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Verifying Interlevel Relations within Multi-Agent Systems: 
formal theoretical basis 

Technical Report: TR-1701AI 

In this paper the formal theoretical basis used for transformation of a non-executable external behavioral specification for a multi-agent 
system into an executable format, required for enabling verification techniques, is explained in detail.  

An external behavioral specification for components of the multi-agent systems is specified using the Temporal Trace Language (TTL), 
which syntax and semantics are explained in Section 1.  

In the general case, at any aggregation level a behavioral specification for a multi-agent system component consists of dynamic properties 
expressed by complex temporal relations in TTL, which therefore does not allow direct application of automatic verification procedures, 
more specifically, model checking techniques, used in this paper. In order to apply model checking techniques it is needed to transform an 
original behavioral specification of a certain aggregation level into a model based on a finite state transition system. In order to obtain 
this, as a first step a behavioral description for the lower aggregation level is replaced by one in executable (temporal) format. As a 
solution, an automated substitution of the behavioral specification for the component by an executable specification (expressed in an 
executable temporal language) is put forward. The justification is based on the theorem that a behavioral specification entails a certain 
dynamic property if and only if the generated executable specification entails the same property. The proof for this theorem and other 
formal theoretical results are given in Section 2.  

Moreover, for the purposes of practical verification by means of model checking techniques, an automated translation from a behavioral 
specification based on executable temporal logical properties into a finite state transition system description has been developed. The 
details of a translation procedure are explained in Section 3.  

Furthermore, the procedure for translating from the state transition system description into the model specification format for the SMV 
model checker that is used for verification is described in Section 4. 

In Sections 5 the application of the proposed approach is illustrated by a paradigmatic example. The SMV specification for the example is 
given in the Appendix A. 

 

1. TTL Syntax and Semantics 
 

The language TTL, short for Temporal Trace Language, is a variant of order-sorted predicate logic. Whereas the standard multi-sorted 
predicate logic is a language to reason about static properties only, TTL is an extension of such languages with facilities for reasoning 
about the dynamic properties of arbitrary systems expressed by static languages. 

 
1.1 The State Language 
For expressing state properties of a system ontologies are used. In logical terms, an ontology is a signature that specifies the vocabulary of 
a language to represent and reason about a system. In order to represent different ontological entities of a system a number of different 
syntactical sorts are used. Thus, the state properties are specified using a multi-sorted first-order predicate language LSTATE with the 
vocabulary, specified by a signature:  

 

Definition 1.1 (State Language Signature) 

A signature 
�

SL is a tuple, 
�

SL=<S; C; P; f>, where S is a set of sort names; C is a set of constants of each sort; P is a set of predicate 
symbols; f is a set of functional symbols. 

Let 
�

SL=<S; C; P; f> be a signature for LSTATE. We assume that the set of variables is given and that with each variable x from this set a 
sort S is associated, written as x:S. Then the terms and formulae of the language LSTATE are defined as follows. 

Definition 1.2 (Terms of the state language) 

The terms of any sort S are inductively defined by: 

1. If x:S is a variable of the state language, then x is a term of LSTATE. 
2. If c ∈ C is a constant symbol, then c is a term of LSTATE. 
3. If f ∈ f is an n-place function symbol S1 x … x Sn → S and τ1,…, τn are terms of LSTATE, such that τi ∈ Si

TERMS (a set of all terms 
constructed using the sort Si), then f(τ1,…, τn) ∈ STERMS is a term of LSTATE. 

 

Definition 1.3 (Formulae of the state language) 

The formulae of LSTATE are inductively defined as follows: 
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1. If P: S1 x S2 x … x Sn is a predicate symbol from P and τ1, τ2…, τn are terms of LSTATE, such that τi ∈ Si
TERMS, then P(τ1, τ2,…, 

τn) is a formula of LSTATE. 
2. If τ1 and τ2 are terms of the same sort S, then τ1 = τ2 is a formula of LSTATE. 
3. If ϕ and ψ are the formulae of LS, then ~ϕ, (ϕ|ψ), (ϕ&ψ), (ϕ�ψ) and (ϕ⇔ψ) are formulae of LSTATE. 
4. If ϕ a formula of LS containing x as a free variable, then (∀x ϕ) and (∃x ϕ) are formulae of LSTATE. 
 

1.2. The Language of TTL 

In the language TTL formulae of the state language LSTATE are used as objects. To provide names of object language formulae ϕ in the 
TTL the operator (*) is used (written as ϕ*). Then, by means of the defined in the TTL holds predicate these objects are evaluated in 
states defined within TTL. The language TTL (LTTL) has a signature � TTL that facilitates the specification of and reasoning about the 
dynamics of systems: 

Definition 1.4 (TTL Signature) 

A signature consists of the symbols of the following classes: 

(1) a number of sorts: TIME (a set of all time points), STATE (a set of all state names), TRACE (a set of all trace names; a trace can be 
considered as a timeline with for each time point a state), STATPROP (a set of all names for state properties expressed using the 
state language); and VALUE (an ordered set of numbers). Furthermore, for every sort S from LSTATE three TTL sorts exist: the sort 
SVARS, which contains all variable names of sort S, and the sort SGTERMS, which contains names of all ground terms, constructed 
using sort S. Sorts SGTERMS and SVARS are subsorts of a sort STERMS. 

(2) countably infinite number of individual variables of each sort. We shall use t with subscripts and superscripts for variables of the sort 
TIME; γ with subscripts and superscripts for variables of the sort TRACE; s with subscripts and superscripts for variables of the sort 
STATE; v with subscripts and superscripts for variables of the sort VALUE.  

(3) a set of function symbols ΦΦΦΦ, among which: 
a) a function symbol state of type TRACE x TIME →  STATE. 
b) functional symbols ∧, ∨, →, ↔: STATPROP x STATPROP → STATPROP; not: STATPROP → STATPROP. 
c) functional symbols ∀∀∀∀: SVARS x STATPROP → STATPROP, and ∃∃∃∃: SVARS x STATPROP → STATPROP for every sort S. 
d) functional symbols –, +, /, •: TIME x VALUE → TIME. 
e) functional symbols –, +, /, •: VALUE x VALUE → VALUE. 

(4)  a set of predicate symbols P, among which: 
a) a predicate symbol holds (|=) of type STATE x STATPROP.  
b) =: an identity relation on arbitrary sorts 
c) <: TIME x TIME is the earlier than relation on time 
d) <: VALUE x VALUE is the less than relation on the sort VALUE 

 

When it is necessary to indicate an aspect state of a system component (i.e., input, output or internal), the sorts ASPECT_COMPONENT 
(a set of the component aspects of a system); COMPONENT (a set of all component names of a system); and 
COMPONENT_STATE_ASPECT (a set of all names of aspects of all component states) are included in the TTL. Using these sorts a 
functional symbol comp_aspect can be defined as: ASPECT_COMPONENT x COMPONENT → COMPONENT_STATE_ASPECT. 
Then, a function state is specified as: TRACE x TIME x COMPONENT_STATE_ASPECT →  STATE. 

Notice that also within states statements about time can be made, for this purposes the sort LTIME is used in the state language. Further 
we shall use u with subscripts and superscripts to denote constants of sort LTIMEVARS.  

State language formulae are incorporated into the TTL by mappings of variable sets, terms sets and formulae sets into the names of sorts 
SGTERMS, STERMS, SVARS and STATPROP using the operator (*).  

Definition 1.5 (Operator *) 

The operator (*) is defined inductively on the structure of formulae from LSTATE by the following mappings: 

 

1. Each constant symbol c∈S in C is mapped to the constant name c’  of sort SGTERMS. 
2. Each variable x:S of the state language is mapped to the constant name x’∈ SVARS 
3. Each function symbol f: S1 x S2 x … x Sn → Sn+1 in � SL is mapped to the function name f’ : S1

TERMS x S2
TERMS x … x Sn

TERMS → 
Sn+1

TERMS 
4. Each predicate symbol P: S1 x S2 x … x Sn is mapped to the function name P’ : S1

TERMS x S2
TERMS x … x Sn

TERMS → 
STATPROP 

5. The mappings for state formulae are defined as follows: 
a. (~ϕ)* = not(ϕ*) 
b. (ϕ & ψ)* =  ϕ* ∧ ψ* 
c. (ϕ | ψ)* =  ϕ* ∨ ψ* 
d. (ϕ � ψ)* = ϕ* → ψ*  
e. (ϕ ⇔ ψ)* = ϕ* ↔ ψ* 
f. (∀x ϕ(x))*= ∀x’  ϕ*(x’ ), where x’  is any constant of SVARS 
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Make notice that the sorts SGTERMS  and  SVARS contain only the elements, corresponding to mappings in Definition 1.5. 

Furthermore, it is assumed that the state language and the TTL signature define disjoint sets of expressions. Therefore, further in TTL 
formulae we will use the same notations for the elements of the object language (i.e, constants, variables, functions, predicates) and for 
their names in the TTL without introducing any ambiguity.  

 

Definition 1.6 (TTL Terms) 

a. Any variable x of TTL sort S is a term of LTTL of sort S. 
b. If f is an n-place function symbol of the TTL language S1 x … x Sn → S and τ1,…, τn are terms of TTL sorts S1,…., Sn, then f(τ1,…, 

τn) is a term of LTTL of sort S. 
 

Definition 1.7 (TTL Formulae) 

TTL- formulae are defined inductively as follows: 

 

A.  The set of atomic TTL-formulae is defined as: 

(1) If v1 is a term of sort STATE, and u1 is a term of the sort STATPROP, then holds(v1, u1) is an atomic TTL formula (sometimes is 
used in infix notation like v1 |= u1). 

(2) if τ1, τ2 are terms of any sort, then = (τ1, τ2) is an atomic TTL formula. (further we shall use this predicate in infix form τ1 = τ2) 

(3) if t1, t2 are terms of sort TIME, then < (t1, t2) is an atomic TTL formula. (further we shall use this predicate in form t1 < t2, 
furthermore we shall use t1 ≤ t2 for t1<t2 ∧ t1=t2) 

(4) If v1, v2 are terms of sort VALUE, then v1 < v2 is an atomic TTL formula. 

B.  The set of well-formed TTL-formulae is defined as 

(1) Any atomic TTL-formula is a well-formed TTL-formula 

(2) If ϕ and ψ are well-formed TTL-formulae, then so are ~ϕ, (ϕ|ψ), (ϕ&ψ), (ϕ�ψ) and (ϕ⇔ψ). 

(3) If ϕ is a well-formed TTL-formula containing TTL variable x of sort S, where S is one of TTL sorts, then (∀x ϕ) and (∃x ϕ) are 
well-formed TTL-formulae. 

 

1.2.  The Semantics of TTL 
An interpretation of a TTL formula is defined by the standard interpretation of order sorted predicate logic formulae. 

 

Definition 1.8 (Interpretation) 

An interpretation of a TTL formula is defined by a mapping I that:  

(1) associates each sort symbol S to a certain set (subdomain) DS, and if S ⊆ S’ then DS ⊆ Ds’;  

(2) associates each constant c of sort S to some element of DS 

(3) associates each function symbol f of sort <X1, …, Xi> → Xi+1 to a mapping I(X1) x  …x I(Xi) → I(Xi+1) 

(4) associates each predicate symbol P of sort <X1, …, Xi> to a relation on I(X1) x  …x I(Xi) 

 

Definition 1.9 (TTL Model) 

A model M for the language TTL is a pair M=<I, V>, where: 

- I is an interpretation function, and 

- V is a variable assignment function, mapping each variable x: S to an element of DS. 

We write V [x/v] for the assignment function that maps variables y other than x to V(y) and maps x to v. Analogously, we write M[x/v] = 
<I, V [x/v]>. 

 

Definition 1.10 (Interpretation of TTL terms) 

Let M=<I,V> be a model for TTL. Then the meaning of a term τ ∈ TTL, denoted by τM, is inductively defined by: 

1. (x)M=V(x), where x is a variable over one of the TTL sorts. 
2. (c)M= I(c), where c is a constant of one of the TTL sorts. 
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3. f(τ1,…,τk)
M = I(f)( τ1

M,…, τk
M), where f is a TTL function of type S1 x … x Sn → S and τ1,…, τn are terms of TTL sorts S1,…., 

Sn 
 

Definition 1.11 (Truth definition for TTL) 

Let M=<I, V> be a model for TTL. Then the truth definition of TTL is inductively defined by: 

1. |=M P(τ1,…,τk) iff I(P) ( τ1
M,…, τk

M) = true 
2. |=M ¬ϕ iff |≠ M ϕ 
3. |=M ϕ ∧ ψ iff |=M ϕ and iff |=M ψ 
4. |=M ∀x (ϕ(x)) iff |=M[x/v] ϕ(x) for all v∈ DS, where x is a variable of sort S. 

 

The semantics of connectives and quantifiers is defined in the standard way. 

 

1.3 Axioms of TTL 
(1) Equality of traces:  

      ∀γ1, γ2 [∀t [state(γ1, t) = state(γ2, t) ] � γ1 = γ2] 
 
(2) Equality of states:  

       ∀s1, s2 [∀a:STATPROP [truth_value(s1, a) = truth_value(s2, a)] � s1=s2] 
 
(3) Truth value in a state:  

       holds(s, p) ⇔ truth_value(s, p)= true 
 

(4) State consistency axiom: 
        ∀ γ, t, p (holds(state(γ, t), p) � ¬holds(state(γ, t), not(p))) 

(5) State property semantics: 
a. holds(s, (p1 ∧ p2)) ⇔ holds(s, p1) & holds(s, p2) 
b. holds(s, (p1 ∨ p2)) ⇔ holds(s, p1) | holds(s, p2) 
c. holds(s, not(p1)) ⇔ ¬holds(s, p1) 

For any constant variable name x from the sort SVARS: 

d. holds(s, (∃∃∃∃(x, F))) ⇔ ∃x’:SGTERMS holds(s, G), with G, F terms of sort STATPROP, where G is obtained from F by 
substituting all occurrences of x by x’ 

e. holds(s, (∀∀∀∀(x, F))) ⇔ ∀x’: SGTERMS holds(s, G), with G, F terms of sort STATPROP, where G is obtained from F by 
substituting all occurrences of x by x’ 
 

(6) Partial order axioms for the sort TIME: 
a. ∀t t≤ t (Reflexivity) 
b. ∀t1,t2 [ t1 ≤ t2 ∧ t2 ≤ t1 ] � t1=t2 (Anti-Symmetry) 
c. ∀t1, t2, t3 [ t1 ≤ t2 ∧ t2 ≤ t3 ] � t1 ≤ t3 (Transitivity)  
 

(7) Axioms for the sort VALUE: 
a. ∀v v≤ v (Reflexivity) 
b. ∀v1,v2 [ v1 ≤ v2 ∧ v2 ≤ v1 ] � v1=v2 (Anti-Symmetry) 
c. ∀v1, v2, v3 [ v1 ≤ v2 ∧ v2 ≤ v3 ] � v1 ≤ v3 (Transitivity) 
d. Standard arithmetic axioms 

 

(8) Axioms, which relate the sorts TIME and VALUE: 
a. (t + v1) + v2 = t + (v1 + v2) 
b. (t • v1) • v2 = t • (v1 • v2) 
 

(9) Finite variability property (optional): 
          ∀γ  ∀t ∃δ>0 ∃t1, t2   t1 ≤ t ≤ t2 & t2 - t1 ≥ δ & ∀t’ t1 ≤ t’ ≤ t2 state(γ, t’) = state(γ, t)  
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2. FORMAL JUSTIFICATION FOR THE TRANSFORMATION PROCEDURE 
 

Lemma 1 (Normalization lemma) 
Let t be a given time point. If a formula δ(γ, t) only contains temporal relations such as t' < t" and t' ≤ t", and atoms of the form state(γ, t)  |=  
p for some name of a state formula p, then some state formula q(t) can be constructed such that δ(γ, t) is equivalent to the formula δ*(γ, t) of 
the form state(γ, t) |= q(t). 

Proof sketch for Lemma 1. 

First in the formula δ(γ, t) replace all temporal relations such as t' < t" and t' ≤ t" by state(γ, t) |= t' < t" and state(γ, t) |= t' ≤ t" respectively. 
Then proceed by induction on the composition of the formula δ(γ, t). Treat the logical connectives &, |, ¬, �, ∀s, ∃s. 

1) conjunction: δ(γ, t)  is  δ1(γ, t) &  δ2(γ, t)   

By induction hypothesis 

δ1(γ, t)  ⇔  state(γ, t) |= p1  (which is δ1*(γ, t)  ) 

δ2(γ, t)  ⇔  state(γ, t) |= p2  (which is δ2*(γ, t)  ) 

Then 

δ(γ, t)  ⇔  state(γ, t) |= p1  &  state(γ, t) |= p2  ⇔  state(γ, t) |= [ p1 ∧ p2 ]  (which becomes δ*(γ, t)) 

2) disjunction: δ(γ, t)  is  δ1(γ, t)  |  δ2(γ, t) 

Again by induction hypothesis 

δ1(γ, t)  ⇔  state(γ, t) |= p1  (which is δ1*(γ, t)) 

δ2(γ, t)  ⇔  state(γ, t) |= p2  (which is δ2*(γ, t)) 

Then 

δ(γ, t)  ⇔  state(γ, t) |= p1  |  state(γ, t) |= p2  ⇔  state(γ, t) |= [ p1 ∨ p2 ]   (which becomes δ*(γ, t)) 

3) negation: δ(γ, t)  is  ¬δ1(γ, t) 

δ1(γ, t)  ⇔  state(γ, t) |= p1 

δ(γ, t)  ⇔  ¬state(γ, t) |= p1 

δ(γ, t)  ⇔  state(γ, t) |= not(p1)   (which is δ*(γ, t)) 

4) implication: δ(γ, t)  is  δ1(γ, t)  �  δ2(γ, t) 

Again by induction hypothesis 

δ1(γ, t)  ⇔  state(γ, t) |= p1   (which is δ1*(γ, t)) 

δ2(γ, t)  ⇔  state(γ, t) |= p2   (which is δ2*(γ, t)) 

Then 

δ(γ, t)  ⇔  [state(γ, t) |= p1  �  state(γ, t) |= p2]  ⇔  state(γ, t) |= [p1 → p2]  (which becomes δ*(γ, t)) 

5) universal quantifier:  

δ(γ, t)  ⇔ ∀t' state(γ, t) |= p1(t') 

δ(γ, t)  ⇔ state(γ, t) |= ∀∀∀∀u' p1(u') (which is δ*(γ, t)) 

6) existential quantifier: 

δ(γ, t)  ⇔ ∃t' state(γ, t) |= p1(t') 

δ(γ, t)  ⇔ state(γ, t) |= ∃∃∃∃u' p1(u')    (which becomes δ*(γ, t)) 

 

Definition 2.1 (Uniqueness and correctness of time) 
To relate time within a state property to time external to states a functional symbol present_time: LTIMETERMS→ STATPROP is used. Here 
time is assumed to have the properties of correctness and uniqueness: 

Uniqueness of time 

This expresses that present_time(t) is true for at most one time point t: 

∀t, t'' state(γ, t) |= present_time(t'') � ∀t', t'≠t'' ¬state(γ, t) |= present_time(t') 

Correctness of time 

This expresses that present_time(t) is true for the current time point t: 

∀t state(γ, t) |= present_time(t) 
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Definition 2.2 (Memory formula)  
The formula ϕmem(γ, t) obtained by replacing all occurrences in ϕp(γ, t) of subformulae of the form state(γ, t') |= p by state(γ, t) |= 
memory(t', p) is called the memory formula for ϕp(γ, t). 

Definition 2.3 (Normalized memory state formula)  
The state formula constructed by Lemma 1 for a memory formula ϕmem(γ, t) is called the normalized memory state formula for ϕmem(γ, t) 
and denoted by qmem(t). Moreover, qmem is the state formula ∀∀∀∀u’ [present_time(u’) → qmem(u’)]. 

Lemma 2 
If time has properties of correctness and uniqueness, then 

ϕmem(γ, t) ⇔ state(γ, t) |= qmem(t) ⇔ state(γ, t) |= qmem   (1) 

Proof. 

The proof for Lemma 2 follows directly from the Lemma 1, definitions of correctness and uniqueness of time and the definition of the 
formula qmem. Lemmas 3, 4 and 5 can be proven in the same manner. 

 
Definition 2.4 (Executable theory from interaction to memory) 
For a given ϕ(γ, t) the executable theory from observation states to memory states Tho→m consists of the formulae: 
For any atom p occurring in ϕp(γ, t), expressed in the InteractionOnt(A) for a component A: 

∀t' state(γ, t') |= p  �  state(γ, t')  |= memory(t', p), 

∀t'' state(γ, t'') |= memory(t', p) �  state(γ, t"+1)  |= memory(t', p), 

state(γ, 0) |= present_time(0), 

∀t state(γ, t) |= present_time(t) � state(γ, t+1) |= present_time(t+1), 

The last two rules are assumed to be included into two following theories Thm→p and Thp→o as well. 

 
Proposition 1 
Let ϕp(γ, t) be a past statement for a given t, ϕmem(γ, t) the memory formula for ϕp(γ, t), qmem(t) the normalized memory state formula for 
ϕmem(γ, t), and Tho→m the executable theory from the interaction states for ϕp(γ, t) to the memory states. Then,  

Tho→m  |=  [ϕp(γ, t)  ⇔  ϕmem(γ, t)] 

and  

Tho→m  |=  [ ϕp(γ, t)  ⇔  state(γ, t) |= qmem(t) & state(γ, t) |= qmem(t) ⇔ state(γ, t) |= qmem]. 

Proof. 

From the definitions of qmem(t) and of Tho→m follows 

Tho→m  |=  [ ϕp(γ, t)  ⇔  ϕmem(γ, t)  ] 

Further by Lemma 2 

Tho→m  |=  [ ϕp(γ, t)  ⇔  state(γ, t) |= qmem(t)  ] �  
 

Definition 2.5 (Normalized condition state formula)  
The state formula constructed by Lemma 1 for ϕcmem(γ, t, t1) is called the normalized condition state formula for ϕcmem(γ, t, t1) and denoted 
by qcond(t, t1). Moreover, qcond(t) is the state formula ∀∀∀∀u’ [ present_time(u’) → qcond(t, u’) ] 

 
Lemma 3 
If time has properties of correctness and uniqueness, then 

ϕcmem(γ, t, t1) ⇔ state(γ, t1) |= qcond(t, t1) & state(γ, t1) |= qcond(t, t1) ⇔ state(γ, t1) |= qcond(t)  (2) 

Proof. 

The lemma can be proven in the same manner as Lemma 2. 

 
Definition 2.6 (Normalized preparation state formula)  
The state formula constructed by Lemma 1 for ϕprep(γ, t1)  is called the normalized preparation state formula for ϕprep(γ, t1) and denoted by 
qprep(t1). Moreover, qprep is the state formula ∀∀∀∀u’ [ present_time(u’)] → qprep(u’)] 

 
Lemma 4 
If time has properties of correctness and uniqueness, then 

ϕprep(γ, t1)  ⇔  state(γ, t1) |= qprep(t1) & state(γ, t1) |= qprep(t1) ⇔  state(γ, t1) |= qprep        (3) 

Proof. 

The lemma can be proven in the same manner as Lemma 2. 
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Definition 2.7 (Conditional preparation formula and normalized conditional preparation state formula) 
Let qcond(t, t1) be the normalized condition state formula for ϕcmem(γ, t, t1) and qprep(t1) the normalized preparation state formula for ϕprep(γ, 
t1). The formula ϕcprep(γ, t) of the form state(γ, t) |= ∀∀∀∀u1>t [qcond(t, u1) → qprep(u1)] is called the conditional preparation formula for ϕf(γ, t). 

The state formula ∀∀∀∀u1>t [ qcond(t, u1) → qprep(u1) ] is called the normalized conditional preparation state formula for ϕcprep(γ, t) and 
denoted by qcprep(t). Moreover, qcprep is the formula ∀u’ [ present_time(u’)  →  qcprep(u’) ]. 

 

Lemma 5 
If time has properties of correctness and uniqueness, then 

ϕcprep(γ, t) ⇔ state(γ, t) |= qcprep(t) & state(γ, t) |= qcprep(t) ⇔ state(γ, t) |= qcprep (4) 

Proof. 

The lemma can be proven in the same manner as Lemma 2. 

 
Definition 2.8 (Executable theory from memory to preparation) 
For any state atom p occurring in ϕcond(γ, t, t1), expressed in the InteractionOnt(A) for component A1: 

∀t' state(γ, t') |= p  �  state(γ, t')  |= [ memory(t', p) ∧ stimulus_reaction(p) ] 

∀t'', t’ state(γ, t'')  |= memory(t', p) �  state(γ, t''+1)  |= memory(t', p) 

∀t' state(γ, t')  |= qmem �  state(γ, t')  |= qcprep, 

∀t', t state(γ, t')  |= [qcprep ∧ qcond(t) ∧ ∩  stimulus_reaction(p) ] �  state(γ, t')  |= qprep, 
   p 

∀t' state(γ, t')  |= [ stimulus_reaction(p) ∧ ¬ preparation_for(output(t'+c, a)) ] �  state(γ, t'+1)  |= stimulus_reaction(p), 

∀t' state(γ, t') |= [ preparation_for(output(t'+c, a)) ∧ ¬ output(a) ] �  state(γ, t’+c)  |= preparation_for(output(t'+c, a)), 

where a is an action or a communication for which state(γ, t’+c)  |= output(a) occurs in ϕf(γ, t). 

 
Proposition 2 
Let ϕf(γ, t) be a future statement for t of the form ∀t1>t [ϕcond(γ, t, t1) � ϕbh(γ, t1)], where ϕcond(γ, t, t1) is an interval statement, which 
describes a condition for one or more actions and/or communications and ϕbh(γ, t1) is a (conjunction of) future statement(s) for t1, which 
describes action(s) and/or communications that are to be performed; let ϕcprep(γ, t) be the conditional preparation formula for ϕf(γ, t), 
qcprep(t) be the normalized conditional preparation state formula for ϕcprep(γ, t), and Thm→p the executable theory for ϕ(γ, t) from memory 
states to preparation states. Then,  

Thm→p  |=  [ϕf(γ, t)  ⇔ ϕcprep(γ, t)] 

and  

Thm→p  |=  [ ϕf(γ, t)  ⇔  state(γ, t) |= qcprep(t) & state(γ, t) |= qcprep(t) ⇔  state(γ, t) |= qcprep]. 

Proof. 

From the definition of Thm→p , Lemmas 3 and 4 follows that  

Thm→p  |=  [ ϕcond(γ, t, t1)  ⇔  qcond(t, t1) ]  (5) 

and  

Thm→p  |=  [ ϕbh(γ, t1)  ⇔  qprep(γ, t1)] (6) 

From (5), (6), definitions of the conditional preparation formula and the normalized conditional preparation state formulae, and the 
conditions of the proposition it follows 

Thm→p  |= [ ϕf(γ, t) ⇔ ∀∀∀∀u1 >t [qcond(t, u1) → qprep(γ, u1)] & ∀∀∀∀u1 >t [qcond(t, u1) → qprep(γ, u1)] ⇔ ∀t1>t ϕcprep(γ, t, t1) ⇔ ϕcprep(γ, t) ] 
And from Lemma 5 follows 

Thm→p  |=  [ ϕf(γ, t)  ⇔  ∀t1>t  state(γ, t) |= qcprep(t, t1) ⇔ state(γ, t) |= qcprep(t) & state(γ, t) |= qcprep(t) ⇔ state(γ, t) |= qcprep ] �  
 
Proposition 3 

Let ϕp(γ, t) be a past statement for t and ϕf(γ, t) be a future statement for t. Let ϕmem(γ, t) be the memory formula for ϕp(γ, t) and ϕcprep(γ, t) 
the conditional preparation formula for ϕf(γ, t). Then 

[ϕp(γ, t) � ϕf(γ, t)]  ⇔ [ϕmem(γ, t) � ϕcprep(γ, t)] 

Proof. 

                                                                 
1 If a future formula does not contain a condition, then stimulus_reaction atoms are generated from the corresponding past formula 
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From the Proposition 1 and the Proposition 2 follows 

ϕp(γ, t)  ⇔  ϕmem(γ, t) and ϕf(γ, t)  ⇔ ∀t1>t ϕcprep(γ, t, t1) 

Then,  

[ϕp(γ, t) � ϕf(γ, t)] ⇔ [ϕmem(γ, t) � ∀t1>t ϕcprep(γ, t, t1)] 

So it has been proven that [ϕp(γ, t) � ϕf(γ, t)] ⇔ [ϕmem(γ, t) � ϕcprep(γ, t)] �  

 

Definition 2.9 (Executable theory from preparation to output) 
For a given ϕf(γ, t) the executable theory from the preparation to the output state(s) Thp→o consists of the formula 

∀t' state(γ, t') |= preparation_for(output(t'+c, a))  �  state(γ, t’+c)  |= output(a), 

where c is a number and a an action or a communication for which state(γ, t’+c)  |= output(a) occurs in ϕf(γ, t). 

 

Definition 2.10 (Executable specification) 
An executable specification π(γ, t) for the component A is defined by a union of the dynamic properties from the executable theories 
Tho→m, Thm→p and Thp→o. 

 

Definition 2.11 (Coinciding traces) 
Two traces γ1, γ2 coincide on ontology Ont (denoted by a predicate symbol coincide_on: TRACE x TRACE x ONTOLOGY (ONTOLOGY is 
a sort that contains all names of ontologies)) iff 

∀t ∀a∈STATATOMOnt     state(γ1, t) |= a  ⇔  state(γ2, t) |= a,  

where STATATOMOnt ⊆ STATPROPOnt is the sort, which contains all names of ground atoms expressed in terms of Ont. 

 

Definition 2.12 (Refinement of an externally observable property) 

Let ϕ(γ, t) be an externally observable dynamic property for component A. An executable specification π(γ, t) for A refines ϕ(γ, t) iff 

(1) ∀γ, t  π(γ, t)  �  ϕ(γ, t) 

(2) ∀γ1, t [ ϕ(γ1, t)  �  [ ∃γ2  coincide_on(γ1, γ2, InteractionOnt(A)) & π(γ2, t) ] ] 

Note that for any past interaction statement ϕp(γ, t) and future interaction statement ϕf(γ, t) the following holds: 

∀γ1, γ2  [ coincide_on(γ1, γ2, InteractionOnt) �  [ϕp(γ1, t) ⇔ ϕp(γ2, t) & ϕf(γ1, t) ⇔ ϕf(γ2, t) ]] 

 

Lemma 6 

Let ϕ(γ, t) be a dynamic property expressed using the state ontology Ont. Then the following holds: 

(1) coincide_on(γ1, γ2, Ont)  & coincide_on(γ2, γ3, Ont)  � coincide_on(γ1, γ3, Ont)   

(2) coincide_on(γ1, γ2, Ont)  �  [  ϕ(γ1, t)  ⇔ ϕ(γ2, t)  ]. 

Proof sketch. 

The transitivity property (1) follows directly from the definition of coinciding traces for coincide_on(γ1, γ2, Ont)  and coincide_on(γ2, γ3, 
Ont): 

∀a∈STATATOMOnt   ∀t'   [state(γ1, t') |= a  ⇔  state(γ3, t') |= a  ] � coincide_on(γ1, γ3, Ont) 

From 

∀ γ1, γ2  [ coincide_on(γ1, γ2, Ont)  �  ∀t' [ϕp(γ1, t') ⇔ ϕp(γ2, t')  &  ϕf(γ1, t') ⇔ ϕf(γ2, t') ]] 

follows that  ϕ(γ1, t)  ⇔ ϕ(γ2, t). 

 

Theorem 

If the executable specification πA(γ, t) refines the external behavioral specification ϕA(γ, t) of component A, and ψ(γ, t) is a dynamic 
interaction property of component A in its environment, expressed using the interaction ontology InteractionOnt(A), then 

[∀γ  [ π A(γ, t)   �  ψ(γ, t) ]  ]  ⇔    [∀γ  [ ϕ A(γ, t)   �  ψ(γ, t) ]  ] 

Proof sketch for Theorem. 

⇐  is direct:  

from  πi(γ, t) �  ϕi(γ, t)  and   ∧ϕi(γ, t)  �  ψ(γ, t)  it follows  ∧πi(γ, t)  �  ψ(γ, t). 
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�  runs as follows:  

Suppose ϕi(γ, t) holds for all i, then since π1(γ) refines ϕ1(γ, t), then according to the definition of refinement of an externally observable 
property exists such a γ1 that π1(γ1) and coincide_on(γ, γ1, InteractionOnt (A)).  

Due to Lemma 6, this γ1 still satisfies all ϕi(γ1, t) (i.e., ϕi(γ1, t) holds for all i). 

Proceed with γ1 to obtain a γ2 and further for all i to reach a trace γn, for which   

πi(γn)  holds for all i,  

and  

coincide_on(γ, γn, InteractionOnt(A)), 

and 

ϕi(γn) holds for all i. 

 

From   

 ∀γ ∀i [πi (γ)  �  ϕi (γ)], 

and 

 ∀γ   [ ∧πi(γ)  �  ψ(γ, t)  ] 

it follows that ∀γ  ∧ϕi(γ)  �  ψ(γ). 

So it has been proven that  ∀γ  ∧ϕi(γ)  �  ψ(γ) . �  

 

 

3. TRANSFORMATION INTO THE FINITE STATE TRANSITION SYSTEM FORMAT  
 

According to the Definition 2.10 the executable specification of a component’s behavior consists of the union of three theories Tho→m, 
Thm→p and Thp→o, which in turn contain a number of executable dynamic properties. These dynamic properties can be translated into 
transition rules for a finite state transition system, based on which the same traces are generated as by executing the dynamic properties. 
For this purpose we use the predicate present_time(t) introduced earlier, which is only true in a state for the current time point t. Further 
the executable properties from the executable specification, translated into the transition rules are given. 

Time increment rules: 

present_time(0) ∧ ¬p →→  present_time(1) 

present_time(t) ∧ ¬qmem ∧ ¬p →→  present_time(t+1) 

present_time(t) ∧ qcprep ∧ ¬qcond(t) ∧ ¬p →→  present_time(t+1) 

present_time(t) ∧ qprep →→  present_time(t+1) 

Memory state creation rule: 

For any state atom p occurring in ϕcond(γ, t, t1), expressed in the InteractionOnt(A) for component A: 

present_time(t) ∧ p →→ [ memory(t, p) ∧ stimulus_reaction(p) ] 

For all other state atoms p 

present_time(t) ∧ p →→  memory(t, p) 

Memory persistence rule:  

memory(t, p) →→  memory(t, p) 

Conditional preparation generation rule: 

qmem →→ conditional_preparation_for(output(a)), 

where a an action or a communication for which state(γ, t’+c)  |= output(a) occurs in ϕf(γ, t). 

Preparation state creation rule:  

present_time(t’) ∧ conditional_preparation_for(output(a)) ∧ qcond(t) ∧ ∩  stimulus_reaction(p) →→  preparation_for(output(t’+c, a)) 
   p 

for every subformula of the form 

present_time(t’) → preparation_for(output(t’+c, a)) 

that occurs in qcprep. 

Preparation state persistence rule:  

preparation_for(output(t+c, a)) ∧ ¬output(a) →→  preparation_for(output(t+c, a)) 
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Stimulus reaction state persistence rule:  

present_time(t’) ∧ stimulus_reaction(p) ∧ ¬ preparation_for(output(t'+c, a))  →→  stimulus_reaction(p) 

Output state creation rule:  

preparation_for(output(t+c, a)) ∧ present_time(t+c-1) →→  output(a), where a is an action or a communication. 

 

 

4. TRANSFORMATION INTO THE SMV MODEL SPECIFICATION FORMAT 
 

For automatic verification of relationships between dynamic properties of components of different aggregation levels by means of model 
checking techniques, a corresponding to the behavioral specification of the lower aggregation level representation of a finite state 
transition system should be translated into the input format of one of the existing model checkers. The model checker SMV has been 
chosen as a verification tool for two reasons. First, the input language of SMV is syntactically and semantically similar to the general 
description of a finite state transition system, which facilitates automatic translation into the SMV input format. Second, SMV uses 
efficient symbolic algorithms to traverse a model and the expressive temporal logic CTL for specifying properties to check.  

Let us describe the transformation procedure, which is automatically performed by the dedicated software that has been developed.  

First, using the standard rules [1] qmem(t) and qcond(t, t1) expressions for each dynamic property DPn are transformed into the prenex 
normal form. Then, for each dynamic property the described below steps 1-3 are applied first to qmem(t) and then to qcond(t, t1). After that 
conditional preparation generation rules are added by performing the step 4. Finally, the preparation and output state creation rules are 
generated for each dynamic property by performing the step 5. 

Step 1. Rewrite in the external behavioral specification all occurrences of the function memory(communicated(t1, a)) by 
memory(observed(t1, a)) and of the function ¬memory(communicated(t1, a)) by ¬memory(observed(t1, a)) for some given atom a. For 
each occurrence of an existential quantifier of the form ∃t1 P(t1), where t1 is a time variable name and P(t1) is some function of the form 
memory(observed(t1, obs_event)), ¬memory(observed(t1, obs_event)), memory(output(t1, act_event)), and ¬memory(output(t1, 

act_event)), where obs_event and act_event are some atoms and for each occurrence of a universal quantifier of the form ∀t1 P(t1), create 
an atom (a label) t1 and add to the specification the following: 

For memory(observed(t1, obs_event)), ¬memory(observed(t1, obs_event)): 

t1: boolean ; 
init(t1):=0; 
obs_event: boolean; 
init(obs_event):=0; 

For memory(output(t1, obs_event)) and ¬memory(output(t1, obs_event)): 

t1: boolean ; 
init(t1):=0; 
act_event: boolean; 
init(act_event):=0; 

Step 2. For each existentially quantified time variable and universally quantified time variable that is not in the scope of any existential 
quantifier with a time variable:  

(a) For each occurrence of the expression Q t1, t2 R t1 memory(observed(t1, obs_event)), where Q is either an existential or a universal 
quantifier, R is the comparison relation for the linear ordered time line: R={<, ≤}; t1 and t2 are time variables, add to the specification the 
following rules: 

next(t1):= case 
             t2 & obs_event: 1; //memory state creation 
             !t2: 0; 
             1: t1;  //persistence of memory 
esac; 

(b) For each occurrence of the expression Q t1, t2 R t1 memory(output(t1, act_event)), where Q is either an existential or a universal 
quantifier, R is the comparison relation for the linear ordered time line: R={<, ≤}; t1 and t2 are time variables, add to the specification the 
following rules: 

next(t1):= case 
             t2 & act_event: 1; //memory state creation 
             !t2: 0; 
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             1: t1;  //persistence of memory 
esac; 

(c) For each occurrence of the expression Q t1, t2 R t1 ¬memory(observed(t1, obs_event)), add to the specification the following rules: 

next(t1):= case 
           t2 & !obs_event: 1; 
           !t2: 0; 
           1: t1;  
esac; 

(d) For each occurrence of the expression Q t1, t2 R t1 ¬memory(output(t1, act_event)), add to the specification the following rules: 

next(t1):= case 
           t2 & !act_event: 1; 
           !t2: 0; 
           1: t1;  
esac; 

Step 3. For each expression of the form ∃t1, t2 ∀t3 [ t3 R t2 AND t1 R t3 AND memory(observed(t1, obs_event1)) AND 
memory(observed(t2, obs_event2)) & P3(t3) ]:  

(a) if P3(t) is of the form memory(observed(t3, obs_event))  

    i. For t3 < t2 and t1< t3 add to the specification the following rules: 

t3t1_eq: boolean ; 
init(t3t1_eq):=0; 
next(t3t1_eq):= case 
            t1: 1; 
             1: 0; 
esac; 
next(t1):= case  
            !obs_event2 & !t2 & t3t1_eq & !obs_event3: 0; 
            1: t1; 
esac; 
next(t3):= case 
           !t1: 0; 
           !obs_event2 & !t2 & !obs_event3: 0; 
           !obs_event2 & !t2 & obs_event3: 1; 
           1: t3;  
esac; 

    ii. For t3 < t2 and t1≤ t3 add to the specification the following rules: 

t3t1_eq: boolean ; 
init(t3t1_eq):=0; 
next(t3t1_eq):= case 
            t1: 1; 
             1: 0; 
esac; 
next(t1):= case  
            !t2 & t3t1_eq & !obs_event3: 0; 
            1: t1; 
esac; 
next(t3):= case 
           !t1: 0; 
           !t2 & !obs_event3: 0; 
           !t2 & obs_event3: 1; 
           1: t3;  
esac; 

    iii. For t3 ≤ t2 and t1< t3 add to the specification the following rules: 

next(t1):= case  
            !obs_event2 & !t2 & !obs_event3: 0; 
            1: t1; 



 12 

esac; 
next(t3):= case 
           !t1: 0; 
           !obs_event2 & !t2 & !obs_event3: 0; 
           !obs_event2 & !t2 & obs_event3: 1; 
           1: t3;  
esac; 

    iiii. For t3 ≤ t2 and t1≤ t3 add to the specification the following rules: 

next(t1):= case  
            !t2 & !obs_event3: 0; 
            1: t1; 
esac; 
next(t3):= case 
           !t1: 0; 
           !t2 & !obs_event3: 0; 
           !t2 & obs_event3: 1; 
           1: t3;  
esac; 

(b) if P3(t) is of the form memory(output(t3, act_event))  

    i. For t3 < t2 and t1< t3 add to the specification the following rules: 

t3t1_eq: boolean ; 
init(t3t1_eq):=0; 
next(t3t1_eq):= case 
            t1: 1; 
             1: 0; 
esac; 
next(t1):= case  
            !act_event2 & !t2 & t3t1_eq & !act_event3: 0; 
            1: t1; 
esac; 
next(t3):= case 
           !t1: 0; 
           !act_event2 & !t2 & !act_event3: 0; 
           !act_event2 & !t2 & act_event3: 1; 
           1: t3;  
esac; 

    ii. For t3 < t2 and t1≤ t3 add to the specification the following rules: 

t3t1_eq: boolean ; 
init(t3t1_eq):=0; 
next(t3t1_eq):= case 
            t1: 1; 
             1: 0; 
esac; 
next(t1):= case  
            !t2 & t3t1_eq & !act_event3: 0; 
            1: t1; 
esac; 
next(t3):= case 
           !t1: 0; 
           !t2 & !act_event3: 0; 
           !t2 & act_event3: 1; 
           1: t3;  
esac; 

    iii. For t3 ≤ t2 and t1< t3 add to the specification the following rules: 

next(t1):= case  
            !act_event2 & !t2 & !act_event3: 0; 
            1: t1; 
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esac; 
next(t3):= case 
           !t1: 0; 
           !act_event2 & !t2 & !act_event3: 0; 
           !act_event2 & !t2 & act_event3: 1; 
           1: t3;  
esac; 

    iiii. For t3 ≤ t2 and t1≤ t3 add to the specification the following rules: 

next(t1):= case  
            !t2 & !act_event3: 0; 
            1: t1; 
esac; 
next(t3):= case 
           !t1: 0; 
           !t2 & !act_event3: 0; 
           !t2 & act_event3: 1; 
           1: t3;  
esac; 

(c) If P3(t) is of the form ¬memory(observed(t3, obs_event))  

    i. For t3 < t2 and t1< t3 add to the specification the following rules: 

neg_t3t1_eq: boolean ; 
init(neg_t3t1_eq):=0; 
next(neg_t3t1_eq):= case 
            t1: 1; 
             1: 0; 
esac; 
next(t1):= case  
         !obs_event2 & !t2 & neg_t3t1_eq & obs_event3: 0; 
         1: t1; 
esac; 
next(t3):= case 
           !t1: 0; 
           !obs_event2 & !t2 & obs_event3: 0; 
           !obs_event2 & !t2 & !obs_event3: 1; 
           1: t3;  
esac; 

    ii. For t3 < t2 and t1≤ t3 add to the specification the following rules: 

neg_t3t1_eq: boolean ; 
init(neg_t3t1_eq):=0; 
next(neg_t3t1_eq):= case 
            t1: 1; 
             1: 0; 
esac; 
next(t1):= case  
            !t2 & neg_t3t1_eq & obs_event3: 0; 
            1: t1; 
esac; 
next(t3):= case 
           !t1: 0; 
           !t2 & obs_event3: 0; 
           !t2 &!obs_event3: 1; 
           1: t3;  
esac; 

    iii. For t3 ≤ t2 and t1< t3 add to the specification the following rules: 

next(t1):= case  
            !obs_event2 & !t2 & obs_event3: 0; 
            1: t1; 
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esac; 
next(t3):= case 
           !t1: 0; 
           !obs_event2 & !t2 & obs_event3: 0; 
           !obs_event2 & !t2 & !obs_event3: 1; 
           1: t3;  
esac; 

   iiii. For t3 ≤ t2 and t1≤ t3 add to the specification the following rules: 

next(t1):= case  
            !t2 & obs_event3: 0; 
            1: t1; 
esac; 
next(t3):= case 
           !t1: 0; 
           !t2 & obs_event3: 0; 
           !t2 &!obs_event3: 1; 
           1: t3;  
esac; 

(d) If P3(t) is of the form ¬memory(output(t3, act_event))  

    i. For t3 < t2 and t1< t3 add to the specification the following rules: 

neg_t3t1_eq: boolean ; 
init(neg_t3t1_eq):=0; 
next(neg_t3t1_eq):= case 
            t1: 1; 
             1: 0; 
esac; 
next(t1):= case  
         !act_event2 & !t2 & neg_t3t1_eq & act_event3: 0; 
         1: t1; 
esac; 
next(t3):= case 
           !t1: 0; 
           !act_event2 & !t2 & act_event3: 0; 
           !act_event2 & !t2 & !act_event3: 1; 
           1: t3;  
esac; 

    ii. For t3 < t2 and t1≤ t3 add to the specification the following rules: 

neg_t3t1_eq: boolean ; 
init(neg_t3t1_eq):=0; 
next(neg_t3t1_eq):= case 
            t1: 1; 
             1: 0; 
esac; 
next(t1):= case  
            !t2 & neg_t3t1_eq & act_event3: 0; 
            1: t1; 
esac; 
next(t3):= case 
           !t1: 0; 
           !t2 & act_event3: 0; 
           !t2 &!act_event3: 1; 
           1: t3;  
esac; 

    iii. For t3 ≤ t2 and t1< t3 add to the specification the following rules: 

next(t1):= case  
            !act_event2 & !t2 & act_event3: 0; 
            1: t1; 
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esac; 
next(t3):= case 
           !t1: 0; 
           !act_event2 & !t2 & act_event3: 0; 
           !act_event2 & !t2 & !act_event3: 1; 
           1: t3;  
esac; 

   iiii. For t3 ≤ t2 and t1≤ t3 add to the specification the following rules: 

next(t1):= case  
            !t2 & act_event3: 0; 
            1: t1; 
esac; 
next(t3):= case 
           !t1: 0; 
           !t2 & act_event3: 0; 
           !t2 &!act_event3: 1; 
           1: t3;  
esac; 

Step 4. Add conditional preparation generation rules to the specification: 

next(fmemN):= case  // N is a number of a dynamic property in the input specification  
            ∧ti: 1; // conjunction of all labels, created based on ϕp(γ, t) 
            i 
            1: 0; 
esac; 
 

Step 5. For each action and communication a function output(act_event) in a formula qbt(t) add to the specification the following rules: 

next(fprep_act):= case  
            fmemN & ∧tj: 1; //conjunction of all labels, created based on ϕcond(γ, t, t1) 
                     j 
                      1: 0; 
esac; 

next(act_event):= case  
                fprep_act: 1; 
                        1: 0; 
esac; 

5. Case study  

To illustrate the proposed approach to verify interlevel relations, a multi-agent system for co-operative information gathering is 
considered at two aggregation levels. At the higher level the multi-agent system as a whole is considered. At the lower level the four 
components and their interactions are considered: two information gathering agents A and B, agent C, and environment component E 
representing the conceptualized part of the external world. Each of the agents is able to acquire partial information from an external 
source (component E) by initiated observations. Each agent can be reactive or proactive with respect to the information acquisition 
process. An agent is proactive if it is able to start information acquisition independently of requests of any other agents, and an agent is 
reactive if it requires a request from some other agent to perform information acquisition.  

Observations of any agent taken separately are insufficient to draw conclusions of a desired type, but the combined information of both 
agents is sufficient. Therefore, the agents need to co-operate to be able to draw conclusions. Each agent can be proactive with respect to 
the conclusion generation, i.e., after receiving both observation results an agent is capable to generate and communicate a conclusion to 
agent C. Moreover, an agent can be request pro-active to ask information from another agent, and an agent can be pro-active or reactive in 
provision of (already acquired) information to the other agent. 

For the lower-level components of this example multi-agent system, a number of dynamic properties were identified and formalized. The 
variables A1 and A2 are defined over the sort AGENTTERMS, the constant E belongs to the sort 
ENVIRONMENTAL_COMPONENTGTERMS, the variable IC is defined over the sort INFORMATION_CHUNKTERMS, the constants IC1, IC2 and 
IC3 belong to the sort INFORMATION_CHUNKGTERMS and the constant C belongs to the sort AGENTTERMS. 
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Notice that some properties in the behavioral specification below (e.g., DP1, DP2) are already specified in executable format and 
expressed using ontologies different than interaction ontologies of agents, which these properties concern. Since there is no need to 
translate such properties into executable format, they will be added to the executable specification of an agent behavior at the step 5 of the 
translation procedure. 

 
DP1(A1, A2) (Effectiveness of information request transfer between agents) 
 
∀IC ∀t1<t [ state(γ, t1, output(A1)) |= output(communicated(request_from_to_for(A1, A2, IC))) ]  
� ∃t2>t [ state(γ, t2, input(A2)) |= communicated(request_from_to_for(A1, A2 , IC)) ] 
 
DP2(A1, A2) (Effectiveness of information transfer between agents) 
 
∀IC ∀t1<t [ state(γ, t1, output(A1)) |= output(communicated(send_from_to(A1, A2, IC))) ]  
�  ∃t3>t [ state(γ, t3, input(A2)) |= communicated(send_from_to(A1, A2, IC)) ] 

DP3(A1, E) (Effectiveness of information transfer between an agent and environment) 
 
∀IC ∀t1<t [ state(γ, t1, output(A1)) |= output(obs_focus_from_to_for(A1, E, IC)) ] 
� ∃t3>t [ state(γ, t3, input(E)) |= observed(obs_focus_from_to_for(A1, E, IC)) ] 

 
DP4(A1, E) (Information provision effectiveness) 
∀IC ∀t1<t [ state(γ, t1, input(E)) |= observed(obs_focus_from_to_for(A1, E, IC)) ]  
 � ∃t3>t  [state(γ, t3, output(E)) |= observed(provide_result_from_to(E, A1, IC)) ] 

DP5(E, A1) (Effectiveness of information transfer between environment and an agent) 
 
∀IC ∀t1<t [ state(γ, t1, output(E)) |= observed(provide_result_from_to(E, A1, IC)) ] 
� ∃t3>t [ state(γ, t3, input(A1)) |= observed(provided_result_from_to(E, A1, IC)) ] 

DP6(A1, A2) (Information acquisition reactiveness) 
∀IC ∀t1<t [ state(γ, t1, input(A2)) |= communicated(request_from_to_for(A1, A2, IC)) ] 
� ∃t3>t [ state(γ, t3, output(A2)) |= output(obs_focus_from_to_for(A2, E, IC)) ] 

DP7(A1, A2) (Information provision reactiveness) 
∀IC ∀t1 [ ∃t2 [  t1<t & t2<t1 & state(γ, t1, input(A2)) |= observed(provided_result_from_to(E, A2, IC) & state(γ, t2, input(A2)) |= 
communicated(request_from_to_for(A1, A2, IC)) ]] 
� ∃t4>t [ state(γ, t4, output(A2)) |= output(communicated(send_from_to(A2, A1, IC))) ] 

DP8(A1, A2) (Conclusion proactiveness) 
 ∃t1, t2   t1<t & t2<t & state(γ, t1, input(A1)) |= observed(provided_result_from_to(E, A1, IC1)) & state(γ, t2, input(A1)) |= communicated(send_from_to(A2, A1, IC2))  
� ∃t4>t [ state(γ, t4, output(A1)) |=output(communicated(send_from_to(A1, C, IC3))) ] 

DP9(A1, E) (Information acquisition proactiveness) 
∃t ∃IC state(γ, t, output(A1)) |= output(obs_focus_from_to_for(A1, E, IC)) 

DP10(A1, A2) (Information request proactiveness) 
∃t ∃IC state(γ, t, output(A1)) |= output(communicated(request_from_to_for(A1, A2, IC))) 

The dynamic properties of the higher aggregation level component (the whole multi-agent system considered as one component) can be 
formulated and formalized in the following way. 

GP1 (Information acquisition initiation effectiveness): At some points in time A and B will start information acquisition to E. 

∃t1, t2 [ state(γ, t1, output(A)) |= output(obs_focus_from_to_for(A, E, IC1)) & state(γ, t2, output(B)) |= output(obs_focus_from_to_for(B, E, IC2)) ] 

GP2(A1) (Information source effectiveness for agent A): If at some point in time A starts information acquisition to E, then E will 
generate all the correct relevant information for agent A. 

∀t1<t ∀IC  [ state(γ, t1, output(A)) |= output(obs_focus_from_to_for(A, E, IC)) ] 
� ∃t2>t [ state(γ, t2, output(E)) |=observed(provide_result_from_to(E, A1, IC)) ] 

GP3 (Concluding effectiveness): If at some point in time E generates all the correct relevant information, then C will receive a correct 
conclusion. 

∀t1, t2 [ t1<t & t2<t [ state(γ, t1, output(E)) |= observed(provide_result_from_to(E, A, IC1)) & state(γ, t2, output(E)) |= observed(provide_result_from_to(E, B, IC2)) ]] 
� ∃t3>t [ state(γ, t3, input(C)) |= communicated(send_from_to(A, C, IC3)) 

Between the lower level and the higher level properties the following interlevel relations were manually identified: 

DP9 & DP10 & DP1(A, B) & DP6(A, B) � GP1   (7) 

DP3 (A, E) & DP4(A, E) � GP2(A)     (8) 

DP3 (B, E) & DP4(B, E) � GP2(B)     (9) 

DP5 (E, A) & DP5 (E, B) & DP10 & DP1(A, B) & DP7(A, B) & DP2(B, A) & DP8(A, B) & DP2(A, C) � GP3  (10) 

From the higher level properties GP1, GP2(A), GP2(B) and GP3 the global system successfulness property can be inferred.  

GP (Successfulness): For any trace there exists a point in time when agent C will receive a correct conclusion. 

∃t ∃IC state(γ, t, input(C)) |= communicated(send_from_to(A, C, IC)) 

GP1 & GP2(A) & GP2(B) & GP3 � GP 
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Now, by means of the proposed approach the identified interlevel relations between dynamic properties of different aggregation levels 
(7), (8), (9) and (10) can be formally justified (or refuted). For this purpose first for every relationship using the developed software the 
external behavioral specification of the multi-agent system that consists of the lower level properties of the antecedent of the relationship 
is automatically transformed into an executable behavioral specification. Then, using the other automated translation procedure, every 
executable behavioral specification is converted into a description of a finite state transition system. In order to perform verification by 
means of SMV model checker, every general description of the finite state transition system has been automatically translated into the 
SMV model specification format. Using the state transition system representation, verification of the entailment relations, represented as 
CTL formulas, can be performed. For example, for the relation (10) (for the complete description of the finite state transition system we 
refer to the Appendix A the dynamic property GP3 is expressed in CTL as: 

AG (E_output_observed_provide_result_from_to_E_A_info & E_output_observed_provide_result_from_to_E_B_info  
→ AF input_C_communicated_send_from_to_A_C_info) 

The automatic verification showed that all the relationships between properties (7), (8), (9) and (10) indeed hold with respect to the 
corresponding models of the multi-agent system. 

At the same time, if one excludes property DP8 from the antecedent of the relation (10), model checking proves that the formulated in 
such way relationship fails. From the counter-example produced by the model checker, it is visible that although agent A has all necessary 
information to draw a conclusion, it will never send the conclusion to agent C. Thus, by performing such verification, it is possible to 
reveal mistakes in manually identified relations between properties and improve them. 
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Appendix A: SMV model description for the example of the co-operative information gathering 
MAS 

MODULE main 
 VAR 
fpast1: boolean; 
t1: boolean; 
E_output_observed_provide_result_from_to_E_A_info: boolean; 
t2: boolean; 
A_input_provided_result_from_to_E_A_info: boolean; 
fprep_A_input_provided_result_from_to_E_A_info: boolean; 
fpast2: boolean; 
t4: boolean; 
E_output_observed_provide_result_from_to_E_B_info: boolean; 
t5: boolean; 
B_input_provided_result_from_to_E_B_info: boolean; 
fprep_B_input_provided_result_from_to_E_B_info: boolean; 
fpast3: boolean; 
t7: boolean; 
A_output_request_from_to_for_A_B_info: boolean; 
t8: boolean; 
B_input_request_from_to_for_A_B_info: boolean; 
fprep_B_input_request_from_to_for_A_B_info: boolean; 
fpast4: boolean; 
t10: boolean; 
t11: boolean; 
t12: boolean; 
B_output_send_from_to_B_A_info: boolean; 
fprep_B_output_send_from_to_B_A_info: boolean; 
fpast5: boolean; 
t14: boolean; 
t15: boolean; 
A_input_send_from_to_B_A_info: boolean; 
fprep_A_input_send_from_to_B_A_info: boolean; 
fpast6: boolean; 
t17: boolean; 
A_output_communicated_send_from_to_A_C_info: boolean; 
t18: boolean; 
C_input_communicated_send_from_to_A_C_info: boolean; 
fprep_C_input_communicated_send_from_to_A_C_info: boolean; 
fpast7: boolean; 
t20: boolean; 
t21: boolean; 
t22: boolean; 
fprep_A_output_communicated_send_from_to_A_C_info: boolean; 
t24: boolean; 
ASSIGN 
init(fpast1):=0; 
init(t1):=0; 
init(E_output_observed_provide_result_from_to_E_A_info):=0; 
init(t2):=0; 
init(A_input_provided_result_from_to_E_A_info):=0; 
init(fprep_A_input_provided_result_from_to_E_A_info):=0; 
init(fpast2):=0; 
init(t4):=0; 
init(E_output_observed_provide_result_from_to_E_B_info):=0; 
init(t5):=0; 
init(B_input_provided_result_from_to_E_B_info):=0; 
init(fprep_B_input_provided_result_from_to_E_B_info):=0; 
init(fpast3):=0; 
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init(t7):=0; 
init(t8):=0; 
init(B_input_request_from_to_for_A_B_info):=0; 
init(fprep_B_input_request_from_to_for_A_B_info):=0; 
init(fpast4):=0; 
init(t10):=0; 
init(t11):=0; 
init(t12):=0; 
init(B_output_send_from_to_B_A_info):=0; 
init(fprep_B_output_send_from_to_B_A_info):=0; 
init(fpast5):=0; 
init(t14):=0; 
init(t15):=0; 
init(A_input_send_from_to_B_A_info):=0; 
init(fprep_A_input_send_from_to_B_A_info):=0; 
init(fpast6):=0; 
init(t17):=0; 
init(A_output_communicated_send_from_to_A_C_info):=0; 
init(t18):=0; 
init(C_input_communicated_send_from_to_A_C_info):=0; 
init(fprep_C_input_communicated_send_from_to_A_C_info):=0; 
init(fpast7):=0; 
init(t20):=0; 
init(t21):=0; 
init(t22):=0; 
init(fprep_A_output_communicated_send_from_to_A_C_info):=0; 
init(t24):=0; 
init(A_output_request_from_to_for_A_B_info):=1; 
next(t2):= case 
 !A_input_provided_result_from_to_E_A_info: 1; 
1:t2; 
esac; 
next(t1):= case 
 E_output_observed_provide_result_from_to_E_A_info: 1; 
1:t1; 
esac; 
next(t4):= case 
 E_output_observed_provide_result_from_to_E_B_info: 1; 
1:t4; 
esac; 
next(t5):= case 
 !B_input_provided_result_from_to_E_B_info: 1; 
1:t5; 
esac; 
next(t7):= case 
 t24: 1; 
!t24:0; 
1:t7; 
esac; 
next(t8):= case 
 !B_input_request_from_to_for_A_B_info: 1; 
B_input_request_from_to_for_A_B_info:0; 
1:t8; 
esac; 
next(t11):= case 
 B_input_request_from_to_for_A_B_info: 1; 
!B_input_request_from_to_for_A_B_info:0; 
1:t11; 
esac; 
next(t12):= case 
 !B_output_send_from_to_B_A_info: 1; 
B_output_send_from_to_B_A_info:0; 
1:t12; 
esac; 
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next(t10):= case 
 !t11: 0; 
B_input_provided_result_from_to_E_B_info & t11: 1; 
!t11: 0; 
!B_input_provided_result_from_to_E_B_info & t11:0; 
1:t10; 
esac; 
next(t14):= case 
 B_output_send_from_to_B_A_info: 1; 
!B_output_send_from_to_B_A_info:0; 
1:t14; 
esac; 
next(t15):= case 
 !A_input_send_from_to_B_A_info: 1; 
A_input_send_from_to_B_A_info:0; 
1:t15; 
esac; 
next(t17):= case 
 A_output_communicated_send_from_to_A_C_info: 1; 
!A_output_communicated_send_from_to_A_C_info:0; 
1:t17; 
esac; 
next(t18):= case 
 !C_input_communicated_send_from_to_A_C_info: 1; 
C_input_communicated_send_from_to_A_C_info:0; 
1:t18; 
esac; 
next(t22):= case 
 !A_output_communicated_send_from_to_A_C_info: 1; 
1:t22; 
esac; 
next(t21):= case 
 A_input_send_from_to_B_A_info: 1; 
1:t21; 
esac; 
next(t20):= case 
 A_input_provided_result_from_to_E_A_info: 1; 
1:t20; 
esac; 
next(t24):= case 
 A_output_request_from_to_for_A_B_info: 1; 
1:t24; 
esac; 
next(fpast1):= case  
t2 & t1: 1;  
1:0; 
 esac; 
next(fprep_A_input_provided_result_from_to_E_A_info):= case  
 fpast1: 1; 
1:0; 
 esac; 
next(A_input_provided_result_from_to_E_A_info):= case  
 fprep_A_input_provided_result_from_to_E_A_info: 1;  
1:0; 
 esac; 
next(fpast2):= case  
t4 & t5: 1;  
1:0; 
 esac; 
next(fprep_B_input_provided_result_from_to_E_B_info):= case  
 fpast2: 1; 
1:0; 
 esac; 
next(B_input_provided_result_from_to_E_B_info):= case  
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 fprep_B_input_provided_result_from_to_E_B_info: 1;  
1:0; 
 esac; 
next(fpast3):= case  
t7 & t8: 1;  
1:0; 
 esac; 
next(fprep_B_input_request_from_to_for_A_B_info):= case  
 fpast3: 1; 
1:0; 
 esac; 
next(B_input_request_from_to_for_A_B_info):= case  
 fprep_B_input_request_from_to_for_A_B_info: 1;  
1:0; 
 esac; 
next(fpast4):= case  
t11 & t12 & t10: 1;  
1:0; 
 esac; 
next(fprep_B_output_send_from_to_B_A_info):= case  
 fpast4: 1; 
1:0; 
 esac; 
next(B_output_send_from_to_B_A_info):= case  
 fprep_B_output_send_from_to_B_A_info: 1;  
1:0; 
 esac; 
next(fpast5):= case  
t14 & t15: 1;  
1:0; 
 esac; 
next(fprep_A_input_send_from_to_B_A_info):= case  
 fpast5: 1; 
1:0; 
 esac; 
next(A_input_send_from_to_B_A_info):= case  
 fprep_A_input_send_from_to_B_A_info: 1;  
1:0; 
 esac; 
next(fpast6):= case  
t17 & t18: 1;  
1:0; 
 esac; 
next(fprep_C_input_communicated_send_from_to_A_C_info):= case  
 fpast6: 1; 
1:0; 
 esac; 
next(C_input_communicated_send_from_to_A_C_info):= case  
 fprep_C_input_communicated_send_from_to_A_C_info: 1;  
1:0; 
 esac; 
next(fpast7):= case  
t22 & t21 & t20: 1;  
1:0; 
 esac; 
next(fprep_A_output_communicated_send_from_to_A_C_info):= case  
 fpast7: 1; 
1:0; 
 esac; 
next(A_output_communicated_send_from_to_A_C_info):= case  
 fprep_A_output_communicated_send_from_to_A_C_info: 1;  
1:0; 
 esac; 
 


