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On Importance Sampling for State Space Models

Borus Jungbacker and Siem Jan Koopman

Department of Econometrics, Vrije Universiteit Amsterdam,

De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

Abstract

We consider likelihood inference and state estimation by means of importance sampling

for state space models with a nonlinear non-Gaussian observation y ∼ p(y|α) and a

linear Gaussian state α ∼ p(α). The importance density is chosen to be the Laplace

approximation of the smoothing density p(α|y). We show that computationally efficient

state space methods can be used to perform all necessary computations in all situations.

It requires new derivations of the Kalman filter and smoother and the simulation smoother

which do not rely on a linear Gaussian observation equation. Furthermore, results are

presented that lead to a more effective implementation of importance sampling for state

space models. An illustration is given for the stochastic volatility model with leverage.

Some keywords: Kalman filter; Likelihood function; Monte Carlo integration; Newton-

Raphson; Posterior mode estimation; Simulation smoothing; Stochastic volatility model.



1 Introduction

In this paper we develop new results for the application of importance sampling methods to

a class of nonlinear and non-Gaussian state space models. The general ideas of importance

sampling are well established in statistics and econometrics, see Kloek and Van Dijk (1978),

Ripley (1987) and Geweke (1989). The importance sampling techniques for state space models

have been explored by Danielsson and Richard (1993), Shephard and Pitt (1997), Durbin and

Koopman (1997) and So (2003). A textbook treatment is given in part II of Durbin and

Koopman (2001).

Denote the vector of observables by y and the latent state vector by α. In this paper we

consider the state space model

y ∼ p(y|α), α ∼ pG(α), (1)

where density p(y|α) is typically non-Gaussian and density pG(α) is Gaussian. The latent states

in α are modelled by a linear Markovian process with Gaussian innovations. The relationship

between α and y in p(y|α) can be nonlinear. Different methods and approaches are considered

for time series analysis based on model (1). The standard numerical integration method is

considered by Kitagawa (1987) but is not feasible when the dimensions of y and α are high.

Therefore, alternative approaches are developed based on simulation. Markov chain Monte

Carlo (MCMC) methods for state space models are considered by Carlin, Polson, and Stoffer

(1992), Fruhwirth-Schnatter (1994), Carter and Kohn (1994), Shephard (1994), Shephard and

Pitt (1997), Berzuini, Best, Gilks, and Larizza (1997) and Gamerman (1998). The particle

filtering method of Gordon, Salmond, and Smith (1993) and the modification of Pitt and

Shephard (1999), which are reviewed in Doucet, deFreitas, and Gordon (2000), can also be used

for the analysis of (1) although these methods are not designed for likelihood-based inference.

Importance sampling methods are in particular employed for the evaluation of the integral

x̄ =

∫
x(α)p(α|y) dα, (2)

where x(α) can be any function of α and p(α|y) = p(y)−1p(y|α)pG(α) with p(y|α) and pG(α) as

in (1). It is assumed that an analytical expression for (2) is usually not available while direct

numerical integration of (2) is not feasible when dimensions of α and/or y are high. The basic

idea of importance sampling is to evaluate (2) by generating M samples from an importance

density f(α; y) and by computing

̂̄x =

{
M∑

i=1

p(αi, y)

f(αi; y)

}−1 M∑

i=1

x(αi)
p(αi, y)

f(αi; y)
, αi ∼ f(α; y), (3)
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where the importance function f(α; y) depends on y. The three main issues for this paper are

the construction of importance function f(α; y), the construction of a simulation device for

sampling from f(α; y) and the evaluation of f(α; y) for any α.

Several choices for the importance density f(α; y) have been proposed in the literature, see

Danielsson and Richard (1993), Shephard and Pitt (1997) and Durbin and Koopman (1997).

Here we focus on an importance function f(α; y) that is based on a linear Gaussian state space

model with the same mode for α and the same curvature at the mode of smoothing density

p(α|y). The resulting model represents the Laplace approximation of the smoothing density.

When this approximating linear Gaussian model exists, standard Kalman filter and smoother

methods can be used to carry out the computations for the constructions of the importance

function and its simulation device. For example, de Jong and Shephard (1995) and Durbin

and Koopman (2002) have developed simulation smoothing algorithms that are associated

with the Kalman filter. When the approximating linear Gaussian model does not exist, the

model-based Kalman filter methods can not be used as a result. In this paper, however, we

show that an importance function f(α; y) based on the mode can still be constructed using

the computationally efficient Kalman filter and smoother recursions. Furthermore, we show

that it is still possible to simulate from f(α; y) in a computationally efficient way without

the consideration of a linear Gaussian state space model. The relevant proofs and derivations

are presented. These results justify the use of state space methods for the construction of

f(α; y) and for the sampling from f(α; y) in all circumstances as long as the model for α has

a Markovian structure. The range of nonlinear non-Gaussian time series models that can be

analysed by importance sampling has increased considerably as a result.

As a consequence of these developments, this paper presents various new results. In par-

ticular, we present (i) a new derivation of the Kalman filter based on the LU decomposition

of a symmetric matrix, (ii) a new formulation and derivation of the de Jong and Shephard

(1995) simulation smoother, (iii) a general method of computing importance weights and (iv)

a device of simulating the state vector α based on a simulated signal vector, both conditional

on y. The methods are implemented for a stochastic volatility model with leverage. The new

modifications are necessary for the maximum likelihood estimation of parameters and the signal

extraction of functions of the state vector α.

The paper is organised as follows. The model with a linear Gaussian state equation and

a nonlinear non-Gaussian observation equation is presented in §2. The construction of the

importance function for the different state space models and for different circumstances is

derived in §3. A method for simulating from the importance function and devices related

to importance sampling are developed in §4. The methods are illustrated using a stochastic

volatility model with leverage in §5. The proofs and derivations of the results are given in the

Appendix.
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2 State space models

2.1 The linear Gaussian state and signal vectors

The linear Gaussian state vector αt is modelled by the Markov process

αt+1 = dt + Ttαt + ηt, ηt ∼ NID(0, Qt), t = 1, . . . , n, (4)

where system vector dt and system matrices Tt and Qt are fixed and known for t = 1, . . . , n. The

state vector αt and the disturbance vector ηt have dimension q × 1. The system matrices have

appropriate dimensions while the variance matrix Qt is positive semi-definite. The initial state

vector is normally distributed with mean a and variance matrix P , that is α1 ∼ N(a, P ). The

disturbances ηt (t = 1, . . . , n) are serially independent and are independent of the initial state

vector. The joint property of a sequence of n state vectors can be expressed by the multivariate

normal density

α ∼ N(d,Ω), (5)

where

α = (α′

1, . . . , α
′

n)
′

, d = T
(
a′, d′1, . . . , d

′

n−1

)
′

, Ω = Tdiag(P1, Q1, . . . , Qn−1)T
′,

with

T =




I 0 0 · · · 0 0

T1 I 0 . . . 0 0

T2T1 T2 I 0 0
. . .

...

Tn−2 . . . T1 Tn−2 . . . T2 Tn−2 . . . T3 I 0

Tn−1 . . . T1 Tn−1 . . . T2 Tn−1 . . . T3 · · · Tn−1 I




, (6)

for t = 1, . . . , n. It follows that the log-density of the state vector α is given by

log pG(α) = −
qn

2
log 2π −

1

2
|Ω| −

1

2
(α− d)′Ω−1(α− d). (7)

The m× 1 signal vector θt connects the state vector αt with the observations via

θt = ct + Ztαt, t = 1, . . . , n, (8)

where vector ct and matrix Zt are fixed and known. Clearly,

θ ∼ N(µ,Ψ), µ = c+ Zd, Ψ = ZΩZ ′, (9)

with θ = c+ Zα and where

θ = (θ′1, . . . , θ
′

n)′, c = (c′1, . . . , c
′

n)
′, Z = diag(Z1, . . . , Zn).
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Finally, the log-density of the signal is given by

log pG(θ) = −
mn

2
log 2π −

1

2
|Ψ| −

1

2
(θ − µ)′Ψ−1(θ − µ). (10)

The prediction error decomposition can be applied to (10). Since θ is a linear function of α,

the Kalman filter evaluates log pG(θ). Almost all linear Gaussian time series processes can be

represented in state space form with a nonsingular variance matrix Ψ.

2.2 The linear Gaussian observation vector

The linear Gaussian observation model for the m× 1 observation vectors yt is given by

yt = ct + Ztαt + εt = θt + εt, εt ∼ NID(0, Ht), t = 1, . . . , n, (11)

where variance matrix Ht is fixed and known. Stacking y = (y′1, . . . , y
′

n)′, the model becomes

y = c+ Zα + ε = θ + ε, ε ∼ N(0, H), (12)

with H = diag(H1, . . . , Hn). The linear Gaussian observation density is given by

pG(y|α) = pG(y|θ) = N(θ,H) =

n∏

t=1

pG(yt|θt). (13)

The likelihood function pG(y) can be evaluated by the Kalman filter since y is a linear function

of α.

2.3 The nonlinear non-Gaussian observation vector

In this paper we focus primarily on the nonlinear non-Gaussian observation model with density

p(y|θ) for which the conditional independence assumption applies, that is

p(y|θ) =
n∏

t=1

p(yt|θt), t = 1, . . . , n. (14)

Examples of densities p(yt|θt) are the classes of the exponential family densities and the sto-

chastic volatility models, see Durbin and Koopman (2001, Chapter 10).
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3 Computing the posterior mode

In this section we construct the importance function f(θ; y) that can generate draws of θ =

c+Zα around the location of the mode of smoothing density p(θ|y) and scaled by the curvature

of p(θ|y) at the mode. It will be argued in §4 that a draw of αi ∼ f(α; y) can be obtained from

a draw of θi ∼ f(θ; y) and that the importance function f(θ; y) is sufficient for the evaluation

of (3).

First, the linear Gaussian model pG(y|θ) is considered for which standard results are used to

obtain the importance function f(θ; y) = pG(θ|y). Second, the general nonlinear non-Gaussian

case of p(y|θ) is treated where the importance function is based on the mode estimate θ̂,

obtained by maximising the smoothing density p(θ|y) with respect to θ, and its Hessian matrix

G, that is f(θ; y) = N(θ̂,−G−1). The main results are presented in this section while the

derivations are given in the Appendix. Finally, some numerical issues are discussed for a

successful implementation of the methods.

3.1 The mode of the linear Gaussian model

Consider the linear Gaussian signal and observation vectors of §§2.1 and 2.2. The unconditional

mean, variance and covariance of observation y and signal θ are given by

E(y) = µ, V ar(y) = Σ = Ψ +H, Cov(θ, y) = Ψ. (15)

It follows from the standard lemma of the multivariate normal density that the conditional

means and variances are given by

E(θ|y) = µ+ ΨΣ−1 (y − µ) , V ar(θ|y) = Ψ − ΨΣ−1Ψ. (16)

The Kalman filter and smoother evaluate the conditional mean E(θt|y) and variance V ar(θt|y)

in a recursive and computationally efficient way for a linear Gaussian state space model, see

Durbin and Koopman (2001, Chapter 4). Since all densities are Gaussian, the conditional or

posterior mode of pG(θ|y), denoted by θ̂, is equivalent to the conditional mean of pG(θ|y), that

is θ̂ = E(θ|y). After some minor manipulations, it follows from the first equation in (16) that

θ̂ =
(
Ψ−1 +H−1

)
−1 (

H−1y + Ψ−1µ
)
. (17)

It should be emphasized that the Kalman filter and smoother effectively computes θ̂ for the

linear Gaussian state space model.

3.2 The mode of the nonlinear non-Gaussian model

Consider the nonlinear non-Gaussian observation model of §2.3 and the linear Gaussian state

vector of §2.1. For this class of models, an analytical expression for the posterior mode θ̂ of
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p(θ|y) is usually not available. We therefore obtain the mode by maximising p(θ|y) with respect

to θ using the Newton-Raphson method of optimisation, see Nocedal and Wright (1999) for a

treatment of numerical optimisation methods. The dimension of θ is mn × 1 so that matrix

dimensions can be high and straightforward matrix manipulations become infeasable. Therefore

efficient algorithms need to be considered.

For a given guess g of the solution for θ̂, the Newton-Raphson method proposes the new

guess as

g+ = g −
[
p̈(θ|y)|θ=g

]
−1

ṗ(θ|y)|θ=g , (18)

where we define

ṗ(·|·) =
∂ log p(·|·)

∂θ
, p̈(·|·) =

∂2 log p(·|·)

∂θ∂θ′
. (19)

Since log p(θ|y) = log p(y|θ) + log pG(θ) − log p(y), we have

ṗ(θ|y) = ṗ(y|θ) − Ψ−1(θ − µ), p̈(θ|y) = p̈(y|θ) − Ψ−1. (20)

The conditional independence assumption of observation model (14) implies that p̈(y|θ) is a

block diagonal matrix.

The Newton-Raphson updating step reduces to

g+ = g −
[
p̈(y|θ)|θ=g − Ψ−1

]
−1 (

ṗ(y|θ)|θ=g − Ψ−1{g − µ}
)

=
[
Ψ−1 − p̈(y|θ)|θ=g

]
−1 (

ṗ(y|θ)|θ=g − p̈(y|θ)|θ=g g + Ψ−1µ
)

=
(
Ψ−1 + A−1

)
−1 (

A−1x+ Ψ−1µ
)
, (21)

where

A = −
[
p̈(y|θ)|θ=g

]
−1

, x = g + A ṗ(y|θ)|θ=g . (22)

We note the similarity of (21) compared to (17). In case p̈(y|θ) is negative semi-definite for all

θ, it follows that the Kalman filter and smoother can be used to compute g+ by applying it to

the Gaussian state space model (12) with

y = x, H = A,

The computation of E(θ|y) returns g+. This approach is taken by Shephard and Pitt (1997),

Durbin and Koopman (1997) and So (2003, §2). The mode θ̂ for a non-Gaussian nonlinear

observation model is obtained by the Newton-Raphson method where for each step the Kalman

filter and smoother computes the new guess g+. The Hessian matrix of the mode estimator θ̂

is given by G = p̈(θ|y) = −Ψ−1 −A−1.

This approach of finding the mode θ̂ is clearly not valid when p̈(y|θ) is not negative definite

since this will imply that the variance matrix H of the linear Gaussian model (12) is not positive

definite. In cases where p̈(y|θ) is not negative definite, the following Theorem can be adopted

for the computation of (21).
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Theorem 1.

Consider the linear Gaussian signal vector of §2.1 with θ ∼ N(µ,Ψ) and define matrix A =

diag(A1, . . . , An) where Ai can be any m ×m nonsingular symmetric matrix for i = 1, . . . , n.

The matrix expression

µ+ Ψ (Ψ +A)−1 (x− µ) ≡
(
Ψ−1 + A−1

)
−1 (

A−1x+ Ψ−1µ
)
, (23)

can be computed for any mn × 1 vector x by the standard Kalman filter and smoother without

the consideration of the linear Gaussian observation equation (12).

The proof of Theorem 1 is presented in the Appendix. The Kalman filter and smoother are

given by the equations (34), (43) and (44) in the Appendix. Theorem 1 does not refer to the

existence of an observation model for x. Therefore, we can not use the standard derivation of

the Kalman filter and smoother that relies on statistical concepts such as conditional means

and variances, see Anderson and Moore (1979) and Durbin and Koopman (2001, Chapter

3). However, the special structure of variance matrix Ψ = ZΩZ ′ of the signal θ does allow

us to use decompositions based on triangular matrices such as T in §2.1. The derivation of

Theorem 1 in the Appendix is based on the LU decomposition of a possibly indefinite but

symmetric matrix Ψ + A. Theorem 1 does not take A + Ψ as a variance matrix. It shows

that the LU decomposition leads to the Kalman filter and smoother equations for solving x in

Ψ (Ψ + A)−1 x = y with y given. We note that the reverse argument for the linear Gaussian

state space model is a well-known result, that is, the Kalman filter effectively diagonalises the

variance matrix of the observation vector y in §2.2. Theorem 1 implies that this result applies

to any positive or negative definite matrix Ψ +A.

In the context of finding the mode of p(θ|y) by the Newton-Raphson method, it is concluded

that when p̈(y|θ) is not negative definite, the Kalman filter and smoother can still be used for

the computation of g+ in (21). The justification is provided by Theorem 1 for which x and A

are given by (22).

3.3 Global and local convergence

Although matrix Ψ + A can be indefinite, the Hessian matrix −Ψ−1 − A−1 should always be

semi-negative definite for θ at or in the neighbourhood of θ̂ by construction. In cases the Hessian

matrix is not negative definite, the Newton-Raphson step does not progresses to the maximum

of p(θ|y) with respect to θ. To enforce global convergence, the algorithm can be modified by

line-search and other numerical methods, see Nocedal and Wright (1999). In general, line-

search strategies often speed up the maximisation and stabilise the algorithm. A line-search
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can be implemented by introducing the scalar 0 < λ ≤ 1 in (18) and defining

g+
λ = g − λ

[
p̈(θ|y)|θ=g

]
−1

ṗ(θ|y)|θ=g . (24)

The line-search consists of finding a value for λ so that p(θ|y)|θ=g+

λ

> p(θ|y)|θ=g. By combining

(24) and (18), the line search computations are straightforward and given by

g+
λ = g + λ(g+ − g),

where g+ = g+
λ

∣∣
λ=1

is computed by (21) only once for different values of 0 < λ ≤ 1. When an

appropriate value for λ is found, a new guess of the mode θ̂ can be computed at the location

g+
λ . Global convergence is ensured when an appropriate set of regularity conditions for the

line-search is fulfilled, see Nocedal and Wright (1999) for a detailed discussion. To check these

conditions, it is usually necessary to evaluate the score function.

The score vector of p(θ|y) is defined in (19) and is given by (20), that is

∂ log p(θ|y)

∂θ
= ṗ(θ|y) = ṗ(y|θ) − Ψ−1(θ − µ).

Propositions 1 and 2 in the Appendix imply that the term Ψ−1(θ − µ) can be evaluated by

the Kalman filter and smoother algorithms of Theorem 1 with x = θ and A = 0. This result

follows immediately since Σ = Ψ when A = 0. An analytical expression for the term ṗ(y|θ) is

usually straightforward to derive.

Given this computational device for evaluating the score, other maximisation methods may

be considered to obtain the mode of p(θ|y). It is noted that different numerical problems can

occur during the maximisation of p(θ|y) with respect to the high dimensional vector θ. Although

line-search methods can stabilise the Newton-Raphson method, it may be necessary to switch

to other score-based or quasi-Newton optimisation methods. Therefore this computationally

efficient method of computing the score is important in practical work.
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4 Importance sampling

When the importance function can be represented as a linear Gaussian state space model, the

simulation smoothers of de Jong and Shephard (1995) and Durbin and Koopman (2002) can be

used to simulate from f(θ; y) in a computationally efficient way. In other cases, simulations need

to be carried out directly from the importance function f(θ; y). In this section we show that

such simulations can also be carried out by the computationally efficient simulation smoother.

A new formulation of the simulation smoother is given and its consistency with the de Jong

and Shephard (1995) recursions is shown. Further, it is argued that the computation of f(θ; y)

for a realisation of θ can be carried out within the simulation smoother. Finally, it is shown

that a draw from f(θ; y) can be used to obtain a draw from f(α; y) using the Kalman filter and

smoother algorithm. A special simulation smoother is not required for the state vector.

4.1 Simulation smoothing

The importance function under consideration is the multivariate Gaussian density with its mean

equal to the mode of p(θ|y) and with its variance matrix V equal to minus the inverse of the

Hessian matrix G, that is

f(θ; y) = N(θ̂, V ), V = −G−1, G = p̈(θ|y) = −A−1 − Ψ−1,

where θ̂ is estimated as described in §3 and A is given by (22) evaluated at θ = θ̂. When the

maximum of p(θ|y) is obtained at θ = θ̂, matrix G is guaranteed to be negative definite and V

is positive definite as a result. By some minor matrix manipulations, it can be shown that

V = (A−1 + Ψ−1)−1 = Ψ − ΨΣ−1Ψ = A− AΣ−1A, (25)

where Σ = Ψ + A. In case the Gaussian density pG(θ, y) = pG(θ)pG(y|θ) can be properly

defined, matrix V is the conditional variance matrix Var(θ|y). Given the framework of §2.1,

the simulation smoothing algorithm of de Jong and Shephard (1995) or Durbin and Koopman

(2002) can be used for generating draws from the importance function N(θ̂, V ) in a compu-

tationally efficient way. However, the derivations of these methods rely on a properly defined

linear Gaussian observation equation (12) and positive definite matrices for Σ and H = A.

These conditions are not necessary for Theorem 2.

Theorem 2.

Consider the linear Gaussian signal vector of §2.1 with θ ∼ N(µ,Ψ). Further, consider x and

A as defined by (22) evaluated at θ = θ̂. Notice that both matrices A and Σ = Ψ + A can be

10



negative definite while V = A− AΣ−1A is positive definite by construction. Sampling from

f(θ; y) = N
(
θ̂ , A−AΣ−1A

)
,

can be carried out by the Kalman filter (34) and the simulation smoothing equations

Ct = A−1
t − F−1

t −K ′

tNtKt, Rt = C−1
t (A−1

t Zt −K ′

tNtTt),

wt ∼ N(0, Ct), ut = At(wt + F−1
t vt −K ′

trt),

rt−1 = Z ′

tA
−1
t ut − R′

twt + T ′

trt, Nt−1 = R′

tCtRt − Z ′

tA
−1
t Zt + T ′

tNtTt,

(26)

for t = n, n − 1, . . . , 1 and with the initialisations rn = 0 and Nn = 0. Matrix At is the

t-th diagonal block of the block diagonal matrix A. It can be shown that these equations are

equivalent to the ones of de Jong and Shephard (1995).

The proof of Theorem 2 is presented in the Appendix. When matrix A is not positive definite,

the simulation smoothing method of Durbin and Koopman (2002) can not be used since it

requires simulating from the unconditional distribution implied by (12) with y = x and variance

matrix H = A given by (22).

4.2 Evaluation of importance weights

The importance sampling estimator of

θ̄ =

∫
θp(θ|y) dθ = p(y)−1

∫
θp(θ, y) dθ, with p(y) =

∫
p(θ, y) dθ,

is given by

̂̄θ =

{
M∑

i=1

p(θi, y)

f(θi; y)

}−1 M∑

i=1

θi p(θ
i, y)

f(θi; y)
, θi ∼ f(θ; y). (27)

The computation of (27) requires simulating θi ∼ f(θ; y) and evaluating the importance weight

p(θi, y) / f(θi; y) for i = 1, . . . ,M . Given the linear Gaussian state and signal vectors of §2.1,

the evaluation of the nominator is based on the identity p(θ, y) = p(y|θ)p(θ) where p(y|θ) is

defined by the model and is usually straightforward to compute. The density of the signal p(θ)

for θ = θi is evaluated by the Kalman filter since θ = c+Zα has the Markov property and the

prediction error decomposition can be applied to p(θ).

Given the draw θi ∼ f(θ; y) with f(θ; y) = N(θ̂, V ) obtained from the simulation smoother

(26), the denominator f(θi; y) of the importance weight is evaluated by

f(θi; y) = exp

(
−
mn

2
log 2π −

n∑

t=1

log |At| −
n∑

t=1

log |Bt| −
1

2

n∑

t=1

oi ′

t o
i
t

)
, (28)

11



where oi
t ∼ N(0, Im) enables the calculation of wi

t ∼ N(0, Ct) in (26) using the relation wi
t =

Bto
i
t. Matrix Bt is the result of a Choleski decomposition applied to Ct = BtB

′

t. Matrix At is

the t-th diagonal block of the block diagonal matrix A. The derivation of (28) is presented in

the Appendix. This general method of evaluating importance sampling weights is a new result.

4.3 Likelihood evaluation, state estimation and state simulation

An expression for the likelihood function ℓ(ψ) is obtained by

ℓ(ψ) = p(y) =

∫
p(θ, y) dθ,

where ψ is a vector of model coeffients that are unknown and need to be estimated. The

importance sampling estimator of the likelihood function is given by

ℓ̂(ψ) = M−1
M∑

i=1

p(θi, y)

f(θi; y)
, θi ∼ f(θi; y), (29)

where the evaluation of importance weight p(θi, y) / f(θi; y) is described in §4.2 for i = 1, . . . ,M .

Linear and nonlinear functions of the signal vector θ can be estimated in the same way as

in (27). Furthermore, the smoothed estimate of the state vector E(αt|y), for t = 1, . . . , n, can

also be based on the importance sample weights for θ since

E(αt|y) =

∫
E(αt|y, θ) p(θ|y) dθ

= p(y)−1

∫
E(αt|θ) p(θ, y) dθ.

It follows that the importance sampling estimator can be computed by

Ê(αt|y) =

{
M∑

i=1

p(θi, y)

f(θi; y)

}−1 M∑

i=1

E(αt|θ
i)
p(θi, y)

f(θi; y)
, θi ∼ f(θ; y), (30)

where E(αt|θ
i) is evaluated by the Kalman filter and smoother applied to the Gaussian state

space model (12) with y = θi and H = 0. The same argument applies to the evaluation of

Var(αt|y) for t = 1, . . . , n. It is shown that state smoothing for a nonlinear non-Gaussian state

space model does not require a simulation smoothing algorithm for the state vector αt. The

simulation smoother for the usually lower dimensional signal vector θt is sufficient.

Finally, a draw from f(θ; y) can be extended to a draw from f(α; y) using an existing method

of conditional simulation from a multivariate normal density. A special simulation smoother

for f(α; y) is therefore not required. Since

p(α, θ|y) = p(α|θ, y)p(θ|y) = p(α|θ)p(θ|y),
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it also holds that the joint importance function of {α, θ} based on the posterior mode θ̂ is

given by f(α, θ; y) = pG(α, θ|y) = pG(α|θ)f(θ; y) where f(θ; y) = N(θ̂, V ) and pG(α|θ) is

the multivariate normal density with mean vector E(α|θ) and variance matrix Var(α|θ). This

decomposition implies a two-step procedure for the simulation from f(α, θ; y): (i) simulate

θi ∼ f(θ; y) using Theorem 2; (ii) simulate αi ∼ pG(α|θi) where the draw θi is treated as

a realisation (or as a given data vector) for the linear Gaussian state space model (12) with

y = θi and H = 0. To draw from αi ∼ pG(α|θi) in a computationally efficient way, we adopt

a simulation device that is based on an unconditional draw from pG(α) and on a conditional

mean adjustment. In particular, we have

αi = E(α|θi) + α̃i − E(α|θ̃i), α̃i ∼ pG(α), θ̃i = c+ Zα̃i. (31)

The draw αi is by definition consistent with the realisation θi since both E(α|θi) and E(α|θ̃i) are

constructed by a linear Gaussian observation equation θ = c + Zα + ε where the observation

noise ε ∼ N(0, H) is set to zero, that is H = 0, for θ = θi and θ = θ̃i, respectively. The

conditional simulation device (31) is proposed by Journel (1974) in the geostatistics literature

and by Durbin and Koopman (2002) for the linear Gaussian state space model.

5 Stochastic volatility model with leverage

Consider a time series of asset log-returns yt that has mean zero and time-varying variance

expht. The observations are typically sampled at daily intervals. The basic stochastic volatility

(SV) model considers a stochastic dynamic process for the log-variance process ht and is given

by

yt = σ exp(1
2
ht)εt, εt ∼ NID(0, 1),

ht+1 = φht + σηηt, ηt ∼ NID(0, 1), h1 ∼ N
{
0, σ2

η(1 − φ2)−1
}
,

(32)

for t = 1, . . . , n and where εt and ηs are mutually and serially independent of each other at all

time points t, s = 1, . . . , n. This basic SV model has a nonlinear observation equation due to

the multiplication exp(1
2
ht)εt. It is usually assumed that the log-volatility process is stationary

but persistent, that is, 0 < φ < 1 is typically larger than 0.9. More detailed discussions on the

SV model can be found in the overview papers of Shephard (2005). To account for the leverage

effect in return series (see, for example, Black (1976), Nelson (1991) and Yu (2005)), the basic

SV model is extended by having correlation between εt and ηt, that is
(
εt

ηt

)
∼ NID

(
0,

[
1 ρ

ρ 1

])
, |ρ| ≤ 1, (33)

and independent of α1 for t = 1, . . . , n. The unknown coefficients (scaling variance σ2, autore-

gressive coefficient φ, variance σ2
η and correlation coefficient ρ) are collected in the parameter

vector ψ.
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Parameter estimation is carried out by maximising the Monte Carlo estimate of the likeli-

hood function ℓ̂(ψ) in (29). The methods of this paper can be adopted but it requires a specific

formulation of the state space model to incorporate the correlation between the disturbances

and to have a non-singular variance matrix Ψ for the signal vector θ. We therefore consider

the formulation as given by

yt = σ exp(
1

2
ht) {ε

∗

t + sign(ρ)η2,t} , ε∗t ∼ NID(0, 1 − |ρ|),

where

ht+1 = φht + ση {η1,t + η2,t} , η1,t ∼ NID(0, 1 − |ρ|), η2,t ∼ NID(0, |ρ|),

for t = 1, . . . , n and with h1 ∼ N
{
0, σ2

η(1 − φ2)−1
}
. The disturbances are all mutually and

serially independent. It can be verified that this formulation is consistent with the SV model

(32) with leverage (33). In terms of the linear Gaussian state and signal vectors of §2.1, we

have θt = αt = (ht , σηη2,t)
′ and ηt = ση(η1,t , η2,t+1)

′ where

αt+1 =

[
φ 1

0 0

]
αt + ηt, ηt ∼ NID

(
0, σ2

η

[
1 − |ρ| 0

0 |ρ|

])
,

for t = 1, . . . , n and with

α1 ∼ NID

(
0, σ2

η

[
(1 − φ2)−1 0

0 |ρ|

])
.

The observations y1, . . . , yn are from the conditional density log p(y|θ) =
∑n

t=1 log p(yt|θt) where

log p(yt|θt) = constant −
1

2
ht −

1

2
σ−2 exp(−ht)(1 − |ρ|)−1{yt − σ exp(

1

2
ht)sign(ρ)η2,t}

2,

for t = 1, . . . , n. Expressions for the 2×1 vector ṗ(yt|θt) and the 2×2 matrix p̈(yt|θt), as defined

in (19), can be obtained straightforwardly. The matrix p̈(yt|θt) is indefinite and therefore we

require the new methods. The Monte Carlo estimator (29) of the likelihood function is then

computed by the following three steps:

1. The importance function f(θ; y) is based on the mode of p(θ|y) using Theorem 1.

2. M conditional draws of θ1, . . . , θn are obtained from f(θ; y) using Theorem 2.

3. The Monte Carlo estimator (29) of the likelihood is computed as described in §4.2.

The parameter vector ψ is estimated for three daily stock index return series (the Frankfurt

DAX, the London FTSE and the Tokyo NIKKEI). The data is taken from datastream and

the sample for all series is from January 4, 1997 to September 9, 2005 (that is 965 days). The

parameter estimates are reported in Table 1 together with their standard errors. The estimation

results reveal that leverage is an important feature in daily return series as all correlations are

very significant. In all cases estimation was fast and computation of standard errors did not

lead to numerical problems.
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φ σ2
η σ2 ρ

DAX 0.978
(0.011)

0.016
(0.009)

1.314
(0.244)

−0.834
(0.097)

FTSE 0.981
(0.008)

0.0081
(0.005)

0.546
(0.044)

−0.993
(0.035)

NIKKEI 0.974
(0.013)

0.028
(0.014)

1.255
(0.290)

−0.611
(0.135)

Table 1: Maximum likelihood estimation of parameters in the SV model (32) with leverage

(33) for the daily stock index return series Frankfurt DAX, London FTSE and Tokyo NIKKEI

from January 4, 1997 to September 9, 2005 (that is 965 days).

6 Conclusion

This paper has shown that standard state space methods can be used for the analysis of time

series models with nonlinear non-Gaussian observation equations. The method of importance

sampling is considered. The importance density is chosen to be the Laplace approximation of

the smoothing density p(θ|y) where θ is the signal and y is the observation vector. The Kalman

filter, smoother and simulation smoother, applied to the approximating Gaussian model, can be

used to perform the necessary calculations. The method breaks down when p̈(θ|y), the second

derivative of p(θ|y) with respect to θ, is positive definite since an approximating model can not

be based on negative variances. It is argued that standard state space methods can still be

used when p̈(θ|y) is positive definite but that the existing derivations of the methods are no

longer valid. We therefore have presented new derivations of the Kalman filter, smoothing and

simulation smoothing algorithms that are not based on a linear Gaussian observation model.

The new derivations lead to a new variant of the simulation smoothing recursions of de Jong

and Shephard (1995). The two recursions are numerically equivalent but the new variant is

computationally more efficient. Other results of this paper include the introduction of a line-

search strategy within the Newton-Raphson method to find the posterior mode, an efficient

method of computing the score ṗ(θ|y), a general method of computing importance weights and

a novel treatment of estimating and simulating the state vector α conditional on y that is based

on the (usually) lower-dimensional signal vector θ. An illustration for the stochastic volatility

model is presented to show that the methods work in practice. The empirical results confirm

that leverage in the SV model is a clear salient feature in daily financial return series. The

negative correlation between financial returns and innovations in the underlying log-volatility

process is estimated significantly for three major stock index return series.
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Appendix

The proofs of Theorems 1 and 2 are presented as a series of propositions with derivations.

For all propositions in this Appendix, we consider the framework and definitions of §2.1. An

important matrix is Σ = Ψ + A where Ψ = ZΩZ ′ is the positive definite symmetric matrix

from §2.1 and A is a block diagonal matrix of invertible symmetric matrices. Matrices Ψ and

A consist of n2 blocks of m×m matrices. Matrices Σ and A are possibly not positive definite.

Proof of Theorem 1

Theorem 1 states that g+ = µ + ΨΣ−1(x − µ) can be computed efficiently by the Kalman

filter and smoothing equations (34), (43) and (44) for both positive and non-positive definite

matrices Σ. The proof is presented as the sequence of Propositions 1, 2 and 3 which are given

below together with their derivations.

Proposition 1

Assume that an LU decomposition for the symmetric matrix Σ = DU exists where D is a

lower block unity triangular matrix and U is an upper block triangular matrix (for sufficient

conditions, see Golub and Van Loan, 1997, §3.2). The Kalman filter equations

vt = xt − ct − Ztat, Ft = At + ZtPtZ
′

t,

Kt = TtPtZ
′

tF
−1
t ,

at+1 = dt + Ttat +Ktvt, Pt+1 = TtPtT
′

t −KtFtK
′

t +Qt,

t = 1, . . . , n, (34)

solve the set of linear equations Dv = x − µ for v = (v′1, . . . , v
′

n)′ with x = (x′1, . . . , x
′

n)′ given.

The initialisations a1 and P1 are defined in section 2.1. Apart from the fact that matrices At

and Ft are not necessarily positive definite for t = 1, . . . , n, the equations (34) are the same as

the Kalman filter in Anderson and Moore (1979).

Derivation of Proposition 1

The (i, j) block of a matrix is labelled by subscript ij for the range of i, j = 1, . . . , n. The m×m

matrix block (i, j) of Σ is given by

Σij =





∑i−1
k=1DikUki + Uij , i = j,∑j

k=1DikUkj, i > j,∑i−1
k=1DikUkj + Uij, i < j.

(35)
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From (6), we have

Ωij =






Ti−1Ωi−1,i−1T
′

i−1 +Qi, i = j > 1,

Ti−1Ti−2 . . . TjΩjj , i > j,

Ωii(Tj−1Tj−2 . . . Ti)
′, i < j,

(36)

and Ω11 = P1. From (9) and the definition Σ = Ψ + A = ZΩZ ′ + A, we have further

Σij =

{
ZiΩiiZ

′

i + Ai, i = j,

ZiΩijZ
′

j, i 6= j.
(37)

Equating (35) with (37) and considering (36), the following expressions for the block element

matrices of U and D are obtained,

Uij = ZiΩiiZ
′

i + Ai −
∑i−1

k=1DikUki, i = j,

Dij = (ZiTi−1Ti−2 . . . TjΩjjZ
′

j −
∑j−1

k=1DikUkj)U
−1
jj , i > j,

Uij = ZiΩii(Tj−1Tj−2 . . . Ti)
′Z ′

j −
∑i−1

k=1DikUkj , i < j,

(38)

which describe the typical triangular system for which solutions are obtained by forward and

backward substitution algorithms, see Golub and Van Loan (1997, Chapters 3 and 4). The

implications of these solutions for the special structures of involved matrices are given below.

At the end of this derivation it is acknowledged that Σ is symmetric and therefore the LU

decomposition reduces to the LDLT decomposition of Golub and Van Loan (1997). However,

the presented derivation is more straightforward for an LU decomposition and it leads to the

same computationally efficient solution.

Given the block diagonal structure of Z and the definition Σ = DU = ZΩZ ′ +A, the lower

block matrix Dij equals a matrix that is premultiplied by Zi for i > j and the upper block

matrix Uij equals a matrix that is postmultiplied by Zj for i < j with i, j = 1, . . . , n. Therefore,

we obtain
Uij = ZiYiiZ

′

i + Ai, i = j,

Dij = ZiXijU
−1
jj , i > j,

Uij = ZiYijZ
′

j , i < j.

(39)

To ensure consistency between (38) and (39), matrices Xij and Yij are defined by

Yij = Ωii −
∑i−1

k=1XikU
−1
kk ZkYki, i = j,

Xij = Ti−1Ti−2 . . . TjΩjjZ
′

j −
∑j−1

k=1XikU
−1
kk Ukj, i > j,

Yij = Ωii(Tj−1Tj−2 . . . Ti)
′ −
∑i−1

k=1XikU
−1
kk ZkYkj, i < j.

(40)
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For a particular value of i = t+ 1, we have

Xt+1,t = TtΩttZ
′

t −
∑t−1

k=1Xt+1,kU
−1
kk Ukt

= Tt

(
Ωtt −

∑t−1
k=1XtkU

−1
kk ZkYkt

)
Z ′

t

= TtYttZ
′

t,

Xt+1,j = TtTt−1 . . . TjYjjZ
′

j,

Dt+1,j = Zt+1TtTt−1 . . . TjYjjZ
′

jU
−1
jj

= Zt+1TtTt−1 . . . Tj+1Mj ,

(41)

where we define Mj = TjYjjZ
′

jU
−1
jj ≡ Yj,j+1Z

′

jU
−1
jj for j = 1, . . . , t+1. Note that Xt+1,t = MtUtt.

The matrices Xij and Dij depend on state space matrices and on Yij for i > j.

Given the earlier definitions and results, we continue the proof by deriving a recursion for

Yij for i = t+ 1 and j = t+ 2, . . . , n. It follows that

Yt+1,t+1 = Ωt+1,t+1 −
∑t

k=1Xt+1,kU
−1
kk ZkYk,t+1

= Tt

(
Ωtt −

∑t−1
k=1Xt,kU

−1
kk ZkYkt

)
T ′

t +Qt −Xt+1,tU
−1
tt ZtYt,t+1

= TtYttT
′

t +Qt −MtUttM
′

t ,

Yt+1,j = Yt+1,t+1(Tj−1Tj−2 . . . Tt+1)
′,

U ′

t+1,j = ZjTj−1 . . . Tt+2Mt+1Ut+1,t+1,

(42)

for j = t + 2, . . . , n. By defining Pt ≡ Ytt, Kt ≡ Mt and Ft ≡ Utt and by some minor

manipulations, it is shown that part of the Kalman filter equations (34) carry out the LU

decomposition of Σ in a complete recursive way. Since U ′

ij = DjiUii, we have U ′ = DF and the

LU decomposition can be rewritten by Σ = DU = DFD′ where F is a block diagonal matrix

with blocks F1, . . . , Fn.

Given the block structure of matrix D, it is straightforward to show that the solution of

Dv = x− µ for v can be obtained by forward substitution, that is

v1 = x1 − c1, vt = xt − ct −

t−1∑

i=1

ZtTt−1 . . . Ti+1(di +Mivi),

for t = 2, . . . , n. A recursion is obtained by defining at =
∑t−1

i=1 Tt−1 . . . Ti+1(di + Mivi) for

t = 2, . . . , n. Some minor manipulation completes the derivation of all equations in (34).

Proposition 2

Assume that an LU decomposition for the symmetric matrix Σ = DU exists where D is a

lower block unity triangular matrix and U is an upper block triangular matrix. The solution

e = Σ−1(x − µ) for any given vector x is obtained by back substitution and leads to the

smoothing equations

et = F−1
t vt −K ′

tst, st−1 = Z ′

tet + T ′

tst, (43)
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for t = n, . . . , 1 with the initialisation sn = 0. Similar equations have appeared in Kohn and

Ansley (1989), de Jong (1989) and Koopman (1993) although these results do not allow for a

negative definite matrix Ft.

Derivation of Proposition 2

Given the result in Proposition 1, we have e = Σ−1(x − µ) = U−1D−1(x − µ) = U−1v so that

we need to solve Ue = v for e. The upper triangular block structure of U = FD′ is derived in

Proposition 1 and it follows from the back substitution that

en = F−1
n vn, et = F−1

t vt −
n∑

i=t+1

K ′

tT
′

t+1 . . . T
′

i−1Z
′

iei, t = n− 1, n− 2, . . . , 1.

The backward recursion (43) relies on the definition st =
∑n

i=t+1 T
′

t+1 . . . T
′

i−1Z
′

iei that can be

evaluated recursively as in (43). This completes the derivation of Proposition 2.

Proposition 3

Assume that an LU decomposition for the symmetric matrix Σ = DU exists where D is a lower

block unity triangular matrix and U is an upper block triangular matrix. The expression of

g+ = µ+ ΨΣ−1(x− µ) in Theorem 1 is equivalent to g+ = x−Ae and its t-th block element is

computed by

g+
t = xt − Atet, (44)

for t = n, . . . , 1. This expression can be merged with the backward recursion (43).

Derivation of Proposition 3

The equivalence x− Ae ≡ µ+ ΨΣ−1(x− µ) follows from

x− Ae = (Σ − A)Σ−1(x− µ) + µ

= µ+ ΨΣ−1(x− µ).

The block structure of A leads to (44).

Proof of Theorem 2

Theorem 2 states that a draw from N(θ̂, V ) can be computed by the equations (34) and (26).

From proposition 3 we have θ̂ = µ+ ΨΣ−1(x− µ) = x− b where b = Ae = AΣ−1(x− µ). The

variance matrix V is expressed in (25) as V = A − AΣ−1A and from Proposition 1 we have
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Σ = DU = DFD′ where D is a lower block unity triangular matrix and F is a block diagonal

matrix. Furthermore, it follows from the derivation of Proposition 2 that

b = AD′ −1F−1v, V = A− AD′ −1F−1D−1A = AD′ −1(D′A−1D − F−1)D−1A. (45)

Suppose that the draw u+ ∼ N(0, D′A−1D−F−1) is available, then u = AD′ −1(u+ +F−1v) is

a draw from u ∼ N(b, V ). We concentrate on u ∼ N(b, V ) since we have that x− u is a draw

from N(θ̂, V ). The proof of Theorem 2 is presented as the sequence of Propositions 4 and 5 for

which the derivations are given below. Proposition 6 shows that the equations (26) of Theorem

2 are equivalent to the simulation smoothing equations of de Jong and Shephard (1995).

Proposition 4

Assume that the LU decomposition of Proposition 1 applies to the symmetric matrix Σ = DU =

DFD′. Further, assume that the Kalman filter equations of Theorem 1 has been applied and

the matrices Fi and Ki are stored for i = 1, . . . , n. Consider the LDLT decomposition of Golub

and Van Loan (1997, §3.3) for matrix

D′A−1D − F−1 = E ′CE.

where E is a lower block unity triangular matrix and C is a block diagonal matrix. The block

elements of C and E can be evaluated by

Ci = A−1
i − F−1

i −K ′

iNiKi, Eij = RiTi−1 . . . Tj+1Kj , (46)

with Ri = C−1
i (A−1

i Zi −K ′

iNiTi) and where Ni is computed by the backward recursion

Ni−1 = R′

iCiRi − Z ′

iA
−1
i Zi + T ′

iNiTi, (47)

with Nn = 0 for i, j = n, . . . , 1 and j < i.

Derivation of Proposition 4

Since the variance matrix D′A−1D − F−1 is symmetric, we restrict ourselves to the lower

diagonal blocks. From (41) in Proposition 1 and the definition Ki = Mi, we have

Di,i−1 = ZiKi−1, Dij = ZiTi−1 . . . Tj+1Kj, i = 2, . . . , n, j = 1, . . . , i− 2.

Given the block structures of the matrices E and C, the (i, j) block of E ′CE is given by

(E ′CE)ij =

{
Ci +

∑n

k=i+1E
′

kiCkEki i = j,

CiEij +
∑n

k=i+1E
′

kiCkEkj i > j.
(48)
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Given the definitions of Di and Fi = Uii from equations (41) and (42) in Proposition 1, respec-

tively, the block (i, j) of matrix D′A−1D − F−1 is given by

(D′A−1D − F−1)ij =





A−1
i − F−1

i +
∑n

k=i+1K
′

iT
′

i+1 . . . T
′

k−1Z
′

kA
−1
k ZkTk−1 . . . Ti+1Ki =

A−1
i − F−1

i +K ′

iN
[a]
i Ki, i = j,(

A−1
i Zi +

∑n

k=i+1K
′

iT
′

i+1 . . . T
′

k−1Z
′

kA
−1
k ZkTk−1 . . . Ti+1Ti

)
Ti−1 . . . Tj+1Kj =

(A−1
i Zi +K ′

iN
[a]
i Ti)Ti−1 . . . Tj+1Kj, i > j,

(49)

since the summation
∑n

k=i+1 T
′

i+1 . . . T
′

k−1Z
′

kA
−1
k ZkTk−1 . . . Ti+1 can be evaluated by the back-

ward recursion

N
[a]
i−1 = Z ′

iA
−1
i Zi + T ′

iN
[a]
i Ti, (50)

for i = n, . . . , 1 and with N
[a]
n = 0. The induction argument allows us to assume that equations

(46) and (47) hold for i = m + 1, . . . , n and j < i. We need to verify (46) and (47) for i = m

and j < m. By substituting the equation for Eij of (46) into (48), the two summations in (48)

can be given by
n∑

k=i+1

E ′

kiCkEki = K ′

iN
[c]
i Ki,

n∑

k=i+1

E ′

kiCkEkj = K ′

iN
[c]
i TiTi−1 . . . Tj+1Kj , (51)

for i = m + 1, . . . , n and j > i, since the summation
∑n

k=i+1 T
′

i+1 . . . T
′

k−1R
′

kCkRkTk−1 . . . Ti+1

can be evaluated by the backward recursion

N
[c]
i−1 = R′

iCiRi + T ′

iN
[c]
i Ti, (52)

for i = n, . . . , 1 and with N
[c]
n = 0. By substituting the first equation of (51) into the first row

of (48) and by equating (48) and (49) for i = j, the first equation in (46) is established for

i = m, that is Cm. In a similar way, we can establish the second equation in (46) for i = m

and j < m by

Emj = C−1
m [(A−1

m Zm +K ′

mN
[a]
m Tm)Tm−1 . . . Tj+1Kj −

∑n

k=m+1E
′

kmCkEkj]

= C−1
m [A−1

m Zm −K ′

m(N
[c]
m −N

[a]
m )Tm]Tm−1 . . . Tj+1Kj

= RmTm−1 . . . Tj+1Kj,

where Rm is defined as Rm = C−1
m (A−1

m Zm − K ′

mNmTm). The definition Ni ≡ N
[c]
i − N

[a]
i

completes the derivation of Proposition 4.

Proposition 5

The draw u ∼ N(c, V ) is generated by the backward recursion

wt ∼ N(0, Ct), ut = At(F
−1
t vt + wt −K ′

trt), rt−1 = Z ′

tA
−1
t ut − R′

twt + T ′

trt, (53)
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for t = n, . . . , 1 and rn = 0. The recursion (53) is carried out alongside the algorithm of

Proposition 4.

Derivation of Proposition 5

The draw u+ ∼ N(0, E ′CE) is computed by u+ = E ′w where w ∼ N(0, C). Given the block

diagonal structure of C and the lower triangular block structure of E with the blocks given by

Proposition 4, we have

wt ∼ N(0, Ct), u+
t = wt +

n∑

i=t+1

E ′

itwi = wt +

n∑

i=t+1

K ′

tT
′

t+1 . . . T
′

i−1R
′

iwi,

for t = n, . . . , 1. It follows that u+
t can be evaluated by the backward recursion

u+
t = wt +K ′

tr
[c]
t , r

[c]
t−1 = R′

twt + T ′

tr
[c]
t ,

with r
[c]
n = 0 and t = n, . . . , 1.

The draw u ∼ N(b, V ) is equivalent to u = AD′ −1(u+ + F−1v) and can be computed by

solving the system D′ux = u+ + F−1v for ux such that u = Aux. The solution for ux follows

from Proposition 2 where a similar system is solved. We therefore obtain the recursion

ut = Atu
x
t , ux

t = F−1
t vt + u+

t −K ′

tr
[a]
t , r

[a]
t−1 = Z ′

tu
x
t + T ′

tr
[a]
t ,

with r
[a]
n = 0. By defining rt = r

[a]
t −r

[c]
t and by re-ordering the equation, the proof of Proposition

5 is complete.

Proposition 6

Propositions 4 and 5 constitute the proof of Theorem 2 that consists of efficient recursions

for generating draws from the importance function. These equations are consistent with the

simulation smoother of de Jong and Shephard (1995) as given by

Lt = Tt −KtZt,

Ct = A−1
t − F−1

t −K ′

tNtKt, Wt = F−1
t Zt −K ′

tNtLt,

wt ∼ N(0, Ct), ut = At(wt + F−1
t vt −K ′

trt),

rt−1 = Z ′

tF
−1
t vt −W ′

tC
−1
t ut + L′

trt, Nt−1 = Z ′

tF
−1
t Zt +W ′

tC
−1
t Wt + L′

tNtLt,

(54)

for t = n, n− 1, . . . , 1 and with the initialisations rn = 0 and Nn = 0. Apart from the fact that

matrices At and Ft can be negative definite for t = 1, . . . , n, the equations (54) are the same as

the simulation smoother of de Jong and Shephard (1995).
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Derivation of Proposition 6

The definition Lt = Tt −KtZt is introduced and the equations for Ct, u
c
t and ut are the same

as in Propositions 4 and 5. Define St = F−1
t +K ′

tNtKt for t = 1, . . . , n. From the definition of

Ct it follows that A−1
t = Ct + St. A linear relation between Rt and Wt is derived by

Rt = C−1
t (A−1

t Zt −K ′

tNtTt)

= C−1
t [(Ct + St)Zt −K ′

tNtTt]

= C−1
t [(Ct + F−1

t )Zt −K ′

tNtLt]

= C−1
t (CtZt +Wt),

for t = 1, . . . , n. It follows that Wt = Ct(Rt − Zt) and (Ct + St)Zt − CtRt −K ′

tNtTt = 0. The

equivalence of the recursions for Nt in (47) and (54) is shown by

Nt−1 = R′

tCtRt − Z ′

tA
−1
t Zt + T ′

tNtTt

= R′

tCtRt − Z ′

t(Ct + St)Zt + T ′

tNtTt

+ Z ′

t[(Ct + St)Zt − CtRt −K ′

tNtTt] + [Z ′

t(Ct + St) −R′

tCt − T ′

tNtKt]Zt

= (Rt − Zt)
′Ct(Rt − Zt) + Z ′

tF
−1
t Zt + L′

tNtLt

= W ′

tC
−1
t Wt + Z ′

tF
−1
t Zt + L′

tNtLt.

The equivalence of the recursions for rt in (53) and (54) is shown by

rt−1 = Z ′

tA
−1
t ut − R′

twt + T ′

trt

= Z ′

tF
−1
t vt + (Zt − Rt)

′wt − Z ′

tK
′

trt + T ′

trt

= Z ′

tF
−1
t vt −W ′

tC
−1
t wt + L′

trt.

This completes the proof.

Derivation of Equation (28)

The log of the importance function f(θ; y) = N(θ̂, V ) is given by

log f(θ; y) = −
mn

2
log 2π −

1

2
log |V | −

1

2
(θ − θ̂)′V −1(θ − θ̂).

From equation (45) and Proposition 4 we have V = AD′ −1E ′CED−1A where matrices A and

C are block diagonal and matrices D and E are lower block unity triangular matrices. From

Proposition 5 we have θ = x− u with u ∼ N(0, V ) and where u = AD′ −1(E ′w+ F−1v). From

Propositions 2 and 3 we have θ̂ = g+ = x− AΣ−1(x− µ) = x− AD′ −1F−1v. It follows that

θ − θ̂ = AD′ −1F−1v − u = AD′ −1F−1v −AD′ −1(E ′w + F−1v) = −AD′ −1E ′w,

and

(θ − θ̂)′V −1(θ − θ̂) = w′ED−1AA−1DE−1C−1E ′ −1D′A−1AD′ −1E ′w = w′C−1w.

23



Given the lower block unity triangular matrices D and E, the log determinental term is

log |V | = log |AD′ −1E ′CED−1A| = log(|A||D||E||C||E||D||A|) = 2 log |A| + log |C|.

Since matrices A and C are block diagonal and the t-th diagonal block Ct of C is positive

definite, we have

w′C−1w =
n∑

t=1

o′t ot, log |V | = 2
n∑

t=1

(log |At| + log |Bt|),

where Ct = BtB
′

t and ot ∼ N(0, Im) so that wt = Btot for t = 1, . . . , n. This completes the

derivation of (28).
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