View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DSpace at VU

Verifying Interlevel Relations within Multi-Agent Systems:

formal theoretical basis

Technical Report: TR-1701Al

In this paper the formal theoretical basis used for transformation of a non-executable external behavioral specification for a multi-agent
system into an executable format, required for enabling verification techniques, is explained in detail.

An external behavioral specification for components of the multi-agent systems is specified using the Tempora Trace Language (TTL),
which syntax and semantics are explained in Section 1.

In the general case, at any aggregation level abehavioral specification for a multi-agent system component consists of dynamic properties
expressed by complex temporal relations in TTL, which therefore does not allow direct application of automatic verification procedures,
more specifically, model checking techniques, used in this paper. In order to apply model checking techniquesit is needed to transform an
original behavioral specification of a certain aggregation level into a model based on a finite state transition system. In order to obtain
this, as a first step a behaviora description for the lower aggregation level is replaced by one in executable (temporal) format. As a
solution, an automated substitution of the behavioral specification for the component by an executable specification (expressed in an
executable temporal language) is put forward. The justification is based on the theorem that a behavioral specification entails a certain
dynamic property if and only if the generated executable specification entails the same property. The proof for this theorem and other
formal theoretical results are given in Section 2.

Moreover, for the purposes of practical verification by means of model checking techniques, an automated translation from a behavioral
specification based on executable temporal logical properties into a finite state transition system description has been developed. The
details of atranslation procedure are explained in Section 3.

Furthermore, the procedure for trandating from the state transition system description into the model specification format for the SMV
model checker that is used for verification is described in Section 4.

In Sections 5 the application of the proposed approach isillustrated by a paradigmatic example. The SMV specification for the exampleis
given in the Appendix A.

1. TTL Syntax and Semantics

The language TTL, short for Temporal Trace Language, is a variant of order-sorted predicate logic. Whereas the standard multi-sorted
predicate logic is a language to reason about static properties only, TTL is an extension of such languages with facilities for reasoning
about the dynamic properties of arbitrary systems expressed by static languages.

1.1 The State Language

For expressing state properties of a system ontologies are used. In logical terms, an ontology is a signature that specifies the vocabulary of
a language to represent and reason about a system. In order to represent different ontological entities of a system a number of different
syntactical sorts are used. Thus, the state properties are specified using a multi-sorted first-order predicate language Lsrate With the
vocabulary, specified by a signature:

Definition 1.1 (State Language Signature)

A signature £g is atuple, £5=<S; C; P; f>, where Sis a set of sort names; C is a set of constants of each sort; P is a set of predicate
symbals; f isaset of functional symbols.

Let £4 =<S; C; P; f> be a signature for Lsrate. We assume that the set of variablesis given and that with each variable x from this set a
sort Sisassociated, written as x:S. Then the terms and formulae of the language L srate are defined as follows.

Definition 1.2 (Terms of the state language)
The terms of any sort S are inductively defined by:

1. If x:Sisavariable of the state language, then x isaterm of Lgrate.

2. If cOCisaconstant symbol, then cisaterm of Lsrate-

3. Iff Ofisan n-placefunction symbol S; x ... xS, - Sand 1y,..., T, are terms of Lgrare, such that T, 0 §TE~MS (aset of all terms
constructed using the sort S), then f(ty,..., T) 0 S'=™Sisaterm of Lgrate.

Definition 1.3 (Formulae of the state language)
The formulae of Lsrate are inductively defined as follows:

https://core.ac.uk/display/15451636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. IfP:S xS;X ... xS, isapredicate symbol from P and Ty, Tp..., T, are terms of Lsrare, Such that T 0 STE~MS, then P(1y, To....,
1,) isaformulaof Lsrate,

If 14 and 1, are terms of the same sort S, then 1, = T,isaformulaof Lsrate.

If ¢ and Y are the formulae of L, then ~¢, (§|w), (¢& W), (d=W) and (¢ =) are formulae of Lsrate-

4. If ¢ aformulaof Lgcontaining x as afree variable, then (Ox ¢) and (Cx ¢) are formulae of Lsrate-

W N

1.2. TheLanguageof TTL

In the language TTL formulae of the state language Lsrate are used as objects. To provide names of object language formulae ¢ in the
TTL the operator (*) is used (written as ¢*). Then, by means of the defined in the TTL holds predicate these objects are evaluated in
states defined within TTL. The language TTL (Ltr.) has a signature €7 that facilitates the specification of and reasoning about the
dynamics of systems:

Definition 1.4 (TTL Signature)
A signature consists of the symbols of the following classes:

(1) anumber of sorts: TIME (a set of all time points), STATE (a set of all state names), TRACE (a set of all trace names; atrace can be
considered as a timeline with for each time point a state), STATPROP (a set of al names for state properties expressed using the
state language); and VALUE (an ordered set of numbers). Furthermore, for every sort S from Lsrate three TTL sorts exist: the sort
SYARS which contains all variable names of sort S, and the sort S°T5R™MS which contains names of all ground terms, constructed
using sort S. Sorts S°TERMS and SYARS are subsorts of a sort STERMS,

(2) countably infinite number of individual variables of each sort. We shall use t with subscripts and superscripts for variables of the sort
TIME; y with subscripts and superscripts for variables of the sort TRACE; s with subscripts and superscripts for variables of the sort
STATE; v with subscripts and superscripts for variables of the sort VALUE.

(3) aset of function symbols @, among which:

a) afunction symbol state of type TRACE x TIME - STATE.
b) functional symbols [, [0, -, « : STATPROP x STATPROP — STATPROP; not: STATPROP -, STATPROP.
0 functional symbols O: S"#*5x STATPROP - STATPROP, and [t S"A"°x STATPROP —. STATPROP for every sort S.
d) functional symbols—, +,/, »: TIME x VALUE - TIME.
e functional symbols—, +,/, *: VALUE x VALUE - VALUE.
(4) asetof predicate symbols P, among which:
a) apredicate symbol holds (|=) of type STATE x STATPROP.
b) =: an identity relation on arbitrary sorts
c) <: TIME x TIME is the earlier than relation on time
d) <: VALUE x VALUE isthe less than relation on the sort VALUE

When it is necessary to indicate an aspect state of a system component (i.e., input, output or internal), the sorts ASPECT_COMPONENT
(a set of the component aspects of a system); COMPONENT (a set of al component names of a system); and
COMPONENT_STATE_ASPECT (a set of al names of aspects of all component states) are included in the TTL. Using these sorts a
functional symbol comp_aspect can be defined as:. ASPECT_COMPONENT x COMPONENT - COMPONENT_STATE_ASPECT.
Then, afunction state is specified as: TRACE x TIME x COMPONENT_STATE_ASPECT - STATE.

Notice that also within states statements about time can be made, for this purposes the sort LTIME is used in the state language. Further
we shall use u with subscripts and superscripts to denote constants of sort LTIMEYA®S,

State language formulae are incorporated into the TTL by mappings of variable sets, terms sets and formulae sets into the names of sorts
SOTERMS GTERMS QVARS and STATPROP using the operator (*).

Definition 1.5 (Operator *)
The operator (*) is defined inductively on the structure of formulae from Lsrate by the following mappings:

=

Each constant symbol c[0Sin C is mapped to the constant name ¢’ of sort STERMS,

Each variable x:S of the state language is mapped to the constant name x’ [] SVARS

3. Each1EfRuMnSction symbol f: S;X S, X ... XSy — Spe1in g ismapped to the function namef': S,TEMS x STERMS | x G TERMS
Sh

4. Each predicate symbol P: S;x S, X ... X S, is mapped to the function name P': S,"E-MS x S,TERMS i x §,TERMS
STATPROP

5. The mappings for state formulae are defined as follows:

(~$)* = not(¢*)

(b & W)= ¢* Dy

(¢ |w)* = ¢* Oy~

=) =0* - ¢~

(O =) =0¢* o Y~

(Ox d(x))*=0Ox" ¢*(x’), wherex’ isany constant of

N

~PoooTe

SVARS

Make notice that the sorts S°TERMS and SYARS contain only the elements, corresponding to mappingsin Definition 1.5.

Furthermore, it is assumed that the state language and the TTL signature define digjoint sets of expressions. Therefore, further in TTL
formulae we will use the same notations for the elements of the object language (i.e, constants, variables, functions, predicates) and for
their namesin the TTL without introducing any ambiguity.

Definition 1.6 (TTL Terms)

a Anyvaiablex of TTL sort Sisatermof L7, of sort S.
b. If fisan n-place function symbol of the TTL language S; X ... X S, - Sand 1y,..., T,aretermsof TTL sorts S,, S, then f(t4,...,
1,) isatermof Ly, of sort S.

Definition 1.7 (TTL Formulae)
TTL- formulae are defined inductively as follows:

A. Theset of atomic TTL-formulaeis defined as:

(2) If vy isaterm of sort STATE, and u, is aterm of the sort STATPROP, then holds(v,, u;) isan atomic TTL formula (sometimesis
used in infix notation like vy |= uy).

(2) if 14, T, are terms of any sort, then = (14, T,) isan atomic TTL formula. (further we shall use this predicate in infix form 1, = 1,)

(3) if ty, t, are terms of sort TIME, then < (ty, t,) isan atomic TTL formula. (further we shall use this predicatein formt; <t,,
furthermore we shall uset; < t,for t;<t, Ot;=t,)

(4) If v1, v2 areterms of sort VALUE, then vl <v2isan atomic TTL formula
B. The set of well-formed TTL-formulaeis defined as
(2) Any atomic TTL-formulais awell-formed TTL-formula
(2) If ¢ and Y are well-formed TTL-formulae, then so are ~¢, (d[P), (P& W), (¢=w) and (¢ = W).

(3) If ¢ isawell-formed TTL-formula containing TTL variable x of sort S, where Sisone of TTL sorts, then (Ox ¢) and (Cx ¢) are
well-formed TTL-formulae.

1.2. TheSemanticsof TTL
An interpretation of aTTL formulais defined by the standard interpretation of order sorted predicate logic formul ae.

Definition 1.8 (I nterpretation)

Aninterpretation of aTTL formulais defined by a mapping | that:

(1) associates each sort symbol Sto a certain set (subdomain) Ds, and if SO S then D Ds;

(2) associates each constant ¢ of sort S to some element of Dg

(3) associates each function symbol f of sort <X, ..., X;> - X1 toamapping (X)) X ...x I(X;) = 1(Xi+1)
(4) associates each predicate symbol P of sort <Xj, ..., Xj>to arelation on (X)) x ...x [(X;)

Definition 1.9 (TTL Model)

A model M for thelanguage TTL isapair M=<I, V>, where:

- | isan interpretation function, and

- Visavariable assignment function, mapping each variable x: Sto an element of Ds.

We write V [x/V] for the assignment function that maps variables y other than x to V(y) and maps x to v. Analogously, we write M[x/v] =
<l, V [x/V]>.

Definition 1.10 (Interpretation of TTL terms)
Let M=<I,V> be amodel for TTL. Then the meaning of aterm T O TTL, denoted by ™, isinductively defined by:

1. ()M=V(x), wherex isavariable over one of the TTL sorts.
2. (©M=1(c), wherecisaconstant of one of the TTL sorts.

3. f(n...tM =1t M., M), where f isa TTL function of type S; X ... X Sy —» Sand 1y,..., Toare terms of TTL sorts Sy, ...,

Definition 1.11 (Truth definition for TTL)
Let M=<I, V> beamodel for TTL. Then the truth definition of TTL isinductively defined by:
1 |EwPy... w) iff I(P) (TM,..., M) =true
2. Fu-diffEud
3. Fm¢ OWiff |=v ¢ andiff [Fy g
4. |=m Ox (9(X)) iff [Fumpag ¢(X) for al vO Ds, where x is avariable of sort S.

The semantics of connectives and quantifiersis defined in the standard way.

1.3 Axiomsof TTL
@ Equality of traces:
Oya, vz [Ot [state(ys, t) = state(yz, 1) | = v = Y2

2 Equality of states:
Osy, s, [JaSTATPROP [truth_value(s,, a) = truth_value(s,, 8)] = s1=5)]

©)] Truth valuein a state:
holds(s, p) = truth_value(s, p)=true

(4) State consistency axiom:
Ov, t, p (holds(state(y, t), p) = —holds(state(y, t), not(p)))
(5) State property semantics:
a holds(s, (p, py)) = holds(s, p;) & holds(s, p,)
b. holds(s, (p; Opy)) = holds(s, py) | holds(s, p,)

c. holds(s, not(p,)) = —holds(s, p;)
For any constant variable name x from the sort S'AR®:

d. holds(s, (Ox, F)) = X :SCTERMS holds(s, G), with G, F terms of sort STATPROP, where G is obtained from F by
substituting all occurrences of x by x’

e holds(s, (O(x, F))) < Ox': S°TE”"MS holds(s, G), with G, F terms of sort STATPROP, where G is obtained from F by
substituting all occurrences of x by x’

(6) Partial order axioms for the sort TIME:
a Ottt (Reflexivity)
b. Dtl,tz [<t O L< tl] ==t (Ant|-%’mmary)
C. Dtl, t2, t3[tl < t2 0 t2 < t3] = tls t3 (TranSltIVIty)

) Axioms for the sort VALUE:
a [Ovv<v (Reflexivity)
b. OvyVo[vig v, OVo<vp] = vi=v, (Anti-Symmetry)
c. [Ovg, Vo, V3[Vi<V, OV, V3] = vy < v (Transitivity)
d. Standard arithmetic axioms

(8) Axioms, which relate the sorts TIME and VALUE:
a (t+vy) +vo=t+(vi+vy)
b, (tevy)evo=te (vieVy)

9) Finite variability property (optional):
Oy OtD>0 Oy, t, t<t<t, & t,-1,206& O h, <t <t, state(y, t') = state(y, 1)

2. FORMAL JUSTIFICATION FOR THE TRANSFORMATION PROCEDURE

Lemma 1 (Normalization lemma)

Let t be agiven time point. If aformula d(y, t) only contains temporal relations such ast' <t" and t' < t*, and atoms of the form state(y, t) |=
p for some name of a state formula p, then some state formula g(t) can be constructed such that &(y, t) is equivaent to the formula &%(y, t) of
the form state(y, t) |= q(t).

Proof sketch for Lemma 1.

First in the formula &(y, t) replace al temporal relations such ast' < t" and t' < t" by state(y, t) |= t' < t" and state(y, t) |= t' < t" respectively.
Then proceed by induction on the composition of the formula 3(y, t). Treat the logical connectives &, |, -, =, Os, (5.

1) conjunction: 3(y, t) is 81(y, t) & 32(y, t)

By induction hypothesis

0l(y,t) = state(y, t) |=pl (whichis d1*(y, t))

02(y, t) = state(y, t) |=p2 (which is d2*(y, t))

Then

3y, t) < state(y,t)|=pl & state(y,t)|=p2 - state(y,t)|=[plOp2] (which becomes &*(y, 1))
2) disiunction: 3(y, t) is 31(y, t) | 82(y, t)

Again by induction hypothesis

0l(y, t) = state(y, t) |[=pl (which is d1*(y, t))

02(y, t) = state(y, t) |=p2 (which is d2*(y, t))

Then

3(y,t) = state(y,t) |=pl | state(y,t) |[=p2 < state(y,t)|=[plOp2] (which becomes &*(y, t))
3) negation: 3(y, t) is =31(y, t)

0l(y,t) = state(y,t) |=pl

oy, t) = -state(y,t) |=pl

3y, t) « state(y, t) |= not(pl) (whichis &y, 1))

4) implication: &(y, t) is d1(y,t) = 32(y, t)

Again by induction hypothesis

31(y, t) = state(y,t) |=pl (whichis d1%(y, t))
32(y, t) = state(y, t) |= p2 (which is d2%(y, t))
Then

5y, t) [state(y, t) |=pl = state(y,t) |=p2] - state(y,t)|=[pl - p2] (which becomes &*(y, t))
5) universal quantifier:

oy, t) = Ot state(y, t) |= p1(t)

3y, t) < state(y, t) |= Ou' p1(u’) (whichisd*(y, t))

6) existential quantifier:

oy, t) = [O'state(y, t) |= p1(t)

oy, t) < state(y, t) |= L' p1(u’) (which becomes &*(y, t))

Definition 2.1 (Uniqueness and correctness of time)
To relate time within a state property to time external to states a functional symbol present_time: LTIME™™°_ STATPROP is used. Here
timeis assumed to have the properties of correctness and uniqueness:

Uniqueness of time

This expresses that present_time(t) is true for at most one time point t:

[, t" state(y, t) |= present_time(t") = Ot', t'4t" - state(y, t) |= present_time(t)
Correctness of time

This expresses that present_time(t) istrue for the current time point t:

[t state(y, t) |= present_time(t)

Definition 2.2 (Memory formula)
The formula ¢mem(y, t) Obtained by replacing all occurrences in ¢p(y, t) of subformulae of the form state(y, t') |[= p by state(y, t) |=
memory(t', p) is called the memory formula for ¢p(y, t).

Definition 2.3 (Normalized memory state formula)
The state formula constructed by Lemma 1 for a memory formula ¢mem(y, t) is called the normalized memory state formula for dmem(y, t)
and denoted by gmem(t). Moreover, gmem is the state formula Ou’ [present_time(U’) - qmem(U’)]-

Lemma 2

If time has properties of correctness and uniqueness, then

Omem(Y, t) = state(y, t) |= gmem(t) < state(y, t) |= dmem 1)
Pr oof.

The proof for Lemma 2 follows directly from the Lemma 1, definitions of correctness and uniqueness of time and the definition of the
formula gyem. Lemmas 3, 4 and 5 can be proven in the same manner.

Definition 2.4 (Executable theory from interaction to memory)
For agiven ¢(y, t) the executable theory from observation states to memory states Th,_m consists of the formulae:
For any atom p occurring in ¢p(y, t), expressed in the InteractionOnt(A) for acomponent A:

Ot state(y, t') |=p = state(y, t') |= memory(t', p),

Ot" state(y, t") |= memory(t', p) = state(y, t"+1) |= memory(t', p),

state(y, 0) |= present_time(0),

Ot state(y, t) [= present_time(t) = state(y, t+1) |= present_time(t+1),

The last two rules are assumed to be included into two following theories Thim ., and Thy ., aswell.

Proposition 1
Let dp(y, t) be a past statement for a given t, dmem(y, t) the memory formula for ¢y(y, t), gmem(t) the normalized memory state formula for
dmem(y, t), and Th, . m the executable theory from the interaction states for ¢p(y, t) to the memory states. Then,

Thom |= [Pp(y,) < dmem(y. 1)]

and

Tho.m [= [dp(v, 1) = state(y, t) |= Omem(t) & state(y, t) |= dmem(t) = state(y, t) = dmem].
Proof.

From the definitions of gmem(t) and of Th,_m follows

Thowm |= [9p(Y: 1) = Gmem(y, 1)]

Further by Lemma 2

Thom |= [¢p(y,) = state(y, t) = Gmem(t) 1 m

Definition 2.5 (Normalized condition state formula)

The state formula constructed by Lemma 1 for ¢cmem(y, t, t1) is called the normalized condition state formula for dcmem(y, t, t1) and denoted
bY geond(t, t1). Moreover, geond(t) isthe state formula Ou’ [present_time(u’) — Qeond(t, U’)]

Lemma 3

If time has properties of correctness and uniqueness, then

Gemem(Ys t, t1) <= state(y, t1) |= qeond(t, t1) & state(y, t1) |= geond(t, t1) = state(y, t1) |= geona(t) 2)
Pr oof.

The lemma can be proven in the same manner as Lemma 2.

Definition 2.6 (Normalized preparation state formula)
The state formula constructed by Lemma 1 for ¢prep(y, t1) is called the normalized preparation state formula for ¢prep(y, t1) @nd denoted by
Qprep(tr). MoOreover, gprep IS the state formula Ou’ [present_time(U’)] - gprep(U’)]

Lemma 4

If time has properties of correctness and uniqueness, then

Gprep(y, 1) = state(y, t1) |= gprep(ts) & state(y, t1) |= gprep(ts) = state(y, ta) |= Gdprep 3
Proof.

The lemma can be proven in the same manner as Lemma 2.

Definition 2.7 (Conditional preparation formula and normalized conditional preparation state formula)
Let geona(t, t1) be the normalized condition state formulafor ¢cmem(y, t, t1) and dprep(t1) the normalized preparation state formulafor ¢prep(y,
t1). The formula deprep(y, t) Of the form state(y, t) |= Oui>t [geona(t, U1) — dprep(u1)] IS called the conditional preparation formula for ¢«(y, t).

The state formula Oui>t [deond(t, U1) — dprep(uz)] iS called the normalized conditional preparation state formula for ¢cprep(y, t) and
denoted by geprep(t). MOreover, geprep iS the formula Ou’ [present_time(u’) - deprep(U’) |-

Lemma5s

If time has properties of correctness and uniqueness, then

Geprep(Ys 1) = state(y, t) [= deprep(t) & state(y, t) |= deprep(t) = state(y, t) |= geprep 4)
Proof.

The lemma can be proven in the same manner as Lemma 2.

Definition 2.8 (Executable theory from memory to preparation)
For any state atom p occurring in deona(y, t, t1), expressed in the InteractionOnt(A) for component A™;

Ot state(y, t') |= p = state(y, t') |= [memory(t', p) O stimulus_reaction(p)]
Ot", t' state(y, t") |= memory(t', p) = state(y, t"+1) |= memory(t', p)
Ot state(y, t) |= qmem = state(y, t) [= dcprep,
Ot', t state(y, t) |= [qcprep O Geond(t) O N stimulus_reaction(p)] = state(y, t') |= prep,
p
Ot state(y, t') |= [stimulus_reaction(p) 0- preparation_for(output(t'+c, a))] = state(y, t'+1) |= stimulus_reaction(p),
0Ot state(y, t') |= [preparation_for(output(t'+c, a)) 0 - output(a)] = state(y, t'+c) |= preparation_for(output(t'+c, a)),
where a is an action or acommunication for which state(y, t+c) |= output(a) occursin ¢y, t).

Proposition 2

Let do«(y, t) be a future statement for t of the form Oti>t [dcona(y: t, t1) = don(y, t1)]l, Where deonaly, t, t1) IS an interval statement, which
describes a condition for one or more actions and/or communications and ¢pn(y, t1) is a (conjunction of) future statement(s) for t;, which
describes action(s) and/or communications that are to be performed; let dcprep(y, t) be the conditional preparation formula for «(y, t),
Qeprep(t) be the normalized conditional preparation state formula for ¢eprep(y, t), and Thm ., the executable theory for ¢(y, t) from memory
states to preparation states. Then,

Thm_p |= [0y, ©) < deprep(Y, 1]

and

Thn_p |= [9y, 1) < state(y, t) |= Qeprep(t) & state(y, t) |= deprep(t) = state(y, t) [= deprepl-

Proof.

From the definition of Thy, ., , Lemmas 3 and 4 follows that

Thip |= [deonds t 1) = Goonalt,)] ©)
and

Thm.p [= [don(y, 1) = dprep(y, ta)] (6)

From (5), (6), definitions of the conditional preparation formula and the normalized conditional preparation state formulae, and the
conditions of the proposition it follows

Thm_p = [91y, 1) = Ouz >t [geond(t, U1) — Gprep(Y, U1)] & Oua >t [deond(t, U1) — Gprep(Ys U1)] = Dta>t deprep(Ys 1 t) = deprep(Y, 1)]
And from Lemma 5 follows

Thm_p |= [$i(y,) = Oti>t state(y, t) |= deprep(t, t1) < state(y, t) |= deprep(t) & state(y, t) |= deprep(t) = state(y, t) |= deprep] W

Proposition 3

Let dp(y, t) be a past statement for t and ¢«(y, t) be a future statement for t. Let dmem(y, t) be the memory formulafor ¢y(y, t) and deprep(y: t)
the conditional preparation formulafor ¢«(y, t). Then

[Dp(Y, 1) = O, D] = [Pmem(Y: 1) = Dcpren(Y, 1)]
Pr oof.

11 afuture formula does not contain a condition, then stimulus_reaction atoms are generated from the corresponding past formula

From the Proposition 1 and the Proposition 2 follows

dp(Ys 1) = Omem(y: 1) @nd dely, 1) < Ttr>t deprep(Ys t, t1)
Then,

[9p(y: ©) = 91y, O] = [Pmem(Y,) = Ota>t deprep(Vs L, t1)]
So it has been proven that [op(y, t) = x(y, t)] = [dmem(Y: t) = Dcprep(y, t)] m

Definition 2.9 (Executable theory from preparation to output)
For agiven ¢«(y, t) the executable theory from the preparation to the output state(s) Th, ., consists of the formula

Ot state(y, t') |= preparation_for(output(t'+c, a)) = state(y, t'+c) |= output(a),
where ¢ isanumber and a an action or acommunication for which state(y, t'+c) |= output(a) occursin ¢(y, t).

Definition 2.10 (Executable specification)
An executable specification m(y, t) for the component A is defined by a union of the dynamic properties from the executable theories
Tho-.m, Thm_p and Thy_o.

Definition 2.11 (Coinciding traces)
Two traces yi, v, coincide on ontology Ont (denoted by a predicate symbol coincide_on: TRACE x TRACE x ONTOLOGY (ONTOLOGY is
asort that contains all names of ontologies)) iff

Ot DaOSTATATOMon: state(yi, t) |=a = state(yo, t) |= a,
where STATATOMon: [STATPROPor IS the sort, which contains all names of ground atoms expressed in terms of Ont.

Definition 2.12 (Refinement of an externally observable property)

Let ¢(y, t) be an externally observable dynamic property for component A. An executable specification m(y, t) for A refines ¢(y, t) iff
Doyt Ty,) = o(vi 1)

(2) Oy1, t[d(y1, t) = [DOy2 coincide_on(yi, Yz, InteractionOnt(A)) & Ty, t) 1]

Note that for any past interaction statement ¢,(y, t) and future interaction statement ¢«(y, t) the following holds:

Oy, y2 [coincide_on(yl, y2, InteractionOnt) = [¢p(Y1, t) = ¢p(Y2, t) & Gi(YL,) = 0e(y2, 1)]]

Lemma 6

Let ¢(y, t) be adynamic property expressed using the state ontology Ont. Then the following holds:
(2) coincide_on(yi, Y2, Ont) & coincide_on(yz, y3, Ont) = coincide_on(y:, y3, Ont)

(2) coincide_on(ys, y2, Ont) = [&y, t) < d(y2 t) 1.

Proof sketch.

The transitivity property (1) follows directly from the definition of coinciding traces for coincide_on(ys, Y2, Ont) and coincide_on(yz, Vs,
Ont):

OaO0STATATOMone Ot [state(yw, t) |=a < state(ys, t') |=a] = coincide_on(ys, ys, Ont)
From

Ovi, ¥z [coincide_on(ys, y2, Ont) = Ot [Pp(y1, t) < Bp(v2,) & Otlya,) = ¢rlyz, 1)]]

followsthat ¢(yi, t) < (yz 1).

Theorem

If the executable specification ma(y, t) refines the external behavioral specification ¢a(y, t) of component A, and W(y, t) is a dynamic
interaction property of component A in its environment, expressed using the interaction ontology InteractionOnt(A), then

Oy [mavit) = Wv.D]1] = Oy [¢ayt) = Wv.t)]]
Proof sketch for Theorem.
O isdirect:
from m(y,) = (v,) and Ooiv, t) = w(y, 1) it follows Oy, ©) = w(y, 1.

= runsasfollows:

Suppose ¢i(y, t) holds for al i, then since m(y) refines ¢4(y, t), then according to the definition of refinement of an externally observable
property exists such ay, that mu(y:) and coincide_on(y, yi, InteractionOnt (A)).

Dueto Lemmas, thisy, still satisfiesall ¢i(y:, t) (i.e., di(ys, t) holds for al i).
Proceed with y, to obtain ay, and further for al i to reach atrace y,, for which
mi(yn) holdsfor al i,

and

coincide_on(y, Y, InteractionOnt(A)),

and
di(yn) holds for all i.
From
OyOi[my) = i (],
and

Oy [Ony) = by 1)]
it followsthat Oy Ooi(y) = W(y).

So it has been proven that Oy Thity) = W(y) - =

3. TRANSFORMATION INTO THE FINITE STATE TRANSITION SYSTEM FORMAT

According to the Definition 2.10 the executable specification of a component’s behavior consists of the union of three theories Th,_m,
Thm_p and Thy_,, Which in turn contain a number of executable dynamic properties. These dynamic properties can be translated into
transition rules for afinite state transition system, based on which the same traces are generated as by executing the dynamic properties.
For this purpose we use the predicate present_time(t) introduced earlier, which is only true in a state for the current time point t. Further
the executabl e properties from the executabl e specification, trandated into the transition rules are given.

Timeincrement rules:

present_time(0) O-p — present_time(1)

present_time(t) 0= Qmem O0-~p — present_time(t+1)

present_time(t) Ocprep O qcond(t) D p — present_time(t+1)

present_time(t) OQprep — present_time(t+1)

Memory state creation rule:

For any state atom p occurring in deona(Y, t, t1), €xpressed in the InteractionOnt(A) for component A:
present_time(t) Op — [memory(t, p) O stimulus_reaction(p)]

For al other state atoms p

present_time(t) Op — memory(t, p)

Memory persistencerule:

memory(t, p) - memory(t, p)

Conditional preparation generation rule:

gmem — conditional_preparation_for(output(a)),

where a an action or acommunication for which state(y, t'+c) |= output(a) occursin ¢«(y, t).
Preparation state creation rule:

present_time(t') O conditional_preparation_for(output(a)) 0 qconda(t) O N stimulus_reaction(p) — preparation_for(output(t'+c, a))
p

for every subformula of the form
present_time(t') - preparation_for(output(t'+c, a))
that occurs in geprep-
Preparation state persistence rule:

preparation_for(output(t+c, a)) O -output(a) — preparation_for(output(t+c, a))

Stimulusreaction state persistencerule:
present_time(t’) Ostimulus_reaction(p) O- preparation_for(output(t'+c, a)) — stimulus_reaction(p)
Qutput state creation rule:

preparation_for(output(t+c, a)) O present_time(t+c-1) — output(a), where a is an action or acommunication.

4. TRANSFORMATION INTO THE SMV MODEL SPECIFICATION FORMAT

For automatic verification of relationships between dynamic properties of components of different aggregation levels by means of model
checking techniques, a corresponding to the behavioral specification of the lower aggregation level representation of a finite state
transition system should be trandlated into the input format of one of the existing model checkers. The model checker SMV has been
chosen as a verification tool for two reasons. Firgt, the input language of SMV is syntactically and semantically similar to the genera
description of a finite state transition system, which facilitates automatic trandation into the SMV input format. Second, SMV uses
efficient symbolic algorithms to traverse amodel and the expressive temporal logic CTL for specifying propertiesto check.

L et us describe the transformation procedure, which is automatically performed by the dedicated software that has been devel oped.

First, using the standard rules [1] gmem(t) ad deonda(t, t1) €xpressions for each dynamic property DP, are transformed into the prenex
normal form. Then, for each dynamic property the described below steps 1-3 are applied first to gmem(t) and then to geona(t, t1). After that
conditional preparation generation rules are added by performing the step 4. Finally, the preparation and output state creation rules are
generated for each dynamic property by performing the step 5.

Step 1. Rewrite in the external behaviora specification al occurrences of the function memory(communicated(tl, a)) by
memory(observed(tl, a)) and of the function ~memory(communicated(tl, a)) by ~memory(observed(tl, a)) for some given atom a. For
each occurrence of an existential quantifier of the form 1 P(t1), where t1 is atime variable name and P(t1) is some function of the form
memory(observed(tl, obs_event)), -memory(observed(tl, obs_event)), memory(output(tl, act_event)), and -memory(output(tl,
act_event)), where obs_event and act_event are some atoms and for each occurrence of a universal quantifier of the form Ot1 P(t1), create
an atom (alabel) t1 and add to the specification the following:

For memory(observed(t1, obs_event)), ~memory(observed(tl, obs_event)):

t1l: bool ean ;
init(tl):=0;
obs_event: bool ean;
i nit(obs_event): =0;

For memory(output(t1, obs_event)) and -~memory(output(tl, obs_event)):

t1: bool ean ;
init(tl):=0;

act _event: bool ean;
init(act_event): =0;

Step 2. For each existentially quantified time variable and universally quantified time variable that is not in the scope of any existentia
quantifier with atime variable:

(a) For each occurrence of the expression Q t1, t2 R t1 memory(observed(tl, obs_event)), where Q is either an existential or a universa
quantifier, R is the comparison relation for the linear ordered time line: R={<, <}; t1 and t2 are time variables, add to the specification the
following rules:

next (t1):= case
t2 & obs_event: 1; //nenory state creation
't2: O;
1: t1; /] persi stence of menory
esac;

(b) For each occurrence of the expression Q t1, t2 R t1 memory(output(tl, act_event)), where Q is either an existential or a universal
quantifier, R is the comparison relation for the linear ordered time line: R={<, <}; t1 and t2 are time variables, add to the specification the
following rules:

next(t1): = case

t2 & act_event: 1; //nenory state creation
't2: O;

10

1. t1; /] persi stence of menory
esac;

(c) For each occurrence of the expression Q t1, t2 R t1 ~memory(observed(t1, obs_event)), add to the specification the following rules:

next(t1l):= case
t2 & !obs_event: 1;
1t2: 0;
1: t1,

esac;

(d) For each occurrence of the expression Q t1, t2 R t1 ~memory(output(t1, act_event)), add to the specification the following rules:

next (t1):= case
t2 & lact_event: 1;
't2: 0,
1: t1;

esac;

Step 3. For each expression of the form 1, t2 Ot3 [t3 R t2 AND t1 R t3 AND memory(observed(tl, obs_eventl)) AND
memory(observed(t2, obs_event2)) & P3(t3) I
(@) if P3(t) is of the form memory(observed(t3, obs_event))
i. For t3 < t2 and t1< t3 add to the specification the following rules:
t3t1l _eq: bool ean

init(t3tl eq): =0;
next (t3t1 _eq): = case

t1: 1,
1. O
esac;
next(t1l):= case
lobs event2 & 't2 & t3t1l eq & !obs_event3: O;
1: t1,
esac;
next (t3): = case
't1l: O;
lobs event2 & !'t2 & !obs_event3: O;
lobs _event2 & 't2 & obs_event3: 1;
1. t3;
esac;

ii. For t3 < t2 and t1< t3 add to the specification the following rules:

t3t1 _eq: bool ean ;
init(t3tl_eq): =0;
next (t3t1_eq): = case

t1: 1,
1: O;
esac;
next (t1):= case
1t2 & t3t1 _eq & !'obs_event3: O;
1: t1;
esac;
next (t3):= case
'tl: O
1t2 & !'obs_event3: O;
1t2 & obs_event3: 1;
1: t3;
esac;

iii. For t3 < t2 and t1< t3 add to the specification the following rules:
next(t1l):= case

lobs event2 & !'t2 & !obs_event3: O;
1: t1,

11

esac;

next (t3):= case
'tl: O
I obs_event 2
I obs_event 2
1: t3;

& !obs_event3: O;

& 112
& 't2 & obs _event3: 1;

esac;

iiii. For t3 < t2 and t1< t3 add to the specification the following rules:

next(t1l):= case
1t2 & !'obs_event3: O0;
1: t1,
esac;
next (t3):= case
't1l: O;
1t2 & !'obs_event3: O0;
1t2 & obs_event3: 1;
1. t3;
esac;

(b) if P3() is of the form memory(output(t3, act_event))
i. For t3 < t2 and t1< t3 add to the specification the following rules:
t3t1l _eq: bool ean

init(t3tl eq): =0;
next (t3t1l _eq): = case

t1: 1,
1. O
esac;
next(t1l):= case
lact _event2 & 't2 & t3tl eq & !act_event3: O;
1: t1,
esac;
next (t3):= case
't1l: O;
lact _event2 & !'t2 & 'act_event3: O;
lact _event2 & !'t2 & act_event3: 1,
1. t3;
esac;

ii. For t3 < t2 and t1< t3 add to the specification the following rules:

t3t1 _eq: bool ean
init(t3tl_eq): =0;
next (t3t1_eq): = case

t1: 1,
1: 0O;
esac;
next (t1):= case
1t2 & t3tl1 eq & !'act_event3: O;
1: t1;
esac;
next (t3):= case
'tl: O
1t2 & 'act_event 3: O;
1t2 & act_event3: 1;
1: t3;
esac;

iii. For t3 < t2 and t1< t3 add to the specification the following rules:

next(t1l):= case
lact _event2 & !'t2 & 'act_event3: O;
1: t1,

esac;
next (t3):= case
'tl: O
lact _event2
lact _event2
1: t3;

lact _event 3: O;

& 1t2 &
& !'t2 & act_event3: 1;

esac;

iiii. For t3 < t2 and t1< t3 add to the specification the following rules:

next(t1l):= case
1t2 & 'act _event3: O;
1: t1,

esac;

next (t3):= case
't1l: O;
1t2 & 'act _event3: O;
1t2 & act_event3: 1;
1. t3;

esac;

(c) If P3() is of the form =memory(observed(t3, obs_event))
i. For t3 < t2 and t1< t3 add to the specification the following rules:

neg t3t1l eq: bool ean

init(neg t3tl eq): =0;

next(neg t3t1l eq):= case
t1: 1,

’

0;

il

esac;
next(t1l):= case

lobs event2 & 't2 & neg_t3t1l eq & obs_event3: O;

1: t1,
esac;
next (t3):= case
't1l: O;
lobs _event2 & 't2 & obs_event3: O0;
lobs event2 & !'t2 & !obs_event3: 1;
1. t3;
esac;

ii. For t3 < t2 and t1< t3 add to the specification the following rules:

neg t3t1l eq: bool ean

init(neg t3tl eq): =0;

next (neg t3t1l eq):= case
D1

tl ;
1: O;
esac;
next (t1):= case
1t2 & neg t3t1l eq & obs_event3: O;
1: t1;
esac;
next (t3):= case
'tl: O
1t2 & obs_event3: O;
1t2 & obs_event3: 1;
1: t3;
esac;

iii. For t3 < t2 and t1< t3 add to the specification the following rules:

next(t1l):= case
lobs _event2 & 't2 & obs_event3: O0;
1: t1,

13

esac;

next (t3):= case
'tl: O
lobs event2 & !'t2 & obs_event3: O;
lobs event2 & !'t2 & !obs _event3: 1;
1: t3;

esac;

iiii. For t3 < t2 and t1< t3 add to the specification the following rules:

next(t1l):= case
1t2 & obs_event3: O;

1: t1,

esac;

next (t3):= case
't1l: O;
1t2 & obs_event3: O;
1t2 & obs_event3: 1;
1. t3;

esac;

(d) If P3(t) is of the form —=memory(output(t3, act_event))
i. For t3 < t2 and t1< t3 add to the specification the following rules:

neg t3t1l eq: bool ean

init(neg t3tl eq): =0;

next(neg t3tl eq):= case
t1: 1,

’

0;

il

esac;
next(t1l):= case

lact _event2 & 't2 & neg_t3tl eq & act_event3: O;

1: t1,
esac;
next (t3):= case
't1l: O;
lact _event2 & !'t2 & act_event3: O;
lact _event2 & !'t2 & 'act_event3: 1;
1. t3;
esac;

ii. For t3 < t2 and t1< t3 add to the specification the following rules:

neg t3t1l eq: bool ean

init(neg t3tl eq): =0;

next (neg t3t1l eq): = case
©1

tl ;
1: 0O;
esac;
next (t1):= case
't2 & neg_t3tl eq & act_event3: O,
1: t1;
esac;
next (t3):= case
'tl: O
1t2 & act_event3: O;
't2 & act_event3: 1;
1: t3;
esac;

iii. For t3 < t2 and t1< t3 add to the specification the following rules:

next(t1l):= case
lact _event2 & !'t2 & act_event3: O;
1: t1,

14

esac;
next (t3):= case
'tl: O
lact _event2 & !'t2 & act_event3: O;
lact _event2 & !'t2 & !'act_event3: 1;
1: t3;
esac;

iiii. For t3 < t2 and t1< t3 add to the specification the following rules:

next(t1l):= case
1t2 & act_event3: O;

1: t1,
esac;
next (t3):= case
't1l: O;
1t2 & act_event3: O;
1t2 & act_event3: 1;
1. t3;
esac;

Step 4. Add conditional preparation generation rules to the specification:

next (f ITBFIN) .= Case /I Nisanumber of a dynamic property in the input specification

Cti: 1; o conjunction of all labels, created based on ¢(y, t)

|
1. O;
esac;

Step 5. For each action and communication afunction output(act_event) in aformula gu(t) add to the specification the following rules:

next (fprep_act): = case
fmemN & [t] . l; / 1 conjunction of all labels, created based on ¢cona(Y; t, t1)

i
1. O;
esac;

next (act _event): = case
fprep_act: 1;
1: 0O;

esac,

5. Case study

To illustrate the proposed approach to verify interlevel relations, a multi-agent system for co-operative information gathering is
considered at two aggregation levels. At the higher level the multi-agent system as a whole is considered. At the lower level the four
components and their interactions are considered: two information gathering agents A and B, agent C, and environment component E
representing the conceptualized part of the external world. Each of the agents is able to acquire partial information from an externa
source (component E) by initiated observations. Each agent can be reactive or proactive with respect to the information acquisition
process. An agent is proactive if it is able to start information acquisition independently of requests of any other agents, and an agent is
reactiveif it requires arequest from some other agent to perform information acquisition.

Observations of any agent taken separately are insufficient to draw conclusions of a desired type, but the combined information of both
agents is sufficient. Therefore, the agents need to co-operate to be able to draw conclusions. Each agent can be proactive with respect to
the conclusion generation, i.e., after receiving both observation results an agent is capable to generate and communicate a conclusion to
agent C. Moreover, an agent can be request pro-active to ask information from another agent, and an agent can be pro-active or reactivein
provision of (already acquired) information to the other agent.

For the lower-level components of this example multi-agent system, a number of dynamic properties were identified and formalized. The
varigbles Al and A2 ae defined over the sort AGENT™™ the constant E belongs to the sort
ENVIRONMENTAL_COMPONENT®™"s the variable |C is defined over the sort INFORMATION_CHUNK™™S, the constants IC1, IC2 and
IC3 belong to the sort INFORMATION_CHUNK®™™ and the constant C belongs to the sort AGENT™RYS,

15

Notice that some properties in the behaviora specification below (e.g., DP1, DP2) are aready specified in executable format and
expressed using ontologies different than interaction ontologies of agents, which these properties concern. Since there is no need to
trandate such properties into executable format, they will be added to the executable specification of an agent behavior at the step 5 of the
trand ation procedure.

DP1(A1, A2) (Effectiveness of information request transfer between agents)

OIC Otl<t [state(y, t1, output(Al)) |= output(communicated(request_from_to_for(A1, A2, IC)))]
= [O2>t [state(y, t2, input(A2)) |= communicated(request_from_to_for(Al, A2, IC))]

DP2(A1, A2) (Effectiveness of information transfer between agents)

OIC Otl<t [state(y, t1, output(Al)) |= output(communicated(send_from_to(Al, A2, IC)))]

= [3>t [state(y, t3, input(A2)) |= communicated(send_from_to(A1, A2, IC))]

DP3(A1l, E) (Effectiveness of information transfer between an agent and environment)

OIC Otl<t [state(y, t1, output(Al1)) |= output(obs_focus_from_to_for(A1, E, IC))]
= O3>t [state(y, t3, input(E)) |= observed(obs_focus_from_to_for(Al, E, IC))]

DP4(A1, E) (Information provision effectiveness)
OIC Otl<t [state(y, t1, input(E)) |= observed(obs_focus_from_to_for(A1, E, IC))]
= O3>t [state(y, t3, output(E)) |= observed(provide_result_from_to(E, Al, IC))]

DP5(E, Al) (Effectiveness of information transfer between environment and an agent)
OIC Otl<t [state(y, t1, output(E)) |= observed(provide_result_from_to(E, A1, IC))]
= O3>t [state(y, t3, input(Al)) |= observed(provided_result_from_to(E, A1, IC))]

DP6(A1, A2) (Information acquisition reactiveness)
OIC Otl<t [state(y, t1, input(A2)) |= communicated(request_from_to_for(Al, A2, IC))]
= O3>t [state(y, t3, output(A2)) |= output(obs_focus_from_to_for(A2, E, IC))]

DP7(A1, A2) (Information provision reactiveness)

OiC Ol [O2 [tl<t & t2<tl & state(y, t1, input(A2)) |= observed(provided_result_from_to(E, A2, IC) & state(y, t2, input(A2)) |=
communicated(request_from_to_for(Al, A2, IC)) 1]

= 4>t [state(y, t4, output(A2)) |= output(communicated(send_from_to(A2, A1, IC)))]

DP8(A1, A2) (Conclusion proactiveness)
(11, t2 tl<t & t2<t & state(y, t1, input(A1)) |= observed(provided_result_from_to(E, A1, IC1)) & state(y, t2, input(Al)) |= communicated(send_from_to(A2, A1, IC2))
= 04>t [state(y, t4, output(Al)) |=output(communicated(send_from_to(A1, C, IC3)))]

DP9(A1, E) (Information acquisition proactiveness)
(@ OC state(y, t, output(Al)) |= output(obs_focus_from_to_for(Al, E, IC))

DP10(Al, A2) (Information request proactiveness)
[0 OC state(y, t, output(Al)) |= output(communicated(request_from_to_for(A1, A2, IC)))

The dynamic properties of the higher aggregation level component (the whole multi-agent system considered as one component) can be
formulated and formalized in the following way.

GP1 (Information acquisition initiation effectiveness): At some points in time A and B will start information acquisition to E.

11, t2 [state(y, t1, output(A)) |= output(obs_focus_from_to_for(A, E, IC1)) & state(y, t2, output(B)) |= output(obs_focus_from_to_for(B, E, IC2))]

GP2(A1) (Information source effectiveness for agent A): If at some point in time A starts information acquisition to E, then E will
generate all the correct relevant information for agent A.

Oti<t OIC [state(y, t1, output(A)) |= output(obs_focus_from_to_for(A, E, IC))]
= [O2>t [state(y, t2, output(E)) |=observed(provide_result_from_to(E, A1, IC))]

GP3 (Concluding effectiveness): If at some point in time E generates all the correct relevant information, then C will receive a correct
conclusion.

0t1, t2 [t1<t & t2<t [state(y, t1, output(E)) |= observed(provide_result_from_to(E, A, IC1)) & state(y, t2, output(E)) |= observed(provide_result_from_to(E, B, IC2))]]
= @3>t [state(y, t3, input(C)) |= communicated(send_from_to(A, C, IC3))

Between the lower level and the higher level properties the following interlevel relations were manually identified:

DP9 & DP10 & DP1(A, B) & DP6(A, B) = GP1 @
DP3 (A, E) & DP4(A, E) = GP2(A) ®)
DP3 (B, E) & DP4(B, E) = GP2(B))
DP5 (E, A) & DP5 (E, B) & DP10 & DP1(A, B) & DP7(A, B) & DP2(B, A) & DP8(A, B) & DP2(A, C) = GP3 (10)

From the higher level properties GP1, GP2(A), GP2(B) and GP3 the global system successfulness property can be inferred.
GP (Successfulness): For any trace there exists a point in time when agent C will receive a correct conclusion.
[OC state(y, t, input(C)) |= communicated(send_from_to(A, C, IC))

GP1 & GP2(A) & GP2(B) & GP3 = GP

16

Now, by means of the proposed approach the identified interlevel relations between dynamic properties of different aggregation levels
(7), (8), (9) and (10) can be formally justified (or refuted). For this purpose first for every relationship using the developed software the
externa behavioral specification of the multi-agent system that consists of the lower level properties of the antecedent of the relationship
is automatically transformed into an executable behavioral specification. Then, using the other automated trandation procedure, every
executable behavioral specification is converted into a description of afinite state transition system. In order to perform verification by
means of SMV model checker, every general description of the finite state transition system has been automatically trandated into the
SMV model specification format. Using the state transition system representation, verification of the entailment relations, represented as
CTL formulas, can be performed. For example, for the relation (10) (for the complete description of the finite state transition system we
refer to the Appendix A the dynamic property GP3 is expressed in CTL as:

AG (E_output_observed_provide_result_from_to_E_A_info & E_output_observed_provide_result_from_to_E_B_info
— AF input_C_communicated_send_from_to_A_C_info)

The automatic verification showed that al the relationships between properties (7), (8), (9) and (10) indeed hold with respect to the
corresponding models of the multi-agent system.

At the same time, if one excludes property DP8 from the antecedent of the relation (10), model checking proves that the formulated in
such way relationship fails. From the counter-example produced by the model checker, it is visible that although agent A has all necessary
information to draw a conclusion, it will never send the conclusion to agent C. Thus, by performing such verification, it is possible to
reveal mistakes in manually identified relations between properties and improve them.

REFERENCES

[1] Fitting, M. First-order Logic and Automated Theorem Proving. 2nd edition, Springer-Verlag, 1996.

17

Appendix A: SMV model description for the example of the co-operative information gathering
MAS

MODULE mai n
VAR
fpast1: bool ean;
t1: bool ean;
E _out put _observed_provide_result_fromto_E A info: bool ean;
t2: bool ean;
A input_provided result_fromto_E A info: bool ean;
fprep_A input_provided result_fromto_E A info: bool ean;
f past 2: bool ean;
t4: bool ean;
E _out put _observed_provide_result_fromto_E B info: bool ean;
t5: bool ean;
B input_provided_ result fromto E B info: bool ean;
fprep_B_ input_provided result_fromto_E B info: bool ean;
f past 3: bool ean;
t7: bool ean;
A out put _request _fromto for_A B info: bool ean;
t 8: bool ean;
B input_request_fromto for_A B info: bool ean;
fprep_B input_request_fromto for_ A B info: bool ean;
f past 4: bool ean;
t 10: bool ean;
t11: bool ean;
t12: bool ean;
B output_send_fromto_B A info: bool ean;
fprep_B output_send fromto B A info: bool ean;
f past5: bool ean;
t 14: bool ean;
t 15: bool ean;
A input_send _fromto B A info: bool ean;
fprep_A input_send fromto B A info: bool ean;
f past 6: bool ean;
t17: bool ean;
A out put _conmuni cated_send_fromto_A C info: bool ean;
t 18: bool ean;
C_ i nput _communi cated_send_fromto_A C info: bool ean;
fprep_C i nput _communi cated_send_fromto A C info: bool ean;
f past 7: bool ean;
t 20: bool ean;
t21: bool ean;
t22: bool ean;
f prep_A out put _conmuni cated_send_fromto_A C info: bool ean;
t 24: bool ean;

ASSI GN

init(fpastl):=0;
nit(tl):=0;
nit (E_out put _observed_provide_result_fromto E A info):=0;
nit(t2):=0;

nit(A_input_provided result _fromto E A info):=0;
nit(fprep_A input_provided result_fromto E A info):=0;
ni t (f past2):=0;

nit(t4):=0;
nit (E_out put _observed_provide_result_fromto_ E B info):=0;
nit(ts5):=0;

nit(B_input_provided result_fromto E B info):=0;
nit(fprep_B input_provided result_fromto_ E B info):=0;
ni t (fpast 3): =0;

18

nit(t7):=0;

nit(t8):=0;

nit(B_i nput_request_fromto_for_A B info):=0;
nit(fprep_B_input_request_fromto_for_A B_info):=0;
nit (fpast4):=0;

nit(t10): =0;
nit(tll1): =0;
nit(tl2): =0;

ni t (B_out put _send_fromto_B_A info):=0;
nit(fprep_B output_send fromto B A info):=0;
nit (fpast5): =0;

nit(tl14): =0;

nit(t15): =0;
nit(A_input_send_fromto_B A info):=0;
nit(fprep_A input_send fromto B A info):=0;
ni t (f past6): =0;

nit(tl7):=0;
nit (A_out put_conmmuni cated_send_fromto A C info):=0
nit(t18): =0;

nit (C_i nput _comuni cated_send fromto A C.info):=0
nit(fprep_C_ input_communi cated_send _fromto A C info):=0
nit (fpast7):=0;

nit(t20):=0;
nit(t21):=0;
nit(t22):=0;
nit (fprep_A output_conmuni cated_send_fromto_A C info):=0
nit(t24):=0;

nit(A output_request_fromto for A B info):=1;
next (t2): = case

A input_provided result _fromto E A info: 1;
1:t2;
esac;
next (t1):= case

E out put _observed _provide_result _fromto E A info: 1;
1:t1;
esac;
next (t4): = case

E out put _observed_provide_result _fromto E B info: 1;
1:t 4,
esac;
next (t5): = case

I B i nput _provided result_fromto E B info: 1;
1:t5;
esac;
next (t7):= case

t24: 1;
1't24:0;
1:t7;
esac;
next (t8): = case

IB i nput _request _fromto for_ AB info: 1
B input_request_fromto for_ A B info:O0;
1:18;
esac;
next (t11): = case

B input_request_fromto for_ A B info: 1;
IB_ i nput _request_fromto for_A B info:O0;
1:t11;
esac;
next (t12): = case

I B output_send fromto B A info: 1;
B output_send_fromto B A info:O0;
1:t112;
esac;

next (t10): = case

I't11: O;
B input_provided result fromto E B info & t11: 1;
I't11: O;
IB input_provided result_fromto E B info & t11:0;
1:t10;
esac;

next (t14): = case
B output_send fromto B Ainfo: 1
I B output_send fromto B A info:O0;
1:t14;
esac;
next (t15): = case
P'A input_send _fromto B A info: 1;
A input_send fromto B A info:O0;
1:t15;
esac;
next (t17):= case
A out put _conmuni cated_send_fromto A Cinfo: 1
I'A out put _comuni cated_send_fromto_A C info:O0;
1:t17;
esac;
next (t18): = case
I C_i nput _conmuni cated_send_fromto_ A Cinfo: 1;
C_i nput _communi cated_send_fromto_A C info:O0;
1:118;
esac;
next (t22): = case
I'A out put _comunicated_send fromto A C.info: 1;
1:t22;
esac;
next (t21): = case
A input_send fromto B A info: 1;
1:t21;
esac;
next (t20): = case
A input_provided_ result_fromto E A info: 1;
1:120;
esac;
next (t24): = case
A output _request _fromto for_ A B info: 1;
1:t24;
esac;
next (f past1): = case
t2 &tl: 1;
1: 0;
esac;
next (f prep_A i nput_provided_result _fromto E A info):= case
fpastl: 1;
1: 0;
esac;
next (A _input_provided result_fromto E A info):= case
fprep_A input_provided result _fromto E A info: 1;
1: 0;
esac;
next (f past2): = case
t4d & t5: 1;
1: 0;
esac;
next (f prep_B_ i nput _provided_result_fromto E B info):= case
f past 2: 1;
1: 0;
esac;
next (B_i nput _provided _result_fromto E B info):= case

20

fprep_B input_provided result_fromto E B info: 1;
1: 0;

esac;
next (f past 3): = case
t7 & t8: 1;
1:0;
esac;
next (f prep_B_ i nput _request _fromto for_A B info):= case
f past 3: 1;
1: 0;
esac;

next (B_i nput _request_fromto_for_ A B info):= case
fprep_B input_request _fromto for_ A B info: 1;
1:0;
esac;
next (f past4): = case
t11 & t12 & t10: 1;
1: 0;
esac;
next (f prep_B output_send fromto B A info):= case
fpast4: 1,
1: 0;
esac;
next (B _out put _send_fromto B A info):= case
fprep_B output_send fromto B A info: 1;
1: 0;
esac;
next (f past5): = case
t14 & t15: 1;
1: 0;
esac;
next (fprep_A input_send fromto B A info):= case
fpast5: 1;
1: 0;
esac;
next (A input_send_fromto B A info):= case
fprep_A input_send fromto B A info: 1;
1: 0;
esac;
next (f past6): = case
t17 & t18: 1;
1: 0;
esac;
next (f prep_C_ i nput _communi cated_send_fromto_A C info):= case
fpast6: 1;
1: 0;
esac;
next (C_i nput _conmuni cated_send_fromto_ A C info):= case
fprep_C_ i nput _communi cated_send_fromto A C info: 1;
1: 0;
esac;
next (f past7): = case
t22 & t21 & t20: 1;
1: 0;
esac;
next (f prep_A out put _comuni cated_send _fromto A C info):= case
fpast7: 1;
1: 0;
esac;
next (A _out put _communi cated_send_fromto_A C info):= case
f prep_A out put _conmuni cated_send_fromto_ A C info: 1;
1: 0;
esac;

