al., 1997) and addition of recombinant 14-3-3 

to the cytosolic side of tomato suspension cells doubled the outward K+ currents (Booij et 

al., 1999) of the plasma membrane. However, in the plasma membrane of barley 

embryonic root tissue, 14-3-3 proteins reduced outward K+ currents and an inward 

rectifying K+ current was found to be dependent on the presence of 14-3-3 (Van den 

Wijngaard et al., 2005). Further, in the vacuolar membrane, two ion channels respond to 

the addition of recombinant 14-3-3 protein to the bath solution in a patch-clamp set-up. 

Whereas the current of the fast-activating vacuolar channel increased four-fold (De Boer, 
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2002), the Ca2+ dependent slow-activating vacuolar (SV) current decreased up to 80% 

after adding recombinant barley 14-3-3B (Van den Wijngaard et al., 2001). The 

mechanism, through which 14-3-3 proteins affect the magnitude of the currents, without 

affecting the channel gating properties, is still poorly understood. 

 

Recently, AtKCO1, a member of the two-pore domain K+ channel family, was reported to 

be part of the vacuolar SV channel. A reduced SV current in an Arabidopsis kco1 

knockout plant led to the conclusion that AtKCO1 is a component of the SV channel 

(Schönknecht et al., 2002). In an earlier report, expression of AtKCO1 in baculovirus-

infected insect cells resulted in Ca2+ dependent outward rectifying currents (Czempinski et 

al., 1997). Localization of the protein in the vacuolar membrane was confirmed using 

AtKCO1-GFP fusion proteins (Czempinski et al., 2002; Schönknecht et al., 2002). The 

SV channel has been subject of extensive, mainly electrophysiological, research. It is 

present in all studied plant species, conducts both K+ and Ca2+ ions (Pottosin et al., 2001) 

and the activity is strongly dependent on cytosolic Ca2+ concentrations (Hedrich and 

Neher, 1987). Besides the inhibition by barley 14-3-3B protein (Van den Wijngaard et al., 

2001), the activity of SV is affected by calmodulin (Bethke and Jones, 1994), the redox 

state (Carpaneto et al., 1999), phosphorylation (Bethke and Jones, 1997) and cytosolic 

Mg2+ (Pei et al., 1999). A physiological role for the SV channel in Ca2+ induced Ca2+ 

release (CICR) was proposed (Ward and Schroeder, 1994), challenged (Pottosin et al., 

1997) and is still a matter of debate (Bewell et al., 1999; Sanders et al., 1999; Miedema et 

al., 2003; Pottosin et al., 2004).  

 

Here we report the isolation and analysis of HvKCO1, member of the KCO1 family of K+ 

channels. Using a conserved motif in the KCO1 family, we demonstrate that 14-3-3 

proteins are able to interact with HvKCO1 in the presence of divalent cations. To assess 

whether 14-3-3 regulation of the SV channel is mediated through interaction with the 

KCO1 component, we compare the binding properties of 14-3-3 isoforms to HvKCO1 

with the effect of the different 14-3-3 isoforms on the SV current in barley leaf vacuoles. 
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Results 

 

HvKCO1, an orthologue of AtKCO1 

 

To isolate the barley orthologue of AtKCO1, the barley EST database of IPK-Gatersleben 

was searched using AtKCO1 as a template. One EST was identified as a member of the 

KCO family of K+ channels. Using a combination of RACE technology and genome 

walking we identified the complete coding sequence from H. vulgare cv. Alexis. The 

amino acid sequence of the gene (HvKCO1) contains the characteristic two pore domains, 

four membrane-spanning helices and two putative EF-hands of the KCO K+ channel 

family (not shown). HvKCO1 expression was found in all tested tissues (Fig. 1a). Like 

previously reported for AtKCO1 (Schönknecht et al., 2002), expression of HvKCO1 is 

highest in leaves, where expression is approximately five times higher than in roots. The 

presence of transcript in radicles isolated from embryos 20 hours after imbibition, shows 

that HvKCO1 is expressed from the earliest stages of development on. The effect of 

abscisic acid (ABA) on HvKCO1 expression in barley radicles was tested in the light of a 

putative function of SV in CICR (Ward and Schroeder, 1994), where oscillations in 

cytosolic Ca2+ concentrations function as second messenger in ABA signaling 

(Himmelbach et al., 2003), and the recently reported effect of 14-3-3 proteins and ABA 

on K+ channel activity in barley embryonic root (Van den Wijngaard et al., 2005). Upon 

addition of 10 µM ABA to isolated radicles, radicle growth was inhibited as previously 

described (Van den Wijngaard et al., 2005) and the expression of HvKCO1 in radicles 

increased three-fold (Fig. 1b), suggesting a role for KCO1 in ABA signaling. 

Phylogenetic analysis of HvKCO1, the Arabidopsis KCO family and KCO1 orthologues 

of rice, potato and eucalyptus, confirm HvKCO1 as a KCO1 orthologue (Fig. 2). 

 

14-3-3 proteins bind to HvKCO1 in an isoform specific manner 

 

Since AtKCO1 was reported to be a component of the SV channel (Schönknecht et al., 

2002) and our group previously showed that the SV current is inhibited by 14-3-3B (Van 

den Wijngaard et al., 2001), we analysed HvKCO1 for the presence of 14-3-3 binding 
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motifs. Indeed, the N-terminus of the HvKCO1, and its orthologues, contain a distinct 14-

3-3 binding motif, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Expression of HvKCO1 is found in all tested tissues and is induced upon ABA treatment.  

(A) Relative expression of HvKCO1 in different tissues of Hordeum vulgare. Radicles were isolated 20 hour 

after inbibition, leaf and root were harvested from 1-week-old plants; root-tips, cortical and stelar tissue were 

isolated from 3-week-old secondary roots. Expression was determined using quantitative RT-PCR and 

normalised to the expression of actin (n = 3; mean ± S.D.).  

(B) Effect of 10-5M ABA (○) on the expression of HvKCO1 in isolated radicles compared with the control 

situation (●). 
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Figure 2. Non-rooted phylogenetic tree with all members of the Arabidopsis two-pore K+ channel family 

(AtKCO1-6) (Maser et al., 2001), HvKCO1, OsKCO1 (GenBank accession no. NM_186155) and EcKCO1 

(GenBank accession no. AF175507) shows that the isolated barley gene is a KCO1 orthologue. Alignment of 

cDNA’s was produced using AlignX (Vector NTI) and the plot produced by Treeview. Values indicate the times 

(percentage) that branch was found using bootstrap analysis (n = 1000). 

 

 

 

 

 

 

 

 

Figure 3. Amino acid alignment of the putative 14-3-3 binding domain in KCO1 proteins from barley, 

Arabidopsis, rice, potato (Czempinski et al., 2002) and eucalyptus.  The canonical binding motif (RxxS/TxP) is 

shown in grey bars (■) and is conserved in all KCO1 proteins of the different plant species. The previously 

described KR rich region and the 14-3-3 binding sequence is indicated.  The alignment of amino acids was 

produced using AlignX in Vector NTI.  
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motifs. Indeed, the N-terminus of the HvKCO1, and its orthologues, contain a distinct 14-

3-3 binding motif, RRxxS/TxP, similar to the canonical motifs RxxSp/TpxP and 

RxxxSp/TpxP. This motif is located in the previously described KR-rich sequence 

(Czempinski et al., 1997; Czempinski et al., 2002), it is conserved in all KCO1 

orthologues from different plant species (Fig. 3), but it is not present in the other members 

of the Arabidopsis KCO family.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Superimposed surface plasmon resonance sensorgrams showing binding of 14-3-3 isoforms A (−−−), 

B (----) and C (− ) to phosphorylated HvKCO1 peptide. Binding was tested in the presence of 5 mM Ca2+, 

Mg2+ or EDTA. Each curve shows three phases: the first phase represents equilibration with running buffer, the 

second phase shows binding of the 14-3-3 protein to the chip and the third phase shows dissociation of 14-3-3 

protein when only running buffer is passed over the chip. Binding of all three isoforms is clearly dependent upon 

the presence of divalent cations and note that dissociation of 14-3-3A protein is much slower than that of the B- 

and C-isoforms. 

 

To determine whether this amino acid motif enables HvKCO1 to bind to different barley 

14-3-3 proteins, biotinylated synthetic phospho-peptides representing the putative 14-3-3 

binding motif of HvKCO1 were attached to a streptavidin-coated biacore chip. The 

interaction between the peptide and recombinant 14-3-3 isoforms (0.5 µM) was followed 

in real-time using the surface plasmon resonance (SPR) method. Superimposed 
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sensorgrams (Fig. 4) show that all three 14-3-3 isoforms interact with the phospho-peptide 

in the presence of millimolar concentrations of divalent cations, whereas addition of 

EDTA completely prevents the binding of 14-3-3 proteins. Note that the dissociation of 

14-3-3A is much slower than the dissociation of 14-3-3B and C, both in Mg2+ and Ca2+ 

buffer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Example of surface plasmon resonance sensorgram fitted in BIAevaluation 3.1 with a Langmuir 1:1 

model and the model for conformational change. Fitting with the Langmuir model does not result in a good fit, 

whereas the model that takes into account a conformational change fits the sensorgram very well. 

 

To determine the affinity between the three 14-3-3 proteins and the HvKCO1 peptide, the 

kinetics of the sensorgrams were analyzed using BIAevaluation 3.1. First we used the 

Langmuir 1:1 model, which assumes a single binding site, but this model did not result in 

acceptable fits (Fig. 5). Athwal and Huber (2002) previously reported that 14-3-3 proteins 

are able to bind divalent cations in loop 8 and that this binding to the C-terminal tail is 

necessary for the inhibition of nitrate reductase (NR). Since our SPR data clearly show a 

requirement for divalent cations in the binding of 14-3-3 proteins to the HvKCO1 peptide, 

we analysed the sensorgrams using the conformational change model: 
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where ka1 and kd1 are the association and dissociation constant of peptide (A) and 14-3-3 

(B) respectively and ka2 and kd2 represent the association and dissociation constants of a 

conformational change, for example caused by the movement of the C-terminal tail upon 

binding of divalent cations. The Kd can be calculated according to: 

)/(*)/(

1

2d2a1d1a
d

kkkk
K =                                                     (2) 

These calculations show that both in Mg2+ and Ca2+ buffer 14-3-3A has the highest 

affinity for the HvKCO1 peptide (Table 1), followed by 14-3-3C and B. Thus, all barley 

14-3-3 isoforms are able to bind to HvKCO1 with relatively high affinity in the presence 

of divalent cations, with slightly higher affinities in Ca2+ buffer as compared to Mg2+ 

buffer. 

 

 Ca2+ Mg2+ 

14-3-3A 27.5 39.8 

14-3-3B 48.3 91.7 
14-3-3C 39.4 82.0 

 
Table 1 Kinetic binding constants for the different 14-3-3 isoforms to the HvKCO1 peptide. Kinetic binding 

constants (nM) in Ca2+ and Mg2+ buffer, as determined by fitting the conformational change model on SPR data 

as described in Figure 5, show 14-3-3A has the highest affinity for HvKCO1, followed by that of the B- and C-

isoforms. 

 

Clear 14-3-3 isoform specificity in the regulation of the SV channel 

 
In order to address the question whether the affinity of the three isoforms for the HvKCO1 

peptide is reflected in their effectiveness of SV current inhibition, the activity and the 

properties of the SV channel was measured in a series of patch-clamp experiments. 

Recombinant 14-3-3 protein (100 nM) was added to the cytosolic side of barley 

mesophyll vacuoles (Fig. 6). Addition of 14-3-3B resulted in a decrease of the SV current 

by 30 % ± 1.9 as compared to the current under control conditions. A more drastic effect 

was observed upon addition of 14-3-3C, which inhibited the SV current by 64 % ± 3.1. 

hghgs observed upon addition of 14-3-3C, which inhibited the SV current by 64 % ± 

3bbbbbbb 
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Figure 6. Current-voltage relationship of the time-dependent whole-vacuole SV channel current. Specific 

current (I) was measured at t = 20 min after application of buffer (control) or buffer plus 100 nM barley 14-3-3 

isoforms A, B or C. The current at t = 20 min is shown in relation to the current (Ic) as measured just before 

addition of buffer or 14-3-3 protein to the bath: I/Ic. Currents are plotted against the activating voltages, ranging 

from +100 mV to -60 mV (holding potential is 0 mV) (n = 3, ± S.D.). 

 
 

 

 

 

 

 

 

 

Figure 7. The different 14-3-3 isoforms do not have a significant effect on the voltage sensitivity of the SV 

channel, although they differ markedly in their effect on the current magnitude. Tail current analysis of the 

voltage sensitivity of the whole-vacuole SV current was performed by stepping the holding potential (0 mV) to 

activating potentials ranging from +100 to -60 mV (in steps of 20 mV). Tail current I, was determined after 

stepping the voltage from the activating potential to -60 mV. The voltage sensitivity was measured in the 

absence (control) or presence of 14-3-3 isoforms A, B and C, respectively 10 min upon the application. The data 

points were fitted by a Boltzmann distribution (n = 3; ± SD). 
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The effect of the 14-3-3 isoform with the highest affinity for the phsophorylated HvKCO1 

peptide, 14-3-3A, on the SV current was only marginal; a reduction of 5 % (± 0.2). The 

voltage sensitivity of the channel, as determined from the tail currents like described 

before (Van den Wijngaard et al., 2001), was unaffected by the addition of 14-3-3 (Fig. 7). 

 

Discussion  

 

The KCO1 family contains a canonical 14-3-3 binding motif 

 

Recent studies point to 14-3-3 regulation of vacuolar and plasma membrane K+ channels 

as a recurrent theme in plant physiology (Saalbach et al., 1997; Booij et al., 1999; Van den 

Wijngaard et al., 2001; Bunney et al., 2002; De Boer, 2002; Van den Wijngaard et al., 

2005). In support of this notion, specific 14-3-3 isoforms were shown to be differentially 

expressed upon K+ starvation in Arabidopsis seedlings (Kang et al., 2004). The 

identification of AtKCO1 as a component of the SV channel (Schönknecht et al., 2002) 

prompted this study into the molecular basis of 14-3-3 regulation of this ubiquitously 

expressed channel, since it was shown that the SV channel in barley mesophyll cells is 

inhibited by 14-3-3B (Van den Wijngaard et al., 2001). Therefore, we isolated and 

sequenced the barley orthologue of AtKCO1, HvKCO1. The expression pattern and the 

phylogenetic analysis confirm HvKCO1 is the barley equivalent of AtKCO1. The amino 

acid sequence of all known KCO1 orthologues contain a canonical 14-3-3 binding motif 

(RRxxS/TxP) in the N-terminal part of the protein, partly in the previously described KR-

rich region (Czempinski et al., 1997). This binding motif is conserved in all known 

orthologues of KCO1 (Fig. 3) but not present in other members of the KCO family, what 

suggests that this may be a functional motif.  

 

Functional expression of KCO1 in Xenopus oocytes has proven difficult so far. One 

reason for this might be that forward transport of the channel complex from the 

endoplasmic reticulum to the plasma membrane does not function properly in Xenopus 

oocytes. Ion channels with dibasic retention motifs are subject to retrograde transport to 

the ER by COPI-coated vesicles (O'Kelly et al., 2002). Recently, it was shown that 
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binding of 14-3-3 to these channels favours release from the ER and forward transport to 

the plasma membrane, because 14-3-3 masks the retention/retrieval motif, thus preventing 

the binding of the COPI-complex that mediates retention (Rajan et al., 2002). In some 

channel proteins the dibasic (RR or RK) retention motif (bold/italics) and the 14-3-3 

binding motif (underlined, phosphor-serine marked) are very close: e.g. RRSSPV in 

KCNK3/9 K+ channels (O'Kelly et al., 2002), RRKSPV in the two-pore domain K+ 

channel TASK3 (Rajan et al., 2002) or RRRSRSPCR in the invariant chain protein lip35 

(O'Kelly et al., 2002). The KCO1 proteins all contain a putative retention motif in the 

vicinity of the 14-3-3 interaction domain, KRFRRSRSPAPR (HvKCO1) and it will be 

very interesting to study whether the expression of a mutated version of KCO1 lacking the 

putative retention signals results in measurable ion currents. 

 

14-3-3 interacts with KCO1 in a divalent cation dependent manner 

 

Surface plasmon resonance has proven to be a useful method in analysing 14-3-3 

interactions, using both complete proteins (Masters et al., 1999; Van Hemert et al., 2003) 

and peptides representing the 14-3-3 binding domain (Muslin et al., 1996; Toroser et al., 

1998; Athwal et al., 2000; Rosenquist et al., 2000) as a ligand. Since HvKCO1 is a 

membrane protein, and thus has hydrophobic regions, we chose to use the peptide derived 

from the putative 14-3-3 interaction domain (with phosphorylated serine-36) for the 

analysis of interaction with three barley 14-3-3 proteins. The results clearly show that the 

14-3-3 proteins are able to bind with high affinity to this region of HvKCO1 in the 

presence of divalent cations. Interestingly, the absence of divalent cations completely 

prevents binding (Fig. 4).  

 

The necessity for divalent cations in 14-3-3/target interaction is well known for nitrate 

reductase (Athwal et al., 1998) and sucrose-phosphate synthase (Toroser et al., 1998), 

where a conformational change of 14-3-3 upon binding of divalent cations (Lu et al., 

1994; Athwal and Huber, 2002) allows interaction with the target. Amino acid 

substitutions in loop 8 of Arabidopsis 14-3-3ω altered the sensitivity for Mg2+ (Athwal 

and Huber, 2002), locating the divalent cation dependence to the putative EF-hand (Lu et 

al., 1994). However, not all 14-3-3 interactions are dependent on divalent cations. Binding 
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of 14-3-3 to 13-lipoxygenase is unaffected by Mg2+ (Holtman et al., 2000), while the 

interaction between 14-3-3 and phosphorylated non-phosphorylating glyceraldehyde-3-

phosphate dehydrogenase is even disrupted by Mg2+ (Bustos and Iglesias, 2003). 

 

If 14-3-3 inhibits the SV current through the KCO1 component, the dependence of this 

interaction upon divalent cations may be of interest in the view of the fact that the activity 

of the SV channel is also strongly dependent upon divalent cations (Hedrich and Neher, 

1987; Carpaneto et al., 2001; Van den Wijngaard et al., 2001). When functioning as a 

calcium induced calcium release channel (CICR) (Ward and Schroeder, 1994; Miedema et 

al., 2003), Ca2+ entering the cytosol from the vacuole will further activate the SV channel. 

However, a local increase in the Ca2+ concentration near the cytosolic side of the channel 

will favour the binding of 14-3-3 proteins, thereby reducing SV channel activity and Ca2+ 

release. In order to escape completely from this oscillation, channel phosphorylation 

followed by 14-3-3 binding may function as a full ‘break’.  

 

14-3-3 binding to HvKCO1-peptide does not correlate with SV inhibition by 14-3-3 

 

The electrophysiological data presented here clearly show that 14-3-3B and C, but not 14-

3-3A, are able to reduce the SV current (Fig. 6). None of the 14-3-3 isoforms changed the 

voltage sensitivity of the SV channel (Fig. 7), this unlike e.g. the effect of 14-3-3 proteins 

on the Drosophila Slowpoke calcium-dependent K+ channel (Zhou et al., 1999) and the 

human ether-a-go-go (HERG) channel (Kagan et al., 2002). For plants a picture is 

emerging showing that 14-3-3 affects the pool of voltage activatable channels, rather than 

changing the gating properties (Booij et al., 1999; Van den Wijngaard et al., 2001; Van 

den Wijngaard et al., 2005). It is interesting that the SPR analysis indicates that all three 

isoforms bind to the HvKCO1, with 14-3-3A having the highest affinity (Table 1), 

whereas 14-3-3A is ineffective in reducing the SV current. In contrast, a good correlation 

was reported for the inhibition of nitrate reductase activity by five 14-3-3 isoforms and 

binding of the phospho-peptide derived from NR to these same 14-3-3 isoforms 

(Bachmann et al., 1996a). This was corroborated using an SPR analysis as described here, 

with barley NR phospho-peptide, barley NR activity and the three barley 14-3-3 isoforms 

(Sinnige et al., 2005a).  
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The reason for this discrepancy is not clear, but it might be that, i) a domain in the 

HvKCO1 protein other than the 14-3-3 interaction motif specifies the affinity for the full 

protein, ii) HvKCO1 may be only one component of the SV channel, as suggested by 

Schönknecht (2002), whereas a second subunit may have different affinity for the 14-3-3 

isoforms. One indication that KCO1 may be only a component of the SV current, is that 

all KCO channels contain a GYGD motif, what usually results in K+ selective rather than 

non-selective channels, as the SV channel (Ivashikina and Hedrich, 2005). In these cases, 

inhibition of the SV current could require interaction with both monomeric subunits 

within a single 14-3-3 dimer and function according to the ‘gatekeeper’ model as 

suggested for the 14-3-3 regulation of Raf-1 (Yaffe, 2002). In addition, the 14-3-3 

molecules are capable of forming both homo- and heterodimers (Jones et al., 1995; Wu et 

al., 1997; Paul et al., 2005), what could imply that a 14-3-3 heterodimer (with 14-3-3A 

binding to the currently investigated binding motif and e.g. 14-3-3C to a putative second 

binding site) is responsible for inhibition of the SV current in vivo. Expression of KCO1 

proteins in kco1 knock-out plants, with mutations in the 14-3-3 interaction site and the 

putative di-basic retention signal will provide further insight in the role of these domains 

for the functioning of KCO1 in the physiology of the plant. 

 

Experimental procedures 

 

Isolation and characterisation of HvKCO1 

 

AtKCO1 was used to search the BLAST results of a barley EST library (http://pgrc.ipk-

gatersleben.de/cr-est/index.php) and clone HK03F06u was identified as a KCO family 

member. Using primary leaf of Hordeum vulgare cv. Alexis (Josef Breun Saatzucht, 

Herzogenaurach, Germany), the cDNA fragment was extended to the 5’ using the 

Universal GenomeWalker Kit (BD Biosciences, Palo Alto, CA, USA) with two gene 

specific primers (1: 5’-CTCCACGAGATAATCCGCCGACTTG-3’ and 2: 5’-

CGACGACGCCCGCTAGCAGG-3’). The complete cDNA sequence of HvKCO1 was 

obtained using 3’ RACE (BD Biosciences) with gene specific primers (3: 5’-

GCGGGCGTCGTCGTCTTTTACC-3’ and 4: 5’-GCTGCTCGCTTGTGTGTTCGTC-
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3’). For expression experiments, total RNA from barley tissues was isolated using TRIzol 

(Invitrogen, Carlsbad, CA, USA) and first-strand cDNA was produced using SuperScript 

reverse transcriptase (Invitrogen). Barley radicles were isolated and maintained as 

described previously (Van den Wijngaard et al., 2005). Quantitative RT-PCR (DNA 

Engine Opticon, MJ Research, Inc., Waltham, MA, USA) was done using primers KCOf 

(5’-GTTTGAGAAACTCGATGTTGACCA-3’), KCOr (5’-CAAGCCCATATGTTCATC 

ACTGAC-3’), Actinf (5’-GTATGGAAACATCGTGCTCAGTGG-3’) and Actinr (5’-

CTTGATCTTCATGCTGCTCGGA-3’). GenBank accession nos.: AtKCO1 (X97323), 

HvKCO1 (AY770627), Actin (AY145451). All kits were used according to the 

manufacturers protocol. 

 

Expression and purification of recombinant 14-3-3 proteins 

 

Barley 14-3-3 isoforms A, B and C (GenBank accession nos. X62388, X93170 and 

Y14200, respectively) were cloned into the pRSETC vector (Invitrogen) and the 

orientation and reading frame checked by sequencing. Transformed BL21 (DE3) pLysS 

cells (Invitrogen) were grown O/N at 37°C in 2 x YT, 1 % glucose and 50 µg/ml 

ampicillin until the OD600 was 0.8 - 0.9. Expression was induced by replacing the medium 

by 2 x YT, 1 mM isopropyl-β-D-thiogalactoside (AppliChem, Darmstadt, Germany) and 

50 µg/ml ampicillin and incubation at 28°C for 4 h. Cells were pelleted at 5000 g for 15 

min and dissolved in 30 ml 20 mM Hepes/KOH pH 7.5, 0.5 M NaCl, 1 mM PMSF and l0 

mM imidazol (Merck, Darmstadt, Germany) at 4°C. Once dissolved, 1 mg/ml lysozyme 

(Sigma-Aldrich, St. Louis, MO, USA) and 4 µg/ml deoxyribonuclease 1 (Sigma-Aldrich) 

were added and incubated for 30 min. The cell lysate was centrifuged for 30 min at 100 

000 g and supernatant filtered through a 0.45 µM filter (Schleicher & Schuell, Dassel, 

Germany). The filtrate was applied to a Ni2+ charged HiTrap Chelating HP column 

(Amersham Pharmacia, Uppsala, Sweden) and subjected to a 10 mM to 500 mM imidazol 

gradient. The 14-3-3 peak was pooled, desalted to 1 mM Hepes/KOH pH 7.5 using a 

HiPrep 26/10 desalting column (Amersham) and concentrated by freeze drying. Quantity 

and quality of the recombinant proteins were checked using the Bradford protein assay 

(BioRad, Hercules, CA, USA), Coomassie stained SDS-PAGE gel and far UV circular 
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dichroism (not shown). 

 

Surface plasmon resonance 

 

Surface plasmon resonance experiments were performed with a Biacore 2000 (Biacore, 

Uppsala, Sweden). A streptavidin coated sensor chip (Biacore) was activated with 1 M 

NaCl, 50 mM NaOH, flowpath 2 was coated at 5 µl/min with 1000 response units of 

KCO-P peptide (Biotin-GAKRFRRSRSpAPRSE) (Ansynth, Roosendaal, The 

Netherlands) in immobilization buffer (10 mM KAc, pH 6 with HAc). Measurements 

were done in running buffer (20 mM Hepes/KOH pH 7.5, 5 mM MgCl2, 25 mM NaCl and 

15 mM imidazol), at 25°C using a flowrate of 10 µl/min. An association step of 3 min, 

with a 14-3-3 isoform diluted in running buffer, was followed by a dissociation step of 3 

min in running buffer. The chip was regenerated between runs using 0.5 % SDS (w/v), 50 

mM NaCl pH 6.8. The data was processed using BIAevaluation 3.1. (Biacore). 

 

Vacuole isolation 

 

Barley leaf mesophyll vacuoles were isolated as described (Van den Wijngaard et al., 

2001). Briefly, the epidermal layer was stripped from primary barley leaves. The 

mesophyll cell layer was exposed to an enzyme solution containing 1 mM CaCl2, 500 mM 

sorbitol, 0.05% (w/v) polyvinylpyrrolidone, 15 mM MES/Tris pH 5.5, 0.2% (w/v) bovine 

serum albumin, 1% (w/v) cellulase, 0.5% (w/v) Macerozym, 0.01% (w/v) pectolyase and 

agitated for 30 min at room temperature. Protoplasts were released by gently pressing the 

leaves on a mesh and suspended in 100 mM KCl, 10 mM HEPES/KOH pH 7.5, 10 mM 

MgCl2, sorbitol to 525 mOsm/kg. For the patch-clamp experiments vacuoles from 

spontaneously bursting mesophyll protoplasts were used.  
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Patch-clamp recordings 

 

Patch-clamp recordings were performed in the whole-vacuole mode with an Axopatch 

200 patch-clamp amplifier (Axon Instruments, USA) and low-pass filtered using a four 

pole Bessel filter (internal filter of the Axopatch). The data were digitized using a 

Digidata 1320A (Axon Instruments, USA) and analyzed with pClamp 8.0 (Axon 

Instruments,USA). Patch pipettes were pulled from Kimax-51 glass (Kimble Products, 

USA) and briefly fire-polished. Pipettes were filled with 100 mM KCl, 10 mM 

HEPES/KOH pH 7.5, 5 mM MgCl2, sorbitol to 525 mOsm/kg. The bath was flushed with 

bath solution (100 mM KCl, 10 mM Hepes/KOH pH 7.5, 5 mM MgCl2, 200 µM CaCl2, 

sorbitol to 525 mosm/kg) using a peristaltic pump at 0.2 ml/min. Perfusion was stopped 

before 14-3-3 protein was added to the bath and a number of pulse protocols were run to 

test whether the SV current remained stable. Then, 5 µl 14-3-3 was added to the bath 

(volume 0.2 ml) from a stock solution (0.25 mg/ml in 10 mM HEPES/KOH, pH 7.5) 

giving a final concentration of 100 nM 14-3-3 protein. Before and after voltage test steps, 

vacuoles were held at a membrane potential of 0 mV; test voltages ranged from +100 mV 

to -60 mV (in steps of 20 mV). Tail currents were analysed with a protocol where the 

membrane voltage was stepped from activating voltages (ranging from +100 to -60 mV) 

to a voltage of -60 mV. Only measurements were taken where capacitance and serial 

resistance changes during the measurement were below 10%. 
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Summary 

 

The highly conserved family of 14-3-3 proteins function in the regulation of a wide 

variety of cellular processes. The presence of multiple 14-3-3 isoforms and the diversity 

of cellular processes regulated by 14-3-3 proteins suggest functional isoform specificity of 

14-3-3 isoforms in the regulation of target proteins. Indeed, several studies observed 

differences in affinity and functionality of 14-3-3 isoforms. However, the structural 

variation by which isoform specificity is accomplished remains unclear. Because other 

reports suggest that specificity is found in differential expression and availability of 14-3-

3 isoforms, we used the nitrate reductase (NR) model system to analyse the availability 

and functionality of the three barley 14-3-3 isoforms. We found that 14-3-3C is 

unavailable in dark harvested barley leaf extract and 14-3-3A is functionally not capable 

to efficiently inhibit NR activity, leaving 14-3-3B as the only characterized isoform able 

to regulate NR in barley. Further, using site directed mutagenesis, we identified a single 

amino acid variation (Gly versus Ser) in loop 8 of the 14-3-3 proteins that plays an 

important role in the observed isoform specificity. Mutating the Gly residue of 14-3-3A to 

the alternative residue, as found in 14-3-3B and 14-3-3C, turned it into a potent inhibitor 

of NR activity. Using surface plasmon resonance we show that the ability of 14-3-3A and 

the mutated version to inhibit NR activity correlates well with their binding affinity for the 

14-3-3 binding motif in the NR protein, indicating involvement of this residue in ligand 

discrimination. These results suggest that both availability of 14-3-3 isoforms as well as 

binding affinity determine isoform specific regulation of NR activity. 
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Introduction 

 

Members of the highly conserved family of 14-3-3 proteins play a key role in cell 

signalling. To date, over 100 binding partners of 14-3-3 proteins have been identified that 

are involved in a wide array of functions: these include controlling metabolic enzymes 

(Huber et al., 2002), cell cycle control (Van Hemert et al., 2001), ion transport (Bunney et 

al., 2002; De Boer, 2002), gene expression (Eckardt, 2001), kinase activity (Camoni et al., 

1998) and the assembly and localization of protein complexes (Rajan et al., 2002). 

Multiple isoforms of 14-3-3 proteins are found in all tested eukaryotic organisms, ranging 

from two isoforms in yeast and Drosophila to twelve expressed isoforms in Arabidopsis 

(Rosenquist et al., 2001). The 14-3-3 proteins act as dimers and their ability to form both 

homo- and heterodimers creates a large population of dimeric molecules. 

 

The diversity in 14-3-3 molecules and the question whether they are functionally 

redundant or not is one of the major issues in 14-3-3 biology. The presence of so many 

different 14-3-3 isoforms in plants suggests functional isoform specificity in the 

regulation of target proteins. However, residues in the amphipathic groove that are 

involved in ligand binding are highly conserved among 14-3-3 isoforms (Zhang et al., 

1997; Petosa et al., 1998; Wang et al., 1998). Alternatively, some reports suggest that 14-

3-3 isoforms are redundant in their ability to act on target proteins and specificity is found 

in expression patterns and availability of 14-3-3 proteins (Roberts, 2000; Roberts and de 

Bruxelles, 2002; Zuk et al., 2005). Indeed, in peptide screens, different 14-3-3 isoforms 

seem to bind with similar affinities (Muslin et al., 1996; Yaffe et al., 1997) and several 

Arabidopsis 14-3-3 isoforms can complement the lethal yeast BMH1 BMH2 double 

disruption what indicates redundancy (Van Heusden et al., 1996; Kuromori and 

Yamamoto, 2000). Further supporting this theory, several reports show differential 

expression (Testerink et al., 1999; Roberts and de Bruxelles, 2002; Sehnke et al., 2002b; 

Maraschin et al., 2003b; Qi et al., 2005) and subcellular localization of 14-3-3 isoforms 

(Martin et al., 1994; Bunney et al., 2001; Van Hemert et al., 2004; Paul et al., 2005), 

affecting the availability of 14-3-3 isoforms.  
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On the other hand, (over-)expression of 14-3-3 isoforms in a heterologous system like 

yeast may override subtle differences in affinity and the subcellular localization of 14-3-3 

proteins was recently shown to be mainly target driven and is therefore rather an 

indication for isoform specific interactions (Paul et al., 2005). Further, in recent years 

clear evidence emerged for 14-3-3 isoform-specific protein-protein interactions. By 

analysing several 14-3-3 isoforms in the same experimental system, clear differences in 

affinity and functionality were observed in the regulation of nitrate reductase (NR) 

(Bachmann et al., 1996a), the plasma membrane H+-ATPase  (Rosenquist et al., 2000; 

Emi et al., 2001; Alsterfjord et al., 2004), the SV channel (Sinnige et al., 2005b) and 

sucrose-phosphate synthase (Bornke, 2005). For example, Bachmann et al. (1996a) 

showed 14-3-3ω is a much more potent inhibitor of NR activity compared to four other 

tested 14-3-3 isoforms. These differences correlate with the ability of the 14-3-3 isoforms 

to bind a synthetic NR peptide, providing evidence for isoform specific protein-protein 

interaction. However, the molecular basis for this observed isoform specificity remains 

unclear.    

 

We have used the NR model system to study 14-3-3 isoform specificity in barley. The 

reduction of nitrate to nitrite by NR is an important step in nitrogen assimilation. Nitrite is 

further reduced to ammonia by nitrite reductase, of which the activity depends on 

electrons donated by photosynthesis. To prevent accumulation of the toxic nitrite, NR is 

rapidly phosphorylated upon darkness and consequent 14-3-3 binding inhibits NR activity 

(Huber et al., 1996; Kaiser and Huber, 2001; Comparot et al., 2003). At pH 7.5, inhibition 

of NR by 14-3-3 proteins requires the presence of certain polyamines or millimolar 

concentrations of divalent cations (Bachmann et al., 1996b; Athwal et al., 1998; Athwal 

and Huber, 2002). Divalent cations seem to act through interaction with an EF hand-like 

structure in loop 8 of the 14-3-3 proteins, where upon binding of divalent cations a 

conformational change in the C-terminal tail is induced (Lu et al., 1994). Mutated 14-3-3 

proteins, in which conserved amino acids in this EF hand-like structure were altered, 

indeed affected the divalent cation dependence of NR inhibition (Athwal and Huber, 

2002). Further, partial removal of the C-terminal tail, which might function as an auto-

inhibitor within the ligand binding groove of the 14-3-3 protein (Kubala et al., 2004), 

increased the affinity for target proteins (Truong et al., 2002; Shen et al., 2003). 
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Here, we report that, both due to differential expression and functional isoform specificity, 

barley 14-3-3B is the main candidate to regulate foliage NR in barley. Further, using 

directed mutagenesis, we show that a natural varying amino acid in loop 8 of 14-3-3 

proteins plays an important role in isoform specific target recognition in the regulation of 

NR activity. 

 

Results 

 

The discussion on 14-3-3 isoform specificity focuses on functionality versus availability 

of the 14-3-3 proteins. In plants, functional differences between 14-3-3 isoforms were first 

shown in the regulation of NR (Bachmann et al., 1996a). Therefore, we adapted an NR 

extraction method previously described by Bachmann et al. (1995) to determine both the 

presence of individual 14-3-3 isoforms and the ability of the 14-3-3 isoforms to inhibit NR 

activity. Dark harvested barley leaf extract was subjected to anion-exchange 

chromatography to separate NR activity from inhibiting 14-3-3 proteins (Fig. 1). The NR 

activity of the eluted fractions was determined using an NR assay and fractions with peak 

activity, fractions 24 to 28, were pooled to form the NR extract. To identify the fractions 

in which the 14-3-3 proteins eluted, all fractions were mixed with an aliquot of the NR 

extract and again assayed for NR activity. An expected increase in NR activity was seen 

in fractions where NR eluted. This was followed by an inhibition in NR activity, in 

fractions 32 to 40, indicating that the inhibiting 14-3-3 proteins elute in these fractions.  

 

Thus far, three 14-3-3 isoforms have been described in barley and the presence of these 

isoforms in the eluted fractions was tested using isoform-specific antibodies (Fig. 2). 

Indeed, 14-3-3 proteins were found in the fractions where inhibition of NR activity was 

located. Interestingly, 14-3-3A and 14-3-3B were relatively abundant where almost no 14-

3-3C was present in the eluted fractions. Further, the peak of 14-3-3B was detected in 

later-eluting fractions compared to 14-3-3A. Inhibition of NR activity was highest in 

fractions 34 to 37 (Fig. 1), what corresponds with the fractions in which 14-3-3B was 

located. These results suggest that NR activity in barley is inhibited by 14-3-3B. 
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Figure 1. Identification of NR and 14-3-3 containing fractions. Dark harvested barley leaf protein extract was 

subjected to anion exchange chromatography and eluted fractions were assayed for NR activity in the presence 

of 5 mM Mg2+ (○). Fractions of peak activity were pooled and an aliquot of this active fraction was mixed with 

the eluted fractions. These mixtures were again assayed for NR activity in the presence of Mg2+ to locate the 

inhibiting 14-3-3 proteins (●). 

 

 

 

 

 

 

 

 

Figure 2. Barley leaf extract contains 14-3-3A and 14-3-3B. (A) Isoform specific antibodies. Purified histidine 

labeled 14-3-3 isoforms (0.5 pmol) were subjected to SDS-PAGE and blotted on nitrocellulose membrane. Blots 

were hybridized with anti-14-3-3A, B or C to show the specificity of the 14-3-3 antibodies (Testerink et al., 

1999). (B) Presence of 14-3-3 isoforms in barley leaf extract. Anion exchange chromatography of dark harvested 

barley leaf extract resulted in fractions containing NR activity and NR inhibiting fractions as described in Figure 

1. These fractions were subjected to SDS-PAGE, blotted on nitrocellulose membrane and hybridized with anti-

14-3-3A, B or C to show the presence of 14-3-3 isoforms in barley leaf extract. Fractions pooled to form the NR 

extract (24 to 28) are free of 14-3-3 isoforms. 
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The ability of individual 14-3-3 isoforms to inhibit NR activity was tested using 

recombinant 14-3-3 proteins (Fig. 3). In line with the observation that the distribution of 

14-3-3A does not correlate with the peak inhibition of NR activity and previously reported 

differences in NR inhibition by Arabidopsis 14-3-3 isoforms (Bachmann et al., 1996a), 

14-3-3A is a very poor inhibitor of NR activity as compared to 14-3-3B and 14-3-3C (Fig. 

3). However, the isoform that was hardly present in the extract, 14-3-3C, was most 

effective in inhibiting NR activity, closely followed by 14-3-3B. Further, all 14-3-3 

isoforms show a reduced inhibitory effect in the absence of divalent cations (Fig. 3c) as 

previously reported for Arabidopsis 14-3-3ω (Bachmann et al., 1996b; Athwal et al., 

1998; Athwal and Huber, 2002). Divalent cations are thought to interact with an EF hand-

like structure in loop 8 of the 14-3-3 proteins, causing a conformational change through 

which the 14-3-3 binding groove becomes more accessible for target proteins. Here, 14-3-

3A completely loses all inhibitory effect, where 14-3-3B and to a lesser extent 14-3-3C 

are reduced in their potency to inhibit NR activity.    

 

 

 

 

 

 

 

 

 

Figure 3. Isoform specific inhibition of NR activity by 

barley 14-3-3 isoforms. Increasing concentrations of 

recombinant barley 14-3-3 isoforms A (�), B (�) and 

C (�) were mixed with NR extract in the presence of 

10 mM KNO3, 0.5 mM NADH and (A) 5 mM MgCl2, 

(B) 5 mM CaCl2 or (C) 5 mM EDTA. The mixture was 

incubated for 30 min at 30°C and after terminating the 

reaction, the concentration of produced nitrite was 

determined. Average NR activity is plotted as a 

percentage of reactions without added 14-3-3 protein (n 

= 3, ±SD). 
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14-3-3A -MSTAEATREENVYMAKLAEQAERYEEMVEFMEKVAKTADVGELTVEERNLLSVAYKNVI 59
14-3-3B  MAQPAELSREENVYMAKLAEQAERYEEMVEFMEKVAKTVDSEELTVEERNLLSVAYKNVI 60
14-3-3C  MSAPGELSREENVYMAKLAEQAERYEEMVEFMEKVAKTVDSEELTVEERNLLSVAYKNVI 60

14-3-3A  GARRASWRIISSIEQKEESRGNEAYVASIKEYRTRIETELSKICDGILKLLDSHLVPSAT 119
14-3-3B  GARRASWRIISSIEQKEESRGNEDRVTLIKDYRGKIEVELTKICDGILKLLDSHLVPSST 120
14-3-3C  GARRASWRIISSIEQKEESRGNEDRVTLIKEYRGKIETELSKICDGILKLLETHLVPSST 120
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Figure 4. Sequence conservation among barley 14-3-3 isoforms. Amino acid sequence alignment of the three 

known barley 14-3-3 isoforms. Identical amino acids are marked in gray and predicted α-helices (1-9) are 

indicated above the sequence. 14-3-3B and 14-3-3C have a similarity of 91% and both have 82% similarity with 

14-3-3A. The critical residue in loop 8 that is converted into a serine in 14-3-3AG216S is depicted in bold and 

boxed. 

 

Although 14-3-3 proteins show a high degree of similarity at the protein level, 14-3-3B 

and 14-3-3C share 91% similarity and both have 82% similarity with 14-3-3A (Fig. 4), the 

results in Fig. 3 show clearly that 14-3-3A differs functionally from 14-3-3B and 14-3-3C. 

Previous reports have suggested a role for the relatively more divergent C-terminal tail in 

ligand discrimination (Athwal and Huber, 2002; Shen et al., 2003) possibly functioning as 

an auto-inhibitor of 14-3-3 action (Truong et al., 2002; Shen et al., 2003) by occupying 

the ligand binding groove (Kubala et al., 2004; Silhan et al., 2004). The amino acids in 

loop 8 form an EF hand-like structure (Lu et al., 1994), which is reported to affect the 

conformation of helix 9 and the C-terminal tail in 14-3-3 proteins (Lu et al., 1994; Athwal 

and Huber, 2002; Kubala et al., 2004). Therefore, it is likely that structural difference in 

this region affects the functionality of the protein. Indeed, directed mutagenesis of 

conserved amino acids in loop 8 affected the ability of 14-3-3ω to inhibit NR (Athwal and 

Huber, 2002) and three unique natural varying amino acids in loop 8 of mammalian 14-3-

3σ were recently shown to cause functional specificity (Wilker et al., 2005). In the loop 8 
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region of 14-3-3A only two amino acid residues, Ala-210 and Gly-216, vary from both 

14-3-3B and 14-3-3C (Fig 4) of which Gly-216 is the central residue in the proposed EF 

hand-like structure. Using site-directed mutagenesis we produced 14-3-3AG216S to 

investigate whether this amino acid substitution would affect the inhibiting effect of 14-3-

3A on NR activity. Although the mutation is located in a loop and therefore unlikely to 

affect the secondary structure, circular dichroism (CD) spectroscopy was used to make 

sure the secondary structure of 14-3-3AG216S was unaffected by the mutation (Fig. 5). The 

obtained spectra are comparable to previously reported spectra of 14-3-3 proteins (Wang 

et al., 1998; Athwal and Huber, 2002) and show that α-helices are the major component in 

the secondary structure. The α-helical content of 14-3-3A is slightly lower than observed 

for 14-3-3B and 14-3-3C, possibly reflecting some structural differences between the 

different isoforms. More importantly, the CD spectra of 14-3-3A and 14-3-3AG216S were 

essentially identical, showing the mutation did not affect the secondary structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Far-UV CD spectra of WT and mutant recombinant 14-3-3 proteins. Far-UV CD spectra of 

recombinant 14-3-3 proteins were generated on a Jasco J-715 spectropolarimeter at 20ºC using 0.1 mg/ml protein 

in 5 mM Na-phosphate pH 7.5. The molar ellipticity, [θ], is the average of 5 independent scans and buffer blank 

spectra were substracted to compensate for solvent contribution.  
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Figure 6. The mutated 14-3-3AG216S inhibits NR 

activity. Increasing concentrations of recombinant 

barley 14-3-3A (�) and 14-3-3AG216S (�) were 

mixed with NR extract, as described in Figure 3, in 

the presence of (A) 5 mM MgCl2, (B) 5 mM CaCl2 

or (C) 5 mM EDTA. Average NR activity is plotted 

as a percentage of reactions without added 14-3-3 

protein (n = 3, ±SD). 

 

Both in the presence and absence of divalent cations the inhibitory effect of 14-3-3AG216S 

on NR activity is dramatically increased as compared to 14-3-3A (Fig. 6). The 

concentration of 14-3-3 required to reach half maximal inhibition, Ki, in the presence of 

Mg2+ is 5.4 nM for 14-3-3AG216S, which is approximately a 1000-fold lower as compared 

to 14-3-3A, and is comparable with 14-3-3B and 14-3-3C (Table 1). These results clearly 

show that Ser-216 increases the functionality of 14-3-3 proteins in NR inhibition and is a 

basis for isoform specific regulation by 14-3-3 proteins.  

 

 Mg2+ Ca2+ EDTA 
14-3-3AG216S 5.4 nM 4.9 nM 404.6 nM 
14-3-3A 4597.8 nM 2633.7 nM N.D. 
14-3-3B 1.5 nM 1.7 nM 121.6 nM 
14-3-3C 0.5 nM 0.7 nM 11.7 nM 

 

Table 1. Kinetic evaluation of the ability of the 14-3-3 proteins to inhibit NR. The enzymatic assays from Fig. 3 

and Fig. 6 showing the inhibition of NR by the different 14-3-3 isoforms and the mutated 14-3-3AG216S in the 

presence and absence of 5 mM Mg2+/Ca2+, were used to determine the concentration of 14-3-3 required to reach 

half maximal inhibition, Ki. N.D., not determined. 
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Figure 7. Mutation affects binding to target protein. Superimposed surface plasmon resonance sensorgrams 

generated on a Biacore 2000 in the presence of (A) 5 mM CaCl2, (B) 5 mM MgCl2. Sensorgrams show real time 

binding of recombinant 14-3-3A and the mutated 14-3-3AG216S to immobilized phosphorylated NR representing 

synthetic peptide. Each curve shows three phases: the first phase represents equilibration with running buffer, the 

second phase shows binding of the 14-3-3 protein to the chip (association) and the third phase shows dissociation 

of 14-3-3 protein when only running buffer is passed over the chip (dissociation). 

 

Bachmann et al. (1996a) previously showed that the ability of different 14-3-3 isoforms to 

inhibit NR correlates to their ability to bind to the target sequence. To determine whether 

the increased functionality of 14-3-3AG216S reflects improved target recognition, 

biotinylated synthetic phospho-peptides representing the 14-3-3 binding motif of barley 

NR were attached to a streptavidin-coated Biacore chip. Interaction between the peptide 

and recombinant 14-3-3A/14-3-3AG216S (0.5 µM) was followed in real-time using surface 

plasmon resonance. Superimposed sensorgrams (Fig. 7) show that, both in presence of 5 

mM Ca2+ or 5 mM Mg2+, the ability to bind NR is significantly enhanced in 14-3-3AG216S. 
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This indicates Ser-216 is involved in recognizing NR. In the presence of 5 mM EDTA, no 

binding by 14-3-3A nor by 14-3-3AG216S was observed (data not shown).  

 

Discussion 

 

The functional diversity of the family of 14-3-3 proteins in regulating cellular processes in 

plants has raised questions concerning the role of the different 14-3-3 isoforms. In contrast 

to the proposed functional redundancy of 14-3-3 isoforms (Roberts, 2000; Roberts and de 

Bruxelles, 2002; Zuk et al., 2005), clear functional differences between Arabidopsis 14-3-

3 isoforms were observed in the regulation of NR (Bachmann et al., 1996a). Following 

that, functional isoform specificity of 14-3-3 proteins was observed in the regulation other 

14-3-3 target proteins like the plasma membrane H+-ATPase (Rosenquist et al., 2000; Emi 

et al., 2001; Alsterfjord et al., 2004), the SV channel (Sinnige et al., 2005b) and sucrose-

phosphate synthase (Bornke, 2005). The subcellular localization of 14-3-3 isoforms, an 

argument used to support the functional redundancy theory, was recently shown to be 

mainly target driven and is therefore rather an indication for isoform specific interactions 

(Paul et al., 2005).  

 

A confusing factor in the discussion on isoform specific functions versus differential 

availability is the shortage of reports in which multiple 14-3-3 isoforms are tested for 

both. In the present study we used one of the best-characterized roles of plant 14-3-3 

proteins, the inhibition of NR, to investigate this. Here we demonstrate that NR activity in 

barley can be efficiently inhibited by recombinant 14-3-3B and 14-3-3C, but not by 14-3-

3A (Fig. 3). This implies functional isoform specificity concerning 14-3-3A but also a 

potential functional redundancy of 14-3-3B and 14-3-3C in inhibiting NR. 

Immunolocalization studies in germinating barley embryos showed a differential 

expression of the three barley 14-3-3 isoforms (Testerink et al., 1999). 14-3-3A and 14-3-

3B dominated expression in leaf tissue of germinating embryos while almost no 14-3-3C 

was detected. This resembles the presence of 14-3-3 isoforms in the extract from 1-week-

old barley leaves (Fig. 2). Indeed, the difference between 14-3-3B and 14-3-3C in the 

regulation of NR is the availability of these isoforms, leaving 14-3-3B as the only 

characterized 14-3-3 isoform able to regulate NR in barley. Further, this provides an 
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example in which functional isoform specificity as well as differential availability 

determines the biological role for a given 14-3-3. 

 

The question remains as to the cause of the functional difference that makes 14-3-3A such 

a poor inhibitor of NR activity as residues in the amphipathic groove that are involved in 

ligand binding are highly conserved among 14-3-3 proteins (Zhang et al., 1997; Petosa et 

al., 1998; Wang et al., 1998). Here we identified a natural varying single residue in loop 8, 

responsible for at least part of the isoform specificity of barley 14-3-3A. Mutating Gly-

216 to Ser-216, as in 14-3-3B and 14-3-3C, restored the ability of 14-3-3A to inhibit NR 

(Fig. 6). Further, surface plasmon resonance shows that the mutated 14-3-3AG216S 

increases the ability to interact with an NR representing peptide as compared to 14-3-3A, 

indicating that isoform specificity is found in ligand recognition (Fig. 7). Previously, 

directed mutagenesis of two conserved amino acids in this region was shown to affect the 

ability of 14-3-3ω to inhibit NR (Athwal and Huber, 2002) and three unique residues in 

loop 8 of the mammalian 14-3-3σ were recently shown to cause functional isoform 

specificity (Wilker et al., 2005). This loop 8 has been proposed to function in binding 

divalent cations through a putative EF-hand (Lu et al., 1994). Binding of divalent cations 

induces a conformational change and possibly alters the position of helix 9 and the C-

terminal tail. Helix 9 is involved in the formation of the amphipathic groove in which 14-

3-3 proteins bind their ligands (Petosa et al., 1998) and the C-terminal tail of 14-3-3 

proteins may function in ligand discrimination (Athwal and Huber, 2002; Shen et al., 

2003) by occupying the ligand binding groove (Kubala et al., 2004; Silhan et al., 2004) 

and function as an auto-inhibitor of 14-3-3 action (Truong et al., 2002; Shen et al., 2003). 

Possibly, mutating Gly-216 to Ser-216 in loop 8 of 14-3-3A induces a similar alteration in 

the position of helix 9 and the C-terminal tail, thereby increasing the accessibility of the 

binding groove. Alternatively, this mutated residue might function in ligand recognition as 

suggested for the three unique residues in loop 8 of 14-3-3σ (Wilker et al., 2005). In 

support of this, loop 8 of 14-3-3ξ was shown to make direct contact with part of its co-

crystallized ligand (Obsil et al., 2001).  
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These results show that this natural varying amino acid serves a significant role in ligand 

discrimination and functional isoform specificity. Many other plant species contain one or 

more 14-3-3 isoform(s) with a Ser residue in the same position as barley 14-3-3B and 14-

3-3C. In Arabidopsis, for example, this residue is present in 14-3-3ι. However, additional 

mutagenesis of natural variations between 14-3-3 isoforms is necessary to fully 

understand the observed functional differences between 14-3-3 isoforms. In analysing 

isoform specificity in NR inhibition, Bachmann et al. (1996a) tested five Arabidopsis 14-

3-3 isoforms (ω, ψ, φ, χ, ν), all containing a Gly residue like 14-3-3A, and observed clear 

differences in their ability to inhibit NR. Moreover, although the Ki of 14-3-3AG216S in 

inhibiting NR is approximately a 1000-fold lower as compared to 14-3-3A (Table 1), the 

affinity is still 10-fold less than observed for 14-3-3C. Therefore, other natural variations 

between 14-3-3 isoforms, like the C-terminal tail, must function in isoform specificity as 

well. Interestingly, we estimate, from the data provided by Bachmann et al. (1996a), that 

the Ki of the most potent tested inhibitor from Arabidopsis, 14-3-3ω, is approximately 0.6 

µM. Barley 14-3-3C is, with a Ki of 0.5 nM (Table 1), approximately a 1000-fold more 

effective. This rather large difference begs the question whether a yet un-investigated 

Arabidopsis 14-3-3 isoform might have a higher affinity for NR. An obvious candidate 

would be 14-3-3ι  since this isoform contains the Ser residue as found in barley 14-3-3 B 

and C. However, 14-3-3ι  expression has thus far been mainly observed in flowers 

(Rosenquist et al., 2001) while NR is located in leaf tissue. This makes it unlikely that 14-

3-3ι  functions in inhibiting NR, as both capability and availability of 14-3-3 isoforms are 

shown to be crucial in regulating target proteins. 

 

Experimental procedures 

 

Purification of recombinant 14-3-3 proteins and site directed mutagenesis 

 

Barley 14-3-3 isoforms A, B and C (GenBank accession nos. X62388, X93170 and 

Y14200, respectively) were cloned into the pRSETC vector (Invitrogen, Carlsbad, CA, 

USA) and the orientation and reading frame checked by sequencing.  The mutated 14-3-

3AG216S was generated using a PCR strategy. Two PCR fragments were amplified from a 
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pPinPoint-14-3-3A construct using gene specific primers G216Sf (5’-GGACTCCC 

TCTCCGAGGAATC-3’) and G216Sr (5’-GATTCCTCGGAGAGGGAGTCC-3’), 

containing a BslI restriction site, and vector specific primers SP6 (5’-CGTGAC 

GCGGTGCAGGGCG-3’) and PinPoint (5’-ATTTAGGTGACACTATAG-3’). The 

reactions were carried out for 30 cycles with an annealing temperature of 55°C and Tfl 

proofreading polymerase (Promega, Madison, WI, USA) according to manufacturer’s 

instructions. The 5’fragment (SP6 and G216Sf) was digested with NotI (Gibco BRL, 

Gaithersburg, MD, USA), the 3’fragment was digested with StyI (New England Biolabs, 

Beverly, MA, USA) and the original pPinPoint-14-3-3A construct was digested with both 

mentioned enzymes. Digestions were carried out O/N. Enzymes were inactivated for 20 

min at 65°C and removed with phenol/chloroform. DNA was precipitated using 100% 

EtOH and dissolved in H2O. Both PCR fragments were further digested by BslI (New 

England Biolabs) for 6 hrs and cleaned as above. Fragments of all digests were separated 

on a 1% agarose TAE gel, bands corresponding to the expected sizes were excised and 

DNA was extracted using a gel extraction kit (Qiagen, Valencia, CA, USA). The 

fragments were ligated, desalted and transformed into JM109. Positive colonies were 

checked by sequencing, the 14-3-3AG216S fragment was transferred into the pRSETC 

vector and used for production as the WT constructs. Transformed BL21 (DE3) pLysS 

cells (Invitrogen) were grown O/N at 37°C in 2 x YT, 1 % glucose and 50 µg/ml 

ampicillin until the OD600 was 0.8 - 0.9. Expression was induced by replacing the medium 

by 2 x YT, 1 mM isopropyl-β-D-thiogalactoside (AppliChem, Darmstadt, Germany) and 

50 µg/ml ampicillin and incubation at 28°C for 4 h. Cells were pelleted at 5000 g for 15 

min and dissolved in 30 ml 20 mM Hepes/KOH pH 7.5, 0.5 M NaCl, 1 mM PMSF and l0 

mM imidazol (Merck, Darmstadt, Germany) at 4°C. Once dissolved, 1 mg/ml lysozyme 

(Sigma-Aldrich, St. Louis, MO, USA) and 4 µg/ml deoxyribonuclease 1 (Sigma-Aldrich) 

were added and incubated for 30 min. The cell lysate was centrifuged for 30 min at 100 

000 g and supernatant filtered through a 0.45 µM filter (Schleicher & Schuell, Dassel, 

Germany). The filtrate was applied to a Ni2+ charged HiTrap Chelating HP column 

(Amersham Pharmacia, Uppsala, Sweden) and subjected to a 10 mM to 500 mM imidazol 

gradient. The 14-3-3 peak was pooled, desalted to 1 mM Hepes/KOH pH 7.5 using a 

HiPrep 26/10 desalting column (Amersham) and concentrated by freeze drying. Quantity 
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and quality of the recombinant proteins were checked using the Bradford protein assay 

(BioRad, Hercules, CA, USA), Coomassie stained SDS-PAGE gel (Fig. 8). 

 

 

 

 

 

 

 

 

Figure 8. Purified recombinant 14-3-3 

isoforms. Coomassie stained SDS-PAGE gel 

showing purity, quantity and quality of 

histidine labelled 14-3-3 isoforms AG216S, A, 

B and C (2 µg) and as a control BSA (2 µg). 

 

 

 

Far-UV circular dichroism 

Far-UV CD spectra of recombinant 14-3-3 proteins (100 µg/ml in 5 mM Na-phosphate pH 

7.5) were obtained using a Jasco J-715 spectropolarimeter (Jasco, Easton, MD, USA), 

equipped with a Jasco PTC-348 WI to maintain the temperature at 20°C. Spectra were 

acquired from 260 to 190 nm with a continuous scanning mode, a scanning speed of 20 

nm/min, 0.5 nm interval, a band width of 1 nm and 1 sec response times using a quartz 

cuvette (type 110-QS, Hellma, Muellheim, Germany) with a 1 mm light path. All spectra 

are the average of 5 independent scans and buffer blank (5 mM Na-phosphate pH 7.5) 

spectra, obtained at identical conditions, were substracted to compensate for solvent 

contribution. The analysis of far-UV CD spectra in secondary content was performed 

using CDNN version 2.1 software (Institut für Biotechnologie, Martin Luther Universität 

Halle Wittenberg, Germany).  
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NR extraction 

 

Barley (Hordeum vulgare cv. Alexis, Josef Breun Saatzucht, Herzogenaurach, Germany) 

plants were grown in soil for 7 days, fed with 100 mM KNO3 24 hrs before harvesting and 

placed in the dark 30 min before harvesting. Leaves (5 g) were ground in liquid nitrogen, 

followed by the addition of 10 ml extraction buffer (100 mM Hepes/KOH pH 7.5, 10 % 

(v/v) glycerol, 20 mM NaF, 10 mM EDTA, 20 µM FAD, 5 µM NaMoO4, 0.1 % (v/v) 

Triton X-100, 6 mM DTT, 5 µM cantharidin, 2 mM PMSF, complete protease inhibitor (3 

tablets/500 ml) and 1 % (w/v) PVPP). The suspension was filtered through 4 layers of 

Miracloth (Calbiochem, La Jolla, CA, USA) and the filtrate was centrifuged at 100 000 g 

for 1 hr at 4°C. The supernatant was filtered through a 0.45 µM filter (Schleicher & 

Schuell, Dassel, Germany), the filtrate was applied to a HiTrap Q anion exchange column 

(Amersham) and subjected to a 0 mM to 500 mM NaCl gradient in extraction buffer 

(without PVPP). NR activity was localised as described in Figure 1 and pooled for further 

experiments. 

 

Determining the 14-3-3 protein content 

 

HiTrap Q protein (5 µl) fractions were separated on 12% SDS-PAGE. The separated 

proteins and control recombinant 14-3-3 proteins (0.5 pmol) were transferred to Immun-

Blot PVDF Membrane (BioRad, Hercules, CA, USA). The membrane was probed with 

isoform-specific Anti-14-3-3 antibodies as described previously (Testerink et al., 1999).  

 

NR assay 

 

NR activity was tested by adding 50 µl of NR extract to 500 µl of either EDTA assay 

buffer (50 mM Hepes/KOH pH 7.5, 5 mM EDTA, 10 mM KNO3 and 0.5 mM NADH), 

Mg Assay buffer (50 mM Hepes/KOH pH 7.5, 5 mM MgCl2, 10 mM KNO3 and 0.5 mM 

NADH) or Ca assay buffer (50 mM Hepes/KOH pH 7.5, 5 mM CaCl2, 10 mM KNO3 and 

0.5 mM NADH). The mixture was incubated at 30°C for 30 min and the reaction was 

stopped by the addition of 50 µl 1 M ZnAc. After centrifuging at 13 000 g for 2 min, 500 
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µl of the supernatant was mixed with 500 µl of 0.01% NAP and 0.5% Sulfanilamide in 

0.75 N HCl. The absorbance of this mixture was measured at 540 nm. 

  

Surface plasmon resonance 

 

Surface plasmon resonance experiments were performed with a Biacore 2000 (Biacore, 

Uppsala, Sweden). A streptavidin coated sensor chip (Biacore) was activated with 1 M 

NaCl, 50 mM NaOH, flowpath 3 was coated at 5 µl/min with 1000 response units of NR-

P peptide (Biotin-CPGLKRSTSpTPFMN) (Ansynth, Roosendaal, The Netherlands) in 

immobilization buffer (10 mM KAc, pH 6 with HAc). Measurements were done in 

running buffer (20 mM Hepes/KOH pH 7.5, 5 mM MgCl2/CaCl2, 25 mM NaCl and 15 

mM imidazol), at 25°C using a flow rate of 10 µl/min. An association step of 3 min, with 

a 14-3-3 isoform diluted in running buffer, was followed by a dissociation step of 3 min in 

running buffer. The chip was regenerated between runs using 0.5 % SDS (w/v), 50 mM 

NaCl pH 6.8. The data was processed using BIAevaluation 3.1. (Biacore). 
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Summary  

 

Members of the family of 14-3-3 proteins function in the regulation of a wide variety of 

cellular processes through interaction with key target molecules. In recent years, hundreds 

of, mainly mammalian, potential target molecules have been identified using affinity 

purification. In order to enable comprehensive identification of 14-3-3 interacting proteins 

from barley, a small-scale affinity purification approach is developed using the 

extensively studied nitrate reductase (NR) model system. NR activity was effectively 

separated from a partially purified extract with the use of 14-3-3C coated magnetic beads 

and specific elution with competing peptides, resulted in a sufficient quantity of protein to 

allow positive identification of the purified NR by MALDI-TOF mass spectrometry. 

Applying this method to more crude barley leaf and root extracts, resulted in the 

purification of several 14-3-3 interacting proteins, of which neutral invertase could be 

positively identified. This result was further confirmed by the presence of neutral 

invertase activity in the eluted fraction and the significant inhibition of neutral invertase 

activity upon addition of 14-3-3C.  
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Introduction 

 

In order for cells to maintain homeostasis and adequately respond to environmental 

changes, control over protein activity is crucial. In recent years, the highly conserved 

family of 14-3-3 proteins was shown to play a key role in the regulation of the activity of 

many proteins. The existence of 14-3-3 proteins in plants was first described in 1992 (De 

Vetten et al., 1992; Hirsch et al., 1992; Lu et al., 1992). Within a few years 14-3-3 

proteins were shown to function as part of the receptor for the phytotoxin fusicoccin 

(Korthout and de Boer, 1994; Marra et al., 1994; Oecking et al., 1994) and identified as 

the inhibitor protein of nitrate reductase (NR) (Bachmann et al., 1995; Bachmann et al., 

1996b; Moorhead et al., 1996). To date over 100 targets for 14-3-3 proteins have been 

identified. Through these target proteins, 14-3-3 proteins affect processes like ion 

homeostasis (Bunney et al., 2002; De Boer, 2002), assembling and targeting of protein 

complexes (Rajan et al., 2002), metabolism (Comparot et al., 2003), signal transduction 

(Camoni et al., 1998), prevention of apoptosis (Yoshida et al., 2005) and cell cycling (Van 

Hemert et al., 2001). The number of 14-3-3 target proteins and the processes affected by 

14-3-3 proteins is still expanding as is reflected by the steady increase in publications 

concerning 14-3-3 proteins. With few exceptions 14-3-3 proteins act through binding to 

two distinct phosphorylated motifs, R/KxxSp/TpxP (Mode-1) and R/KxxxSp/TpxP (Mode-

2), in target proteins (Muslin et al., 1996; Yaffe et al., 1997; Rittinger et al., 1999). 

Searching the predicted protein products of the Arabidopsis genome sequence for 

potential 14-3-3 interacting proteins based on these two motifs shows that 40% of all 

proteins contain the 14-3-3 recognition sequence (Sehnke et al., 2002a). This indicates 

that many more proteins and processes might be regulated by 14-3-3 proteins. 

 

To gain a better understanding of the control 14-3-3 proteins exert on cellular processes, 

identification of additional 14-3-3 interacting proteins is crucial. As previously discussed 

by Huber et al. (2002), the use of common methods to identify protein binding partners, 

like yeast two-hybrid, is limited due to a lack of phosphorylation of 14-3-3 interacting 

proteins. Alternatively, 14-3-3 affinity chromatography was successfully applied to 

identify several novel 14-3-3 interacting proteins from cauliflower (Moorhead et al., 

1999). More recently, a similar method resulted in the identification of hundreds of 14-3-3 
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interacting partners in mammalian cells (Rubio et al., 2004; Benzinger et al., 2005). 

However, this method requires large quantities of starting material. For example, 

Moorhead et al. (1999) used 10 mg of recombinant 14-3-3 proteins to purify target 

proteins from 1 kg of cauliflower extract.   

 

We have used the NR model system to set up an alternative small-scale 14-3-3 affinity 

purification method. The regulation of NR is one of the best-studied mechanisms of 14-3-

3 action in plants. NR represents the first step of N-fixation in plant cells by catalysing the 

reduction of nitrate to nitrite. Further reduction of nitrite to ammonia depends on electrons 

donated by photosynthesis. To prevent accumulation of the toxic nitrite, dark induced 

phosphorylation of the hinge 1 region of NR (Douglas et al., 1995; Su et al., 1996) enables 

14-3-3 proteins to interact and consequently inactivate NR (Kaiser and Huber, 2001; 

MacKintosh and Meek, 2001; Comparot et al., 2003). Using the NR model system allows 

us to follow the efficiency and optimise conditions in purifying 14-3-3 interacting 

proteins. 

 

Here we study a 14-3-3 affinity purification approach in which recombinant 14-3-3 

proteins are immobilized to streptavidin coated beads. The advantage of this method over 

the previously used affinity chromatography (Moorhead et al., 1999) is the simplified 

purification method (Smith, 2005) and the potential use in automated affinity purification 

platforms. We show that 14-3-3 interacting proteins can be purified using a relative small 

amount of starting material as compared to the previous used method (Moorhead et al., 

1999) by following NR activity during the purification process. Applying this affinity 

purification method to more crude extracts resulted in the identification of the cytosolic 

neutral invertase as a target protein for 14-3-3 regulation. Further, parallel affinity 

purifications using the three characterised barley 14-3-3 isoforms were performed to 

identify potential 14-3-3 isoform specific interacting partners. 
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Figure 1: Effect of (phospho-)peptides on 14-3-3C inhibition of NR. NR activity from 7 days old barley leaves 

was partially purified and the activity of 50 µl extract was tested in 0.5 ml Mg assay buffer. Addition of 0.1 µM 

14-3-3C results in a reduction of NR activity of 60%. The inhibitory action of 14-3-3C was titrated with 

increasing amounts of a peptide containing the 14-3-3 interaction motif (RRSRS(P)AP) with either 

phosphorylated serine (P-peptide) or non-phosphorylated serine (C-peptide). 

 

Results 

 

The inhibition of NR by 14-3-3 interaction is one of the best studied examples of 14-3-3 

regulation in plants. Therefore, we used the NR model system to set up a 14-3-3 affinity 

purification strategy. NR activity was isolated from dark harvested barley leaves and 

partially purified to separate NR activity from native 14-3-3 proteins as previously 

described (Sinnige et al., 2005a). The affinity purification strategy is based on the 

inhibitory effect, and thus binding, of recombinant 14-3-3 proteins upon incubation with 

the NR extract (Fig. 1) (Bachmann et al., 1996a; Moorhead et al., 1996; Moorhead et al., 

1999; Sinnige et al., 2005a). Multiple 14-3-3 isoforms have been identified in barley 

(Brandt et al., 1992; Testerink et al., 1999), we chose to use 14-3-3C since we previously 

showed that this isoform has the highest affinity for barley NR (Sinnige et al., 2005a). For 
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specific elution of the isolated 14-3-3 interacting proteins, different concentrations of a 

phosphopeptide (P-peptide), representing the 14-3-3 binding motif (previously designated 

KCO-P (Sinnige et al., 2005b)), and the non-phosphorylated equivalent (C-peptide) were 

tested for their ability to compete with NR for 14-3-3 proteins (Fig. 1). Clearly, 

concentrations of 0.1 to 1 mM of the P-peptide are suitable for specific elution of 14-3-3 

interacting proteins. The C-peptide can be used as control since even a concentration of 1 

mM does not reduce the action of 14-3-3C (Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: 14-3-3C coated beads remove NR activity from extract. NR extract was isolated in the presence and 

absence of the phosphatase inhibitors NaF and cantharidin. 100 µl NR extract (with 10 mM MgCl2) was 

incubated for 10 min with 14-3-3C coated beads (100 µl) in the absence and presence of (phospho-)peptide. 

After removal of the beads from the extract, the supernatant was assayed for NR activity in EDTA assay buffer. 

Extraction of NR activity by 14-3-3C coated beads was efficiently prevented by addition of P-peptide but not by 

C-peptide. 

 

Coupling the biotinylated 14-3-3C proteins to streptavidin coated metal beads enables the 

separation of 14-3-3 interacting proteins from the extract using a magnetic stand. The 

ability of the 14-3-3 proteins to interact with target proteins is unaffected after coupling to 

the beads and P-peptide still efficiently prevents binding of 14-3-3C to interacting proteins 

(Fig. 2). The 14-3-3C coated beads were subjected to consecutive incubations with fresh 

NR extract to obtain an indication of the NR binding capacity (Fig. 3). The percentage of 

NR activity removed from the extract decreases from 53% in the first to 35% in the last 
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incubation. Based on the observation that there was still a significant amount of NR 

activity extracted during the last incubation,  

 

 

 

 

 

 

 

 

 

 

Figure 3: Cumulative extractions of NR activity showing the NR binding capacity of 14-3-3C coated beads. NR 

extract was isolated as described in Fig. 2. Successive NR extract fractions (100 µl) were incubated for 10 min 

with 14-3-3C coated beads in the presence and absence of (phospho-)peptides. The cumulative percentage of NR 

activity removed during successive incubations (expressed in % of control) is plotted against the cumulative 

volume (ml). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: NR activity during consecutive steps in affinity purification of NR. (A) Total NR activity present in 4 

ml extract before and after incubation with 14-3-3C coated beads and (B) the NR activity in wash and elution 

steps show specific elution of NR activity upon P-peptide elution. 
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incubation. Based on the observation that there was still a significant amount of NR 

activity extracted during the last incubation, we used 4 ml of NR extract for the affinity 

purification experiment to saturate the 14-3-3C coated beads with NR. Further, in line 

with the previously reported necessity of NR to be phosphorylated to allow 14-3-3 

interaction (Kaiser and Huber, 2001; MacKintosh and Meek, 2001; Comparot et al., 

2003), affinity purification from an extract that was isolated in the absence of phosphatase 

inhibitors NaF and cantharidin, resulted in a reduction of the removed NR activity (Fig. 2 

& 3).  

 

To further analyze the affinity purification method of 14-3-3 interacting proteins, we 

followed NR activity during the complete procedure. The 14-3-3C coated magnetic beads 

were consecutively incubated with 4 times 1 ml NR extract. After removal of the extract 

from the beads, the total NR activity in the extract was reduced by 38.5 nmol NO2/min 

(Fig. 4A). Based on the activity of purified NR from corn seedling (Sigma-Aldrich), this 

corresponds roughly with 1 to 4 µg of extracted NR protein. Three consecutive washes of 

the beads in 1 ml wash buffer resulted in the loss of 3.8, 1.9 and 1.5 nmol NO2/min of NR 

activity, respectively (Fig. 4B). Note that the presence of NR cofactors FAD and NaMoO4 

during these washes was crucial to obtain any NR activity in these and later eluting 

fractions (data not shown). For the specific elution of NR from the 14-3-3C coated beads, 

they were first incubated with 50 µl 1 mM C-peptide followed by 50 µl 1 mM P-peptide. 

The supernatant of these elutions contained 0.10 and 10.94 nmol NO2/min NR activity, 

respectively (Fig. 4B). This shows that the affinity purification method allows purification 

and specific elution of 14-3-3 interacting proteins, although about 50% of the NR activity 

removed from the original NR extract is still unaccounted for. To determine whether all 

NR activity was released from the beads, a second P-peptide elution was applied to the 

beads. This released another 3.6 nmol NO2/min NR activity (Fig. 4B), which shows that, 

although 1 mM P-peptide was sufficient to fully block NR inhibition in Figure 1, a 

significant part of the NR was still bound to 14-3-3 after the first P-peptide elution. 
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Figure 5: Identification of purified proteins. Silver stained SDS-PAGE showing proteins eluted from 14-3-3C 

coated beads with KCO-C and KCO-P (A). A 110 kD band was cut from gel and trypsin digested. Resulting 

peptides were subjected to MALDI-TOF (B) for identification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: NR matching peptides identified by mass spectrometry 
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A                                                    B 

Sequence 
 
 
 
(K)VAGAPIALSSPR 
(K)VWYVIDQVK 
(K)GPLGHVEYTGR 
(R)GCGFPSLISPPR 
(K)FSVGFVTEDILR 
(R)AWDQTHNTQPEK 
(R)FALPSSDQVLGLPVGK 
(R)GDWATWTVEVTGLVR 
(R)LTGKHPLNCEPPLAR 
(R)EAYGSHLQLEVEPSTR 
(R)LMHHGFITPAPLHYVR 
(R)DEGTADAWIERNPSLIR 
(R)RIVVTTAESDNYYHFK 
(R)AYTPTSMVDEIGQFELLVK 
(K)GEIGLVFEHPTQPGNQTGGWMAR 

Residue 
 

Start           End 
 

640             651 
842             850 
756             766 
38               49 
858             869 
448             459 
673             688 
147             161 
109             123 
73               88 
124             139 
92               108 
308             323 
704             722 
485             507 

Matching 
peptides 

MW 
 

1137.6506 
1148.6230 
1184.5938 
1286.6442 
1381.7241 
1453.6586 
1626.8981 
1688.8522 
1701.8985 
1814.8799 
1887.9930 
1941.9544 
1941.9585 
2140.0762 
2481.1859 

Trypsin digest 
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For the identification of 14-3-3 interacting proteins the C-peptide elution and the P-

peptide elution were subjected to SDS-PAGE and visualised by silver staining (Fig. 5A). 

Differential bands allow discrimination between 14-3-3 interacting proteins and 

nonspecific interacting proteins and in line with the observed NR activity in these 

elutions, the silver stained gel shows a clear protein band with a molecular mass slightly 

over 100 kD in the P-peptide elution lane where no visible protein band could be detected 

in the lane of the C-peptide elution. This differential band was excised, digested by trypsin 

and MALDI-TOF (matrix-assisted laser-desorption ionization–time-of-flight) mass 

spectra of the resulting peptides (Fig. 5B) were compared to protein databases to identify 

the 14-3-3 interacting protein. The best fit of peptide masses with a protein (table 1), with 

a MOWSE score of 2.8e14 and 22.5% of the protein covered with matching peptides, was 

indeed barley NR (GenBank P27969). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Silver stained SDS-PAGE gel of affinity purified 14-3-3C interacting proteins from crude barley root 

and leaf extract. Seven distinct protein bands are present in the P-peptide elution after affinity purification in root 

extract of which three bands (2, 3 and 4) are differential bands compared to the C-peptide elution. Affinity 

purification in barley leaf extract resulted in ten distinct protein bands in the P-peptide elution of which band 7 is 

also found in the C-peptide elution. Differential bands were excised and subjected to MALDI-TOF analysis. 
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For the identification of other, potentially new, 14-3-3 interacting proteins we applied the 

affinity purification method to protein extracts of barley root and leaf tissue. Peptide 

elutions were subjected to SDS-PAGE and visualised by silver staining. The P-peptide 

elution of affinity purification in root tissue showed seven distinct protein bands of which 

three were differential bands compared to the C-peptide elution (Fig. 6). From leaf tissue, 

nine differential protein bands were isolated, including three bands (4-6) with the same 

molecular mass as the three differential bands found using root tissue and a band (3) with 

the molecular mass of NR (Fig. 6). All differential bands were excised, trypsin digested 

and subjected to MALDI-TOF analysis. Unfortunately, the quantity of the less intense 

bands isolated from leaf tissue (1-3, 8-10) was not sufficient to obtain workable spectra. 

The MALDI mass spectra of the remaining differential bands, isolated from root (2-4) and 

leaf (4-6) tissue, showed a surprisingly high similarity. Since comparing the mass spectra 

to protein databases did not result in the identification of these proteins, two peptides (ions 

858.5 MH+ and 1107.5 MH+), present in all these spectra, were further analysed by 

tandem mass spectrometry. The resulting sequences (AIDLAEAR and LGEGAMPASFK, 

respectively) identified these proteins, based on homology with rice (GenBank 

CAE03040) and Arabidopsis (GenBank O80556) protein, as putative neutral invertases. 

 

Invertases (EC 3.2.1.26) are a group of enzymes that irreversibly hydrolyse sucrose into 

glucose and fructose (Tymowska-Lalanne and Kreis, 1998a). The cytosolic neutral 

invertases, represented by different isoenzymes (Tymowska-Lalanne and Kreis, 1998a), 

have a molecular mass between 58 and 66 kDa (Rosario and Santisopasri, 1977; Vorster 

and Botha, 1999; Bosch et al., 2004) and function as an octamer (Lee and Sturm, 1996) 

with an optimum between pH 6.8 and 8.0 (Roitsch and Gonzalez, 2004). In order to 

validate the presence of neutral invertases in the P-peptide elution, we determined the 

invertase activity in the extract and the P-peptide elution (Fig. 7a). Clearly, a 7 to 8-fold 

increase in invertase activity was found in the P-peptide elution as compared to the 

activity in the extract. To further assess the effect of 14-3-3C, extract was assayed for 

invertase activity in the presence and absence of 0.3 µM 14-3-3C (Fig. 7b). Addition of 

14-3-3C resulted in a 30% inhibition of invertase activity.  
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Figure 7: Barley neutral invertase interacts with and is inhibited by 14-3-3C. In vertase activity was measured 

using Nelson’s test after incubation for 30 min at 30ºC in 100 mM sucrose at pH 7.5. (A) Neutral invertase 

activity in 10 µl P-peptide elution after affinity purification from barley leaf extract as compared to the neutral 

invertase activity in 50 and 100 µl of leaf extract. Invertase activity measurements in 100 mM sucrose and 100 µl 

leaf extract in water were performed as controls. (B) Inhibition of invertase activity upon addition of 0.3 µM 14-

3-3C protein (n = 3, ±SD).   

 

Multiple 14-3-3 isoforms are found in all tested eukaryotic tissues. To address the 

question whether molecular diversity in 14-3-3 isoforms leads to functional diversity 

(Roberts, 2000; Roberts and de Bruxelles, 2002; Paul et al., 2005; Sinnige et al., 2005a), 

we used all three described barley 14-3-3 isoforms (Testerink et al., 1999) in parallel to 

affinity purify target proteins. P-peptide elutions of these affinity purifications in both 

barley root and leaf extract were subjected to SDS-PAGE and visualised by silver staining 

(Fig. 8). Several putative interacting proteins are visible for all 14-3-3 isoforms. 

Interestingly, mostly proteins of similar size are present in the P-peptide elution of all 

three 14-3-3 isoforms, although the relative intensity of the bands sometimes varies which 

possibly reflects differences in affinity. However, some bands (indicated by triangles) 

appear to be differential. The identity of these purified proteins remains unclear, as they 

were not subjected to MALDI-TOF analysis. The molecular mass of the most prominent 

bands corresponds with the putative neutral invertases (Fig. 6).  
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Figure 8: Silver stained SDS-PAGE gels loaded with 10 µl of P-peptide elution show affinity purified proteins 

from crude barley root and leaf extract using three 14-3-3 isoforms (A, B and C). Affinity purifications with 

different 14-3-3 isoforms were performed simultaniously using the same barley leaf/root extract. Using different 

14-3-3 isoforms resulted in few differential protein bands (triangles) in the P-peptide elutions.   

 

Discussion 

 

Identification of 14-3-3 interacting proteins will provide better insight in the control 14-3-

3 proteins exert on cellular processes. In recent years, affinity chromatography has been 

successfully used to identify hundreds of new, mainly mammalian, 14-3-3 interacting 

proteins (Moorhead et al., 1999; Cotelle et al., 2000; Milne et al., 2002; Rubio et al., 2004; 

Benzinger et al., 2005). In the present work, we studied the efficiency of a similar affinity 

purification strategy using streptavidin coated metal beads as a matrix. The potential 

advantage of these beads over the previously used affinity chromatography lies in 

simplified purification method (Smith, 2005). The beads are easy to handle and no 

centrifugation or columns are required, which also reduces the time consumption. Further, 

elution of interacting proteins can be performed in small volumes, so there is no need to 

concentrate the obtained sample for further analysis. Finally, the development of 

platforms able to use these beads for automated affinity purification allows high 
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throughput screening of 14-3-3 interacting proteins using for example multiple 14-3-3 

isoforms under varying physiological conditions and/or in different tissues. 

 

Important for successful isolation of 14-3-3 interacting proteins, biotinylation of the 14-3-

3 molecules using pPinPoint and subsequent coupling it to the strepavidin coated metal 

beads does not affect its binding capabilities as shown by the ability to reduce NR activity 

(Fig 1 & 2). The most powerful part of the purification method, as previously recognised 

and used for affinity chromatography of 14-3-3 interacting proteins (Moorhead et al., 

1999; Milne et al., 2002), is the specific elution of 14-3-3 interacting proteins by 

competing with the, 14-3-3 binding motif carrying, synthetic peptides. In previous work 

we determined the affinity of 14-3-3C for both P-peptide and NR to be 82 nM (Sinnige et 

al., 2005b) and 0.5 nM (Sinnige et al., 2005a) respectively. The relatively high affinity of 

14-3-3C for NR as compared to P-peptide, explains the excess of P-peptide necessary for 

efficient elution of NR (Fig. 1). Discrimination between the elution of 14-3-3 interacting 

proteins and non-specifically bound proteins is accomplished by pre-elution using the 

non-phosphorylated variant (C-peptide), which generally has a lower affinity for 14-3-3 

proteins (Moorhead et al., 1996; Muslin et al., 1996; Yaffe et al., 1997) and is therefore 

unable to compete with 14-3-3 interacting proteins like NR (Fig. 1 & 4). Subsequent 

elution with P-peptide releases 14-3-3 interacting proteins and screening for differential 

proteins between these elutions allows specific discrimination for 14-3-3 interacting 

proteins. 

 

By following the activity of one of the best studied models for 14-3-3 action in plants, 

NR, during the purification process, we demonstrate that this affinity purification method 

for 14-3-3 interacting proteins provides a sensitive way to specifically isolate NR from a 

partially purified NR extract in quantities sufficient enough to allow positive identification 

(Fig. 4 & 5). Applying the method to more crude extracts of root and leaf tissue resulted 

in the purification of several putative 14-3-3 interacting proteins (Fig. 6). Unfortunately, 

several of these proteins could not be identified because the quantity of the isolated 

protein was too low to allow positive identification. The specifically eluted NR activity 

represents approximately 30% of the extracted activity (Fig. 4). Some of the NR activity 

was lost during the washing steps, most likely due to the formation of a new equilibrium. 
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Another part remained coupled to 14-3-3 during elution as shown by a second P-peptide 

elution. Therefore, combining successive P-peptide elutions would increase the success 

rate concerning the positive identification of low abundant 14-3-3 interacting proteins. 

Alternatively, up scaling the method would have the same effect. The amount of starting 

material used in this study (recombinant 14-3-3 proteins, plant tissue and peptide) as well 

as the final yield of the purification, correspond to approximately 0.5% of the materials 

used and final yield as reported for the affinity purification method used by Moorhead et 

al. (1999). The rest of the lost NR activity may be the result of loss of enzyme activity 

over time, especially since all purification steps were performed at room temperature.  

 

Surprisingly, the proteins that were present in sufficient quantity in the purification from 

crude root and leaf extract were all identified as neutral invertases. The cytosolic neutral 

invertases irreversibly hydrolyse sucrose into glucose and fructose (Tymowska-Lalanne 

and Kreis, 1998b) and therewith represent, besides sucrose-phosphate synthase (Toroser et 

al., 1998; Moorhead et al., 1999) and trehalose-6-phosphate synthase (Moorhead et al., 

1999), the third 14-3-3 regulated protein in the plant sugar metabolism. Interestingly, a 

group of proteins described as LIM17-related proteins in the previous 14-3-3 affinity 

purification by Moorhead et al. (1999) are similar in size and share a peptide sequence 

(LGEGAMPASFK) with these neutral invertases. The interaction of 14-3-3 with neutral 

invertase was confirmed by both the presence of neutral invertase activity in the P-peptide 

elution and the reducing effect of 14-3-3C on the invertase activity in crude leaf extract 

(Fig. 7). As neutral invertases are represented by multiple isoenzymes (Tymowska-

Lalanne and Kreis, 1998b) and function as an octamer (Lee and Sturm, 1996), it is unclear 

whether all three isolated neutral invertase masses (and if not, which) interact with 14-3-3 

proteins. One should take into account that the interaction between 14-3-3 and any protein 

purified using this or a similar method should be confirmed since it could form complex 

with 14-3-3 interacting proteins and be purified as such.  

 

As in recent work on 14-3-3 isoforms clear differences in target affinity and functionality 

are observed between these isoforms (Bachmann et al., 1996a; Kurz et al., 2000; 

Rosenquist et al., 2000; Emi et al., 2001; Alsterfjord et al., 2004; Paul et al., 2005; Sinnige 

et al., 2005a; Sinnige et al., 2005b), we performed an affinity purification experiment 
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using the same extract on all three thus far described barley 14-3-3 isoforms (Fig. 8). In 

contrast to these observed functional differences, the majority of the isolated protein 

bands is present in the affinity purification of all three used 14-3-3 isoforms. This might 

be explained by the relatively high concentration of 14-3-3 during the affinity purification. 

As shown in reports where the effect of different concentrations of multiple 14-3-3 

isoforms were tested on target proteins (Bachmann et al., 1996a; Sinnige et al., 2005a; 

Sinnige et al., 2005b), high concentrations of 14-3-3 can mask differences in affinity since 

they will eventually bind the target protein. Differences in intensity of some of the 

purified putative 14-3-3 target proteins between the three affinity purifications therefore 

also potentially reflect differences in affinity between the different 14-3-3 isoforms. 

Finally, a few proteins bands are not present in all purifications indicating that these 

proteins do not interact with all 14-3-3 isoforms and therefore indicate functional 

specificity.  

 

In the end, the eluted NR and newly identified neutral invertases were proven sufficient in 

quantity to allow positive identification as 14-3-3 interacting proteins using MALDI 

analysis (Fig. 5). In general, the method allows specific purification of 14-3-3 interacting 

proteins using a fraction (0.5%) of the starting material as compared to a previously 

described method (Moorhead et al., 1999). However, the obtained yield represented the 

same fraction (0.5%) of the yield obtained previously (Moorhead et al., 1999). As a result, 

the quantity of several purified 14-3-3 interacting proteins was not sufficient to allow 

positive identification. This might be solved by the use of more starting material. 

Alternatively, the affinity-purified proteins could be separated using liquid 

chromatography (LC), as retrieving the proteins from silver stained SDS-PAGE gels 

results in a major loss of quantity. The method used in this work has some important 

advantages in terms of a reduction in handling steps and time consumption. Further, the 

method allows the purification of target proteins from a relative small amount of starting 

material and enables comparing different tissues/growth conditions in performing parralel 

purifications. Finally, concerning the affordability of the method, a recent report describes 

a method to efficiently regenerate the streptavidin coated magnetic beads (Holmberg et 

al., 2005).  
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Experimental procedures 

 

Plant material and protein extraction 

 

Barley (Hordeum vulgare cv. Alexis, Josef Breun Saatzucht, Herzogenaurach, Germany) 

plants were grown in soil for 7 days, fed with 100 mM KNO3 24 hrs before harvesting and 

placed in the dark 30 min before harvesting. Barley leaf and/or root tissues (5 gr) were 

ground in liquid nitrogen using a mortar and pestle, followed by the addition of 10 ml ice-

cold extraction buffer (100 mM Hepes/KOH pH 7.5, 10 % (v/v) glycerol, 20 mM NaF, 10 

mM EDTA, 20 µM FAD, 5 µM NaMoO4, 0.1 % (v/v) Triton X-100, 6 mM DTT, 5 µM 

Cantharidin, 2 mM PMSF, Complete protease inhibitor (3 tablets/500 ml) and 1 % (w/v) 

PVPP). The suspension was filtered through 4 layers of Miracloth (Calbiochem, La Jolla, 

CA, USA) and the filtrate was centrifuged at 100 000 g for 1 hr at 4°C. The supernatant 

was filtered through a 0.45 µM filter (Schleicher & Schuell, Dassel, Germany), and the 

filtrate was used for affinity purification experiments. For the purification of NR, the 

supernatant was applied to a HiTrap Q anion exchange column (Amersham Pharmacia, 

Uppsala, Sweden) and subjected to a 0 mM to 500 mM NaCl gradient in extraction buffer 

(without PVPP). NR activity was localised with an NR assay and pooled for further 

experiments. 

 

NR assay 

 

NR activity was tested by adding 50 µl of NR extract to 500 µl of Mg assay buffer (50 

mM Hepes/KOH pH 7.5, 5 mM MgCl2, 10 mM KNO3 and 0.5 mM NADH) or EDTA 

assay buffer (50 mM Hepes/KOH pH 7.5, 5 mM EDTA, 10 mM KNO3 and 0.5 mM 

NADH). The mixture was incubated at 30°C for 30 min and the reaction was stopped by 

the addition of 50 µl 1 M ZnAc. After centrifuging at 13 000 g for 2 min, 500 µl of the 

supernatant was mixed with 500 µl of 0.01% NAP and 0.5% Sulfanilamide in 0.75 N HCl. 

The absorbance of this mixture was measured at 540 nm. 
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Invertase assay 

 

Invertase activity was tested by adding the extract to 100 mM sucrose (1 ml total volume) 

at pH 7.5 and incubating for 30 min at 30ºC. Reduced sugar compounds were quantified 

with Nelson’s test as previously described (Nelson, 1944). 1 ml Nelson’s reagent (12.5 ml 

reagent A (12.5 gr Na2CO3 (anhydrous), 12.5 gr potassium sodium tartrate, 10 gr NaHCO3 

and 100 gr Na2SO4 dissolved in 500 ml H2O) mixed with 0.5 ml reagent B (7.5 gr 

CuSO4.5H2O and 1 drop H2SO4 in 50 ml H2O)) was added to 1 ml invertase reaction, 

mixed and heated in a boiling water bath for 20 min. The reaction was cooled on ice and 1 

ml arsenomolybdate reagent (25 gr (NH4)6.Mo7O24.4H2O, 21 ml H2SO4 (concentrated) in 

450 ml H2O mixed with 3 gr Na2HAsO4.7H2O in 25 ml H2O, stored at 37ºC) was added. 

The mixture was incubated for 5 min and shaken occasionally before 7 ml H2O was 

added. The absorbance of this mixture was measured at 540 nm. 

 

Expression of recombinant biotinylated 14-3-3 isoforms 

 

Recombinant biotinylated barley 14-3-3 isoforms were cloned and expressed as 

previously described (Van den Wijngaard et al., 2001). Briefly, a BamH1 fragment was 

cloned into pPinPoint (Promega, Madison, WI, USA). JM109 cells containing the 

construct were grown at 37°C in 500 mL LB containing 50 µg/ml ampicillin until OD600 

was between 0.6 and 0.8. Isopropyl-β-D-thiogalactoside (IPTG) was added to a 

concentration of 0.1 mM and cells were incubated at 28°C for 4 h to induce expression. 

Cells were pelleted at 5000 g for 15 min and dissolved in 30 ml 20 mM Hepes/KOH pH 

7.5, 0.5 M NaCl, 1 mM PMSF and l0 mM imidazol (Merck, Darmstadt, Germany) at 4°C. 

Once dissolved, 1 mg/ml lysozyme (Sigma-Aldrich, St. Louis, MO, USA) and 4 µg/ml 

deoxyribonuclease 1 (Sigma-Aldrich) were added and incubated for 30 min. The cellysate 

was centrifuged for 30 min at 100 000 g and supernatant filtered through a 0.45 uM filter 

(Schleicher & Schuell). The filtrate was applied to a HiTrap Q anion exchange column 

(Amersham Pharmacia) and subjected to a 10 mM to 500 mM NaCl gradient in 5 mM 

Hepes/KOH pH 7.5. 14-3-3 proteins were localized using spot-blotting and specific 

antibodies. Positive fractions were pooled and stored at -20°C. 
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Affinity purification 

 

Recombinant biotinylated barley 14-3-3 proteins (2 nmol) were incubated for 1 hr with 1 

mg avidin coated metal beads (Dynal Biotech, Oslo, Norway) according to the 

manufacturer’s instructions. Beads were incubated twice for 10 min with 1 ml 20 mM 

Hepes/KOH pH 7.5, 1 mg/ml biotin to block free avidin sites and twice for 10 min with 1 

ml 20 mM Hepes/KOH pH 7.5 to wash away unbound molecules. In some cases, 14-3-3 

proteins were blocked for 30 min with 1 mM KCO-P peptide (Biotin-

GAKRFRRSRS(PO3)APRSE) or KCO-C peptide (Biotin-GAKRFRRSRSAPRSE) 

(Ansynth, Roosendaal, The Netherlands) in 20 mM Hepes/KOH pH 7.5, 5 mM MgCl2. 

Beads were incubated on a rotator with NR extract plus 5 mM MgCl2 for 10 min. Beads 

were washed 3 times 10 min in 1 ml wash buffer (100 mM Hepes/KOH pH 7.5, 20 mM 

NaF, 10 mM EDTA, 20 µM FAD, 5 µM NaMoO4, 0.1 % (v/v) Triton X-100, 6 mM DTT, 

5 µM Cantharidin, 2 mM PMSF, Complete protease inhibitor (3 tablets/500 ml) and 10 

mM MgCl2). Proteins bound to 14-3-3 were selectively eluted by successively incubating 

for 30 min in 50 µl C-peptide elution buffer (1 mM KCO-C peptide in wash buffer) and 

50 µl P-peptide elution buffer (1 mM KCO-P peptide in wash buffer).  

 

Protein identification by mass spectrometry 

 

Eluted proteins were separated on a 12 % SDS-PAGE gel and stained by silver staining 

(Nesterenko et al., 1994). Protein bands were cut and gel slices were washed for 10 min in 

100 µl 100 mM NH4HCO3, dehydrated for 30 min in 50% (v/v) acetonitrile and vacuum 

dried. Gel pieces were incubated in 100 µl of a solution containing 10 mM DTT and 100 

mM NH4HCO3 for 1 hr at 56ºC. The supernatant was removed and replaced by 100 µl 55 

mM iodoacetamide and 100 mM NH4HCO3 for 45 min in the dark at room temperature to 

alkylate SH-groups. After removal of the supernatant, gel pieces were washed for 10 min 

with 100 µl 100 mM NH4HCO3, dehydrated by adding 100 µl 100% acetonitrile, 

rehydrated in 100 µl 100 mM NH4HCO3, dehydrated in 100% acetonitrile and vacuum 

dried. Gel pieces were swollen on ice in 50 µl digestion buffer containing 12.5 ng/µl 

trypsin (sequencing grade; Boehringer, Mannheim, Germany), 125 µM HCl and 50 mM 
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NH4HCO3. After 45 min, the supernatant was replaced with 30 µl of the same buffer 

without trypsin and incubated O/N at 37ºC. The supernatant was collected and peptides 

were eluted for 45 min at room temperature with 150 µl 20 mM NH4HCO3, followed by 3 

successive elutions with 150 µl 100% acetonitrile. Elutions were pooled and dried O/N in 

a vacuum centrifuge. Peptides were dissolved in 6 µl 60 % acetonitrile and 1% (v/v) 

formic acid. The peptide solution was mixed 1:1 with 52 mM α-cyano-4-

hydroxycinnamic acid (Sigma-Aldrich) in 50% (v/v) ethanol / 48% acetonitrile / 2% (v/v) 

trifluoroacetic acid and 1 mM ammonium acetate, 0.5 µl of this mixture was spotted on a 

M@LDI target plate (Micromass, Wythenshawe, UK) and dried at room temperature. 

MALDI-TOF MS spectra of the peptides were obtained using a Micromass M@LDI R 

and Mass Lynx ProteinProbe software (Micromass) was used to identify proteins by 

searching the Non-Redundant Protein Database (National Center for Biotechnology 

Information, USA) and the International Protein Index (European Bioinformatics Institute, 

UK). During the search the following parameters were applied for confident protein 

identification: no restrictions on species or pI, maximum molecular weight of 110 kDa, 0 

or 1 missed cleavages, maximum mass tolerance of 50 ppm (unless in a clear linear 

progression from the internal calibration mass reference 2163.06), with 

carboxyamidomethylation of cysteines as fixed modification and methionine oxidations as 

variable modification. The match details for the protein with the highest MOWSE score 

were manually checked to ensure proper identification (adapted from (Sprenger et al., 

2004)). 
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Summary 

 

Proteins of the highly conserved 14-3-3 family have distinct functions as regulators of 

primary metabolism and ion homeostasis. Recent studies strongly indicate functional 

isoform specificity between the different 14-3-3 isoforms. The biological function of a 

given 14-3-3 isoform seems to be dependent on a combination of the capability and the 

availability of that isoform. In this work, we aim to improve the insight in the availability 

of 14-3-3 isoforms in barley. Thus far, three 14-3-3 isoforms have been described for 

barley, whereas recent reports suggest that eight 14-3-3 isoforms are present in the related 

rice. This suggests the presence of additional 14-3-3 isoforms in barley. Using the strong 

sequence conservation between 14-3-3 isoforms in a PCR based screening, we identified 

two novel barley 14-3-3 isoforms, 14-3-3D and 14-3-3E. The relative expression of all 

five 14-3-3 isoforms in several barley tissues is determined and provide an indication for 

the availability of isoforms in regulating several processes. Further, in the light of recent 

indications that 14-3-3 proteins might serve a function in ABA induced seed dormancy, 

the expression of the 14-3-3 isoforms and their response to ABA treatment in embryonic 

barley roots (radicles) was tested. 
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Introduction 

 

Initially discovered as brain specific proteins (Moore and Perez, 1967), 14-3-3 proteins 

have now emerged as a group of abundant regulatory proteins. The list of known 14-3-3 

targets nowadays contains hundreds of proteins and is growing rapidly (Milne et al., 2002; 

Pozuelo Rubio et al., 2004; Benzinger et al., 2005; Satoh et al., 2005). The regulatory 

functions ascribed to 14-3-3 proteins are diverse: they include controlling metabolic 

enzymes (Bachmann et al., 1996b; Toroser et al., 1998; Cotelle et al., 2000), ion transport 

activity (Bunney et al., 2002; De Boer, 2002), proteins kinases (Aitken et al., 1992; Irie et 

al., 1994), gene transcription (De Vetten et al., 1992; Lu et al., 1992) and protein assembly 

(O'Kelly et al., 2002; Rajan et al., 2002).  

 

All tested eukaryotic organisms contain multiple 14-3-3 isoforms, ranging from two in 

Saccharomyces cerevisiae to twelve expressed isoforms in Arabidopsis (Rosenquist et al., 

2000; Rosenquist et al., 2001). In plants, there seems to be a divergence in the number of 

isoforms between dicotyledons and monocotyledons. Where twelve functional 14-3-3 

isoforms were described for the dicot Arabidopsis (Rosenquist et al., 2001) and similar 

numbers are found for tomato and tobacco (Roberts, 2003), only eight 14-3-3 isoforms 

were identified by analysing the rice genome (Jin et al., 2005). In barley, which was 

among the first plants in which 14-3-3 proteins were discovered (Brandt et al., 1992), only 

three 14-3-3 isoforms (A, B and C) are described in literature thus far (Brandt et al., 1992; 

Testerink et al., 1999).  

 

One major issue concerning 14-3-3 proteins is the function of this large number of 

isoforms. The amino acid sequence of the 14-3-3 proteins is very well conserved, both 

between the different isoforms within an organism as well as between evolutionary 

divergent species like yeast, human and Arabidopsis. Along with other indications, this 

led to the suggestion that these different isoforms are functionally redundant in their 

ability to act on target proteins and multiple 14-3-3 isoforms function in providing each 

cell/cellular compartment with the desired quantity of 14-3-3 proteins (Palmgren et al., 

1998; Roberts, 2000; Zuk et al., 2005). However, evidence is accumulating that small 

variations between the 14-3-3 isoforms lead to discrimination between target proteins 
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(Sinnige et al., 2005a; Wilker et al., 2005) and are responsible for the observed functional 

differences between 14-3-3 isoforms (Bachmann et al., 1996a; Rosenquist et al., 2000; 

Emi et al., 2001; Bornke, 2005; Sinnige et al., 2005b).  

 

Besides functional capability, the availability of 14-3-3 isoforms is an important 

parameter in determining a biological role for a given 14-3-3. Clear differential expression 

patterns of 14-3-3 isoforms have been observed in, for example, barley embryos 

(Testerink et al., 1999; Maraschin et al., 2003a; Maraschin et al., 2003b), Arabidopsis root 

tissue (Sehnke et al., 2002b) and tomato root and fruit tissues (Roberts and de Bruxelles, 

2002). In analysing the regulation of barley NR, 14-3-3B and 14-3-3C were shown to 

efficiently inhibit NR activity, whereas 14-3-3A was ineffective (Sinnige et al., 2005a). 

However, 14-3-3C was hardly present in the relevant tissue, leaving 14-3-3B as the main 

candidate to regulate barley NR in vivo (Sinnige et al., 2005a).  

 

In the present study we describe the isolation of two novel barley 14-3-3 isoforms, Hv14-

3-3D and Hv14-3-3E. For a better insight in the availability of the five different barley 

isoforms, we determined the relative expression of these isoforms in different barley 

tissues. 

 

Results 

 

Identification of novel barley 14-3-3 genes 

 

Three barley 14-3-3 isoforms have been described in literature thus far (Brandt et al., 

1992; Testerink et al., 1999). However, a recent search in the protein database of the 

sequenced rice, which is closely related to barley, revealed four novel rice 14-3-3 

isoforms, in addition to the four already known rice 14-3-3 isoforms (Jin et al., 2005). 

This suggests the presence of additional barley 14-3-3 isoforms, available to regulate 

target proteins. A PCR based strategy, using the relative high sequence conservation 

between 14-3-3 proteins, yielded two novel barley 14-3-3 genes (Fig. 1). These two new 

14-3-3 isoforms, denoted Hv14-3-3D and Hv14-3-3E, have a similarity of 75% and both 

have > 70% similarity with the other three already known 14-3-3 isoforms.  
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14-3-3A -MSTAEATREENVYMAKLAEQAERYEEMVEFMEKVAKTAD----VGELTVEERNLLSVAY 55
14-3-3B  MAQPAELSREENVYMAKLAEQAERYEEMVEFMEKVAKTVD----SEELTVEERNLLSVAY 56
14-3-3C  MSAPGELSREENVYMAKLAEQAERYEEMVEFMEKVAKTVD----SEELTVEERNLLSVAY 56
14-3-3D -MAAAAGTREEMVYMAKLAEQAERYEEMVEFMERVVAATG----TGELSVEERNLLSVAY 55
14-3-3E -MSPAEPTRDESVYMAKLAEQAERYEEMVEFMERVAKATGGAGPGEELSVEERNLLSVAY 59

14-3-3A  KNVIGARRASWRIISSIEQKEESRGNEAYVASIKEYRTRIETELSKICDGILKLLDSHLV 115
14-3-3B  KNVIGARRASWRIISSIEQKEESRGNEDRVTLIKDYRGKIEVELTKICDGILKLLDSHLV 116
14-3-3C  KNVIGARRASWRIISSIEQKEESRGNEDRVTLIKEYRGKIETELSKICDGILKLLETHLV 116
14-3-3D  KNVIGARRASWRIVSSIEQKEEGRGAAGHAAAARGYRARVEAELSNICAGILRLLDERLV 115
14-3-3E KNVIGARRASWRIISSIEQKEEGRGNEAHAATIRSYRTKIEAELAKICDGILALLDSHLV 119

14-3-3A  PSATAAESKVFYLKMKGDYHRYLAEFKAGAERKEAAENTLVAYKSAQDIALADLPTTHPI 175
14-3-3B  PSSTAPESKVFYLKMKGDYYRYLAEFKSGTERKDAAENTMVAYKAAQEIALAELPPTHPI 176
14-3-3C  PSSTAPESKVFYLKMKGDYYRYLAEFKSGPERKDAAENTMVAYKAAQDIALAELAPTHPI 176
14-3-3D  PAAAAVDAKVFYLKMKGDYHRYLAEFKSAAERKDAADSTLGAYQAAQDIAMKELPPTHPI 175
14-3-3E  PSAGAAESKVFYLKMKGDYHRYLAEFKSGAERKEAAESTMNAYKAAQDIALADLAPTHPI 179

14-3-3A  RLGLALNFSVFYYEILNSPDRACNLAKQAFDEAIAELDSLGEESYKDSTLIMQLLRDNLT 235
14-3-3B  RLGLALNFSVFYYEILNSPDRACDLAKQAFDEAISELDSLSEESYKDSTLIMQLLRDNLT 236
14-3-3C  RLGLALNFSVFYYEILNSPDRACNLAKQAFDEAISELDTLSEESYKDSTLIMQLLRDNLT 236
14-3-3D  RLGLALNFSVFYYEILNSPDRACSLAKQAFDEAIAELDSLGEDSYKDSTLIMQLLRDNLT 235
14-3-3E  RLGLALNFSVFYYEILNSPDRACNLAKQAFDEAISELDSLGEESYKDSTLIMQLLRDNLT 239

14-3-3A  LWTSDNAEE-GGDEIKEAAS-KPEGEGH                                 261
14-3-3B  LWTSDISED-AAEEMKDAPK-GESGDGQ                                 262
14-3-3C  LWTSDITEDTAEEEIREAPK-HDSSEGQ                                 263
14-3-3D  LWTSDMQDD-AGDETRDSSKPEDEQ--- 259
14-3-3E  LWTSDTNED-DVDEIKEAPAPKESGDGQ                                 266
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14-3-3A  RLGLALNFSVFYYEILNSPDRACNLAKQAFDEAIAELDSLGEESYKDSTLIMQLLRDNLT 235
14-3-3B  RLGLALNFSVFYYEILNSPDRACDLAKQAFDEAISELDSLSEESYKDSTLIMQLLRDNLT 236
14-3-3C  RLGLALNFSVFYYEILNSPDRACNLAKQAFDEAISELDTLSEESYKDSTLIMQLLRDNLT 236
14-3-3D  RLGLALNFSVFYYEILNSPDRACSLAKQAFDEAIAELDSLGEDSYKDSTLIMQLLRDNLT 235
14-3-3E  RLGLALNFSVFYYEILNSPDRACNLAKQAFDEAISELDSLGEESYKDSTLIMQLLRDNLT 239

14-3-3A  LWTSDNAEE-GGDEIKEAAS-KPEGEGH                                 261
14-3-3B  LWTSDISED-AAEEMKDAPK-GESGDGQ                                 262
14-3-3C  LWTSDITEDTAEEEIREAPK-HDSSEGQ                                 263
14-3-3D  LWTSDMQDD-AGDETRDSSKPEDEQ--- 259
14-3-3E  LWTSDTNED-DVDEIKEAPAPKESGDGQ                                 266

14-3-3A -MSTAEATREENVYMAKLAEQAERYEEMVEFMEKVAKTAD----VGELTVEERNLLSVAY 55
14-3-3B  MAQPAELSREENVYMAKLAEQAERYEEMVEFMEKVAKTVD----SEELTVEERNLLSVAY 56
14-3-3C  MSAPGELSREENVYMAKLAEQAERYEEMVEFMEKVAKTVD----SEELTVEERNLLSVAY 56
14-3-3D -MAAAAGTREEMVYMAKLAEQAERYEEMVEFMERVVAATG----TGELSVEERNLLSVAY 55
14-3-3E -MSPAEPTRDESVYMAKLAEQAERYEEMVEFMERVAKATGGAGPGEELSVEERNLLSVAY 59

14-3-3A  KNVIGARRASWRIISSIEQKEESRGNEAYVASIKEYRTRIETELSKICDGILKLLDSHLV 115
14-3-3B  KNVIGARRASWRIISSIEQKEESRGNEDRVTLIKDYRGKIEVELTKICDGILKLLDSHLV 116
14-3-3C  KNVIGARRASWRIISSIEQKEESRGNEDRVTLIKEYRGKIETELSKICDGILKLLETHLV 116
14-3-3D  KNVIGARRASWRIVSSIEQKEEGRGAAGHAAAARGYRARVEAELSNICAGILRLLDERLV 115
14-3-3E KNVIGARRASWRIISSIEQKEEGRGNEAHAATIRSYRTKIEAELAKICDGILALLDSHLV 119

14-3-3A  PSATAAESKVFYLKMKGDYHRYLAEFKAGAERKEAAENTLVAYKSAQDIALADLPTTHPI 175
14-3-3B  PSSTAPESKVFYLKMKGDYYRYLAEFKSGTERKDAAENTMVAYKAAQEIALAELPPTHPI 176
14-3-3C  PSSTAPESKVFYLKMKGDYYRYLAEFKSGPERKDAAENTMVAYKAAQDIALAELAPTHPI 176
14-3-3D  PAAAAVDAKVFYLKMKGDYHRYLAEFKSAAERKDAADSTLGAYQAAQDIAMKELPPTHPI 175
14-3-3E  PSAGAAESKVFYLKMKGDYHRYLAEFKSGAERKEAAESTMNAYKAAQDIALADLAPTHPI 179

14-3-3A  RLGLALNFSVFYYEILNSPDRACNLAKQAFDEAIAELDSLGEESYKDSTLIMQLLRDNLT 235
14-3-3B  RLGLALNFSVFYYEILNSPDRACDLAKQAFDEAISELDSLSEESYKDSTLIMQLLRDNLT 236
14-3-3C  RLGLALNFSVFYYEILNSPDRACNLAKQAFDEAISELDTLSEESYKDSTLIMQLLRDNLT 236
14-3-3D  RLGLALNFSVFYYEILNSPDRACSLAKQAFDEAIAELDSLGEDSYKDSTLIMQLLRDNLT 235
14-3-3E  RLGLALNFSVFYYEILNSPDRACNLAKQAFDEAISELDSLGEESYKDSTLIMQLLRDNLT 239

14-3-3A  LWTSDNAEE-GGDEIKEAAS-KPEGEGH                                 261
14-3-3B  LWTSDISED-AAEEMKDAPK-GESGDGQ                                 262
14-3-3C  LWTSDITEDTAEEEIREAPK-HDSSEGQ                                 263
14-3-3D  LWTSDMQDD-AGDETRDSSKPEDEQ--- 259
14-3-3E  LWTSDTNED-DVDEIKEAPAPKESGDGQ                                 266
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Figure 1. Sequence conservation among barley 14-3-3 isoforms. Amino acid sequence alignment of the five 

known barley 14-3-3 isoforms. Identical amino acids are marked in gray and predicted α-helices (1-9) are 

indicated above the sequence. The newly identified 14-3-3D and 14-3-3E have a similarity of 75% and both have 

> 70% similarity with the three already known 14-3-3 isoforms. 

 

A notable difference between Hv14-3-3E and the other isoforms is found in the loop 

between helix 2 and 3, where Hv14-3-3E contains four extra amino acids. This isoform 

seems to be specific to monocots, as a similar insertion of four amino acids is present in 

the rice GF14-d and the wheat TaWIN1, but not in any Arabidopsis, tomato or tobacco 

14-3-3 isoform. Phylogenetic analysis of the barley 14-3-3 isoforms together with in the 

GenBank and TIGR databases available 14-3-3 isoforms from rice and wheat (table 1), 

indeed confirms an evolutionary relationship between these three isoforms (Fig. 2). 
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Further, the second novel barley isoform, Hv14-3-3D, appears to be an orthologue of the 

rice GF14-f and the wheat TaWIN2. In contrast to Jin et al. (2005), our analysis of the 

GenBank and TIGR databases revealed only seven rice 14-3-3 isoforms (table 1), 

indicating that at least two barley 14-3-3 isoforms remain to be identified. 

 
 
Organism Name Accession number Database 

Hordeum vulgare Hv14-3-3A X62388 GenBank 

 Hv14-3-3B X93170 GenBank 

 Hv14-3-3C Y14200 GenBank 

 Hv14-3-3D DQ295785 GenBank 

 Hv14-3-3E DQ295786 GenBank 

Oryza sativa GF14-a (S94) D16140 GenBank 

 GF14-b U65956 GenBank 

 GF14-c U65957 GenBank 

 GF14-d U65958 GenBank 

 GF14-e TC249902 TIGR 

 GF14-f TC250944 TIGR 

 GF14-g TC267894 TIGR 

Triticum aestivum Ta14-3-3A TC233195 TIGR 

 Ta14-3-3B TC263093 TIGR 

 Ta14-3-3C TC246776 TIGR 

 TaWIN1 AB042193 GenBank 

 TaWIN2  AB042194 GenBank 

  

Table 1 List of 14-3-3 isoforms from barley, wheat and rice available in the GenBank and TIGR databases that 

were used in the present study. 
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Figure 2. A non-rooted phylogenetic tree showing the relationship between  the known 14-3-3 isoforms from 

barley, wheat and rice (table 1). Five clusters of orthologous genes can be identified. Genes orthologous to 

GF14-c and GF14-g remain to be identified in barley and wheat. Alignment of cDNA’s was produced using 

AlignX (Vector NTI) and the plot was produced by Treeview. 

 

Differential expression of barley 14-3-3 isoforms 

 

To obtain insight in the biological role that the different 14-3-3 isoforms fulfill in barley, 

it is crucial to know the availability of 14-3-3 isoforms in the different tissues of the plant.  

Therefore, the relative expression of all five 14-3-3 isoforms was tested in different tissues 

from several developmental stages (Fig. 3). Although expression of all isoforms was 

found in all examined tissues, major variations in expression levels were found for 

different isoforms. The expression of 14-3-3A is relatively high in all tissues, where 

hardly any transcript of 14-3-3D was detected. 14-3-3B seems to be ubiquitously 

expressed, although the relative expression is slightly lower in radicles and the root-tip.  
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The expression profile of 14-3-3C seems opposite of that observed for 14-3-3A and in 

mainly found in cortical tissue of mature roots 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Relative expression of the barley 14-3-3 

isoforms in different tissues of barley. Figures A to E 

correspond to 14-3-3 isoforms A, B, C, D and E, 

respectively. Leaf and root tissue was harvested from 

1-week-old plants; root-tips, cortical and stelar tissue 

was isolated from 3-week-old secondary roots; 

radicles were isolated 14 h after imbibition of barley 

seeds. Expression was determined using quantitative 

RT-PCR and normalised to the expression of actin (n 

= 3; mean ± S.D.).    leaf root cortex stele root-tip radicles
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The expression profile of 14-3-3C seems opposite to that observed for 14-3-3A and is 

mainly found in cortical tissue of mature roots. The observed expression of the three 

previously described isoforms (A, B and C) is in agreement with reported 

immunolocalizations of these isoforms in barley embryos, where 14-3-3A and 14-3-3B 

were found in all tissues, whereas the presence of 14-3-3C was limited to specific tissues 

(Testerink et al., 1999). Concerning the newly identified 14-3-3 isoforms, considerable 

14-3-3E expression is found in all tested tissues with a slightly higher expression in leaf 

tissue. Interestingly, expression of 14-3-3D, which is hardly expressed as compared to the 

other isoforms, is 10 to 50 times higher in radicles than in the other tested tissues. This 

observation and the potential role of 14-3-3 proteins in abscisic acid (ABA) signalling 

(Van den Wijngaard et al., 2005), led us to study the expression of the 14-3-3 isoforms 

during barley embryonic root growth in more detail.   

 

 

 

 

Figure 4: Effect of ABA on radicle growth. Relative 

growth (weight increase as compared to t = 22) of 

isolated radicles is followed in time. Radicles were 

isolated 22 h after imbibition of barley seeds and 

grown in the absence (●) and presence of 10-5 M 

ABA (○). 

 

14-3-3 isoforms in the primary root of barley embryos and their response to ABA 

 

The first evidence that 14-3-3 proteins may function in ABA induced growth arrest of 

barley radicles was provided by a study of ion channel regulation in radicle protoplast 

(Van den Wijngaard et al., 2005). Moreover, 14-3-3 proteins were shown to interact with 

VP1 (Schultz et al., 1998), a transcription factor that together with the transcription factor 

ABI5 plays an important role in regulating expression of ABA inducible genes (Casaretto 

and Ho, 2003). These studies point to the possibility that the 14-3-3 proteins function both 

in ABA signalling and on the downstream effectors of the ABA pathway, ion channels 

and pumps. Therefore, the expression of the five 14-3-3 isoforms in barley radicles was 
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tested in the absence and presence of ABA (Fig. 5). With the exception of t = 14, radicles 

were isolated 20 hours after imbibition, just prior to the emergence of the coleorhiza. The 

growth of the control and ABA treated radicles (Fig. 4) was similar to the previous 

reported data (Van den Wijngaard et al., 2005). The relative expression data show that 

four of the five 14-3-3 isoforms respond to ABA treatment. Levels of 14-3-3A expression 

are not significantly affected after addition of ABA, whereas ABA induces a transient up-

regulation of 14-3-3B and 14-3-3C, peaking at six hours after addition of ABA. Further, 

ABA induces a strong and sustained increase in expression of the two novel 14-3-3 genes, 

14-3-3D and 14-3-3E. These results provide further evidence for a function of some or 

more of the 14-3-3 isoforms in ABA mediated seed dormancy. 

 

Discussion 

 

In the last decade, the family of 14-3-3 proteins emerged as major regulators of various 

cellular processes. The presence of multiple 14-3-3 isoforms raised questions concerning 

the role of these different isoforms. In recent years, evidence is accumulating that some 

14-3-3 isoforms have a higher affinity for certain target proteins, whereas other isoforms 

prefer different targets, indicating functional isoform specificity (Bachmann et al., 1996a; 

Rosenquist et al., 2000; Bornke, 2005; Sinnige et al., 2005b). This discrimination between 

target proteins is likely to be the result of small variations in the structure of the different 

isoforms (Sinnige et al., 2005a; Wilker et al., 2005). Besides the functional capability of 

14-3-3 isoforms to regulate target proteins, availability of isoforms is an obvious 

requirement. Indeed, differential expression of 14-3-3 isoforms is observed in several 

tissues (Daugherty et al., 1996; Testerink et al., 1999; Roberts and de Bruxelles, 2002; 

Sehnke et al., 2002a; Maraschin et al., 2003b). In regulating barley NR activity, both 14-

3-3B and 14-3-3C were shown very effective (Sinnige et al., 2005a). However, 14-3-3C 

was barely present in the relevant tissue, leaving 14-3-3B as the only isoform able to 

function in NR inhibition (Sinnige et al., 2005a). Thus, to obtain insight in the biological 

role that the different 14-3-3 isoforms fulfill, it is crucial to analyse the capability and 

availability of the 14-3-3 isoforms. In this work we focus on the availability of 14-3-3 

isoforms in barley. 
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Figure 4. Relative expression of the barley 14-3-3 

isoforms in elongating barley radicles in the absence  

(●) and presence of 10-5 M ABA (○). Figures A to E 

correspond to 14-3-3 isoforms A, B, C, D and E, 

respectively. Radicles were isolated 20 h after 

imbibition of barley seeds (except for t = 14). 10-5M 

ABA was applied at t = 22. Expression was 

determined using quantitative RT-PCR and 

normalised to the expression of GAPDH (n = 3; 

mean ± S.D.). 

 

Until the genome of barley is sequenced and analysed, it is difficult to determine the exact 

number of 14-3-3 isoforms. Thus far, three barley isoforms have been described in 

literature (Brandt et al., 1992; Testerink et al., 1999). Recent analysis of rice databases 

revealed eight different rice 14-3-3 isoforms (Jin et al., 2005). Although our search in the 

TIGR and GenBank database only resulted in seven rice 14-3-3 isoforms (Table 1), this 

indicated that there might be additional barley 14-3-3 isoforms. In this study we identified 
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the genes of two novel barley 14-3-3 isoforms, 14-3-3D and 14-3-3E (Fig. 1). 

Phylogenetic analysis shows that these isoforms are the barley orthologues of already 

known rice (GF14-f and GF14-d, respectively) and wheat (TaWIN2 and TaWIN1, 

respectively) isoforms. An interesting characteristic of 14-3-3E is the presence of four 

additional residues between helix 2 and 3 (Fig. 1). These additional residues are also 

found in GF14-d and TaWIN1, but not present in the known 14-3-3 isoforms of 

Arabidopsis, tomato, tobacco and potato. The structural and functional consequences (e.g. 

dimer formation and target recognition) of these additional residues remain unclear, but 

are certainly worth looking into since they seem to be conserved in monocotyledons. 

Further, the phylogenetic analysis of barley, wheat and rice 14-3-3 isoforms shows five 

clusters of orthologous 14-3-3 isoforms plus two single rice isoforms, GF14-c and GF14-

g (Fig. 2). A search in the barley and wheat EST databases (TIGR), using these two rice 

isoforms as a template, did not result in the identification of the corresponding genes, 

whereas 14-3-3D and 14-3-3E were present in the barley EST database (data not shown). 

 

In order to obtain an indication of the availability of the different 14-3-3 isoforms in 

various barley tissues, we analysed the relative expression of the 14-3-3 isoforms. In line 

with previous studies (Daugherty et al., 1996; Testerink et al., 1999; Roberts and de 

Bruxelles, 2002; Sehnke et al., 2002a; Maraschin et al., 2003b), we observed clear 

differences in expression level of the 14-3-3 genes throughout the plant (Fig. 3). Striking 

is the low abundance of 14-3-3D transcripts in comparison with 14-3-3A. Further, some 

isoforms appear predominantly expressed in specific tissues. The expression of 14-3-3D 

in radicles is 10 to 50 times higher as compared to the other tested tissues and 14-3-3C 

transcripts are significantly more abundant in the root cortical tissue. These observations 

are in line with the reported tissue specific and differential expression of barley 14-3-3 

isoforms during several stages of barley embryogenesis (Testerink et al., 1999; Maraschin 

et al., 2003a). The expression measured in this study should be considered a first 

indication for the availability of 14-3-3 isoforms. A more detailed analysis, using for 

example immunolocalization or promoter-GUS studies, is necessary to determine the 

availability of 14-3-3 isoforms in specific cell types and/or subcellular compartments.  
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We previously used elongating embryonic roots (radicles) from germinating barley seeds 

to study the effect of 14-3-3 and ABA on ion channel activity. These results indicated a 

function for 14-3-3 proteins in ABA induced seed dormancy (Van den Wijngaard et al., 

2005). Further evidence for this role of 14-3-3 proteins is provided by the observed effect 

of ABA on the expression of 14-3-3 isoforms: a transient increase in 14-3-3B and C 

transcripts combined with the sustained up-regulation of 14-3-3D and E (Fig. 5). This 

increase in expression suggests a requirement for these 14-3-3 isoforms to prevent further 

germination. This theory is supported by measurements of 14-3-3 protein levels in this 

tissue, where 14-3-3C, D and E are no longer present at t = 46 in the control situation but 

upon ABA treatment the protein level is maintained (Schoonheim et al, unpublished data). 

Interestingly, 14-3-3 proteins are also shown to interact with VP1 (Schultz et al., 1998). 

This VP1 is a transcription factor and functions, together with ABI5, in regulating 

expression of ABA inducible genes (Casaretto and Ho, 2003). The identification of 

several 14-3-3 isoforms as ABA inducible genes (Fig. 5) provides the possibility that 14-

3-3 proteins (as component of the VP1/ABI5 complex) are involved in regulating 

expression of (other) 14-3-3 isoforms.  

 

Experimental procedures 

 

Plant material 

 

Barley (Hordeum vulgare cv. Alexis, Josef Breun Saatzucht, Herzogenaurach, Germany) 

plants were grown in hydroponics (1/4 strength Long Ashton) in a controlled 

environmental growth chamber with a 14 h light / 10 h dark cycle at 20 and 18ºC, 

respectively. Barley radicles were isolated and maintained as described previously (Van 

den Wijngaard et al., 2005).  

 

RNA isolation and expression analysis 

 

For expression experiments, total RNA from barley tissues was isolated using TRIzol 

(Invitrogen, Carlsbad, CA, USA). RNA was treated with DNase and first-strand cDNA 

was produced using SuperScript reverse transcriptase (Invitrogen) and oligo(dT) primers. 
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Quantitative RT-PCR (DNA Engine Opticon, MJ Research, Inc., Waltham, MA, USA) 

was carried out with SYBR green PCR master mix (Applied Biosystems, Foster City, CA, 

USA) using primers: 14-3-3A fw (5’-GTAGGATGGTGCTATGCGAAGC-3’), rev (5’-

ACTAAGAAGCGACGATGTCCACA-3’), 14-3-3B fw (5’-GAGGCTCCAATTTGTGT 

TGTGATA-3’), rev (5’-ACAGGAAGGTTCAACAAGAGGCAA-3’), 14-3-3C fw (5’-

GTTGCATGCAATGTGGTCTGGAT-3’), rev (5’-AACCTTCCCCGGCAACATCA-3’), 

14-3-3D fw (5’-GTGGACCTCTGATATGCAGGATG-3’), rev (5’-AAGGTTAAGAGA 

GAAAGAGCGCAGT-3’), 14-3-3E fw (5’-ATGAGATAAAGGAAGCCCCAGC-3’), rev 

(5’-GAACTAGAACCAAGACCATCGGC-3’), GAPDH fw (5’-CCTTCCGTGTTCCCA 

CTGTTGA-3’), rev (5’-GGTTTCCCTCAGACTCCTCCTTGA-3’), Actin fw (5’-GTAT 

GGAAACATCGTGCTCAGTGG-3’) and rev (5’-CTTGATCTTCATGCTGCTCGGA-

3’). All kits were used according to the manufacturers protocol. 

 

Identification of Hv14-3-3D and Hv14-3-3E isoforms 

 

To identify new barley 14-3-3 isoforms a degenerated primer (5’-RGAYTC5AC5YT5A 

THATG-3’, U.I.B. coding and where a 5 denotes an inosine) was designed against a 

homologues part in the 3’ end of most of the known plant 14-3-3’s. PCR was performed 

using this degenerated primer as forward and the 3’ RACE primer as reverse. The 

amplified fragments were cloned into a pGEM-T (promega) vector. Colonies were 

screened using filter lifting, and filters were hybridised with a radiolabeled probe directed 

against the conserved region of the Hv14-3-3C cDNA. Positive clones were sequenced 

using theT7 promoter and Bigdye sequencing kit (Applied Biosystem). Performing 5’ 

RACE the full-length cDNA sequence was identified. The full cDNA sequence was 

cloned in frame into the pinpoint Xa (promega) vector. 

 

Acknowledgements 

 

This work was supported by grants from the Netherlands Research Organization ALW 

(program grant 809.36.002) and the INTAS Aral Sea Programme (project number 00-

1021). We thank Josef Breun Saatzucht (Herzogenaurach, Germany) for kindly providing 

us with barley seeds and Dick Roelofs for his advice on quantitative RT-PCR. 



 
 

 

 

 

 

Bibliography  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   
 

 96 

Bibliography 

 
Aitken, A. (2002) Functional specificity in 14-3-3 isoform interactions through dimer 

formation and phosphorylation. Chromosome location of mammalian isoforms 
and variants. Plant Molecular Biology, 50, 993-1010. 

Aitken, A., Amess, B., Howell, S., Jones, D., Martin, H., Patel, Y., Robinson, K. and 
Toker, A. (1992) The role of specific isoforms of 14-3-3 protein in regulating 
protein kinase activity in the brain. Biochemical Society Transactions, 20, 607-
611. 

Aitken, A., Howell, S., Jones, D., Madrazo, J., Martin, H., Patel, Y. and Robinson, K. 
(1995) Posttranslationally Modified 14-3-3-Isoforms and Inhibition of Protein-
Kinase-C. Molecular and Cellular Biochemistry, 149, 41-49. 

Alsterfjord, M., Sehnke, P.C., Arkell, A., Larsson, H., Svennelid, F., Rosenquist, M., 
Ferl, R.J., Sommarin, M. and Larsson, C. (2004) Plasma membrane H+-
ATPase and 14-3-3 Isoforms of Arabidopsis leaves: Evidence for isoform 
specificity in the 14-3-3/H+-ATPase interaction. Plant Cell Physiology, 45, 1202-
1210. 

Athwal, G.S., Huber, J.L. and Huber, S.C. (1998) Biological significance of divalent 
metal ion binding to 14-3-3 proteins in relationship to nitrate reductase 
inactivation. Plant Cell Physiology, 39, 1065-1072. 

Athwal, G.S. and Huber, S.C. (2002) Divalent cations and polyamines bind to loop 8 of 
14-3-3 proteins, modulating their interaction with phosphorylated nitrate 
reductase. The Plant Journal, 29, 119-129. 

Athwal, G.S., Lombardo, C.R., Huber, J.L., Masters, S.C., Fu, H.A. and Huber, S.C. 
(2000) Modulation of 14-3-3 protein interactions with target polypeptides by 
physical and metabolic effectors. Plant Cell Physiology, 41, 523-533. 

Bachmann, M., Huber, J.L., Athwal, G.S., Wu, K., Ferl, R.J. and Huber, S.C. 
(1996a) 14-3-3 proteins associate with the regulatory phosphorylation site of 
spinach leaf nitrate reductase in an isoform-specific manner and reduce 
dephosphorylation of Ser-543 by endogenous protein phosphatases. FEBS 
Letters, 398, 26-30. 

Bachmann, M., Huber, J.L., Liao, P.C., Gage, D.A. and Huber, S.C. (1996b) The 
inhibitor protein of phosphorylated nitrate reductase from spinach (Spinacia 
oleracea) leaves is a 14-3-3 protein. FEBS Letters, 387, 127-131. 

Bachmann, M., McMichael, R.W., Huber, J.L., Kaiser, W.M. and Huber, S.C. (1995) 
Partial-Purification and Characterization of a Calcium-Dependent Protein-Kinase 
and an Inhibitor Protein Required for Inactivation of Spinach Leaf Nitrate 
Reductase. Plant Physiology, 108, 1083-1091. 

Baunsgaard, L., Fuglsang, A.T., Jahn, T., Korthout, H., de Boer, A.H. and Palmgren, 
M.G. (1998) The 14-3-3 proteins associate with the plant plasma membrane H+-
ATPase to generate a fusicoccin binding complex and a fusicoccin responsive 
system. The Plant Journal, 13, 661-671. 

Beaudry, P., Cohen, P., Brandel, J.P., Delasnerie-Laupretre, N., Richard, S., Launay, 
J.M. and Laplanche, J.L. (1999) 14-3-3 protein, neuron-specific enolase, and S-
100 protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. 
Dementia and Geriatric Cognitive Disorders, 10, 40-46. 



Bibliography 
 

 97 

Benton, R., Palacios, I.M. and St Johnston, D. (2002) Drosophila 14-3-3/PAR-5 is an 
essential mediator of PAR-1 function in axis formation. Developmental Cell, 3, 
659-671. 

Benzinger, A., Muster, N., Kock, H.K., Yates III, J.R. and Hermeking, H. (2005) 
Targeted proteomic analysis of 14-3-3 sigma, a p53 effector commonly silenced 
in cancer. Molecular and Cellular Proteomics. 

Berg, D., Holzmann, C. and Riess, O. (2003) 14-3-3 proteins in the nervous system. 
Nature Reviews Neuroscience, 4, 752-762. 

Bethke, P.C. and Jones, R.L. (1994) Ca2+-Calmodulin Modulates Ion Channel Activity 
in Storage Protein Vacuoles of Barley Aleurone Cells. Plant Cell, 6, 277-285. 

Bethke, P.C. and Jones, R.L. (1997) Reversible protein phosphorylation regulates the 
activity of the slow-vacuolar ion channel. The Plant Journal, 11, 1227-1235. 

Bewell, M.A., Maathuis, F.J.M., Allen, G.J. and Sanders, D. (1999) Calcium-induced 
calcium release mediated by a voltage-activated cation channel in vacuolar 
vesicles from red beet. FEBS Letters, 458, 41-44. 

Bihler, H., Eing, C., Hebeisen, S., Roller, A., Czempinski, K. and Bertl, A. (2005) 
TPK1 is a vacuolar ion channel different from the slow-vacuolar cation channel. 
Plant Physiology, 139, 417-424. 

Blatt, M.R. and Clint, G.M. (1989) Mechanisms of Fusicoccin Action - Kinetic 
Modification and Inactivation of K+ Channels in Guard-Cells. Planta, 178, 509-
523. 

Booij, P.P., Roberts, M.R., Vogelzang, S.A., Kraayenhof, R. and De Boer, A.H. 
(1999) 14-3-3 proteins double the number of outward-rectifying K+ channels 
available for activation in tomato cells. The Plant Journal, 20, 673-683. 

Bornke, F. (2005) The variable C-terminus of 14-3-3 proteins mediates isoform-specific 
interaction with sucrose-phosphate synthase in the yeast two-hybrid system. 
Journal of Plant Physiology, 162, 161-168. 

Bosch, S., Grof, C.P.L. and Botha, F.C. (2004) Expression of neutral invertase in 
sugarcane. Plant Science, 166, 1125-1133. 

Boston, P.F., Jackson, P. and Thompson, R.J. (1982) Human 14-3-3 protein: 
radioimmunoassay, tissue distribution, and cerebrospinal fluid levels in patients 
with neurological disorders. Journal of Neurochemistry, 38, 1475-1482. 

Brandt, J., Thordalchristensen, H., Vad, K., Gregersen, P.L. and Collinge, D.B. 
(1992) A Pathogen-Induced Gene of Barley Encodes a Protein Showing High 
Similarity to a Protein-Kinase Regulator. The Plant Journal, 2, 815-820. 

Bunney, T.D., De Boer, A.H. and Levin, M. (2003) Fusicoccin signaling reveals 14-3-3 
protein function as a novel step in left-right patterning during amphibian 
embryogenesis. Development, 130, 4847-4858. 

Bunney, T.D., van den Wijngaard, P.W.J. and de Boer, A.H. (2002) 14-3-3 protein 
regulation of proton pumps and ion channels. Plant Molecular Biology, 50, 1041-
1051. 

Bunney, T.D., van Walraven, H.S. and de Boer, A.H. (2001) 14-3-3 protein is a 
regulator of the mitochondrial and chloroplast ATP synthase. Proceedings of the 
National Academy of Sciences of the United States of America, 98, 4249-4254. 

Bustos, D.M. and Iglesias, A.A. (2003) Phosphorylated non-phosphorylating 
glyceraldehyde-3-phosphate dehydrogenase from heterotrophic cells of wheat 
interacts with 14-3-3 proteins. Plant Physiology, 133, 2081-2088. 



   
 

 98 

Camoni, L., Harper, J.F. and Palmgren, M.G. (1998) 14-3-3 proteins activate a plant 
calcium-dependent protein kinase (CDPK). FEBS Letters, 430, 381-384. 

Carpaneto, A., Cantu, A.M. and Gambale, F. (1999) Redox agents regulate ion channel 
activity in vacuoles from higher plant cells. FEBS Letters, 442, 129-132. 

Carpaneto, A., Cantu, A.M. and Gambale, F. (2001) Effects of cytoplasmic Mg2+ on 
slowly activating channels in isolated vacuoles of Beta vulgaris. Planta, 213, 
457-468. 

Casaretto, J. and Ho, T.H.D. (2003) The transcription factors HvABI5 and HvVP1 are 
required for the abscisic acid induction of gene expression in barley aleurone 
cells. Plant Cell, 15, 271-284. 

Chan, T.A., Hermeking, H., Lengauer, C., Kinzler, K.W. and Vogelstein, B. (1999) 
14-3-3 sigma is required to prevent mitotic catastrophe after DNA damage. 
Nature, 401, 616-620. 

Chaudhri, M., Scarabel, M. and Aitken, A. (2003) Mammalian and yeast 14-3-3 
isoforms form distinct patterns of dimers in vivo. Biochemical and Biophysical 
Research Communications, 300, 679-685. 

Clark, G.J., Drugan, J.K., Rossman, K.L., Carpenter, J.W., Rogers-Graham, K., Fu, 
H., Der, C.J. and Campbell, S.L. (1997) 14-3-3 zeta negatively regulates raf-1 
activity by interactions with the Raf-1 cysteine-rich domain. Journal of 
Biological Chemistry, 272, 20990-20993. 

Comparot, S., Lingiah, G. and Martin, T. (2003) Function and specificity of 14-3-3 
proteins in the regulation of carbohydrate and nitrogen metabolism. Journal of 
Experimental Botany, 54, 595-604. 

Cotelle, V., Meek, S.E.M., Provan, F., Milne, F.C., Morrice, N. and MacKintosh, C. 
(2000) 14-3-3s regulate global cleavage of their diverse binding partners in 
sugar-starved Arabidopsis cells. EMBO Journal, 19, 2869-2876. 

Czempinski, K., Frachisse, J.M., Maurel, C., Barbier-Brygoo, H. and Mueller-
Roeber, B. (2002) Vacuolar membrane localization of the Arabidopsis 'two-pore' 
K+ channel KCO1. The Plant Journal, 29, 809-820. 

Czempinski, K., Zimmermann, S., Ehrhardt, T. and MullerRober, B. (1997) New 
structure and function in plant K+ channels: KCO1, an outward rectifier with a 
steep Ca2+ dependency. EMBO Journal, 16, 2565-2575. 

Daugherty, C.J., Rooney, M.F., Miller, P.W. and Ferl, R.J. (1996) Molecular 
organization and tissue-specific expression of an Arabidopsis 14-3-3 gene. Plant 
Cell, 8, 1239-1248. 

De Boer, A.H. (2002) Plant 14-3-3 proteins assist ion channels and pumps. Biochemical 
and Biophysical Research Communications, 30, 416-421. 

De Vetten, N.C., Lu, G.H. and Ferl, R.J. (1992) A Maize Protein Associated with the 
G-Box Binding Complex Has Homology to Brain Regulatory Proteins. Plant 
Cell, 4, 1295-1307. 

Douglas, P., Morrice, N. and MacKintosh, C. (1995) Identification of a regulatory 
phosphorylation site in the hinge 1 region of nitrate reductase from spinach 
(Spinacea oleracea) leaves. FEBS Letters, 377, 113-117. 

Dubois, T., Howell, S., Amess, B., Kerai, P., Learmonth, M., Madrazo, J., Chaudhri, 
M., Rittinger, K., Scarabel, M., Soneji, Y. and Aitken, A. (1997) Structure and 
sites of phosphorylation of 14-3-3 protein: Role in coordinating signal 
transduction pathways. Journal of Protein Chemistry, 16, 513-522. 



Bibliography 
 

 99 

Dumaz, N. and Marais, R. (2003) Protein kinase A blocks Raf-1 activity by stimulating 
14-3-3 binding and blocking Raf-1 interaction with Ras. Journal of Biological 
Chemistry, 278, 29819-29823. 

Eckardt, N.A. (2001) Transcription factors dial 14-3-3 for nuclear shuttle. Plant Cell, 13, 
2385-2389. 

Emi, T., Kinoshita, T. and Shimazaki, K. (2001) Specific binding of vf14-3-3a isoform 
to the plasma membrane H+-ATPase in response to blue light and fusicoccin in 
guard cells of broad bean. Plant Physiology, 125, 1115-1125. 

Feng, Y., Qi, W., Martinez, J. and Nelson, M.A. (2005) The cyclin-dependent kinase 11 
interacts with 14-3-3 proteins. Biochemical and Biophysical Research 
Communications, 331, 1503-1509. 

Fountoulakis, M., Cairns, N. and Lubec, G. (1999) Increased levels of 14-3-3 gamma 
and epsilon proteins in brain of patients with Alzheimer's disease and Down 
Syndrome. Journal of Neural Transmission-Supplement, 323-335. 

Fu, H., Subramanian, R.R. and Masters, S.C. (2000) 14-3-3 proteins: structure, 
function and regulation. Annual Review of Pharmacology and Toxicology, 40, 
545-554. 

Giacometti, S., Camoni, L., Albumi, C., Visconti, S., De Michelis, M.I. and Aducci, P. 
(2004) Tyrosine Phosphorylation Inhibits the Interaction of 14-3-3 Proteins with 
the Plant Plasma Membrane H+-ATPase. Plant Biology, 6, 422-431. 

Hedrich, R. and Neher, E. (1987) Cytoplasmic calcium regulates voltage-dependent ion 
channels in plant vacuoles. Nature, 329, 833-835. 

Hermeking, H. (2003) The 14-3-3 cancer connection. Nature Reviews Cancer, 3, 931-
943. 

Himmelbach, A., Yang, Y. and Grill, E. (2003) Relay and control of abscisic acid 
signaling. Current Opinion in Plant Biology, 6, 470-479. 

Hirsch, S., Aitken, A., Bertsch, U. and Soll, J. (1992) A Plant Homolog to Mammalian 
Brain 14-3-3 Protein and Protein-Kinase-C Inhibitor. FEBS Letters, 296, 222-
224. 

Holmberg, A., Blomstergren, A., Nord, O., Lukacs, M., Lundeberg, J. and Uhlen, M. 
(2005) The biotin-streptavidin interaction can be reversibly broken using water at 
elevated temperatures. Electrophoresis, 26, 501-510. 

Holtman, W.L., Roberts, M.R., Oppedijk, B.J., Testerink, C., van Zeijl, M.J. and 
Wang, M. (2000) 14-3-3 proteins interact with a 13-lipoxygenase, but not with a 
9-lipoxygenase. FEBS Letters, 474, 48-52. 

Hsich, G., Kinney, K., Gibbs, C.J., Lee, K.H. and Harrington, M.G. (1996) The 14-3-
3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform 
encephalopathies. New England Journal of Medicine, 335, 924-930. 

Huber, S.C., Bachmann, M. and Huber, J.L. (1996) Post-translational regulation of 
nitrate reductase activity: A role for Ca2+ and 14-3-3 proteins. Trends in Plant 
Science, 1, 432-438. 

Huber, S.C., MacKintosh, C. and Kaiser, W.M. (2002) Metabolic enzymes as targets 
for 14-3-3 proteins. Plant Molecular Biology, 50, 1053-1063. 

Ichimura, T., Isobe, T., Okuyama, T., Takahashi, N., Araki, K., Kuwano, R. and 
Takahashi, Y. (1988) Molecular cloning of cDNA coding for brain-specific 14-
3-3 protein, a protein kinase-dependent activator of tyrosine and tryptophan 



   
 

 100 

hydroxylases. Proceedings of the National Academy of Sciences of the United 
States of America, 85, 7084-7088. 

Ichimura, T., Isobe, T., Okuyama, T., Yamauchi, T. and Fujisawa, H. (1987) Brain 
14-3-3 protein is an activator protein that activates tryptophan 5-monooxygenase 
and tyrosine 3-monooxygenase in the presence of Ca2+,calmodulin-dependent 
protein kinase II. FEBS Letters, 219, 79-82. 

Irie, K., Gotoh, Y., Yashar, B.M., Errede, B., Nishida, E. and Matsumoto, K. (1994) 
Stimulatory effects of yeast and mammalian 14-3-3 proteins on the Raf protein 
kinase. Science, 265, 1716-1719. 

Ivashikina, N. and Hedrich, R. (2005) K+ currents through SV-type vacuolar channels 
are sensitive to elevated luminal sodium levels. The Plant Journal, 41, 606-614. 

Jahn, T., Fuglsang, A.T., Olsson, A., Bruntrup, I.M., Collinge, D.B., Volkmann, D., 
Sommarin, M., Palmgren, M.G. and Larsson, C. (1997) The 14-3-3 protein 
interacts directly with the C-terminal region of the plant plasma membrane H+-
ATPase. Plant Cell, 9, 1805-1814. 

Jarvis, P. and Soll, J. (2002) Toc, tic, and chloroplast protein import. Biochimica et 
Biophysica Acta, 1590, 177-189. 

Jin, G.L., Wang, X.S. and Zhu, J. (2005) Bioinformatic analysis of the 14-3-3 gene 
family in rice. Yi Chuan Xue Bao, 32, 726-732. 

Jones, H.J., Ley, S. and Aitken, A. (1995) Isoforms of 14-3-3 protein can form homo- 
and heterodimers in vivo and in vitro: implications for function as adapter 
proteins. FEBS Letters, 368, 55-58. 

Kagan, A., Melman, Y.F., Krumerman, A. and McDonald, T.V. (2002) 14-3-3 
amplifies and prolongs adrenergic stimulation of HERG K+ channel activity. 
EMBO Journal, 21, 1889-1898. 

Kaiser, W.M. and Huber, S.C. (2001) Post-translational regulation of nitrate reductase: 
mechanism, physiological relevance and environmental triggers. Journal of 
Experimental Botany, 52, 1981-1989. 

Kaiser, W.M., Weiner, H., Kandlbinder, A., Tsai, C.B., Rockel, P., Sonoda, M. and 
Planchet, E. (2002) Modulation of nitrate reductase: some new insights, an 
unusual case and a potentially important side reaction. Journal of Experimental 
Botany, 53, 875-882. 

Kang, J.G., Pyo, Y.J., Cho, J.W. and Cho, M.H. (2004) Comparative proteome analysis 
of differentially expressed proteins induced by K+ deficiency in Arabidopsis 
thaliana. Proteomics, 4, 3549-3559. 

Korthout, H.A. and de Boer, A.H. (1994) A fusicoccin binding protein belongs to the 
family of 14-3-3 brain protein homologs. Plant Cell, 6, 1681-1692. 

Kubala, M., Obsil, T., Obsilova, V., Lansky, Z. and Amler, E. (2004) Protein modeling 
combined with spectroscopic techniques: An attractive quick alternative to obtain 
structural information. Physiological Research, 53, S187-S197. 

Kulma, A., Villadsen, D., Campbell, D.G., Meek, S.E.M., Harthill, J.E., Nielsen, T.H. 
and MacKintosh, C. (2004) Phosphorylation and 14-3-3 binding of Arabidopsis 
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. The Plant Journal, 37, 
654-667. 

Kuromori, T. and Yamamoto, M. (2000) Members of the Arabidopsis 14-3-3 gene 
family trans-complement two types of defects in fission yeast. Plant Science, 
158, 155-161. 



Bibliography 
 

 101 

Kurz, E.U., Leader, K.B., Kroll, D.J., Clark, M. and Gieseler, F. (2000) Modulation of 
human DNA topoisomerase II alpha function by interaction with 14-3-3 epsilon. 
Journal of Biological Chemistry, 275, 13948-13954. 

Kusakabe, M. and Nishida, E. (2004) The polarity-inducing kinase Par-1 controls 
Xenopus gastrulation in cooperation with 14-3-3 and aPKC. EMBO Journal, 23, 
4190-4201. 

Layfield, R., Fergusson, J., Aitken, A., Lowe, J., Landon, M. and Mayer, R.J. (1996) 
Neurofibrillary tangles of Alzheimer's disease brains contain 14-3-3 proteins. 
Neuroscience Letters, 209, 57-60. 

Lee, H.S. and Sturm, A. (1996) Purification and characterization of neutral and alkaline 
invertase from carrot. Plant Physiology, 112, 1513-1522. 

Light, Y., Paterson, H. and Marais, R. (2002) 14-3-3 antagonizes Ras-mediated Raf-1 
recruitment to the plasma membrane to maintain signaling fidelity. Molecular 
and Cellular Biology, 22, 4984-4996. 

Lillo, C., Meyer, C., Lea, U.S., Provan, F. and Oltedal, S. (2004) Mechanism and 
importance of post-translational regulation of nitrate reductase. Journal of 
Experimental Botany, 55, 1275-1282. 

Liu, D., Bienkowska, J., Petosa, C., Collier, R.J., Fu, H. and Liddington, R. (1995) 
Crystal-Structure of the Zeta-Isoform of the 14-3-3 Protein. Nature, 376, 191-
194. 

Lodygin, D. and Hermeking, H. (2005) The role of epigenetic inactivation of 14-3-3 
sigma in human cancer. Cell Research, 15, 237-246. 

Lu, G.H., Delisle, A.J., Devetten, N.C. and Ferl, R.J. (1992) Brain Proteins in Plants - 
an Arabidopsis Homolog to Neurotransmitter Pathway Activators Is Part of a 
DNA-Binding Complex. Proceedings of the National Academy of Sciences of the 
United States of America, 89, 11490-11494. 

Lu, G.H., Sehnke, P.C. and Ferl, R.J. (1994) Phosphorylation and Calcium-Binding 
Properties of an Arabidopsis Gf14 Brain Protein Homolog. Plant Cell, 6, 501-
510. 

Mackintosh, C., Douglas, P. and Lillo, C. (1995) Identification of a Protein That Inhibits 
the Phosphorylated Form of Nitrate Reductase from Spinach (Spinacia-Oleracea) 
Leaves. Plant Physiology, 107, 451-457. 

MacKintosh, C. and Meek, S.E.M. (2001) Regulation of plant NR activity by reversible 
phosphorylation, 14-3-3 proteins and proteolysis. Cellular and Molecular Life 
Sciences, 58, 205-214. 

Maraschin, S.D., Lamers, G.E.M., de Pater, B.S., Spaink, H.P. and Wang, M. (2003a) 
14-3-3 isoforms and pattern formation during barley microspore embryogenesis. 
Journal of Experimental Botany, 54, 1033-1043. 

Maraschin, S.D., Louwerse, J.D., Lamers, G.E.M., Spaink, H.P. and Wang, M. 
(2003b) Tissue-specific expression of 14-3-3 isoforms during barley microspore 
and zygotic embryogenesis. Acta Biologica Cracoviensia Series Botanica, 45, 
103-106. 

Marra, M., Fullone, M.R., Fogliano, V., Pen, J., Mattei, M., Masi, S. and Aducci, P. 
(1994) The 30-kilodalton protein present in purified fusicoccin receptor 
preparations is a 14-3-3-like protein. Plant Physiology, 106, 1497-1501. 

Marre, E. (1979) Fusicoccin - Tool in Plant Physiology. Annual Review of Plant 
Physiology and Plant Molecular Biology, 30, 273-288. 



   
 

 102 

Martin, H., Rostas, J., Patel, Y. and Aitken, A. (1994) Subcellular-Localization of 14-
3-3-Isoforms in Rat-Brain Using Specific Antibodies. Journal of 
Neurochemistry, 63, 2259-2265. 

Maser, P., Thomine, S., Schroeder, J.I., Ward, J.M., Hirschi, K., Sze, H., Talke, I.N., 
Amtmann, A., Maathuis, F.J.M., Sanders, D., Harper, J.F., Tchieu, J., 
Gribskov, M., Persans, M.W., Salt, D.E., Kim, S.A. and Guerinot, M.L. 
(2001) Phylogenetic relationships within cation transporter families of 
Arabidopsis. Plant Physiology, 126, 1646-1667. 

Masters, S.C., Pederson, K.J., Zhang, L.X., Barbieri, J.T. and Fu, H.A. (1999) 
Interaction of 14-3-3 with a nonphosphorylated protein ligand, exoenzyme S of 
Pseudomonas aeruginosa. Biochemistry, 38, 5216-5221. 

Miedema, H., de Boer, A.H. and Pantoja, O. (2003) The gating kinetics of the slow 
vacuolar channel. A novel mechanism for SV channel functioning? Journal of 
Membrane Biology, 194, 11-20. 

Milne, F.C., Moorhead, G., Rubio, M.P., Wong, B.H.C., Kulma, A., Harthill, J.E., 
Villadsen, D., Cotelle, V. and MacKintosh, C. (2002) Affinity purification of 
diverse plant and human 14-3-3 binding partners. Biochemical Society 
Transactions, 30, 379-381. 

Moore, B.W. and Perez, V.J. (1967) Specific acidic proteins of the nervous system. In 
Carlson, F.D. (ed.), Physiological and biochemical aspects of nervous 
integration. Englewood Cliffs, N.J., Prentice -Hall, pp. 343-359. 

Moorhead, G., Douglas, P., Cotelle, V., Harthill, J., Morrice, N., Meek, S., Deiting, 
U., Stitt, M., Scarabel, M., Aitken, A. and MacKintosh, C. (1999) 
Phosphorylation-dependent interactions between enzymes of plant metabolism 
and 14-3-3 proteins. The Plant Journal, 18, 1-12. 

Moorhead, G., Douglas, P., Morrice, N., Scarabel, M., Aitken, A. and MacKintosh, 
C. (1996) Phosphorylated nitrate reductase from spinach leaves is inhibited by 
14-3-3 proteins and activated by fusicoccin. Current Biology, 6, 1104-1113. 

Morrison, D.K., Heidecker, G., Rapp, U.R. and Copeland, T.D. (1993) Identification 
of the major phosphorylation sites of the Raf-1 kinase. Journal of Biological 
Chemistry, 268, 17309-17316. 

Morton, D.G., Shakes, D.C., Nugent, S., Dichoso, D., Wang, W.F., Golden, A. and 
Kemphues, K.J. (2002) The Caenorhabditis elegans par-5 gene encodes a 14-3-3 
protein required for cellular asymmetry in the early embryo. Developmental 
Biology, 241, 47-58. 

Muslin, A.J., Tanner, J.W., Allen, P.M. and Shaw, A.S. (1996) Interaction of 14-3-3 
with signaling proteins is mediated by the recognition of phosphoserine. Cell, 84, 
889-897. 

Nelson, N. (1944) A photometric adaptation of the somogyi method for the determination 
of glucose. Journal of Biological Chemistry, 153, 375-380. 

Nesterenko, M.V., Tilley, M. and Upton, S.J. (1994) A Simple Modification of Blums 
Silver Stain Method Allows for 30 Minute Detection of Proteins in 
Polyacrylamide Gels. Journal of Biochemical and Biophysical Methods, 28, 239-
242. 

Obsil, T., Ghirlando, R., Klein, D.C., Ganguly, S. and Dyda, F. (2001) Crystal 
structure of the 14-3-35 zeta : serotonin N-acetyltransferase complex: A role for 
scaffolding in enzyme regulation. Cell, 105, 257-267. 



Bibliography 
 

 103 

Oecking, C., Eckerskorn, C. and Weiler, E.W. (1994) The fusicoccin receptor of plants 
is a member of the 14-3-3 superfamily of eukaryotic regulatory proteins. FEBS 
Letters, 352, 163-166. 

O'Kelly, I., Butler, M.H., Zilberberg, N. and Goldstein, S.A.N. (2002) Forward 
transport: 14-3-3 binding overcomes retention in endoplasmic reticulum by 
dibasic signals. Cell, 111, 577-588. 

Otterhag, L., Gustavsson, N., Alsterfjord, M., Pical, C., Lehrach, H., Gobom, J. and 
Sommarin, M. (2005) Arabidopsis PDK1: identification of sites important for 
activity and downstream phosphorylation of S6 kinase. Biochimie, In Press. 

Palmgren, M.G., Fuglsang, A.T. and Jahn, T. (1998) Deciphering the role of 14-3-3 
proteins. Experimental Biology Online, 3, 1-17. 

Pan, S.Q., Sehnke, P.C., Ferl, R.J. and Gurley, W.B. (1999) Specific interactions with 
TBP and TFIIB in vitro suggest that 14-3-3 proteins may participate in the 
regulation of transcription when part of a DNA binding complex. Plant Cell, 11, 
1591-1602. 

Paul, A.L., Sehnke, P.C. and Ferl, R.J. (2005) Isoform specific subcellular localization 
among 14-3-3 proteins in Arabidopsis appears to be driven by client interactions. 
Molecular Biology of the Cell, 16, 1735-1743. 

Pei, Z.M., Ward, J.M. and Schroeder, J.I. (1999) Magnesium sensitizes slow vacuolar 
channels to physiological cytosolic calcium and inhibits fast vacuolar channels in 
fava bean guard cell vacuoles. Plant Physiology, 121, 977-986. 

Peiter, E., Maathuis, F.J.M., Mills, L.N., Knight, H., Pelloux, M., Hetherington, A.M. 
and Sanders, D. (2005) The vacuolar Ca2+-activated channel TPC1 regulates 
germination and stomatal movement. Nature, 434, 404-408. 

Petosa, C., Masters, S.C., Bankston, L.A., Pohl, J., Wang, B.C., Fu, H.I. and 
Liddington, R.C. (1998) 14-3-3 zeta binds a phosphorylated Raf peptide and an 
unphosphorylated peptide via its conserved amphipathic groove. Journal of 
Biological Chemistry, 273, 16305-16310. 

Plant, L.D., Rajan, S. and Goldstein, S.A. (2005) K2P channels and their protein 
partners. Current opinion in Neurobiology, 15, 326-333. 

Pottosin, II, Dobrovinskaya, O.R. and Muniz, J. (2001) Conduction of monovalent and 
divalent cations in the slow vacuolar channel. Journal of Membrane Biology, 
181, 55-65. 

Pottosin, II, Tikhonova, L.I., Hedrich, R. and Schönknecht, G. (1997) Slowly 
activating vacuolar channels can not mediate Ca2+-induced Ca2+ release. The 
Plant Journal, 12, 1387-1398. 

Pottosin, I., Martinez-Estevez, M., Dobrovinskaya, O., Muniz, J. and Schönknecht, 
G. (2004) Mechanism of luminal Ca2+ and Mg2+ action on the vacuolar slowly 
activating channels. Planta, 219, 1057-1070. 

Powell, D.W., Rane, M.J., Chen, Q., Singh, S. and McLeish, K.R. (2002) Identification 
of 14-3-3zeta as a protein kinase B/Akt substrate. Journal of Biological 
Chemistry, 277, 21639-21642. 

Powell, D.W., Rane, M.J., Joughin, B.A., Kalmukova, R., Hong, J.H., Tidor, B., 
Dean, W.L., Pierce, W.M., Klein, J.B., Yaffe, M.B. and McLeish, K.R. 
(2003) Proteomic identification of 14-3-3zeta as a mitogen-activated protein 
kinase-activated protein kinase 2 substrate: role in dimer formation and ligand 
binding. Molecular and Cellular Biology, 23, 5376-5387. 



   
 

 104 

Pozuelo Rubio, M., Geraghty, K.M., Wong, B.H., Wood, N.T., Campbell, D.G., 
Morrice, N. and MacKintosh, C. (2004) 14-3-3-affinity purification of over 
200 human phosphoproteins reveals new links to regulation of cellular 
metabolism, proliferation and trafficking. Biochemical Journal, 379, 395-408. 

Prescha, A., Swiedrych, A., Biernat, J. and Szopa, J. (2001) Increase in lipid content in 
potato tubers modified by 14-3-3 gene overexpression. Journal of Agricultural 
and Food Chemistry, 49, 3638-3643. 

Qi, W.Q., Liu, X.B., Qiao, D.H. and Martinez, J.D. (2005) Isoform-specific expression 
of 14-3-3 proteins in human lung cancer tissues. International Journal of Cancer, 
113, 359-363. 

Rajan, S., Preisig-Muller, R., Wischmeyer, E., Nehring, R., Hanley, P.J., Renigunta, 
V., Musset, B., Schlichthorl, G., Derst, C., Karschin, A. and Daut, J. (2002) 
Interaction with 14-3-3 proteins promotes functional expression of the potassium 
channels TASK-1 and TASK-3. Journal of Physiology, 545, 13-26. 

Reuther, G.W., Fu, H., Cripe, L.D., Collier, R.J. and Pendergast, A.M. (1994) 
Association of the protein kinases c-Bcr and Bcr-Abl with proteins of the 14-3-3 
family. Science, 266, 56-57. 

Rittinger, K., Budman, J., Xu, J.A., Volinia, S., Cantley, L.C., Smerdon, S.J., 
Gamblin, S.J. and Yaffe, M.B. (1999) Structural analysis of 14-3-3 
phosphopeptide complexes identifies a dual role for the nuclear export signal of 
14-3-3 in ligand binding. Molecular Cell, 4, 153-166. 

Roberts, M.R. (2000) Regulatory 14-3-3 protein-protein interactions in plant cells. 
Current Opinion in Plant Biology, 3, 400-405. 

Roberts, M.R. (2003) 14-3-3 Proteins find new partners in plant cell signalling. Trends in 
Plant Science, 8, 218-223. 

Roberts, M.R. and de Bruxelles, G.L. (2002) Plant 14-3-3 protein families: evidence for 
isoform-specific functions? Biochemical Society Transactions, 30, 373-378. 

Roitsch, T. and Gonzalez, M.C. (2004) Function and regulation of plant invertases: 
sweet sensations. Trends in Plant Science, 9, 606-613. 

Rosario, E.J.D. and Santisopasri, V. (1977) Characterization and Inhibition of 
Invertases in Sugar-Cane Juice. Phytochemistry, 16, 443-445. 

Rosenquist, M., Alsterfjord, M., Larsson, C. and Sommarin, M. (2001) Data mining 
the Arabidopsis genome reveals fifteen 14-3-3 genes. Expression is demonstrated 
for two out of five novel genes. Plant Physiology, 127, 142-149. 

Rosenquist, M., Sehnke, P., Ferl, R.J., Sommarin, M. and Larsson, C. (2000) 
Evolution of the 14-3-3 protein family: Does the large number of isoforms in 
multicellular organisms reflect functional specificity? Journal of Molecular 
Evolution, 51, 446-458. 

Roy, S., McPherson, R.A., Apolloni, A., Yan, J., Lane, A., Clyde-Smith, J. and 
Hancock, J.F. (1998) 14-3-3 facilitates Ras-dependent Raf-1 activation in vitro 
and in vivo. Molecular and Cellular Biology, 18, 3947-3955. 

Rubio, M.P., Geraghty, K.M., Wong, B.H.C., Wood, N.T., Campbell, D.G., Morrice, 
N. and Mackintosh, C. (2004) 14-3-3-affinity purification of over 200 human 
phosphoproteins reveals new links to regulation of cellular metabolism, 
proliferation and trafficking. Biochemical Journal, 379, 395-408. 



Bibliography 
 

 105 

Saalbach, G., Schwerdel, M., Natura, G., Buschmann, P., Christov, V. and Dahse, I. 
(1997) Over-expression of plant 14-3-3 proteins in tobacco: enhancement of the 
plasmalemma K+ conductance of mesophyll cells. FEBS Letters, 413, 294-298. 

Sanders, D., Brownlee, C. and Harper, J.F. (1999) Communicating with calcium. Plant 
Cell, 11, 691-706. 

Satoh, J.I., Nanri, Y. and Yamamura, T. (2005) Rapid identification of 14-3-3-binding 
proteins by protein microarray analysis. Journal of Neuroscience Methods, In 
Press. 

Schönknecht, G., Spoormaker, P., Steinmeyer, R., Bruggeman, L., Ache, P., Dutta, 
R., Reintanz, B., Godde, M., Hedrich, R. and Palme, K. (2002) KCO1 is a 
component of the slow-vacuolar (SV) ion channel. FEBS Letters, 511, 28-32. 

Schultz, T.F., Medina, J., Hill, A. and S., Q.R. (1998) 14-3-3 proteins are part of an 
abscisic acid-VIVIPAROUS1 (VP1) response complex in the Em promoter and 
interact with VP1 and EmBP1. Plant Cell, 10, 837-847. 

Sehnke, P.C., Chung, H.J., Wu, K. and Ferl, R.J. (2001) Regulation of starch 
accumulation by granule-associated plant 14-3-3 proteins. Proceedings of the 
National Academy of Sciences of the United States of America, 98, 765-770. 

Sehnke, P.C., DeLille, J.M. and Ferl, R.J. (2002a) Consummating signal transduction: 
The role of 14-3-3 proteins in the completion of signal-induced transitions in 
protein activity. Plant Cell, 14, S339-S354. 

Sehnke, P.C., Henry, R., Cline, K. and Ferl, R.J. (2000) Interaction of a plant 14-3-3 
protein with the signal peptide of a thylakoid-targeted chloroplast precursor 
protein and the presence of 14-3-3 isoforms in the chloroplast stroma. Plant 
Physiology, 122, 235-241. 

Sehnke, P.C., Rosenquist, M., Alsterfjord, M., DeLille, J., Sommarin, M., Larsson, 
C. and Ferl, R.J. (2002b) Evolution and isoform specificity of plant 14-3-3 
proteins. Plant Molecular Biology, 50, 1011-1018. 

Shen, W., Clark, A.C. and Huber, S.C. (2003) The C-terminal tail of Arabidopsis 14-3-
3 omega functions as an autoinhibitor and may contain a tenth alpha-helix. The 
Plant Journal, 34, 473-484. 

Silhan, J., Obsilova, V., Vecer, J., Herman, P., Sulc, M., Teisinger, J. and Obsil, T. 
(2004) 14-3-3 protein C-terminal stretch occupies ligand binding groove and is 
displaced by phosphopeptide binding. Journal of Biological Chemistry, 279, 
49113-49119. 

Sinnige, M.P., Roobeek, I., Bunney, T.D., Visser, A.J.W.G., Mol, J.N.M. and De 
Boer, A.H. (2005a) Single amino acid variation in barley 14-3-3 proteins leads to 
functional isoform specificity in the regulation of nitrate reductase. The Plant 
Journal, 44, 1001-1009. 

Sinnige, M.P., Ten Hoopen, P., Van den Wijngaard, P.W.J., Roobeek, I., 
Schoonheim, P.J., Mol, J.N.M. and De Boer, A.H. (2005b) The barley two-
pore K+-channel HvKCO1 interacts with 14-3-3 proteins in an isoform specific 
manner. Plant Science, 169, 612-619. 

Smith, C. (2005) Striving for purity: advances in protein purification. Nature Methods, 2, 
71-77. 

Sprenger, R.R., Speijer, D., Back, J.W., de Koster, C.G., Pannekoek, H. and 
Horrevoets, A.J.G. (2004) Comparative proteomics of human endothelial cell 



   
 

 106 

caveolae and rafts using two-dimensional gel electrophoresis and mass 
spectrometry. Electrophoresis, 25, 156-172. 

Su, W.P., Huber, S.C. and Crawford, N.M. (1996) Identification in vitro of a post-
translational regulatory site in the hinge 1 region of Arabidopsis nitrate 
reductase. Plant Cell, 8, 519-527. 

Suzuki, A., Hirata, M., Kamimura, K., Maniwa, R., Yamanaka, T., Mizuno, K., 
Kishikawa, M., Hirose, H., Amano, Y., Izumi, N., Miwa, Y. and Ohno, S. 
(2004) aPKC acts upstream of PAR-1b in both the establishment and 
maintenance of mammalian epithelial polarity. Current Biology, 14, 1425-1435. 

Swiedrych, A., Prescha, A., Matysiak-Kata, I., Biernat, J. and Szopa, J. (2002) 
Repression of the 14-3-3 gene affects the amino acid and mineral composition of 
potato tubers. Journal of Agricultural and Food Chemistry, 50, 2137-2141. 

Szopa, J., Wrobel, M., Matysiak-Kata, I. and Swiedrych, A. (2001) The metabolic 
profile of the 14-3-3 repressed transgenic potato tubers. Plant Science, 161, 
1075-1082. 

Testerink, C., van der Meulen, R.M., Oppedijk, B.J., de Boer, A.H., Heimovaara-
Dijkstra, S., Kijne, J.W. and Wang, M. (1999) Differences in spatial 
expression between 14-3-3 isoforms in germinating barley embryos. Plant 
Physiology, 121, 81-87. 

Teunissen, C.E., Dijkstra, C. and Polman, C. (2005) Biological markers in CSF and 
blood for axonal degeneration in multiple sclerosis. Lancet Neurology, 4, 32-41. 

Thorson, J.A., Yu, L.W., Hsu, A.L., Shih, N.Y., Graves, P.R., Tanner, J.W., Allen, 
P.M., Piwnica-Worms, H. and Shaw, A.S. (1998) 14-3-3 proteins are required 
for maintenance of Raf-1 phosphorylation and kinase activity. Molecular and 
Cellular Biology, 18, 5229-5238. 

Toroser, D., Athwal, G.S. and Huber, S.C. (1998) Site-specific regulatory interaction 
between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins. FEBS 
Letters, 435, 110-114. 

Truong, A.B., Masters, S.C., Yang, H.Z. and Fu, H.A. (2002) Role of the 14-3-3 C-
terminal loop in ligand interaction. Proteins-Structure Function and Genetics, 
49, 321-325. 

Tymowska-Lalanne, Z. and Kreis, M. (1998a) Expression of the Arabidopsis thaliana 
invertase gene family. Planta, 207, 259-265. 

Tymowska-Lalanne, Z. and Kreis, M. (1998b) The plant invertases: Physiology, 
biochemistry and molecular biology. In Advances in Botanical Research, Vol 28, 
Vol. 28, pp. 71-117. 

Tzivion, G. and Avruch, J. (2002) 14-3-3 proteins: active cofactors in cellular regulation 
by serine/threonine phosphorylation. Journal of Biological Chemistry, 277, 3061-
3064. 

Van den Wijngaard, P.W., Bunney, T.D., Roobeek, I., Schönknecht, G. and De Boer, 
A.H. (2001) Slow vacuolar channels from barley mesophyll cells are regulated 
by 14-3-3 proteins. FEBS Letters, 488, 100-104. 

Van den Wijngaard, P.W.J., Sinnige, M.P., Roobeek, I., Reumer, A., Schoonheim, 
P.J., Mol, J.N.M., Wang, M. and De Boer, A.H. (2005) Abscisic acid and 14-
3-3 proteins control K+ channel activity in barley embryonic root. The Plant 
Journal, 41, 43-55. 



Bibliography 
 

 107 

Van der Hoeven, P.C.J., Van der Wal, J.C., Ruurs, P., Van Dijk, M.C. and Van 
Blitterwijk, J. (2000) 14-3-3 isotypes facilitate coupling of protein kinase C-zeta 
to Raf-1: negative regulation by 14-3-3 phosphorylation. Biochemical Journal, 
345, 297-306. 

Van Hemert, M.J., De Steensma, H.Y. and Van Heusden, G.P.H. (2001) 14-3-3 
proteins: key regulators of cell division, signalling and apoptosis. Bioessays, 23, 
936-946. 

Van Hemert, M.J., Deelder, A.M., Molenaar, C., Steensma, H.Y. and Van Heusden, 
G.P.H. (2003) Self-association of the spindle pole body-related intermediate 
filament protein Fin1p and its phosphorylation-dependent interaction with 14-3-3 
proteins in yeast. Journal of Biological Chemistry, 278, 15049-15055. 

Van Hemert, M.J., Niemantsverdriet, M., Schmidt, T., Backendorf, C. and Spaink, 
H.P. (2004) Isoform-specific differences in rapid nucleocytoplasmic shuttling 
cause distinct subcellular distributions of 14-3-3 sigma and 14-3-3 xi. Journal of 
Cell Science, 117, 1411-1420. 

Van Heusden, G.P.H., Van der Zanden, A.L., Ferl, R.J. and Steensma, H.Y. (1996) 
Four Arabidopsis thaliana 14-3-3 protein isoforms can complement the lethal 
yeast BMH1 BMH2 double disruption. FEBS Letters, 391, 252-256. 

Van Heusden, G.P.H., Wenzel, T.J., Lagendijk, E.L., De Steensma, H.Y. and Van 
den Berg, J.A. (1992) Characterization of the yeast BMH1 gene encoding a 
putative protein homologous to mammalian protein kinase II activators and 
protein kinase C inhibitors. FEBS Letters, 302, 145-150. 

Vorster, D.J. and Botha, F.C. (1999) Sugarcane internodal invertases and tissue 
maturity. Journal of Plant Physiology, 155, 470-476. 

Wang, H.N., Zhang, L.X., Liddington, R. and Fu, H.I. (1998) Mutations in the 
hydrophobic surface of an amphipathic groove of 14-3-3 zeta disrupt its 
interaction with Raf-1 kinase. Journal of Biological Chemistry, 273, 16297-
16304. 

Ward, J.M. and Schroeder, J.I. (1994) Calcium-Activated K+ Channels and Calcium-
Induced Calcium Release by Slow Vacuolar Ion Channels in Guard Cell 
Vacuoles Implicated in the Control of Stomatal Closure. Plant Cell, 6, 669-683. 

Weiner, H. and Kaiser, W.M. (1999) 14-3-3 proteins control proteolysis of nitrate 
reductase in spinach leaves. FEBS Letters, 455, 75-78. 

Wilker, E. and Yaffe, M.B. (2004) 14-3-3 Proteins--a focus on cancer and human 
disease. Journal of Molecular and Cellular Cardiology, 37, 633-642. 

Wilker, E.W., Grant, R.A., Artim, S.C. and Yaffe, M.B. (2005) A structural basis for 
14-3-3 sigma functional specificity. Journal of Biological Chemistry, 280, 
18891-18898. 

Wu, K., Lu, G.H., Sehnke, P. and Ferl, R.J. (1997) The heterologous interactions 
among plant 14-3-3 proteins and identification of regions that are important for 
dimerization. Archives of Biochemistry and Biophysics, 339, 2-8. 

Wurtele, M., Jelich-Ottmann, C., Wittinghofer, A. and Oecking, C. (2003) Structural 
view of a fungal toxin acting on a 14-3-3 regulatory complex. EMBO Journal, 
22, 987-994. 

Xiao, B., Smerdon, S.J., Jones, D.H., Dodson, G.G., Soneji, Y., Aitken, A. and 
Gamblin, S.J. (1995) Structure of a 14-3-3 Protein and Implications for 
Coordination of Multiple Signaling Pathways. Nature, 376, 188-191. 



   
 

 108 

Yaffe, M.B. (2002) How do 14-3-3 proteins work? - Gatekeeper phosphorylation and the 
molecular anvil hypothesis. FEBS Letters, 513, 53-57. 

Yaffe, M.B. and Elia, A.E. (2001) Phosphoserine/threonine-binding domains. Current 
Opinion in Cell Biology, 13, 131-138. 

Yaffe, M.B., Rittinger, K., Volinia, S., Caron, P.R., Aitken, A., Leffers, H., Gamblin, 
S.J., Smerdon, S.J. and Cantley, L.C. (1997) The structural basis for 14-3-
3:phosphopeptide binding specificity. Cell, 91, 961-971. 

Yoshida, K., Yamaguchi, T., Natsume, T., Kufe, D. and Miki, Y. (2005) JNK 
phosphorylation of 14-3-3 proteins regulates nuclear targeting of c-Abl in the 
apoptotic response to DNA damage. Nature Cell Biology, 7, 278-U297. 

Zerr, I., Bodemer, M., Gefeller, O., Otto, M., Poser, S., Wiltfang, J., Windl, O., 
Kretzschmar, H.A. and Weber, T. (1998) Detection of 14-3-3 protein in the 
cerebrospinal fluid supports the diagnosis of Creutzfeldt-Jakob disease. Annals of 
Neurology, 43, 32-40. 

Zhang, L.X., Wang, H.N., Liu, D., Liddington, R. and Fu, H.A. (1997) Raf-1 kinase 
and exoenzyme S interact with 14-3-3 zeta through a common site involving 
lysine 49. Journal of Biological Chemistry, 272, 13717-13724. 

Zhou, Y., Schopperie, W.M., Murrey, H., Jaramillo, A., Dagan, D., Griffith, L.C. and 
Levitan, I.B. (1999) A dynamically regulated 14-3-3, slob, and slowpoke 
potassium channel complex in Drosophila presynaptic nerve terminals. Neuron, 
22, 809-818. 

Zuk, M., Weber, R. and Szopa, J. (2005) 14-3-3 protein down-regulates key enzyme 
activities of nitrate and carbohydrate metabolism in potato plants. Journal of 
Agricultural and Food Chemistry, 53, 3454-3460. 

 



 
 

 

 

 

 

Summary 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



   
 

 110 

Summary 

 

Cellular processes like the cell cycle, ion transport, gene expression and enzyme activity 

are tightly controlled, e.g. in order to prevent tumor formation, maintain homeostasis and 

adequately respond to environmental changes (e.g. light intensity, osmotic potential and 

pathogen attack). Understanding the mechanisms by which organisms/cells regulate 

protein activity and function, and thereby cellular processes, potentially allows 

manipulation of these control mechanisms in for example treating diseases/infections or 

increasing crop yield. The work described in this thesis was aimed to obtain a better 

understanding of the role and function of a specific class of regulators, the family of 14-3-

3 proteins.  

 

As described in Chapter 1, the family of 14-3-3 proteins has emerged as important 

regulators of many proteins that are involved in a wide variety of cellular processes. In 

recent years, the knowledge on 14-3-3 functioning has grown rapidly. Multiple isoforms 

of 14-3-3 proteins are found in all tested eukaryotic organisms where they function, as 

homo- and heterodimers, by binding to distinct amino acid motifs in target proteins. Upon 

binding of a 14-3-3 protein, the functionality of the target protein is altered. This is 

accomplished by either direct activation/inactivation of the target, by (prevention of) 

translocation of the target to a cellular compartment or by facilitating interaction with 

other molecules. Further, the crystal structure of several 14-3-3 isoforms has been 

elucidated, what provided insight in the regions of the proteins that are involved in, for 

example, dimerisation and target interaction. Interestingly, these crystal structures of 

different 14-3-3 isoforms are essentially identical. This brings us to one of the current 

issues in 14-3-3 biology; are there functional differences between 14-3-3 isoforms? And if 

yes, what causes these differences and which isoform is responsible for the regulation of a 

certain target protein? 

 

The amino acid sequence of the different 14-3-3 isoforms is very well conserved, 

especially the regions responsible for target binding. Still, several reports describe 

differences between 14-3-3 isoforms in their ability to act on target molecules. In line with 

these observations, clear differences between barley 14-3-3 isoforms in regulating the 
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slow-activating vacuolar (SV) channel were observed (Chapter 2). The barley SV current 

was reduced by 14-3-3B and 14-3-3C, but not by 14-3-3A. Further, we studied the ability 

of 14-3-3 isoforms to bind a distinct 14-3-3 binding motif found in the N-terminal region 

of KCO1, which was believed to be a component of the SV channel at that time. 

Surprisingly, 14-3-3A interacted with the highest affinity to a peptide representing this 

binding motif in barley KCO1, followed by the B- and C- isoform. This discrepancy can 

be explained by the current knowledge that the SV channel is formed by TPC1, and not by 

KCO1. The bright side of this is that these results now provide two additional examples of 

functional differences between 14-3-3 isoforms. 

 

The apparent functional differences between 14-3-3 isoforms were further explored in 

Chapter 3 using one of the model systems for 14-3-3 action in plants, the inhibition of 

nitrate reductase (NR). Since some reports suggest that differential expression and 

availability of 14-3-3 isoforms, rather than their functional capability, determines which 

isoform regulates a certain target protein, both the availability and capability of the 14-3-3 

isoforms to inhibit NR were analysed. We found that 14-3-3C is unavailable in dark 

harvested barley leaf extract and 14-3-3A is functionally not capable to efficiently inhibit 

NR activity, leaving 14-3-3B as the only characterized isoform able to regulate NR in 

barley. Further, using site directed mutagenesis, we identified a single amino acid 

variation (Gly versus Ser) in loop 8 of the 14-3-3 proteins that plays an important role in 

the observed functional specificity. Mutating the Gly residue of 14-3-3A to the alternative 

residue, as found in 14-3-3B and 14-3-3C, turned it into a potent inhibitor of NR activity.  

 

These results show that both the availability of 14-3-3 isoforms as well as their ability to 

act on a target protein (isoform specificity) determine the biological function of a given 

isoform. For a good perspective of the role 14-3-3 proteins fullfil, it is therefore crucial to 

identify the different 14-3-3 targets and the availability and capability of 14-3-3 isoforms 

with respect to these targets. In Chapter 4 we describe the development of a small-scale 

affinity purification approach for the identification of 14-3-3 interacting proteins. Thus 

far, this approach led to the identification of NR, as a control, and neutral invertase as 14-

3-3 interacting proteins. The novel 14-3-3 target, neutral invertase, is the next 14-3-3 
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target that serves a function in the carbohydrate metabolism (Chapter 1) and the activity of 

this enzyme is inhibited upon addition of 14-3-3C.  

 

Further, in the light of the availability of 14-3-3 isoforms, two additional barley 14-3-3 

isoforms (14-3-3D and 14-3-3E) were identified (Chapter 5) and the relative expression of 

the five different isoforms was determined in several barley tissues during different stages 

of development. The observed differences in expression provide an indication for the 

availability of 14-3-3 isoforms in regulating cellular processes. Finally, because of the 

possible involvement of 14-3-3 proteins in abscisic acid (ABA) signal transduction, the 

hormone that plays a key role during seed germination, special attention was paid to the 

expression of the 14-3-3 genes during the earliest hours of development and the results 

show an interesting increase in expression of some 14-3-3 isoforms in response to ABA.  

 

In conclusion, barley contains at least five 14-3-3 isoforms which are differentially 

expressed throughout the plant. Observed functional isoform specificity between these 14-

3-3 isoforms in the binding and regulating target proteins is, at least partially, the 

consequence of small variations in the 14-3-3 molecules that can be as little as a single 

amino acid residue. Differential availability in combination with functional isoform 

specificity determines the biological role for a given 14-3-3 isoform, as shown for the 

regulation of NR. It is therefore likely that each 14-3-3 isoform is responsible for the 

regulation of a subset of target proteins. 
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Samenvatting 

 

Cellulaire processen zoals de celcyclus, ion transport, gen expressie en enzym activiteit 

worden nauwgezet gereguleerd, bijvoorbeeld om het ontstaan van tumoren te voorkomen, 

homeostase te onderhouden en adequaat op veranderingen in de omgeving te reageren 

(zoals lichtintensiteit, osmotische potentiaal en de aanwezigheid van ziekteverwekkers). 

Het begrijpen van de mechanismen waarmee organismen/cellen de activiteit en functie 

van eiwitten reguleren, en daarmee van cellulaire processen, zou kunnen leiden tot het 

manipuleren van deze regulatiemechanismen om bijvoorbeeld ziekten/infecties te 

behandelen of gewasopbrengst te verhogen. Het werk dat in dit proefschrift wordt 

beschreven, heeft tot doel een beter inzicht te verkrijgen in de rol en functie van een 

specifieke klasse van regulatoren, de familie van 14-3-3 eiwitten. 

 

Zoals beschreven in Hoofdstuk 1, is gebleken dat de familie van 14-3-3 eiwitten 

belangrijke regulatoren zijn van veel eiwitten die betrokken zijn bij een grote 

verscheidenheid aan cellulaire processen. De laatste jaren is de kennis rond het 

functioneren van 14-3-3 eiwitten snel toegenomen. Meerdere 14-3-3 isovormen zijn 

aangetoond in alle onderzochte eukaryote organismen, waar ze functioneren als homo- en 

heterodimeren door te binden aan een specifieke aminozuurvolgorde in bindingspartners. 

Door binding van een 14-3-3 eiwit verandert de functionaliteit van de bindingspartner. Dit 

wordt verwezenlijkt door directe activering/inactivering van de bindingspartner, door 

(preventie van) translocatie van de bindingspartner naar een ander cellulair compartiment 

of door een interactie met andere moleculen te faciliteren. Verder is de kristalstructuur van 

verschillende 14-3-3 isovormen opgehelderd, hetgeen inzicht verschaft in welke gedeelten 

van de eiwitten betrokken zijn bij bijvoorbeeld dimerisatie en interactie met de 

bindingspartner. De kristalstructuren van deze verschillende 14-3-3 isovormen zijn 

praktisch identiek, hetgeen ons brengt bij één van de huidige onderwerpen in 14-3-3 

biologie; zijn de 14-3-3 isovormen functioneel verschillend? En zo ja, wat veroorzaakt 

deze verschillen en welke isovorm is verantwoordelijk voor de regulatie van een bepaalde 

bindingspartner? 
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De aminozuurvolgorde van de verschillende 14-3-3 isovormen is zeer goed 

geconserveerd, met name in die gedeelten die betrokken zijn bij de interactie met 

bindingspartners. Toch beschrijven meerdere publicaties verschillen tussen 14-3-3 

isovomen in hun werking op bindingspartners. Overeenkomstig met deze observeringen 

werden duidelijke verschillen waargenomen tussen gerst 14-3-3 isovormen in de regulatie 

van het langzaam-activerende vacuolaire (SV) kaliumkanaal (Hoofdstuk 2). De stroom 

van het gerst SV-kanaal werd geremd door 14-3-3B en 14-3-3C, maar niet door 14-3-3A. 

Hiernaast bestudeerden we de mogelijkheden van de 14-3-3 isovormen om te binden aan 

de specifieke aminozuurvolgorde die aanwezig is in het N-terminale gedeelte van KCO1, 

een eiwit dat op dat moment verondersteld werd deel uit te maken van het SV-kanaal. Tot 

onze verrassing bleek 14-3-3A met de hoogste affiniteit te binden aan een peptide dat de 

specifieke amonizuurvolgorde van gerst KCO1 representeerde, op afstand gevolgd door 

14-3-3B en 14-3-3C. Deze discrepantie kan worden verklaard door de huidige kennis dat 

het SV-kanaal wordt gevormd door TPC1, en niet door KCO1. Deze resultaten 

beschrijven nu dus twee extra voorbeelden van functionele verschillen tussen 14-3-3 

isovormen.   

 

De duidelijke functionele verschillen tussen 14-3-3 isovormen werden verder onderzocht 

in Hoofdstuk 3 met behulp van één van de modelsystemen voor 14-3-3 regulatie in 

planten, de remming van nitraatreductase (NR). Aangezien sommige wetenschappers 

suggereren dat differentiële expressie en beschikbaarheid van 14-3-3 isovormen, in plaats 

van hun functionele vermogen, bepalen welke isovorm een bepaalde bindingspartner 

reguleert, werden zowel de beschikbaarheid als het vermogen van 14-3-3 isovormen om 

NR te reguleren geanalyseerd. Wij vonden dat 14-3-3C niet aanwezig is in het, in het 

donker geoogste, extract van gerstblad en 14-3-3A functioneel niet in staat is om de 

activiteit van NR efficiënt te remmen. Hierdoor bleef 14-3-3B als enige van de beschreven 

isovormen over als regulator van NR in gerst. Verder hebben we, met behulp van 

mutagenese, een natuurlijk variërend aminozuur (Gly versus Ser) geïdentificeerd in loop 8 

van de 14-3-3 eiwitten dat een belangrijke rol speelt in de waargenomen 

isovormspecificiteit. Mutatie van de glycine van 14-3-3A naar een serine, zoals aanwezig 

in 14-3-3B en 14-3-3C, veranderde 14-3-3A in een efficiënte remmer van NR activiteit. 
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Deze resultaten laten zien dat zowel de beschikbaarheid van 14-3-3 eiwitten als het 

vermogen om interactie aan te gaan met een bindingspartner (isovormspecificiteit) de 

biologische functie van een bepaalde isovorm bepalen. Om een beter inzicht te verkrijgen 

in de rol die 14-3-3 eiwitten spelen is het daarom cruciaal om de verschillende 

bindingspartners te identificeren en de beschikbaarheid en het functionele vermogen van 

14-3-3 eiwitten met betrekking tot deze bindingspartners te bepalen. In Hoofdstuk 4 

beschrijven we de ontwikkeling van een affiniteit-opzuiveringsmethode om op kleine 

schaal 14-3-3 bindingspartners te identificeren. Tot nu toe heeft deze methode 

geresulteerd in de identificatie van NR, als controle, en de neutrale invertase als 14-3-3 

bindingspartners. Het nieuwe 14-3-3 bindende eiwit, de neutrale invertase, is wederom 

een 14-3-3 bindingspartner die een rol heeft in de koolhydraat stofwisseling (Hoofdstuk 1) 

en de activiteit van dit enzym wordt geremd door 14-3-3C. 

 

Tevens hebben we, in het kader van de beschikbaarheid van 14-3-3 isovormen, twee 

nieuwe 14-3-3 isovormen (14-3-3D en 14-3-3E) in gerst geïdentificeerd (Hoofdstuk 5) en 

de relatieve expressie van de vijf isovormen zijn onderzocht in verschillende 

gerstweefsels gedurende meerdere ontwikkelingsfases. De geobserveerde verschillen in 

expressie geven een indicatie voor de beschikbaarheid van 14-3-3 eiwitten in het 

reguleren van cellulaire processen. Vanwege de mogelijke rol die 14-3-3 eiwitten spelen 

in abscinezuur (ABA) signaaltransductie, het hormoon dat een sleutelrol vervult 

gedurende zaadkieming, is er extra aandacht besteed aan de expressie van de 14-3-3 genen 

in de eerste uren van de ontwikkeling. De resultaten laten een interessante toename van de 

expressie zien na toediening van ABA. 

 

Samenvattend, gerst bevat minstens vijf 14-3-3 isovormen die verschillend tot expressie 

komen in de plant. De geobserveerde functionele isovormspecificiteit tussen deze 14-3-3 

eiwitten in het binden en reguleren van bindingspartners zijn, op zijn minst gedeeltelijk, 

het gevolg van kleine variaties in de 14-3-3 eiwitten die beperkt kunnen zijn tot één enkel 

aminozuurresidu. Verschillen in beschikbaarheid in combinatie met functionele isovorm-

specificiteit bepalen de biologische rol van een 14-3-3 isovorm, zoals aangetoond voor de 

regulatie van NR. Het is daarom waarschijnlijk dat elke 14-3-3 isovorm verantwoordelijk 

is voor de regulatie van een deel van de bindingspartners. 



 
 

 

 

 

 

List of publications  



   
 

 118 

List of publications 
 

Sinnige, M.P., Roobeek, I., Bunney, T.D., Visser, A.J.W.G., Mol, J.N.M., De Boer, A.H. 
(2006) Single amino acid variation in barley 14-3-3 proteins leads to functional 
isoform specificity in het regulation of nitrate reductase. The Plant Journal, 44 
(6), 1001-1009 

 
Sinnige, M.P., Ten Hoopen, P., Van den Wijngaard, P.W.J., Roobeek, I., Schoonheim 

P.J., Mol, J.N.M., De Boer, A.H. (2005) The barley two-pore K+-channel 
HvKCO1 interacts with 14-3-3 proteins in an isoform specific manner. Plant 
Science, 169 (3), 612-619 

 
Van den Wijngaard, P.W.J., Sinnige, M.P., Roobeek, I., Reumer, A., Schoonheim, P.J., 

Mol, J.N.M., Wang, M. and De Boer, A.H. (2005) Abscisic acid and 14-3-3 
proteins control K+ channel activity in barley embryonic root. The Plant Journal, 
41, 43-55 

 

Submitted manuscripts 
 

Sinnige, M.P. and De Boer, A.H. Regulation and discrimination by 14-3-3 proteins. 
 
Schoonheim, P.J., Sinnige, M.P., Casaretto, J.A., Bunney, T.D., Quatrano, R.S., De Boer, 

A.H. 14-3-3 adapter proteins are intermediates in ABA signal transduction 
during seed germination. 



 

 
 

 

 

 

 

Dankwoord  



   
 

 120 

Dankwoord 

 

Er leek geen einde aan te komen (waarschijnlijk ook voor diegenen die dit boekwerk 

daadwerkelijk hebben proberen te lezen) en dan ineens is het af. Nou ja, af? Ik moet alleen 

nog even het dankwoord in de computer kloppen. En laat dat nu ook net het enige 

onderdeel van dit boekje zijn dat ook echt gelezen wordt, al is het maar om te kijken of 

hij/zij bedankt wordt. Dus bij deze wil ik alvast iedereen bedanken die zichzelf niet in dit 

dankwoord terugvindt en wel meent een bijdrage geleverd te hebben. Ik zou het hierbij 

kunnen laten, aangezien iedereen nu bedankt is, ware het niet dat sommige mensen toch 

echt iets meer dank verdienen. 

 

Bert, laat ik bij jou beginnen. Min of meer toevallig liepen we elkaar tegen het lijf op de 

P5 gang, ik net terug uit Australië en jij op zoek naar een AIO. Na een babbeltje en een 

sollicitatieronde ging ik aan de slag, op zoek naar G-eiwit gereguleerde kaliumkanalen. Ik 

heb met veel plezier met je gewerkt en wil je bedanken voor je enthousiasme, input, 

betrokkenheid en natuurlijk je aanmoedigingen om vooral mijn bureau eens op te ruimen. 

Dat het allemaal iets anders is verlopen dan de planning in het oorspronkelijke 

onderzoeksvoorstel is niet zo vreemd, gezien ons beider enthousiasme voor zijsporen en 

nieuwe ideeën. Jos en Holger, beiden als professor en nu als promotor betrokken bij mijn 

onderzoek, bedankt voor jullie interesse in het 14-3-3 onderzoek en jullie inzet om dit 

project tot een goed einde te brengen. 

 

De samenstelling van de directe collega’s wisselde nogal eens in de loop der jaren, 

waarbij ik het vertrek van sommigen echt jammer vond. Met een aantal collega’s heb ik 

slechts kort (en soms helemaal niet) samen op het lab gestaan (Frank, Sake, Reina, 

Pettie, Vadim, Suat, Ingrid). Vooral diegenen die er in het begin van mijn AIO-tijd 

rondliepen wil ik bedanken voor het wegwijs maken in het lab (wiens oplossingen 

betrouwbaar waren en dus gerust “geleend” konden worden, wat de meest handige kitjes 

waren en waar die verborgen werden, en, het belangrijkste, dat als iemand zijn naam 

ergens opgeschreven had je dat niet zomaar kon pakken, behalve als je eerst met 70% de 

naam verwijderde om vervolgens je eigen naam erop te kalken, m.a.w. de normale 

labgebruiken). De beste oplossingen waren van Tom, niet alleen zijn flessen met 
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oplossingen maar ook als je wilde weten hoe je iets moest bewijzen/testen. Tom, jij hebt 

me de fijne kneepjes van het eiwitwerk bijgebracht en bent van onschatbare waarde 

geweest bij mijn introductie in de wondere wereld van de 14-3-3’s. Een andere 

leermeester, maar dan op het gebied van kanalen/electrofysiologie, was Paul. Als ik in 

extase of in de stress verkeerde (door respectievelijk een geslaagde of mislukte proef), 

was er altijd de stabiele factor, Paul, die me weer terug op aarde wist te brengen. Jongens, 

zonder jullie had dit proefschrift er inhoudelijk een stuk slechter uitgezien, bedankt. 

Petra, bedankt voor je hulp bij hoofdstuk 2, zonder jou waren die SV data er 

waarschijnlijk nooit gekomen (in ieder geval niet zo mooi). And then there was Oleg 

(Ollie for insiders), thanks for the countless scientific and social discussions we had while 

enjoying (some or various) alcoholic beverages (which really did improve your English 

and your Dutch). You still look …. . …. .. .., but it was a pleasure working with you and 

we should have a vodka-night soon, приветствия. De snelste leerling betreffende de 

bovengenoemde labgebruiken is ongetwijfeld Peter, samen met Daantje de nieuwe 14-3-

3 goeroes. Jongens, sorry voor het volledig vullen van alle koel- en vriezercapaciteit met 

de meest onnozele samples (“Nee, kan niet weg, misschien heb ik het nog nodig”). 

Bedankt voor jullie begrip/geduld en hulp bij de laatste experimenten en natuurlijk voor 

de gezelligheid binnen en buiten het lab.  

 

Ook de stagestudenten hebben in meer of mindere mate bijgedragen aan dit proefschrift 

maar in ieder geval aan de sfeer in het lab. Arie, bedankt voor je ontelbare NR isolaties en 

de enorm gezellige avond stappen in Eindhoven (in het hol van de leeuw vanuit mijn 

perspectief). Rene en Annet, eigenlijk studenten van Paul, maar zeer gezellig in het lab en 

veel pogingen gedaan om mooie SV data te meten (Rene) en kanalen te kloneren (Annet). 

Raquel, thanks for your pioneering work that eventually resulted in chapter 4 and the 

enthusiasm, joy and illegal DVD’s you brought to the lab. Stéphanie, bedankt voor je 

inzet en enthousiasme voor het meest succesvolle zijproject, het effect van FC op 

kankercellen.   

 

Ilja, paranimf, bedankt, jij was jarenlang mijn maatje in het lab. Naast dat we altijd 

gezellig konden kletsen en de nieuwste verhalen binnen (en buiten) de faculteit bespraken 

(ehhhh, even voor de buitenstaanders en Bert, dit was natuurlijk onder koffietijd), was jij 
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ook een enorme steun bij mijn onderzoek. Verder moet ik je nog bedanken voor het testen 

van de maximale snelheid van mijn auto (terwijl ik op de passagiersstoel lag te slapen) en 

natuurlijk voor je bezorgdheid toen ik even een staatslot was gaan halen (terwijl ik van jou 

buiten op het bankje in de frisse lucht moest zitten omdat ik iets te lang boven de 

chloroformfles had gehangen). Je bent ondertussen voor jezelf begonnen en ik hoop dat ze 

je daar net zo goed helpen als jij mij altijd hebt geholpen. 

 

Dat brengt me bij de gezellige familie van genetica (met collega AIO’s Robbie, Walter, 

Xaantje, Elske, Rob en dus ook Ilja) die ik wil bedanken voor hun hulp bij experimenten, 

aandacht en inbreng tijdens werkbesprekingen, maar bovenal voor de sociale component. 

De labuitjes (zeilen in Friesland, even een lang weekendje Frankrijk) waren fantastisch, de 

borrels/etentjes (met kerst, sinterklaas, Pasen of omdat er alweer zeker een paar dagen 

niets te vieren was geweest) waren altijd buitengewoon. Dankzij FQ heb ik nu een excuus 

om geen salade bij de pasta te eten, en om nou daarna alleen nog salade te eten... Jan, 

enorm bedankt dat je er was op het moment dat het nodig was. Het gaat te ver om alle 

mensen van deze afdeling individueel te bedanken maar ik heb me altijd bijzonder 

welkom gevoeld op 5 hoog, bedankt. 

 

Verder wil ik Klaas Krab bedanken voor het nuttige model dat hij heeft gemaakt voor 

onze affiniteit-opzuiverings experimenten, Dick Roelofs voor het gebruik van de Opticon 

(en de benodigde hulp hierbij), Dave Speijer voor het identificeren van verschillende 

eiwitten en Ton Visser en Nina Visser voor hun hulp met het maken van de Far-UV CD 

spectra. Ook buiten de afdeling waren er een aantal mensen waar ik altijd terecht kon voor 

de meest onnozele (soms ook hele slimme natuurlijk) vragen. Mensen met een schat aan 

ervaring en kennis die je ook gewoon vertellen hoe je bijvoorbeeld ’s nachts bij een 

bepaald apparaat of stofje kan komen (“de sleutel ligt daar verstopt”), de geheimen van de 

silver staining onthullen, je helpen een puntmutatie te repareren of gewoon altijd van je 

winnen met schaken (al komt daar soms een illegale rokade aan te pas). Willem (De Snor) 

en Corinne (Co), bedankt, ook voor de gezellige avonden in de Stelling. Het is duidelijk 

dat, als je soms letterlijk dag en nacht op het lab zit, enige ontspanning noodzakelijk is. 

Naast de Stelling, met zijn vaste gasten (zoals de plantenecologen), waar je dingen even 

van je af kunt lullen met mensen die begrijpen waar het over gaat, kon ik me altijd lekker 
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uitleven met zaal- en veldvoetbal, waar ze dan weer geen idee hebben wat je aan het doen 

bent (“Zaadveredelaar, dat staat goed op je visitekaartje, moet je gaan doen man”). 

Jongens, bedankt.  

 

Het is natuurlijk een enorme steun als je beste maat twee etages hoger een vergelijkbare 

berg aan het beklimmen is. Jorrit, ik heb als paranimf al even mogen meegluren bovenop 

jouw berg, nu ben jij aan de beurt om het water in te schenken op mijn berg. Elkaar even 

opbeuren op momenten van tegenslag door alleen even te luisteren (en daardoor je eigen 

experiment te laten mislukken) of even een potje dienbladtennis (het in de gang meppen 

van een balletje m.b.v. dienbladen waarbij de regels gewoon veranderen als iemand dreigt 

te winnen). Maar ook het delen van mooie momenten zoals een geslaagd experiment of 

een publicatie (meestal gevierd met een potje dienbladtennis), het vinden van een fles 

helium om onze Duitse vrienden van structuurbiologie te trakteren op een plafond vol 

oranje ballonnen op de dag dat Nederland tegen Duitsland moet voetballen, tijdens 

klaverjassen een kaart pakken om met de stem van Ernie te zeggen “Hé, Bert.....de boer”. 

Jij hebt een groot aandeel in dit boekje, dank je wel. 

 

Heel belangrijk is ook mijn familie geweest maar in het bijzonder mijn vader en moeder. 

Jullie hebben mij gestimuleerd om van 4 Havo direct maar naar 5 VWO te springen en om 

te gaan studeren. Jullie hebben me altijd gesteund en staan nog steeds altijd voor me klaar. 

Jullie zijn heel bijzonder, ik hou van jullie. Ook de rest van de familie (Karin en Martijn, 

mijn schoonouders en mijn recent verworven nieuwe broers en zussen) was altijd zeer 

geïnteresseerd, meelevend en begripvol. Dank, het is nu klaar, ik kan gewoon weer mee 

op wintersport. 

 

Als laatste en tevens belangrijkste ben ik enorm veel dank verschuldigd aan mijn lieve 

vrouw. Patricia, ondanks dat je na het lezen van mijn introductie zei ”Oh, nu zie ik pas 

dat er een verband is tussen al die experimenten”, ben je altijd erg geïnteresseerd geweest 

in mijn onderzoek. Dat maakte het er voor mij zeker gemakkelijker op. Jouw steun en 

geduld zijn van doorslaggevend belang geweest bij het slagen van deze missie. Bedankt 

voor je begrip, aansporing en ......... vooral voor je liefde. 

 


