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Abstract

We propose procedures for estimating the time-dependent transition ma-
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is presented, based on nonparametric estimators of the conditional hazard
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1 Introduction

The Semi-Markov Process (SMP) introduced independently by Lévy (1954) and
Smith (1955) is a generalization of the Markov process. The SMP with a finite
state space can be thought of as a Markov chain (MC) with a random transfor-
mation of the time scale (Pyke, 1961a). In particular this means that the sojourn
times in each state can have arbitrary distributions that may also depend on the
next state to be visited. Therefore SMP’s are more flexible than the homogeneous
MC as a tool for the statistical analysis of transition data.
Stochastic processes evolving in continuous time with jumps over a (finite) set of
states (also known in the Finance literature as transition or ‘migration’ models)
constitute the most natural class of econometric models to consider for modeling
corporate credit rating and default data, see for example Kavvathas (2000), Lando
and Skødeberg (2002), D’Amico et al. (2004) and Koopman et al. (2005).
The literature on semi-Markov processes has focused mainly on the time-homogeneous
case, examples are Pyke (1961a and 1961b), Limnios and Ouhbi (1999 and 2005)
and Alvarez (2005). However, in the field of credit risk, several empirical studies
have explicitly shown that the time-homogeneity assumption is strongly rejected
(Kavvathas, 2000, Lando and Skødeberg 2002, Koopman et al. 2005). Addition-
ally, Kavvathas (2000) and Lando and Skødeberg (2002) also present some evidence
that the empirical distribution function (d.f.) of the sojourn times (or duration)
of debt issuers in each rating class seems to display negative duration dependence.
If the resulting ‘maturity’ effect is severe, then a given rating class will, in fact,
be heterogeneous with respect to the associated default probabilities according to
the time spent by the issuer in that rating. In this paper, in particular, we answer
the following question: what is the impact over the rating migration probabili-
ties (including the default probabilities) of this known non-Markovian feature of
credit rating data? We are able to address this issue through the main method-
ological contribution of this paper. We develop general computational procedures
for estimating the transition matrices accounting both for the presence of dura-
tion dependence and time-inhomogeneity effects. These procedures are applicable
to any statistical model inside the class of finite non-homogeneous semi-Markov
processes (NHSMP) in continuous time, and do not depend on the particular es-
timation methodology used.
The NHSMP was defined for the first time in Iosifescu Manu (1972). The discrete-
time finite state case was treated in De Dominicis and Janssen (1984). However,
to the best of our knowledge, we provide for the first time a formal proof of the
existence and uniqueness of the corresponding (continuous-time) transition proba-
bilities in any finite time window. We derive a computationally efficient numerical
procedure for obtaining the transition matrices from knowledge of the matrix of
subdensity functions, and formally prove its convergence. Additionally we show
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that this procedure preserves the consistency of any such estimator of the subden-
sity functions that may be used as input in an empirical application.
Such a consistent estimator for the subdensity functions can be constructed (for
example) using nonparametric estimators of the conditional hazard rate functions.
Two leading references on this topic are Nielsen and Linton (1995) and Linton et
al. (2003). Using a baseline class of hazard rate estimators we implement this
new methodology for studying the CreditPro7.0 dataset from Standard & Poor’s
containing the detailed rating histories of more than 7300 U.S. firms recorded at
a daily frequency and over a period of almost 25 years. We estimate the historical
(realized) issuer rating migration probabilities considering 7 distinct rating classes.
This leads to some interesting empirical findings. First, we report large differences
in estimated default (and transition) probabilities with respect to what is obtained
using the Aalen-Johansen estimator (Aalen and Johansen, 1978). Second, when
estimating separable hazard functions, and in contrast with Lando and Skødeberg
(2002), we do not find the baseline hazard to be monotonically decreasing with the
elapsed duration. Instead, for the great majority of rating classes, we find strong
evidence of non-monotonic behavior. After an initial period of strong increase in
the downgrade and default rates, which leads to a peak located around two to
three years after the date when the current rating was issued, the intensity of this
type of rating event decreases significantly. In a similar way for upward rating
movements the peak in the hazard rates is located, roughly, thirty months after
the rating was issued.
Transition matrices are a capital input for many credit risk management tools
like, for example, J.P. Morgan’s Credit Metrics or McKinsey’s Credit Portfolio
View. In order to ‘backtest’ a particular credit risk model and rating system,
for assessing compliance with the Basle II norms, or for comparing two or more
competing models in the development stage, it is of paramount importance that
one is able to consistently estimate, ex-post, the (realized) transition probabilities,
accounting for the main statistical features of that rating system, but using as few
assumptions as possible. The nonparametric Aalen-Johansen estimator frequently
used for this purpose in the literature (see for example the studies by Lando and
Skødeberg 2002, Jafry and Schuermann 2004, or Koopman et al. 2005) allows for
time-inhomogeneity but is built upon the unrealistic Markov property. This as-
sumption, as mentioned, has been strongly rejected empirically (Kavvathas, 2000,
Lando and Skødeberg 2002).1

1Note that the results reported in Jafry and Schuermann (2004) concern only the compari-
son of estimated transition matrices either through the use of standard matrix norms or their
proposed metric, the “ average of the singular values of the mobility matrix. ” Comparisons,
across different estimation methods or chronological periods, of estimated transition matrices, as
a whole, may not capture relevant differences for particular transition probabilities (for example
the default probabilities) for a given rating class. Therefore, for risk management purposes,
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This paper is organized as follows. In section 2 we recall informally the main
definitions and some important results from the literature on non-homogeneous
semi-Markov Processes. In section 3 we review the simple class of piecewise con-
stant nonparametric estimators of the hazard rate functions both in the general
and separable (multiplicative) cases. The explicit formulas of the nonparametric
estimators of the semi-Markov kernel implied by the estimators of the hazard rate
functions presented in the previous section are introduced in Section 4. We then
formulate rigorously and solve the problem of obtaining the empirical semi-Markov
transition probabilities using window-censored event-history data. A simulation
study is conducted in section 5 to assess the small-sample behavior of the hazard
rate estimators employed. We report our empirical results in section 6. Section 7
concludes. In the appendix we detail the proofs of the theorems in section 4.

2 Non-homogeneous Semi-Markov Processes

In this section we briefly recall the main definitions and results from the theory of
non-homogeneous Markov Renewal Processes (NHMRP) which are directly rele-
vant for our purposes.
Consider an arbitrary bivariate stochastic process (S, T ) = (Sn, Tn)n∈N0

defined
on a complete, filtered, probability space (Ω,F , {Ft} ,P), describing the evolution
in time of a given discrete-event system. Directly linked to this process we ex-
plicitly consider four other processes. The process (Sn)n∈N0

, gives the sequence of
states visited by the system, and takes values in the set S = {1, 2, . . . , s}, (s <∞),
termed the state space. The nondecreasing random sequence (Tn)n≥0 is built from

the consecutive transition times in the set R
+
0 . The bivariate process (Sn, Xn)n∈N0

where Xn = Tn − Tn−1 is the sojourn time in state Sn−1.
2

Finally we consider the continuous-time cadlag process S (t), t ∈ R
+
0 that records

the current state of the observational unit (or system).
Let Q = (Qij) be a matrix-valued function of two arguments, Q is called a matrix
of subdistribution functions (s.d.f.) if each entry

Qij : R
+
0 × R̄

+
0 → [0, 1]

is a nondecreasing measurable function of the second argument and satisfies

s∑

j=1

Qij (t,∞) = lim
τ→∞

s∑

j=1

Qij (t, τ) = 1, (1)

the extra-computational cost implied by an estimation procedure which accounts for the time-
inhomogeneity is not material.

2By convention X0 = T0 = 0 and S−1 is left unspecified.
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for every t ∈ R
+
0 . The s-valued function g = (gi), with components

gi : R
+
0 → [0, 1]

is termed the (time-varying) vector of initial probabilities if it satisfies

s∑

i=1

gi (t) = 1,∀t ∈ R
+
0 . (2)

We say that the bivariate process (Sn, Xn)n∈N0
is a NHMRP, and the associated

process S (t), t ∈ R
+
0 is a NHSMP, if the following assumptions hold

P [Sn+1 = j,Xn+1 ≤ τ | (S0, T0) , . . . , (Sn, Tn) = (i, t)] = Qij (t, τ) , (3)

and
P [S0 = i | T0 = t0] = gi (t0) . (4)

The matrix of s.d.f. (Qij) is called in this context the semi-Markov kernel, and to-
gether with the vector of initial probabilities completely determines the stochastic
behavior of the NHSMP.3 Unlike in De Dominicis and Janssen (1984) we define the
non-homogeneous semi-Markov kernel using as arguments not the last and next
transition times, Tn = t and Tn+1 = t + τ , but instead the last transition time
and the duration τ until the next transition. In this way we make explicit the two
underlying time-scales: the chronological time-scale t and the ‘age’ (or duration)
scale τ . Note that we assume the non-homogeneous semi-Markov kernel to be
independent of the past number of recorded transitions.
Define for every t ∈ R

+
0

pij (t) = lim
τ→∞

Qij (t, τ) , (5)

and

Hi (t, τ) =
s∑

j=1

Qij (t, τ) . (6)

Due to condition (1), Hi (t, τ) is a d.f. on R̄
+
0 with respect to the second argument

τ . This can be interpreted as the d.f. of the sojourn times in state i that start at
time t. Under conditions (3) and (4) the process (Sn)n∈N0

is a non-homogeneous
(discrete time) Markov chain with transition probabilities pij (Tn), this is called
the embedded Markov chain. The d.f. of the sojourn times in state i starting at
time t that finish with a transition to state j is given by

Fij (t, τ) =

{
p−1
ij (t) ·Qij (t, τ) , pij (t) > 0

0 , otherwise.
(7)

3We always assume that Qii (t, τ) = 0, ∀i ∈ S
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We consider throughout this paper that Qij (t, τ), as a function of the second
argument τ , is absolutely continuous with respect to Lebesgue’s measure. In this
case the partial derivative of Qij (t, τ) with respect to τ is well defined and we
denote it by qij (t, τ),

qij (t, τ) =
∂Qij (t, τ)

∂τ
.

In the current credit risk context it is clearly reasonable to consider that the semi-
Markov kernel satisfies the additional condition

Qij (t, 0) = 0,∀t ∈ R
+
0 ,

that is, that there is no probability mass at zero. This assumption is used in
section 4 for deriving our numerical procedure for computing the transition prob-
abilities.
The hazard rate function associated with a transition to state j at time t + τ in
the case where the unit has entered state i at time t is defined by

ρij (t, τ) = lim
h↓0

1

h
P [Sn+1 = j, τ < Xn+1 ≤ τ + h | (S0, T0) , . . . , (Sn, Tn) = (i, t) , Xn+1 > τ ]

(8)
Using assumption (3), we can obtain the deterministic function ρij as

ρij (t, τ) =

{
qij(t,τ)

1−Hi(t,τ)
, pij (t) > 0 and Hi (t, τ) < 1

0 , otherwise.
(9)

By inverting this last equation we see that we can also obtain the semi-Markov
kernel (3) from knowledge of the hazard rate functions,

Qij (t, τ) =

∫ τ

0

exp [−Λi (t, u)] ρij (t, u) du, (10)

where

Λi (t, τ) =
s∑

j=1

∫ τ

0

ρij (t, u) du, (11)

is the total integrated hazard ‘out’ of state i, that is the total cumulative ‘force’
of transition for leaving state i, this relates directly to the d.f. of sojourn times in
state i.4 This one-to-one mapping between the semi-Markov kernel and the corre-
sponding hazard rate functions means that if we can estimate the latter ones we are
also able to obtain estimates of the former. Therefore we can follow the (large) lit-
erature on conditional hazard rate estimation in order to apply empirically models
with a semi-Markov structure.

4In fact the survival probability in state i, that is, Si (t, τ) = 1−Hi (t, τ) is directly given by
Si (t, τ) = exp [−Λi (t, τ)].
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2.1 Associated counting processes and their intensities

We now define the counting processes (c.p.) associated with the process (S, T ).
Let

N (u) = sup
n

{ n : Tn ≤ u} , u > t0, (12)

denote the right-continuous c.p. recording the total number of transitions ex-
perienced by the statistical unit in the interval (t0, u]. We denote by N̄ (u) the
corresponding left-continuous c.p. For each pair of states i and j we similarly
define two c.p., the right-continuous process

Nij (u) = nr.of direct transitions from state i to state j in (t0, u] ,
(13)

and the corresponding left-continuous c.p., which we denote by N̄ij. The set of
right-continuous c.p. are related by

N (u) =
∑

i6=j

Nij (u) ,

and a similar equality holds for their left-continuous counterparts.
The history of the (S, T ) process over a given interval [t0, u] can be completely
determined by the sample path of the multivariate c.p. N = (Nij)

s
i,j=1 over this

interval, together with information on the initial state S0. That is the internal
filtration associated with the process (S, T ) equals the internal filtration associated
with the process N enlarged with the σ-algebra generated by the random variable
S0.
We consider that the compensator of the (right-continuous) c.p. Nij is absolutely
continuous with respect to Lebesgue’s measure. Therefore there is a corresponding
caglad intensity process λij given by

λij (u) = lim
h↓0

1

h
P
[
N̄ij(u+ h) − N̄ij(u) > 0 | Fu−

]

= Yi (u) ρij
(
TN̄(u), Ū (u)

)
, (14)

where

Yi (u) =

{
1 , SN̄(u) = i
0 , otherwise,

(15)

is an exposure indicator and

Ū (u) = u− TN̄(u)

is a left-continuous version of the backward-recurrence time, that is, the elapsed
duration in the current state.
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2.2 Transition probabilities

For continuous-time Markov chains it is well known that the matrix of transition
probabilities over a given time window (t, t+ τ ] denoted by

Pij (t, t+ τ) = P [S (t+ τ) = j | S (t) = i] , τ > 0 (16)

is the unique solution to the Kolmogorov system of ‘backward’ and ‘forward’ PDEs
(Goodman and Johansen, 1973). In the current context, and due to the presence
of duration dependence, we’re interested in the following ‘age-specific’ or ‘left-
truncated’ transition probabilities,

p∗ij (t, τ0, τ) = P [S (t+ τ) = j | U (t+ τ0) = τ0, S (t+ τ0) = i] ; τ − τ0 > 0. (17)

That is, from a risk management perspective we are interested in estimating the
probability of finding each unit5 in state j by time t + τ if we know that at time
t + τ0 the unit is in state i, and the elapsed duration in that state is precisely τ0
units of time.
For obtaining these ‘left-truncated’ transition probabilities we must start by con-
sidering the related ‘renewal’ transition probabilities

pij (t, τ) = P
[
S (t+ τ) = j | N (t) − N̄ (t) = 1, SN(t) = i

]
, τ > 0, (18)

these are the probabilities of finding the unit in state j, τ units of time after it
entered state i, given that this transition happened at (chronological) time t.
These probabilities satisfy the following system of non-homogeneous Volterra in-
tegral equations of the second kind on two independent variables (t and τ)

pij(t, τ) = δij(1 −Hi(t, τ)) +
s∑

k=1

∫ τ

0

pkj(t+ u, τ − u)qik(t, u)du, i, j = 1, . . . , s,

(19)
where δij denotes Kronecker’s symbol. These equations are the direct counter-
part to the Kolmogorov ‘evolution’ equations for the Markov setting. For writing
down an expression for the ‘age-specific’ transition probabilities (17) denote by
q∗ij (t, τ0, τ) the density corresponding to the ‘left-truncated’ s.d.f. of the durations
in state i starting at time t which are larger than τ0 units of time and which end
with a transition to state j, that is

Q∗
ij (t, τ0, τ) =

Qij (t, τ) −Qij (t, τ0)

1 −Qij (t, τ0)
.

5In the empirical application of section 6, the statistical units are the bond issuers.
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The ‘age-specific’ transition probabilities in equation (17) are given by

p∗ij (t, τ0, τ) = δij (1 −H∗
i (t, τ0, τ)) +

s∑

k=1

∫ τ

τ0

pkj (t+ u, τ − u) q∗ik (t, τ0, u) du, (20)

where H∗
i (t, τ0, τ) denotes the d.f. function of left-truncated sojourn times in state

i and is obtained by adding the s.d.f. Q∗
ik (t, τ0, τ) with k = 1, . . . , s and pkj(., .)

denotes the transition probabilities defined in equation (18).

3 Nonparametric estimation

In this section, we consider the problem of estimating nonparametrically the main
quantities of interest associated with any NHSMP. In this first version of the
current paper we base our procedures on the class of kernel hazard estimators
known as ‘bin smoothers,’ this corresponds to the use of indicator functions as the
underlying smoothing kernels. Hastie and Tibshirani (1990) provide a discussion
of this class of smoothers in the context of nonparametric regression. However, it
is conceptually straightforward to base our procedures on hazard rate estimators
employing other classes of smoothing kernels. Nielsen and Linton (1995) and
Linton et al. (2003) give an exposition on the general issue of conditional hazard
rate estimation using kernel methods, both for the general and separable cases.
Besides the general (nonseparable) case of a bivariate hazard rate function we also
implement the separable case where the hazard rate functions defined in (8) have
the multiplicative form6

ρij (t, τ) = αij (τ)ψij (t+ τ) . (21)

This multiplicative specification for the hazard rate functions encompasses the
celebrated Proportional Hazards (PH) model of Cox (1972) for the case of a ho-
mogeneous population. In this particular NHSMP we assume the existence of a
time-invariant transition-specific baseline hazard αij (τ) which is multiplied by a
function of chronological time ψij (t+ τ). In the original PH model, without unit-
specific covariates, ψij can be seen as the combined effect of the (common across
units) time-varying regression covariates.
Specification (21) encompasses both the homogeneous SMP as considered for ex-
ample by Limnios and Ouhbi (1999 and 2005), and the non-homogeneous continuous-
time Markov Chain (CTMC) process. The former is obtained by setting ψij (t+ τ) ≡
1, the later by setting αij (τ) ≡ 1.
To identify ψij and αij simultaneously we impose the arbitrary normalization

6The coordinates (t, τ) in the Lexis diagram represent a straight line segment departing from
the point (t, 0) to the point (t+ τ, τ) in the Cartesian (t, τ) plane.
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ψij (t0) = 1. (22)

Now consider a panel of K units following independently a NHSMP character-
ized by a common SM kernel as in (3) and arbitrary vectors of initial probabilities.
We consider estimation in the presence of left-truncation at time t = 0 and in-
dependent right-censoring of type I at time t = T1 for the entire panel. In order
to proceed we need to introduce some additional notation. Consider for unit k
(right-continuous) c.p. N (k) (t) and N

(k)
ij (t) defined as in (12) and (13). Also, let

N (t) =
K∑

k=1

N (k) (t) ,

denote the global pooled c.p., i.e., the process counting the total number of tran-
sitions of any type recorded across all units in the panel. Let t0 < t1 < . . . <
tN(T1)+1 = T1 denote the corresponding sequence of ‘jump’ times of the process
N (t), together with the censoring time T1.
Consider for every possible transition from state i to state j, and unit k an indi-
cator variable defined as

∆N
(k)
ij (t) = N

(k)
ij (t) − N̄

(k)
ij (t) ,

where N̄
(k)
ij is the left-continuous c.p. associated with N

(k)
ij . Let Y

(k)
i (t), defined

as in (15), denote an indicator variable taking the value 1 if unit k is in state i at
time t−, where t− t− is arbitrarily small. The Likelihood function for such a panel
conditional on the observed initial state of each unit can be written as,

L (ρ | FT ) =

N(T )+1∏

m=1

K∏

k=1

∏

i6=j

{[
ρij(tm − Ū (k)(tm), Ū (k)(tm))

]∆N(k)
ij (tm)

× (23)

exp

(
−Y

(k)
i (tm)

∫ tm

tm−1

ρij
(
t− Ū (k)(t), Ū (k)(t)

)
dt

)}
.

We start by considering the general case where the hazard rate functions de-
pend simultaneously on Ū (k)(t + τ) and t + τ without imposing any parametric
assumptions over the structure of this function. We approximate this bivariate
hazard rate using a piecewise constant function,

ρ∗ij (t, τ) =

Mij−1∑

p=0

Lij∑

m=0

ρijpm1(xij,p,xij,p+1] (τ) · 1(tij,m,tij,m+1] (t+ τ) . (24)

The sequence xij,0 = 0 < xij,1 < . . . < xij,Mij
consists of an arbitrary partition

of the interval
[
0, Xmax

ij

]
, where Xmax

ij denotes the maximum between the largest
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observed duration in state i that ended with a transition to state j and the largest
right-censored duration in state i. In a similar way, the sequence tij,0 = 0 < tij,1 <
. . . < tij,Lij+1 = T1 denotes an arbitrary partition of the time-window [0, T1].
Substituting (24) in (23) taking the natural logarithm and collecting terms yields
the loglikelihood function,

l (ρ∗ | FT1) =
∑

i6=j

Lij∑

m=0

Mij−1∑

p=0

(oijpm ln ρijpm − eijpmρijpm) , (25)

where

oijpm =
K∑

k=1

∫ T1

0

1(xij,p,xij,p+1]

(
Ū (k)(t)

)
· 1(tij,m,tij,m+1] (t) dN

(k)
ij (t),

denotes the total number of transitions from state i to state j and

eijpm =
K∑

k=1

∫ T1

0

1(xij,p,xij,p+1]

(
Ū (k)(t)

)
· 1(tij,m,tij,m+1] (t)Y

(k)
i (t)dt,

is the total exposure (i.e. the cumulative length of time) observed in cell (p,m)
of the bivariate grid generated by the Cartesian product of both partitions xij,0 =
0 < xij,1 < . . . < xij,Mij

and tij,0 = 0 < tij,1 < . . . < tij,Lij+1 = T1. Equating to zero
the partial derivatives of the loglikelihood function with respect to the unknown
parameters ρijpm and solving for these unknowns, yields the following estimators,

ρ̂ijpm =
oijpm
eijpm

. (26)

The corresponding asymptotic variance can be estimated by

V̂ [ρ̂ijpm] =
oijpm
e2ijpm

. (27)

Similarly for the separable (multiplicative) case (21) we approximate both (uni-
variate) components of the hazard rate function ρij by two piecewise constant
functions α∗

ij and ψ∗
ij defined by,

α∗
ij (τ) =

Mij−1∑

p=0

αijp1(xij,p,xij,p+1] (τ) , (28)

and

ψ∗
ij (t+ τ) =

Lij∑

m=0

ψijp1(tij,m,tij,m+1] (t+ τ) . (29)
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Due to the scaling condition (22), we have ψij0 = 1. The sequences xij,0 = 0 <
xij,1 < . . . < xij,Mij

and tij,0 = t0 < tij,1 < . . . < tij,Lij+1 = T1 are similar to the
ones defined for the nonseparable case.
Substituting (28) and (29) in (23), taking the natural logarithm and collecting
terms yields the loglikelihood function

l (α∗, ψ∗ | FT1) =
∑

i6=j

Mij−1∑

p=0

dijp lnαijp +
∑

i6=j

Lij∑

m=1

bijm lnψijm

−
∑

i6=j

Lij∑

m=0

Mij−1∑

p=0

ψijmαijpeijpm, (30)

where

dijp =
K∑

k=1

∫ T1

0

1(xij,p,xij,p+1]

(
U (k) (t)

)
dN

(k)
ij (t), (31)

bijm =
K∑

k=1

∫ T1

0

1(tij,m,tij,m+1] (t) dN
(k)
ij (t), (32)

and7 eijpm denotes again the total exposure in cell (p, l) of the bivariate grid. Now,
the loglikelihood l is strictly concave as a function of the unknown values of the
step functions α∗

ij and ψ∗
ij (denote these by the vectors ψ̃ij and α̃ij of dimensions Lij

and Mij respectively). Additionally when we let the vectors ψ̃ij and α̃ij increase to

∞ we see that l decreases to −∞, therefore there is a unique pair
(
ψ̂ij, α̂ij

)
which

maximizes l. Numerical optimization of (30) is, under this setting, a problem
for which there are available several fast and robust algorithms. A simple com-
putational procedure is as follows. Taking partial derivatives of the loglikelihood
function given in (30) with respect to its arguments and equating these to zero,
yields the two following sets of estimating equations,

eijψ̃ij = (dijp/αijp )− (eijp0)

e′
ijα̃ij = (bijm/ψijm ). (33)

The matrix eij = (eijpm) contains all the eijpm elements with p = 0, . . . ,Mij − 1
and m = 1, . . . , Lij. Iterating these two sets of nonlinear equations starting from
an arbitrary (strictly positive) value for one of the unknowns, yields a sequence of

vectors which converges to the unique solution
(
ψ̂ij, α̂ij

)
. This is so because this

7These statistics satisfy
∑N̄ij(T1)

m=0 bijm =
∑Nij(T1)−1

p=0 dijp.
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procedure is interpretable as a gradient ascent method applied to the maximization
of a concave function.
The asymptotic variance of the resulting estimators can be estimated, for example,
by evaluating the symmetrical of the inverse of the Hessian matrix,

Hess =

[
A −eij

−e′
ij C

]
,

at the estimates resulting from the system of estimating equations (33), where

A = diag
(
−
dijp

α2
ijp

)
, C = diag

(
−

bijm

ψ2
ijm

)
are two diagonal matrices, and again

eij = (eijpm).

4 Empirical Transition Probabilities

As we have seen in section 2 we can obtain the semi-Markov kernel (10) from the
estimated hazard rate functions. The first required step consists in obtaining the
integrated hazard. The estimator of the integrated hazard associated with state i
over a given path (t, τ) as defined in equation (11) is obtained as,

Λ̂i (t, τ) =
s∑

j=1

Dij∑

n=1

ρ̂ij,n
(
τ ∧ x∗ij,n − x∗ij,n−1

)
, (34)

where8 n indexes chronologically the cells (p,m) of the ij-grid which have a non-
empty intersection with the path (t, τ) and Dij is the total number of these cells.
The estimator of the (constant) value of the hazard rate ρij over cell n is denoted
by ρ̂ij,n. Equation (10) suggests an estimator for the subdensity functions qij

q̂ij (t, τ) = exp
(
−Λ̂i (t, τ)

)
ρ̂ij,Dij

, (35)

and explicitly for the semi-Markov kernel,

Q̂ij (t, τ) =

Dij∑

n=1

[
e−ρ̂i,nx

∗

i,n−1 − e−ρ̂i,n(τ∧x∗i,n)
] ρ̂ij,n exp

[∑n−1
k=0 x

∗
i,k (ρ̂i,k+1 − ρ̂i,k)

]

ρ̂i,n
,

(36)
where ρ̂i,n =

∑s
j=1 ρ̂ij,n. The points x∗ij,n result from the reunion of the set of points

xij,p of the partition of the duration-scale with the points tij,m − t whenever these
are positive and smaller than τ . In a similar way the points x∗i,n are obtained from

8a ∧ b is short-hand notation for min{a, b}
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the reunion of the sets of points x∗ij,p over j = 1, . . . , s.
We now consider formally the problem of estimating the transition probabilities
over a specific time-window and for a given backward recurrence-time spent in the
current state. That is we want to estimate consistently the quantity in equation
(17). For doing this we need to obtain the empirical ‘renewal’ transition proba-
bilities pij by solving the Volterra integral equations (19) using as input a consis-
tent estimator of the subdensity functions. We start by stating an existence and
uniqueness theorem regarding these transition probabilities over the time-window
corresponding to the available data (the proofs are contained in the appendix).
Let T2 = maxi,j=1,...,s{X

max
ij }. Set T (t) = min{T2, T1 − t}, T = {(t, τ) | 0 ≤ t ≤

T1, 0 ≤ τ ≤ T (t)} and T ◦ = {(t, τ) | 0 ≤ t ≤ T1, 0 ≤ τ < T (t)}. Consider a space
Car(T ) of bounded functions f : T → R satisfying the following conditions:

1. f(·, τ) : [0, T1 − τ ] → R is measurable for all τ ∈ [0, T2],

2. f(t, ·) : [0, T (t)] → R is continuous for almost all t ∈ [0, T1],

The space Car(T ) equipped with the norm

|f |Car = sup
T

|f(t, τ)|

is a Banach space. Consider also a Banach space Cars(T ) of matrix-valued func-
tions p = (p)ij, i, j = 1, . . . , s. Every component pij, i, j = 1, . . . , s, belongs to the
space Car(T ). The norm in Cars(T ) is defined by

|p|Cars = max
1≤i,j≤s

sup
(t,τ)∈T

|pij(t, τ)|.

Assume that the functions Qij : T → R, i, j = 1, . . . , s, satisfy the following
conditions (C):

1. there exist non-negative functions qij ∈ L∞(T ), i, j = 1, . . . , s such that

Qij(t, τ) =

∫ τ

0

qij(t, u)du, (t, τ) ∈ T ◦,

2. Qij(t, T (t)) = limτ↑T (t)Qij(t, τ) + hij(t), where hij : [0, T1] → R, i, j =
1, . . . , s, are non-negative measurable functions,

3.
∑s

k=1Qik(t, T (t)) = 1 for all t ∈ [0, T1].

14



Now consider functions Pij : T → R, defined by

Pij(t, τ) = pij(t, τ) +
s∑

k=1

θ(τ − T (t))hik(t), i, j = 1, . . . , s,

where θ(·) is the Heaviside step function, and the functions pij : T → R,
i, j = 1, . . . , s, as defined in (18) satisfy the system of integral equations (19)

Theorem 1 Equation (19) has a unique solution p̂ ∈ Cars(T ) satisfying p̂ij(t, τ) ∈
[0, 1], (t, τ) ∈ T , i, j = 1, . . . , s,

∑s
j=1 p̂ij(t, τ) = 1 and p̂ij(t, 0) = δij, t ∈ [0, T1],

i, j = 1, . . . , s. This solution is Fréchet differentiable as function of the matrix of
subdensity functions (qij).

This theorem implies that if we could directly compute p̂ using as input estimates
of (qij) obtained from a consistent estimator, the resulting estimator of the ‘re-
newal’ transition matrix would not only be also consistent, but additionally, we
could use the delta method for infering its asymptotic distribution from the corre-
sponding distribution of the estimator (q̂ij) employed (see for example vd Vaart,
1998, Chapters 18 and 20). In practice we need to approximate numerically the
solution p̂ij(t, τ) over T by means of a finite system of algebraic equations. We
now turn to this issue.
Consider qij ∈ L∞(T ) with the norm less than or equal to M > 0. Assume that
there exist a partition of the interval [0, T1], 0 = t0 < t1 < . . . < tÑ1

= T1, a
partition of the interval [0, T2], 0 = τ0 < τ1 < . . . < τÑ2

= T2, a constant L > 0,

and functions q̌n1n2
ij (t, ·), n1 = 1, . . . , Ñ1, n2 = 1, . . . , Ñ2, satisfying the Lipschitz

condition
|q̌n1n2
ij (t′, τ ′) − q̌n1n2

ij (t′′, τ ′′)| ≤ L(|t′ − t′′| + |τ ′ − τ ′′|) (37)

for all i, j = 1, . . . , s, (t′, τ ′), (t′′, τ ′′) ∈ T ∩ [tn1−1, tn1 ]× [τn2−1, τn2 ], n1 = 1, . . . , Ñ1,
n2 = 1, . . . , Ñ2, and such that

qij(t, τ) = q̌n1n2
ij (t, τ), (t, τ) ∈ T ∩ [tn1−1, tn1 [×[τn−1, τn[,

with
n1 = 1, . . . , Ñ1, n2 = 1, . . . , Ñ2.

Without loss of generality there exist positive integers N1 ≥ Ñ1 and N2 ≥ Ñ2 such
that T1/N1 = T2/N2 = ∆̃, {tn | n = 1, . . . , Ñ1 − 1} ⊂ {l∆̃ | l = 1, . . . , N1 − 1}, and
{τn | n = 1, . . . , Ñ2 − 1} ⊂ {l∆̃ | l = 1, . . . , N2 − 1}. Put

αk(ξ) = s(T2L+ 2M)k(sT2M)k−1ξ, k = 1, 2, . . .

and

βn(ξ) =
αn(ξ) +

∑n−1
k=1 αk(ξ)

1 − αn(ξ) − (sT2M)n/n!
, n = 1, 2, . . . .
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Let N be a positive integer. Set ∆ = ∆̃/2N . Let m1 = 0, . . . , N1 and m2 =
0, . . . , N2. Consider functions p̂∆

ij , i, j = 1, . . . , s, defined at the points ((m1 + l̄ +

r̄/2N)∆̃, (m2 − l̄ − r̄/2N)∆̃), l̄ = 0, . . . ,m2, r̄ = 0, . . . , 2N − 1, by the following
system of linear equations

p̂∆
ij((m1 + l̄ + r̄/2N)∆̃, (m2 − l̄ − r̄/2N)∆̃)

= δij(1 −Hi((m1 + l̄ + r̄/2N)∆̃, (m2 − l̄ − r̄/2N)∆̃))

+∆
s∑

k=1

m2−l̄∑

l=2

r̄−1∑

r=0

p̂∆
kj((m1+l̄+l+r/2

N)∆̃, (m2−l̄−l−r/2
N)∆̃)qik((m1+l̄)∆̃, (l−1)∆̃).

(38)
From a computational perspective, the remarkable feature of this numerical

approximation method consists in the fact that the resulting linear system of (ma-
trix) equations can be solved simply by backward substitution. We are therefore
able to avoid the need to invert the corresponding square matrix of coefficients,
which is tipically very large.9 We now provide a theoretical upper bound for the
error implied by this numerical approximation. This inequality insures not only
the convergence of the method to the true solution, but also the consistency of
the estimator of the transition matrix which results from its application using
estimates of the matrix (qij) obtained from a consistent estimator.

Theorem 2 Let n be a positive integer such that (sT2M)n/n! < 1. If ∆̃ satisfies

αn(∆̃) < 1 −
(sT2M)n

n!
,

then for all m1 = 1, . . . , N1 and m2 = 1, . . . , N2 the following inequality holds

|p̂∆
ij(m1∆̃,m2∆̃) − p̂ij(m1∆̃,m2∆̃)| ≤ (s+ L̂)2M2T2∆ exp((s+ L̂)MT2) + βn(∆̃),

where

L̂ = max{2L∆̃+M,LT2 +M+(LT2 +16N2M)(1+βn(∆̃))}
(1 + 4sMT2)

N2−1 − 1

4sMT2

.

Obtaining a consistent estimator of the ‘left-truncated’ transition probabilities (17)
can be easily done by evaluating numerically the expression (20) using the ‘grid’
of values p̂∆

ij .

9In section 6 this matrix is of order 3500

16



5 Simulation Study

In this section we present the results of the Monte Carlo study conducted with
the aim of assessing the small sample behavior of the estimators of the hazard
rate functions presented in section 3. The simulation setup is as follows, there are
3 states S = {1, 2, 3}, state 3 is absorbing and denotes default. At time t = 0
there are K

2
units in each one of the two non-absorbing states. For each one of

the K units we consider a set of four intensity processes as defined in (14) with
corresponding hazard rate functions as in (21). We start with the simplest case
where the baseline hazard is a constant and the time-index is identically equal to
one. This corresponds to the simple case of a homogeneous continuous time MC.
We can therefore test if our estimators of the hazard rate functions are capable
of recovering this particular case of a SMP. We perform 500 replications of the
simulations. The results are shown in the next pictures.

<INSERT FIGURE 1 ABOUT HERE>

<INSERT FIGURE 2 ABOUT HERE>

<INSERT FIGURE 3 ABOUT HERE>

<INSERT FIGURE 4 ABOUT HERE>

It is possible to see as the number of units increases (and therefore also the
number of recorded transitions of each type) the estimated components of the
hazard rate functions in equation (21) seem to approach the true values with
decreasing variance (as it is to be expected).

6 Empirical Application

In this section we report the empirical results obtained with a baseline SMP model
for the credit rating process. We start by considering only two rating classes, in-
vestment grade (from BBB− up to AAA) and subinvestment or speculative grade
(bellow BBB−), Default is considered an absorbing state. We do not model explic-
itly the non-rated (N.R.) class as a state, instead all transitions into N.R. are taken
as censored observations. The ‘cells’ or ‘bins’ used for the estimation of the hazard
rates were constructed using an adaptive method. The number of observations is
constant across ‘bins’ while the dimensions of each ‘bin’ are random, therefore the
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‘smoothing’ parameter (equivalent to the ‘bandwidth’) is in this case the number
of observations used to define each bin.

<INSERT FIGURE 5 ABOUT HERE>

By looking at the number of quarterly recorded defaults by issuers rated as
subinvestment grade level, we can see, by conditioning on the age of the rating
(depicted at a yearly resolution), that most defaults take place within the first
four to five years after receiving this rating. This is to be expected as speculative
grade rated issuers represent, by definition, risky investments.

<INSERT FIGURE 6 ABOUT HERE>

The total exposure (measured in firm-years) in each ‘cell’ (covering one quarter
in calendar time and one year in ‘age’) indicates the concentration of firms in that
interval of time with a similar rating ‘maturity.’ In this plot it is possible to see
the existence of 4 historical periods where there was a large increase in the number
of firms entering the speculative grade level (both due to the downgrade from the
investment level and to the request of a first rating) the initial cohort at the start
of the time-window (1 January 1981, this cohort is somewhat special due to the
fact that most of its firms would most probably already had their rating for an -
unknown to us - period of time10 ), a second period from late 1986 to early 1990
(this large cohort was mostly due to firms being downgraded to the subinvestment
grade in this period, this conclusion results from the analysis of the grid count of
this type of event - see next graphic) a third period in the middle nineties (mostly
due to initial ratings) and finally a period from 1999 to early 2001 also due to
initial ratings.

<INSERT FIGURE 7 ABOUT HERE>

This plot documents the recorded number of downgrade rating actions. With
exception of a high-intensity period between 1985 and 1987 the picture is here much
more homogeneous throughout time than the recorded defaults for subinvestment
grade issuers.

<INSERT FIGURE 8 ABOUT HERE>

The total exposure of firms in the investment level category shows that the
largest such cohort corresponds to firms which entered the DB at the left-limit of
the time-window.

10We can treat these durations as left-truncated, under a time homogeneity assumption - over
the unknown duration to the left of the time-window - we can make the adequate correction in
the likelihood function to account for this fact.
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<INSERT FIGURE 9 ABOUT HERE>

<INSERT FIGURE 10 ABOUT HERE>

<INSERT FIGURE 11 ABOUT HERE>

Assuming a multiplicative structure for the hazard rates, we can extract the
marginal impact of the rating ‘age’ effect. We can clearly see that there is a peak
in the default intensity for subinvestment grade rated issuers roughly three years
after they received that rating. This non-monotonic pattern is in contrast with
the results reported in Lando and Skødeberg (2002), this is due to the fact that
we have dropped the parametric assumption used in that study. The Gompertz
baseline hazard used in that paper is not sufficiently flexible to accommodate non-
monotonic behavior, and therefore seems to have captured only the right tail of
the baseline hazard.
The time-index component expresses the relative degree of ‘risk’ of a given histor-
ical period with respect to a reference period. Due to our identifying resctriction
(22) this is the first chronological period (for the case of defaults by subinvestment
grade issuers this was the period covering from January 1981 to late 1984). We
can clearly see, for example, a very high intensity of default in late 1986. Next we
present the empirical transition matrices for the 7 grades rating system (the CCC
class includes all issuers with a credit rating lower than B−),

<INSERT TABLE 1 ABOUT HERE>

<INSERT TABLE 2 ABOUT HERE>

<INSERT TABLE 3 ABOUT HERE>

<INSERT TABLE 4 ABOUT HERE>

Comparing the estimated SM ‘renewal’ transition matrix with its Markov coun-
terpart (obtained using the Aalen-Johansen (A-J) estimator) it is possible to see
the impact of the (estimated) non-constant baseline hazards on the transition prob-
abilities. Several features are apparent. First for investment grade rated issuers it
is possible to see that there is much more ‘mass’ on the main diagonal (if an issuer
has just received a given rating in the investment grade level then this issuer is
much less ‘mobile’ than another issuer - with the same rating - but with a longer
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‘history’) than given by the A-J estimator (which effectively ‘averages’ the issuers
in a given rating class over the ‘age’ of that rating). This effect is still visible for
BB and B rated issuers. On the contrary for CCC rated issuers the opposite effect
is present, these issuers seem to be even more ‘mobile’ than what the A-J estimator
indicates. Simultaneously the A-J estimator seems to underestimate the probabil-
ities of more extreme rating movements - this is particularly true for the default
probabilities - these are systematically higher than the A-J estimator indicates,
for some cases the difference corresponds to a factor larger than two. Additionally
many transition probabilities away from the main diagonal are estimated as zero
(at this number of digits) in the A-J estimator but not for the SM case. On the
contrary the A-J estimator overestimates the probability of a rating movement of
a single class. This shows clearly the large impact of the ‘rating’ age over the
transition probabilities.

<INSERT TABLE 5 ABOUT HERE>

In table 5 we check the stability of the estimated SM ‘renewal’ transition ma-
trices (corresponding to the year 2000) with respect to the number of points of
the grid where the integral appearing in (19) is to be evaluated numerically, which
leads to the linear system (38). There is almost no noticeable difference between
the use of 500 or 2000 grid points (we therefore used 500 points for estimating the
SM transition matrices).

<INSERT TABLE 6 ABOUT HERE>

In these two tables we can see two SM transition matrices from the year 2004.
The first is a ‘renewal’ one (like the SM transition matrices in the previous tables).
At the left point of the time window (31/12/2003) we assume there is an occurrence
of a rating action which leads to the rating displayed in the rows of the matrix.
Then across the columns we display the probability that the debt issuer will be in
any one of the possible 8 ratings. The second table is different. Here we assume
that at the left-limit (31/12/2003) each debt issuer had already been one year in
its current rating (displayed in the rows). That is, the debt issuer had received its
rating on 31/12/2002. The most striking feature is the dramatic reduction in the
realized default probability from CCC rated issuers from 39 to only 9 percent.

7 Conclusion

In this paper we proved the existence and uniqueness of the empirical non-homogeneous
semi-Markov transition probabilities for any realistic setting. An efficient numer-
ical method for consistently estimating these time-dependent transition matrices
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from consistent estimates of the subdensity functions was introduced and its con-
vergence established. A simple implementation of the method was performed based
on the piecewise-constant nonparametric estimators of the hazard rate functions.
We applied the resulting estimators to the analysis of a dataset on corporate credit
ratings from Standard & Poor’s. We found large differences between the estimates
of the probabilities of default obtained under the semi-Markov assumption and
their Markov counterparts.
The class of econometric models considered in this paper, for the analysis of cor-
porate credit rating (and default) data at a micro-level, is one of the most flexible
available. Additionally the continuous-time nature of the associated estimators
makes efficient use of all the information available in the sample. Another ad-
vantage of this framework is that all major stylized facts of credit rating data
(as reported in the literature) can be accommodated. One such feature not yet
implemented in the empirical section of the current version of the paper is the
phenomenon of (downward) rating drift, however this extension is straightforward.
From our theoretical results it is also easy to derive confidence intervals for the
transition probabilities, this is left for future research.
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8 Appendix

Here we use mainly the notation of section 4. Let 0 < T2 ≤ T1. Consider a space
Car([0, T1] × [0, T2]) of bounded functions f : [0, T1] × [0, T2] → R satisfying the
following conditions:

1. f(·, τ) : [0, T1] → R is measurable for all τ ∈ [0, T2],

2. f(t, ·) : [0, T2] → R is continuous for almost all t ∈ [0, T1],

In the theory of ordinary differential equations these functions are known as
Caratheodory functions. For a brief revision of the main properties of the functions
f ∈ Car([0, T1] × [0, T2]) see Ekeland and Temam (1976), Chapter 8.

Theorem 3 Let f ∈ Car([0, T1] × [0, T2]) and let φ : [0, T1] → [0, T2] be measur-
able. Then the function t→ f(t, φ(t)) is measurable.
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Theorem 4 (Scorza-Dragoni) A bounded function f belongs to the space
Car([0, T1] × [0, T2]) if and only if for any ǫ > 0 there exists a compact set
Kǫ ⊂ [0, T1] such that meas([0, T1] \Kǫ) < ǫ and the function f : Kǫ × [0, T2] → R

is continuous.

8.1 Proof of Theorem 1

Theorem 1 is an immediate consequence of Lemma 7 below. To prove Lemma 7
we need some auxiliary results.

Lemma 5 If q ∈ L∞(T ) and p ∈ Car(T ), then the function

I(t, τ) =

∫ τ

0

p(t+ u, τ − u)q(t, u)du, (t, τ) ∈ T ,

belongs to Car(T ).

Proof. Set

p̄(t, τ) =

{
p(t, τ), (t, τ) ∈ T ,
0, (t, τ) ∈ R

2 \ T ,
q̄(t, τ) =

{
q(t, τ), (t, τ) ∈ T ,
0, (t, τ) ∈ R

2 \ T ,

and

Ī(t, τ) =

∫ τ

0

p̄(t+ u, τ − u)q̄(t, u)du, (t, τ) ∈ T .

By Theorem 3 the integral exists. We have I(t, τ) = Ī(t, τ), whenever (t, τ) ∈ T .
There exist M > 0 such that |p|, |q| ≤ M , and sequences of continuous functions
pn, qn : R

2 → [−M,M ] converging to p̄ and q̄, respectively, in the space L1(R
2).

Put

In(t, τ) =

∫ τ

0

pn(t+ u, τ − u)qn(t, u)du, (t, τ) ∈ T .

Let τ ∈ [0, T2]. Combining the Scorza-Dragoni and the Lusin theorems we see that
the function (w, t) → p̄(w, τ − w + t) is measurable. We have

|In(t, τ) − Ī(t, τ)| ≤

∫ τ

0

|p̄(t+ u, τ − u) − pn(t+ u, τ − u)||q̄(t, u)|du

+

∫ τ

0

|q̄(t, u) − qn(t, u)||pn(t+ u, τ − u)|du

≤M

∫ τ

0

(|p̄(t+ u, τ − u) − pn(t+ u, τ − u)| + |q̄(t, u) − qn(t, u)|)du

≤M

∫ T1+τ

0

|p̄(w, τ−w+t)−pn(w, τ−w+t)|dw+M

∫ τ

0

|q̄(t, u)−qn(t, u)|du = Jn(t).
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From the Fubini theorem we obtain Jn(·) ∈ L1([0, T1]) and

∫ T1

0

Jn(t)dt ≤M

∫

R2

(|p̄(α, β) − pn(α, β)| + |q̄(α, β) − qn(α, β)|)dαdβ.

This implies that the sequence Jn(·) tends to zero in the space L1([0, T1]). There-
fore there exists a subsequence Jnk

(·) converging to zero almost everywhere in
[0, T1]. Since the functions In(·, τ) are measurable, we see that the function Ī(·, τ)
and, as a consequence, the function I(·, τ) are measurable in [0, T1].

Put

p̃(t, τ) =

{
p(t, τ), (t, τ) ∈ T ,
p(t, T (t)), (t, τ) ∈ ([0, T1] × [0, T2]) \ T .

Obviously p̃ ∈ Car([0, T1] × [0, T2]). Let ǫ > 0. By the Scorza-Dragoni theorem
there exists a compact set Kǫ ⊂ [0, T1] such that meas([0, T1] \ Kǫ) < ǫ/M2 and
the function p̃ : Kǫ× [0, T2] → R is continuous. Let t ∈ [0, T1]. Consider τ, τ + θ ∈
[0, T (t)]. We have

|I(t, τ + θ) − I(t, τ)|

≤

∫ τ

0

|p(t+ u, τ + θ − u) − p(t+ u, τ − u)||q(t, u)|du+ |θ|M2

≤

∫

[0,τ ]∩(Kǫ−t)

|p(t+ u, τ + θ − u) − p(t+ u, τ − u)||q(t, u)|du+ ǫ+ |θ|M2 (39)

There exists η ∈]0, ǫ/M2[ such that |p(α′, β′) − p(α, β)| < ǫ/(T2M) whenever
(α′, β′), (α, β) ∈ T ∩ (R × Kǫ). Thus the right-hand side of inequality (39) does
not exceed 3ǫ whenever θ ∈] − η, η[. This ends the proof. 2

For each matrix q = (qij), with qij ∈ L∞(T ) consider a linear operator A(q)
defined by

(A(q)p)ij (t, τ) =
s∑

k=1

∫ τ

0

pkj(t+ u, τ − u)qik(t, u)du, i, j = 1, . . . , s.

By Lemma 5 A(q) transforms Cars(T ) into itself.

Lemma 6 Assume that |q|L∞
≤M . Then for any positive integer n the inequality

|An(q)| ≤
(sMT2)

n

n!

holds.
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Proof. Indeed, we have

|An(q)p|Cars ≤ (sM)n|p|Cars

∫ τ

0

∫ τ−un−1

0

. . .

∫ τ−u1−...−un−1

0

du0 . . . dun−1. (40)

By induction one can easily prove the equality

∫ τ

0

∫ τ−un−1

0

. . .

∫ τ−u1−...−un−1

0

du0 . . . dun−1 =
τn

n!
.

Combining this with (40) we obtain the result. 2

Consider, for each matrix q as above, b(q) ∈ Cars(T ) given by

(b(q))ij(t, τ) = δij(1 −Hi(t, τ)), (t, τ) ∈ T , i, j = 1, . . . , s,

and the map B(q) : Cars(T ) → Cars(T ) defined as

B(q)p = b(q) + A(q)p. (41)

Let P denote the set

{p ∈ Cars(T ) : 0 ≤ pij(t, τ),
s∑

j=1

pij(t, τ) = 1, pij(t, 0) = δij, t ∈ [0, T1], i, j = 1, . . . , s},

that is, the subset of Cars(T ) defined by the transition matrices. The set P is
closed.

Lemma 7 The equation p = B(q)p has a unique solution p̂ ∈ P.

Proof. Let p ∈ P. Since

0 ≤ (B(q)p)ij (t, τ) ≤ δij(1−Hi(t, τ))+
s∑

k=1

Qik(t, τ) = δij(1−Hi(t, τ))+Hi(t, τ) ≤ 1

(see condition (C3)), and

s∑

j=1

{
δij(1 −Hi(t, τ)) +

s∑

k=1

∫ τ

0

pkj(t+ u, τ − u)qik(t, u)du

}
=

1 −Hi(t, τ) +
s∑

k=1

∫ τ

0

{
s∑

j=1

pkj(t+ u, τ − u)

}
qik(t, u)du = 1,
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B(q) transforms P into itself. By Lemma 6 there exists n such that Bn(q) is
contractive. This implies the existence of a unique solution to the equation

p = B(q)p.

Now set (r(q))ij = −δijHi(t, τ)(q). Consider a map p = G(q) associating to q
the solution to the equation p = A(q)p + b(q). Note that |p| = |G(q)| ≤ 1. Let
|q| ≤M . Put

ph = A(q + h)ph + b(q + h)

and ∆p = ph − p. Then we have

∆p = A(q + h)ph + b(q + h) −A(q)p− b(q)

= A(q)∆p+ A(h)ph + r(h) = Γ(q,ph,h)(∆p).

Therefore

∆p = Γn(q,ph,h)
(∆p) = An(q)∆p+

n−1∑

k=0

Ak(q)(A(h)ph + r(h)).

Since
|An(q)| ≤ (sMT2)

n/n!,

we see that there exists the map (I −An(q))−1 whenever (sMT2)
n/n! < 1. Fix n

satisfying this condition. Then we obtain

∆p = (I −An(q))−1

n−1∑

k=0

Ak(q)(A(h)p+ r(h) + A(h)∆p). (42)

Observe that |∆p| ≤ |ph| + |p| ≤ 2. Since

|(I −An(q))−1| =

∣∣∣∣∣

∞∑

j=1

(An(q))j

∣∣∣∣∣ ≤
∞∑

j=1

(
(sMT2)

n

n!

)j
= (1 − (sMT2)

n/n!)−1,

from (42) we get

|∆p| ≤

(
4sT2(1 − (sMT2)

n/n!)−1

n−1∑

k=0

(sMT2)
k

k!

)
|h|.

Now (42) can be written as

G(q + h) −G(q) = ∆p = Λh+ ρ(h),
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where

Λh = (I −An(q))−1

n−1∑

k=0

Ak(q)(A(h)G(q) + r(h))

and
|ρ(h)| ≤ (const)|h|2.

This implies the Fréchet differentiability of the G map and the end of the proof.
2

8.2 Proof of Theorem 2

Define functions
q̃ij(t, τ) = qij(t,max{0, l − 2}∆̃),

with
(t, τ) ∈ T , τ ∈ [(l − 1)∆̃, l∆̃[, i, j = 1, . . . , s, l = 1, . . . , N2.

Consider the linear operator Ã∆̃ : Cars(T ) → Cars(T ) defined by

(
Ã∆̃(P )

)

ij
(t, τ) =

s∑

k=1

∫ τ

0

pkj(t+ u, τ − u)q̃ik(t, u)du, i, j = 1, . . . , s.

Obviously we have

|A(p) − Ã∆̃(p)|Cars ≤
s∑

k=1

|p|Cars
∑

{l≥1|l∆̃≤T (t)}

∫ l∆̃

(l−1)∆̃

|qij(t, u) − q̃ij(t, u)|du

+

∫ T (t)

l∆̃

|qij(t, u) − q̃ij(t, u)|du ≤ sT2L∆̃|p|Cars .

Consider also the linear operator A∆̃ : Cars(T ) → Cars(T ) defined by

(A∆̃(P ))ij (t, τ) =
s∑

k=1

m∑

l=2

(∫ l∆̃

(l−1)∆̃

pkj(t+ u, τ − u)du

)
qik(t, (l − 1)∆̃),

(t, τ) ∈ T , τ ∈ [m∆̃, (m+ 1)∆̃[, m = 1, . . . , N2 − 1, i, j = 1, . . . , s.

Since

(
Ã∆̃(P )

)

ij
(t, τ) =

s∑

k=1

m∑

l=2

(∫ l∆̃

(l−1)∆̃

pkj(t+ u, τ − u)du

)
qik(t, (l − 1)∆̃)
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+
s∑

k=1

(∫ ∆̃

0

pkj(t+ u, τ − u)du

)
q̃ik(t, 0)+

s∑

k=1

(∫ τ

m∆̃

pkj(t+ u, τ − u)du

)
qik(t, (m−1)∆̃),

(t, τ) ∈ T , τ ∈ [m∆̃, (m+ 1)∆̃[, m = 1, . . . , N2 − 1, i, j = 1, . . . , s,

we get
|A∆̃(p) − Ã∆̃(p)|Cars ≤ 2sM∆̃|p|Cars .

Therefore we have

|A(p) −A∆̃(p)|Cars ≤ s(T2L+ 2M)∆̃|p|Cars . (43)

Lemma 8 Let n be a positive integer such that (sT2M)n/n! < 1. If ∆̃ = T2/N2

satisfies

αn(∆̃) < 1 −
(sT2M)n

n!
, (44)

then the equation
p = B∆̃(p) = b+ A∆̃(p) (45)

has a unique solution p∆̃ ∈ Cars(T ) satisfying

|p∆̃ − p̂|Cars ≤ βn(∆̃). (46)

Proof. Since |A|, |A∆̃| ≤ sT2M , from (43) we obtain

|Ak
∆̃
−Ak| ≤ |A∆̃ −A||Ak−1

∆̃
+ Ak−2

∆̃
A + . . .+ Ak−1| ≤ αk(∆̃).

Therefore (see Lemma 6)

|An
∆̃
| ≤ |An

∆̃
−An| + |An| ≤ αn(∆̃) +

(sT2M)n

n!
.

From this we see that condition (44) implies the existence of a unique solution

p∆̃ ∈ Cars(T ) to equation (45). Observe that

|p∆̃− p̂|Cars = |Bn
∆̃
(p∆̃)−Bn(p̂)|Cars ≤ |An

∆̃
(p∆̃)−An(p̂)|Cars +

∣∣∣∣∣

n−1∑

k=1

(Ak
∆̃
−Ak)b

∣∣∣∣∣
Cars

≤ |An
∆̃
(p∆̃) −An

∆̃
(p̂)|Cars + |An

∆̃
(p̂) −An

∆̃
(p̂)|Cars +

(
n−1∑

k=1

αk(∆̃)

)
|b|Cars

≤ |An
∆̃
||p∆̃ − p̂|Cars + |An

∆̃
−An||p̂|Cars +

(
n−1∑

k=1

αk(∆̃)

)
|b|Cars .
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≤

(
αn(∆̃) +

(sT2M)n

n!

)
|p∆̃ − p̂|Cars + αn(∆̃)|p̂|Cars +

(
n−1∑

k=1

αk(∆̃)

)
|b|Cars .

Since |p̂|Cars ≤ 1 and |b|Cars ≤ 1, we get (46). 2

Set Tm = {(t, τ) ∈ T | τ ≤ m∆̃}. From (45) we see that the functions

p∆̃
ij : Tm+1 → [0, 1] satisfy

p∆̃
ij(t, τ) = δij(1−Hi(t, τ)) +

s∑

k=1

m∑

l=2

(∫ l∆̃

(l−1)∆̃

p∆̃
kj(t+ u, τ − u)du

)
qik(t, (l− 1)∆̃),

(47)
(t, τ) ∈ T , τ ∈ [m∆̃, (m+ 1)∆̃[, i, j = 1, . . . , s,

and are completely determined by their values on the set Tm. This implies that
(47) allows to successively calculate the functions p∆̃

ij : T → [0, 1], i, j = 1, . . . , s,
on the sets T1 ⊂ T2 ⊂ . . . ⊂ TN2 .

Lemma 9 The solution p∆̃
ij to equation (47) is Lipschitz continuous in [m1∆̃, (m1+

1)∆̃[×[m2∆̃, (m2 +1)∆̃[∩T , m1 = 0, . . . , N1−1, m2 = 0, . . . , N2−1, with the con-
stant

L̃ = max{2sL∆̃+M, sLT2+sM+(sLT2+16sN2M)|p∆̃|Cars}
(1 + 4sMT2)

N2−1 − 1

4sMT2

.

Proof. Consider (t′, τ ′), (t′′, τ ′′) ∈ [m1∆̃, (m1 + 1)∆̃[×[m2∆̃, (m2 + 1)∆̃[∩T ,
where m2 = 0 or m2 = 1. Then we have

|p∆̃
ij(t

′, τ ′) − p∆̃
ij(t

′′, τ ′′)| = δij|Hi(t
′, τ ′) −Hi(t

′′, τ ′′)|

=
s∑

k=1

(∫ τ ′

0

qik(t
′, u)du−

∫ τ ′′

0

qik(t
′′, u)du

)

≤
s∑

k=1

∫ 2∆̃

0

|qik(t
′, u) − qik(t

′′, u)|du+ sM |τ ′ − τ ′′| ≤ L1(|t
′ − t′′| + |τ ′ − τ ′′|),

where L1 = 2sL∆̃ + sM .
Suppose that p∆̃

ij is Lipschitzian in [m1∆̃, (m1 + 1)∆̃[×[m2∆̃, (m2 + 1)∆̃[∩T ,
m1 = 0, . . . , N1−1, m2 = 0, . . . ,m−1, with the constant Lm−1. If (t′, τ ′), (t′′, τ ′′) ∈
[m1∆̃, (m1 + 1)∆̃[×[m∆̃, (m+ 1)∆̃[∩T , we have

p∆̃
ij(t

′, τ ′) − p∆̃
ij(t

′′, τ ′′) = δij(Hi(t
′, τ ′) −Hi(t

′′, τ ′′))
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+
s∑

k=1

m∑

l=2

((∫ l∆̃

(l−1)∆̃

p∆̃
kj(t

′ + u, τ ′ − u)du

)
qik(t

′, (l − 1)∆̃)

−

(∫ l∆̃

(l−1)∆̃

p∆̃
kj(t

′′ + u, τ ′′ − u)du

)
qik(t

′′, (l − 1)∆̃)

)

= δij(Hi(t
′, τ ′) −Hi(t

′′, τ ′′))

+

(∫ l∆̃

(l−1)∆̃

p∆̃
kj(t

′′ + u, τ ′′ − u))du

)
(qik(t

′, (l − 1)∆̃) − qik(t
′′, (l − 1)∆̃))

+
s∑

k=1

m∑

l=2

(∫ l∆̃

(l−1)∆̃

(p∆̃
kj(t

′ + u, τ ′ − u) − p∆̃
kj(t

′′ + u, τ ′′ − u))du

)
qik(t

′, (l − 1)∆̃).

From this we obtain
|p∆̃
ij(t

′, τ ′) − p∆̃
ij(t

′′, τ ′′)|

≤ s((m+ 1)L∆̃ +M)(|t′ − t′′| + |τ ′ − τ ′′|) + smL|p∆̃|Cars∆̃|t′ − t′′|

+M
s∑

k=1

m∑

l=2

∫ l∆̃

(l−1)∆̃

|p∆̃
kj(t

′ + u, τ ′ − u) − p∆̃
kj(t

′′ + u, τ ′′ − u)|du. (48)

Set

U(t′, τ ′, t′′, τ ′′) = {u | ∃ l1, l2, w, v : t′ + u+ w = t′′ + v, τ ′ − u+ w = τ ′′ − v,

(t′ + u, τ ′ − u), (t′′ + v, τ ′′ − v) ∈ [(l1 − 1)∆̃, l1∆̃] × [(l2 − 1)∆̃, l2∆̃]}.

If |t′− t′′|+ |τ ′− τ ′′| < ∆̃/4, then from elementary geometric considerations we get

meas(U(t′, τ ′, t′′, τ ′′)) ≥ T2 − 2(|t′ − t′′| + |τ ′ − τ ′′|)N2.

Therefore for (t′, τ ′), (t′′, τ ′′) ∈ [m1∆̃, (m1 + 1)∆̃[×[m∆̃, (m + 1)∆̃[∩T satisfying
|t′ − t′′| + |τ ′ − τ ′′| < ∆̃/4 we have

s∑

k=1

m∑

l=2

∫ l∆̃

(l−1)∆̃

|p∆̃
kj(t

′ + u, τ ′ − u) − p∆̃
kj(t

′′ + u, τ ′′ − u)|du

≤

s∑

k=1

(∫

U(t′,τ ′,t′′,τ ′′)

|p∆̃
kj(t

′ + u, τ ′ − u) − p∆̃
kj(t

′′ + u, τ ′′ − u)|du

+
m∑

l=2

∫

[(l−1)∆̃,l∆̃]\U(t′,τ ′,t′′,τ ′′)

|p∆̃
kj(t

′ + u, τ ′ − u) − p∆̃
kj(t

′′ + u, τ ′′ − u)|du

)
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≤ (sLm−1T2 + 4sN2|p
∆̃|Cars)(|t

′ − t′′| + |τ ′ − τ ′′|).

Combining this with (48) we see that the function p∆̃
kj is Lipschitzian in [m1∆̃, (m1+

1)∆̃[ ×[m∆̃, (m+ 1)∆̃[∩T , with the constant

Lm = s((m+ 1)L∆̃ +M) + smL|p∆̃|Cars∆̃ + 4(sLm−1T2 + 4sN2|p
∆̃|Cars).

By induction we obtain
LN2−1 ≤ L̃

= max{2sL∆̃+M, sLT2 + sM +(sLT2 +16sN2M)|p∆̃|Cars}
(1 + 4sMT2)

N2−1 − 1

4sMT2

.

This ends the proof. 2

Lemma 10 The sequence

γ0 = 0, γν+1 = α

(
ν∑

µ=0

γµ + να

)
, ν = 0, 1, . . . ,

satisfies the inequality
γν+1 ≤ α2ν(1 + α)ν .

Proof. Set Sν =
∑ν

µ=0 γµ and σν = Sν/ν. We have Sν+1 = (1+α)Sν + να2 and

σν+1 ≤
Sν+1

ν
= (1 + α)σν + α2.

By induction we obtain

σν ≤ α2(1 + (1 + α) + . . .+ (1 + α)ν−1) = α((1 + α)ν − 1).

Therefore
γν+1 = αν(σν + α) ≤ α2ν(1 + α)ν . 2

Let t = (m1 + l̄)∆̃ and τ = (m2 − l̄)∆̃. Observe that (see (47))

p∆̃
ij(t, τ) = δij(1−Hi(t, τ)) +

s∑

k=1

m2−l̄∑

l=2

(∫ l∆̃

(l−1)∆̃

p∆̃
kj(t+ u, τ − u)du

)
qik(t, (l− 1)∆̃)

= δij(1 −Hi(t, τ))

+∆
s∑

k=1

m2−l̄∑

l=2

2N−1∑

r=0

p∆̃
kj(t+ ((l − 1) + r/2N)∆̃, τ − ((l − 1) + r/2N)∆̃)qik(t, (l − 1)∆̃)
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+
s∑

k=1

m2−l̄∑

l=2

2N−1∑

r=0

ζiklr, (49)

where

ζiklr =

(∫ (l−1+(r+1)/2N )∆̃

(l−1+r/2N )∆̃

p∆̃
kj(t+ u, τ − u)du

)
qik(t, (l − 1)∆̃)

−∆p∆̃
kj(t+ ((l − 1) + r/2N)∆̃, τ − ((l − 1) + r/2N)∆̃)qik(t, (l − 1)∆̃).

Put
γij(m1 + l̄ + r̄/2N ,m2 − l̄ − r̄/2N)

= |p∆̃
ij((m1 + l̄ + r̄/2N)∆̃, (m2 − l̄ − r̄/2N)∆̃)

−p̂∆
ij((m1 + l̄ + r̄/2N)∆̃, (m2 − l̄ − r̄/2N)∆̃)|

(see (38)). By Lemma 9 we have |ζijlr| ≤ L̃M∆2. Combining (38) and (49) we
obtain

γij(m1 + l̄ + r̄/2N ,m2 − l̄ − r̄/2N)

≤ ∆M
s∑

k=1

m2−l̄∑

l=2

r̄−1∑

r=0

(γkj(m1 + l̄ + r̄/2N ,m2 − l̄ − r̄/2N) + L̃∆).

Applying Lemma 10 with α = (s+ L̃)M∆, we get

γij(m1,m2) ≤ (s+ L̃)2M2∆2N22
N(1 + (s+ L̃)∆)N22N

≤ (s+ L̃)2M2T2∆ exp((s+ L̃)MT2).

(Here we used the well-known inequality (1 + 1/a)a ≤ exp(a).) This and the
inequality

|p∆̃|Cars ≤ |p̂|Cars + |p̂− p∆̃|Cars ≤ 1 + |p̂− p∆̃|Cars

together with Lemma 8 imply Theorem 2.
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Table 1: Empirical SM transition matrix for 1992
This table contains the nonparametric estimates of the one-year semi-Markov transition matrix for the year 1992.
This matrix gives the empirical probabilities (i.e. the observed frequencies) of a firm being found in each one of
the 8 rating classes (ordered through the columns of the table) at 31/12/1992 given that it received a specific
credit rating (represented by the rows of the table) at 31/12/1991.

AAA AA A BBB BB B CCC Dflt
AAA 0.98417 0.01297 0.00285 0.00005 0.00001 0.00000 0.00000 0.00000
AA 0.00536 0.95795 0.03336 0.00139 0.00118 0.00070 0.00004 0.00003
A 0.00108 0.00401 0.95287 0.03726 0.00413 0.00049 0.00008 0.00008
BBB 0.00001 0.00121 0.02380 0.92771 0.04122 0.00288 0.00116 0.00237
BB 0.00000 0.00100 0.00290 0.02353 0.89034 0.06412 0.00854 0.00943
B 0.00000 0.00025 0.00127 0.00439 0.02231 0.81334 0.07894 0.07832
CCC 0.00000 0.00003 0.00014 0.00446 0.02238 0.08001 0.34470 0.53435
Dflt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000

Table 2: Aalen-Johansen estimator for 1992
This table contains the nonparametric Aalen-Johansen estimates of the one-year Markov transition matrix for
the year 1992. This matrix gives the empirical probabilities (i.e. the observed frequencies) of a firm being found
in each one of the 8 rating classes (ordered through the columns of the table) at 31/12/1992 given that it was in
a specific credit rating (represented by the rows of the table) at 31/12/1991.

AAA AA A BBB BB B CCC Dflt
AAA 0.92403 0.07458 0.00137 0.00005 0.00000 0.00000 0.00000 0.00000
AA 0.00928 0.93742 0.05191 0.00133 0.00006 0.00000 0.00000 0.00000
A 0.00013 0.01540 0.93625 0.04572 0.00242 0.00009 0.00000 0.00000
BBB 0.00000 0.00061 0.06099 0.90047 0.03644 0.00140 0.00007 0.00003
BB 0.00000 0.00006 0.00584 0.11514 0.81013 0.05227 0.01102 0.00554
B 0.00000 0.00003 0.00476 0.02748 0.11240 0.73119 0.07736 0.04678
CCC 0.00000 0.00003 0.00041 0.00274 0.03017 0.09973 0.49593 0.37102
Dflt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000

Table 3: Empirical SM transition matrix for 1993
This table contains the nonparametric estimates of the one-year semi-Markov transition matrix for the year 1993.
This matrix gives the empirical probabilities (i.e. the observed frequencies) of a firm being found in each one of
the 8 rating classes (ordered through the columns of the table) at 31/12/1993 given that it received a specific
credit rating (represented by the rows of the table) at 31/12/1992.

AAA AA A BBB BB B CCC Dflt
AAA 0.97629 0.02063 0.00300 0.00005 0.00002 0.00001 0.00000 0.00000
AA 0.00511 0.95637 0.03528 0.00134 0.00118 0.00072 0.00002 0.00002
A 0.00074 0.00370 0.95881 0.03336 0.00291 0.00041 0.00005 0.00006
BBB 0.00001 0.00120 0.02375 0.92131 0.04757 0.00312 0.00117 0.00203
BB 0.00000 0.00101 0.00339 0.02088 0.90965 0.05787 0.00354 0.00363
B 0.00000 0.00026 0.00136 0.00515 0.02291 0.90651 0.03219 0.03143
CCC 0.00000 0.00004 0.00020 0.00509 0.02302 0.18516 0.38943 0.39272
Dflt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000
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Table 4: Aalen-Johansen estimator for 1993
This table contains the nonparametric Aalen-Johansen estimate of the one-year Markov transition matrix for the
year 1993. This matrix gives the empirical probabilities (i.e. the observed frequencies) of a firm being found in
each one of the 8 rating classes (ordered through the columns of the table) at 31/12/1993 given that it was in a
specific credit rating (represented by the rows of the table) at 31/12/1992.

AAA AA A BBB BB B CCC Dflt
AAA 0.95487 0.04361 0.00149 0.00003 0.00000 0.00000 0.00000 0.00000
AA 0.00011 0.94244 0.05639 0.00104 0.00002 0.00000 0.00000 0.00000
A 0.00333 0.00663 0.95886 0.03031 0.00084 0.00002 0.00000 0.00000
BBB 0.00009 0.00033 0.04699 0.89641 0.05163 0.00424 0.00024 0.00007
BB 0.00001 0.00620 0.00845 0.08211 0.82690 0.06865 0.00652 0.00116
B 0.00001 0.00044 0.00505 0.01420 0.12686 0.82013 0.01681 0.01651
CCC 0.00000 0.00004 0.00015 0.00179 0.03572 0.31275 0.49087 0.15866
Dflt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000

Table 5: Empirical SM transition matrices for 2000
This table contains the nonparametric estimates of the one-year semi-Markov transition matrix for the year 2000.
Here we have increased the resolution of the discrete grid used to apply the numerical integration algorithm
discussed in section 4. We are thus able to see the impact of the number of points of the grid over the final
estimates. This matrix gives the empirical probabilities (i.e. the observed frequencies) of a firm being found in
each one of the 8 rating classes (ordered through the columns of the table) at 31/12/2000 given that it received
a specific credit rating (represented by the rows of the table) at 31/12/1999.

500 points

AAA AA A BBB BB B CCC Dflt
AAA 0.98926 0.00781 0.00286 0.00005 0.00001 0.00000 0.00000 0.00000
AA 0.00643 0.94603 0.04396 0.00189 0.00116 0.00073 0.00003 0.00003
A 0.00068 0.00532 0.95399 0.03659 0.00284 0.00048 0.00006 0.00011
BBB 0.00001 0.00092 0.01359 0.94701 0.02973 0.00440 0.00109 0.00347
BB 0.00000 0.00071 0.00150 0.00993 0.89104 0.08014 0.00721 0.00932
B 0.00000 0.00024 0.00062 0.00140 0.00630 0.86747 0.05977 0.06343
CCC 0.00000 0.00001 0.00004 0.00366 0.00230 0.04137 0.33102 0.60614
Dflt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000

1000 points

AAA AA A BBB BB B CCC Dflt
AAA 0.98926 0.00781 0.00286 0.00005 0.00001 0.00000 0.00000 0.00000
AA 0.00643 0.94603 0.04401 0.00189 0.00116 0.00073 0.00003 0.00003
A 0.00068 0.00533 0.95399 0.03656 0.00284 0.00048 0.00006 0.00011
BBB 0.00001 0.00092 0.01358 0.94701 0.02973 0.00440 0.00108 0.00343
BB 0.00000 0.00071 0.00150 0.00993 0.89104 0.08018 0.00721 0.00932
B 0.00000 0.00024 0.00062 0.00140 0.00630 0.86747 0.05977 0.06337
CCC 0.00000 0.00001 0.00004 0.00366 0.00230 0.04139 0.33102 0.60554
Dflt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000

2000 points

AAA AA A BBB BB B CCC Dflt
AAA 0.98926 0.00781 0.00286 0.00005 0.00001 0.00000 0.00000 0.00000
AA 0.00643 0.94603 0.04398 0.00189 0.00116 0.00073 0.00003 0.00003
A 0.00068 0.00533 0.95399 0.03657 0.00284 0.00048 0.00006 0.00011
BBB 0.00001 0.00092 0.01359 0.94701 0.02973 0.00440 0.00109 0.00343
BB 0.00000 0.00071 0.00150 0.00993 0.89104 0.08017 0.00721 0.00931
B 0.00000 0.00024 0.00062 0.00140 0.00630 0.86747 0.05977 0.06335
CCC 0.00000 0.00001 0.00004 0.00366 0.00230 0.04138 0.33102 0.60564
Dflt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000
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Table 6: Empirical SM transition matrices for 2004
The first table bellow contains the nonparametric estimates of the one-year semi-Markov transition matrix for the
year 2004. This matrix gives the empirical probabilities of a debt issuer being found in each one of the 8 rating
classes (ordered through the columns of the table) at 31/12/2004 given that it received a specific credit rating
(represented by the rows of the table) at 31/12/2003. The second table contains the equivalent ‘left-truncated’
semi-Markov transition matrix. Here the initial rating was received at 31/12/2002 and by 31/12/2003 the issuer
was still in that same rating.

‘renewal’ transition matrix

AAA AA A BBB BB B CCC Dflt
AAA 0.97868 0.01821 0.00305 0.00007 0.00002 0.00001 0.00000 0.00000
AA 0.00722 0.93740 0.05120 0.00219 0.00129 0.00074 0.00003 0.00001
A 0.00067 0.00530 0.94608 0.04024 0.00715 0.00065 0.00008 0.00010
BBB 0.00006 0.00091 0.01020 0.94776 0.03308 0.00400 0.00130 0.00292
BB 0.00000 0.00071 0.00158 0.01076 0.89995 0.07767 0.00503 0.00413
B 0.00000 0.00025 0.00064 0.00170 0.00981 0.91680 0.04880 0.02203
CCC 0.00000 0.00002 0.00006 0.00448 0.00317 0.09810 0.48754 0.39976
Dflt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000

‘left-truncated’ transition matrix

AAA AA A BBB BB B CCC Dflt
AAA 0.96332 0.03397 0.00325 0.00007 0.00003 0.00001 0.00000 0.00000
AA 0.00615 0.90949 0.07935 0.00273 0.00140 0.00069 0.00003 0.00002
A 0.00093 0.01766 0.91809 0.05869 0.00477 0.00057 0.00009 0.00014
BBB 0.00001 0.00090 0.01748 0.92622 0.04986 0.00424 0.00065 0.00085
BB 0.00000 0.00064 0.00328 0.03001 0.88430 0.07521 0.00396 0.00286
B 0.00000 0.00023 0.00050 0.00244 0.04147 0.89297 0.04299 0.01885
CCC 0.00000 0.00001 0.00005 0.00356 0.00370 0.06070 0.83702 0.09212
Dflt 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000
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Figure 1: Empirical distributions of the NPML estimators of the baseline hazard
200 units - the SM model and the simulation set-up are explained in the text. Depicted on the
top left picture is the estimated baseline hazard for a transition from state 1 to state 2 (the true
baseline hazard was constant and equal to 3). The top right plot corresponds to transitions from
state 1 to state 3 (true value was equal to 2). On the lower left picture we have the estimated
baseline hazard for transitions from state 2 to state 1 (true value is 4). Finally the lower right
graph depicts the estimated baseline hazard for transitions from state 2 to state 3 (underlying
value is 4).
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Figure 2: Empirical distributions of the NPML estimators of the baseline hazard
( 400 units - the baseline model and the simulation set-up are explained in the text. The structure
of the plot is as in figure 1)
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Figure 3: Empirical distributions of the NPML estimators of the time-index
( 200 units - the baseline model and the simulation set-up are explained in the text. The structure
of the plot is as in figure 1 but the underlying value of the index is 1 throughout)
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Figure 4: Empirical distributions of the NPML estimators of the time-index
( 400 units - the baseline model and the simulation set-up are explained in the text. The structure
of the plot is as in figure 1 but the underlying value of the index is 1 throughout)
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Figure 5: Recorded Number of Defaults: subinvestment grade rated issuers
(each grid cell covers a quarter in calendar time and one year in age-time.)
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Figure 6: Total Exposure: subinvestment grade rated issuers
(each grid cell covers a quarter in calendar time and one year in age-time)
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Figure 7: Downgrade from Investment to speculative grade: number of events
(each grid cell covers a quarter in calendar time and one year in age-time)
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Figure 8: Total Exposures: investment grade rated issuers
(each grid cell covers a quarter in calendar time and one year in age-time)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.0001

0.0002

0.0003

Alpha 
Lower 95% Bound 

Upper 95% Bound 
 

1982.5 1985.0 1987.5 1990.0 1992.5 1995.0 1997.5 2000.0 2002.5 2005.0

0.5

1.0

1.5

2.0 Psi 
Lower 95% Bound 

Upper 95% Bound 
 

Figure 9: Recorded defaults by subinvestment grade rated issuers
(The topmost plot depicts the baseline hazard estimated with 6 ‘bins’, each cell or ‘bin’ encom-
passes 139 observations. Also plotted are the upper and lower .95 confidence bands. It is possible
to see that the strong non-monotonic behavior of the baseline hazard is statistically significant
at the .95 level. On the lower pane we plot the estimated time index ψ. The first time period
is taken as the basis for comparison, the time index was estimated using 36 ‘time bins’ each one
of these ‘bins’ encompasses 23 observations. Also plotted are the upper and lower .95 confidence
bands. It is possible to see that, although the average amplitude of these confidence bands is
rather large, the time-homogeneity is strongly rejected at this level, in particular in the period
from early 96 to late 2001 the overall intensity of this type of event was significantly lower - when
compared to the reference period - from early 1981 to the end of 1983.)

40



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

0.00005

0.00010

0.00015

Alpha 
Lower 95% Bound 

Upper 95% Bound 
 

1982.5 1985.0 1987.5 1990.0 1992.5 1995.0 1997.5 2000.0 2002.5 2005.0

0.5

1.0

1.5

2.0
Psi 
Lower 95% Bound 

Upper 95% Bound 
 

Figure 10: Downgrade from investment to subinvestment grade
(The topmost plot depicts the baseline hazard estimated with 6 ‘bins’, each cell or ‘bin’ encom-
passes 128 observations. Also plotted are the upper and lower .95 confidence bands. It is possible
to see that the strong non-monotonic behavior of the baseline hazard is statistically significant
at the .95 level. On the lower pane we plot the estimated time index ψ. The first time period
is taken as the basis for comparison, the time index was estimated using 36 ‘time bins’ each one
of these ‘bins’ encompasses 21 observations. Also plotted are the upper and lower .95 confidence
bands. It is possible to see that, although the average amplitude of these confidence bands is
rather large, the time-homogeneity is strongly rejected at this level, this takes place for several
periods in 1983, 1986, 1989 and from 1996 to 1999 the overall intensity of this type of event was
significantly lower - when compared to the reference period - from early 1981 to middle 1982.)
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Figure 11: Upgrade from subinvestment to investment grade
(The topmost plot depicts the baseline hazard estimated with 6 ‘bins’, each cell or ‘bin’ encom-
passes 96 observations. Also plotted are the upper and lower .95 confidence bands. It is possible
to see that the strong non-monotonic behavior of the baseline hazard is statistically significant
at the .95 level. On the lower pane we plot the estimated time index ψ. The first time period
is taken as the basis for comparison, the time index was estimated using 36 ‘time bins’ each one
of these ‘bins’ encompasses 16 observations. Also plotted are the upper and lower .95 confidence
bands. It is possible to see that the time-homogeneity is strongly rejected at this level, this takes
place for several periods like 1986, from 1988 to 1992 and from 1994 onwards the overall intensity
of this type of event was significantly lower - when compared to the reference period - from early
1981 to late 1983.)
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