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Abstract: In this paper we determine the effect of transport cost on commuting flows, on the
basis of an analysis of home-to-work journeys between municipalities in Denmark. Special
attention is given to a proper estimation method and the form of the distance-decay function.
It appears that neither an exponential nor a power distance-decay function fits the data well.
The specification of log trips as a (downwards) logistic function of log cost results in a better
fit. We find that the cost elasticity of commuting reaches a value of —4 for distances around 24
km, while it is close to 0 for both very short and very long distances. Finally, we demonstrate
that the choice of functional form for distance-decay can make an important difference for

predictions concerning the effect of infrastructure improvements on commuting flows.
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1. Introduction

Commuting has been the subject of increasing public attention and intensive research
in recent decades (see Nijkamp and Rouwendal 2004; Rouwendal and Nijkamp 2004). Rising
wages have enabled people to spend more money on transport and to choose a residential
location further from their work. This increase in travel has prompted improvements in the
transportation system, which in turn have further stimulated commuting. In combination with
rising car ownership, the longer commuting distances have caused an unprecedented increase
in traffic in and around urban areas. The increasing role of commuting has far-reaching
consequences for public policy concerning traffic, infrastructure and spatial planning, as well
as housing and labor markets. Theoretical and applied research on commuting issues can help
to clarify the relevant effects.

An important policy issue is the evaluation of proposed new infrastructure. The
opening of roads or railways will reduce generalized transport cost and stimulate commuting.
The resulting changes in commuting patterns will also affect regional housing and labor
markets. This is relevant for cost-benefit analysis and for the regional redistribution of
welfare. To predict the size of these effects, it is important to know how commuting flows
depend on transport cost. Further, commuting flows connect labor and housing markets.
Knowledge of the intensity and spatial extent of this interaction is relevant for spatial
planning. This knowledge can, for instance, be used to determine the accessibility of a
location to centers of population and employment.

The analysis of the sizes of commuting flows between cities or regions, and their
effects on housing and labor markets, is part of the much wider area of spatial interaction
modeling. Spatial Interaction Models are applied not only to commuting but also to migration,
international trade, shopping behavior, and other topics related to origin-destination flows. An
important issue in such models is the specification of the functional form of distance or travel
cost. In the literature, this distance-decay function is usually assumed to be an exponential or

a power function.
“In practice, the debate over the form of the cost function in spatial interaction models has
evolved to a reasonably widespread consensus that the exponential function is more appropriate
for analysing short distance interactions such as those that take place within an urban area. The
power function, conversely, is generally held to be more appropriate for analysing longer

distance interactions such as migration flows” (Fotheringham and O’Kelly 1989, pp. 12-13).



We will propose a more flexible specification of the decay function. The research presented in
this paper is an application of Spatial Interaction Modeling, and the methodological issues are
not limited to commuting.

The purpose of this paper is to determine the effect of transport cost on commuting
flows between regions. We use data on commuting flows and travel cost between the 275
municipalities in Denmark in 1995. For Denmark, a set of complete and disaggregated data is
available. The distance-decay equation which we estimate in this paper is part of several types
of Spatial Interaction Models. It describes trips as being dependent on balancing factors for
origins and destinations, and as a function of generalized cost. This is a partial analysis, and
not an equilibrium approach. The relationships between accessibility to jobs and labor force,
on the one hand, and the location of population and employment, on the other, are outside the
scope of this paper. For predictions, it is important to take feedback effects into account, but
econometric inference can be based on a single equation.

There are some econometric complications in the estimation of the trips equation of a
Spatial Interaction Model. First, the equation contains not only a distance-decay function but
also unobserved balancing factors. Secondly, zero flows are difficult to handle. Thirdly, the
variance of a flow will be related to its expectation, so there is heteroscedasticity. Solutions
for these problems have been proposed in the literature. In this paper we apply a nonlinear
weighted least-squares estimation (NLWLS) method, that is mainly the nonlinear version of
Procedure 1 described in Sen and Smith (1995, pp. 485-486). However, we improve the
treatment of heteroscedasticity in two ways: we base the weights on a combination of Poisson
error and lognormal specification error, and we use weighted averages to estimate the
balancing factors. As the positive flows vary from one to thousands, heteroscedasticity can be
considerable.

We do not impose a distance-decay function' from theory, but infer the functional
form from the data. It appears that Danish commuting flows cannot be described by an
exponential distance-decay function. A power specification gives better results, but performs
poorly for very small and very large distances. To investigate this, we introduce a piecewise
power function. The estimated elasticities are (in absolute value) small for small distances,
large for intermediate distances, and then they decrease gradually as the distance increases.

This ad-hoc specification can be approximated using a logistic function. In our final

" As costs and distances are highly similar, we often use the term “distance-decay function”, while it is actually a

function of cost.



specification, log trips is a downwards logistic function of log generalized cost. The bending
point of the logistic function, where commuting is most elastic, lies near 24 km. That the cost
elasticity of commuting varies over distance is important for the evaluation of infrastructure
projects. Major new links have been constructed in Denmark, such as the Great Belt crossing.
The use of a power-decay function, which imposes constant elasticity, might lead to
overestimation of the effect of new long-distance connections, and underestimation of the
effect of shorter-distance infrastructure.

The paper is structured as follows. Section 2 describes the model and the data, and
Section 3 the estimation method. In Section 4 we estimate various distance-decay functions.
In Section 5 we discuss the results. Finally, Section 6 concludes. Several derivations are

placed in Appendices A and B.

2. Model and data

Spatial Interaction Models describe flows between a set of origins and a set of
destinations. For a general introduction to Spatial Interaction Models, we refer to
Fotheringham and O’Kelly (1989). Most Spatial Interaction Models can be represented in a
form that contains the following equations (Batten and Boyce 1986; De Vries et al. 2001):

Tij = AiBjOiDjF;j (1)
0, = sz‘j

/ (2)
D =)>»T.
j i

’ (3)

where 7}, is the commuting flow” (‘trips’) from municipality i to municipality ;; 4; and B,
are unobserved balancing factors, which make it possible to satisfy (2) and (3); O, is the total
number of working people living in (origin) municipality i, so that it includes not only the
outward commuting flow but also the people living and working in that place; D, is the total
number of workers in (destination) municipality j; and F is a decreasing function of the

generalized travel cost from municipality / to municipality j, G, .

In the literature, it is generally agreed that an exponential specification

If i = J , this flow is the number of people both working and living in that region.



Gy

_ 71
E‘j _706 (4)

is in accordance with a utility framework (Cochrane 1975). However, in applications often a

power specification

F:'j = 7/0G;j}/1 (5)

appears to have a better fit. Choukroun (1975) provides a possible theoretical justification for
a power specification. Deviations from an exponential form towards a power form can be
caused by heterogeneity of user preferences, use of various travel modes, and lower trip
frequency for long-distance commuters. The resulting functional form depends on the
mathematical assumptions concerning the heterogeneity. Other types of decay functions are
not excluded in advance.

We try to answer the question concerning the functional form of the distance-decay

function from an empirical starting-point. So we specify F very generally as:

InF, = f(G,)+u, ©)
The function f, which represents® the distance-decay, will be chosen in the course of the
inference, in Section 4. The construction of generalized cost G; will be discussed at the end

of the present section. Assumptions on the disturbance term u; will be stated in Section 3.

The estimation of the distance-decay function will be based on (1) to (3) in combination with
(6), a set of equations which can be part of several types of Spatial Interaction Models.
In this paper we do not specify a complete model. A complete model can be obtained

by adding equations for O, and D ;- The balancing factors 4, and B ; can be interpreted as
accessibility indicators (Alonso 1978; Hua 1980). If 4, is low, residence municipality i has
good access to jobs. If B, is low, work municipality j has good access to the labor force.
The difference between the various types of Spatial Interaction Models lies in assumptions
concerning the relation between origin and destination totals and accessibility. In the genuine
doubly-constrained model, O, and D, are assumed to be exogenous. If O, is proportional to
accessibility to jobs (Al.fl) and D, is proportional to accessibility to the labor force (B jil),

the unconstrained gravity model (Carey 1858; Stewart 1941) results. Singly-constrained

* Note that f is not the distance-decay function itself, but its logarithm. For most functional forms this is a

convenient representation, e.g. if the decay function is exponential, f is linear.



models are a combination of these (Wilson 1971). In Alonso’s Theory of Movements (Alonso

1978; Hamerslag 1980; Bikker 1987; Bikker and De Vos 1992), the relation between O, and
4; and the relation between D; and B, are specified in additional equations, containing

parameters to be estimated.

The estimation of the distance-decay function will be based on data on commuting
between municipalities in Denmark in 1995. Denmark consists of the Jutland peninsula, a few
sizeable islands, and many small islands. In 1995 Denmark had 5.2 million inhabitants.*
Population distribution between regions is rather uneven. Large parts of Jutland are sparsely
populated. The share of the Copenhagen metropolitan area in total population is over 25%.

The Great Belt (strait) divides the country into two parts, with approximately half of
the population on each side. West of the Great Belt 2.4 million people live in Jutland and 0.5
million on Funen. East of the Great Belt, the population of Zealand is 2.2 million (including
1.3 million in Greater Copenhagen), and 115,000 people live on Lolland-Falster. In 1995 the
fixed (road and rail) link over the Great Belt was not yet finished. Various ferry routes
provided the connection over the Great Belt. Within the Jutland/Funen region and within the
Zealand/Lolland/Falstar region, bridges connect the major islands. The island of Bornholm
(population only 45,000) is farther east, in the Baltic Sea, and is connected to the rest of
Denmark by ferries.

We use the following data:’

o T.:

;- @275 by 275 table of the active population in Denmark in 1995 by municipality of
residence and municipality of work. This table results from the population census.
Although we will call these persons ‘commuters’, we have to keep in mind that especially
for longer distances people probably do not make the trip every day.

* O, and D;: origin and destination totals, computed from 7}, using (2) and (3).

1

* Population data from Statistics Denmark.
> Data on the commuting between municipalities in Denmark in 1995, travel costs between the municipalities in
1995, as well as a list of the municipalities and their official statistical numbers, were made available by Anne

Kaag Andersen of the Danish Institute of Local Government Studies AKF, http://www.akf.dk/. More specific

definitions of the background data including travel cost are given in Andersen (1999). We obtained the division
of the municipalities over the counties from http://www.danmark.dk/. In addition, we used several maps to locate

outliers.
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e (,:a275Dby 275 table of travel cost. This is the financial cost of a commuting trip by car,

in Danish crowns (DKK). This cost is constructed as the land distance (as the crow flies)
times a kilometer price (set to 1 DKK/km), plus the rate of a possible ferry (for a car and
driver), minus the tax deduction for commuting cost® (Andersen 1999).

e The administrative division of Denmark. We will construct dummy variables for specific
combinations of origin and destination counties, to represent geographical effects (islands)
and urbanization effects (congestion). Figure 1 shows the counties of Denmark (with their

Danish names).

Nordjyllands Ami
Viborg
Amt
Ringkjebing Arhus Amt
Amt _ "+ " Frederiksborg Amt
BT Kebenhavns Amt
i Vestsjailands . e
Ribe Amt Amt Roskilde Amt
Fyns Amt
g Bornholms Amt
d .
Sﬂndar]'_.rllazmst Storstrems Amt

Figure 1. Map of Denmark, with division into counties. The Great Belt is the strait

between Vestsjellands Amt and Fyns Amt.

% One DKK is approximately 13 eurocents. The fact that the kilometer rate is set to the round number of 1 DKK
implies that the travel cost numerically equals the distance, as long as no ferries are involved and we ignore the
tax deduction. This will be useful for the interpretation of the estimated distance-decay functions. If the actual
kilometer price were to deviate from this, the interpretation in kilometers would still hold, but a correction to

ferry rates would be required.



Table 1. Definitions of dummy variables *

Dummy variable | is 1 for and only for (0 else)

GreatBelt trips from Kebenhavns Amt, Frederiksborg Amt, Roskilde Amt,

Vestsjellands Amt, Storstroms Amt

to Fyns Amt, Senderjyllands Amt, Ribe Amt, Vejle Amt,
Ringkjobing Amt, Arhus Amt, Viborg Amt, Nordjyllands Amt

or the other way around

Bornholm trips from/to Bornholms Amt (but not within Bornholms Amt)
Copenhagen trips within Kebenhavns Amt °
Isefjord trips from Frederiksborg Amt to Vestsjallands Amt

or the other way around

* In the definition of dummy variables Kobenhavns Amt (county Copenhagen) is taken to include the
municipalities Copenhagen and Frederiksberg, which are formally not part of the county Copenhagen but
enjoy their own county status.

® This covers the major part of the metropolitan area.

As stated above, ferry rates are included in the cost measure.” However, the cost data
does not include time cost. Usually, distance, travel cost, and travel time are highly correlated,
but in the case of ferries the ratio might differ from that on the roads. Therefore, we include
dummy variables for the crossing of the Great Belt and travel from/to Bornholm. We also
include a dummy variable for the area around Copenhagen, to compensate for the relatively
high travel time in congested areas. Finally, we include a dummy for travel around the

Isefjord, which is the bay in the north of Zealand.® Table 1 provides the exact definitions of

7 Note that the cost is based on the rate for bringing a car on the ferry. If a substantial part of the commuters use
the ferry as foot passengers or by train (in both cases at lower cost), the cost is overestimated in the data. We do
not have data on mode choice. Generally, most of the commuting is by car, but on larger distances the share of
the train might be higher.

¥ As both sides of the Isefjord are on the same island, the cost in the data is computed over the distance as the

crow flies, while in reality a longer trip around the Isefjord or a more expensive ferry passage is required.



the dummy variables. The cost data C;, are combined with the dummy variables’ in order to

obtain generalized cost G, .

G, = C, + 9, *GreatBelt,; + 5, *Bornholm,, + &, * Copenhagen,; * C, + 5, *Isefjord,; / C; (7)

We omit the observations on intrazonal flows in all graphs and estimations presented
in this paper.'® In our analysis we first included them, using an approximation for the distance
within a municipality, and a dummy variable for intrazonal flows. This led to estimation
problems for several specifications of the decay function. To understand that, it is relevant
that we model dummy variables as corrections to generalized cost, not as separate effects on
trips. Intrazonal flows appear to be larger than the model would predict for zero generalized
cost. So the problem is not in the measurement of travel cost within a municipality, but in the
fact that commuting behavior within a municipality apparently differs from that between
municipalities. Home-based workers are the probable cause of the difference. Therefore, we
exclude the intrazonal flows from the further analysis.

The equation which we are going to estimate results from the substitution of (7) into
(6) into (1). Some elements are not yet specified: the distribution of the disturbance term will
be discussed in Section 3; and in Section 4 we will investigate various functional forms for

the distance-decay function.

3. Estimation method

The estimation method that we use in this paper combines known elements from the
literature with a few innovations. We apply the least-squares method of Cesario (1974), but
add to that the use of weights, based on a combination of specification error and Poisson
error. Our specification of the decay function and generalized cost makes the estimation
nonlinear. For the treatment of small and zero flows, we use a method developed by Sen and
Soot (1981). Our estimation method is similar to “Procedure 1” of Sen and Smith (1995, pp.
485-486), but differs in three respects. Firstly, it is nonlinear, to allow for more complicated
decay functions. Secondly, the weights differ, as we think that specification error can not be

ignored. Thirdly, the weights are also used when deviations from the average are taken, as

? The way the dummy variables affect generalized cost differs. The correction for the use of a ferry is a fixed
amount. The correction for congestion is proportional to the cost. The correction for the Isefjord is large for low
cost, and decreases as cost increases.

' The intrazonal flows are, however, still included in the origin and destination totals.



follows from the first-order conditions for weighted least-squares (WLS) (De Vries et al.
2002). In the remainder of this section, we describe the estimation method in more detail.

The estimation is based on (1). If we take logs and substitute (6) for In F, we have:

In7; =In4, +InB, +In0, +In D, + f(G;) +u, )

This equation contains the endogenous variables 4,, B;, O, and D,, but there is no
endogeneity problem, as these variables do not have an associated parameter. O, and D, are

observed, and 4, and B, will be estimated. For prediction it is important to use a complete

model. For estimation purposes, however, we can concentrate on a subset of equations. (2)

and (3) are just definitions. We can estimate (1), irrespective of how equations for O, and D,

are specified. So the methods and results presented in this paper are valid for a wide range of

Spatial Interaction Models. In Alonso’s Theory of Movements, the estimated 4, and B, serve

as input for a further estimation stage, where the relationship between the balancing factors
and the inflows and outflows is investigated (Ledent 1980; Poot 1986; De Vries et al. 2002).
In (8) we use logarithms of the trips. But there are two problems associated with that.
The logarithmic transformation of the dependent variable will cause a bias, as the expectation
of the logarithm is not equal to the logarithm of the expectation (Sen and Soot 1981, p. 167).
And many flows are zero, so that in these cases the logarithm does not exist. To solve these
problems, we apply the suggestion of Sen and Soot (1981, p. 167) to add "2 to each flow
before taking logs. Sen and Smith (1995, p. 480) assume that the trips have a Poisson

distribution, so var7,=FET,. From a Taylor-approximation around ET}, it can then be

derived (using the equality of variance and expectation) that:

EIn(T; +3) = InET, ©)

PROOF:

EIn(T, +1) ~ E| InET, +ﬁ(7}+%—E7})—% E; (1, +L-ET,}

i i

1 E{n-Enf+(r,-ET)+ 4 1 varT o 1
T IZ(ET;/.)IZ S TmEL Aer} sery " TsEry

If ET, is not too small, the latter term can be neglected.

=In ET; +

1
2
i

END OF PROOEF.



So the use of In(7; +7) as the dependent variable will strongly reduce the bias (Sen and Soot

1981; Sen and Smith 1995, p. 480). It also provides a solution to the problem of zero flows.

Sen and Soot (1981, p. 168) and Sen and Smith (1995, p. 484) suggest applying WLS,
as heteroscedasticity may be expected. They assume that the flows have a Poisson
distribution. In that case:

D= .
varln(T; +3) = 1/ ET} (10)

and weights can be derived from that. However, a disadvantage of the assumption of a
Poisson distribution is that it does not take specification error into account (De Vries et al.
2002). There are factors affecting the commuting pattern that are not included in the model. If

this is ignored, large flows will get much too heavy a weight. An alternative approach is to

assume that u; has constant variance o . This will work well to treat specification error, but

ignores the fact that small flows have a relatively larger standard deviation. Therefore, we

. . 11
combine both variances, = and assume:

2 2
Var(ul.j): o, +1/ET; =0, {1 + azET..]
ey (11)
We estimate o in the regression, and weigh the observations by:
1 T2
w, =|1+—
o, ET,
! (12)

This implies that zero flows get a very small weight if the expected flow is close to zero,

while the weight approaches 1 for large expected flows. The weights depend on both & and
ET;, which have to be estimated, so we iterate between the WLS procedure and the

calculation of the weights. The iteration has the additional advantage that we can use expected
instead of observed values in the weights, thus taking away a source of bias. We exclude the
intrazonal flows by setting their weights to zero.

For most choices of decay function f', the equation resulting from substitution of (7)

into (8) is nonlinear. So we apply nonlinear least-squares (Stoer and Bulirsch 1980, pp. 209-

" The introduction of specification error has no consequences for the procedure of adding % to each observation
before taking logs. The data generating process can be considered to consist of two steps. A value drawn from a
lognormal distribution is used as the expected value in a Poisson distribution. Taking logs of a Poisson variable

requires correction by adding . Taking logs of a lognormal variable results in a normally distributed variable.

10



210). This is an iterative procedure. A regression based on a linear approximation around the
most recent parameter estimates results in updates for these estimates. The iteration for the
weights can be integrated in the iteration of the nonlinear least-squares procedure.

The unobserved balancing factors 4, and B, in (8) need to be estimated. Basically,

we use the method proposed by Cesario (1974, p. 252). The idea is that (8) can be estimated
by least-squares, including dummy variables for all origins and destinations. However, with
550 dummy variables, a standard regression procedure will take a considerable amount of
computer time and memory (Sen and Smith 1995, p. 476). Therefore, we decompose (8) into

the overall average, an i-component, a j-component, and the remainder. The latter
component is the deviation from the average over i and the average over j, so the balancing

factors cancel. The parameters of the distance-decay function can then be estimated by
regression (Cesario 1974, p. 252; Sen and Smith 1995, p. 477). However, the use of WLS has
implications for the decomposition, so our method is somewhat different. Appendix A
describes the decomposition in more detail, including the role of weights. If the equation is
nonlinear, this decomposition needs to be applied to the linear approximation in each iteration
step.

To summarize, we estimate:

In(7; +3)=In4, +InB, +InO, +In D, + f(G,) +u, (13)

where G, is given by (7), by NLWLS, using weights given in (12). This procedure'? results in

estimates for: the parameters in the distance-decay function; the dummy parameters that are
included in the generalized cost; and balancing factors for all origins and destinations. In the

next section we will apply this method to various specifications of the decay function.

4. Distance-decay function

In this section we analyze the relation between trips, origins, destinations, and travel
cost. We investigate various functional forms for the distance-decay function. The data we use
are on a fairly low level of aggregation, so the data set is large. Of the over 75,000 data points

on municipality-to-municipality commuting flows, 64% are 0. So the issue of how to handle

"> The computations for this paper were done using the package Ox (Doornik 1998). For more information on

Ox, see http://www.nuff.ox.ac.uk/Users/Doornik/. The program and the text part of the output are available on

request from the authors or on their web site (see first page of this paper).

11
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Table 2. Number of trips per cost category
Cost category Number of  Share in total Cumulative Average
commuters share commuting
flow®
Local 1,560,616 59.15% 59.15% 5,674.97
< 10 208,685 7.91% 67.05% 709.81
10 - 15 316,072 11.98% 79.03% 391.18
15 - 20 242,697 9.20% 88.23% 169.24
20 - 30 167,972 6.37% 94.60% 48.09
30 - 50 61,425 2.33% 96.92% 11.81
50 - 100 41,440 1.57% 98.49% 3.30
100 - 200 11,797 0.45% 98.94% 0.86
200 - 300 6,854 0.26% 99.20% 0.68
300 - 400 16,183 0.61% 99.81% 0.81
> 400 4,885 0.19% 100.00% 0.64
Total 2,638,626 100.0% 34.89
@ Average commuting flow = the number of commuters divided by the number of origin-destination
combinations in that cost category.

zero flows is important here. As was discussed in the previous section, the zero flows are
included in the analysis, but the weight they get is small if the expected flow is close to zero.
Also the positive flows are usually small. 13% of the observations are equal to 1, 14% lie
between 2 and 10, and only 9% are larger than 10. Flows within municipalities are omitted
from the analysis. The largest flows between different municipalities are those between
Copenhagen and nearby municipalities: 20,846 commuters from Frederiksberg to
Copenhagen and 12,808 the other way around, and 12,949 commuters from Gentofte to
Copenhagen.

Table 2 shows how the commuting is distributed over cost categories. More than half
of the working population works in the municipality of residence. 5% have a commuting cost
of over 30 DKK (equivalent to 30 km as the crow flies). 1% have a commuting cost of over
200 DKK. Those cases usually include a ferry passage. The last column of Table 2 gives the

average size of the commuting flows, i.e. the number of commuters divided by the number of

12



origin-destination combinations in that cost category. The average flows decrease rapidly with
cost, up to a cost of 100 DKK. Note that the figures in this table are affected not only by the
role of transport cost in commuting but also by the spatial configuration of cities.

To get an idea about the functional form of the distance-decay function, we made
some plots based on a rearrangement of (13):

In(T; +3)=InO, ~InD, =In4, +In B, + f(G,) +u, (14)

200
100

B

Trips (relative to random commuting)

L | L L L L | L L L L | L ' ' ' | L L L L | L
400 500 600 700 800
Cost (DKK)

L L L L L L L L 1 L L L L 1 L
0 100 200 300

Figure 2. The logarithm of the commuting flow (relative to random commuting) as a function
of travel cost (flows within municipalities omitted). If the decay function were exponential,

the points would lie around a straight line.

We want to decompose the observations on the left-hand side of (14) into balancing factors, a
function of cost and geographical dummies, and a disturbance term. The balancing factors
represent the accessibility of the municipalities, which is related to their position relative to
other municipalities. If we ignore differences in accessibility for the moment, a plot based on

(14) can indicate the functional form of the decay function f . Figure 2 shows the left-hand

side of (14) against the cost.”® If the distance-decay function were exponential, the points

> We use observed cost here, not generalized cost. Intrazonal flows are omitted. To improve readability, we

scaled the variable on the vertical axis, (7; + ) /(0D ;) by multiplying it by the total number of workers in

13



would be around a straight line. This is clearly not the case. First, there is a sharp decrease,
and then the graph is roughly horizontal. In Figure 3 we made the plot using the log of cost.

This is more like a constant decrease. This corresponds to a power distance-decay function.
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Figure 3. The logarithm of the commuting flow (relative to random commuting) as a function
of the logarithm of travel cost (flows within municipalities omitted). If the decay function

were a power function, the points would lie around a straight line.

For completeness, we first estimate the exponential decay function:
In(T; +3)=y,+In4, +InB,+InO0, +In D, + »,G; +u, (15)
where generalized cost G, is a function that includes several dummies, see (7). Table 3 gives

the result of the estimation. The standard deviation of the residual is 0.645 (so there is a

64.5% error, which is rather large.). All parameter estimates are extremely significant.'* The

Denmark, ~O. (which of course equals D ). In this way, we compare the size of the commuting flow
Y q g y p g

with the theoretical case of random commuting, where distance is irrelevant. Setting Fij equal to 1/ z[ O, in

(1), and all balancing factors to 1, will produce this case (Thorsen et al. 1999).
' The standard errors for the parameter estimates are computed in the usual way. This implies that they are valid

under the assumption of independent, identically distributed disturbances. This assumption is violated in the
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estimated cost coefficient implies that the number of commuters is reduced by 1.8% if the
cost rises by 1 DKK (or kilometer). The estimate for the Copenhagen dummy has not only the
wrong sign but also an unacceptable value: it indicates that transport cost is 561% lower
around Copenhagen, and so is negative. Figure 4a, which shows the residuals as a function of

log cost, also indicates that exponential decay is not the correct functional form.
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Figure 4. Weighted residuals of various decay functions (as functions of the logarithm of

travel cost)

From Figures 2 and 3 we inferred that a power specification might do better, and for
the moment we will continue with that specification. So we estimated a power-decay function

by NLWLS:

In(7; +3)=7,+In4, +InB, +InO, +InD, +,InG; +u, (16)

present application. Differences in quality of the transportation network will affect multiple flows. In particular,

the disturbance for the flow from ;i to ; will be correlated with the disturbance for the flow from ; to i. So the

standard errors are underestimated. As all estimates are extremely significant, this is no great problem. (This

holds for all estimates in Table 3.)

15



Table 3. Estimation results for various decay functions

Exponential Power Piecewise Logistic-based
R’ 0.704 0.900 0.953 0.950
Standard 0.645 0.355 0.228 0.237
deviation of
reSiduals * %k Kk x * % x % * % x % * %k Kk x
Constant -15.109 -7.970 22.461 -18.417
( 0.008 ) ( 0.018 ) ( 0.120 ) ( 0.008 )
Cost -0.0178
(0.0001 )
Log Gen.C -2.070 7 -1.194 7
( 0.005 ) ( 0.023)
> 15 -4.204 77
( 0.017 )
> 30 -2.356 7
( 0.025 )
> 50 -1.713 7
( 0.024 )
> 100 -0.815 "7
( 0.041 )
> 150 -0.381 7
( 0.020 )
Loglogist 7.926 77
( 0.034 )
Bending 24.158 7
point ( 0.108 )
Steepness 1.823 7
( 0.011 )
GreatBelt -147.3 77 -126.21 7777 -87.0 7 -76.39 77
( 1.7) ( 0.64) ( 2.6 ) ( 4.45 )
Bornholm -180.2 77 -209.89 77 -258. T 274,30 7
( 4.7) ( 3.84) ( 4.4 ( 3.65)
Copenhagen -5.61 77 0.113 ™ 0.296 "7 0.286 77
( 0.17 ) ( 0.014 ) ( 0.007 ) ( 0.008 )
Isefjord 2812.8 7 650.7 7 308.9 " 287.5 77
( 67.9) ( 34.3) ( 20.5 ) ( 15.3 )

Standard errors in parentheses.

* 10% significant, ** 5% significant, *** 1% significant, **** 0.1% significant.

The results are also presented in Table 3. We see that the power function performs much
better than the exponential decay function. R? is much higher, and the residual standard

deviation is reduced to 35.5%. The cost parameter in this power specification is close to the
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classical value of -2. From Figure 4b it appears that the specification (16) is still not the
correct functional form. The residuals show an upward tendency up to a cost of around 15; a
downward tendency for intermediate cost; and again an upward tendency for cost over 40. A
straight line and some dummy variables can not describe the pattern in Figure 3.

To investigate the functional form, we allowed some kinks in the decay function. We

replaced (16) by a specification that is on intervals linear in InG,, and is continuous, but

changes in slope at various points. We set the kink points at generalized cost of 15, 30, 50,
100 and 150. (These values can roughly be interpreted as distances in kilometers.)

In(7, +3)=y,+In4, +InB, +InO0, +In D, +

71 Inmin(G,;,15) + 7, Inmax(15, min(G,;,30)) +

75 Inmax(30,min(G,,50)) + 7, Inmax(50, min(G,,100)) +

75 Inmax(100,min(G;,150)) + 7, Inmax(150,G;) + u, (17)

The estimation results for this piecewise decay function are also given in Table 3."° The
standard error of the residuals is further reduced, to 0.228. Figure 4c shows that the problems
with the functional form have been solved, although there is still some heteroscedasticity left.
The decay function has a clear pattern. For cost < 15, it is much flatter than the power
function. Between 15 and 30, it is very steep, with an elasticity that is in absolute value
greater than 4. For cost > 30, the function becomes gradually flatter. The development of the
coefficients is rather regular. Except for the first coefficient, the pattern is that, when the cost
doubles, the slope of the decay function approximately halves.

The piecewise decay function in (17) can be approximated using a (downwards)

logistic function of InG;:

1 1
FG)=r+r——S—ma = Yot —
l+y, e 1+(G’7J
V2 (18)

This is demonstrated in Appendix B. The parameter y, determines the location of the bending
point (in the same units as generalized cost). The parameter y, governs the steepness of the

logistic function. A logistic function has the properties that we noted. It starts rather flat, then

becomes steeper, and then gradually flatter again. So the next specification we estimated is:

"% The iteration for the piecewise decay function did not converge fully, but cycled in a small parameter range.
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In(7, +3)=y,+In4, +InB, +InO, +InD, +y, - Gl/;/ Tt u,
i/ (19)

The parameter estimates are listed in the last column of Table 3, and the residuals are depicted
in Figure 4d. For the logistic-based decay function the standard error of the residuals is 0.237,
slightly higher than for the piecewise specification. However, the logistic-based specification
uses three parameters less, and does not depend on a choice of kink points. We conclude that
log trips can be adequately described as a logistic function of log generalized cost, with origin

and destination dummies added.

5. Results and discussion

In this section we will discuss the results of the estimation. In Figure 5 we plotted the
four decay functions'® for cost up to 50 (which can roughly be interpreted as kilometers). The
exponential decay function is so close to the horizontal axis that it is hardly visible."” The
logistic-based decay function starts at a finite value for zero cost and decreases smoothly.
Both the power function and the piecewise power function start at infinity for zero cost. The
value of the power function is considerably below that of the logistic-based for cost around
10. Table 4 lists the values of the decay functions for various values of generalized cost.
Figure 6 shows the decay functions with logarithmic axes. This graph shows the different
characteristics of the four decay functions, and can be compared to the point cloud in Figure
3.

The bending point of the logistic-based distance-decay function lies at 24 DKK. This
is in accordance with the results for the piecewise power distance-decay function, which has
the largest elasticity for the cost range 15 to 30 DKK. These numbers can more or less be
interpreted as kilometer distances, although for the Copenhagen region a correction is

required due to the dummy variable. Estimates for the dummy parameters are highly similar

' Figures 5 and 6 and Table 4 compare the four estimated decay functions. Again, we scaled F;j by multiplying

it by the total number of workers in Denmark, ZI_ O, (which of course equals zj D ;). In this way, we

compare the values of the decay function with the theoretical case of random commuting, where distance is
irrelevant. (See footnote 13.)

7 Exponential decay functions can be useful for short distances. However, in this case, the exponential decay
function was estimated using data for a wide range of distances. The result is that the estimated function is rather

flat, and too low for short distances. For costs between 30 and 200, it has the correct level (cf. Figure 6).
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Table 4. Value of decay functions (relative to random commuting), for various values of
generalized cost

Cost Exponential Power Piecewise Logistic-based

0 0.72 infinity infinity 73.29

5 0.66 32.60 35.26 47.95

10 0.60 7.76 15.41 19.53

20 0.50 1.85 2.83 2.74

25 0.46 1.16 1.11 1.23

40 0.35 0.44 0.26 0.25

60 0.25 0.19 0.11 0.09

120 0.08 0.05 0.04 0.04

400 0.00 0.00 0.02 0.03

in the logistic-based and the piecewise specification. The estimated parameters for the ferry
dummies are both negative, reflecting that the generalized cost is overestimated in the data.
Ferries may be slow compared with car traffic, but they are even more expensive. Inasfar as
travel cost functions as a proxy for travel time, it is overestimated for relations using a ferry.
These two parameters can be interpreted as amounts in DKK. The estimated coefficient for
the Bornholm dummy is large. Commuting from and to Bornholm is not usually done by car,
so the high ferry cost is not very relevant here. Around Copenhagen, travel cost per kilometer
is nearly 30% higher. The Isefjord dummy parameter has no direct interpretation.

The elasticity of —2.07 estimated in the power specification gives a too simple
representation of reality. For the logistic-based decay function, the elasticity varies between 0

and —y,7,/4= -3.61 (see Table 5 and Appendix B). The following picture of commuting

behavior arises. As long as distances are under, say, 10 km, commuters are rather indifferent.
In the intermediate range 10 to 60 km, distance is very important for commuting decisions.
Long-distance commuters, traveling more than 60 km, do not care very much about the

distance.'®

'8 The fact that the logistic-based decay function becomes flatter for large distances, and does not approach zero
if distance becomes infinite, is partly caused by the type of data we use. The flows are not actual trips, but
combinations of residence and work locations. For long distances people will travel less frequently from home to

work. For the longest distances, data errors might not be negligible.
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Figure 5. Various decay functions.

Several other researchers also found that the sensitivity of commuters with respect to
travel cost (or time or distance) is stronger for intermediate distances than for short and long
distances. To model this, an S-shaped decay function is required. Hilbers and Verroen (1993)

suggest using a log-logistic decay function:

Yo
(@) 1+

e}’l +72InGy

(20)
The difference with (18) is that here on the left-hand-side is the decay function itself, and not
its logarithm."” This log-logistic decay function is also used by Geurs and Ritsema van Eck
(2003) for Dutch commuting. An S-shaped decay function is also used by Johansson et al.
(2002a, 2002b) for an empirical analysis of commuting in Sweden. They use different time-
sensitivity parameters for local, regional, and extra-regional interaction.

Thorsen et al. (1999) use a logistic function to model distance-deterrence, and provide
a theoretical justification for such an S-shaped curve. Their basic idea is that short distances
give random commuting flows, whereas long distances are governed by a minimum cost

principle (p. 76). They express the trips matrix as a convex combination of these extremes.

" In the literature, (20) is known as log-logistic decay function. To avoid confusion, we can not use the same

name for (18). Therefore we use the term “logistic-based decay function”.
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Figure 6. Various decay functions in a log-log setting

The weight of the minimum-cost solution should be small for small distances, increase with
distance, and approach 1 if distance goes to infinity. A logistic function satisfies this.’ In
Section 2 we mentioned that various forms of heterogeneity could explain deviations from an
exponential towards a power form of the decay function. This reasoning might be extended to
derive a logistic-based form.

In Appendix B we derive several properties of the logistic-based decay function (18).
For short distances, the logistic-based decay function can be approached by an exponential
decay function. For intermediate distances, it can be approached by a power decay function.
For long distances, the elasticity in the logistic-based decay function approaches zero. The
different behavior of the decay function for various cost ranges is relevant for estimation. The

various functional forms found in empirical studies can be interpreted as approximations of

0 Despite the similarities there are nevertheless important differences between our model specification and that
of Thorsen et al. (1999). We take logs of cost before applying the logistic function. Actually, this satisfies the
conditions of Thorsen et al. (1999) better than their own choice, as it results in a weight of 0 for zero cost.
Furthermore, their formulation is in trips, ours in log trips. And they use another type of spatial interaction
model, where the deterrence function has a different role. The point of similarity is that an S-shaped curve
should be used to model distance-decay, and that some transformation of the logistic function is a convenient

choice.
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Table 5. Elasticity of decay functions with respect to generalized cost, for various values
of generalized cost

Cost Exponential Power Piecewise  Logistic based

0 0 -2.07 -1.19 0

5 -0.09 -2.07 -1.19 -0.73

10 -0.18 -2.07 -1.19 -2.01

20 -0.36 -2.07 -4.20 -3.51

25 -0.45 -2.07 -4.20 -3.61

40 -0.72 -2.07 -2.36 -2.95

60 -1.08 -2.07 -1.71 -1.94

120 -2.16 -2.07 -0.82 -0.70

400 -7.20 -2.07 -0.38 -0.09

certain parts of an S-shaped curve. Also, the estimated elasticity in a power specification will
depend on the cost range in the data. The treatment of heteroscedasticity affects the weight of
various parts of the decay function, as low costs are associated with large flows and high costs
with small flows. In the absence of weighting, the many small flows, especially zero flows,
will dominate the result. If the weights are based on a Poisson distribution, a few large flows
on short distance will dominate. To avoid such problems, we took into account both
specification error and the Poisson process.

The small elasticities for larger distances in the logistic-based decay function contrast
with the power decay function (constant elasticities), and with the exponential decay function
(strongly increasing elasticities). This difference is important for the evaluation of major
infrastructure projects, such as the fixed link over the Great Belt. Even after the opening of
the new link, distances and costs for crossing the Great Belt are relatively high compared with
common commuting distances and costs. According to the logistic-based decay function,
elasticities are relatively small where distances are long. In these circumstances, the use of a
power decay function might lead to overestimation of the effect of the opening of the fixed

link. This is illustrated by the following example.”! Suppose that there is a project that reduces

*! In the examples in this section, we only consider the direct effects. The changes in commuting flows will lead
to changes on the labor and housing markets, and substitution between commuting relations. These indirect
effects depend on the spatial configuration of population and employment. To evaluate these, a complete model

is required.
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the travel cost between two cities from 120 to 60. (Something like the fixed link over the
Great Belt.) As can be seen from Table 4, the power and the logistic-based decay functions
have similar values for the old situation, with cost 120. However, for cost 60, the predicted
value of the power decay function is twice that of the logistic-based decay function. Hence,
the use of a model based on a power decay function can lead to a considerable overestimation
of the effect of the new infrastructure on commuting.

Now suppose we have another project, on a regional level, which reduces travel cost
from 25 to 20. Again the power decay function and the logistic-based decay function have
similar values for the starting situation. But now the power function predicts an increase of
commuting by 60%, while the logistic-based specification predicts an increase by 120%. So,
for intermediate distances, the power function will underestimate the rise in commuting. As a
third example, we take an overall reduction in generalized cost of 10%.?2 Then the power
function predicts an overall increase of commuting by 20% for the direct effect.”> According
to the logistic-based decay function, the increase of commuting primarily occurs on
intermediate distances (say between 10 and 60 km), and can be up to 40% for distances

between 20 and 30 km.

6. Summary and conclusion

In this paper we have analyzed the effect of transport cost on the size of the
commuting flows between the 275 municipalities in Denmark in 1995. We estimated the
distance-decay function by NLWLS in logs. The balancing factors were estimated as dummy
parameters (Cesario 1974). For computational reasons, we decomposed the variables into
averages and deviations from the average (Cesario 1974). To correct for the bias caused by
taking logs, we added 'z to each flow (Sen and Soot 1981). Most of the commuting flows are
small and there are many zero flows, which are difficult to handle. To correct for
heteroscedasticity, we used weights based on a combination of specification error and Poisson

error. This specification of weights, which requires iteration, is, to our knowledge, new. We

*2 Overall changes in generalized travel cost can occur in the course of the years by increasing income (so that
monetary cost will be reduced relative to income), changes in fuel taxes or road pricing, and changes in average
speed (so that time cost changes).

2 Of course, with an overall change, indirect effects are essential, and the final increase will be much smaller.
Under a (singly or doubly) constrained model with a power decay function, nothing will change in the trips

matrix by an overall multiplicative cost change (Evans 1970; Fotheringham and O’Kelly 1989, pp. 11-12).
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also used the weights in the calculation of averages for the decomposition (De Vries et al.
2002). We omitted the intrazonal flows, because they did not fit the model. We investigated
various functional forms and finally chose a logistic-based form for the distance-decay
function.

Commuting between municipalities in Denmark can not be described by an
exponential distance-decay function, while a power distance-decay function satisfies only on
an intermediate cost range. But a description where log trips is a downwards logistic function
of log generalized cost fits the data well. The elasticity of commuting with respect to
generalized transport cost is (in absolute value) small for small distances, reaches a value of
up to 4 for distances around 24 km, and approaches zero for large distances. The logistic-
based distance-decay function can be approximated by an exponential decay function for
short distances, and by a power decay function for intermediate distances. This is in
accordance with the observation of Fotheringham and O’Kelly (1989) cited in Section 1. The
logistic-based decay function can unify these approaches in a single model. However, for long
distances, the logistic-based decay function differs considerably from those approximations.
The elasticity of the size of the commuting flow with respect to generalized cost gradually
decreases (in absolute value) if the distance increases.

The specification of the distance-decay function can have important consequences for
the evaluation of new infrastructure. We found that commuting is very elastic with respect to
costs on intermediate distances, and relatively inelastic for larger distances. The use of a
power decay function, which imposes constant elasticity, ignores this difference. This will
lead to overestimation of the effect of new long-distance connections on labor markets. On the
other hand, the use of a power decay function will lead to underestimation of the effect of
regional improvements in infrastructure. For realistic predictions, it is important to take into

account that the cost elasticity of commuting varies over distance.

Appendix A. The decomposition

In this Appendix we present the formulas for the decomposition which is used in the
estimation method (Section 3). To simplify the notation we use lowercase for logs of

variables, and write f, for (G, ). We can then rewrite (8) as:

t,.j:a,.+bj+oi+dj+ G T (Al)
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where f; is a submodel which will generally contain multiple explanatory variables and
parameters, and can be nonlinear. We estimate (A1) by weighted least-squares (WLS), so we
multiply the equation for each observation by weight w,. The WLS-estimators can be
described by first-order conditions. For example, the first-order condition for a, (the

parameter of a dummy variable) is:

Z(Wij A).(w; 4,)=0
| (A2)

The estimator can be computed from the weighted averages over ;. The weights used in the
computation of the weighted averages are the squares of the weights used in the regression.

Similarly, b ; can be computed from the weighted averages over i. The decomposition is a

computationally-efficient way to estimate the dummy parameters.

The decomposition is as follows, where a dot indicates that a weighted average (with

weights wl.jz) is taken over the subscript it replaces.:

t,,=a,+b,+o,+d, + f,, +u,, (A3)
t.—t.=a,—a,+o0,—o,+ f,,— f. +u, —u,, (A4)
t,,~tn.=b,—b +d,—d, + [, — f..+u,, —u, (A5)
ty—te =ttt =f; = fu—Jfo+futu, —u, —u, +u, (A6)

(A1) is the sum of (A3) to (A6). We use this decomposition to estimate the parameters in the
decay function f°, as well as the balancing factors @, and b,. From the first-order conditions
for the WLS estimator of (A1), it follows that the estimator for the parameters in f (other
than the constant) is the WLS estimator based on (A6), where the disturbance term can be
treated as independent. Using the estimated /', a, —a, can be estimated from (A4), b, —D,
from (AS5), and the constant in f from (A3). The balancing factors are only identified in
deviations from their weighted averages, as f contains a constant term. Therefore, we set
a, =0 and b, =0 as a normalization.

The use of such a decomposition was proposed by Cesario (1974, p. 252), but, as he
used OLS and not WLS, his decomposition is unweighted. It is also described by Sen and
Smith (1995, p. 477). However, as we use WLS, all the averages used for the decomposition
also need to be weighted (De Vries et al. 2002).
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Appendix B. The logistic function

The logistic-based distance-decay function

£(G) =7, +y171—)73
1+\G; /7, (B1)

has some interesting properties. If generalized cost approaches zero, G, 40, then

f(G) =7, +y1[1—(G,-,»/72)“J=70 7 —71(%/72)73 (B2)

Now if the steepness parameter y, =1, we have:
G,)~ yiNe
F(Gy) =y, +7, i
V2 (B3)
This is an exponential distance-decay function (compare (15), with a parameter
transformation). So, if the steepness parameter equals 1, the logistic-based decay function
approaches an exponential decay function for low cost. (As the estimate for the steepness
parameter is 1.8, this result does not hold for the fitted logistic-based decay function.) Around

the bending point the logistic function can be approximated by a linear function (in InG, ), so

for intermediate distances the logistic-based decay function can be approximated by a power

decay function. If generalized cost becomes very large, G; — oo, then:

1G) =y +1(G, f7,) 7 (B4)
and the elasticity

af (Gy)
dInG

~ _7/37/1((;17/7/2)_73
¥ (BS)

So, if generalized cost rises by a certain factor, the elasticity decreases by a given power of
that factor. If the steepness parameter equals 1, these factors are the same. This is the property
that we noted in Section 4 in the estimated elasticities for the piecewise power function: the

slope halves for equal increases in InG,, .

The elasticity of trips with respect to generalized cost is:

dr(G,) 1 {1 o }

dInG, A 1+(Glj/}/2)y3 l+(G,-j/7z)y3 (B6)
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At G; =0, the elasticity equals zero. The largest elasticity (in absolute value) is attained for

7173

G, =7,,and equals — . For G; — oo, the elasticity approaches zero.
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